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Abstract. We consider the gathering problem of oblivious and asyn-
chronous robots moving in the plane. When n > 2 robots are free to
gather anywhere in the plane, the problem has been solved in [Cieliebak
et al., SIAM J. on Comput., 41(4), 2012 ]. We propose a new natural
and challenging model that requires robots to gather only at some pre-
determined points in the plane, herein referred to as meeting-points.

Robots operate in standard Look-Compute-Move cycles. In one cycle,
a robot perceives the robots’ positions and the meeting-points (Look)
according to its own coordinate system, decides whether to move toward
some direction (Compute), and in the positive case it moves (Move).
Cycles are performed asynchronously for each robot. Robots are anony-
mous and execute the same distributed and deterministic algorithm.

In the new proposed model, we fully characterize when gathering can
be accomplished. We design an algorithm that solves the problem for all
configurations with n > 0 robots but those identified as ungatherable.

1 Introduction

The gathering task is a basic primitive in robot-based computing systems. It
has been extensively studied in the literature under different assumptions. The
problem asks to design a distributed algorithm that allows a team of robots to
meet at some common place. Varying on the capabilities of the robots as well
as on the environment where they move, very different and challenging aspects
must be faced (see, e.g. [2,7,9–11,14,15], and references therein).

In this paper we consider a very minimal setting. We are interested in robots
placed in R

2 where they can freely move but they must meet at some pre-
determined points, herein called meeting-points. We call this new problem the
Gathering on Meeting-Points problem, shortly gmp.
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Initially, no robots occupy the same location, and they are assumed to be:
Dimensionless: modeled as geometric points in the plane; Anonymous: no unique
identifiers; Autonomous: no centralized control; Oblivious: no memory of past
events; Homogeneous: they all execute the same deterministic algorithm; Asyn-
chronous: there is no global clock that synchronize their actions; Silent : no direct
way of communicating; Unoriented : no common coordinate system, no compass,
no chirality. Robots are equipped with sensors and motion actuators, and operate
in Look -Compute-Move cycles (see, e.g. [11]). In one cycle a robot takes a snap-
shot of the current global configuration (Look) in terms of relative robots and
meeting-points positions, according to its own coordinate system. Successively,
in the Compute phase it decides whether to move toward a specific direction or
not, and in the positive case it moves (Move).

During the Look phase, robots are assumed to perceive multiplicities, that
is, whether a same point is occupied by one or more robots, but not the exact
number. In the literature, this is called global-weak multiplicity detection [7,11,
12]. Herein we simply call it multiplicity detection. Note that robots always detect
whether a meeting-point and one or more robots occupy the same location.

Cycles are performed asynchronously, i.e., the time between Look, Compute,
and Move phases is finite but unbounded, and it is decided by an adversary for
each robot. Moreover, during the Look phase, a robot does not perceive whether
other robots are moving or not. Hence, robots may move based on outdated
perceptions. In fact, due to asynchrony, by the time a robot takes a snapshot
of the configuration, this might have drastically changed when it starts moving.
The scheduler determining the Look-Compute-Move cycles timing is assumed to
be fair, that is, each robot performs its cycle within finite time and infinitely
often. In the literature, this kind of scheduler is called Asynchronous (Asynch).
Different options for the scheduler are: Fully-synchronous (FSynch), where all
robots are awake and run their Look-Compute-Move cycle concurrently and each
phase of the cycle has exactly the same duration for all robots; Semi-synchronous
(SSynch), that coincides with the FSynch model with the only difference that
not all robots are necessarily activated during a cycle.

The distance traveled within a move is neither infinite nor infinitesimally
small. More precisely, the adversary has also the power to stop a moving robot
before it reaches its destination, but there exists an unknown constant δ > 0 such
that if the destination point is closer than δ, the robot will reach it, otherwise
the robot will be closer to it of at least δ. Note that, without this assumption, an
adversary would make it impossible for any robot to ever reach its destination.

Considering the model without meeting-points, the problem has been solved
in [5] for any number of robots n > 2. Adding meeting-points can sometimes
help in designing a gathering algorithm while sometimes can play for the adver-
sary. In fact, meeting-points are like anchors in the plane that never move, and
hence if they are “favorably” placed, they may suggest the final gathering point.
Contrary, when the placement of the meeting-points induces nasty symmetries,
then they can be completely useless in terms of orientation, and it might be a
real trouble for the robots to agree on a common meeting-point where to gather.
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The rationale behind the choice of introducing meeting-points is twofold.
From the one hand, we believe the model is theoretically interesting, as it is a
hybrid scenario in between the classical environment where robots freely move
in the plane (see, e.g., [1,5]), and the more structured one where robots must
move on the vertices of a graphs (see, e.g., [8,13]), implemented here by the
set of meeting-points. On the other hand, meeting-points for gathering purposes
might be a practical choice when robots move in specific environments where
not all places can be candidate to serve as gathering points.

Optimization issues have been addressed in [3,4]. The same strategies cannot
be applied here since a wider set of configurations must be now considered.

Our Results. The first contribution is that of introducing the so called meeting-
points for the well-know gathering problem under the Look-Compute-Move
model. Although the new formulation of the gathering problem seems to be
rather close to the original one [5], it turns out to require challenging strategies.
In fact, there exist ungatherable configurations, characterized by some symme-
tries, regardless the number of robots, and the most of configurations have been
approached with new stigmergy methodologies since the previous techniques
cannot be applied, even those proposed in [3,4].

We fully characterize when gmp can be solved. We exploit the ungatherability
results from [3], holding also in the stronger FSynch setting. Then, for all other
configurations, we design a distributed algorithm that solves the problem for any
number n > 0 robots. The new algorithm works in the weakest Asynch setting.

2 Definitions and General Ungatherability Results

In this section we formally define the gmp problem, and then we recall
from [3]: the view of a configuration, relations between symmetries and the view,
ungatherability results, and the concept of Weber-points of a configuration.

Problem Definition. The system is composed of n mobile robots. At any time,
the multiset R = {r1, r2, . . . , rn}, with ri ∈ R

2, contains the positions of all the
robots. The set U(R) = {x | x ∈ R} contains the unique robots’ positions. M is
a finite set of fixed meeting-points in the plane representing the only locations
in which robots can be gathered. The pair C = (R,M) represents a system
configuration. A configuration C is initial at time t if at that time all robots
have distinct positions (i.e., |U(R)| = n). A configuration C is final at time t if
(i) at that time each robot computes or performs a null movement and (ii) there
exists a point m ∈ M such that ri = m for each ri ∈ R; in this case we say that
the robots have gathered on point m at time t.

We study the gathering on meeting-points problem (shortly, gmp), that
asks to transform an initial configuration into a final one. A gathering algorithm
for gmp is a deterministic distributed algorithm that brings the robots in the
system to a final configuration in a finite number of cycles from any given initial
configuration, regardless the adversary. We say that an initial configuration C is
ungatherable if there are no gathering algorithms for gmp with respect to C.
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Fig. 1. The counter-clockwise order in which a robot perceives the configuration from
r is (r, m1, r1, r2, m2, r3, m3) and V−(r) = (0◦, d(r, cg(M)), r, α1, d(r, m1), m, α2,
d(r, r1), r, α2, d(r, r2), r, α3, d(r, m2), m, α4, (r, r3), r, α5, d(r, m3), m).

Configuration View and Symmetries. Given two distinct points u and v in the
plane, let d(u, v) denote their distance, line(u, v) denote the straight line passing
through these points, and (u, v) (resp. [u, v]) denote the open (resp. closed)
segment containing all points in this line that lie between u and v. The half-line
starting at point u (but excluding the point u) and passing through v is denoted
by hline(u, v). Given two lines line(c, u) and line(c, v), we denote by �(u, c, v)
the angle (ranging from zero to less than 360◦) centered in c and with sides
hline(c, u) and hline(c, v).

Given a configuration C = (R,M), cg(M) is the center of gravity of points in
M , that is the point whose coordinates are the mean values of the coordinates
of the points of the set. In [3] it has been defined a data structure called view
and computable by each robot r (according to its local coordinate system) for
any point p ∈ R ∪ M . Essentially, a robot r that needs to evaluate the view of
a point p, first computes cg(M) and then, starting from the direction given by
hline(p, cg(M)) and looking around from p (in clockwise and counter-clockwise
manner), it determines the order (p = p0, p1, . . . , p|U(R)|+|M |), pi ∈ R ∪ M ,
in which all robots and meeting-points appear. From such order of points, the
configuration’s view is produced by replacing each point pi with a triple αi, di, xi

formed by, in order and for i > 0, αi = �(p0, p, pi), di = d(p, pi), and xi ∈
{r, m, x} according whether pi is a robot position, a meeting-point, or a position
where a multiplicity occurs (cf. Fig. 1). The triple associated to p0 represents
the point p where d0 is equal to d(p, cg(M)). Finally, by considering r < m < x,
it is possible to order the two strings V−(p) and V+(p) associated to the view
of each point p according to clockwise or counter-clockwise look. So, the view
of p is V(p) = min{V+(p),V−(p)}, and then V(C) =

⋃
p∈U(R)∪M{V(p)}. Notice

that, even if robots do not have a common understanding of the handedness
(chirality), by computing V(C) they all get the same information.

Robots can use V(C) not only to share a common view about C but also to
determine whether a configuration is “symmetric” or not. Let ϕ : R2 → R

2 a map
from points to points in the plane. It is called an isometry or distance preserving
if for any a, b ∈ R

2 one has d(ϕ(a), ϕ(b)) = d(a, b). Examples of isometries in the
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plane are translations, rotations and reflections. An isometry ϕ is a translation
if there exists no point x such that ϕ(x) = x; it is a rotation if there exists a
unique point x such that ϕ(x) = x (and x is called center of rotation); it is a
reflection if there exists a line � such that ϕ(x) = x for each point x ∈ � (and �
is called axis of reflection).

An isometry of an initial configuration C = (R,M) is an isometry in the
plane that maps robots to robots (i.e., points of R into R) and meeting-points
to meeting-points (i.e., points of M into M). Isometries for C do not include
translations as the sets R and M are finite.

If C admits only the identity isometry, then C is said asymmetric, otherwise
it is said symmetric (i.e., C admits rotations or reflections). If C is symmetric
due to an isometry ϕ, a robot cannot distinguish its position at r ∈ R from
r′ = ϕ(r). As a consequence, two robots (e.g., one on r and one on ϕ(r)) can
decide to move simultaneously, as any algorithm is unable to distinguish between
them. In such a case, there might be a so called pending move, that is, wlog r
performs its entire Look-Compute-Move cycle while r′ does not terminate the
Move phase, i.e. its move is pending. Clearly, all the other robots performing
their cycles are not aware whether there is a pending move, that is they cannot
deduce the global status from their view. This fact greatly increases the difficulty
to devise a gathering algorithm for symmetric configurations.

The following results states that each robot can use the view V(C) to deter-
mine whether C is symmetric or not.

Lemma 1 [3]. An initial configuration C = (R,M), |M | > 1, admits a reflection
(rotation, resp.) if and only if there exist p, q ∈ R∪M , such that V+(p) = V−(q)
with p and q not necessarily distinct (V+(p) = V+(q), with p �= q, resp.).

From this results we get that, for an asymmetric configuration C, it is unique
the point (robot or meeting-point) having the minimum view.

Lemma 2. Let C = (R,M) be a non-rotational initial configuration, and � be
a line passing through cg(M). If the line perpendicular to � at cg(M) is not a
reflection axis for C, then � admits a North-South orientation.

The above lemma implies that, under certain conditions, all robots can agree
about the North of a line � passing through cg(M), and in case about the “north-
ernmost” robot or meeting-point on �.

Ungatherability Results. In this section we recall a sufficient condition for a
configuration to be ungatherable: if this applies then gmp is not solvable. Note
that the results hold also for the case of the synchronous environments FSynch.

Corollary 1 [3]. An initial configuration C = (R,M) is ungatherable even in
FSynch if it admits a rotation with center c and c �∈ R ∪ M or it admits a
reflection with axis � and � ∩ (R ∪ M) = ∅.
So, if a configuration admits a reflection (rotation, resp.) then the gathering is
possible only if on the axis (center, resp.) there are robots or meeting-points.
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Weber-Points. Let C = (R,M) be an initial configuration. We define the Weber-
distance of C as the value Δ(C) = minm∈M

∑
r∈R d(r,m). The name of Weber-

distance is due to the following remark: given a set of points T ⊆ R
2, the

Weber-point of T is a well known concept and corresponds to a point p such
that p = argminp′∈R2

∑
t∈T d(t, p′). It is well known that (i) if the points in T

are not on a line, then the Weber-point of T is unique [16], and (ii) the Weber-
point of T is not computable in general [6]. The Weber-distance of a point
m ∈ M in C is denoted as wd(C,m) and is defined as wd(C,m) =

∑
r∈R d(r,m).

Hence, a point m ∈ M is called Weber-point of C if wd(C,m) is minimum, that
is wd(C,m) = Δ(C). Symbol wp(C) is used to denote the set containing all the
Weber-points of C (notice that the wp(C) may contain more that one point and
that such points can be easily computed since M is finite).

We recall now a characterization about the set of Weber-points after the move
of a robot toward a Weber-point. From now on, we use the sentence “robot r
moves toward a meeting-point m” to mean that r performs a straight move
toward m and the final position of r lies on the interval (r,m].

Lemma 3 [3]. Let C = (R,M) be a configuration with m ∈ wp(C) and r ∈ R.
If C′ = (R′,M) is the configuration obtained after r moved toward m, then all
the Weber-points in wp(C′) lie on hline(r,m) and m ∈ wp(C′) ⊆ wp(C).

3 Gathering for GMP

In this section we provide a solution for the gmp problem. We start by providing
a partition of the set I containing all the possible initial configurations for gmp.
According to Corollary 1 there are configurations in I that are ungatherable. The
class of such configurations is denoted by U and contains any initial configuration
C fulfilling one of the following conditions:

– C admits a rotation with center c and c �∈ R ∪ M ;
– C admits a reflection with axis � and � ∩ (R ∪ M) = ∅.

In the remaining of this section we provide a gathering algorithm for the gmp

problem in the most general Asynch setting when the input configuration
(R,M) is restricted to I \ U . Moreover we assume |R| > 1 and |M | > 1, as
otherwise the solution is straightforward: in fact, if |R| = 1 it is sufficient that
the only robot reaches a meeting-point and if |M | = 1 all the robots can move
toward the only meeting-point.

Before starting the description of the algorithm we introduce some additional
concepts and notation. Given a configuration C, let O1, O2, . . . , Ot, t ≥ 1, be all
the circles centered in cg(M) such that Oi ∩R �= ∅ for each 1 ≤ i ≤ t. Moreover,
ρi represents the radius of Oi, and we assume ρi < ρj if i < j. If a robot is on
cg(M), then ρ1 = 0. Let OM be the smallest circle that is centered in cg(M)
and contains all points in M , and let ρM be its radius.

All the initial configurations processed by the algorithm, along with those
with one multiplicity created during the execution, are partitioned as follows:
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Procedure: Compute

Input: Configuration C = (R, M)

1 Let c = cg(M), d = max{ρt−1, ρM}, d′ = max{ρt, ρM};
2 if C ∈ S1 then move toward the meeting-point with unique multiplicity;
3 if C ∈ S2 then move toward cg(M);
4 if C ∈ S3 then
5 if r on cg(M) then move at distance ρ2/2 from cg(M) in any direction;

6 if C ∈ S4 then
7 if r on O1 then move at distance ρ2/2 from cg(M) on hline(cg(M), r);

8 if C ∈ S5 then
9 NumGuards = 0;

10 Call Guards() /* Guards modifies NumGuards */ ;
11 if NumGuards �= 0 then
12 Call MakeMultiplicity();

13 if C ∈ S6 then Call AtMost3Bots();

S0: any final configuration C where all the robots form one multiplicity on some
meeting-point;

S1: any configuration C �∈ S0 with only one multiplicity on some meeting-point;
S2: any C = (R,M) �∈ ⋃1

i=0 Si, with cg(M) ∈ M ;
S3: any C �∈ ⋃2

i=0 Si admitting a rotation;
S4: any C = (R,M) �∈ ⋃2

i=0 Si with one robot r on O1 such that 0 < ρ1 < ρ2/2
and (R \ {r},M) ∈ S3.

S5: any C �∈ ⋃4
i=0 Si, with more than 3 robots.

S6: any C �∈ ⋃4
i=0 Si, with at most 3 robots.

It easily follows that {U ,S2,S3, . . . ,S6} is a partition of I. Note that configura-
tions in classes S0 and S1 are the only non-initial ones handled by the algorithm.

The general algorithm, executed by each robot, is represented by Procedure
Compute. It is divided into six parts, according to the subdivision of the non-
final configurations. The procedure and the sub-procedures represent what a
generic robot r executes during the Compute phase once it has detected the
class which the perceived configuration belongs to.

The general strategy of the algorithm is to transform each initial configura-
tion C ∈ ⋃6

i=2 Si into a configuration C′ ∈ S1 by moving robots to create a multi-
plicity on some meeting-point m. Once this occurs, all robots can always detect
m and the gathering can be easily finalized. This approach is easy to obtain
when there is a meeting-point m on cg(M) (i.e., configurations in S2) since m
is always recognizable by all robots. Whereas, it is not applied in rotational (or
quasi-rotational) configurations with a robot on cg(M) (i.e., configurations in
S3 or S4) that are transformed in configurations in S5 or S6.

Then, the core of the algorithm is given for cases S5 and S6 where some sub-
procedures later defined are invoked. For handling configurations in such classes,
the strategy of our algorithm is composed of four phases:

1. select one or two robots, denoted as guard(s);
2. place suitably the guard(s), if required;
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3. crate a multiplicity by means of robots not designated as guard(s);
4. finalize the gathering on the created multiplicity.

The selection of the guard(s) is done among the robots furthest from cg(M). Due
to the limited number of symmetries that a configuration can admit, it is always
possible to select one or two robots that are moved away from cg(M) so that they
are always recognizable. The algorithm selects two guards, which are equivalent,
only for reflexive configurations where a single guard cannot be pointed out. As
final positioning for the guards, we chose a sufficiently large distance from cg(M)
that depends on the radius of the current Ot−1. Once guards are correctly placed,
all other robots cooperate in order to create a multiplicity on a meeting-point.
In practice, stigmergy paradigms are applied, that is guards are used in place of
a compass so that all robots get oriented by observing their positions. From this
orientation they deduce what will be the final gathering point and hence move
there. Such a point is a meeting-point m that maintains its peculiarity while
robots move toward it. For instance, if we chose among the meeting-points the
northernmost of minimum Weber distance, then as soon as robots start moving
toward it, its Weber distance decreases. Eventually, the meeting-point m will
remain the only one of minimum Weber distance, according to Lemma 3.

According to the assumed multiplicity detection, once a multiplicity is cre-
ated, robots are no longer able to compute the Weber distance accurately. Hence,
our strategy assures to create the first multiplicity over m, and once this hap-
pens all robots move toward it without creating other multiplicities. Moves are
always computed without creating undesired multiplicities. Clearly, the move-
ment of the guards (during the above phase 2) cannot create any multiplicity
since they are moved from Ot to the outer space. Afterward, since robots move
straightly toward m, then two robots meet only at the final destination point,
unless they move along the same direction. In such a case, we make robots move
without overtaking each other. In particular if a robot r is moving toward a
point p and there is another robot r′ in the open segment (r, p), then r moves
toward a point p′ on (r, p) such that d(r, p′) = d(r,r′)

2 . In this way, undesired
multiplicities are never created. Once a multiplicity is created on m, it is then
easy to move all other robots (including the guards) toward it, by exploiting the
multiplicity detection. Hence the gathering is easily finalized.

The next theorem provides the correctness of our algorithm.

Theorem 1. There exists a gathering algorithm that solves the gmp problem
for an initial configuration C if and only if C ∈ I \ U .

3.1 Classes S1,S2,S3, and S4

In this section we describe how configurations in the first four classes are handled
by our algorithm. Concerning classes S1 and S2, robots can move concurrently
toward the unique multiplicity, or cg(M), respectively.

Lemma 4. Given a configuration C in class S1 or S2, Procedure Compute

leads to a configuration C′ in class S0, eventually.
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Consider now the case where the initial configuration C admits a rotation
(C ∈ S3) or it “almost” admits a rotation (C ∈ S4). Since in case of rotations it
is generally impossible to identify specific robots suitable for the role of guards,
when C is in S3 the algorithm first breaks this symmetry by moving the robot
in the center of the rotation c. Notice that a robot must be on c as otherwise
either C ∈ S2 or C ∈ U . Class S4 has been introduced to assure that the robot
moving from c reaches a target (a distance ρ2/2 from c) and stops there before
the positioning of the guard(s) starts.

Lemma 5. Given an initial configuration C = (R,M) in class S3 or S4, Proce-
dure Compute leads to a configuration C′ in class S5 or S6, eventually.

3.2 Class S5

In this section, configurations of class S5 are addressed. As described at the
beginning of the section, our algorithm makes use of a stigmergy paradigm, that
is some robots (namely, the “guards”) are used in place of a compass so that
all robots get oriented by observing their positions. We now formally define the
guards of a configuration.

Definition 1. Let C = (R,M) be an initial configuration with ρt ≥ d = 3 ·
max{ρt−1, ρM}. If Ot ∩ R = {r} then r is a guard. Assume Ot ∩ R = {r1, r2}
and r1, r2 are symmetric with respect to an axis � of M . If C is reflexive according
to � or there exists a meeting-point which is unique according to some property,
then r1 and r2 are two guards.

According to the notion of guards, in order to finalize the gathering, the
configuration evolves in four different stages: the first two stages are devoted to
(1) select one or two robots that are guards or that can be moved until they
become guards, and (2) suitably move the guards, if necessary. These first two
stages are realized by means of Procedure Guards. The third stage concerns
(3) making a multiplicity by means of robots that are not guards. Procedure
MakeMultiplicity realizes it. The last stage requires (4) finalizing the gath-
ering on the created multiplicity according to Lemma 4.

We now shortly introduce Procedure Guards applied by robots in order to
detect whether the guards exist or if they have to be created. Procedure Guards

is invoked when it is recognized that the initial configuration C taken as input
belongs to S5. Procedure Guards checks how many robots reside on Ot and
then calls the corresponding subroutine. Note that, according to Definition 1,
guards are at distance at least 3d from the center cg(M), while all the remaining
robots and all the meeting-points are at distance at most d from cg(M). In this
way, once guards are recognized, the other robots start moving toward a specific
meeting-point and they will never exceed distance d from cg(M).

Conversely, when there are no guards, the configuration must be transformed
so that a new configuration with one or two guards is created. During the trans-
formation, one or two robots must be selected and moved far from cg(M) until
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Procedure: Guards

Input: Configuration C = (R, M) with circles Oi, i = 1, 2, . . . , t

1 if Ot ∩ R = {r1} then Call CheckOne(C, r1);
2 if Ot ∩ R = {r1, r2} then Call CheckTwo(C, r1, r2);
3 if |Ot ∩ R| > 2 then Call CheckMany(C);

Procedure: CheckOne

Input: Configuration C = (R, M) and robot r1 on Ot

1 if ρt ≥ 3d then NumGuards = 1; exit;
2 Let x = hline(c, r1) ∩ Ot−1;

3 Let C′ be the configuration obtainable from C by assuming r1 on x;

4 if ρt − ρt−1 ≤ d and C′ is reflexive with axis � �= line(c, x) and C′ ∈ S5 then
5 Let r2 be the robot symmetric to r1 in C′ with respect to �;
6 if r = r2 then
7 move r on hline(c, r) at distance ρt from c; /* Possible pending move */

8 else
9 if r = r1 then move r on hline(c, x) at distance 3d from c;

reaching a position compatible with the definition of guards. In particular, if two
guards must be created, then the designed robots must move at distance 3d from
cg(M) in two steps: first they are moved both at distance 2d, and afterward 3d.
This double step is done so as the difference between the distances of the two
guards (that might move asynchronously) from cg(M) is always kept below d in
order to distinguish the case where only one guard must be created. During the
phase in which robots are moved to create guards, d is initially defined as the
maximum between ρt−1 and ρM . Sometimes we make use of d′ = max{ρt, ρM}
instead of d; this happens when the guard(s) have not started moving yet, and
Ot is occupied also by robots that will not become guards.

Once Guards completed its task (and, due to the adversary, it may require
several but finite many executions made by the guard robots), the variable
NumGuards is set to one or two and hence MakeMultiplicity starts. Of
course, also this procedure may require several executions to complete its task.
Then, according to Lines 8–12 of Procedure Compute, Procedure Guards

is called again each time MakeMultiplicity restarts. In such executions,
Guards has only to recognize that guard(s) are settled.

So, the next lemmata can be stated.

Lemma 6. Given a configuration C = (R,M) in class S5, Procedure Guards

eventually leads to a configuration C′ ∈ S5 with 1 or 2 guards. Moreover,

(i) if C′ has one guard, then either C′ is asymmetric or it admits a reflection
axis with the guard on the axis;

(ii) if C′ has two guards, then either C′ is reflexive and the two guards are sym-
metric, or C′ is asymmetric, � is a reflection axis for M , and the two guards
are symmetric with respect to �.

Lemma 7. If Procedure Guards returns a configuration C with 1 or 2 guards,
then Procedure MakeMultiplicity leads to a configuration C′ ∈ S1, eventually.
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Procedure: CheckTwo

Input: Configuration C = (R, M) and robots r1 and r2 on Ot

1 Let c = cg(M);
2 if C is reflexive then
3 Let � be the axis of symmetry;
4 if r1 and r2 are on � then
5 Let r′ be the northernmost robot between r1 and r2;

6 if r = r′ then move r on hline(c, r) at distance 3d′ from c;

7 else
8 if ρt ≥ 3d then NumGuards = 2; exit;
9 if ρt ≥ 2d then

10 if r ∈ {r1, r2} then move r on hline(c, r) at distance 3d from c;

11 else
12 if r ∈ {r1, r2} then move r on hline(c, r) at distance 2d from c;

13 else
14 if ρt ≥ 3d then
15 Let � be the bisector of α = �(r1, c, r2);
16 if � is an axis of reflection for M then
17 if M ∩ � �= ∅ then NumGuards = 2; exit;
18 else
19 Let M ′ be the set of meeting-points in M ∩ OM , closest to �, and with

minimum Weber-distance;

20 if |M ′| = 1 then NumGuards = 2; exit;

21 if r is the robot on Ot with minimum view then
22 move r on hline(c, r) at distance 3d′ from c

Procedure: CheckMany

Input: Configuration C = (R, M)

1 if C is reflexive with axis � then
2 Let r1 and r2 be the robots on Ot that are not on � but closest to it (and the

northernmost in case of ties);

3 if r ∈ {r1, r2} then move r on hline(c, r) at distance 2d′ from c;

4 else
5 if r is the robot on Ot with minimum view then
6 move r on hline(c, r) at distance 3d′ from c

3.3 Class S6

Since each configuration C ∈ S6 has two or three robots only, then the app-
roach of Sect. 3.2 that makes use of guards cannot be always applied since there
might be not enough remaining robots to create a multiplicity. Here we briefly
summarize the strategy implemented by Procedure AtMost3Bots().

If C has only two robots r1 and r2 and is reflexive without robots on the axis
�, then the approach is to move both the symmetric robots by small steps toward
a meeting-point m on the axis. Small steps are required in order to maintain � as
recognizable. During the movements, the following invariant is used: the triangles
(r1,m, h1) and (r2,m, h2), where h1 and h2 are the projections of r1 and r2 on
�, respectively, remain similar after the movements. The small movements are
repeated until the two robots reach m.
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Procedure: MakeMultiplicity

Input: Configuration C = (R, M)

1 if NumGuards = 1 then
2 Let g be the guard and let � = hline(c, g) ;
3 if M ∩ � �= ∅ then
4 Let m ∈ M ∩ � be the meeting-point closest to g;
5 if r �= g then move r toward m;

6 else
7 Let X =

⋃
m∈M hline(c, m) ∩ Ot;

8 if r = g then move r on Ot toward any closest point in X;

9 if NumGuards = 2 then
10 Let g1, g2 be the guards and � be the bisector of �(g1, c, g2);

11 Let M ′ = M ∩ �;

12 if |M ′| �= ∅ then
13 Let M ′

W ⊆ M ′ be the set of meeting-points with minimum Weber-distance;

14 if |M ′
W | = 2 then

15 Let m be the northernmost meeting-point in M ′
W ;

16 if r �∈ {g1, g2} and r is not on � then move r toward m;

17 else
18 if r �∈ {g1, g2} then move r toward m, being M ′

W = {m};

19 else
20 Let M ′′ be the set of meeting-points on OM , closest to �, and with minimum

Weber-distance;

21 if M ′′ = {m} then
22 if r �∈ {g1, g2} then move r toward m;

23 else
24 if r is the robot on � with minimum view then
25 move r toward any m ∈ M ′′;

In all the other cases one guard is created. In particular: if the there are three
robots, once the guard is created the remaining robots can create a multiplicity
(and hence a configuration in S1 is created); if there are two robots, once the
guard is created then (1) the other robot can move toward the meeting-point
closest to the guard, and (2) the guard can move toward the occupied meeting-
point until finalizing the gathering.

4 Conclusion

We have studied a new version of the gathering problem of anonymous and obliv-
ious robots in the plane. Robots are required to gather at some predetermined
meeting-points. Robots operate in the Look-Compute-Move cycle model empow-
ered with the multiplicity detection. We provide a new deterministic distributed
gathering algorithm that solves the problem for all initial configurations but
those proved to be ungatherable. Introducing meeting-points is a natural and
challenging choice, and the resolution of the gathering problem within this model
is of main interest in robot-based computing systems.

Revisiting other existing models for the gathering or even other problems
with respect to the meeting-points represents intriguing research directions.
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