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Abstract. A random geometric graph, G(n, r), is formed by choosing
n points independently and uniformly at random in a unit square; two
points are connected by a straight-line edge if they are at Euclidean

distance at most r. For a given constant k, we show that n
−k

2k−2 is a
distance threshold function for G(n, r) to have a connected subgraph on k
points. Based on that, we show that n−2/3 is a distance threshold function
for G(n, r) to be plane, and n−5/8 is a distance threshold function for
G(n, r) to be planar.

1 Introduction

Wireless networks are usually modeled as disk graphs in the plane. Given a
set P of points in the plane and a positive parameter r, the disk graph is the
geometric graph with vertex set P which has a straight-line edge between two
points p, q ∈ P if and only if |pq| ≤ r, where |pq| denotes the Euclidean distance
between p and q. If r = 1, then the disk graph is referred to as unit disk graph.
A random geometric graph, denoted by G(n, r), is a geometric graph formed by
choosing n points independently and uniformly at random in a unit square; two
points are connected by a straight-line edge if and only if they are at Euclidean
distance at most r, where r = r(n) is a function of n and r → 0 as n → ∞.

We say that two line segments in the plane cross each other if they have
a point in common that is interior to both edges. Two line segments are non-
crossing if they do not cross. Note that two non-crossing line segments may share
an endpoint. A geometric graph is said to be plane if its edges do not cross, and
non-plane, otherwise. A graph is planar if and only if it does not contain K5

(the complete graph on 5 vertices) or K3,3 (the complete bipartite graph on six
vertices partitioned into two parts each of size 3) as a minor. A non-planar graph
is a graph which is not planar.

A graph property P is increasing if a graph G satisfies P, then by adding
edges to G, the property P remains valid in G. Similarly, P is decreasing if a
graph G satisfies P, then by removing edges from G, the property P remains
valid in G. P is called a monotone property if P is either increasing or decreasing.
Connectivity and “having a clique of size k” are increasing monotone properties,
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while planarity and “being plane” are decreasing monotone properties in G(n, r),
where the value of r increases.

By [13] any monotone property of a random geometric graphs has a thresh-
old function. The thresholds in random geometric graphs are expressed by the
distance r. In the sequel, the term w.h.p. (with high probability) is to be inter-
preted to mean that the probability tends to 1 as n → ∞. For an increasing
property P, the threshold is a function t(n) such that if r = o(t(n)) then w.h.p.
P does not hold in G(n, r), and if r = ω(t(n)) then w.h.p. P holds in G(n, r).
Symmetrically, for a decreasing property P, the threshold is a function t(n) such
that if r = o(t(n)) then w.h.p. P holds in G(n, r), and if r = ω(t(n)) then w.h.p.
P does not hold in G(n, r). Note that a threshold function may not be unique. It
is well known that

√
ln n/n is a connectivity threshold for G(n, r); see [14,19,20].

In this paper we investigate thresholds in random geometric graphs for having
a connected subgraph of constant size, being plane, and being planar.

1.1 Related Work

Random graphs were first defined and formally studied by Gilbert in [10] and
Erdös and Rényi [8]. It seems that the concept of a random geometric graph
was first formally suggested by Gilbert in [11] and for that reason is also known
as Gilbert’s disk model. These classes of graphs are known to have numerous
applications as a model for studying communication primitives (broadcasting,
routing, etc.) and topology control (connectivity, coverage, etc.) in idealized wire-
less sensor networks as well as extensive utility in theoretical computer science
and many fields of the mathematical sciences.

An instance of Erdös-Rényi graph [8] is obtained by taking n vertices and
connecting any two with probability p, independently of all other pairs; the graph
derived by this scheme is denoted by Gn,p. In Gn,p the threshold is expressed
by the edge existence probability p, while in G(n, r) the threshold is expressed
in terms of r. In both random graphs and random geometric graphs, property
thresholds are of great interest [4,7,9,13,18]. Note that edge crossing configura-
tions in G(n, r) have a geometric nature, and as such, have no analogues in the
context of the Erdös-Rényi model for random graphs. However, planarity, and
having a clique of specific size are of interest in both Gn,p and G(n, r).

Bollobás and Thomason [5] showed that any monotone property in random
graphs has a threshold function. See also a result of Friedgut and Kalai [9],
and a result of Bourgain and Kalai [6]. In the Erdös-Rényi random graph Gn,p,
the connectivity threshold is p = log n/n and the threshold for having a giant
component is p = 1/n; see [1]. The planarity threshold for Gn,p is p = 1/n;
see [4,23].

A general reference on random geometric graphs is [22]. There is extensive
literature on various aspects of random geometric graphs of which we mention
the related work on coverage by [15,16] and a review on percolation, connectivity,
coverage and colouring by [3]. As in random graphs, any monotone property in
geometric random graphs has a threshold function [7,13,17,18].
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Random geometric graphs have a connectivity threshold of
√

ln n/n; see [14,
19,20]. Gupta and Kumar [14] provided a connectivity threshold for points that
are uniformly distributed in a disk. By a result of Penrose [21], in G(n, r), any
threshold function for having no isolated vertex (a vertex of degree zero) is also
a connectivity threshold function. Panchapakesan and Manjunath [19] showed
that

√
ln n/n is a threshold for being an isolated vertex in G(n, r). This implies

that
√

ln n/n is a connectivity threshold for G(n, r). For k ≥ 2, the details on the
k-connectivity threshold in random geometric graphs can be found in [21,22].
Connectivity of random geometric graphs for points on a line is studied by
Godehardt and Jaworski [12]. Appel and Russo [2] considered the connectivity
under the L∞-norm.

1.2 Our Results

In this paper we investigate thresholds for some monotone properties in random
geometric graphs. In Sect. 2 we show that for a constant k, the distance threshold
for having a connected subgraph on k points is n

−k
2k−2 . We show that the same

threshold is valid for the existence of a clique of size k. Based on that, we prove
the following thresholds for a random geometric graph to be plane or planar.
In Sect. 3, we prove that n−2/3 is a distance threshold for a random geometric
graph to be plane. In Sect. 4, we prove that n−5/8 is a distance threshold for a
random geometric graph to be planar.

2 The Threshold for Having a Connected Subgraph
on k Points

In this section, we look for the distance threshold for “existence of connected
subgraphs of constant size”; this is an increasing property. For a given constant
k, we show that n

−k
2k−2 is the threshold function for the existence of a connected

subgraph on k points in G(n, r). Specifically, we show that if r = o(n
−k

2k−2 ), then
w.h.p. G(n, r) has no connected subgraph on k points, and if r = ω(n

−k
2k−2 ), then

w.h.p. G(n, r) has a connected subgraph on k points. We also show that the
same threshold function holds for the existence of a clique of size k.

Theorem 1. Let k ≥ 2 be an integer constant. Then, n
−k

2k−2 is a distance thresh-
old function for G(n, r) to have a connected subgraph on k points.

Proof. Let P1, . . . , P(nk) be an enumeration of all subsets of k points in G(n, r).
Let DG[Pi] be the subgraph of G(n, r) that is induced by Pi. Let Xi be the
random variable such that

Xi =

{
1 if DG[Pi] is connected,
0 otherwise.

Let the random variable X count the number of sets Pi for which DG[Pi] is
connected. It is clear that



4 A. Biniaz et al.

X =
(nk)∑

i=1

Xi. (1)

Observe that E[Xi] = Pr[Xi = 1]. Since the random variables Xi have iden-
tical distributions, we have

E[X] =
(

n

k

)
E[X1]. (2)

We obtain an upper bound and a lower bound for Pr[Xi = 1]. First, partition
the unit square into squares of side equal to r. Let {s1, . . . , s1/r2} be the resulting
set of squares. For a square st, let St be the kr×kr square which has st on its left
bottom corner; see Fig. 1(a). St contains at most k2 squares each of side length
r (each St on the boundary of the unit square contains less than k2 squares).
Let Ai,t be the event that all points in Pi are contained in St. Observe that if
DG[Pi] is connected then Pi lies in St for some t ∈ {1, . . . , 1/r2}. Therefore,

if DG[Pi] is connected, then (Ai,1 ∨ Ai,2 ∨ · · · ∨ Ai,1/r2),

and hence we have

Pr[Xi = 1] ≤
1/r2∑

t=1

Pr[Ai,t] ≤
1/r2∑

t=1

(k2r2)k = k2kr2k−2. (3)

Now, partition the unit square into squares with diagonal length equal to
r. Each such square has side length equal to r/

√
2. Let {s1, . . . , s2/r2} be the

resulting set of squares. Let Bi,t be the event that all points of Pi are in st.
Observe that if all points of Pi are in the same square, then DG[Pi] is a complete
graph and hence connected. Therefore,

if (Bi,1 ∨ Bi,2 ∨ · · · ∨ Bi,2/r2) , then DG[Pi] is connected,

and hence we have

Pr[Xi = 1] ≥
2/r2∑

t=1

Pr[Bi,t] =
2/r2∑

t=1

(
r2

2

)k

=
1

2k−1
r2k−2. (4)

Since k ≥ 2 is a constant, Inequalities (3) and (4) and Eq. (2) imply that

E[Xi] = Θ(r2k−2), (5)

E[X] = Θ(nkr2k−2). (6)

If n → ∞ and r = o(n
−k

2k−2 ) we conclude that the following inequalities are
valid

Pr[X ≥ 1] ≤ E[X] (byMarkov′s Inequality)

= Θ(nkr2k−2) (by (6))
= o(1). (7)

Therefore, w.h.p. G(n, r) has no connected subgraph on k points.
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Fig. 1. (a) The square St has st on its left bottom corner. (b) The square Sx which is
centered at sx.

In the rest of the proof, we assume that r = ω(n
−k

2k−2 ). In order to show that
w.h.p. G(n, r) has at least one connected subgraph on k vertices, we show, using
the second moment method [1], that Pr[X = 0] → 0 as n → ∞. Recall from
Chebyshev’s inequality that

Pr[X = 0] ≤ Var(X)
E[X]2

. (8)

Therefore, in order to show that Pr[X = 0] → 0, it suffices to show that

Var(X)
E[X]2

→ 0. (9)

In view of Identity (1) we have

Var(X) =
∑

1≤i,j≤(nk)
Cov(Xi,Xj), (10)

where Cov(Xi,Xj) = E[XiXj ] − E[Xi]E[Xj ] ≤ E[XiXj ]. If |Pi ∩ Pj | = 0 then
DG[Pi] and DG[Pj ] are disjoint. Thus, the random variables Xi and Xj are
independent, and hence Cov(Xi,Xj) = 0. It is enough to consider the cases
when Pi and Pj are not disjoint. Assume |Pi ∩ Pj | = w, where w ∈ {1, . . . , k}.
Thus, in view of Eq. (10), we have

Var(X) =
k∑

w=1

∑

|Pi∩Pj |=w

Cov(Xi,Xj)

≤
k∑

w=1

∑

|Pi∩Pj |=w

E[XiXj ]. (11)

The computation of E[Xi,Xj ] involves some geometric considerations which
are being discussed in detail below. Since Xi and Xj are 0–1 random variables,
XiXj is a 0–1 random variable and
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XiXj =

{
1 if both DG[Pi] and DG[Pj ] are connected,
0 otherwise.

By the definition of the expected value we have

E[XiXj ] = Pr[Xj = 1|Xi = 1]Pr[Xi = 1]
= Pr[Xj = 1|Xi = 1]E[Xi]. (12)

By (5), E[Xi] = Θ(r2k−2). It remains to compute Pr[Xj = 1|Xi = 1], i.e., the
probability that DG[Pj ] is connected given that DG[Pi] is connected. Consider
the k-tuples Pi and Pj under the condition that DG[Pi] is connected. Let x be
a point in Pi ∩ Pj . Partition the unit square into squares of side length equal to
r. Let sx be the square containing x. Let Sx be the (2k − 1)r × (2k − 1)r square
centered at sx. Sx contains at most (2k−1)2 squares each of side length r (if Sx is
on the boundary of the unit square then it contains less than (2k − 1)2 squares);
see Fig. 1(b). The area of Sx is at most (2kr)2, and hence the probability that
a specific point of Pj is in St is at most 4k2r2. Since Pi and Pj share w points,
in order for DG[Pj ] to be connected, the remaining k − w points of Pj must
lie in Sx. Thus, the probability that DG[Pj ] is connected given that DG[Pi] is
connected is at most (4k2r2)k−w ≤ cwr2k−2w, for some constant cw > 0. Thus,
Pr[Xj = 1|Xi = 1] ≤ cwr2k−2w. In view of Eq. (12), we have

E[XiXj ] ≤ c′
w · r2k−2w · r2k−2 = c′

wr4k−2w−2, (13)

for some constant c′
w > 0.

Since Pi and Pj are k-tuples which share w points, |Pi ∪Pj | = 2k −w. There
are

(
n

2k−w

)
ways to choose 2k − w points for Pi ∪ Pj . Since we choose w points

for Pi ∩ Pj , k − w points for Pi alone, and k − w points for Pj alone, there are(
2k−w

w,k−w,k−w

)
ways to split the 2k − w chosen points into Pi and Pj . Based on

this and Inequality (13), Inequality (11) turns out to

Var(X) ≤
k∑

w=1

∑

|Pi∩Pj |=w

E[XiXj ]

≤
k∑

w=1

(
n

2k − w

)(
2k − w

w, k − w, k − w

)
c′
wr4k−2w−2

≤
k∑

w=1

c′′
wn2k−wr4k−2w−2.

for some constants c′′
w > 0. Consider (9) and note that by (6), E[X]2 ≥ c′′n2kr4k−4,

for some constant c′′ > 0. Thus,

Var(X)
E[X]2

≤
k∑

w=1

c′′
wn2k−wr4k−2w−2

c′′n2kr4k−4
=

k∑

w=1

c′′
w

c′′ · 1
nwr2w−2

=
c′′
1

c′′ · 1
n1r0

+
c′′
2

c′′ · 1
n2r2

+ · · · +
c′′
k

c′′ · 1
nkr2k−2

(14)
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Since r = ω(n
−k

2k−2 ), all terms in (14) tend to zero. This proves the conver-
gence in (9). Thus, Pr[X = 0] → 0 as n → ∞. This implies that if r = ω(n

−k
2k−2 ),

then G(n, r) has a connected subgraph on k vertices with high probability. �

In the following theorem we show that if k = O(1), then n
−k

2k−2 is also a
threshold for G(n, r) to have a clique of size k; this is an increasing property.

Theorem 2. Let k ≥ 2 be an integer constant. Then, n
−k

2k−2 is a distance thresh-
old function for G(n, r) to have a clique of size k.

Proof. By Theorem 1, if r = o(n
−k

2k−2 ), then w.h.p. G(n, r) has no connected
subgraph on k vertices, and hence it has no clique of size k. This proves the first
statement. We prove the second statement by adjusting the proof of
Theorem 1, which is based on the second moment method. Assume r = ω(n

−k
2k−2 ).

Let P1, . . . , P(nk) be an enumeration of all subsets of k points. Let Xi be equal
to 1 if DG[Pi] is a clique, and 0 otherwise. Let X =

∑
Xi.

Partition the unit square into a set {s1, . . . , s1/r2} of squares of side length
r. Let St be the 2r × 2r square which has st on its left bottom corner. If DG[Pi]
is a clique then Pi lies in St for some t ∈ {1, . . . , 1/r2}. Therefore,

Pr[Xi = 1] ≤ 4kr2k−2.

Now, partition the unit square into a set {s1, . . . , s2/r2} of squares with diag-
onal length r. If all points of Pi fall in the square st, then DG[Pi] is a clique.
Thus,

Pr[Xi = 1] ≥ 1
2k−1

r2k−2.

Since k ≥ 2 is a constant, we have

E[Xi] = Θ(r2k−2),

E[X] = Θ(nkr2k−2).

In view of Chebyshev’s inequality we need to show that Var(X)
E[X]2 tends to 0 as

n goes to infinity. We bound Var(X) from above by Inequality (11). Consider the
k-tuples Pi and Pj under the condition that DG[Pi] is a clique. Let |Pi∩Pj | = w,
and let x be a point in Pi ∩ Pj . Partition the unit square into squares of side
length r. Let sx be the square containing x. Let Sx be the 3r×3r square centered
at sx. In order for DG[Pj ] to be a clique, the remaining k −w points of Pj must
lie in Sx. Thus,

E[XiXj ] ≤ c′
wr4k−2w−2,

for some constant c′
w > 0. By a similar argument as in the proof of Theorem 1,

we can show that for some constants c′′, c′′
w > 0 the followings inequalities are

valid:

Var(X) ≤
k∑

w=1

c′′
wn2k−wr4k−2w−2,

Var(X)
E[X]2

≤
k∑

w=1

c′′
w

c′′ · 1
nwr2w−2

.
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Since r = ω(n
−k

2k−2 ), the last inequality tends to 0 as n goes to infinity. This
completes the proof for the second statement. �

As a direct consequence of Theorem 2, we have the following corollary.

Corollary 1. n−1 is a threshold for G(n, r) to have an edge, and n− 3
4 is a

threshold for G(n, r) to have a triangle.

3 The Threshold for G(n, r) to be Plane

In this section we investigate the threshold for a random geometric graph to be
plane; this is a decreasing property. Recall that G(n, r) is plane if no two of its
edges cross. As a warm-up exercise we first prove a simple result which is based
on the connectivity threshold for random geometric graphs, which is known to
be

√
ln n/n.

a

b

c
d

r/
√
2

s1j s2j s3j

s4j s5j s6j

s7j s9js8j

Fig. 2. An square of diam-
eter r which is partitioned
into nine sub-squares.

Theorem 3. If r ≥
√

c lnn
n , with c ≥ 36, then

w.h.p. G(n, r) is not plane.

proof In order to prove that w.h.p. G(n, r) is not
plane, we show that w.h.p. it has a pair of crossing
edges. Partition the unit square into squares each
with diagonal length r. Then subdivide each such
square into nine sub-squares as depicted in Fig. 2.
There are 18

r2 sub-squares, each of side length r
3
√
2
.

The probability that no point lies in a specific sub-
square is (1− r2

18 )n. Thus, the probability that there
exists an empty sub-square is at most

18
r2

(
1 − r2

18

)n

≤ n

(
1 − c ln n

18n

)n

≤ n1−c/18 ≤ 1
n

,

when c ≥ 36. Therefore, with probability at least 1 − 1
n all sub-squares contain

points. By choosing four points a, b, c, and d as depicted in Fig. 2, it is easy
to see that the edges (a, b) and (c, d) cross. Thus, w.h.p. G(n, r) has a pair of
crossing edges, and hence w.h.p. it is not plane. �

In fact, Theorem 3 ensures that w.h.p. there exists a pair of crossing edges in
each of the squares. This implies that there are Ω

(
n

lnn

)
disjoint pair of crossing

edges, while for G(n, r) to be not plane we need to show the existence of at least
one pair of crossing edges. Thus, the value of r provided by the connectivity
threshold seems rather weak. By a different approach, in the rest of this section
we show that n− 2

3 is the correct threshold.

Lemma 1. Let (a, b) and (c, d) be two crossing edges in G(n, r), and let Q be
the convex quadrilateral formed by a, b, c, and d. Then, two adjacent sides of Q
are edges of G(n, r).
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Proof. Refer to Fig. 3. At least one of the angles of Q, say ∠cad, is bigger than
or equal to π/2. It follows that in the triangle �cad the side cd is the longest,
i.e., |cd| ≥ max{|ac|, |ad|}. Since |cd| ≤ r, both |ac| and |ad| are at most r. Thus,
ac and ad—which are adjacent—are edges of G(n, r). �

a

b
c

d a

b
c

d

)b()a(

Fig. 3. (a) Illustration of Lemma 1. (b) Crossing edges (a, b) and (c, d) form an anchor.

In the proof of Lemma 1, a is connected to b, c, and d. So the distance between
a to each of b, c, and d is at most r. Thus, we have the following corollary.

Corollary 2. The endpoints of every two crossing edges in G(n, r) are at dis-
tance at most 2r from each other. Moreover, there exists an endpoint which is
within distance r from other endpoints.

Based on the proof of Lemma 1, we define an anchor as a set {a, b, c, d} of
four points in G(n, r) such that three of them form a triangle, say �cad, and
the fourth vertex, b, is connected to a by an edge which crosses cd; see Fig. 3(b).
We call a as the crown of the anchor. The crown is within distance r from the
other three points. Note that bc and bd may or may not be edges of G(n, r).
In view of Lemma 1, two crossing edges in G(n, r) form an anchor. Conversely,
every anchor in G(n, r) introduces a pair of crossing edges.

Observation 1. G(n, r) is plane if and only if it has no anchor.

Theorem 4. n− 2
3 is a threshold for G(n, r) to be plane.

Proof. In order to show that G(n, r) is plane, by Observation 1, it is enough to
show that it has no anchors. Every anchor has four points and it is connected.
By Theorem 1, if r = o(n− 2

3 ), then w.h.p. G(n, r) has no connected subgraph
on 4 points, and hence it has no anchors. This proves the first statement.

We prove the second statement by adjusting the proof of Theorem 1 for
k = 4. Assume r = ω(n− 2

3 ). Let P1, . . . , P(n4) be an enumeration of all subsets
of 4 points. Let Xi be equal to 1 if DG[Pi] contains an anchor, and 0 otherwise.
Let X =

∑
Xi. In view of Chebyshev’s inequality we need to show that Var(X)

E[X]2

tends to 0 as n goes to infinity.
Partition the unit square into a set {s1, . . . , s2/r2} of squares with diagonal

length r. Then, subdivide each square sj , into nine sub-squares s1j , . . . , s
9
j as
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depicted in Fig. 2. If each of s1j , s
3
j , s

7
j , s

9
j or each of s2j , s

4
j , s

6
j , s

8
j contains a point

of Pi, then DG[Pi] is a convex clique of size four and hence it contains an anchor.
Thus,

Pr[Xi = 1] ≥ r6

23
· 2
94

.

This implies that E[Xi] = Ω(r6), and hence E[X] = Ω(n4r6). Therefore,

E[X]2 ≥ c′′n8r12,

for some constant c′′ > 0. By a similar argument as in the proof of Theorem 1
we bound the variance of X from above by

Var(X) ≤ c′′
1n7r12 + c′′

2n6r10 + c′′
3n5r8 + c′′

4n4r6.

Since r = ω(n− 2
3 ), Var(X)

E[X]2 tends to 0 as n goes to infinity. That is, w.h.p.
G(n, r) has an anchor. By Observation 1, w.h.p. G(n, r) is not plane. �

As a direct consequence of the proof of Theorem 4, we have the following:

Corollary 3. With high probability if a random geometric graph is not plane,
then it has a clique of size four.

Note that every anchor introduces a crossing and each crossing introduces
an anchor. Since, every anchor is a connected graph and has four points, by (6)
we have the following corollary.

Corollary 4. The expected number of crossings in G(n, r) is Θ(n4r6).

4 The Threshold for G(n, r) to be Planar

In this section we investigate the threshold for the planarity of a random geomet-
ric graph; this is a decreasing property. By Kuratowski’s theorem, a finite graph
is planar if and only if it does not contain a subgraph that is a subdivision of K5

or of K3,3. Note that any plane random geometric graph is planar too; observe
that the reverse statement may not be true. Thus, the threshold for planarity
seems to be larger than the threshold of being plane. By a similar argument as
in the proof of Theorem 3 we can show that if r ≥ √

c ln n/n, then w.h.p. each
square with diagonal length r contains K5, and hence G(n, r) is not planar.

Theorem 5. n− 5
8 is a threshold for G(n, r) to be planar.

Proof. By Theorem 2, if r = ω(n− 5
8 ), then w.h.p. G(n, r) has a clique of size 5.

Thus, w.h.p. G(n, r) contains K5 and hence it is not planar. This proves the
second statement of the theorem.

If r = o(n− 5
8 ), then by Theorem 1, w.h.p. G(n, r) has no connected sub-

graph on 5 points, and hence it has no K5. Similarly, if r = o(n− 3
5 ), then

w.h.p. G(n, r) has no connected subgraph on 6 points, and hence it has no K3,3.
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Since n− 5
8 < n− 3

5 , it follows that if r = o(n− 5
8 ), then w.h.p. G(n, r) has neither

K5 nor K3,3 as a subgraph.
Note that, in order to prove that G(n, r) is planar, we have to show that it

does not contain any subdivision of either K5 or K3,3. Any subdivision of either
K5 or K3,3 contains a connected subgraph on k ≥ 5 vertices. Since n−5/8 <

n−k/(2k−2) for all k ≥ 5, in view of Theorem 1, we conclude that if r = o(n− 5
8 ),

then w.h.p. G(n, r) has no subdivision of K5 and K3,3, and hence G(n, r) is
planar. This proves the first statement of the theorem. �

As a direct consequence of the proof of Theorem 5, we have the following:

Corollary 5. With high probability if a random geometric graph does not con-
tain a clique of size five, then it is planar.

5 Conclusion and Further Results

We presented thresholds for random geometric graphs to have a connected sub-
graph of constant size, to be plane, and to be planar. A natural open problem
is to extend Theorem 1 for connected subgraphs of k vertices where k is not
necessarily a constant, and for connected subgraphs of k vertices which have
diameter δ.
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