
 123

LN
CS

 9
53

6

11th International Symposium on Algorithms and Experiments
for Wireless Sensor Networks, ALGOSENSORS 2015
Patras, Greece, September 17–18, 2015, Revised Selected Papers

Algorithms
for Sensor Systems

Prosenjit Bose
Leszek Antoni Gasieniec
Kay Römer
Roger Wattenhofer (Eds.)

Lecture Notes in Computer Science 9536

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7411

http://www.springer.com/series/7411

Prosenjit Bose • Leszek Antoni Gąsieniec
Kay Römer • Roger Wattenhofer (Eds.)

Algorithms
for Sensor Systems
11th International Symposium on Algorithms and Experiments
for Wireless Sensor Networks, ALGOSENSORS 2015
Patras, Greece, September 17–18, 2015
Revised Selected Papers

123

Editors
Prosenjit Bose
Carleton University
Ottawa, ON
Canada

Leszek Antoni Gąsieniec
University of Liverpool
Liverpool
UK

Kay Römer
Graz University of Technology
Graz
Austria

Roger Wattenhofer
ETH Zurich
Zürich
Switzerland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-28471-2 ISBN 978-3-319-28472-9 (eBook)
DOI 10.1007/978-3-319-28472-9

Library of Congress Control Number: 2015958836

LNCS Sublibrary: SL5 – Computer Communication Networks and Telecommunications

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

ALGOSENSORS, the International Symposium on Algorithms and Experiments for
Wireless Sensor Networks, is an international forum dedicated to the algorithmic
aspects of wireless networks, static or mobile. The 11th edition of ALGOSENSORS
was held during September 17–18, 2015, in Patras, Greece, within the ALGO annual
event.

Originally focused solely on sensor networks, ALGOSENSORS now covers more
broadly algorithmic issues arising in all wireless networks of computational entities,
including sensor networks, sensor-actuator networks, and systems of autonomous
mobile robots. In particular, it focuses on the design and analysis of discrete and
distributed algorithms, on models of computation and complexity, on experimental
analysis, in the context of wireless networks, sensor networks, and robotic networks
and on all foundational and algorithmic aspects of the research in these areas. This year
papers were solicited into three tracks: Distributed and Mobile, Experiments and
Applications, and Wireless and Geometry.

In response to the call for papers, 30 submissions were received, out of which 16
papers were accepted after a rigorous reviewing process by the (joint) Program
Committee, which involved at least three reviewers for each accepted paper. This
volume contains the technical papers as well as an invited paper of the keynote talk by
Thomas Kesselheim (Max Planck Institute for Informatics).

We would like to thank all Program Committee members, as well as the external
reviewers, for their fundamental contribution in selecting the best papers resulting in a
strong program. We would also like to warmly thank the ALGO/ESA 2015 organizers
for kindly accepting to co-locate ALGOSENSORS with some of the leading events on
algorithms in Europe. Furthermore, we would like to thank the local ALGO Organi-
zation Committee for their help regarding various administrative tasks, especially the
Local Chair, Christos Zaroliagis. Last but not least, we would like thank the Publicity
Chair, Klaus-Tycho Foerster, the Web Chair, Laura Peer, and the Steering Committee
Chair, Sotiris Nikoletseas, for their help in ensuring a successful ALGOSENSORS
2015.

October 2015 Prosenjit Bose
Leszek Antoni Gąsieniec

Kay Römer
Roger Wattenhofer

Organization

Program Committee

Prosenjit Bose Carleton University, Canada (Chair Track Wireless
and Geometry)

Leszek Antoni Gąsieniec University of Liverpool, UK (Chair Track Distributed
and Mobile)

Kay Römer TU Graz, Austria (Chair Track Experiments
and Applications)

Roger Wattenhofer ETH Zurich, Switzerland (General Chair)
Carlo Boano TU Graz, Austria
Nicolas Bonichon University of Bordeaux, France
Paz Carmi Ben-Gurion University, Israel
Jérémie Chalopin CNRS and Aix-Marseille Université, France
Jean-Lou De Carufel Carleton University, Canada
Stephane Durocher Manitoba University, Canada
Anna Foerster University of Bremen, Germany
Martin Gairing University of Liverpool, UK
Konstantinos Georgiou University of Waterloo, Canada
Tomasz Jurdzinski Wroclaw University, Poland
Matias Korman National Institute of Informatics, Japan
Olaf Landsiedel Chalmers University of Technology, Sweden
Andreas Loukas TU Berlin, Germany
George Mertzios University of Durham, UK
Luca Mottola Politecnico di Milano, Italy
Merav Parter MIT, USA
Ljubomir Perkovic DePaul University, USA
Andreas Reinhardt TU Clausthal, Germany
Olga Saukh ETH Zurich, Switzerland
Laura Peer ETH Zurich, Switzerland (Web Chair)
Klaus-Tycho Foerster ETH Zurich, Switzerland (Publicity Chair)

Steering Committee

Sotiris Nikoletseas University of Patras and CTI, Greece (Chair)
Josep Diaz U.P. Catalunya, Spain
Magnus M. Halldorsson Reykjavik University, Iceland
Bhaskar Krishnamachari University of Southern California, USA
P.R. Kumar Texas A&M University, USA

Jose Rolim University of Geneva, Switzerland
Paul Spirakis University of Patras and CTI, Greece
Adam Wolisz T.U. Berlin, Germany

Additional Reviewers

Agathangelou, Chrysovalandis
Avin, Chen
Czyzowicz, Jurek
Das, Shantanu
Deligkas, Argyrios
Dieudonne, Yoann
Durmus, Yunus
Emek, Yuval
Garncarek, Paweł
Gawrychowski, Pawel
Godard, Emmanuel
Jeż, Łukasz
Klasing, Ralf
Korman, Amos
Korzeniowski, Miroslaw
Kosowski, Adrian

Kranakis, Evangelos
Labourel, Arnaud
Lemiesz, Jakub
Martin, Russell
Michail, Othon
Navarra, Alfredo
Raptopoulos, Christoforos
Roeloffzen, Marcel
Shalom, Mordechai
Tixeuil, Sebastien
Valicov, Petru
van Renssen, André
Wong, Prudence W.H.
Yogev, Eylon
Young, Adam

VIII Organization

Online Packing Beyond the Worst Case
(Invited Paper)

Thomas Kesselheim

Max-Planck-Institut für Informatik and Saarland University,
Saarbrücken, Germany

thomas.kesselheim@mpi-inf.mpg.de

For a number of online optimization problems, standard worst-case competitive anal-
ysis is very pessimistic or even pointless. Sometimes, even a trivial algorithm might be
considered optimal because an adversary would be able to trick any algorithm.

An interesting way to avoid these pathological effects is to slightly reduce the
power of the adversary by introducing stochastic components. For example, the
adversary might still define the instance but not the order in which it is presented to the
algorithm. This order is drawn uniformly at random from all possible permutations.

We consider online packing problems and show that this small transition beyond
worst-case analysis can have a big impact. We focus on the online independent-set
problem in graph classes motivated by wireless networks and on online packing LPs,
which among other applications also play a big role in web advertising.

1 Online Independent-Set Problems

In the online independent-set problem, a graph is revealed to the algorithm stepwise. In
each step, one node is revealed including its edges to previously arrived nodes. This
way, many online problems in the domains of scheduling and admission control can be
captured. For example, the graph might represent wireless interferences and the task is
to select a maximum non-interfering set of transmitters.

A very simple way to model wireless interference is by a disk graph: Each trans-
mitter covers a certain circular area in the plane. The interference constraint requires the
areas of no two transmitters to be intersecting. Although NP hard, the independent-set
problem in disk graphs can be approximated very well. A very simple greedy algorithm
is a constant-factor approximation, and there is even a PTAS [2]. More generally, many
graph classes of relevance for practical applications, particularly wireless interference,
induce a bounded inductive independence number q [4, 6]. The greedy algorithm has
an approximation ratio of q, thus giving a constant-factor approximation in all these
examples.

In a traditional (worst-case) competitive analysis of the online problem, one would
have an adversary choosing the instance (i.e., the graph) and the order in which the
input is presented. The performance of an algorithm is measured in terms of its

competitive ratio jALGj
jOPTj, where ALG is the set of vertices chosen by the algorithm and

OPT is a maximum independent set in the graph. Unfortunately, even in disk graphs,

this approach can only yield devastating results, indicating that no algorithm can be any
better than the trivial algorithm, which only selected the first vertex of the input.

In [3], we present a stochastic analysis of this problem. Instead of focusing on a
particular stochastic input model, we introduce a generic sampling approach that
enables us to devise online algorithms achieving performance guarantees for a variety
of input models. In particular, we cover the random-order model, in which the
adversary still chooses the graph but cannot determine the order in which the graph is
presented to the algorithm. Instead, the order is drawn uniformly at random from all
possible permutation after the adversary’s choice.

We present an online algorithm for maximum independent set achieving a com-
petitive ratio of Oð1=q2Þ in the random-order model and a number of further stochastic
online models. We prove that this result can be extended towards maximum-weight
independent set by losing only a factor of Oð1= log nÞ in the competitive ratio with
n denoting the (expected) number of nodes. This upper bound is complemented by a
lower bound of Xðlog2 log n= log nÞ, showing that our approach achieves nearly the
optimal competitive ratio. In addition, we present various extensions of our approach
e.g. towards admission control in wireless networks modeled by SINR graphs.

2 Online Packing LPs

In online packing LPs, the columns of a packing LP are presented to the algorithm one
after the other. The corresponding variables have to be set irrevocably at the arrival
of the corresponding column. Again, we assume that the instance is chosen by an
adversary but the order in which columns are presented is drawn uniformly at random
from all permutations.

In [5], we present a -competitive online algorithm. Here d de-
notes the column sparsity, i.e., the maximum number of resources that occur in a single
column, and B denotes the capacity ratio B, i.e., the ratio between the capacity of a
resource and the maximum demand for this resource. In other words, we achieve a
ð1� �Þ-approximation if the capacity ratio satisfies B ¼ Xðlog d

�2
Þ, which is best possible

for any (randomized) online algorithms [1].
Our result improves exponentially on previous work with respect to the capacity

ratio. In contrast to existing results on packing LP problems, our algorithm does not use
dual prices to guide the allocation of resources over time. Instead, the algorithm simply
solves, for each request, a scaled version of the partially known primal program and
randomly rounds the obtained fractional solution to obtain an integral allocation for this
request. We show that this simple algorithmic technique is not restricted to packing LPs
with large capacity ratio of order Xðlog dÞ, but it also yields close-to-optimal com-
petitive ratios if the capacity ratio is bounded by a constant. In particular, we prove an
upper bound on the competitive ratio of Xðd�1=ðB�1ÞÞ, for any B� 2.

X T. Kesselheim

References

1. Agrawal, S., Wang, Z., Ye, Y.: A dynamic near-optimal algorithm for online linear pro-
gramming. Oper. Res. 62(4), 876–890 (2014)

2. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric
intersection graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)

3. Göbel, O., Hoefer, M., Kesselheim, T., Schleiden, T., Vöcking, B.: Online independent set
beyond the worst-case: secretaries, prophets, and periods. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 508–519
(2014)

4. Hoefer, M., Kesselheim, T., Vöcking, B.: Approximation algorithms for secondary spectrum
auctions. ACM Trans. Internet Technol. 14(2–3), 16:1–16:24 (2014)

5. Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: Primal beats dual on online packing LPs
in the random-order model. In: Proceedings of 46th Symposium on Theory of Computing
(STOC), pp. 303–312 (2014)

6. Ye, Y., Borodin, A.: Elimination graphs. ACM Trans. Algorithms 8(2), 14 (2012)

Online Packing Beyond the Worst Case XI

Contents

Plane and Planarity Thresholds for Random Geometric Graphs 1
Ahmad Biniaz, Evangelos Kranakis, Anil Maheshwari, and Michiel Smid

Connectivity of a Dense Mesh of Randomly Oriented Directional Antennas
Under a Realistic Fading Model . 13

Amitabha Bagchi, Francesco Betti Sorbelli, Cristina Maria Pinotti,
and Vinay Ribeiro

Maintaining Intruder Detection Capability in a Rectangular Domain
with Sensors. 27

Evangelos Kranakis, Danny Krizanc, Flaminia L. Luccio,
and Brett Smith

The Weakest Oracle for Symmetric Consensus in Population Protocols 41
Joffroy Beauquier, Peva Blanchard, Janna Burman, and Shay Kutten

Exact and Approximation Algorithms for Data Mule Scheduling
in a Sensor Network . 57

Gui Citovsky, Jie Gao, Joseph S.B. Mitchell, and Jiemin Zeng

Limitations of Current Wireless Scheduling Algorithms 71
Magnús M. Halldórsson, Christian Konrad, and Tigran Tonoyan

Deterministic Rendezvous with Detection Using Beeps 85
Samir Elouasbi and Andrzej Pelc

Minimizing Total Sensor Movement for Barrier Coverage by Non-uniform
Sensors on a Line . 98

Robert Benkoczi, Zachary Friggstad, Daya Gaur, and Mark Thom

A Comprehensive and Lightweight Security Architecture to Secure the IoT
Throughout the Lifecycle of a Device Based on HIMMO 112

Oscar Garcia-Morchon, Ronald Rietman, Sahil Sharma,
Ludo Tolhuizen, and Jose Luis Torre-Arce

Maximizing Throughput in Energy-Harvesting Sensor Nodes 129
Stanley P.Y. Fung

On Verifying and Maintaining Connectivity of Interval Temporal
Networks . 142

Eleni C. Akrida and Paul G. Spirakis

http://dx.doi.org/10.1007/978-3-319-28472-9_1
http://dx.doi.org/10.1007/978-3-319-28472-9_2
http://dx.doi.org/10.1007/978-3-319-28472-9_2
http://dx.doi.org/10.1007/978-3-319-28472-9_3
http://dx.doi.org/10.1007/978-3-319-28472-9_3
http://dx.doi.org/10.1007/978-3-319-28472-9_4
http://dx.doi.org/10.1007/978-3-319-28472-9_5
http://dx.doi.org/10.1007/978-3-319-28472-9_5
http://dx.doi.org/10.1007/978-3-319-28472-9_6
http://dx.doi.org/10.1007/978-3-319-28472-9_7
http://dx.doi.org/10.1007/978-3-319-28472-9_8
http://dx.doi.org/10.1007/978-3-319-28472-9_8
http://dx.doi.org/10.1007/978-3-319-28472-9_9
http://dx.doi.org/10.1007/978-3-319-28472-9_9
http://dx.doi.org/10.1007/978-3-319-28472-9_10
http://dx.doi.org/10.1007/978-3-319-28472-9_11
http://dx.doi.org/10.1007/978-3-319-28472-9_11

Beachcombing on Strips and Islands . 155
Evangelos Bampas, Jurek Czyzowicz, David Ilcinkas, and Ralf Klasing

Radio Aggregation Scheduling . 169
Rajiv Gandhi, Magnús M. Halldórsson, Christian Konrad,
Guy Kortsarz, and Hoon Oh

Gathering of Robots on Meeting-Points . 183
Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra

Mutual Visibility with an Optimal Number of Colors 196
Gokarna Sharma, Costas Busch, and Supratik Mukhopadhyay

Mobile Agents Rendezvous in Spite of a Malicious Agent 211
Shantanu Das, Flaminia L. Luccio, and Euripides Markou

Author Index . 225

XIV Contents

http://dx.doi.org/10.1007/978-3-319-28472-9_12
http://dx.doi.org/10.1007/978-3-319-28472-9_13
http://dx.doi.org/10.1007/978-3-319-28472-9_14
http://dx.doi.org/10.1007/978-3-319-28472-9_15
http://dx.doi.org/10.1007/978-3-319-28472-9_16

Plane and Planarity Thresholds for Random
Geometric Graphs

Ahmad Biniaz(B), Evangelos Kranakis, Anil Maheshwari, and Michiel Smid

Carleton University, Ottawa, Canada
ahmad.biniaz@gmail.com

Abstract. A random geometric graph, G(n, r), is formed by choosing
n points independently and uniformly at random in a unit square; two
points are connected by a straight-line edge if they are at Euclidean

distance at most r. For a given constant k, we show that n
−k

2k−2 is a
distance threshold function for G(n, r) to have a connected subgraph on k
points. Based on that, we show that n−2/3 is a distance threshold function
for G(n, r) to be plane, and n−5/8 is a distance threshold function for
G(n, r) to be planar.

1 Introduction

Wireless networks are usually modeled as disk graphs in the plane. Given a
set P of points in the plane and a positive parameter r, the disk graph is the
geometric graph with vertex set P which has a straight-line edge between two
points p, q ∈ P if and only if |pq| ≤ r, where |pq| denotes the Euclidean distance
between p and q. If r = 1, then the disk graph is referred to as unit disk graph.
A random geometric graph, denoted by G(n, r), is a geometric graph formed by
choosing n points independently and uniformly at random in a unit square; two
points are connected by a straight-line edge if and only if they are at Euclidean
distance at most r, where r = r(n) is a function of n and r → 0 as n → ∞.

We say that two line segments in the plane cross each other if they have
a point in common that is interior to both edges. Two line segments are non-
crossing if they do not cross. Note that two non-crossing line segments may share
an endpoint. A geometric graph is said to be plane if its edges do not cross, and
non-plane, otherwise. A graph is planar if and only if it does not contain K5

(the complete graph on 5 vertices) or K3,3 (the complete bipartite graph on six
vertices partitioned into two parts each of size 3) as a minor. A non-planar graph
is a graph which is not planar.

A graph property P is increasing if a graph G satisfies P, then by adding
edges to G, the property P remains valid in G. Similarly, P is decreasing if a
graph G satisfies P, then by removing edges from G, the property P remains
valid in G. P is called a monotone property if P is either increasing or decreasing.
Connectivity and “having a clique of size k” are increasing monotone properties,

Research supported by NSERC.

c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 1–12, 2015.
DOI: 10.1007/978-3-319-28472-9 1

2 A. Biniaz et al.

while planarity and “being plane” are decreasing monotone properties in G(n, r),
where the value of r increases.

By [13] any monotone property of a random geometric graphs has a thresh-
old function. The thresholds in random geometric graphs are expressed by the
distance r. In the sequel, the term w.h.p. (with high probability) is to be inter-
preted to mean that the probability tends to 1 as n → ∞. For an increasing
property P, the threshold is a function t(n) such that if r = o(t(n)) then w.h.p.
P does not hold in G(n, r), and if r = ω(t(n)) then w.h.p. P holds in G(n, r).
Symmetrically, for a decreasing property P, the threshold is a function t(n) such
that if r = o(t(n)) then w.h.p. P holds in G(n, r), and if r = ω(t(n)) then w.h.p.
P does not hold in G(n, r). Note that a threshold function may not be unique. It
is well known that

√
ln n/n is a connectivity threshold for G(n, r); see [14,19,20].

In this paper we investigate thresholds in random geometric graphs for having
a connected subgraph of constant size, being plane, and being planar.

1.1 Related Work

Random graphs were first defined and formally studied by Gilbert in [10] and
Erdös and Rényi [8]. It seems that the concept of a random geometric graph
was first formally suggested by Gilbert in [11] and for that reason is also known
as Gilbert’s disk model. These classes of graphs are known to have numerous
applications as a model for studying communication primitives (broadcasting,
routing, etc.) and topology control (connectivity, coverage, etc.) in idealized wire-
less sensor networks as well as extensive utility in theoretical computer science
and many fields of the mathematical sciences.

An instance of Erdös-Rényi graph [8] is obtained by taking n vertices and
connecting any two with probability p, independently of all other pairs; the graph
derived by this scheme is denoted by Gn,p. In Gn,p the threshold is expressed
by the edge existence probability p, while in G(n, r) the threshold is expressed
in terms of r. In both random graphs and random geometric graphs, property
thresholds are of great interest [4,7,9,13,18]. Note that edge crossing configura-
tions in G(n, r) have a geometric nature, and as such, have no analogues in the
context of the Erdös-Rényi model for random graphs. However, planarity, and
having a clique of specific size are of interest in both Gn,p and G(n, r).

Bollobás and Thomason [5] showed that any monotone property in random
graphs has a threshold function. See also a result of Friedgut and Kalai [9],
and a result of Bourgain and Kalai [6]. In the Erdös-Rényi random graph Gn,p,
the connectivity threshold is p = log n/n and the threshold for having a giant
component is p = 1/n; see [1]. The planarity threshold for Gn,p is p = 1/n;
see [4,23].

A general reference on random geometric graphs is [22]. There is extensive
literature on various aspects of random geometric graphs of which we mention
the related work on coverage by [15,16] and a review on percolation, connectivity,
coverage and colouring by [3]. As in random graphs, any monotone property in
geometric random graphs has a threshold function [7,13,17,18].

Plane and Planarity Thresholds for Random Geometric Graphs 3

Random geometric graphs have a connectivity threshold of
√

ln n/n; see [14,
19,20]. Gupta and Kumar [14] provided a connectivity threshold for points that
are uniformly distributed in a disk. By a result of Penrose [21], in G(n, r), any
threshold function for having no isolated vertex (a vertex of degree zero) is also
a connectivity threshold function. Panchapakesan and Manjunath [19] showed
that

√
ln n/n is a threshold for being an isolated vertex in G(n, r). This implies

that
√

ln n/n is a connectivity threshold for G(n, r). For k ≥ 2, the details on the
k-connectivity threshold in random geometric graphs can be found in [21,22].
Connectivity of random geometric graphs for points on a line is studied by
Godehardt and Jaworski [12]. Appel and Russo [2] considered the connectivity
under the L∞-norm.

1.2 Our Results

In this paper we investigate thresholds for some monotone properties in random
geometric graphs. In Sect. 2 we show that for a constant k, the distance threshold
for having a connected subgraph on k points is n

−k
2k−2 . We show that the same

threshold is valid for the existence of a clique of size k. Based on that, we prove
the following thresholds for a random geometric graph to be plane or planar.
In Sect. 3, we prove that n−2/3 is a distance threshold for a random geometric
graph to be plane. In Sect. 4, we prove that n−5/8 is a distance threshold for a
random geometric graph to be planar.

2 The Threshold for Having a Connected Subgraph
on k Points

In this section, we look for the distance threshold for “existence of connected
subgraphs of constant size”; this is an increasing property. For a given constant
k, we show that n

−k
2k−2 is the threshold function for the existence of a connected

subgraph on k points in G(n, r). Specifically, we show that if r = o(n
−k

2k−2), then
w.h.p. G(n, r) has no connected subgraph on k points, and if r = ω(n

−k
2k−2), then

w.h.p. G(n, r) has a connected subgraph on k points. We also show that the
same threshold function holds for the existence of a clique of size k.

Theorem 1. Let k ≥ 2 be an integer constant. Then, n
−k

2k−2 is a distance thresh-
old function for G(n, r) to have a connected subgraph on k points.

Proof. Let P1, . . . , P(nk) be an enumeration of all subsets of k points in G(n, r).
Let DG[Pi] be the subgraph of G(n, r) that is induced by Pi. Let Xi be the
random variable such that

Xi =

{
1 if DG[Pi] is connected,
0 otherwise.

Let the random variable X count the number of sets Pi for which DG[Pi] is
connected. It is clear that

4 A. Biniaz et al.

X =
(nk)∑

i=1

Xi. (1)

Observe that E[Xi] = Pr[Xi = 1]. Since the random variables Xi have iden-
tical distributions, we have

E[X] =
(

n

k

)
E[X1]. (2)

We obtain an upper bound and a lower bound for Pr[Xi = 1]. First, partition
the unit square into squares of side equal to r. Let {s1, . . . , s1/r2} be the resulting
set of squares. For a square st, let St be the kr×kr square which has st on its left
bottom corner; see Fig. 1(a). St contains at most k2 squares each of side length
r (each St on the boundary of the unit square contains less than k2 squares).
Let Ai,t be the event that all points in Pi are contained in St. Observe that if
DG[Pi] is connected then Pi lies in St for some t ∈ {1, . . . , 1/r2}. Therefore,

if DG[Pi] is connected, then (Ai,1 ∨ Ai,2 ∨ · · · ∨ Ai,1/r2),

and hence we have

Pr[Xi = 1] ≤
1/r2∑

t=1

Pr[Ai,t] ≤
1/r2∑

t=1

(k2r2)k = k2kr2k−2. (3)

Now, partition the unit square into squares with diagonal length equal to
r. Each such square has side length equal to r/

√
2. Let {s1, . . . , s2/r2} be the

resulting set of squares. Let Bi,t be the event that all points of Pi are in st.
Observe that if all points of Pi are in the same square, then DG[Pi] is a complete
graph and hence connected. Therefore,

if (Bi,1 ∨ Bi,2 ∨ · · · ∨ Bi,2/r2) , then DG[Pi] is connected,

and hence we have

Pr[Xi = 1] ≥
2/r2∑

t=1

Pr[Bi,t] =
2/r2∑

t=1

(
r2

2

)k

=
1

2k−1
r2k−2. (4)

Since k ≥ 2 is a constant, Inequalities (3) and (4) and Eq. (2) imply that

E[Xi] = Θ(r2k−2), (5)

E[X] = Θ(nkr2k−2). (6)

If n → ∞ and r = o(n
−k

2k−2) we conclude that the following inequalities are
valid

Pr[X ≥ 1] ≤ E[X] (byMarkov′s Inequality)

= Θ(nkr2k−2) (by (6))
= o(1). (7)

Therefore, w.h.p. G(n, r) has no connected subgraph on k points.

Plane and Planarity Thresholds for Random Geometric Graphs 5

Fig. 1. (a) The square St has st on its left bottom corner. (b) The square Sx which is
centered at sx.

In the rest of the proof, we assume that r = ω(n
−k

2k−2). In order to show that
w.h.p. G(n, r) has at least one connected subgraph on k vertices, we show, using
the second moment method [1], that Pr[X = 0] → 0 as n → ∞. Recall from
Chebyshev’s inequality that

Pr[X = 0] ≤ Var(X)
E[X]2

. (8)

Therefore, in order to show that Pr[X = 0] → 0, it suffices to show that

Var(X)
E[X]2

→ 0. (9)

In view of Identity (1) we have

Var(X) =
∑

1≤i,j≤(nk)
Cov(Xi,Xj), (10)

where Cov(Xi,Xj) = E[XiXj] − E[Xi]E[Xj] ≤ E[XiXj]. If |Pi ∩ Pj | = 0 then
DG[Pi] and DG[Pj] are disjoint. Thus, the random variables Xi and Xj are
independent, and hence Cov(Xi,Xj) = 0. It is enough to consider the cases
when Pi and Pj are not disjoint. Assume |Pi ∩ Pj | = w, where w ∈ {1, . . . , k}.
Thus, in view of Eq. (10), we have

Var(X) =
k∑

w=1

∑

|Pi∩Pj |=w

Cov(Xi,Xj)

≤
k∑

w=1

∑

|Pi∩Pj |=w

E[XiXj]. (11)

The computation of E[Xi,Xj] involves some geometric considerations which
are being discussed in detail below. Since Xi and Xj are 0–1 random variables,
XiXj is a 0–1 random variable and

6 A. Biniaz et al.

XiXj =

{
1 if both DG[Pi] and DG[Pj] are connected,
0 otherwise.

By the definition of the expected value we have

E[XiXj] = Pr[Xj = 1|Xi = 1]Pr[Xi = 1]
= Pr[Xj = 1|Xi = 1]E[Xi]. (12)

By (5), E[Xi] = Θ(r2k−2). It remains to compute Pr[Xj = 1|Xi = 1], i.e., the
probability that DG[Pj] is connected given that DG[Pi] is connected. Consider
the k-tuples Pi and Pj under the condition that DG[Pi] is connected. Let x be
a point in Pi ∩ Pj . Partition the unit square into squares of side length equal to
r. Let sx be the square containing x. Let Sx be the (2k − 1)r × (2k − 1)r square
centered at sx. Sx contains at most (2k−1)2 squares each of side length r (if Sx is
on the boundary of the unit square then it contains less than (2k − 1)2 squares);
see Fig. 1(b). The area of Sx is at most (2kr)2, and hence the probability that
a specific point of Pj is in St is at most 4k2r2. Since Pi and Pj share w points,
in order for DG[Pj] to be connected, the remaining k − w points of Pj must
lie in Sx. Thus, the probability that DG[Pj] is connected given that DG[Pi] is
connected is at most (4k2r2)k−w ≤ cwr2k−2w, for some constant cw > 0. Thus,
Pr[Xj = 1|Xi = 1] ≤ cwr2k−2w. In view of Eq. (12), we have

E[XiXj] ≤ c′
w · r2k−2w · r2k−2 = c′

wr4k−2w−2, (13)

for some constant c′
w > 0.

Since Pi and Pj are k-tuples which share w points, |Pi ∪Pj | = 2k −w. There
are

(
n

2k−w

)
ways to choose 2k − w points for Pi ∪ Pj . Since we choose w points

for Pi ∩ Pj , k − w points for Pi alone, and k − w points for Pj alone, there are(
2k−w

w,k−w,k−w

)
ways to split the 2k − w chosen points into Pi and Pj . Based on

this and Inequality (13), Inequality (11) turns out to

Var(X) ≤
k∑

w=1

∑

|Pi∩Pj |=w

E[XiXj]

≤
k∑

w=1

(
n

2k − w

)(
2k − w

w, k − w, k − w

)
c′
wr4k−2w−2

≤
k∑

w=1

c′′
wn2k−wr4k−2w−2.

for some constants c′′
w > 0. Consider (9) and note that by (6), E[X]2 ≥ c′′n2kr4k−4,

for some constant c′′ > 0. Thus,

Var(X)
E[X]2

≤
k∑

w=1

c′′
wn2k−wr4k−2w−2

c′′n2kr4k−4
=

k∑

w=1

c′′
w

c′′ · 1
nwr2w−2

=
c′′
1

c′′ · 1
n1r0

+
c′′
2

c′′ · 1
n2r2

+ · · · +
c′′
k

c′′ · 1
nkr2k−2

(14)

Plane and Planarity Thresholds for Random Geometric Graphs 7

Since r = ω(n
−k

2k−2), all terms in (14) tend to zero. This proves the conver-
gence in (9). Thus, Pr[X = 0] → 0 as n → ∞. This implies that if r = ω(n

−k
2k−2),

then G(n, r) has a connected subgraph on k vertices with high probability. �

In the following theorem we show that if k = O(1), then n
−k

2k−2 is also a
threshold for G(n, r) to have a clique of size k; this is an increasing property.

Theorem 2. Let k ≥ 2 be an integer constant. Then, n
−k

2k−2 is a distance thresh-
old function for G(n, r) to have a clique of size k.

Proof. By Theorem 1, if r = o(n
−k

2k−2), then w.h.p. G(n, r) has no connected
subgraph on k vertices, and hence it has no clique of size k. This proves the first
statement. We prove the second statement by adjusting the proof of
Theorem 1, which is based on the second moment method. Assume r = ω(n

−k
2k−2).

Let P1, . . . , P(nk) be an enumeration of all subsets of k points. Let Xi be equal
to 1 if DG[Pi] is a clique, and 0 otherwise. Let X =

∑
Xi.

Partition the unit square into a set {s1, . . . , s1/r2} of squares of side length
r. Let St be the 2r × 2r square which has st on its left bottom corner. If DG[Pi]
is a clique then Pi lies in St for some t ∈ {1, . . . , 1/r2}. Therefore,

Pr[Xi = 1] ≤ 4kr2k−2.

Now, partition the unit square into a set {s1, . . . , s2/r2} of squares with diag-
onal length r. If all points of Pi fall in the square st, then DG[Pi] is a clique.
Thus,

Pr[Xi = 1] ≥ 1
2k−1

r2k−2.

Since k ≥ 2 is a constant, we have

E[Xi] = Θ(r2k−2),

E[X] = Θ(nkr2k−2).

In view of Chebyshev’s inequality we need to show that Var(X)
E[X]2 tends to 0 as

n goes to infinity. We bound Var(X) from above by Inequality (11). Consider the
k-tuples Pi and Pj under the condition that DG[Pi] is a clique. Let |Pi∩Pj | = w,
and let x be a point in Pi ∩ Pj . Partition the unit square into squares of side
length r. Let sx be the square containing x. Let Sx be the 3r×3r square centered
at sx. In order for DG[Pj] to be a clique, the remaining k −w points of Pj must
lie in Sx. Thus,

E[XiXj] ≤ c′
wr4k−2w−2,

for some constant c′
w > 0. By a similar argument as in the proof of Theorem 1,

we can show that for some constants c′′, c′′
w > 0 the followings inequalities are

valid:

Var(X) ≤
k∑

w=1

c′′
wn2k−wr4k−2w−2,

Var(X)
E[X]2

≤
k∑

w=1

c′′
w

c′′ · 1
nwr2w−2

.

8 A. Biniaz et al.

Since r = ω(n
−k

2k−2), the last inequality tends to 0 as n goes to infinity. This
completes the proof for the second statement. �

As a direct consequence of Theorem 2, we have the following corollary.

Corollary 1. n−1 is a threshold for G(n, r) to have an edge, and n− 3
4 is a

threshold for G(n, r) to have a triangle.

3 The Threshold for G(n, r) to be Plane

In this section we investigate the threshold for a random geometric graph to be
plane; this is a decreasing property. Recall that G(n, r) is plane if no two of its
edges cross. As a warm-up exercise we first prove a simple result which is based
on the connectivity threshold for random geometric graphs, which is known to
be

√
ln n/n.

a

b

c
d

r/
√
2

s1j s2j s3j

s4j s5j s6j

s7j s9js8j

Fig. 2. An square of diam-
eter r which is partitioned
into nine sub-squares.

Theorem 3. If r ≥
√

c lnn
n , with c ≥ 36, then

w.h.p. G(n, r) is not plane.

proof In order to prove that w.h.p. G(n, r) is not
plane, we show that w.h.p. it has a pair of crossing
edges. Partition the unit square into squares each
with diagonal length r. Then subdivide each such
square into nine sub-squares as depicted in Fig. 2.
There are 18

r2 sub-squares, each of side length r
3
√
2
.

The probability that no point lies in a specific sub-
square is (1− r2

18)n. Thus, the probability that there
exists an empty sub-square is at most

18
r2

(
1 − r2

18

)n

≤ n

(
1 − c ln n

18n

)n

≤ n1−c/18 ≤ 1
n

,

when c ≥ 36. Therefore, with probability at least 1 − 1
n all sub-squares contain

points. By choosing four points a, b, c, and d as depicted in Fig. 2, it is easy
to see that the edges (a, b) and (c, d) cross. Thus, w.h.p. G(n, r) has a pair of
crossing edges, and hence w.h.p. it is not plane. �

In fact, Theorem 3 ensures that w.h.p. there exists a pair of crossing edges in
each of the squares. This implies that there are Ω

(
n

lnn

)
disjoint pair of crossing

edges, while for G(n, r) to be not plane we need to show the existence of at least
one pair of crossing edges. Thus, the value of r provided by the connectivity
threshold seems rather weak. By a different approach, in the rest of this section
we show that n− 2

3 is the correct threshold.

Lemma 1. Let (a, b) and (c, d) be two crossing edges in G(n, r), and let Q be
the convex quadrilateral formed by a, b, c, and d. Then, two adjacent sides of Q
are edges of G(n, r).

Plane and Planarity Thresholds for Random Geometric Graphs 9

Proof. Refer to Fig. 3. At least one of the angles of Q, say ∠cad, is bigger than
or equal to π/2. It follows that in the triangle �cad the side cd is the longest,
i.e., |cd| ≥ max{|ac|, |ad|}. Since |cd| ≤ r, both |ac| and |ad| are at most r. Thus,
ac and ad—which are adjacent—are edges of G(n, r). �

a

b
c

d a

b
c

d

)b()a(

Fig. 3. (a) Illustration of Lemma 1. (b) Crossing edges (a, b) and (c, d) form an anchor.

In the proof of Lemma 1, a is connected to b, c, and d. So the distance between
a to each of b, c, and d is at most r. Thus, we have the following corollary.

Corollary 2. The endpoints of every two crossing edges in G(n, r) are at dis-
tance at most 2r from each other. Moreover, there exists an endpoint which is
within distance r from other endpoints.

Based on the proof of Lemma 1, we define an anchor as a set {a, b, c, d} of
four points in G(n, r) such that three of them form a triangle, say �cad, and
the fourth vertex, b, is connected to a by an edge which crosses cd; see Fig. 3(b).
We call a as the crown of the anchor. The crown is within distance r from the
other three points. Note that bc and bd may or may not be edges of G(n, r).
In view of Lemma 1, two crossing edges in G(n, r) form an anchor. Conversely,
every anchor in G(n, r) introduces a pair of crossing edges.

Observation 1. G(n, r) is plane if and only if it has no anchor.

Theorem 4. n− 2
3 is a threshold for G(n, r) to be plane.

Proof. In order to show that G(n, r) is plane, by Observation 1, it is enough to
show that it has no anchors. Every anchor has four points and it is connected.
By Theorem 1, if r = o(n− 2

3), then w.h.p. G(n, r) has no connected subgraph
on 4 points, and hence it has no anchors. This proves the first statement.

We prove the second statement by adjusting the proof of Theorem 1 for
k = 4. Assume r = ω(n− 2

3). Let P1, . . . , P(n4) be an enumeration of all subsets
of 4 points. Let Xi be equal to 1 if DG[Pi] contains an anchor, and 0 otherwise.
Let X =

∑
Xi. In view of Chebyshev’s inequality we need to show that Var(X)

E[X]2

tends to 0 as n goes to infinity.
Partition the unit square into a set {s1, . . . , s2/r2} of squares with diagonal

length r. Then, subdivide each square sj , into nine sub-squares s1j , . . . , s
9
j as

10 A. Biniaz et al.

depicted in Fig. 2. If each of s1j , s
3
j , s

7
j , s

9
j or each of s2j , s

4
j , s

6
j , s

8
j contains a point

of Pi, then DG[Pi] is a convex clique of size four and hence it contains an anchor.
Thus,

Pr[Xi = 1] ≥ r6

23
· 2
94

.

This implies that E[Xi] = Ω(r6), and hence E[X] = Ω(n4r6). Therefore,

E[X]2 ≥ c′′n8r12,

for some constant c′′ > 0. By a similar argument as in the proof of Theorem 1
we bound the variance of X from above by

Var(X) ≤ c′′
1n7r12 + c′′

2n6r10 + c′′
3n5r8 + c′′

4n4r6.

Since r = ω(n− 2
3), Var(X)

E[X]2 tends to 0 as n goes to infinity. That is, w.h.p.
G(n, r) has an anchor. By Observation 1, w.h.p. G(n, r) is not plane. �

As a direct consequence of the proof of Theorem 4, we have the following:

Corollary 3. With high probability if a random geometric graph is not plane,
then it has a clique of size four.

Note that every anchor introduces a crossing and each crossing introduces
an anchor. Since, every anchor is a connected graph and has four points, by (6)
we have the following corollary.

Corollary 4. The expected number of crossings in G(n, r) is Θ(n4r6).

4 The Threshold for G(n, r) to be Planar

In this section we investigate the threshold for the planarity of a random geomet-
ric graph; this is a decreasing property. By Kuratowski’s theorem, a finite graph
is planar if and only if it does not contain a subgraph that is a subdivision of K5

or of K3,3. Note that any plane random geometric graph is planar too; observe
that the reverse statement may not be true. Thus, the threshold for planarity
seems to be larger than the threshold of being plane. By a similar argument as
in the proof of Theorem 3 we can show that if r ≥ √

c ln n/n, then w.h.p. each
square with diagonal length r contains K5, and hence G(n, r) is not planar.

Theorem 5. n− 5
8 is a threshold for G(n, r) to be planar.

Proof. By Theorem 2, if r = ω(n− 5
8), then w.h.p. G(n, r) has a clique of size 5.

Thus, w.h.p. G(n, r) contains K5 and hence it is not planar. This proves the
second statement of the theorem.

If r = o(n− 5
8), then by Theorem 1, w.h.p. G(n, r) has no connected sub-

graph on 5 points, and hence it has no K5. Similarly, if r = o(n− 3
5), then

w.h.p. G(n, r) has no connected subgraph on 6 points, and hence it has no K3,3.

Plane and Planarity Thresholds for Random Geometric Graphs 11

Since n− 5
8 < n− 3

5 , it follows that if r = o(n− 5
8), then w.h.p. G(n, r) has neither

K5 nor K3,3 as a subgraph.
Note that, in order to prove that G(n, r) is planar, we have to show that it

does not contain any subdivision of either K5 or K3,3. Any subdivision of either
K5 or K3,3 contains a connected subgraph on k ≥ 5 vertices. Since n−5/8 <

n−k/(2k−2) for all k ≥ 5, in view of Theorem 1, we conclude that if r = o(n− 5
8),

then w.h.p. G(n, r) has no subdivision of K5 and K3,3, and hence G(n, r) is
planar. This proves the first statement of the theorem. �

As a direct consequence of the proof of Theorem 5, we have the following:

Corollary 5. With high probability if a random geometric graph does not con-
tain a clique of size five, then it is planar.

5 Conclusion and Further Results

We presented thresholds for random geometric graphs to have a connected sub-
graph of constant size, to be plane, and to be planar. A natural open problem
is to extend Theorem 1 for connected subgraphs of k vertices where k is not
necessarily a constant, and for connected subgraphs of k vertices which have
diameter δ.

References

1. Alon, N., Spencer, J.H.: The Probabilistic Method, 3rd edn. Wiley, New York
(2007)

2. Appel, M.J.B., Russo, R.P.: The connectivity of a graph on uniform points on
[0, 1]d. Stat. Prob. Lett. 60(4), 351–357 (2002)

3. Balister, P., Sarkar, A., Bollobás, B.: Percolation, connectivity, coverage and colour-
ing of random geometric graphs. In: Bollobás, B., Kozma, R., Miklós, D. (eds.)
Handbook of Large-Scale Random Networks, pp. 117–142. Springer, Heidelberg
(2008)

4. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)
5. Bollobás, B., Thomason, A.: Threshold functions. Combinatorica 7(1), 35–38

(1987)
6. Bourgain, J., Kalai, G.: Threshold intervals under group symmetries. Convex

Geom. Anal. MSRI Publ. 34, 59–63 (1998)
7. Bradonjić, M., Perkins, W.: On sharp thresholds in random geometric graphs. In:

Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM, pp. 500–514 (2014)

8. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar.
Acad. Sci. 5, 17–61 (1960)

9. Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold.
Proc. Am. Math. Soc. 124(10), 2993–3002 (1996)

10. Gilbert, E.: Random graphs. Ann. Math. Stat. 30(4), 1141–1144 (1959)
11. Gilbert, E.: Random plane networks. J. Soc. Ind. Appl. Math. 9(4), 533–543 (1961)
12. Godehardt, E., Jaworski, J.: On the connectivity of a random interval graph. Ran-

dom Struct. Algorithms 9(1–2), 137–161 (1996)

12 A. Biniaz et al.

13. Goel, A., Rai, S., Krishnamachari, B.: Sharp thresholds for monotone properties
in random geometric graphs. In: Proceedings of STOC, pp. 580–586. ACM (2004)

14. Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity in wireless net-
works. In: McEneaney, W.M., George Yin, G., Zhang, Q. (eds.) Stochastic Analysis,
Control, Optimization and Applications, pp. 547–566. Springer, New York (1998)

15. Hall, P.: On the coverage of k-dimensional space by k-dimensional spheres. Ann.
Prob. 13(3), 991–1002 (1985)

16. Janson, S.: Random coverings in several dimensions. Acta Mathematica 156(1),
83–118 (1986)

17. Krishnamachari, B., Wicker, S.B., Béjar, R., Pearlman, M.: Critical density thresh-
olds in distributed wireless networks. In: Bhargava, V.K., Vincent Poor, H., Tarokh,
V., Yoon, S. (eds.) Communications, Information and Network Security, vol. 712,
pp. 279–296. Springer, USA (2002)

18. Mccolm, G.L.: Threshold functions for random graphs on a line segment. Comb.
Prob. Comput. 13, 373–387 (2001)

19. Panchapakesan, P., Manjunath, D.: On the transmission range in dense ad
hoc radio networks. In: Proceedings of IEEE Signal Processing Communication
(SPCOM) (2001)

20. Penrose, M.D.: The longest edge of the random minimal spanning tree. Ann. Appl.
Prob. 7(2), 340–361 (1997)

21. Penrose, M.D.: On k-connectivity for a geometric random graph. Random Struct.
Algorithms 15(2), 145–164 (1999)

22. Penrose, M.D.: Random geometric graphs, vol. 5. Oxford University Press, Oxford
(2003)

23. Spencer, J.H.: Ten Lectures on the Probabilistic Method, vol. 52. SIAM,
Philadelphia (1987)

Connectivity of a Dense Mesh of Randomly
Oriented Directional Antennas Under

a Realistic Fading Model

Amitabha Bagchi1(B), Francesco Betti Sorbelli2, Cristina Maria Pinotti2,
and Vinay Ribeiro1

1 Computer Science and Engineering Department, IIT, Delhi, India
{bagchi,vinay}@cse.iitd.ac.in

2 Department of Computer Science and Mathematics,
University of Perugia, Perugia, Italy

francesco.betti.sorbelli@gmail.com, cristina.pinotti@unipg.it

Abstract. We study mesh networks formed by nodes equipped with
directional antennas in a high node-density setting. To do so we create
a random geometric graph with n nodes placed uniformly at random.
The antenna at each node chooses a direction of orientation at random
and edges are placed between pairs of nodes based on their distance
from each other and their directions of orientation according to the gain
function of the antennas. To model the directionality of the antennas
we consider a realistic gain function where the signal fades away from
the direction of orientation. We also consider an idealised function that
concentrates the gain uniformly in a sector of angle 2θ centred around
the direction of orientation. In this setting we show theoretically that
with probability tending to 1 the optimal power required for achiev-
ing connectivity is significantly lower than that needed for connectivity
in an omnidirectional setting. We capture mathematically the relation-
ship between this optimal power level and the maximum gain of the
antenna, showing that as the directionality of the antenna increases the
power needed for connectivity decreases. However this optimal power
level is also inversely proportional to the probability of connectivity of
two randomly placed nodes, which decreases as directionality increases.
We validate these results through simulation.

1 Introduction

Directional antennas are used in several applications including satellite com-
munications, terrestrial microwave communications, VHF and UHF terrestrial
TV transmission, cellular communication, and rural mesh networks [8]. Antenna
directionality focuses transmission power in a particular direction and improves
communication range while simultaneously reducing interference with nearby
antennas. However, a drawback is that a priori knowledge of the location of the
intended radio receiver and, in some cases, the ability to steer the antenna or
switch beams in the relevant direction is required to form connections between
c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 13–26, 2015.
DOI: 10.1007/978-3-319-28472-9 2

14 A. Bagchi et al.

pairs of nodes. A larger issue is of network-wide connectivity which becomes
especially important in applications such as disaster management and military
battlefield communications that require the rapid setup of a wireless multihop
(mesh) network [7,18]. In order to benefit from the ability of directional anten-
nas to focus power in such settings it is critical to understand how a connected
network can be formed using highly directional antenna beams. Hence the crit-
ical question is: Can fixed (non-steerable) directional antennas also be used to
successfully build connected wireless mesh networks in which nodes and antenna
orientations are chosen randomly?

While there has been a lot of discussion on the issue of capacity in highly
directional antenna-based networks, there are few works in the literature that
have addressed the question of connectivity. Notable among them is the work
by Li et al. [13] which addresses this question but under an idealized model of
directional transmission that assumes a sector shaped area of transmission (with
some back lobes) with uniform power transmitted throughout the sector. In this
paper we approach directional transmission in much greater generality and pro-
vide a result that holds for a large family of gain functions. We demonstrate how
these results help us find the optimal power for connectivity in the dense mesh
network setting. Using the gain function as our primary mode of describing the
directionality of an antenna, we present a theorem that helps us determine the
optimal power for connectivity for all gain functions that satisfy some moderate
conditions. We further support our theoretical results through simulation using a
particular family of gain functions that have been empirically found to accurately
describe the power transmission pattern of directional antennas. Since in such
models the gain of the antenna (i.e. the power transmitted per unit solid angle)
is maximum in the direction of orientation and fades as we move away from this
direction we refer to this model as the directional fading model or just the fading
model. We determine the optimal power level needed to achieve connectivity for
a mesh network whose antennas follow the fading model. We also revisit the
simpler idealized model studied by Li et al. [13], we call it the ideal directional
model or just the ideal model, and show how to set the parameters in this model
so that any two antennas have the same probability of being connected in the
ideal model as in the fading model. This result is obtained by equating the half-
beam of a directional antenna in the fading model with the width of the sector in
the ideal model. We observe that under such an equivalence the optimal power
level of the fading model is double of the optimal power level of the ideal model.
This is of great help for deciding the antenna setting in the fading model when
connected directional meshes are designed subject to constraints on the power
transmission level.

Another important novelty of our paper is that our main result on connectiv-
ity is completely rigorous. A disadvantage of [13] is that they assume that if all
the antennas are positioned randomly and their antennas are oriented randomly
then the edges between nodes are formed independently. This assumption clearly
does not hold, as we will show in detail in Sect. 3. Our mathematical results do
not need the independence assumption. Hence we claim to present the first fully
rigorous analysis of connectivity in dense mesh networks built with directional
antennas.

Connectivity of a Dense Mesh of Randomly Oriented Directional Antennas 15

Our Contribution. We assume that nodes are deployed randomly in a finite cir-
cular area, and that each node is equipped with a directional antenna whose
orientation is initially fixed randomly and kept fixed thereafter. The major con-
tribution of our paper is that we show that for random directional mesh networks
there is an optimal power level which is necessary and sufficient for connectivity
to be achieved. We show that the optimal power level for connectivity is equal
to α∗P o

T where α∗ = 1
γGG(0)2 , G(0) being the maximum gain of an antenna with

gain function G and P o
T being the optimal power level for connectivity of an

omnidirectional antenna. The quantity γG is a function of the gain pattern (as
captured by the gain function G) and is defined as follows: it is the probability
that a node u connects with another node v that is placed uniformly at random
in a unit disc centred at u, assuming both nodes are equipped with randomly
oriented antennas whose radiation pattern is described by gain function G, and
that both antennas have a power level that allows them to communicate only
up to a unit distance in the direction of maximum gain. Here, we note that G(0)
increases as directionality increases (and, in fact, G(0) is a measure of the direc-
tionality of an antenna) while γG decreases as directionality increases, but we
show that the overall effect is such that the power level required for connectivity
is much lower than that of omnidirectional antennas, i.e., α∗ � 1.

Organization. In Sect. 2 we review the literature related to our work. Our model
of directional mesh networks is presented in Sect. 3. We discuss the conditions
for connectivity in Sect. 4. Our connectivity results are validated through simu-
lations in Sect. 5. Finally we present our conclusions in Sect. 6.

2 Related Work

Connectivity in mesh networks using omnidirectional antennas has been studied
in depth since the seminal work of Gupta and Kumar [11]. They proved that
for m nodes with omnidirectional antennas randomly placed in a disc of unit
area, if transmission power for all nodes was set such that each node could
communicate with any other node in a circular vicinity of area (log m+c(m))/m,
then the network is asymptotically connected with probability 1 if and only if
c(m) → ∞ [11]. Our connectivity result, Theorem 1 is an analog of this result for
the more complex setting where the antennas are highly directional. Our work
on connectivity benefits from the general theorem proved by Bagchi et al. [1].

Connectivity was widely studied within the omnidirectional model in mobile
ad hoc networks [14], in thin finite strips [3], under a physical model for inter-
ferences [9], and when nodes are active independently with a certain probabil-
ity [19,21]. Several authors have studied connectivity of mesh networks equipped
with steerable directional antennas in contrast to our work which considers non-
steerable antennas. Kranakis et al. consider sensors deployed on a unit line
and unit square with steerable directional antennas [12]. Given a set of nodes
on a plane, each with a directional antenna, modeled as a sector, Caragiannis
et al. investigated the problem of orienting the antennas to get a connected net-
work [5]. Carmi et al. model the communication area of a steerable directional

16 A. Bagchi et al.

antenna as a wedge of infinite area which captures its directionality [6] and show
that a sixty degree directional antenna suffices to form a connected network for
arbitrarily located nodes. Xu et al. study the problem of connectivity through
simulations when each node is equipped with several different directional anten-
nas oriented uniformly in a circular fashion [20]. Yu et al. consider the problem
of placement of wireless sensor nodes, with a view to ensuring connectivity and
coverage [22]. In our work node placement is random. Bettstetter et al. consid-
ered a scenario of nodes deployed over a finite area and equipped with linear and
circular antenna arrays used for random beamforming [4], demonstrating that
increasing directionality leads to larger connected components. Our theoretical
results support their experimental findings on connectivity.

Li et al. study asymptotic connectivity in a similar network scenario as ours
[13]. Although they conjecture the same result as Theorem1 of our paper their
analysis suffers from a critical flaw. In the proof of their main theorem they use
a theorem of Penrose, Theorem 3 of [16], which states that in a high density
setting all the nodes of a random geometric graph are either isolated or part
of a connected component almost surely. However, Penrose makes it clear that
this result holds only for the case where each edge is formed independently of
all others which is clearly not true here (see Sect. 3). Additionally they critically
need the condition that in the random geometric graph formed by directional
antennas in the infinite plane, when the density is supercritical the giant compo-
nent is unique. For this they cite Theorem 6.3 from Meester and Roy [15], which
also applies only if the independence assumption holds. We will see in Sect. 3
that the independence assumption does not hold in our setting.

3 Modeling Directional Mesh Networks

Directional Antennas. The power received by a receiving antenna, PRx
, at dis-

tance r from a transmitting antenna that is transmitting at wavelength λ with
power PTx

is described by the Friis transmission equation:

PRx
= PTx

GRx
GTx

(
λ

4πr

)2

, (1)

where GRx
and GTx

are the receiver and transmitters gains and depend on the
orientations of the two antennas. For highly directional antennas these gains
can be very high since these antennas tend to concentrate their beams in one
direction. Gain is formally defined as the ratio of the power radiated in a given
direction per unit solid angle to the average power radiated per unit solid angle,
(c.f., e.g., [2,17]).

Although the gain function depends on both the polar and azimuthal angles
in 3 dimensions we will assume for ease of presentation that the gain function
G : [−π, π] → R+ ∪ {0} is defined over two dimensions, i.e., depends only on
the azimuthal angle. We note that our methods are general and can be trans-
posed to 3 dimensions with suitable modifications. We assume that our gain
function has the following properties: (Directionality) G(ψ) = 0 for |ψ| ≥ π/2.

Connectivity of a Dense Mesh of Randomly Oriented Directional Antennas 17

(Symmetry around angle of orientation) G(ψ) = G(−ψ). (Monotonicity) G(ψ) >
G(ψ′) whenever |ψ| < |ψ′|. The assumption that G takes non-zero values only in
[−π/2, π/2] neglects back-lobe transmission, which is a simplification we make
for ease of presentation. From these properties we can additionally deduce that
G(·) reaches its maximum value at 0. Also G(·) is not an invertible function,
since it is not one-to-one. So we follow the convention, similar to that of inverse
trigonometric functions, that G−1(x) is a positive valued function i.e. if G(ψ) = x
then we say that G−1(x) = |ψ|. Also, by the reciprocity principle it is known
that the receiver gain and transmitter gain of an antenna are identical. In this
paper we will deal with settings where all antennas are considered identical to
each other and so we will consider only one single gain function at a time.

A Realistic Directional Fading Model. In a realistic antenna setting the gain
decreases as we move away from the angle of orientation of the antenna. In this
paper we will work with a family of gain functions that satisfy this property.
We will refer to this model as the directional fading model or simply the fading
model. This family of functions, which has been mentioned in the antenna theory
literature as being of particular interest [2,17], is:

Gn
f (ψ) =

{
Gn

f (0) cosn(ψ) 0 ≤ |ψ| ≤ π
2 ,

0 |ψ| ≥ π
2 ,

(2)

where n takes even values and the f in the subscript of Gf is to indicate the
“fading” model and differentiate it from the ideal model we will also study (see
below). The angle ψ is relative to the angle of orientation of the antenna. Since,
by the definition of gain, the integral of gain over the unit sphere should be
4π, we can compute the normalization constant Gn

f (0) for this family. We omit
the exact calculation here only noting that in general 2n + 1 is a reasonable
approximation of Gn

f (0) as n grows.
From now on, we simply denote the realistic gain function Gn

f (·) by G(·).

The Ideal Directional Model. As a theoretical counterpoint we introduce a simple
idealised directional gain function that captures the idea of a beam of width 2θ
centred at the angle of orientation. The gain everywhere is a uniform non-zero
value within this beam is and zero everywhere outside. We denote the ideal gain
function Gθ

i (·), using the subscript i for “ideal” to differentiate it from the fading
model above. This gain function can be explicitly computed by integrating the
uniform gain over the surface of the sphere centred at the antenna and equating
this value to 4π. By doing this we find.

Gθ
i (ψ) =

{ 2
1−cos(θ) 0 ≤ |ψ| ≤ θ,

0 |ψ| > θ,
(3)

The Power Parameter α and Radius of Connectivity. In the omnidirectional case
under the assumption of uniform unit gain in all directions, Gupta and Kumar
showed that in the setting where m nodes are distributed uniformly at random
in a unit disc and if each node can communicate with another node at distance

18 A. Bagchi et al.

r from it, then, the random graph thus formed is connected with probability
tending to 1 as m → ∞ if and only if the radius within which two nodes can
communicate is

ro(m) =

√
log(m) + c(m)

mπ
(4)

where c(m) → ∞ as m → ∞ [10]. In the following when the number of nodes m
is understood, we will often just use ro to denote this radius.

Restating this in terms of power, using the Friis transmission equation, we
can say that if P ∗

R is the minimum received power required for the signal to be
correctly received, then, since GRx

= GTx
= 1, the omnidirectional transmission

power required is

P o
T = P ∗

R

(
4πro

λ

)2

. (5)

In this paper we will use this value of P o
T as a scaling constant for the trans-

mission power used, and ro as a scaling constant for distances. In particular
we will say that the transmission power used by our directional antennas is
P d

T = αP o
T .

We will use α as a parameter to tune the antenna transmission power for the
rest of this paper. To find the furthest distance, rG(α), that an antenna u with
gain function G(·) and power parameter α can communicate we have to find the
largest x such that the power received by an antenna v which is at distance x
from the transmitting antenna u is at least P ∗

R, i.e., we have to find x such that

max
β1,β2∈[−π/2,π/2]

P d
T G(β1)G(β2)

(
λ

4πx

)2

≥ P ∗
R (6)

where β1 is the angle between the ray defining the angle of orientation of the
transmitter and the line segment u → v and β2 is defined analogously for the
receiver (see Fig. 1.) Solving this by putting the values of P ∗

R and P d
T , and observ-

ing that G(·) is maximised at G(0) by definition, we get that

rG(α) =
√

α · G(0) · ro. (7)

Hence by varying α we can control the distance to which the connections can
be made. Note that the maximum distances for the two models can be derived
by using the values of Gn

f (0) and Gθ
i (0).

Fig. 1. Connecting transmitter to receiver.

Connectivity of a Dense Mesh of Randomly Oriented Directional Antennas 19

Random Orientations and Connectivity Probability. Unlike in the simple RGG
model studied by Gupta and Kumar [10], connectivity between two antennas in
the directional setting does not depend only on the distance between them, it
also depends on their angles of orientation. We now study the situation where
the antennas are located in the 2-d plane and each antenna picks its angle of
orientation uniformly at random from [0, 2π].

Assuming that the receiver has fixed its angle of orientation (β2 relative to the
line joining receiver to transmitter) we compute the probability of connectivity
at distance r by integrating over the range of values of the angle of orientation of
the transmitter, β1, within which the received power is at least P ∗

R. This gives us:

gG(r) =

G−1
(

r2

αr2o·G(0)

)
∫

−G−1

(
r2

αr2o·G(0)

)
1

2π2
· G−1

(
r2

αr2o · G(β1)

)
dβ1. (8)

The above function is non-trivial to compute in the fading model, but in the
ideal directional model, under the gain function Gθ

i (·) it reduces to

gGθ
i
(r) =

{
θ2

π2 0 < r ≤ √
α · 2

1−cos(θ) · ro,

0 otherwise,
(9)

This is simply the probability that the receiver lies in a randomly chosen
sector of radius ri(α) with angle 2θ centred at the transmitter and vice-versa.

We also compute the probability, γG, that a node u connects with another
node v that is placed uniformly at random in the disc of radius rf (α) =√

αG(0)ro centred at u in the realistic fading model. This quantity is going
to be critical in our study of network connectivity (Sect. 4). Conditioning on the
position of u and integrating over the disc we get

γG =
∫ √

αroG(0)

x=0

gG(x)
2x

αr2oG(0)2
dx. (10)

An important point to note here is that γG does not depend on α as long as
α > 0. This can be seen by changing variables in (10), replacing x with z where
x =

√
αroz.

For the ideal model we compute the probability, γGi
, that a node u connects

with another node v that is placed uniformly at random in the disc of radius
ri(α) =

√
αGθ

i (0)ro centred at u. By substituting in Eq. 10 the probability of
connectivity at distance x, i.e., gGθ

i
(x) given by Eq. 9, we get γGi

= θ2/π2.

A Random Graph Model. We model a mesh network of directional antennas as
a random geometric graph, H = (V,E), whose nodes are distributed uniformly
at random in a unit disc in R

2. Each node u ∈ V is equipped with a directional
antenna that chooses its angle of orientation ξu uniformly at random from [0, 2π]

20 A. Bagchi et al.

independently of all other nodes. The other parameters of the model are a power
level α as defined in Sect. 3 and a gain function G(·).

For convenience we will use the following notation to refer to random graphs
modeling networks using the directional fading and ideal directional model:

– DF-RGG(m,n, α): a random graph formed as above on m nodes with G =
Gn

f (·) and power parameter α, briefly DF-RGG when the parameter values
are understood.

– DI-RGG(m, θ, α): a random graph formed as above on m nodes with G =
Gθ

i (·) and power parameter α, briefly DI-RGG.

The Edge-Independence Assumption does not Hold. To show this let us consider
the simpler ideal model. Assume there are three nodes x, y and z which are
placed such that their pairwise distances are all equal to some r > 0, i.e. they
are placed at the vertices of an equilateral triangle of side length r. Consider a
value of θ that is smaller than 30 degrees and an α large enough to ensure that
each pair can communicate if the antenna orientations are correct. For a given
pair of nodes, say x, y, the probability that they are connected is θ2/π2. But
clearly the probability of all three pairs being connected is 0 which is less than
θ6/π6 which is what it would have been if the probabilities of the edges being
formed were independent. Hence, we find that the independence assumption does
not hold and so the theory developed under this assumption cannot be used in
this case as has been done by Li et al. [13]. We will now show how this problem
can be handled.

4 Connectivity

In this section we show that highly directional antennas achieve network con-
nectivity at a much lower power level than omnidirectional antennas. This is
a somewhat counterintuitive result that we feel has major implications for the
design of mesh networks.

A Connectivity Theorem for Directional Random Mesh Networks. We now
present our main theorem on connectivity. The key factor in this theorem is the
probability of connectivity γG associated with an antenna with gain function
G. As we showed in Sect. 3, this probability is independent of the transmission
power and hence is a property of the antenna model alone and depends only on
the gain function G. Our main theorem is:

Theorem 1. Suppose we are given a set V of m nodes distributed uniformly
at random in a unit disc B of R2 and each node is equipped with an antenna
with gain function G that is (a) non-zero in [−π, π], (b) symmetric around the
angle of orientation and (c) monotonically decreasing away from the angle of
orientation. Assume that each antenna has transmission power that allows it to
transmit to a distance of r > 0 in its direction of maximum gain. Denote by

Connectivity of a Dense Mesh of Randomly Oriented Directional Antennas 21

γG the probability that two nodes that lie within distance r of each other are
connected.

We construct a random graph model D-RGG(m,G, r) by placing edges
between each pair of points that can communicate with each other, and for this
we have that P(D-RGG(m,G, r)is connected) → 1 as m → ∞ if and only if

πr(m)2γG = (log m + c(m))/m, (11)

where limm→∞ c(m) = ∞ as m → ∞.

Due to shortage of space we omit the proof of this theorem. We note that
the optimal radius suggested by Theorem1 is simply the optimal radius for
omnidirectional antennas given by Gupta and Kumar [11] scaled by a factor
of 1/

√
γG. This implies that the radius of connectivity is larger than that for

omnidirectional antennas, since γG < 1, and appears to run counter to our claim
that random directional mesh networks require lower power. However, as we
have already seen the directionality of an antenna means that it can achieve
a much larger transmission range, at least in the direction of orientation, and
so we will find that the power required is much lower than that required for
omnidirectional antennas.

0.025

0.05

0.09

16 128 1024 8192

Power
level
(α)

Fading parameter n

α∗
f (n)

(a)

0

0.5

1

−π
2

−π
4 0

π
4

π
2

Power
level
(α)

θ

α∗
i (θ)

(b)

Fig. 2. Optimal power level vs model parameters for (b) the ideal model (parameter
θ) and (a) the fading model (parameter n).

Optimal Power for Connectivity. From Theorem 1 we deduce that the optimal
radius rd of connectivity of the directional model with gain function G is given by
rd = ro/

√
γG. The power level α that reaches the maximum distance

√
αG(0)ro

equal to rd will be called the optimal power level α∗ and is given in the fading
and ideal model by, respectively:

α∗
f (n) =

1
γGf

Gn
f (0)2

(12) α∗
i (θ) =

(
π(1 − cos(θ))

2θ

)2

(13)

22 A. Bagchi et al.

In Fig. 2, after computing γf (n) numerically for n = 16, 32, 64, . . . , 8192, we
plot α∗

f (n) versus n and α∗
i (θ) versus θ. It is worth noting that α∗ depends on n

in the fading model and on θ in the ideal model. Since the gain in the direction
of orientation is a measure of how “directional” the antenna beam is, i.e., how
concentrated the signal is in the direction of orientation, the inverse relationship
of the optimal power level to G(0)2 implies that the power level required for
connectivity decreases as the directionality of the antenna increases.

Table 1. The parameter n, associated angle θ(n) and corresponding optimal power
levels and connectivity probabilities.

n θ(n) (degrees) γGi α∗
i (n) γGf α∗

f (n)

16 16.74 0.008652 0.0519 0.009640 0.0952468

32 11.88 0.004357 0.0263 0.004896 0.0483396

64 8.41 0.002186 0.0132 0.0024673 0.024355

128 5.95 0.001095 0.0066 0.0012385 0.0122246

256 4.21 0.000548 0.0033 0.00620 0.00612419

512 2.98 0.000274 0.0016 0.00031 0.00306508

1024 2.10 0.000137 8.34e-04 0.00015 0.00153329

2048 1.49 6.86e-05 4.17e-04 7.76e-05 0.00076683

4096 1.05 3.42e-05 2.08e-04 3.88e-05 0.000383462

8192 0.74 1.71e-05 1.04e-04 1.94e-05 0.000191743

Comparing the Ideal Model and the Fading Model. It is not a priori clear how
to determine which of the two models, ideal or fading, is more power efficient.
In order to compare them, we propose to study the half-power beamwidth (or,
simply, the halfbeam) for antennas with realistic gain function [17].

For an antenna of parameter n, the halfbeam is defined as the angle 2χ
between the two directions in which the gain Gn

f (χ) is one half the maximum
value, that is, χ such that Gn

f (χ) = 1
2Gn

f (0) cosn(0). Solving the above equation,
we obtain that the halfbeam of an antenna of parameter n is the angle 2χ =
2 cos−1

(
n
√

1/2
)
. Thus, we associate the fading model whose gain function has

parameter n to the ideal model of parameter θ(n) = cos−1
(

n
√

1/2
)
.

With this correspondence, we report the optimal power levels in Table 1: we
compute α∗

i (θ(n)) by recalling γGi
= θ2/π2 and using Eq. 3. After computing

γG by numerical integration (see Eq. 10), we derive α∗
f (n) using Eq. 2. Note that

the values of α∗
i (n) in Table 1 zoom into Fig. 2b since θ(n) lies in [0.74, 16.74].

In Table 1 we report the connectivity probabilities of the fading model with
different values of the parameter n and those the associated DI-RGG, i.e. the
ideal model with parameter θ(n). As we see, they almost coincide thus validating
the engineering intuition that guided us in making this association. This con-
nectivity probability is for a pair of points but when we come to network-wide

Connectivity of a Dense Mesh of Randomly Oriented Directional Antennas 23

Fig. 3. The percentage of connectivity versus α in the fading model.

connectivity the models differ: the optimal power level for DI-RGG is about half
of that for the corresponding version of DF-RGG. This is because each DI-RGG
antenna covers at a smaller area (i.e., halfbeam) than the one considered in
DF-RGG but with a better (uniform) gain value. This shows that for network
connectivity the halfbeam assumption is overly optimistic and gives us lower
power levels than required. Nevertheless for all values of n the optimal power for
the fading model is double that of the ideal model, and we can state as a rule of
thumb that α∗

f (n) = 2α∗
i (θ(n)). This is an important input for the design of a

connected directional mesh in which the directional antennas transmit at power
level at most α.

5 Simulation Results for the Fading and Ideal Models

In this section we experimentally test our results on connectivity in directional
meshes. We built our own simulator and we ran the experiments on a 2.2 GHz
Intel i3 processor with 4 GB of main memory. We implemented the algorithm in
C++. We followed the communication model for the DF-RGGs and DI-RGGs
described in Sect. 3. Our main metric in this study is what we call the percentage
of connectivity or connectivity percentage, which is defined as the percentage of
nodes in the largest connected component. First we validate our main result on
the optimal power level for the fading model. Figure 3 shows the percentage of
connectivity versus power level α for several values of the fading parameter n.
For each value of n, the optimal power level α∗

f (n) is highlighted with a small
cross. As one can see, whenever n ≤ 4096, the optimal power level derived in
Eq. 12 is very accurate. Indeed, at α∗

f (n), the percentage of connectivity reaches
the maximum value and after that, it remains stable. In other words, extra power
would not significantly improve the connectivity. For n = 8192, α∗

f (8192) is less
accurate since the percentage of connectivity increases for α > α∗

f (8192). This
eventually shows that the connectivity probability is slightly overestimated in
such extreme value of n. The remaining experiments test the percentage of con-
nectivity in DF-RGG and DI-RGG at the optimal power level α∗, reported in
Table 1. Figure 4 shows that the percentage of connectivity achieved in direc-
tional mesh is high and comparable to that of omnidirectional mesh, although

24 A. Bagchi et al.

Fig. 4. The percentage of connectivity when: (a) m varies, (b) n varies.

Fig. 5. The percentage of connectivity vs c(m): (a) in DF-RGG (b) in DI-RGG.

the power used by directional models is well below P o
T which is conventionally

set to 1 in our experiments. It also appears that for a more directional model
to achieve a high connectivity percentage, we need a higher density than we
need for a less directional model. Nonetheless, it is interesting to point out that
when m is small, moderate directionality may achieve higher connectivity than
omnidirectional networks, i.e., reaching further nodes within a (sufficiently wide)
sector is more effective for achieving connectivity than reaching nodes that do
not lie as far but are located all around the antenna. We then verified whether
the power level derived by Eqs. 12 and 13 is necessary for achieving connectivity.
For this purpose, we varied the connectivity radius in Eq. 4 below the optimal
threshold using c(m) = {− log log(m), − log2 log(m), −2

√
log(m)}. Changing

c(m), the radius reduces from ro to r, and the directional optimal power level is
scaled by factor F = (r

ro
)2. The scale coefficients F used in Fig. 5 for the three

values of c(m) are {0.64984, 0.41382, 0.37443}. We take m = 5 · 105 here. We
note in Fig. 5 that the more we decrease the power level, the greater the loss in
connectivity. The trends of the connectivity curves are the same for all values of
n, sharpening for higher values of n.

Connectivity of a Dense Mesh of Randomly Oriented Directional Antennas 25

6 Conclusions

In this paper we have argued that connected mesh networks can be built using
directional antennas and that such mesh networks can operate with much lower
power than mesh networks built with isotropic omnidirectional antennas. We
have also demonstrated how a simple idealised gain function can be used to
approach mesh network design where the antennas have a more realistic and
complex gain function.

References

1. Bagchi, A., Pinotti, C.M., Galhotra, S., Mangla, T.: Optimal radius for connectivity
in duty-cycled wireless sensor networks. ACM Trans. Sens. Netw. 11(2), Article
no. 36, 1–37 (2015)

2. Balanis, C.A.: Antenna Theory: Analysis and Design. Wiley, New York (2012)
3. Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable density estimates for cov-

erage and connectivity in thin strips of finite length. In: Proceedings of 13th Annual
ACM International Conference on Mobile Computing and Networking (Mobicom
2007), pp. 75–86. ACM (2007)

4. Bettstetter, C., Hartmann, C., Moser, C.: How does randomized beamforming
improve the connectivity of ad hoc networks? In: IEEE International Conference
on Communications (ICC 2005), vol. 5, pp. 3380–3385. IEEE (2005)

5. Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Commu-
nication in wireless networks with directional antennas. In: Proceedings of 20th
Annual Symposium Parallelism in Algorithms and Architectures (SPAA 2008),
pp. 344–351. ACM (2008)

6. Carmi, P., Katz, M.J., Lotker, Z., Rosén, A.: Connectivity guarantees for wireless
networks with directional antennas. Comput. Geom. 44(9), 477–485 (2011)

7. Chawla, A., Yadav, V., Dev Sharma, V., Bajaj, J., Nanda, E., Ribeiro, V., Saran,
H.: RODEO: robust and rapidly deployable TDM mesh with QoS differentiation.
In: Proceedings of 4th International Conference Communication Systems and Net-
works (COMSNETS 2012), pp. 1–6. IEEE (2012)

8. Chebrolu, K., Raman, B.: FRACTEL: a fresh perspective on (rural) mesh networks.
In: Proceedings of 2007 Workshop on Networked Systems for Developing Regions,
p. 8. ACM (2007)

9. Dousse, O., Baccelli, F., Thiran, P.: Impact of interferences on connectivity in ad
hoc networks. IEEE/ACM Trans. Netw. 13(2), 425–436 (2005)

10. Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity. In: Proceed-
ings of 37th IEEE Conference on Decision and Control, pp. 1106–1110. IEEE (1998)

11. Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity in wireless net-
works. In: McEneaney, W.M., George Yin, G., Zhang, Q. (eds.) Stochastic Analysis,
Control, Optimization and Applications. A Volume in Honor of W.H. Fleming, pp.
547–566. Springer, New York (1999)

12. Kranakis, E., Krizanc, D., Williams, E.: Directional versus omnidirectional anten-
nas for energy consumption and k -connectivity of networks of sensors. In:
Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 357–368. Springer,
Heidelberg (2005)

13. Li, P., Zhang, C., Fang, Y.: Asymptotic connectivity in wireless ad hoc networks
using directional antennas. IEEE/ACM Trans. Netw. 17(4), 1106–1117 (2009)

26 A. Bagchi et al.

14. Madsen, T.K., Fitzek, F.H., Prasad, R., Schulte, G.: Connectivity probability of
wireless ad hoc networks: definition, evaluation, comparison. Wirel. Pers. Commun.
35(1–2), 135–151 (2005)

15. Meester, R., Roy, R.: Continuum Percolation. Number 119 in Cambridge Tracts in
Mathematics. Cambridge University dss, Cambridge (1996)

16. Penrose, M.D.: On a continuum percolation model. Adv. Appl. Probab. 23(3),
546–556 (1991)

17. Silver, S.: Microwave Antenna Theory and Design. McGraw-Hill, New York (1949)
18. Souryal, M.R., Wapf, A., Moayeri, N.: Rapidly-deployable mesh network testbed.

In: Proceedings of Global Telecommunications Conference (GLOBECOM 2009),
pp. 1–6. IEEE (2009)

19. Wan, P.-J., Yi, C.-W.: Asymptotic critical transmission ranges for connectivity in
wireless ad hoc networks with bernoulli nodes. In: Proceedings of IEEE Wireless
Communications and Networking Conference (WCNC 2005), vol. 4, pp. 2219–2224.
IEEE (2005)

20. Xu, H., Dai, H.-N., Zhao, Q.: On the connectivity of wireless networks with multiple
directional antennas. In: 18th IEEE International Conference on Networks (ICON
2012), pp. 155–160. IEEE (2012)

21. Yi, C.-W., Wan, P.-J., Li, M., Frieder, O.: Asymptotic distribution of the number
of isolated nodes in wireless ad hoc networks with bernoulli nodes. IEEE Trans.
Commun. 54(3), 510–517 (2006)

22. Yu, Z., Teng, J., Bai, X., Xuan, D., Jia, W.: Connected coverage in wireless net-
works with directional antennas. ACM Trans. Sens. Netw. 10(3), 51 (2014)

Maintaining Intruder Detection Capability
in a Rectangular Domain with Sensors

Evangelos Kranakis1, Danny Krizanc2, Flaminia L. Luccio3(B),
and Brett Smith2

1 School of Computer Science, Carleton University, Ottawa, ON, Canada
2 Department of Mathemetics and Computer Science, Wesleyan University,

Middletown, CT, USA
3 DAIS, Università Ca’ Foscari Venezia, Venice, Italy

luccio@unive.it

Abstract. In order to detect intruders that attempt to pass through a
rectangular domain, sensors are placed at nodes of a regular spaced grid
laid out over the rectangle. An intruder that steps within the sensing
range of a sensor will be detected. It is desired that we prevent potential
attacks in either one dimension or two dimensions. A one-dimensional
attack succeeds when an intruder enters from the top (North) side and
exits out the bottom (South) side of the domain without being detected.
Preventing attacks in two dimensions requires that we simultaneously
prevent the intruder from either entering North and exiting South or
entering East (left side) and exiting West (right side) undetected.

Initially, all of the sensors are working properly and the domain is fully
protected, i.e., attacks will be detected, in both dimensions (assuming the
grid points are such that neighboring sensors have overlapping sensing
ranges and include all four boundaries of the domain). Over time, the sen-
sors may fail and we are left with a subset of working sensors. Under these
conditions we wish to (1) determine if one or two-dimensional attack
detection still persists and (2) if not, restore protection by adding the
least number of sensors required to ensure detection in either one or two
dimensions.

Ideally, the set of currently working sensors would provide some
amount of fault-tolerance. In particular, it would be advantageous if for
a given k, the set of sensors maintains protection (in one or two dimen-
sions) even if up to k of the sensors fail. This leads to the problems of
(1) deciding if a subset of the sensors provides protection with up to k
faults and (2) if not, finding the minimum number of grid points to add
sensors to in order to achieve k fault-tolerance.

In this paper, we provide algorithms for deciding if a set sensors pro-
vides k-fault tolerant protection against attacks in both one and two
dimensions, for optimally restoring k-fault tolerant protection in one
dimension and for restoring protection in two dimensions (optimally for
k = 0 and approximately otherwise).

Research supported in part by NSERC grant, and by MIUR project Security
Horizons. Work partially done while the first two authors were visiting Ca’ Foscari
University.

c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 27–40, 2015.
DOI: 10.1007/978-3-319-28472-9 3

28 E. Kranakis et al.

Keywords: Rectangular grid · Intruder detection · Sensors · Fault
tolerance

1 Introduction

In order to detect intruders that attempt to pass through a rectangular domain,
sensors are placed at nodes of a regular spaced grid laid out over the rectangle.
An intruder that steps within the sensing range of a sensor will be detected. It is
desired that we prevent potential attacks in either one dimension or two dimen-
sions. A one-dimensional attack succeeds when an intruder enters from the top
(North) side and exits out the bottom (South) side of the domain without being
detected. Preventing attacks in two dimensions requires that we simultaneously
prevent the intruder from either entering North and exiting South or entering
East (left side) and exiting West (right side) undetected.

Initially, all of the sensors are working properly and the domain is fully
protected, i.e., attacks will be detected, in both dimensions (assuming the grid
points are such that neighboring sensors have overlapping sensing ranges and
include all four boundaries of the domain). Over time, the sensors may fail and
we are left with a subset of working sensors. Under these conditions we wish to
(1) determine if one- or two-dimensional attack detection still persists and (2) if
not, restore protection by adding the least number of sensors required to ensure
detection in either one or two dimensions.

Ideally, the set of currently working sensors would provide some amount of
fault-tolerance. In particular, it would be advantageous if for a given k, the set
of sensors maintains protection (in one or two dimensions) even if up to k of the
sensors fail. This leads to the problems of (1) deciding if a subset of the sensors
provides protection with up to k faults and (2) if not, finding the minimum
number of grid points to add sensors to in order to achieve k fault-tolerance.

In this paper, we provide algorithms for deciding if a set sensors provides
k-fault tolerant protection against attacks in both one and two dimensions, for
optimally restoring k-fault tolerant protection in one dimension and for restoring
protection in two dimensions (optimally for k = 0 and approximately otherwise).
The rest of this introduction provides more precise definitions for our problems, a
description of our results and a discussion of related work. The following section
presents our results in detail and we finish with a discussion of extensions and
open problems.

1.1 Preliminaries and Notation

In order to present our results we first provide some definitions. As many of
our results depend upon results concerning shortest paths and network flow in
directed graphs, we will, at times, represent an undirected graph, say H, with a
directed graph, denoted H↔, by replacing each edge with two edges of opposite
orientation. Any directed path in H↔ will then correspond to an undirected path
in H and vice versa. Moreover, two directed paths are vertex-disjoint in H↔ if
and only if the corresponding paths in H are vertex-disjoint.

Maintaining Intruder Detection Capability in a Rectangular Domain 29

Also, we will need a binary weight function on the vertices of our graphs
to indicate whether or not a vertex can be occupied by an adversary without
detection by a sensor. As we will see, it is convenient to add ‘dummy’ vertices
to our grid, G, which will not be accessible by an adversary. These vertices will
be given weight zero, as will any vertex on which we place a sensor. Any grid
vertex which does not contain a sensor will have weight one.

Many of the cut/flow results we would like to use depend on edge weights to
determine the length of a path. As we are interested in the presence of sensors
on a path, for any plane graph, H, with weighted vertices, we give edge weights
to H↔ determined by the terminal vertex of each edge. Then the weight of a
directed path in H↔ will be the sum of the edge weights plus the weight (in H) of
the initial vertex on the path. This provides an equivalent weight on undirected
paths in H and a distance function in both graphs.

Fix m,n > 0 and consider an m×n-grid, G, embedded in the plane. Label the
four vertex sets corresponding to the four sides of the grid, North, South,East
and West, so that North and South have size m; East and West have size n.
Let C = (c0, ..., c2n+2m−5) be the cycle peripheral to the unbounded face of G
so that

North = {c0, ..., cm−1},

East = {cm−1, ..., cm+n−2},

South = {cm+n−2, ..., c2m+n−3},

West = {c2m+n−3, ..., c2m+2n−5, c0}.

A (North, South)-path in G↔ is a directed path whose initial vertex is in
North and whose terminal vertex is in South; similarly, an (East,West)-path
in G↔ is a directed path whose initial vertex is in East and whose terminal
vertex is in West. We refer to undirected paths in G as (North, South) and
(East,West)-paths as well.

Definition 1 ((North, South)- and (East, West)-Blocking Set). A
(North, South)- blocking set, B ⊆ V (G), is a set of vertices such that there
is no (North, South)-path in G − B. Similarly, an (East,West)-blocking set,
B ⊆ V (G), is a set of vertices such that there is no (East,West)-path in G−B.

Placing sensors on such a blocking set will detect an adversary’s movement along
any path between the identified pair of sides in the grid.

We generalize these blocking sets to allow for a number, k, of faults amongst
sensors.

Definition 2 (k-Blocking Set). For any fixed k ≥ 0, a (North, South)-
k-blocking set, B ⊆ V (G), is a set of vertices such that for any F ⊆ B
with |F | ≤ k, there is no (North, South)-path in G − (B\F). Similarly, an
(East,West)-k-blocking set, B ⊆ V (G), is a set of vertices such that for any
F ⊆ B with |F | ≤ k, there is no (East,West)-path in G− (B\F). For any fixed
k ≥ 0, a k-blocking set, B ⊆ V (G), is a set of vertices so that for any F ⊆ B
with |F | ≤ k, there is neither a (North, South)-path nor an (East,West)-path
in G − (B\F).

30 E. Kranakis et al.

Placing sensors on a (North, South)-k-blocking set (respectively, (East,West)-
k-blocking set) will detect movement along any path between the identified pair
of sides in the grid, allowing for up to k faulty sensors. Moreover, a k-blocking
set detects both (North, South) and (East,West) movement at the same time,
allowing for up to k faulty sensors.

We now define our problems.

Definition 3 (One-Dimensional k-Protection Decision Problem). Given
an m × n-grid, G, a subset B ⊆ V (G), and a non-negative integer k, does B
form a (North, South)-k-blocking set? The case k = 0 will be referred to simply
as the one-dimensional protection decision problem.

Definition 4 (Two-Dimensional k-Protection Decision Problem).
Given an m × n-grid, G, a subset B ⊆ V (G), and a non-negative integer k,
does B form a k-blocking set? The case k = 0 will be referred to simply as the
two-dimensional protection decision problem.

Definition 5 (One-Dimensional k-Protection Placement Problem).
Given an m × n-grid, G, a subset B ⊆ V (G), and a non-negative integer k, find
a set B′ ⊆ V (G)\B of minimum size such that B ∪ B′ forms a (North, South)-
k-blocking set. The case k = 0 will be referred to simply as the one-dimensional
protection placement problem.

Definition 6 (Two-Dimensional k-Protection Placement Problem).
Given an m × n-grid, G, a subset B ⊆ V (G), and a non-negative integer k,
find a set B′ ⊆ V (G)\B of minimum size such that B ∪ B′ forms a k-blocking
set. The case k = 0 will be referred to simply as the two-dimensional protection
placement problem.

1.2 Our Results

We show the following:

1. There exist O(mn) time algorithms for solving the one- and two-dimensional
k-protection decision problems. See Theorems 2 and 5. (Note: the one dimen-
sional case follows from a result in [13]. We present our own version of the
proof for completeness.)

2. There exists a O(kmn log(mn)) time algorithm for solving the one-
dimensional k-protection placement problem. See Theorem 3.

3. There exists a O(m2n2) time algorithm for solving the two-dimensional pro-
tection placement problem. See Theorem 6.

4. There exists a O(kmn log(mn)) time 2-approximation algorithm for solving
the two-dimensional k-protection placement problem. See Theorem 7.

In all of the above we assume k < min{m,n} as we shall see that the problems
can not be solved otherwise. Further we discuss extensions of these results for
solving more general versions of these problems including protecting:

1. domains containing impassable regions,
2. non-rectangular domains,
3. and against more general attacks than just North-South or East-West.

Maintaining Intruder Detection Capability in a Rectangular Domain 31

1.3 Related Work

As far as we know, we are the first to study these problems as formalized above.
A closely related problem concerning the placement of sensors to accomplish
coverage of a given region has been studied extensively in the literature. Gen-
erally, one assumes sensors can sense a limited region defined by their sensing
radius. To monitor a larger region against potential threats every point of the
region must be within the sensing range of at least one of the sensors. This has
been studied in several papers, and includes research on area coverage whereby
one ensures monitoring of an entire region [11,14], and on perimeter or barrier
coverage whereby a region is monitored via its perimeter thus sensing intrusions
or exits from the interior [1,13]. The fault tolerance of such placements has also
been studied [4,13]. For the case where the sensors may be moved, the com-
plexity of minimizing the sensor displacement has also been studied in some
detail. For example, for sensors placed on a line [6] shows that there is an O(n2)
algorithm for minimizing the max displacement of a sensor while the problem
becomes NP-complete if there are two separate (non-overlapping) barriers (cf.
also [5] for arbitrary sensor ranges). Similar research is known if one is inter-
ested in sum of sensor displacements [7], or the number of sensors moved [15].
Further, [9] considers the complexity of several natural generalizations of the
barrier coverage problem with sensors of arbitrary ranges, including when the
initial positions of sensors are arbitrary points in the two-dimensional plane, as
well as multiple barriers that are parallel or perpendicular to each other. Perhaps
the most closely related work to ours is that of [16] where the authors look at
how to best randomly distribute additional sensors in order to maintain barrier
coverage under the potential for faults.

2 Main Results

Our main results are based upon establishing a characterization of minimal k-
blocking sets in grids. To do this, it is easier to work in the more general setting of
graphs embedded in the plane and use some ideas derived from the graph theory
literature. We begin by establishing some definitions and important lemmas.

2.1 Connectedness and Surface Graphs

Definition 7. Let H be a simple, 2-connected graph embedded in the plane. The
surface graph of H, Ĥ, is obtained from H as follows. In each face, f , of H,
add a new node, vf , and edges from vf to each vertex of H which is peripheral
to f . For each X ⊆ V (H), the bounded surface set of X, called X, is equal
to X ∪ {vf ∈ V (Ĥ) : f is a bounded face of H} ⊆ V (Ĥ).

That is, we obtain a subset of vertices of Ĥ from X by including each vertex
which corresponds to a bounded face of H. The subgraph of Ĥ induced by X is
denoted by Ĥ[X].

Notice that Ĥ is a maximal plane graph. We observe the following connect-
edness property for any maximal plane graph.

32 E. Kranakis et al.

Lemma 1. Let H be a maximal plane graph, and let X ⊆ V (H). If f is a face
of H − X, then the set,

F := {u ∈ V (H) : u is in the face f},

is a connected set of vertices in H.

Proof. Let u, v ∈ F . Then there is some simple polygonal (u, v)-curve, say γ,
contained in the face, f . Moreover, we may assume that γ does not meet any
vertices from H other than its endpoints, and γ’s intersection with each edge
consists of an isolated point. Consider the finite multi-sequence of edges from H
which intersect γ, beginning with the edge closest to u on γ, (e1, e2, ..., en). For
each i ∈ {1, ..., n}, let vi be an endpoint of ei contained in F (choosing arbitrarily
if both endpoints of ei lie in F). We want to show that (u, v1, ..., vn, v) is a (u, v)-
walk in H.

Suppose 1 ≤ i ≤ n − 1. If we restrict γ to the curve between its identified
intersection with ei and ei+1, then the interior of the resulting curve does not
intersect any edges or vertices of H. Thus, its interior is contained in a single
face of H. Since H is a maximal plane graph, there are three vertices incident
with this face, and they form a clique in H. In particular, either vi = vi+1 or
vi is adjacent to vi+1. Similar arguments show that u is adjacent to v1 and v is
adjacent to vn. Therefore, (u, v1, ..., vn, v) is a (u, v)-walk in H consisting entirely
of vertices in F , so F is connected in H. �

Our characterization of k-blocking sets in one or two dimensions will depend
upon the existence of a set of paths in G with certain properties. The next lemma
will be useful in establishing this correspondence.

Let H be a simple, 2-connected graph embedded in the plane and let
C = (c0, ..., ct−1) be the cycle in H which is peripheral to the unbounded face.
Following Robertson and Seymour’s treatment of the DISJOINT CONNECT-
ING SUBGRAPHS problem in [17], for any 4-tuple, (i, j, i′, j′), such that

0 ≤ i < j ≤ i′ ≤ j′ ≤ t − 1

we say that {ci, ci′} crosses {cj , cj′} in H. Notice that we allow the degenerate
cases, where i = i′ or j = j′. For convenience, we may say that {a, b} crosses
{c, d} in H without referring to indices. In this case, given an (a, b)-path, P , in
H, it is a straightforward consequence of the Jordan Curve Theorem that any
(c, d)-path must contain a vertex in P .

Lemma 2. Let H be a 2-connected plane graph, let C = (c0, ..., ct−1) be the
cycle in H which is peripheral to the unbounded face, and let X ⊆ V (H). For
ci, ci′ ∈ V (H)\X such that 0 ≤ i ≤ i′ ≤ t − 1, there is a (ci, ci′)-path in H − X
if and only if for every j, j′ such that i ≤ j ≤ i′ ≤ j′ ≤ t − 1, there is no
(cj , cj′)-path in Ĥ[X].

Proof. The forward direction is a consequence of the Jordan Curve Theorem.
For the backward direction, we prove the contrapositive. Suppose there is no

Maintaining Intruder Detection Capability in a Rectangular Domain 33

(ci, ci′)-path in H − X. Define j so that cj−1 is the last vertex on the path,
(ci, ci+1..., ci′−1), which is in the same component of H − X as ci, and define j′

so that cj′+1 is the first vertex on the path, (ci′+1, ci′+2..., ci), which is in the
same component of H − X as ci (here, our indices are modulo t). By definition,
both cj , cj′ ∈ X. We want to show that cj and cj′ lie in the same face of Ĥ −X.

If not, there is some pair, ck, ck′ ∈ V (C) ∩ (V (H)\X), with

ck ∈ {cj+1, cj+2, ..., cj′−1} and ck′ ∈ {cj′+1, cj′+2, ..., cj−1},

such that there is a (ck, ck′)-path in H − X and {ck, ck′} crosses {cj , cj′} in H.
We consider three cases.

Case 1: Suppose k ∈ {j+1, ..., i′ −1}. If k′ ∈ {j′ +1, ..., i}, then {ck, ck′} crosses
{cj′+1, ci}. Therefore ck is in the same component of H − X as ci, contradicting
the maximality of j − 1. Otherwise, k′ ∈ {i + 1, ..., j − 1}, and {ck, ck′} crosses
{cj−1, ci}. Again, ck is in the same component of H −X as ci, contradicting the
maximality of j − 1.

Case 2: Suppose k ∈ {i′ + 1, ..., j′−1}. If k′ ∈ {j′+1, ..., i}, then {ck, ck′} crosses
{cj′+1, ci}. Therefore ck is in the same component of H − X as ci, contradicting
the minimality of j′+1. Otherwise, k′ ∈ {i, ..., k}, and {ck, ck′} crosses {cj+1, ci}.
Again, ck is in the same component of H −X as ci, contradicting the minimality
of j′ + 1.

Case 3: Suppose k = i′. Then {ck, ck′} crosses {cj−1, cj′+1}, so ci is in the same
component of H − X as ci′ . This contradicts our assumption that there is no
(ci, ci′)-path in H − X.

Therefore, cj and cj′ lie in the same face, say f , of Ĥ − X, where Ĥ is a
maximal plane graph. By lemma 1, the collection of vertices from X which lie
in f is connected in Ĥ. In particular, there is a (cj , cj′)-path in Ĥ[X]. This
completes the proof. �

We are now prepared to prove our main results.

2.2 One-Dimensional Blocking

For an m × n-grid, G, define the plane graph, G′, obtained from G by adding
two new vertices, e and w, to the unbounded face so that e is adjacent to each
vertex in East and w is adjacent to each vertex in West. For each B ⊆ V (G),
we can think of Ĝ[B] as a subgraph of Ĝ′[B] because every bounded face of G
is a bounded face of G′. Moreover, there are k + 1 vertex-disjoint (East,West)-
path in Ĝ[B] just in case there are k + 1 internally vertex-disjoint (e, w)-path in
Ĝ′[B ∪ {e, w}]. Define B′ = B ∪ {e, w}.

Theorem 1. Let m,n > 0, let G be the m × n-grid and let B be a subset of
vertices from G. For each k ≥ 0, B is a (North, South)-k-blocking set if and
only if Ĝ[B] contains k + 1 vertex-disjoint (East,West)-paths.

34 E. Kranakis et al.

Proof. Suppose B is a (North, South)-k-blocking set in G. For the sake of con-
tradiction, suppose Ĝ′[B′] contains at most k vertex-disjoint (e, w)-paths. By
Menger’s Theorem, there is some X ⊆ B separating e and w in Ĝ′[B′] with
|X| ≤ k. We claim there is some F ⊆ B separating e and w in Ĝ′[B′] with
|F | = |X|.

We prove the claim by induction on the number of vertices in X\B. Let X be
a minimum size set of vertices separating e and w in Ĝ′[B′]. If |X\B| = 0, then
X ⊆ B and we are done. Otherwise, there is some face, f , of G′ such that vf ∈
X\B. By the minimality of X, there is an (e, w)-path P in Ĝ′[B′] − (X\{vf}).
Moreover, it must be the case that vf ∈ V (P), and the two neighbors of vf in
P are not adjacent in Ĝ′.

Clearly, neither e nor w is peripheral to f since each such face is bounded by
a 3-cycle. Therefore, f is a bounded face in G; let Cf = (a, b, c, d) be the cycle
peripheral to f . Without loss of generality, we may assume that a and c are the
two neighbors of vf in P and b, d /∈ B\X. Let X ′ = X\{vf} ∪ {a}. Notice that
vf has degree 1 in Ĝ′[B′]−X ′. Therefore, no (e, w)-path in Ĝ′[B′]−X ′ uses vf .
By the choice of X, there is no (e, w)-path in Ĝ′[B′] − (X\{vf}) which does not
use vf . Hence, there is no (e, w)-path in Ĝ′[B′] − X ′. Finally, |X| = |X ′| and
|X\B| − 1 = |X ′\B|. This completes the induction.

We have shown the existence of some F ⊆ B separating e and w in Ĝ′[B′]
with |F | ≤ k. That is, there is no (e, w)-path in Ĝ′[B′\F]. But, since B is a
(North, South)-k-blocking set, there is no (North, South)-path in G′ − (B′\F).
This contradicts Lemma 2.

For the backward direction, suppose Ĝ′[B′] contains k + 1 vertex disjoint
(e, w)-paths. Then for any F ⊆ B with |F | ≤ k, there is an (e, w)-path in
Ĝ′[B′\F]. By Lemma 2, there is no (North, South)-path in G′ − (B′\F). There-
fore, B is a (North, South)-k-blocking set. �

Theorem 2. Let m,n > 0, let G be the m × n-grid and let B be a subset of
vertices from G. For each k ≥ 0, one can decide whether B is a (North, South)-
k-blocking set in O(mn) time.

Proof. Theorem 1 implies that B is a (North, South)-k-blocking set if and only
if there are k+1 internally vertex-disjoint (e, w)-paths in Ĝ′[B′]. Letting � equal
the number of vertices in Ĝ′[B′], we can compute the vertex connectivity between
two vertices in a planar graph in O(�) time [2,10]. Moreover, Euler’s formula tells
us that

� ≤ |V (Ĝ′)\{vf∞}|
= |V (G′)| + |F (G′)| = |E(G′)| + 2
= n(m − 1) + m(n − 1) + 2n + 2
= 2mn + n − m + 2.

Here, F (G′) is the set of faces in G′ and f∞ is the unbounded face of G′. �

Maintaining Intruder Detection Capability in a Rectangular Domain 35

Define a weight function, σ, on V (Ĝ) so that

σ(v) =
{

1, v ∈ V (G)
0, v ∈ V (Ĝ)\V (G).

From σ, we obtain a weight function, σ↔, on the vertices of Ĝ↔ and a
distance function δ on the edges of Ĝ↔, as described in the preliminaries. These
functions are easily extended to Ĝ′ and Ĝ′↔ by giving each new vertex weight
zero.

Now suppose we are given some initial set of sensors in the grid. We are
interested in placing additional sensors to obtain a (North, South)-k-blocking
set. Moreover, we would like to minimize the number of sensors used to obtain
this result. Let B0 ⊆ V (G) be a set of sensors initially placed on the grid. We
define a new weight function, σ0, by altering σ so that σ0(v) = 0 for each v ∈ B0.
The functions σ0↔ and δ0 are defined naturally from these new weights.

Theorem 3. Let m,n > 0, let G be the m × n-grid and let B0 ⊆ V (G) be given
weight zero. For each k ≥ 0, there is an O(kmn log(mn)) algorithm to find a
minimum size set, B1 ⊆ V (G)\B0, such that B0 ∪ B1 is a (North, South)-k-
blocking set.

Proof. By Theorem 1, B ⊆ V (G) is a (North, South)-k-blocking set if and only
if there exist k + 1 internally-disjoint (e, w)-paths in Ĝ′↔. Given the weight
function, σ0↔, on the edges of Ĝ′↔, we can use Suurballe’s algorithm [19] to
find k + 1 internally vertex-disjoint (e, w)-paths of minimum total length. Since
σ(e), σ(w) = 0, the total length of these k +1 paths will be equal to the number
of vertices used which are in G and do not have a sensor placed on them. Let
B be the set of vertices in these k + 1 internally vertex-disjoint paths, and
let B1 be the set of vertices in B which have weight 1. Then B0 ∪ B1 ⊇ B and
Ĝ[B0 ∪ B1] contains k+1 vertex-disjoint (East,West)-paths. Therefore, B0∪B1

is a (North, South)-k-blocking set. By construction, no set smaller than B1 has
this property.

Since Ĝ↔ is a plane graph, we can use Borradaile and Klein’s shortest
directed path algorithm from [2] in the implementation of Suurballe’s algorithm.
Borradaile and Klein’s algorithm runs in O(mn log(mn)) time, and Suurballe
requires k + 1 iterations. �

2.3 Two-Dimensional Blocking

It is straightforward to extend Theorems 1 and 2 to two dimensions. First we
characterize the two-dimensional solution in terms of disjoint paths.

Theorem 4. Let m,n > 0, let G be the m × n-grid and let B be a subset of
vertices from G. For each k ≥ 0, B is k-blocking set if and only if Ĝ[B] contains
k+1 vertex-disjoint (North, South)-paths and k+1 vertex-disjoint (East,West)-
paths.

36 E. Kranakis et al.

From this, the solution to the decision version follows:

Theorem 5. Let m,n > 0, let G be the m × n-grid and let B be a subset of
vertices from G. For each k ≥ 0, one can decide whether B is a k-blocking set
in O(mn) time.

Using the distance function, δ, defined on Ĝ, we now describe a property of
a minimum weight 0-blocking set.

Lemma 3. Let m,n > 0, let G be the m × n-grid and let B ⊆ V (G) be given
weight zero. If B is a minimum weight 0-blocking set, then Ĝ[B] contains a tree,
T , such that B ⊆ V (T), and there exist special vertices u, v ∈ V (T) (possibly u =
v) such that T is the union of five shortest paths, a (u, v)-path, a (North, {u})-
path, a (South, {v})-path, and either a (East, {u})-path and a (West, {v})-path
or an (East, {v})-path and a (West, {u})-path.

Proof. If B is a 0-blocking set, Ĝ[B] contains a (North, South)-path, say P ,
and an (East,West)-path, say Q. The endpoints of P cross the endpoints of Q;
therefore, S = P ∪ Q is a connected graph. Moreover, S is a 0-blocking set, so
by minimality, B ⊆ V (S). Let P1 be the subpath of P beginning with the initial
vertex in North and ending with the first vertex in V (Q), say u. Let P2 be the
subpath of P beginning with the last vertex of P in V (Q), say v, and ending
with the terminal vertex in South. Either u occurs before v in Q, u occurs after
v in Q or u = v.

In the first case, let Q1 be the subpath of Q beginning with the initial vertex
in East and ending with u and let Q2 be the subpath of Q beginning with v and
ending with the terminal vertex in West. Let R be the subpath of P beginning
with u and ending with v. Then S′ = P1∪P2∪Q1∪Q2∪R is a subgraph of S and
is also a 0-blocking set. By minimality, V (S′) ∩ B = V (S) ∩ B. Moreover, their
definition ensures that these subpaths are internally disjoint. The minimality of
B implies that P1 is a shortest (North, {u})-path, P2 is a shortest ({v}, South)-
path, Q1 is a shortest (East, {u})-path, Q2 is a shortest ({v},West)-path and
R is a shortest (u, v)-path. The second and third cases follow similarly. �

We use the above characterization to describe an algorithm for finding special
vertices and a minimum 0-blocking set.

Algorithm: A1, Minimum sensor 0-blocking in G.

Input: Fixed integers, m,n > 0, the plane graph Ĝ obtained from the m×n-grid,
G, and a set of vertices B0 ⊆ V (G).

Initialization: Order the vertices of Ĝ, {u1, ..., us}. Here s = |V (Ĝ)|. Define
the distance function, δ0, on Ĝ.

1. For i = 1, ..., s:
(a) Run the single-source shortest path algorithm from [10] on Ĝ with source,

ui, obtaining a weighted distance, δ0(ui, v), for each v ∈ V (Ĝ).

Maintaining Intruder Detection Capability in a Rectangular Domain 37

(b) Set

rN (ui) = min{δ0(ui, v) : v ∈ North},

rS(ui) = min{δ0(ui, v) : v ∈ South},

rE(ui) = min{δ0(ui, v) : v ∈ East},

rW (ui) = min{δ0(ui, v) : v ∈ West}.

2. For i = 1, ..., s and j = i, ..., s:
(a) Set

RNE(i, j) = rN (ui) + rE(ui) + rS(uj) + rW (uj) + δ0(ui, uj),
RNW (i, j) = rN (ui) + rW (ui) + rS(uj) + rE(uj) + δ0(ui, uj),
RSE(i, j) = rS(ui) + rE(ui) + rN (uj) + rW (uj) + δ0(ui, uj),
RSW (i, j) = rS(ui) + rW (ui) + rN (uj) + rE(uj) + δ0(ui, uj).

(b) Set

R(i, j) = min{RNE(i, j), RNW (i, j), RSE(i, j), RSW (i, j)}
− 2σ0(ui) − 2σ0(uj)

and set D(i, j) = (X,Y) ∈ {North, South} × {East,West} such that
R(i, j) = RXY (i, j).

3. Set ρ(G) = min{R(i, j) : 1 ≤ i ≤ j ≤ s}.
4. Set (α, β) = min{(i, j) : R(i, j) = ρ(G)}, given the lexicographic ordering on

tuples.
5. Run the single-source shortest path algorithm from [10] on Ĝ to find shortest

paths for (uα,X), (uα, Y), (uβ ,Xc), (uβ , Y c) and (uα, uβ), where D(α, β) =
(X,Y). Here, if X = North, then Xc = South; if Y = West, Y c = East, etc.
Stop.

Output: T , the graph obtained from the union of the five shortest paths found
in step 5. ρ(G), which gives the number of vertices in (T ∩ V (G))\(B0).

Theorem 6. Let m,n > 0, let G be the m × n-grid and let B0 ⊆ V (G) contain
sensors. There is an O(m2n2) time algorithm for finding a minimum size set
that extends B0 to a 0-blocking set.

Proof. By Theorem 1, the set, V (T), output by algorithm, A1 is a 0-blocking
set. By Lemma 3, no 0-blocking set has smaller size. Step 1 of A1 consists of
s = 2mn+n−m+2 iterations of the shortest-path algorithm in [10], which runs
in O(mn) time. Thus, step 1 runs in O(m2n2) time. Step 2 is iterated

(
s
2

)
+ s

times, running in O(m2n2) time. Step 5 is completed in O(mn) time. Therefore,
algorithm A1 runs in O(m2n2) time. �

While a characterization similar to that Lemma 3 for k-blocking sets (k > 0)
is easily derived, unfortunately it does not immediately lead to a polynomial
time algorithm for finding the optimal placement.

Instead we describe an efficient 2-approximation algorithm for this case. The
graph used is Ĝ with weights on the vertices are as above.

38 E. Kranakis et al.

1. Using Suurballe’s algorithm (with the optimization by Borradaile and Klein)
find k + 1 disjoint paths of minimum total weight connecting East to West
(adding a start node with weight 0 attached to all of the nodes in East and
a finish node with weight 0 attached to all of the nodes in West). Let those
paths be EW0, . . . , EWk with total cost ew.

2. Using Suurballe’s algorithm find k+1 disjoint paths of minimum total weight
connecting North to South. Let those paths be NS0, . . . , NSk with cost ns.

3. Return the combination of paths EW0, . . . , EWk and NS0, . . . , NSk with
total weight at most ew + ns.

Theorem 7. Let m,n > 0 and let G be the m × n-grid and let B0 ⊆ V (G)
contain sensors. There is an O(kmn log(mn)) algorithm for finding a set of
vertices that extends B0 to a k-blocking set and that is within a factor of 2 of
optimal in size.

Proof. By Theorem 4 and by construction the set output by the algorithm above
is a k-blocking set and it clearly runs in O(kmn log(mn)) time.

Let the value of the optimal solution by OPT . Observe that OPT ≥ ns.
This follows from the fact that the optimal solution must contain k + 1 disjoint
paths from North to South and therefore must have cost at least ns (which is
optimal). Similarly, we have OPT ≥ ew. If follows that the value of our solution
is at most ew + ns ≤ 2 · OPT . �

3 Extensions and Open Problems

Lemmas 1 and 2 are written in such generality as to allow us to easily extend
our results to other domains and problems. For example, the original (planar)
domain need not be rectangular and may contain “holes” representing impass-
able regions. The attacks detected need not be North-South or East-West paths
but an intruder may enter at any contiguous portion of the border of the region
and exit any other (disjoint) contiguous region. Multiple such disjoint attacks
may be tested for simultaneously generalizing the results of Theorems 5, 6 and 7.

Two major open problems come to mind. The first is extending the result of
Theorem 6 to k > 0 faults. While it is easy to generalize the characterization
given in Lemma 3 for k = 0 faults to the case k > 0, it is not obvious that this
results in a polynomial time algorithm. To make it effective, it seems that one
must solve the minimum sum t vertex disjoints paths problem. In particular, a
polynomial time solution to that problem would be sufficient to solve the two-
dimensional k-protection placement problem in time O((mn)2(k+1)2) using an
algorithm analogous to A1. It is known that for variable t this problem is NP-
complete [12]. On the other hand, for fixed t the problem of deciding if the paths
exist is in P [18]. While some progress has been made on this question [3], it
remains open.

The second problem involves the case of movable sensors. Instead of replacing
faulty sensors with new sensors, what if one was allowed to move non-faulty
sensors to new points in the grid. The question of moving the least number of

Maintaining Intruder Detection Capability in a Rectangular Domain 39

sensors the least total distance or the minimum maximum distance may be of
interest. Related problems concerning coverage appear to be NP-hard [8]. An
experimental study of a greedy strategy for this problem appears in [20].

References

1. Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable density estimates for cov-
erage and connectivity in thin strips of finite length. In: Proceedings of MobiCom
2007, pp. 75–86. ACM (2007)

2. Borradaile, G., Klein, P.: An O(n logn) algorithm for maximum st-flow in a
directed planar graph. J. ACM 56(2), 30 (2009). Art. 9

3. Borradaile, G., Nayyeri, A., Zafarani, F.: Towards single face shortest vertex-
disjoint paths in undirected planar graphs. In: Bansal, N., Finocchi, I. (eds.) ESA
2015. LNCS, pp. 227–238. Springer, Heidelberg (2015)

4. Chen, A., Lai, T.H., Xuan, D.: Measuring and guaranteeing quality of barrier-
coverage in wireless sensor networks. In: Proceedings of the 9th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pp. 421–430. ACM
(2008)

5. Chen, D.Z., Gu, Y., Li, J., Wang, H.: Algorithms on minimizing the maximum
sensor movement for barrier coverage of a linear domain. In: Fomin, F.V., Kaski,
P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 177–188. Springer, Heidelberg (2012)

6. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L.,
Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the maxi-
mum sensor movement for barrier coverage of a line segment. In: Ruiz, P.M.,
Garcia-Luna-Aceves, J.J. (eds.) ADHOC-NOW 2009. LNCS, vol. 5793,
pp. 194–212. Springer, Heidelberg (2009)

7. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L.,
Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the sum of sensor
movements for barrier coverage of a line segment. In: Wu, K., Nikolaidis, I. (eds.)
ADHOC-NOW 2010. LNCS, vol. 6288, pp. 29–42. Springer, Heidelberg (2010)

8. Dobrev, S.: Personal communication
9. Dobrev, S., Durocher, S., Eftekhari, M., Georgiou, K., Kranakis, E., Krizanc, D.,

Narayanan, L., Opatrny, J., Shende, S., Urrutia, J.: Complexity of barrier coverage
with relocatable sensors in the plane. In: Spirakis, P.G., Serna, M. (eds.) CIAC
2013. LNCS, vol. 7878, pp. 170–182. Springer, Heidelberg (2013)

10. Henzinger, M.R., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algo-
rithms for planar graphs. J. Comput. Syst. Sci. 55(1, part 1), 3–23 (1997). 26th
Annual ACM Symposium on the Theory of Computing (STOC 1994) (Montreal,
PQ, 1994)

11. Huang, C.F., Tseng, Y.C.: The coverage problem in a wireless sensor network. In:
Proceedings of the 2nd ACM International Conference onWireless Sensor Networks
and Applications, WSNA 2003, pp. 115–121. ACM (2003)

12. Karp, R.: On the complexity of combinatorial problems. Networks 5, 45–68 (1975)
13. Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Pro-

ceedings of MobiCom 2005, pp. 284–298. ACM (2005)
14. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Coverage

problems in wireless ad-hoc sensor networks. In: Proceedings of INFOCOM, vol.
3, pp. 1380–1387 (2001)

40 E. Kranakis et al.

15. Mehrandish, M., Narayanan, L., Opatrny, J.: Minimizing the number of sensors
moved on line barriers. In: Proceedings of IEEEWCNC 2011, pp. 1464–1469 (2011)

16. Park, T., Shi, H.: Extending the lifetime of barrier coverage by adding sensors to
a bottleneck region. In: 12th IEEE Consumer Communications and Networking
Conference (CCNC). IEEE (2015)

17. Robertson, N., Seymour, P.D.: Graph minors. VI. Disjoint paths across a disc. J.
Comb. Theory Ser. B 41(1), 115–138 (1986)

18. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J.
Comb. Theory Ser. B 63, 65–110 (1995)

19. Suurballe, J.W.: Disjoint paths in a network. Networks 4, 125–145 (1974)
20. Xie, H., Li, M., Wang, W., Wang, C., Li, X., Zhang, Y.: Minimal patching barrier

healing strategy for barrier coverage in hybrid wsns. In: International Symposium
on Personal, Indoor, and Mobile Radio Communication (PIMRC), pp. 1558–1563.
IEEE (2014)

The Weakest Oracle for Symmetric Consensus
in Population Protocols

Joffroy Beauquier1, Peva Blanchard2(B), Janna Burman1, and Shay Kutten3

1 LRI, Paris-South 11 University, Orsay, France
{joffroy.beauquier,janna.burman}@lri.fr

2 LPD, EPFL, Lausanne, Switzerland
peva.blanchard@epfl.ch
3 Technion, Haifa, Israel

kutten@ie.technion.ac.il

Abstract. We consider the symmetric consensus problem, a version of
consensus adapted to population protocols, a model for large scale net-
works of resource-limited mobile sensors. After proving that consensus
is impossible in the considered model, we look for oracles to circumvent
this impossibility. An oracle is an external (to the system) module pro-
viding some information allowing to solve the problem. We define a class
of oracles adapted to population protocols, and we prove that an oracle
in this class, namely DejaV u, allows to obtain a solution. Finally, and
this is the major contribution of the paper, we prove that DejaV u is the
weakest oracle for solving the problem.

Keywords: Networks of mobile sensors · Population protocols ·
Consensus · Oracles · Weakest oracle

1 Introduction

Consensus is a classical decision problem in distributed computing. In this prob-
lem, each process is given initially a value and has to take eventually an irre-
versible decision (termination condition). Processes must decide on a common
value depending on the input values, according to agreement and validity (non-
triviality) conditions [3,17,25].

Consensus-related problems are relevant to mobile sensor networks in many
different contexts like, for example, flocking (see, e.g., [11]), swarm formation
control (see, e.g., [26]), distributed sensor fusion (see, e.g., [22]) and attitude
alignment (see, e.g., [16]). See also [21,23,24] for surveys and references on
consensus-related problems in mobile wireless networks.

A fundamental result by Fisher, Lynch and Paterson [14] states that in the
classical asynchronous message passing model, no deterministic algorithm for
consensus exists, even in the case of a unique possible crash (halting) failure.

This work has been partially supported by the Israeli-French Maimonide and the
INS2I PEPS JCJC research projects.

c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 41–56, 2015.
DOI: 10.1007/978-3-319-28472-9 4

42 J. Beauquier et al.

It is not surprising that the same impossibility holds in the model of population
protocols [2]. This model is fundamentally asynchronous, which is also one of
the main reasons for the result in [14]. However, some inherent characteristics
of population protocols make consensus even more difficult. The agents, i.e. the
mobile processes in population protocols, are uniform, i.e. indistinguishable and
executing the same code. They have a constant memory size and thus cannot nei-
ther obtain nor store labels or any other information depending on the network
size. Agents communicate by asynchronous pair-wise interactions. No broadcast
communication is available. Due to all these limitations, the agents are unable
to detect which other agents are present but not interacting, even if no crash
failure is possible. Hence, in population protocols, even with the assumption of
absence of failures, consensus is impossible (Sect. 3).

Like in the message passing model, it seems interesting to study what is
missing for solving consensus in population protocols. We adopt the point of
view of Chandra and Toueg [10] for defining the possible missing information
under the form of oracles, i.e., specific behaviours. Recall that an oracle can
be thought as a collection of modules able to provide each process with some
information, hopefully useful to solve a given problem. The failure detectors [10]
are oracles that usually provide each process with failure-related information.
In our case, such information seems meaningless since consensus is impossible
to solve even without any failure. Moreover, the failure detectors of [10] cannot
be used in our case, because they provide lists of process identifiers (estimated
to have crashed). As already mentioned, identifiers are absent in population
protocols (due to the constant size memory requirement).

Several identity-free oracles exist, though, in the literature. The failure detec-
tor introduced in [12] outputs a boolean value at every process, and solves the
(n − 1)-set agreement problem in n-process message passing system. However,
this boolean value is mainly used to indicate wether or not the process is “alone”,
i.e., the other processes have all crashed. Thus, this failure detector does not fit in
our case since we do not consider crash failures. Another type of oracles proposed
in [19,20] (and used, e.g., in [5,6]) to deal with anonymity, provides information
on the number of crashed processes (bounded by f < n), and, for the same reason
of constant agent state space, cannot be used in the framework of population
protocols. A so called “heartbeat” failure detector proposed in [1] requires to
maintain unbounded counters at every process, and thus, again, is not suitable
in our case. Some other failure detectors used to solve consensus and adapted to
anonymous systems, like AΩ [6], AL and AΣ′ [7,8], provide, roughly speaking,
information about the number of correct processes, thus breaking the require-
ment of constant memory. In addition, in message-passing system, these oracles
are used in combination with other powerful model assumptions and capabili-
ties (e.g., “terminating” broadcast, unbounded process memory, etc.) which are
unavailable in our case.

Thus, defining oracles in the context of population protocols appears as a real
challenge. Several attempts have already been made, like the “eventual leader
detector” of [13] (generalized in [4]). This oracle is useful to solve self-stabilizing

The Weakest Oracle for Symmetric Consensus in Population Protocols 43

leader election but, intuitively, is not reliable enough for solving the terminat-
ing consensus problem. Another interesting oracle proposed in [18] provides a
“cover-time service” in the sense that a state hopping from agents to agents
can know when it has covered the whole population. Based on this service, the
authors propose an abstract oracle, namely an “absence detector”, which is able
to notify a specific agent about the absence or presence of some states in the
population. This abstraction is adapted to study the computational power1 of
population protocols augmented with a cover-time service. Yet, this formulation
is not helpful enough to assess the weakest oracle for a given task.

Due to all the above-mentioned reasons, we introduce a new type of oracles.
The constraints we had in mind, when designing these oracles, are basically to
make them implementable with minimum external assumptions on the system.
Each oracle in the proposed class is distributed: it consists of a collection of local
modules mapped onto the agents. Each agent’s local module provides informa-
tion only related to the past schedule, and is independent of the protocol being
run (somewhat similarly to the classical failure detectors [10]). To communicate
this information, the agent’s local module outputs a boolean value (as the failure
detector in [12]).

Moreover, the proposed oracles are unreliable in the sense that the local
modules are not required to provide this information at the precise time when
it appears, but only eventually, at least once and at least in one agent. That
is, the local modules may be very slow for some agents, and even completely
dysfunctional (i.e., providing no information) for some others.

Finally, each oracle in our class is anonymity-compliant, in the sense that
the information provided by the local modules does not depend on how these
modules are mapped onto the agents. Roughly speaking, a permutation of the
agents does not affect the possible output of these oracles (see Sect. 2.4 for precise
definitions).

Besides this new class of oracles and the appropriately adapted computational
model (Sect. 2), the paper presents three results. The first result (Sect. 3) states
that consensus is impossible without an oracle. The second contribution (Sect. 4)
is the presentation of an oracle in the class, called DejaV u, allowing a solution.
These two results are relatively easy. The third result is intricate and is the
main contribution of the paper (Sect. 5). It states that the proposed oracle is the
weakest (see Sect. 2.5) for solving a symmetric version of consensus, a version
adapted to population protocols (see Sect. 2.6). Intuitively, DejaV u being the
weakest oracle means that it provides the minimum required information for
solving the problem (among all the oracles in the proposed oracle class).

2 Model and Definitions

2.1 Population Protocol

Here, we use the definitions of [2] with some slight modifications. A net-
work is represented by a directed graph G = (V, E) with n vertices and no
1 The class of functions computable by a terminating protocol.

44 J. Beauquier et al.

multi-edges nor self-loops. Each vertex represents a finite-state sensing device
called an agent, and an edge (u, v) ∈ E indicates the possibility of a commu-
nication (meeting/interaction) between two distinct nodes u and v in which u
plays the role of the initiator and v of the responder. The orientation of an edge
corresponds to this asymmetry in roles. We often write G instead of V to refer
to the vertices of G. In this paper, for the sake of simplicity, we consider only
bidirectional complete graphs: for any two vertices u, v there is an edge from u
to v, and an edge from v to u. An edge e involves an agent u if u is an endpoint
of e. Two edges are independent if they involve no common agent. Otherwise,
they are dependent. To deal with permutation of agents, we also introduce the
group SG of permutations of the vertices of G.

A population protocol A(Q, I, Init, Input, δ) consists of a finite state space
Q, a set I of initial values, a set Input of input values, an initialization map
Init : I → Q, and a transition function δ : (Q × Input)2 → Q2 that maps any
tuple (q1, v1, q2, v2) to an element δ(q1, v1, q2, v2) in Q2. A (transition) rule of
the protocol is a tuple (q1, v1, q2, v2, q′

1, q
′
2) where (q′

1, q
′
2) = δ(q1, v1, q2, v2) and is

denoted by (q1, v1)(q2, v2) → (q′
1, q

′
2). We refer to (q1, v1)(q2, v2) (resp. (q′

1, q
′
2))

as the left (resp. right) part of the rule. Note that we only consider deterministic
population protocols (the right part is uniquely determined by the left part of
the rule).

Intuitively, the input values in Input are provided to the agents by some
external device like an oracle, continuously along the protocol execution. Besides,
the initial values will correspond to the initial values to the consensus instance.

At the beginning of an execution, every agent is assigned an initial value
from the set I, formalized by the initialization map. In [2] a population protocol
is defined to compute a function of such initial values. In our case, the initial
values represent the initial values in the consensus problem. Note that consensus,
a priori, cannot be represented as a function of input values only (its output
depends on the schedule too).

2.2 Schedules and Histories

The characterization of the weakest oracle for consensus relies on a tight analysis
of the causal order [15]. In contrast to the usual presentation of schedules as
words of events, the following definition embeds an explicit formulation of the
causal structure of the events. Formally, a schedule S is a (possibly infinite)
sequence E1|E2|E3| . . . where the Cartier-Foata condition [9] holds: (i) every Ei

is a subset of independent edges, (ii) for every i, every edge in Ei+1 depends on
some edge in Ei. The empty schedule is denoted by ε. When we write E1|E2| . . . ,
it is implicitly assumed that the sequence satisfies the Cartier-Foata condition;
otherwise we simply write E1, E2, The support of a schedule S, denoted
by supp(S), is the subset of agents in G involved in the schedule S. Given a
permutation α ∈ SG, we write αS = αE1|αE2| . . . where αEi = {α(e), e ∈ Ei}.

A schedule S = E1|E2| . . . is a factor of a schedule S′ = E′
1|E′

2| . . . if there
exists i ≥ 1 such that E1 ⊆ E′

i, E2 ⊆ E′
i+1, and so on. We also say that S′

The Weakest Oracle for Symmetric Consensus in Population Protocols 45

contains S. If i = 1 above, and if S is finite, then S is a prefix of S′, and S′ is
an extension of S.

An event in S is a pair p = (i, e) such that e ∈ Ei. We denote by P(S) the
set of events in S, which is naturally endowed with a partial order � defined
as the reflexive transitive closure of: (i, e) � (i + 1, e′) if and only if e, e′ are
dependent. Intuitively, the relation � encodes the causal order of events during
S. We often write e without mentioning the index i to refer to the event (i, e)
when it is clear from the context.

The causal past of p = (k, e) in S is the set Past(p, S) = {p′ ∈ P(S), p′ � p}.
We can equivalently write Past(p, S) = F1| . . . |Fk, where Fi = {f, (i, f) �
(k, e)}; note that necessarily Fk = {e}. Since these two presentations are equiv-
alent, we will use the same notation to refer to them. Also, when S is clear from
the context, we simply write Past(p).

A finite schedule K is a past cone if there exists an event p in K such that
all the events in K are in the causal past of p in K. If p involves an agent x, K
is said to be a past cone at x.

Given a finite schedule S, an event p = (i, (x, y)), and an agent z �= x, we say
that x meets indirectly z at p in S if z is involved in some event in the causal
past past(p, S).

An infinite schedule S is weakly fair if and only if, for any pair of agents
(x, y), there are infinitely many factors K of S such that x meets indirectly y
at some event in K. Intuitively, this means that for any pair (x, y) the agent y
causally influences the agent x infinitely often. Unless stated otherwise, every
infinite schedule in this paper is assumed to be weakly fair.

A history H = (S, h) with values in the set Input is a schedule S together with
a function h that associates with every event p = (i, (x, y)), a pair (vx, vy) of values
from Input. The value vx (resp. vy) is the history value2 at x (resp. at y) in event p.
We also say that the history H outputs the value vx (resp. vy) at x (resp. y) during
p. The schedule S is the underlying schedule of the history. The support of H is
the support of its underlying schedule, supp(H) = supp(S). Given a permutation
α ∈ SG, we write αH = (αS, h′) where h′(i, α(e)) = h(i, e). Finally, given a
factor L of the schedule S, we denote by H|L = (L, h′′) the restriction of H to L,
where h′′ is the restriction of h to the events occurring in L.

2.3 Executions

Consider a (deterministic) population protocol A with state space Q, input val-
ues set Input, and initial values set I. A configuration γ is a function that
associates with every agent x a state γ(x) in Q. For every assignment κ of initial
values from I to the agents of the graph, we define the corresponding initial
configuration γκ = Init ◦ κ, where Init is the initialization map of the protocol.

Let γ, γ′ be configurations, E a subset of independent edges, and h a func-
tion labeling each edge in E with a pair of values from Input. We write
γ

E,h−−→ γ′ when, for every edge (x, y) ∈ E such that h(x, y) = (vx, vy),

2 These values will later be provided by an oracle.

46 J. Beauquier et al.

(γ(x), vx)(γ(y), vy) → (γ′(x), γ′(y)) is a rule of the protocol. In other words,
γ′ is the configuration that results from γ by applying the labeled events (E, h).
Generally speaking, h represents the values provided by the environment as
input to the protocol (the information provided by an oracle, in our case) during
the corresponding transitions. We use these values to model the oracle output
(Sect. 2.4). Note also that, since the edges are independent, the above definition
is consistent.

An execution is a sequence γ0
E0,h0−−−−→ γ1

E1,h1−−−−→ . . . such that the sequence
E0, E1, . . . satisfy the Cartier-Foata condition (i.e. it forms a schedule). The
sequences S = E0|E1 . . . and h0, h1, . . . naturally yield a history H = (S, h)
where h(i, e) = hi(e). Since we deal with deterministic population protocols, an
execution is entirely determined by a history H and an initial configuration γ0.
Hence we can denote an execution by H[γ0]. The history H is referred to as the
input history of the execution H[γ0].

Consider an output map Out : Q → R. The output history of the execu-
tion H[γ0] is the history H ′ = (S, h′) (with the same schedule as H) where h′

associates with every event ei = (x, y) ∈ Ei the pair (Out(γi(x)), Out(γi(y))).
Intuitively, the output history is the history produced by the protocol during
the execution.

2.4 Oracles

In the following, we define oracles having in mind the classical failure detectors
of [10]. Informally, we think of an oracle as a collection of local modules, each of
them being attached to an agent. These modules may be different and mapped
onto the agents arbitrarily. Each module looks for specific predefined patterns
of meetings in the causal past of an agent, and notifies the agent accordingly. A
module never notifies wrongly an agent, but the notification can be arbitrarily
delayed. Some modules may even never deliver their notifications.

More formally, an oracle is a function that associates with each graph G,
each permutation σ ∈ SG and each weakly fair schedule S on G, a set O(G, σ,
S) of legal histories that take values in {0, 1} and all have S as their underlying
schedule. These are the legal histories when the local modules are mapped to
the agents according to σ.

More precisely, each oracle O is specified by a family of (possibly empty)
sets, Cones(O, G, σ, x), of finite schedules, for every complete graph G, every
permutation σ of the vertices and every agent x in G. The set Cones(O,G, σ, x)
represents the patterns that will be looked for in the causal past of x. These
sets satisfy: i. (cone) every schedule K in Cones(O,G, σ, x) is a past cone at
x; ii. (anonymity-compliance) for every permutation α ∈ SG of the agents,
K ∈ Cones(O,G, σ, x) if and only if αK ∈ Cones(O,G,ασ, α(x)).

The anonymity-compliance condition ensures that the set of cones detectable
at agent x in the original permutation σ (K ∈ Cones(O,G, σ, x)) is exactly
the set of cones detectable at agent α(x) in the new permutation ασ, up to a
relabeling of the agents (αK ∈ Cones(O,G,ασ, α(x))).

The Weakest Oracle for Symmetric Consensus in Population Protocols 47

Then, a history H is a legal history of G with schedule S given the permu-
tation σ (i.e. H ∈ O(G, σ, S)) if and only if i. (safety) if H outputs 1 at x in
some event p in S, then the causal past Past(p, S) contains some schedule from
Cones(O,G, σ, x); ii. (liveness) if the set of agents x, whose causal past contains
at some point a schedule from Cones(O,G, σ, x), is not empty, then the history
H eventually outputs 1 at least one of these agents in some event during S.

Intuitively, the safety property ensures that if O outputs 1 at x, then the
corresponding prefix actually contains a schedule from Cones(O,G, σ, x). The
liveness property ensures that at least one agent is eventually notified about this
fact.

Note that the set Cones(O,G, σ, x) may be empty, which means that it is
possible, a priori, for O to permanently output 0 at x. In particular, if all the
defined sets Cones(. . .) are empty, then the corresponding oracle always outputs
0 at every agent; which basically amounts to having no oracle at all, since the
agents get no useful information.

2.5 Comparison Between Oracles

We say that a protocol A uses an oracle O when the only considered executions
of A are those whose input histories are legal histories of O.

Intuitively, an oracle O1 is weaker than an oracle O2 if there exists a popula-
tion protocol that simulates a history of O1 using O2. Formally, an oracle O1 is
weaker than an oracle O2 if there exists a population protocol A and an output
map such that, for every execution H[γ0], H being a legal history of O2, the
corresponding output history H ′ is a legal history of O1.

Stating that H = (S, h) and H ′ = (S, h′) are legal histories of O2 and
O1, respectively, means that there exist permutations σ and τ such that H ∈
O2(G, σ, S) and H ′ ∈ O1(G, τ, S). However, the definition does not force σ and
τ to be equal. Intuitively, it means that the history computed by the emulation
provided by A is a legal history of O1 up to a permutation of the local modules.

Given a family F of oracles, a weakest oracle in F is an oracle O that is
weaker than every oracle in F . Note that there is no evidence a priori that a
weakest oracle exists. Note also that all the weakest oracles, if they exist, are
equivalent.

2.6 Symmetric Consensus

Consider a population protocol A with initial values I. We assume that the
agents have an instruction decide which causes them to decide irreversibly on
some value in I.

The population protocol A (possibly using an oracle) is said to solve the
consensus problem if, for each complete graph G, for each initial configuration
γ, for any legal execution H[γ], it satisfies: i. (termination) every agent eventu-
ally decides in the execution H[γ]; ii. (agreement) two agents cannot decide on
different values; iii. (validity) if all the agents have the same initial value v, then
an agent can only decide on v.

48 J. Beauquier et al.

The protocol A is said to solve the symmetric consensus problem if it solves
the consensus problem and, in addition, for each complete graph G, it satisfies
an additional condition: iv. (symmetry) for any legal execution H[γ], for any
permutation α ∈ SG of the vertices, any agent decides on the same value in the
execution H[γ] and in H[γα].

Intuitively, in the symmetric consensus, the decision value in an execution
does not depend on the distribution of the initial values between the agents.
Note that the condition of symmetry is quite natural for population protocols.
In the seminal paper by Angluin et al. [2], the same condition applies to the
predicates that are computable.

3 Impossibility of Consensus Without Oracle

We first show that the consensus problem is impossible without an oracle. In
particular, the symmetric consensus problem is also impossible. The proof relies
on the well-known partitioning argument.

Before proceeding, we introduce a useful notation. Given two schedules S =
E1|E2| . . . and S′ = E′

1|E′
2| . . . such that each Ei ∪E′

i is a subset of independent
edges, we denote by S ∪ S′ the schedule E1 ∪ E′

1|E2 ∪ E′
2|

Proposition 1. Under weak fairness, there is no population protocol that solves
the consensus problem over complete graphs.

Proof. Assume that there exists a population protocol A that solves consensus
over all complete graphs. Pick a complete graph G of 2 · n agents (vertices),
and select two complete subgraphs G0, G1 of n agents each. Let γ be the initial
configuration of A corresponding to the agents in G0 (resp. G1) having the initial
value 0 (resp. 1). Let Sv be a weakly fair schedule over Gv. By the validity
condition of the consensus problem, in the execution Sv[γ], all agents in Gv

decide on the value v. Let S′
v be a finite prefix of Sv such that all the agents

in Gv decide (on v) in the finite execution S′
v[γ]. Let S′′ be any weakly fair

extension of the schedule S′
0 ∪S′

1. This last schedule is well-defined since the two
graphs are disjoint. Then, in the execution S′′[γ], the agents in G0 decide on 0,
and the agents in G1 decide on 1; whence a contradiction with the agreement
condition. �

4 Symmetric Consensus with DejaV u

Proposition 1 motivates the use of oracles. We define a particular oracle, called
DejaV u. Intuitively, oracle DejaV u outputs 1 at some agent x only when x
has indirectly met (see definition in Sect. 2.2) every other agent at least once.
Formally, a schedule K belongs to Cones(DejaV u,G, σ, x) if and only if K is a
past cone at x and supp(K) = G. The legal histories of DejaV u are then defined
according to the oracle rules.

The purpose of this section is to show that DejaV u is sufficient to solve
symmetric consensus. A simple protocol using DejaV u is presented under the

The Weakest Oracle for Symmetric Consensus in Population Protocols 49

form of pseudo-code (Algorithm 1), which is equivalent to the representation
using transition rules.

We denote by I the set of initial values in the consensus problem. Every agent
x has the following variables: valx holding an estimate of the consensus value (set
to the initial value of x at initialization), a boolean flag decidedx (initially false),
and a read-only boolean variable doneDV

x holding the input value provided by
the local module of DejaV u at agent x. We assume that the set I is totally
ordered. When two agents x and y meet, they both select the minimum of valx
and valy as a new estimate of the consensus value. An agent x decides on its
estimate when either its DejaV u’s local module outputs true (doneDV

x = true),
or agent x meets an agent y that has already decided (decidedy = true); agent
x then sets its flag decidedx to true.

Algorithm 1. Symmetric consensus with DejaV u

1 doneDV
x : output of the oracle DejaV u at x;

2 Initialization:;
3 valx ← a value in I;
4 decidedx ← false;
5 On a meeting event (x, y) of the agents x and y:;
6 valx ← min(valx, valy);

7 if ¬decidedx ∧ (doneDV
x ∨ decidedy) then

8 decide on valx;
9 decidedx ← true;

Lemma 1 (Termination and Validity). Let H ∈ DejaV u(G, σ, S) be a legal
history and γ be an initial configuration. Then, in the execution H[γ], every agent
eventually decides on some initial value present in γ.

Proof. Since an agent x can only decide on its estimate valx, and since every
update of valx assigns a value of some agent, x can only decide on a value present
in γ. The liveness property of the oracle DejaV u and weak fairness imply that
the oracle eventually outputs true at some agent x, which thus decides. Then,
thanks to weak fairness, every agent will eventually indirectly meet x, and decide
too (if it has not decided already). �

Lemma 2. Let H = (S, h) be any history with values in {0, 1}, and γ be an
initial configuration. Consider the causal past Past(p) for some event p in S,
and let x be an agent involved in p. Then, at the end of the finite execution
H|Past(p)[γ], the value of valx at x is equal to the minimum of the initial values
of the agents in the support of the causal past of p.

Proof. For any event p in S, for any agent z involved in p, we denote by val(p, z)
the value of valz right after p. We denote by val(⊥, z) the initial value of the
agent z.

50 J. Beauquier et al.

Let x, y be the agents involved in the event p. Let px (resp. py) be the
immediate predecessor3 of p in Past(p) that involves the agent x (resp. the
agent y). If such an immediate predecessor does not exist (i.e. p is the first
event involving x (resp. y)), then we set px = ⊥ (resp. py = ⊥). By line 6
in Algorithm 1, val(p, x) = min(val(px, x), val(py, y)). By iterating, we get
val(p, x) = min{val(⊥, z), z ∈ supp(Past(p))}. �

Lemma 3. Consider Algorithm 1 using DejaV u. Let H ∈ DejaV u(G, σ, S) be
a legal history of DejaV u, and γ an initial configuration. In the execution H[γ] of
Algorithm 1, if some agent x′ decides in some event p′, then supp(Past(p′)) = G.

Proof. When x′ decides, it is either because of the meeting with an agent which
has already decided, or because the oracle has output 1 at x′ (Algorithm 1, line 7).
Hence, there is an event p (in S) involving some agent x such that p � p′ and
the oracle has output 1 at x during p (note that p and p′ may be the same event).

By the safety property of DejaV u, Past(p) contains some schedule from
Cones(DejaV u, G, σ, x). Hence, supp(Past(p′)) = supp(Past(p)) = G, by the
definition of DejaV u. �

Proposition 2. Algorithm 1 using DejaV u solves the symmetric consensus.

Proof. The termination and validity conditions are satisfied thanks to Lemma 1.
The agreement and symmetry conditions are satisfied thanks to Lemmas 2
and 3. �

5 Weakest Oracle for Symmetric Consensus

In this section, we prove an intricate property: any oracle O allowing to solve
symmetric consensus can be used to implement DejaV u. With the result of
Sect. 4, this proves that DejaV u is the weakest oracle to solve symmetric con-
sensus.

The following lemma states that if an oracle O allows to solve consensus then,
for any (weakly fair) schedule, the corresponding “zero history”, i.e., the history
which always outputs 0 at every agent, cannot be a legal history. This shows, in
particular, that any legal history of O eventually outputs 1 at least one agent,
which in turn implies that the set Cones(O, G, σ, x) is not empty for at least
one agent x.

The proof relies on a partitionning argument similar to the one used in the
impossibility proof (Proposition 1). The argument though is not exactly the
same because, a priori, the zero history may be a legal history only on a single
specific graph. The partition argument usually consists in building an execution
on a twice larger graph. To do so, we have to ensure that the history built on
the larger graph is still legal.

3 Immediate means that, if p′ involves x and px � p′ � p, then p′ = px or p′ = p.

The Weakest Oracle for Symmetric Consensus in Population Protocols 51

Lemma 4. Let A be a population protocol that solves the consensus4 problem
using an oracle O. For every graph G, and every permutation σ ∈ SG, for any
weakly fair schedule S, the history H with schedule S which outputs the value 0
in every event is not a legal history, i.e., H �∈ O(G, σ, S). In particular, there
exists an agent x such that Cones(O,G, σ, x) �= ∅.
Proof. We assume that there exist some graph G, and a legal history H of O on
G which permanently outputs 0 everywhere, and we prove a contradiction. Let
γ0 (resp. γ1) be the initial configuration where all the agents have initial value
0 (resp. 1). In H[γv], every agent eventually decides on v. Let L be a prefix of S
such that by the end of both executions H[γ0] and H[γ1], all the processes have
decided.

Consider a graph G′ containing two copies G0 and G1 of G (with disjoint
sets of vertices). Let L0 (resp. L1) be the analog of the schedule L applied to
G0 (resp. G1). Let S′ be any weakly fair extension of L0 ∪ L1 (see Sect. 3 for
this notation), and H ′ ∈ O(G′, σ, S′) be any legal history which outputs the
value 0 during L0∪L1. This is possible since the oracle output can be arbitrarily
delayed.

Consider now the initial configuration g′ on G′ in which all agents in G0

(resp. G1) have the initial value 0 (resp. 1). Then, by construction, in H ′[g′],
all agents in G0 (resp. G1) decide on 0 (resp. 1); whence a contradiction. This
proves the first claim.

Moreover, assume that for some graph G, for some σ, for every agent x,
Cones(O, G, σ, x) = ∅. Then, by anonymity-compliance, for every agent x, for
every permutation τ , Cones(O, G, τ, x) = ∅. Thus, the only legal history of O
is the one always outputting 0 at every agent; which contradicts the first claim.
This proves the second claim. �

The following crucial lemma shows that if O allows to solve symmetric con-
sensus then the sets Cones(O, . . .) defining O are the subsets of those defining
DejaV u. In other words, the lemma states that the support of each past cone in
Cones(O, . . .) is the entire graph G. Informally, this means that, if O is strong
enough to solve symmetric consensus, then O cannot notify an agent before this
agent has indirectly met every other.

The proof relies on the fact that if an agent x can be notified before having
indirectly met every other agent, then we can design a legal history H of O so
that agent x decides without ever knowing about the initial value of some other
agent y. In other words, the decision value of x is left unchanged if we flip agent
y’s initial value. Because of the validity condition of consensus, there exist two
initial configurations g0, g1 which only differ by the initial value at one specific
agent a, e.g., g0(a) = 1− g1(a) = 0, and such that agent x decides on 0 (resp. 1)
in the execution H[g0] (resp. H[g1]). Obviously, a is not y. Let’s assume that the
initial value of y in g0 (and g1) is 1. By considering the configuration g obtained
by swapping the initial values of a and y in the configuration g0, we see that, on
one hand, agent x has to decide on 0 by the symmetry condition of symmetric
4 Not necessarily symmetric, in this lemma.

52 J. Beauquier et al.

Fig. 1. Illustration to the proof of Lemma 5: x decides on the value v of a, but swapping
the values of a and y makes x decide on the value 1−v, what contradicts the definition
of symmetric consensus.

consensus, and, on the other hand, agent x has to decide on 1, since it cannot
distinguish between the configurations g and g1. This yields a contradiction. The
main difficulty of the proof is to build a legal history of the (unknown) oracle O
so that x decides without (indirectly) meeting some agent.

Lemma 5. Let A be a population protocol that solves the symmetric consensus
problem over all complete graphs using an oracle O. Then, for every complete
graph G, every permutation σ, and every agent x in G, Cones(O,G, σ, x) ⊆
Cones(DejaV u,G, σ, x).

Proof. In this proof, for sake of clarity, we use the same notation for the initial
value of an agent, and the corresponding initial state. Figure 1 illustrates the
core idea of the proof.

Assume that there is some schedule K ∈ Cones(O, G, σ, x) that is not in
Cones(DejaV u, G, σ, x), i.e., K is a past cone at x whose support D = supp(K)
is a strict subgraph of G.

By Lemma 4, for some agent w (not necessarily distinct from x), the set
Cones(O, D, σ, w) �= ∅. Let α ∈ SG be the permutation that swaps x and
w, and β = ασ. Then, by the anonymity-compliance property of the cone sets
(Sect. 2.4), Cones(O,D, β, x) �= ∅. Thus, there is some K ′ ∈ Cones(O,D, β, x).

Let S be any weakly fair extension of K on D containing the schedule K ′

as well. We build a history H with schedule S as follows: the history always
outputs 0 everywhere except at x, for which it permanently outputs 1 only
after the occurrences of K and K ′ in S. Since K ′ ∈ Cones(O,D, β, x), we have
H ∈ O(D,β, S), i.e. H is a legal history of O on D.

For any initial configuration γ on D, we have an execution H[γ] of A in
which every agent in D decides. By the validity property of the consensus, if
all the agents have the same initial value 0 (resp. 1), then all agents decide on
0 (resp. 1). Hence, there exist two initial configurations γ0 and γ1 on D such
that, for some agent a in D, γ0(a) = 0, γ1(a) = 1 and for every z ∈ D − {a},

The Weakest Oracle for Symmetric Consensus in Population Protocols 53

γ0(z) = γ1(z), and the agents decide on the value 0 (resp. 1) in the execution
H[γ0] (resp. H[γ1]).

In particular, x decides on 0 in H[γ0] after some event p0 in S, and decides
on 1 in H[γ1] after some event p1 in S. Let L be the a prefix of S that contains
both Past(p0, S) and Past(p1, S). By the end of the finite execution H|L[γ0]
(resp. H|L[γ1]) x decides on the value 0 (resp. 1).

We can extend H|L to get a weakly fair legal history H ′ of O on the graph G
as follows. Consider any weakly fair extension S′ of L on G. In L, the history H ′

outputs the same values as H|L; and in the complement of L, the history H ′ out-
puts 0 everywhere except at x, where it outputs 1. Since K ∈ Cones(O,G, σ, x),
we have H ′ ∈ O(G, σ, x), i.e., H ′ is a legal history of O on G.

For v ∈ {0, 1}, let gv be the initial configuration on G such that gv is equal
to γv on D, and 1 elsewhere. In H ′[g0], agent x decides by the end of L. The
support of the causal past of the event preceding its decision, is included in D.
Hence, since g0 and γ0 are equal on D, x decides on 0 in H ′[g0]. For similar
reasons, x decides on 1 in H ′[g1]. Now pick an agent y in G − D, and let g be
the initial configuration obtained from g0 by permuting the values of a and y.
In other words, g(a) = g0(y) = 1, g(y) = g0(a) = γ0(a) = 0, and, for every
b ∈ G − {a, y}, g(b) = g0(b). The restriction of g to D is equal to γ1. Hence,
in H ′[g], the agent x decides on the value 1. On the other hand, since the
protocol solves the symmetric consensus, x decides on the value 0; whence a
contradiction. �

A consequence of the previous lemma is that, if an oracle O is strong enough
to solve symmetric consensus, then every legal history of O is a legal history of
DejaV u. Then, roughly speaking, by taking the protocol that simply outputs
the same information provided to it by O, we show that DejaV u is weaker
than O (according to the definitions in Sect. 2.5). The idea is formalized in the
following theorem.

Theorem 1 (Weakest Oracle). The DejaV u oracle is the weakest oracle for
solving symmetric consensus in population protocols.

Proof. Consider an oracle O such that some protocol solves symmetric consensus
using O. By Lemma 5, we have Cones(O,G, σ, x) ⊆ Cones(DejaV u,G, σ, x) for
every triple (G, σ, x). We claim that every legal history of O is a legal history of
DejaV u.

Indeed, let S be some schedule, and H ∈ O(G, σ, S). We first show that H
satisfies the safety property (see Sect. 2.4) of DejaV u. If H outputs 1 at x during
some event p, then, by the safety property of O, the causal past of p in S contains
some schedule K ∈ Cones(O,G, σ, x). Since K ∈ Cones(DejaV u,G, σ, x) by
Lemma 5, H also satisfies the safety property of DejaV u.

Second, we show that H satisfies the liveness property (see Sect. 2.4) of
DejaV u. Precisely, we have to show that O eventually outputs 1 at at least
one of the agents whose causal pasts contain some cones defining DejaV u. But
since the underlying schedule S is weakly fair, every agent x eventually has some
cone from Cones(DejaV u,G, σ, x) in its causal past. Therefore, we only have to

54 J. Beauquier et al.

show that O eventually output 1 at at least one agent. But this is a consequence
of Lemma 4. Therefore, we have proved that every legal history of O is a legal
history of DejaV u.

We define a protocol A with a state space {0, 1} and an input space {0, 1}
by the following rules

(q1, v1)(q2, v2) → (v1, v2)

There is a unique initial state 0. Intuitively, during a transition, each agent simply
copies its input (here provided by the oracle O) into its state. The output map
Out : {0, 1} → {0, 1} is defined as the identity map.

Let H[γ0] = γ0
E0,h0−−−−→ γ1

E1,h1−−−−→ . . . be an execution of A with H = (S, h) a
legal history of O. Consider H ′ = (S, h′) be the output history of this execution
(see Sect. 2.3). Then

∀(x, y) ∈ E0, h′(0, (x, y)) = (Out(γ0(x)), Out(γ0(y)))
= (0, 0)

∀i ≥ 1,∀(x, y) ∈ Ei, h′(i, (x, y)) = (Out(γi(x)), Out(γi(y)))
= (h(pi,x), h(pi,y))

where pi,x (resp. pi,y) is the latest event (different from (i, (x, y))) involving agent
x (resp. agent y) in the causal past of the event (i, (x, y)).

We now prove that H ′ is a legal history of DejaV u. First, H ′ satisfies the
safety property of DejaV u. Indeed, if H ′ outputs 1 at x during some event p,
then this implies that the history H outputs 1 at x during some event pold in
the causal past of p. Since H is a legal history of DejaV u, this implies that the
causal past of pold (and thus of p) has a support equal to G. In other words, by
event p, agent x has indirectly met with every other agent.

Second, H ′ satisfies the liveness property of DejaV u. Indeed, we have shown
above that H eventually outputs 1 at least one agent, say, x during some event p.
Therefore, H ′ outputs 1 at x during the next event involving x (which eventually
occurs since the schedule is weakly fair).

Thus, H ′ is a legal history of DejaV u, and we have proved that DejaV u is
the weakest oracle for solving symmetric consensus (see Sect. 2.5). �

6 Conclusion and Perspectives

Designing oracles and searching for the weakest among them in the model
of population protocols is especially hard and challenging for several reasons.
Anonymity is the first reason. Although oracles have already been studied in
anonymous networks, this was done mostly assuming a point-to-point commu-
nication model. There, a process can distinguish between two messages arriving
from two different communication links. In population protocols there are no
links. A second reason is that, for population protocols, the size of the network
is unknown, because the available memory for an agent is uniformly bounded.
Being unaware of the total number of agents is an important restriction that

The Weakest Oracle for Symmetric Consensus in Population Protocols 55

leads to oracles completely different from those already existing in the liter-
ature. Moreover, we want to highlight that in this work we introduce oracles
whose output depends only on the past interactions and that are protocol inde-
pendent, in contrast with previously proposed oracles for population protocols.
Thus, exhibiting oracles and the weakest between them, in this context, is espe-
cially challenging, because no known technique can be used.

We note that all the results of the paper can be extended to every family
of graphs where the partitioning argument is valid (e.g., bounded degree graphs
or trees). Moreover, all the results are easily extended also to other fairness
conditions, e.g., to the classical, for population protocols, local and global fairness
[2,13].

Many difficult problems remain open though. For instance, we did not intro-
duce crash failures, because, even without such failures, consensus is impossible
for population protocols. Yet, is it possible to define a variant of DejaV u to
solve consensus with crash failures? Would this variant still be the weakest? The
case of Byzantine failures seems even more problematic. On the other hand, we
have focused on the symmetric version of consensus that better suits the model
of population protocols. Still, one may want to search for other oracles allowing
to solve non symmetric consensus, and look for the existence of a weakest oracle.

References

1. Aguilera, M.K., Chen, W., Toueg, S.: Using the heartbeat failure detector for
quiescent reliable communication and consensus in partitionable networks. Theor.
Comput. Sci. 220(1), 3–30 (1999)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

3. Attiya, H., Welch, J.: Distributed Computing. McGraw-Hill, Hightstown (1998)
4. Beauquier, J., Blanchard, P., Burman, J.: Self-stabilizing leader election in popula-

tion protocols over arbitrary communication graphs. In: Baldoni, R., Nisse, N., van
Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 38–52. Springer, Heidelberg
(2013)

5. Bonnet, F., Raynal, M.: The price of anonymity: optimal consensus despite asyn-
chrony, crash and anonymity. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp.
341–355. Springer, Heidelberg (2009)

6. Bonnet, F., Raynal, M.: Anonymous asynchronous systems: the case of failure
detectors. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343,
pp. 206–220. Springer, Heidelberg (2010)

7. Bouzid, Z., Travers, C.: Anonymity, failures, detectors and consensus. Technical
report (2012)

8. Bouzid, Z., Travers, C.: Brief announcement: anonymity, failures, detectors and
consensus. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 427–428.
Springer, Heidelberg (2012)

9. Cartier, P., Foata, D.: Problèmes combinatoire de commutation et réarrangements.
Lect. Notes Math. 85 (1969)

10. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

56 J. Beauquier et al.

11. Cortés, J., Mart́ınez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing
networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)

12. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Tielmann, A.: The weakest
failure detector for message passing set-agreement. In: Taubenfeld, G. (ed.) DISC
2008. LNCS, vol. 5218, pp. 109–120. Springer, Heidelberg (2008)

13. Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-state
anonymous agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol.
4305, pp. 395–409. Springer, Heidelberg (2006)

14. Fischer, M.H., Lynch, N.A., Paterson, M.S.: Impossibility of consensus with one
faulty process. J. ACM 32(2), 374–382 (1985)

15. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

16. Lawton, J.R., Beard, R.W.: Synchronized multiple spacecraft rotations. Automat-
ica 38(8), 1359–1364 (2002)

17. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
18. Michail, O., Spirakis, P.G.: Terminating population protocols via some minimal

global knowledge assumptions. J. Parallel Distrib. Comput. 81–82, 1–10 (2015)
19. Mostéfaoui, A., Rajsbaum, S., Raynal, M., Travers, C.: The combined power of

conditions and information on failures to solve asynchronous set agreement. SIAM
J. Comput. 38(4), 1574–1601 (2008)

20. Mostéfaoui, A., Rajsbaum, S., Raynal, M., Travers, C.: On the computability power
and the robustness of set agreement-oriented failure detector classes. Distrib. Com-
put. 21(3), 201–222 (2008)

21. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Reply to “comments on “consensus and
cooperation in networked multi-agent systems””. Proc. IEEE 98(7), 1354–1355
(2010)

22. Olfati-Saber, R., Shamma, J.S.: Consensus filters for sensor networks and dis-
tributed sensor fusion. In: 44th IEEE Conference Decision and Control and 2005
European Control Conference (CDC-ECC 2005), pp. 6698–6703, December 2005

23. Oshman, R.:. Distributed computation in wireless and dynamic networks. Ph.D.
thesis, MIT, Department of Electrical Engineering and Computer Science (2012)

24. Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-
agent coordination. In: American Control Conference, pp. 1859–1864 (2005)

25. Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University
Press, Cambridge (2000)

26. Xi, W., Tan, X., Baras, J.S.: A stochastic algorithm for self-organization of
autonomous swarms. In: Proceedings of 44th IEEE Conference Decision and Con-
trol and 2005 European Control Conference (CDC-ECC 2005), pp. 765–770 (2005)

Exact and Approximation Algorithms for Data
Mule Scheduling in a Sensor Network

Gui Citovsky(B), Jie Gao, Joseph S.B. Mitchell, and Jiemin Zeng

Stony Brook University, Stony Brook, NY, USA
gui.citovsky@stonybrook.edu

Abstract. We consider the fundamental problem of scheduling data
mules for managing a wireless sensor network. A data mule tours around
a sensor network and can help with network maintenance such as data
collection and battery recharging/replacement. We assume that each sen-
sor has a fixed data generation rate and a capacity (upper bound on
storage size). If the data mule arrives after the storage capacity is met,
additional data generated is lost. In this paper we formulate several fun-
damental problems for the best schedule of single or multiple data mules
and provide algorithms with provable performance. First, we consider
using a single data mule to collect data from sensors, and we aim to
maximize the data collection rate. We then generalize this model to con-
sider k data mules. Additionally, we study the problem of minimizing
the number of data mules such that it is possible for them to collect
all data, without loss. For the above problems, when we assume that
the capacities of all sensors are the same, we provide exact algorithms
for special cases and constant-factor approximation algorithms for more
general cases. We also show that several of these problems are NP-hard.
When we allow sensor capacities to differ, we have a constant-factor
approximation for each of the aforementioned problems when the ratio
of the maximum capacity to the minimum capacity is constant.

1 Introduction

A number of sensor network designs integrate both static sensor nodes and more
powerful mobile nodes, called data mules, that serve and help to manage the
sensor nodes [25,26,33,34]. The motivation for such designs are twofold. First,
there are fundamental limitations with the flat topology of static sensors using
short range wireless communication. It is known that such a topology does not
scale – the network throughput will diminish if the number of sensors goes to
infinity [23], while allowing node mobility will help [22]. Second, a number of
fundamental network operations can benefit substantially from mobile nodes.

G. Citovsky and J. Mitchell are partially supported by a grant from the US-Israel
Binational Science Foundation (project 2010074) and the National Science Founda-
tion (CCF-1018388, CCF-1540890). J. Gao and J. Zeng are partially supported by
grants from AFOSR (FA9550-14-1-0193) and NSF (DMS-1418255, DMS-1221339,
CNS-1217823).

c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 57–70, 2015.
DOI: 10.1007/978-3-319-28472-9 5

58 G. Citovsky et al.

We consider two example scenarios: sensor data collection and battery recharg-
ing. In both cases, data mules that tour around the sensors periodically can be
used to maintain the normal functionality of the sensors. In addition, data col-
lection by sensors using multi-hop routing to a fixed base station often suffers
from the bottleneck issue near the base station, both in terms of communication
and energy usage. Using short range wireless communication with a mobile base
station can fundamentally remove such dependency and avoid the single point
of failure [37].

Despite the potential benefits of introducing data mules with static sensors,
a lot of new challenges emerge at the interface of coordinating the data mules
with sensors. One of the most prominent challenges is the scheduling of data
mule mobility to serve the sensors in a timely and energy efficient manner. This
has been an active research topic for the past few years. However, as surveyed
later, most prior work is evaluated by simulations or experiments [3]; algorithms
with provable guarantees are scarce. In this paper we make contributions in this
direction. We formulate data mule scheduling problems with natural objective
functions and provide exact and approximation algorithms.

Our Problem. Suppose there are n sensors and a data mule traveling at a
constant speed s to collect data from these sensors. A sensor i generates data
at a fixed rate of ri and has a storage (“bucket”) capacity of ci where ci ≥ ri.
When a data mule visits a sensor, all current data stored in the sensor is collected
onto the mule. We assume that the mule has unbounded storage capacity. We
also assume that data collection at each sensor happens instantaneously, i.e.,
we ignore the time of data transmission, which is typically much smaller than
the time taken by the mule to move between the sensors. If the amount of data
generated at a sensor goes beyond its capacity (i.e., its bucket is full), additional
data generated is lost. Thus, a natural objective is to schedule data mules to
efficiently collect the continuously generated data.

We assume that the data collection and the data mule movement continues
indefinitely in time. Therefore, we are mainly concerned about the long-term
data gathering efficiency by periodic schedules.

The same problem arises in the case of battery recharging and energy man-
agement. In that case, each sensor i uses its battery with capacity ci at a rate
of ri. When the battery at a sensor is depleted the sensor becomes ineffective.
Thus, one would like to minimize the total amount of time of ineffectiveness,
over all sensors. We formulate the following three problems.

– Single Mule Scheduling: Find a route for a single data mule to collect data
from the sensors that maximizes the data collection rate (the average amount
of data collected per time unit).

– k-Mule Scheduling: Given a budget of k data mules, find routes for them
to maximize the rate of data collected from the sensors.

– No Data Loss Scheduling: Find the minimum number of data mules, and
their schedules, such that all data from all sensors is collected (there is no
data loss).

Exact and Approximation Algorithms for Data Mule Scheduling 59

Our Results. We report hardness results, exact algorithms for a few special
cases, and approximation algorithms for all three problems. Our algorithmic
results are summarized in Table 1. When we assume that the capacities of all
sensors are the same, we provide results for the different cases where the sensors
lie in different metrics. For the case where the capacities of the sensors are
different, we provide general results.

Without loss of generality, we assume that the minimum data rate is 1 and
the mule velocity is 1. In fact, we can further assume that all sensors have a
data rate of 1; if a sensor has data rate ri > 1, we can replicate this sensor with
ri copies, each with unit data rate and capacity ci/ri. Thus, in the following
discussion we focus on the case of all sensors having unit data rates and possibly
different capacities. When we consider the case where all sensors have the same
capacity, we simplify notation and let the capacity of all sensors be c.

We give the first algorithms for such data mule scheduling problems with
provable guarantees. In addition, we provide upper and lower bounds on the
optimal solution for both problems, and we evaluate the performance using sim-
ulations, for a variety of sensor distributions and densities.

Table 1. Our approximation algorithm results for different settings. Note that m ≤
log(cmax

cmin
) where cmax is the largest capacity and cmin is the smallest capacity. For the

results in the first four rows, we assume that the sensor capacities are all the same. ε
is any positive constant.

With sensors Single mule k-mule No data loss

On a line Exact 1
3

Exact

On a tree Exact pseudo-polynomial 1
3
(1 − 1/e

1
2+ε) 12

General metric space 1/6 − ε

Euclidean space 1/3 − ε 1
3
(1 − 1/e1−ε)

With different capacities O(1
m

) O(m)

2 Related Work

Vehicle Routing Problems. The problems we study belong to the general fam-
ily of vehicle routing problems (VRPs) and traveling salesman problems (TSPs)
with constraints [9,29,32,39]. But our problem is the first one considering peri-
odically regenerated rewards/prizes and thus is the first of this type.

Related TSP variations stem from the Prize-Collecting Traveling Salesman
Problem (PCTSP) [10,13] which was originally defined by Balas [11] as the
problem, given a set of cities with associated prizes and a prize quota to reach,
find a path/tour on a subset of the cities such that the quota is met, while
minimizing the total distance plus penalties for the cities skipped. (Some recent
formulations of this problem do not include penalties for skipped cities.) Archer
et al. [4] provided a (2 − ε)-approximation algorithm for this formulation of
PCTSP where ε ≈ 0.007024.

60 G. Citovsky et al.

The Orienteering Problem [21,36] assigns a prize to each city and, given
a constraint on the length of the path, aims to maximize the total prize col-
lected. For the rooted version in a general metric space, Blum et al. [14] had
proven that the problem is APX-hard and provided a 4-approximation algorithm
which was improved to a 3-approximation by Bansal et al. [12] and finally to a
(2+ ε)-approximation by Chekuri et al. [15]. For the rooted version in �2, Arkin
et al. [6] give a 2-approximation, which was improved to a (1+ε)-approximation
(PTAS) [16] for fixed dimension Euclidean space. For additional information we
refer to the review papers [20,36].

Similar to our problems, the Profitable Tour Problem [8] balances the two
competing objectives of maximizing total prize collected and minimizing tour
length. In some problems, the profit collected is dependent on the latency [17].

Our problems are also very similar to many multi-vehicle routing problems
[5,18,19,28]. Arkin et al. [7] give constant-factor approximation algorithms for
some types of multiple vehicle routing problems including a 3-approximation for
the problem of finding a minimum number of tours shorter than a given bound
that cover a given graph. Nagarajan and Ravi [31] provide a 2-approximation for
tree metrics and a bicriteria approximation algorithm for general metrics. Khani
and Salavatipour [27] present a 2.5-approximation algorithm for the problem of
finding, for a given graph and bound λ, the minimum number of trees, each of
weight at most λ, to cover the graph (improving on a bound given in [7]).

Data Mule Scheduling. Increasingly, there has been interest in using mobile
data mules to collect data in sensor networks. A common question that has arisen
is how to schedule multiple mules effectively and efficiently. Many heuristics
have been proposed to schedule multiple mules with various constraints and
objective functions (e.g., evenly distributing loads [25], scheduling short path
lengths [30,38], and minimizing energy [2]). Somasundara et al. [35] address a
very similar problem to ours, but with different methods; we obtain provable
polynomial-time algorithms, while they employ (worst case exponential-time)
integer linear programming and explore heuristics.

3 Single Mule Scheduling

Given a single mobile data mule with unit velocity, n sensors with uniform
capacity and unit data rate, the goal is to route the mule in effort to maximize
its data gathering rate. We explore this problem with sensors on a line, on a
tree, and in space.

3.1 Exact Algorithms on a Line or a Tree

Line Case. We first look at the case when the sensors are on a line. We assume
that the input data is integral; specifically, the sensors pi are located at integer
coordinates and the capacities ci for all i are integers. With this assumption, the
optimal schedule can be shown to be periodic.

Exact and Approximation Algorithms for Data Mule Scheduling 61

Lemma 1. The optimal schedule that minimizes data loss is periodic, assuming
integral input data.

Proof. If the sensors are located at integral positions, the distances between any
two of them are integers as well. Thus, all states of the problem can be encoded
by the position of the mule and the current amount of data at each sensor i. All
of these values are integers. Thus, the total number of possible states is finite;
after a state reappears we realize that the robot must follow the same schedule,
making the schedule periodic. �

Theorem 1. Let there be n sensors, p1, p2, . . . , pn on a line. Assume that the
capacities and rates of all sensors are the same: ci = c and ri = 1, for 1 ≤ i ≤ n.
Then there exists an optimal path that minimizes data loss with the following
properties: (1) its leftmost and rightmost points are at sensors, (2) it is a path
making U-turns only at the leftmost and rightmost sensors.

Despite the simple and clean statement, the proof is in fact fairly technical.
To provide intuition for Theorem1, note that paths that have U-turns not at
the outermost points are making a tradeoff of collecting more data from middle
sensors at the cost of having more overflow at the outer sensors. If this tradeoff is
worth it, then we can show it is also worth it to forgo collecting data from some
of the outer sensors. The main technical challenge is to figure out and compare
the data rate between the two choices. For the full proof, we refer to a more
detailed version of this paper posted on arXiv.

The immediate consequence from Theorem 1 is that one can find the optimal
schedule in O(n2) time, enumerating all possible pairs of extreme points.

It is important to note that it is sometimes necessary for the mule in the
optimal solution to gather data more than once from a given sensor in a period.
In Fig. 1, sensors are split into six groups, where each group has either k or
2k sensors. Within each group, each sensor has the same x-coordinate. In the
optimal solution, the data mule traverses the entire interval back and forth,
picking up data whenever it reaches a sensor. This solution has data gathering
rate 10.5k

2 = 5.25k. In comparison, the best solution that gathers data from a
sensor at most once per period has rate 4k.

Tree Case. We extend our results to a tree topology, with the sensors placed
on a tree network embedded in the plane. Then, we show that the structure
of an optimal schedule for the mule is to follow (repeatedly) a simple cycle

0.25

0.125 0.125

0.25 0.25

2k 2kk k k k

Fig. 1. The optimal solution repeats sensors

62 G. Citovsky et al.

(a doubling of a subtree). Again we assume that all sensors have the same capac-
ity c and the same rate, 1, of data accumulation. We also assume that the input
is integral, i.e., c is an integer and the distance between any two sensors on the
tree network is an integer.

Theorem 2. Let there be n sensors, p1, p2, . . . , pn on a tree G. For all pi, 1 ≤
i ≤ n, let ci = c and ri = 1, i.e. let the capacity and rates of all sensors be the
same. There exists an optimal path that minimizes data loss with the following
properties: (1) it only changes direction at sensors, (2) it is a cycle obtained by
doubling a subtree.

For the full proof, we refer to a more detailed version of this paper posted on
arXiv. A consequence of Thereom 2 is that we can compute an optimal mule route
(we can identify an optimal subtree of G) in time that is pseudo-polynomial,
using a dynamic programming algorithm.

It is unlikely that there is a strongly polynomial time algorithm for an exact
solution, since we show that the problem is weakly NP-hard.

3.2 Hardness

We show that single mule scheduling on a tree is weakly NP-hard. Further, we
show that the data gathering problem for a single mule and sensors in Euclidean
(or any metric) space is NP-hard.

Theorem 3. The data gathering problem scheduling a single mule among uni-
form capacity sensors on a tree is (weakly) NP-hard.

Proof. Our reduction is from PARTITION (or SUBSET-SUM): given a set S =
{x1, . . . , xn} of n integers, does there exist a subset, S′ ⊂ S, such that

∑
xi∈S′ xi =

M/2, where M =
∑

i xi? Given an instance of PARTITION, we construct a tree as
follows: There is a node v connected to a node u by an edge of length M/2. Incident
on v are n additional edges, of lengths xi; the edge of length xi leads to a node
where there are exactly xi sensors placed. Also, at node u there are M2 sensors
placed. (If one disallows multiple (x > 1) sensors to be at a single node w of the
tree, we can add x very short (length Θ(1/n)) edges incident to w, each leading
to a leaf with a single sensor.) Consider the problem of computing a maximum
data-rate tour in this tree, assuming each sensor has capacity 2M . Then, in order
to decide if it is possible to achieve data collection rate of M2 + M/2 we need
to decide if it is possible to find a subtree that includes node u (where the large
number, M2, of sensors lie) and a subset of nodes having xi sensors each, with the
sum of these xi’s totalling exactly M/2. (If the sum is any less than M/2, we fail
to collect enough data during the cycle of length 2M that is allowed before data
overflow; if the sum is any more than M/2, we lose data to overflow at u, which
cannot be compensated for by additional data collected at the xi nodes, since M2

is so large compared to xi.) �

Theorem 4. The data gathering problem scheduling a single mule among uni-
form capacity sensors in the Euclidean (or any metric) space is NP-hard.

Exact and Approximation Algorithms for Data Mule Scheduling 63

Proof. We reduce from the Hamiltonian cycle problem in a grid graph where n
points are on an integer grid and an edge exists between two points if and only
if they are unit distance apart. If we place a sensor at each point with capacity
n, it follows that there exists a Hamiltonian cycle in this graph if and only if
there exists a data gathering solution with no data loss. �

NP-hardness for this problem also holds for any general metric space.

3.3 Approximation Algorithm

Theorem 5. For uniform capacity sensors in fixed dimension Euclidean space,
there exists a (1/3 − ε)-approximation for maximizing the data gathering rate of
a single mule. For general metric spaces, a (1/6 − ε)-approximation exists.

Proof. In order to achieve this, we approximate the maximum number of distinct
sensors a mule can cover in time c/2, the amount of time for sensors to fill from
empty to half capacity (it can be shown that one half capacity is the optimal
choice). The result will be a path, to which we assign one mule to traverse back
and forth. The data gathering rate of this solution is equal to the number of
distinct sensors covered as a mule on a schedule with period t will collect exactly
t units of data from each sensor. We denote R to be the maximum number of
distinct sensors that can be covered by a path of length c/2. Note that R can be
approximated to within a factor of 1+ε in fixed dimension Euclidean space using
the PTAS for orienteering [16]. In general metric spaces, R can be approximated
to within a factor of 2+ ε [15]. Let R∗ be the data gathering rate of the optimal
solution. We now show that R∗ ≤ 3R.

Consider the interval of time c/2 in the optimal solution that has the highest
data gathering rate. This is an upper bound on R∗. In this time period, we know
that the number of distinct sensors visited is at most R. We also know that
during this time period at most 3

2c units of data can be downloaded from any
visited sensor (at most c units of data immediately downloaded and at most c/2
units of data downloaded after c/2 units of time have passed). Therefore, the
total amount of data collected in the optimal solution during this period of time
is at most 3

2cR. Averaging the data collected over the time interval c/2, the data
gathering rate of the optimal solution is at most 3R. �

4 k-Mule Scheduling

Given a budget of k data mules, we now consider the problem of maximizing the
total data gathering rate of these mules. We assume the n sensors have uniform
capacity, unit data rate, and unit velocity. It is important to note that even with
sensors on a line, the optimal solution may not assign mules to private tours;
sensors may need to be visited by multiple mules. Consider an input with two
mules and sensors uniformly spaced c/4 apart from one another. Any time a
mule makes a U-turn, it will gather only c/2 data from the next sensor it visits.
In order to maximize the frequency of full buckets collected, we want to minimize

64 G. Citovsky et al.

Fig. 2. With two data mules and sensors uniformly spaced c/4 apart, many sensors
will be visited by both mules in the optimal solution.

the frequency of U-turns made. This can be done by maintaining separation of
length c between the mules and having the mules zig-zag across (nearly) the
entire line (see Fig. 2). Interestingly, this example also shows that mules can
travel arbitrarily far distances.

4.1 Sensors on a Line

Theorem 6. Given a budget of k data mules, for uniform capacity sensors on
a line, there exists a 1/3-approximation for maximizing the data gathering rate.

Proof. Similar to the case when k = 1, we find the maximum amount of distinct
sensors that k mules can cover in time c/2 (it can be shown that half capacity
is the optimal choice). The result will correspond to a set of disjoint intervals;
we assign one mule to each interval. The duration of a cycle for each mule
is the length of time a sensor fills up to capacity so no sensor is allowed to
overflow. Therefore, the data gathering rate of this solution, call it R, is equal to
the number of sensors covered. Note that R, the maximum amount of distinct
sensors that can be covered by k disjoint intervals of length at most c/2, can
be computed exactly in polynomial time using dynamic programming. Let R∗

be the data gathering rate of the optimal solution. It follows from the same
argument given for the k = 1 case (Theorem 5) that R∗ ≤ 3R. �

4.2 Sensors in a General Metric Space

Theorem 7. Given a budget of k data mules, for uniform capacity sensors in
a general metric space, there exists a 1

3 (1 − 1
eβ)-approximation with β = 1

2+ε
for maximizing the data gathering rate. In fixed dimension Euclidean space there
exists a 1

3 (1 − 1
eβ)-approximation with β = 1 − ε.

Proof. The proof is similar to the proof of Theorem5. In order to approximate
the maximum amount of distinct sensors that k mules can cover in c/2 time, we
compute an orienteering path with a travel distance budget of c/2 on the uncov-
ered sensors. We repeat this operation for a total of k times. In the Maximum
Coverage problem, one is given a universe of elements, a collection of subsets,
and an integer k. The objective is to maximize the number of elements cov-
ered using k subsets. It has been shown by Hochbaum et al. [24] that greedily

Exact and Approximation Algorithms for Data Mule Scheduling 65

choosing the set with the largest number of uncovered elements k times yields
a (1 − 1

e)-approximation. Interestingly, Hochbaum et al. also show that using
a β-approximation for covering the maximum amount of uncovered elements in
each of the k rounds yields a (1 − 1

eβ)-approximation. Computing orienteering k

times on only the remaining uncovered sensors, we achieve a 1
(2+ε) -approximation

each round and therefore a (1 − 1
eβ)-approximation for β = 1

2+ε for covering the
maximum amount of sensors with k mules. Using similar arguments as the case
where k = 1 (Theorem 5), it is now easy to see that having mules traverse the k
orienteering paths back and forth yields a 1

3 (1 − 1
eβ)-approximation. �

5 No Data Loss Scheduling

In situations in which it is not possible for a fixed number of data mules to collect
all data in the network, it is natural to increase the number of data mules and let
them collectively finish the data collection task. In the no data loss scheduling
problem, we seek to minimize the number of mules in order to avoid data loss.
Throughout this section we assume that all sensors have unit data rate, unit
velocity, and uniform capacity.

5.1 Exact Algorithm on a Line

When sensors all lie along a line, we show that the problem can be solved in
polynomial time. As before, we can assume that the sensors lie at integer coor-
dinates so that, by the same argument as in Lemma 1, the mules in an optimal
solution follow periodic schedules.

Lemma 2. For the minimum cardinality data mule problem with no data loss, if
the sensors have uniform capacity and lie on a line, there is an optimal schedule
in which all mules follow periodic cycles, zigzaging within disjoint intervals, each
with length at most c/2.

We refer to a more detailed version of this paper posted on arXiv for the
full proof. By the above structural lemma, we can use a simple greedy algorithm
to minimize the number of data mules necessary to collect data, without loss,
for sensors on a line: Starting at the leftmost sensor, schedule a mule to zigzag
within an interval of length c/2 whose left endpoint is the leftmost sensor, and
then continue to the right, adding further intervals of length c/2 until all sensors
are covered. This is an O(n) algorithm for n (sorted) sensors.

5.2 Hardness

Even when the sensors lie on a tree, the problem of minimum cardinality data
mule scheduling with no data loss is already NP-hard.

Theorem 8. For uniform capacity sensors on a tree, the problem of minimum
cardinality data mule scheduling with no data loss is (strongly) NP-hard.

66 G. Citovsky et al.

Proof. We reduce from 3-PARTITION. Given a multiset, S = {x1, x2, · · · , x3n},
of 3n integers with total sum M , 3-PARTITION asks whether there is a partition
of S into n subsets, S1, . . . , Sn, such that each subset sums to exactly B = M/n.
It is known that we can assume that the integers xi satisfy B/4 < xi < B/2, so
that each subset Si must consist of a triple of elements (|Si| = 3). We create an
instance of a star having a hub (center node) incident on 3n edges (“spokes”) to
3n sensors, with edge lengths equal to xi. Each sensor has capacity 2M/n. Thus
if there is a partitioning of S into triples of integers that each sum to M/n, then
one (unit-speed) mule can traverse each corresponding 3-spoke subtree in time
exactly 2M/n, resulting in no data loss using n mules. On the other hand, any
solution using exactly n data mules and having no data loss determines a valid
partition of S into triples Si. Thus, the 3-PARTITION instance has a solution
if and only if n data mules suffice. �

For the general case, with sensors at points of a metric space or in a Euclidean
space, the problem of determining the minimum number of data mules necessary
to collect all data is also NP-hard. This can be seen by using a similar reduction
from Hamiltonian cycle, as in Theorem 4.

5.3 Approximation Algorithm

In the following we describe an algorithm achieving a constant-factor approxi-
mation.

It is tempting to think that an optimal solution will allocate each mule to
cover an exclusive set of sensors S′, that are not covered by other mules. We
denote such a set of tours as a private tour set on S′. However, the following
example shows that this is no longer the case when sensors lie in the plane.
Consider n > 2 sensors placed on a circle, uniformly spaced with adjacent sensors
at (Euclidean) distance exactly c − 1/n. The convex hull of these sensors is a
regular n-gon of perimeter n(c − 1/n) = nc − 1. The optimal solution would use
n − 1 mules, with each mule touring periodically at constant speed (1) along
the boundary of this n-gon, with time/distance separation of exactly c between
consecutive mules. This ensures that each sensor is visited exactly when its
storage (bucket) becomes full. However, any solution using private tours will
have to use n mules, since no mule can use a private tour to cover two or more
sensors (since it would have length at least 2c − 2/n > c).

While it may be that no private tour set is optimal, we now argue that the
optimal schedule using only private tours is provably close to optimal (in terms
of minimizing the number of data mules). Denote by k∗ the minimum number
of cycles, each of length at most c, to cover all nodes, which is denoted as a light
cycle cover. And denote by m∗ the minimum number of data mules required to
collect all data.

Lemma 3. m∗ ≤ k∗ ≤ 2m∗.

Proof. First, note that using k∗ mules, each traversing a (private) light cycle,
results in all data being collected; thus, m∗ ≤ k∗.

Exact and Approximation Algorithms for Data Mule Scheduling 67

Now consider an optimal schedule of m∗ data mules. Mule i moves along a
schedule Ci. Consider any particular time t. Each sensor j is visited by at least
one mule. We assign it to the mule that visits it first, i.e., at the earliest time
after t. We know this time is at most c, since no data is lost at sensor j. Thus,
consider mule i, at current position pi (at time t) and all the sensors along Ci

that are assigned to it. They all lie on a path (along Ci) of length at most c. Let
si be the sensor furthest away from pi, measuring distance along Ci. Let γi be
the corresponding path along Ci, from pi to si. Let bi be the midpoint of this
path. Place a clone of mule i at point si, and create two private cycles for mule
i and his clone: one cycle goes from pi to bi along γi, then returns to pi directly
(along a shortest path or a straight segment), the other goes from bi to si along
γi, then returns to bi directly. Mule i traverses the first cycle; his clone traverses
the second cycle. Do this for all mules.

We have doubled (via cloning) the number of mules, but now each mule/clone
has a private cycle, of sensors assigned only to it, and these cycles are each of total
length at most c. Thus, this is a valid solution to the light cycle cover problem.
Thus, the minimum number of light cycles, k∗ is no greater than 2m∗. �

By the above lemma, an α-approximation for the minimum light cycle cover
gives a 2α-approximation for the minimum number of data mules. Arkin et al. [7]
gave a 6-approximation algorithm for the minimum light cycle cover problem;
thus, we have a 12-approximation for minimum data mule scheduling. This is
summarized in the following theorem.

Theorem 9. For uniform capacity sensors within a general metric space or in
the Euclidean plane, computing the minimum number of data mules to collect
all data is NP-hard. There is a polynomial-time 12-approximation algorithm for
sensors in a general metric space.

6 Different Capacities

We now consider both the k-mule scheduling problem and the no data loss
scheduling problem on n sensors with potentially different sensor storage capaci-
ties. Each sensor has unit data rate. The result for the k-mule scheduling problem
obviously holds for the single mule problem (i.e. when k = 1).

6.1 k-Mule Scheduling

Lemma 4. With m groups of sensors, each group having the same storage
capacity, optimally solving each group independently and taking the solution with
the highest data gathering rate yields a O(1/m)-approximation to the k-mule
scheduling problem.

Proof. Let r(·) be the data gathering rate of a solution. Let OPTi be the opti-
mal solution to group i and let OPT be the schedule with highest data rate.
r(OPT) ≤ ∑m

i=1 r(OPTi) ≤ m · max
i

{r(OPTi)}. The first inequality is from the

68 G. Citovsky et al.

following observation. Consider the optimal schedule OPT and modify it such
that we only visit the nodes in group i. This is obviously a solution for collecting
data from group i and thus has data rate no greater than r(OPTi). �

Let cmax and cmin be the storage capacities of the largest and smallest sen-
sors respectively. We round the storage capacity of each sensor down to its
nearest power of two. Doing so, we create m groups of sensors where m is at
most log(cmax

cmin
). Note that m may be significantly smaller than log(cmax

cmin
). In the

rounding down process, the storage capacity of each sensor is at most halved,
thus the optimal solution on the new sensors has data gathering rate of at least
1/2 of the same solution before rounding. We approximate the optimal solution
to each of the groups within a constant factor and choose the one with highest
data gathering rate. By Lemma4, we have the following.

Theorem 10. By rounding down the sensor capacities into m ≤ log(cmax

cmin
)

groups, the group with highest data gathering rate has rate at least O(1/m) ·
r(OPT) where OPT is the optimal solution to the k-mule scheduling problem.

6.2 No Data Loss Scheduling

Theorem 11. By rounding down the sensor capacities into m ≤ log(cmax

cmin
)

groups and solving each group independently, at most O(m) · |OPT | mules are
used in total, where |OPT | is the minimum number of mules needed to avoid
data loss.

Proof. Using the same rounding technique as the previous section, we again obtain
m groups of sensors with m ≤ log(cmax

cmin
). In the rounding down process, the capac-

ity of any sensor is at most halved. Thus, the optimal solution on the rounded
down sensors requires at most two times the number of mules as the optimal solu-
tion to the original set of sensors. Let |OPTi| be the minimum number of mules
needed for no data loss to occur in group i and let |OPT | be the number of mules
in the optimal solution. Since |OPT | ≥ |OPTi| for 1 ≤ i ≤ m, we have that
m · |OPT | ≥ ∑m

i=1 |OPTi|. Approximating |OPTi| within a constant factor for all
i, we use O(m) · |OPT | mules. �

7 Conclusion

Our exact and approximation algorithms for single mule scheduling, k-mule
scheduling, and no data loss scheduling represent the state of the art results on
mule scheduling problems and greatly deepens our understanding of vehicular
routing with constraints. For future work, we would like to see if the approxi-
mation ratios can be improved, especially with sensors in Euclidean space.

Exact and Approximation Algorithms for Data Mule Scheduling 69

References

1. National traveling salesman problems. http://www.math.uwaterloo.ca/tsp/world/
countries.html. Accessed 15 Dec 2014

2. Almi’ani, K., Viglas, A., Libman, L.: Tour and path planning methods for efficient
data gathering using mobile elements. Int. J. Ad Hoc Ubiquitous Comput. (2014)

3. Anastasi, G., Conti, M., Di Francesco, M.: Data collection in sensor networks with
data mules: an integrated simulation analysis. In: IEEE Symposium on Computers
and Communications, ISCC 2008, pp. 1096–1102, July 2008

4. Archer, A., Bateni, M., Hajiaghayi, M., Karloff, H.: Improved approximation algo-
rithms for prize-collecting steiner tree and tsp. SIAM J. Comput. 40(2), 309–332
(2011)

5. Archetti, C., Speranza, M., Vigo, D.: Vehicle routing problems with profits. Tech-
nical report WPDEM2013/3, University of Brescia (2013)

6. Arkin, E., Mitchell, J.S.B., Narasimhan, G.: Resource-constrained geometric net-
work optimization. In: Symposium on Computational Geometry, pp. 307–316
(1998)

7. Arkin, E.M., Hassin, R., Levin, A.: Approximations for minimum and min-max
vehicle routing problems. J. Algorithms 59(1), 1–18 (2006)

8. Ausiello, G., Bonifaci, V., Laura, L.: The online prize-collecting traveling salesman
problem. Inf. Process. Lett. 107(6), 199–204 (2008)

9. Ausiello, G., Leonardi, S., Marchetti-Spaccamela, A.: On salesmen, repairmen,
spiders, and other traveling agents. In: Bongiovanni, G., Petreschi, R., Gambosi,
G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 1–16. Springer, Heidelberg (2000)

10. Awerbuch, B., Azar, Y., Blum, A., Vempala, S.: Improved approximation guaran-
tees for minimum-weight k-trees and prize-collecting salesmen. SIAM J. Comput.
277–283 (1995)

11. Balas, E.: The prize collecting traveling salesman problem. Networks 19(6), 621–
636 (1989)

12. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation algorithms for
deadline-tsp and vehicle routing with time-windows. In: Proceedings of the Thirty-
Sixth Annual ACM Symposium on Theory of Computing, STOC 2004, pp. 166–
174. ACM, New York (2004)

13. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.: A note on the
prize collecting traveling salesman problem. Math. Program. 59(1), 413–420 (1993)

14. Blum, A., Chawla, S., Karger, D., Lane, T., Meyerson, A., Minkoff, M.: Approxi-
mation algorithms for orienteering and discounted-reward tsp. In: Proceedings of
44th Annual IEEE Symposium on Foundations of Computer Science, pp. 46–55,
Oct 2003

15. Chekuri, C., Korula, N., Pál, M.: Improved algorithms for orienteering and related
problems. ACM Trans. Algorithms 8(3), 23:1–23:27 (2012)

16. Chen, K., Har-Peled, S.: The euclidean orienteering problem revisited. SIAM J.
Comput. 38(1), 385–397 (2008)

17. Coene, S., Spieksma, F.C.R.: Profit-based latency problems on the line. Oper. Res.
Lett. 36(3), 333–337 (2008)

18. Eksioglu, B., Vural, A.V., Reisman, A.: Survey: the vehicle routing problem: a
taxonomic review. Comput. Ind. Eng. 57(4), 1472–1483 (2009)

19. Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Covering graphs using
trees and stars. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RAN-
DOM/APPROX 2003. LNCS, vol. 2764, pp. 24–35. Springer, Heidelberg (2003)

http://www.math.uwaterloo.ca/tsp/world/countries.html
http://www.math.uwaterloo.ca/tsp/world/countries.html

70 G. Citovsky et al.

20. Feillet, D., Dejax, P., Gendreau, M.: Traveling salesman problems with profits.
Transp. Sci. 39(2), 188–205 (2005)

21. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logistics
34, 307–318 (1987)

22. Grossglauser, M., Tse, D.: Mobility increases the capacity of ad hoc wireless net-
works. IEEE/ACM Trans. Netw. 10(4), 477–486 (2002)

23. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. The-
ory 46(2), 388–404 (2000)

24. Hochbaum, D.S., Pathria, A.: Analysis of the greedy approach in problems of
maximum k-coverage. Naval Res. Logistics 45(6), 615–627 (1998)

25. Jea, D., Somasundara, A., Srivastava, M.: Multiple controlled mobile elements
(data mules) for data collection in sensor networks. In: Prasanna, V.K., Iyengar,
S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 244–257.
Springer, Heidelberg (2005)

26. Kansal, A., Rahimi, M., Kaiser, W.J., Srivastava, M.B., Pottie, G.J., Estrin, D.:
Controlled mobility for sustainable wireless networks. In: IEEE Sensor and Ad Hoc
Communications and Networks (SECON 2004) (2004)

27. Khani, M.R., Salavatipour, M.R.: Improved approximation algorithms for the min-
max tree cover and bounded tree cover problems. Algorithmica 69(2), 443–460
(2014)

28. Kim, D., Uma, R., Abay, B., Wu, W., Wang, W., Tokuta, A.: Minimum latency
multiple data mule trajectory planning in wireless sensor networks. IEEE Trans.
Mob. Comput. 13(4), 838–851 (2014)

29. Laporte, G.: The vehicle routing problem: an overview of exact and approximate
algorithms. Eur. J. Oper. Res. 59(3), 345–358 (1992)

30. Ma, M., Yang, Y.: Data gathering in wireless sensor networks with mobile collec-
tors. In: IEEE International Symposium on Parallel and Distributed Processing,
IPDPS 2008, pp. 1–9. IEEE (2008)

31. Nagarajan, V., Ravi, R.: Approximation algorithms for distance constrained vehicle
routing problems. Networks 59(2), 209–214 (2012)

32. Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle
routing problems. Eur. J. Oper. Res. 255(1), 1–11 (2013)

33. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: modeling a three-tier archi-
tecture for sparse sensor networks. In: IEEE SNPA Workshop, pp. 30–41 (2003)

34. Somasundara, A., Kansal, A., Jea, D., Estrin, D., Srivastava, M.: Controllably
mobile infrastructure for low energy embedded networks. IEEE Trans. Mob. Com-
put. 5(8), 958–973 (2006)

35. Somasundara, A.A., Ramamoorthy, A., Srivastava, M.B.: Mobile element schedul-
ing with dynamic deadlines. IEEE Trans. Mob. Comput. 6(4), 395–410 (2007)

36. Vansteenwegen, P., Souffriau, W., Oudheusden, D.V.: The orienteering problem: a
survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)

37. Vincze, Z., Vida, R.: Multi-hop wireless sensor networks with mobile sink. In:
CoNEXT 2005: Proceedings of the 2005 ACM Conference on Emerging Network
Experiment and Technology, pp. 302–303. ACM Press, New York (2005)

38. Wu, F.J., Tseng, Y.C.: Energy-conserving data gathering by mobile mules in a spa-
tially separated wireless sensor network. Wirel. Commun. Mob. Comput. 13(15),
1369–1385 (2013)

39. Yu, W., Liu, Z.: Vehicle routing problems with regular objective functions on a
path. Naval Res. Logistics (NRL) 61(1), 34–43 (2014)

Limitations of Current Wireless
Scheduling Algorithms

Magnús M. Halldórsson, Christian Konrad, and Tigran Tonoyan(B)

ICE-TCS, Reykjavik University, Reykjavik, Iceland
{mmh,christiank,tigran}@ru.is

Abstract. We consider the problem of scheduling wireless links in the
physical model, where we seek a partition of a given a set of wireless links
into the minimum number of subsets satisfying the signal-to-interference-
and-noise-ratio (SINR) constraints. We consider the two families of
approximation algorithms that are known to guarantee O(log n) approx-
imation for the scheduling problem, where n is the number of links. We
present network constructions showing that the approximation ratios of
those algorithms are no better than logarithmic, both in n and in Δ,
where Δ is a geometric parameter – the ratio of the maximum and min-
imum link lengths.

Keywords: Wireless scheduling · Oblivious power · Lower bound

1 Introduction

The task of the MAC layer in TDMA-based (time-division multiple access)
wireless networks is to determine which nodes can communicate in which time-
frequency slot. A scheduler aims to optimize criteria involving throughput and
fairness. This requires obtaining effective spatial reuse while satisfying the inter-
ference constraints. We treat the fundamental scheduling problem of partitioning
a given set of communication links into the fewest possible feasible sets.

We adopt the SINR model of communication, where signal decays as it trav-
els and a transmission is successful if its strength at the receiver exceeds the
accumulated signal strength of interfering transmission by a sufficient (tech-
nology determined) factor. Considerable progress has been made in recent
years in elucidating essential algorithmic properties of the SINR model (e.g.,
[1,8,9,13,24,27,29,31,34]). Early work on the scheduling problem includes
[5,6,10]. Gupta and Kumar [16] proposed the geometric version of SINR and
initiated average-case analysis of network capacity known as scaling laws. NP-
completeness has been shown for scheduling with different forms of power con-
trol: none [14], limited [28], and unbounded [32]. Moscibroda and Wattenhofer
[34] initiated worst-case analysis in the SINR model.

Although the standard analytic assumption that signal decays polynomially
with the distance traveled is far from realistic [33,36], it has been shown that

c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 71–84, 2015.
DOI: 10.1007/978-3-319-28472-9 6

72 M.M. Halldórsson et al.

results obtained with that assumption can be translated to the setting of arbi-
trary measured signal decay [3,15], as well as to Rayleigh fading model [7].

The scheduling problem has been considered both for fixed oblivious power
assignments (where the power chosen for a link depends only on the link itself)
and for arbitrary power control. This paper addresses algorithms dealing with
both scenarios.

Finding constant-factor approximation to the scheduling problem has proved
challenging. However, there are several approaches giving logarithmic approxi-
mation.

I. One way of achieving O(log n) approximation is by greedy or first-fit algo-
rithms, where the links are processed in a non-decreasing order of length
and are assigned to the first slot where they “fit” [22,26,29,30]. The approx-
imation ratio of such algorithms is usually obtained by arguing that such
algorithms provide constant factor approximation to the capacity problem,
where the goal is to select a large subset of links that can successfully trans-
mit in the same time slot. It has also been shown that such algorithms
perform well for some randomly generated network instances [2].

II. Another approach giving O(log n)-approximation (for fixed power assign-
ments) is to use randomization: links try to transmit in each time slot with
certain transmission probabilities, and each link is assigned to the slot where
its transmission succeeded [21,31]. It is known that appropriate choice of
the probabilities guarantees an O(log n) approximation (w.h.p).

III. Yet another approach is to divide the links into groups of nearly equal
length and schedule each group separately. Following this approach, numer-
ous O(log Δ)-approximation results have been argued [12,14,18], where Δ
is the ratio between the longest and shortest link length.

The only known algorithms to achieve less than O(n) approximation for
scheduling are from the first two families. The only known constant-factor
approximation algorithms for scheduling are obtained in the case of the lin-
ear power scheme [23,37]. In a recent paper, we presented an O(log∗ Δ)-
approximation algorithm for scheduling with power control [25], but here too,
the approximation factor is only O(n) in terms of n.

The optimum number of slots for scheduling has also been approximated
through interference measures [19,21,31]. However, no measure is known to give
better than O(log n) approximation. It is also not evident how to efficiently
compute such measures.

Many variants of the scheduling problem are known to be NP-hard but we
are not aware of any significant inapproximability result.

Our Results. While for the third family of algorithms it is easy to find examples
attaining the approximation ratio Ω(log Δ), we are not aware of constructions
showing that the approximation ratio of O(log n) of the first and second fam-
ilies cannot be improved. For the second family of algorithms, a construction
has been presented in [21] for which the output of the algorithm is a Θ(log n)-
approximation, but their construction does not exclude that Θ(log n) is only

Limitations of Current Wireless Scheduling Algorithms 73

additive, and it is asked in [21] whether another analysis of the algorithm could
give a smaller approximation ratio.

We show that algorithms of families I and II achieve (including the algo-
rithms for both fixed power assignments and optimized powers) no better than
Ω(log Δ

log log Δ) (in terms of only Δ) or Ω(log n
log log n) (in terms of only n) approxi-

mation even in one dimensional networks. Our constructions are obtained by
modeling sets of links after certain graphs that are “hard” instances for graph
coloring algorithms similar to the families I and II.

These results suggest that new methods are needed for obtaining better than
logarithmic approximation for scheduling. Note, however, that our constructions
do not work for the uniform power assignment, where all links use equal power.

2 Model and Definitions

Communication Links. Consider a set L of n links, numbered from 1 to n.
Each link i represents a unit-demand communication request from a sender si

to a receiver ri - point-size wireless transmitter/receivers located in a metric
space with distance function d. We denote dij = d(si, rj) the distance from the
sender of link i to the receiver of link j, li = d(si, ri) the length of link i and
d(i, j) the minimum distance between {si, ri} and {sj , rj}. We let Δ(L) denote
the ratio between longest and shortest link lengths in L, and drop L when clear
from context.

SINR Feasibility and the Scheduling Problem. In the physical model (or
SINR model) of communication [35], a transmission of a link i is successful iff

Si > β ·
⎛

⎝
∑

j∈S\{i}
Iji + N

⎞

⎠ , (1)

where Si denotes the received signal power of link i, Iji denotes the interference
power on link i caused by link j, N ≥ 0 is a constant denoting the ambient noise,
β ≥ 1 is the minimum SINR (Signal to Interference and Noise Ratio) required
for a message to be successfully received and S is the set of links transmitting
concurrently with link i. If P : L → R+ is the power assignment of links –
P (i) defines the transmission power of the sender node si, then Si = P (i)

lαi
and

Iji = P (j)
dα

ji
, where α ∈ (2, 6) is the path-loss exponent.

A set L of links is called P -feasible if (1) holds for each link i ∈ L when using
power assignment P . A collection of sets is P -feasible if each set in the collection
is P -feasible. When transmission power is also subject to optimization, we call
a set of links (collection) simply feasible if there is a power assignment P such
that the set (collection) is P -feasible.

The scheduling problem with a fixed power scheme P is to partition a given
set L into the minimum number of P -feasible subsets (or slots).

The scheduling problem with power control is to partition a given set L into
the minimum number or feasible subsets.

74 M.M. Halldórsson et al.

For simplicity of constructions, we assume henceforth that N = 0. The
bounds can be adapted for the case of positive noise by scaling power levels.

Affectance: Fixed Power Assignments and Power Schemes. Follow-
ing [26], we define the affectance aP (i, j) of link j by link i under power assign-
ment P by

aP (i, j) =
Iij

Sj
=

P (i)lαj
P (j)dα

ij

.

We let aP (j, j) = 0 and extend aP additively over sets: aP (S, i) =
∑

j∈S aP (j, i)
and aP (i, S) =

∑
j∈S aP (i, j). It is readily verified (recall that we assumed N =

0) that a set of links S is P -feasible if and only if aP (S, i) ≤ 1/β for all i ∈ S.
We will be particularly interested in power schemes Pδ of the form Pδ(i) =

C · lδα
i , where C is constant for the given network instance. These are called

oblivious power assignments because the power level of each link depends only
on a local information - the link length. Examples of such power schemes are
uniform power scheme (P0), linear power scheme (P1) and mean power scheme
(P1/2) [11].

It will be useful to note that for any power scheme Pδ, aPδ
(i, j) =(

lδi l
(1−δ)
j

dij

)α

.

Affectance: Power Control. For scheduling with power control, the following

definition of affectance is used [29]: a(i, j) =
(

li
d(i, j)

)α

.

Similarly as before, we define a(i, i) = 0 and extend a additively to sets.
As shown in [29], if the following condition holds for any link i ∈ S with a
sufficiently small constant γ (depending on α and β), then set S is feasible:
a(S−

i , i) < γ, where S−
i denotes the subset of links in S that are no longer than

link i: S−
i = {j ∈ S : lj ≤ li}.

3 Lower Bounds for First-Fit Algorithms

3.1 Scheduling with Fixed Power Schemes

The first-fit algorithm considered in [26] was originally used for the uniform
power scheme, but applies also to other oblivious power schemes [22]. The
algorithm is a simple greedy procedure, where one starts with empty slots in
a fixed order, then the links are processed in non-decreasing order by length
and a link i is assigned to the first slot S such that aP (S, i) + aP (i, S) < γ
for a given constant γ. One may also generalize the acceptance condition with
f [aP (S, i), aP (i, S)] < γ, where f : R+ × R+ → R is a decreasing function of
both arguments that goes to 0 when both arguments go to 0. Below, NDFirstFit
will refer to such an algorithm.

The family of hard network instances for the first-fit algorithm is inspired by a
well known tree construction called binomial trees (in relation to binomial heaps),

Limitations of Current Wireless Scheduling Algorithms 75

that has been used to obtain lower bounds for first-fit algorithms for graph
coloring [4,17]. For any given power scheme Pδ with δ ∈ (0, 1), we construct a
family LR of network instances on the real line using binomial trees as a model,
where no pair of links corresponding to adjacent nodes in the tree can be in
the same Pδ-feasible set together, but are otherwise spatially well separated.
We show that while LR can be scheduled in constant number of slots using Pδ,
NDFirstFit gives only an Ω(log n) approximation in terms of n and Ω(log Δ

log log Δ)
approximation in terms of Δ.

Theorem 1. Let δ ∈ (0, 1). For each n0 > 0, there is a set of n > n0 links LR on
the real line such that NDFirstFit achieves no better than Ω(log n) = Ω(log Δ

log log Δ)
approximation for scheduling with Pδ.

Binomial Trees. We use the following family of trees, known as binomial trees,
as a model for our construction. The rooted tree TR, (R ≥ 0), is constructed
recursively, as follows. T0 consists of a single root vertex. For R ≥ 0, the tree
TR+1 is obtained from TR by adding a new child vertex to the root, then adding
a copy of TR, by identifying its root node with the new child. For example, T1

consists of two nodes connected by an edge and T2 consists of a root vertex that
has two children and one “grandchild”. Note that the number of vertices in TR

is n = 2R. Let us call the set of leaves of TR layer R. For t = R− 1, R− 2, . . . , 1,
layer t denotes the set of leaves of the tree that remains after removing layers
R,R − 1, ..., t + 1. Thus, TR has R + 1 layers and the root is in layer 0. Further,
each layer t contains 2t−1 vertices, except layer 0, which contains one vertex (the
root). Note also that each layer t node has exactly one child from each of layers
R,R − 1, . . . , t + 1.

Remark. “Layer” should not be confused with “level”, i.e. the set of vertices at a
given distance from the root. Note that a layer contains links from many levels.

The Network Instance. Let us fix an integer R > 0 and δ ∈ (0, 1). For
simplicity of the argument, we assume that β = 1. We model the set LR of links
after the tree TR. Each link i ∈ LR corresponds to a vertex vi of the tree and all
the links are arranged on the real line. See Fig. 1 for an example. The links

Fig. 1. The set LR with R = 3.

76 M.M. Halldórsson et al.

corresponding to layer t vertices have length 	R−t, where 	 = cR1/γ = c log1/γ n,
γ = α · min{δ, 1 − δ} and c > 1 is a large enough constant to be determined
below. For instance, the “root link” has length 	R and the “leaves” have length
1. Note also that Δ(LR) = 	R. Links are numbered arbitrarily, from 1 to n. The
link corresponding to the root (leaves) of the tree is called root link (leaf links).
Link j is called the parent of link i (and i is a child of link j) if vj is the parent
of vertex of vi. Link j is called a left sibling of a link i (and i is called a right
sibling of j) if lj < li and vi and vj have the same parent in the tree. We will
place the parent and all left siblings of each link i to the left from link i (no two
links occupy intersecting intervals in our construction). The descendants of link
i are the links corresponding to the set of nodes of the subtree rooted at vi.

The root is placed with its sender on the origin and the receiver at the
coordinate 	R. Assume links i and j are so that the node corresponding to i is
the parent of the node of j in the tree (hence, li > lj). Moreover, assume that
the placement of link i has already been determined. Then we place link j so
that sj = ri + dji = ri + l1−δ

i lδj and rj = sj + lj . Such placement guarantees
that any two links corresponding to adjacent tree nodes cannot be in the same
Pδ-feasible set (recall that β = 1).

Analysis. The goal of the analysis below is to show that the set LR can be
scheduled in two sets, each corresponding to a color class in a proper 2-coloring
of tree TR. This is achieved by taking the constant c large enough. Having
this, it will follow immediately that NDFirstFit schedules LR into R slots, by
allocating a separate slot for each layer of links (as in the increasing order of
length, links come layer-by-layer), and, by the construction, no two layers can be
in the same slot. This yields an approximation lower bound Ω(R) = Ω(log n) =
Ω(log Δ/ log log Δ).

Let us give a taste of the analysis below, by considering the affectance between
a chain of three links; it will also give an idea why the construction cannot be
implemented for the uniform power scheme (i.e. when δ = 0). Let i, j, k be such
that i is the parent of j and j is the parent of k. The placement of the links
is such that the distance between e.g. j and k is dkj = l1−δ

j lδk, meaning that

aPδ
(k, j) =

(
l1−δ
j lδk
dkj

)α

= 1, so j and k cannot coexist in the same feasible set,

nor can i and j. On the other hand, the distance between i and k is at least

dki > dji = l1−δ
i lδj . Hence, aPδ

(k, j) <

(
l1−δ
i lδk

l1−δ
i lδj

)α

=
(

lk
lj

)αδ

= 	−δα, which can

be made arbitrarily small by taking large constant c (note that this property
does not hold in the case of uniform power scheme, as δ = 0).

Analysis: Link Placement. First we show that if the constant c is large enough
then all the left siblings of a link i appear to the left of i. Note that if a link i
has length 	s, then its descendants constitute an instance Ls (i.e. correspond to
the tree Ts). We start by computing the diameter d(Ls) of Ls for any s > 0, i.e.
the distance from the left-most node to the rightmost node of Ls.

Proposition 1. If 	 ≥ 2 then, for any s > 0, 	s < d(Ls) < 4	s.

Limitations of Current Wireless Scheduling Algorithms 77

Proposition 2. If link j is a left sibling of link k then link j and its descendants
are placed to the left from link k, provided that the constant c is large enough.

Proof. Let link i be the parent of links j, k and assume w.l.o.g. that li = 	p,
lj = 	t and lk = 	t+1. We want link k to appear to the right of the whole
“subtree” of links rooted at link j (i.e. descendants of link j); namely, d(ri, sk) >
d(ri, sj) + 2	 · d(Lt). Since i is the parent of j and k, we have, by definition,
d(ri, sk) = 	p·(1−δ) · 	(t+1)·δ and d(ri, sj) = 	p·(1−δ) · 	t·δ. Thus, due to the bound
d(Lt) < 4	t, it suffices to have: 	(1−δ)p+δ(t+1) > 	(1−δ)p+δt + 8	t+1 or

	(1−δ)p+δt(δ − 1) > 8	t+1.

Recall that p ≥ t+2 as link i is strictly longer than its children. Thus, assuming
	 ≥ 21/δ, the requirement above boils down to 	t−δ+2 > 8	t+1, and thus to
	 > 8

1
1−δ which holds if the constant c is large enough. ��

Analysis: Affectance. Note that by the claim above, if links i and j are such
that li > lj and j is not a descendant of link i then d(i, j) > 2li.

Let us fix a link i with li = 	p and let Li
R denote the set of all links in LR

except the parent and the children of link i. We show that the affectance of link
i by links in Li

R can be made arbitrarily small if the constant c is large enough.
We split Li

R into the following subsets: Di - the descendants of i, Ai - links
that are longer than i, Bi - links that are shorter than i, excluding the descendants
of link i, and Ei – links of length li. Recall that γ = α min{δ, 1 − δ}. While the
following three claims follow relatively easily from the construction, the last one
requires more care.

Proposition 3. aPδ
(Ei, i) + aPδ

(i, Ei) = O(c−α).

Proposition 4. aPδ
(Ai, i) + aPδ

(i, Ai) = O(c−γ).

Proposition 5. aPδ
(Di, i) + aPδ

(i,Di) = O(c−γ).

Proposition 6. aPδ
(Bi, i) + aPδ

(i, Bi) = O(c−γ).

Proof. Let Bq
i denote the set of length 	q links in Bi. We collect the links of Bq

i

into disjoint subsets S1, S2, . . . by “climbing” from link i towards the root, as
follows. Suppose we are at link i. The set S1 contains the links of Bq

i that appear
in the interval between link i and its parent; the distance between each link in
S1 and link i is at least 2li = 2	p, and the number of such links is at most 2p−q.
S2 contains the links of Bq

i that are descendants of the first right sibling of link i;
the distance between each link in S2 and link i is at least 2	p+1 and the number
of such links is at most 2p−q+1. S3 contains the links that are descendants of the
second right sibling of link i; the links in S3 are at a distance at least 2	p+2 and
the number of links in S3 is at most 2	p+3. After collecting the descendants of
all right siblings of link i, we move to the parent of link i and repeat the same

78 M.M. Halldórsson et al.

procedure. This process is carried on until reaching the root. Thus, we get the
following bound on the affectance by the links in Bq

i :

aPδ
(Bq

i , i) <
∑

t≥0

2p+t−q

(
	qδl1−δ

i

2	p+t

)α

< 2−α(/2)−δα(p−q)
∑

t≥0

(/2)−tα.

The last sum is clearly bounded by 2, given that 	 > 4. Thus, we have that
aPδ

(Bq
i , i) < (/2)−δα < (c/2)−δα/R. The first part of the claim follows because

there are at most R different sets Bq
i for a fixed link i. The second part follows

by a symmetric argument. ��

Analysis: Conclusion. Thus, we have that the affectance of each link i from
all other links except its parent and children is small. In order to schedule the
set LR into two slots, it is enough to place each link separately from its parent
and children. Two slots are sufficient because of the tree topology.

Now let us see what happens when we run NDFirstFit on the set LR. Note
that when processing the links in a non-decreasing order of length we will process
all links of layer t + 1 before the first link of layer t. Let St be the set of layer-t
links. We have, by the results above, that aPδ

(St, i) + aPδ
(i, St) < γ for any

constant γ and link i ∈ St. Thus, NDFirstFit puts the set SR in the first slot.
Each link in SR−1 conflicts with a link in SR (i.e. its child link), so the next slot
will consist of the set SR−1. In general, each layer t link conflicts with a link
from each of layers t + 1, t + 2, . . . , R, so by the reasoning above, NDFirstFit
schedules each layer in a separate slot (no two layers can occupy the same slot),
taking R + 1 slots in total for scheduling LR. Thus, the approximation ratio
of NDFirstFit is Ω(R) = Ω(log n). Also, recall that Δ(LR) = 	R = cRR/γ , so
R = Ω(log Δ

log log Δ).
Note that the approximation ratio is multiplicative, as we can just multiply

each link k times (i.e. replace it with its k identical copies), for any k = poly(n).
Then the optimum number of slots required will be 2k, while NDFirstFit will
schedule the set into Ω(k · R) = Ω(k · log kn) = Ω(k · log Δ

log log Δ) slots.

3.2 Scheduling with Power Control

In this section, we let NDFirstFitPC denote the first-fit scheduling algorithm
(with power control) of [29]. Here also, one starts with empty slots in a fixed
order, then the links are processed in non-decreasing order by length and a link
i is assigned to the first slot S such that a(S, i) < γ for a small constant γ. It is
known that NDFirstFitPC achieves O(log n) approximation [29]. Using similar
constructions as in the case of fixed power schemes, we prove the following.

Theorem 2. For each n0 > 0, there is a set of n > n0 links LR on the real
line such that NDFirstFitPC achieves no better than Ω(log n) = Ω(log Δ

log log Δ)-
approximation for scheduling with power control.

Limitations of Current Wireless Scheduling Algorithms 79

The Construction. For the sake of simplicity, we assume in this section that
β > 2α: the lower bounds can be straightforwardly adapted for any constant
β > 1. The construction in this case is similar to the one for fixed power schemes
and is modeled after trees TR. Let us fix an integer R > 0. Each link i corresponds
to a vertex vi of the tree and all the links are arranged on the real line. The links
corresponding to layer t vertices have length 	R−t, where 	 = cR1/α = c log1/α n
and c > 1 is a large enough constant. The placement of links is similar to the
construction for fixed power schemes: each child link j of a link i is placed so
that sj = ri + d(i, j) = ri + li and rj = sj + lj , assuming link i has been placed.
It is known that if β > 2α, then the minimum distance between any two links
that are in the same slot must be greater than the length of the smaller one
[25, Theorem 4]; hence, link placement as above guarantees that any two links
corresponding to adjacent tree nodes cannot be in the same slot.

Analysis. As before, it can be shown that if the constant c is large enough then
all the left siblings of a link i appear to the left of link i.

Proposition 7. If link j is a left sibling of link k then link j and its descendants
are placed to the left from link k at a distance at least lk/2 from link k, provided
that 	 > 6.

Note that by the claim above, if links i and j are such that li > lj and j is
not a descendant of link i then d(i, j) > li/2.

For any link i, let Li
R denote the set of links in LR that are not longer than

link i, excluding the children of link i. Note that we do not need to consider links
longer than link i. The following claim is proved in a similar way as the analogous
results for fixed powers. In fact, the bounds here are stronger because we have
similar spacing between links as before, while the numerators of affectance are
smaller as we consider only the affectance by smaller links.

Proposition 8. a(Li
R, i) = O(c−α).

The rest of the analysis is identical to the case of fixed powers.

4 Lower Bounds for Uniform Randomized Algorithms

Next we consider a generalization of the distributed algorithm presented in [31].
In this algorithm, the sender nodes of the links act in synchronous rounds and
each sender node transmits with probability pi or waits with probability 1 − pi

in round i, where pi is the same for all links (but may change across the rounds).
Once the transmission succeeds in round i, the node is silent in subsequent
rounds.

Our construction in this case is modeled after a complete logb n-ary tree
with n nodes, where b > 0 is a constant, and is loosely based on [20, Theorem
6]. In [20], a similar lower bound is obtained for coloring interval graphs using
randomized distributed algorithms. It is worth to mention, however, that the
analysis of the algorithm here is done on sparser graphs (trees of cliques) than

80 M.M. Halldórsson et al.

in [20] (intersection graphs of laminar sets of intervals), but fortunately the
argument can be adapted.

The main challenge is to construct a family of network instances that are
structurally similar to logb n-ary trees. Namely, links correspond to adjacent
nodes in the tree are not Pδ-feasible together, but are otherwise well separated.

Theorem 3. Let δ ∈ (0, 1) and the probabilities pi(i = 1, 2, . . .) be fixed.
For each n0 > 0, there is a set of n > n0 links L on the real line s.t.
the randomized algorithm that uses probabilities pi(i = 1, 2, . . .) yields only a
Ω(log n

log log n) = Ω(log Δ
log log Δ) approximation for scheduling with power scheme Pδ,

w.h.p.

The Construction. We assume in this section that β = 1. We start with the
description of a preliminary set S of links simulating a rooted complete logb n-
ary tree over a set of n/M nodes, where b > 1 is a constant to be chosen and
M = O(nε) is a parameter with ε ∈ (0, 1) a constant. The main construction is
a simple extension of S. We will often mix the terminology of links and trees,
e.g. by speaking of children of links, hoping it does not cause confusion. We split
the tree into levels, where the root is at level 0 and the nodes at (tree-) distance
t from the root constitute level t. Note that the number of nodes at level t is
logtb n; hence, the number of levels is k = Θ

(
log(n/M)
log log n

)
= Θ

(
log n

log log n

)
. For each

t ≥ 0, the level-t links have uniform length 	t. We set

	t = c	t+1 logd(t+1) n (2)

for large enough constants c, d > 0. We describe the placement of links on the
real line level by level, starting from level 0, which contains a single link i. We
set si = 0, ri = si + 	0, as shown in Fig. 2. The children of link i have length 	1.
We place the logb n child links of length 	1 inside the interval occupied by the
link i, so that for any children j, k, it holds that (see Fig. 2):

1. d(j, k) ≥ e	1 for constant e > 1,
2. d(rj , ri) ≥ 	1−δ

0 	δ
1/2,

3. d(sj , ri) ≤ 	1−δ
0 	δ

1,
4. d(si, sj) ≥ 	0/2.

Fig. 2. The first step of the construction of Theorem 3.

Limitations of Current Wireless Scheduling Algorithms 81

This completes the first step of the construction of S. The idea behind the
constraints above is to guarantee the following properties: 1. the set of links
at the same level is feasible, 2. the children interfere with the parent, 3. the
grandchildren do not interfere with their grandparent, 4. the parent does not
interfere the children (or their descendants). At the second step, we construct
the children of level-1 links in a similar manner, and continue this process until
having n/M links. As shown below, the length ratios defined by (2) ensure that
the construction is correct and, in particular, that no link can be in the same
feasible set as any of its children. On the other hand, we prove that the affectance
of any level-t link by all other links, except level-t − 1 and level-t + 1 links, is
small. This implies that the set S can be scheduled in a constant number of slots
using the power scheme Pδ.

In order to complete the construction, we replace each link in S with its M
identical copies. Let L denote this set of links. Note that |L| = n. Note that the
optimum number of slots for scheduling L is at least M , as different copies of
the same link should be placed in different slots. Using the properties of set S,
we show that Θ(M) slots suffice.

Analysis: Properties of Set S. We start by proving the properties of the set
S. The first question to address is: what are the requirements on the lengths of
links for satisfying the constraints (1-4)? The first three constraints will hold if
	1−δ
0 	δ

1/2 > 3e	1 logb n, which holds if δ < 1 and the constants c, d in (2) are
large enough. The fourth constraint requires: 	0 − 	1−δ

0 	δ
1 > 	0/2, which holds

if 	0 > 21/δ	1. Thus, choosing the constants in (2) large enough guarantees the
constraints (1-4).

Now let us show that S can be scheduled in a constant number of slots. Let
St denote the set of level-t links for t ≥ 0.

Proposition 9. If the constants c, d in (2) are large enough, then for any level-t
link i (t ≥ 0), it holds that aPδ

(T, i) < 1, where T = S \ (St−1 ∪ St+1).

Proof. First, let us bound the affectance by links from St. Recall that those
links have equal lengths and their mutual distances are at least e	t, by the first
constraint of the construction. Thus we have:

aPδ
(St, i) < 2

∑

r≥1

(
	δ
t 	

1−δ
t

re	t

)α

= O(e−α),

where the factor of 2 accounts for links on both sides of i. The last term can be
made arbitrarily small if constant c is large enough, because α > 1.

Now, let us fix an s > t + 1. The number of level-s links is |Ss| = logsb n.
The distance from each level-s link to ri is at least 	1−δ

t 	δ
t+1/2, by construction.

Thus, we have:

aPδ
(Ss, i) ≤ |Ss| 	δα

s 	
(1−δ)α
t

(1−δ
t 	δ

t+1/2)α
= 2α|Ss|

(
	s

	t+1

)δα

.

82 M.M. Halldórsson et al.

Since the number of levels is O(log n), it is enough to have a(Ss, i) e′
log n for any

constant e′ > 0, which is provided if

	t+1 > 21/δ(e′|Ss| log n)1/(δα)	s = 21/δe′1/(δα) log(sb+1)/(αδ) n	s.

The last inequality holds if we set d ≥ 2b/(αδ) and c ≥ 21/δe′1/(δα) in (2).
Next, let us consider a layer s < t−1 for t > 0. Recall that the distance from

each link of Ls to ri is at least 	s/2, by construction. The affectance by Ss can

be bounded as follows: aPδ
(Ss, i) ≤ |Ss|	

δα
s 	

(1−δ)α
t

(s/2)α
< 2α|Ss|

(
	t

	s

)δα

.

Hence, again, we can easily get aPδ
(Ss, i) < e′

log n for any constant e′ > 0, by
tuning the constants c and d in (2). This yields the claim. ��

Thus, the set S can be scheduled into two feasible slots, by taking the union
of the odd-numbered levels in one slot and the union of the even-numbered levels
in another one. This directly implies that the set L can be scheduled in 2M slots.

Analysis: The Lower Bound. It remains to prove that for any sequence
pi ∈ (0, 1), i = 1, 2 . . . , the randomized algorithm using the probabilities pi

will schedule L in Ω(kM) = Ω(M · log n
log log n) = Ω(M · log Δ

log log Δ) slots, where the
last equality holds because Δ = poly(n). To that end, it will be more convenient
to analyze the algorithm in terms of a conflict graph G corresponding to L,
rather than the set of links itself. The graph G is constructed by replacing each
vertex of a complete logb n-ary tree on n/M vertices with a M -clique, where
the cliques corresponding to two adjacent vertices form a 2M -clique. Obviously,
χ(G) = 2M . Level-t vertices in G are the vertices corresponding to level-t ver-
tices in the tree. Let the probabilities pi, i = 1, 2, . . . be fixed. We consider
the following variant of the algorithm with relaxed constraints on transmissions.
In round i, each remaining vertex v of G selects itself with probability pi and
is removed from the graph in this round if it selects itself and no neighbor is
selected. Lower-bounding the runtime of this algorithm for G implies a similar
bound for the original algorithm running on the set L of links, because any fea-
sible set in L corresponds to an independent set in G, i.e. we essentially neglect
some part of the interference when dealing with G, which can only make the algo-
rithm use less slots. The argument below is similar to the proof of [20, Theorem
6]. The main idea is to show that whatever the values of pi are, the algorithm
will remove the vertices level by level, starting from the last level vertices. In
particular, it will take Θ(M) steps to start making essential impact on the next
level. This gives the desired bound Ω(k · M).

Let Tt denote the first time step when the size of a level-t M -clique is halved.
Let Ht denote the event that for all s ≤ t, the size of the smallest level-s clique
is at least (1 − 1/ log n)M before iteration Tt+1 + 1.

Proposition 10. Consider 0 ≤ t < k. Suppose that Tt+1 < M log n. Then

P[Ht] = 1 − O(n− M
130 log n+1).

Limitations of Current Wireless Scheduling Algorithms 83

Observe that given the event Ht, the difference between the times Tt+1 and Tt

is at least M/4 if n is large enough. Indeed, Ht implies that in round Tt+1,
the size of each clique in levels t, t − 1, . . . , 0 is at least 3M/4, and in order
for a clique of size 3M/4 to become less than M/2, at least M/4 rounds must
pass. Thus, P[Tt − Tt+1 ≥ M/4] ≥ P[Ht] = 1 − O(n− M

130 log n+1) holds for each
fixed t. By the union bound, the probability that the event Tt+1 − Tt ≥ M/4 is
violated for at least one t is at most O(k ·n− M

130 log n+1) = O(n− M
130 log n+2). Thus,

if M > 130c log n (recall that M = Θ(nε)), then with probability 1 − O(n2−c),
it takes at least k ·M/4 = Ω(M log n/ log log n) steps until all the vertices of the
graph are removed. This completes the lower bound argument.

References

1. Avin, C., Emek, Y., Kantor, E., Lotker, Z., Peleg, D., Roditty, L.: SINR diagrams:
convexity and its applications in wireless networks. J. ACM 59(4), 18 (2012)

2. Belke, L., Kesselheim, T., Koster, A.M.C.A., Vöcking, B.: Comparative study of
approximation algorithms and heuristics for SINR scheduling with power control.
In: Bar-Noy, A., Halldórsson, M.M. (eds.) ALGOSENSORS 2012. LNCS, vol. 7718,
pp. 30–41. Springer, Heidelberg (2013)

3. Bodlaender, M., Halldórsson, M.M.: Beyond geometry: towards fully realistic wire-
less models. In: PODC (2014)

4. Caragiannis, I., Fishkin, A.V., Kaklamanis, C., Papaioannou, E.: A tight bound
for online colouring of disk graphs. Theor. Comput. Sci. 384(2–3), 152–160 (2007)

5. Chafekar, D., Kumar, V., Marathe, M., Parthasarathy, S., Srinivasan, A.: Cross-
layer latency minimization for wireless networks using SINR constraints. In:
Mobihoc (2007)

6. Cruz, R.L., Santhanam, A.: Optimal routing, link scheduling, and power control
in multi-hop wireless networks. In: INFOCOM (2003)

7. Dams, J., Hoefer, M., Kesselheim, T.: Scheduling in wireless networks with
Rayleigh-fading interference. In: SPAA (2012)

8. Daum, S., Gilbert, S., Kuhn, F., Newport, C.: Broadcast in the ad hoc SINR model.
In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 358–372. Springer, Heidelberg
(2013)

9. Dinitz, M.: Distributed algorithms for approximating wireless network capacity.
In: INFOCOM (2010)

10. ElBatt, T., Ephremides, A.: Joint scheduling and power control for wireless ad-hoc
networks. In: INFOCOM (2002)

11. Fanghänel, A., Kesselheim, T., Räcke, H., Vöcking, B.: Oblivious interference
scheduling. In: PODC, August 2009

12. Fu, L., Liew, S.C., Huang, J.: Power controlled scheduling with consecutive trans-
mission constraints: complexity analysis and algorithm design. In: INFOCOM.
IEEE (2009)

13. Goussevskaia, O., Halldórsson, M.M., Wattenhofer, R.: Algorithms for wireless
capacity. IEEE/ACM Trans. Netw. 22(3), 745–755 (2014)

14. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in geometric SINR.
In: MobiHoc (2007)

15. Gudmundsdottir, H., Ásgeirsson, E.I., Bodlaender, M., Foley, J.T., Halldórsson,
M.M., Vigfusson, Y.: Measurement based interference models for wireless schedul-
ing algorithms. In: MSWiM (2014)

84 M.M. Halldórsson et al.

16. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theor.
46(2), 388–404 (2000)

17. Gyárfás, A., Lehel, J.: On-line and first fit colorings of graphs. J. Graph Theor.
12(2), 217–227 (1988)

18. Halldórsson, M.M.: Wireless scheduling with power control. ACM Trans. Algo-
rithms 9(1), 7 (2012)

19. Halldórsson, M.M., Holzer, S., Mitra, P., Wattenhofer, R.: The power of non-
uniform wireless power. In: SODA, pp. 1595–1606 (2013)

20. Halldórsson, M.M., Konrad, C.: Distributed algorithms for coloring interval graphs.
In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 454–468. Springer, Heidelberg
(2014)

21. Halldórsson, M.M., Mitra, P.: Nearly optimal bounds for distributed wireless
scheduling in the SINR model. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part II. LNCS, vol. 6756, pp. 625–636. Springer, Heidelberg (2011)

22. Halldórsson, M.M., Mitra, P.: Wireless capacity with oblivious power in general
metrics. In: SODA (2011)

23. Halldórsson, M.M., Mitra, P.: Wireless capacity and admission control in cognitive
radio. In: INFOCOM (2012)

24. Halldórsson, M.M., Mitra, P.: Wireless connectivity and capacity. In: SODA (2012)
25. Halldórsson, M.M., Tonoyan, T.: How well can graphs represent wireless interfer-

ence? In: STOC (2015)
26. Halldórsson, M.M., Wattenhofer, R.: Wireless communication is in APX. In:

Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg
(2009)

27. Jurdzinski, T., Kowalski, D.R., Rozanski, M., Stachowiak, G.: On the impact of
geometry on ad hoc communication in wireless networks. In: PODC (2014)

28. Katz, B., Volker, M., Wagner, D.: Energy efficient scheduling with power control
for wireless networks. In: WiOpt (2010)

29. Kesselheim, T.: A constant-factor approximation for wireless capacity maximiza-
tion with power control in the SINR model. In: SODA (2011)

30. Kesselheim, T.: Approximation algorithms for wireless link scheduling with flexible
data rates. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp.
659–670. Springer, Heidelberg (2012)

31. Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks.
In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 163–
178. Springer, Heidelberg (2010)

32. Lin, H., Schalekamp, F.: On the complexity of the minimum latency scheduling
problem on the Euclidean plane. arXiv preprint 1203.2725 (2012)

33. Maheshwari, R., Jain, S., Das, S.R.: A measurement study of interference modeling
and scheduling in low-power wireless networks. In: SenSys (2008)

34. Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless net-
works. In: INFOCOM (2006)

35. Rappaport, T.S.: Wireless Communications: Principles and Practice, 2nd edn.
Prentice Hall, Upper Saddle River (2002)

36. Son, D., Krishnamachari, B., Heidemann, J.: Experimental study of concurrent
transmission in wireless sensor networks. In: SenSys (2006)

37. Tonoyan, T.: On some bounds on the optimum schedule length in the SINR model.
In: Bar-Noy, A., Halldórsson, M.M. (eds.) ALGOSENSORS 2012. LNCS, vol. 7718,
pp. 120–131. Springer, Heidelberg (2013)

Deterministic Rendezvous with Detection
Using Beeps

Samir Elouasbi(B) and Andrzej Pelc

Département d’informatique, Université du Québec en Outaouais,
Gatineau, QC J8X 3X7, Canada

{elos02,pelc}@uqo.ca

Abstract. Two mobile agents, starting at possibly different times from
arbitrary nodes of an unknown network, have to meet at some node.
Agents move in synchronous rounds. They have different positive integer
labels. Each agent knows its own label but not the label of the other
agent. In traditional formulations of the rendezvous problem, meeting is
accomplished when agents get to the same node in the same round. We
seek a more demanding goal, called rendezvous with detection: agents
must become aware that the meeting is accomplished, simultaneously
declare this and stop. This awareness depends on how agents communi-
cate. We use two variations of a very weak communication model, called
the beeping model, introduced in [8]. In each round an agent either listens
or beeps. In the local beeping model, an agent hears a beep if it listens
in this round and if the other agent is at the same node and beeps. In
the global beeping model, an agent hears a loud (resp. a soft) beep if it
listens in this round and if the other agent is at the same node (resp. at
another node) and beeps.

We first present a deterministic algorithm of rendezvous with detec-
tion working, even for the local beeping model, in an arbitrary unknown
network in time polynomial in the size of the network and in the length
of the smaller label (i.e., in the logarithm of this label). However, in this
algorithm, agents spend a lot of energy: the number of moves that an
agent must make, is proportional to the time of rendezvous. It is thus
natural to ask if bounded-energy agents, i.e., agents that can make at
most c moves, for some integer c, can always achieve rendezvous with
detection as well, in bounded size networks. We prove that the answer
to this question is positive, even in the local beeping model but, perhaps
surprisingly, this ability comes at a steep price of time: the meeting time
of bounded-energy agents is exponentially larger than that of unrestricted
agents. By contrast, we show an algorithm for rendezvous with detection
in the global beeping model that works for bounded-energy agents (in
bounded-size networks) as fast as for unrestricted agents.

Keywords: Algorithm · Rendezvous · Detection · Synchronous ·
Deterministic · Network · Graph · Beep

A. Pelc—Supported in part by NSERC discovery grant 8136 – 2013 and by the
Research Chair in Distributed Computing of the Université du Québec en Outaouais.

c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 85–97, 2015.
DOI: 10.1007/978-3-319-28472-9 7

86 S. Elouasbi and A. Pelc

1 Introduction

The Background and the Problem. Two mobile agents, starting at arbi-
trary, possibly different times from arbitrary nodes of an unknown network,
have to meet at some node of it. This task is known as rendezvous [2]. The
network is modeled as a simple undirected connected graph, and agents move in
synchronous rounds: in each round an agent can either stay at the current node
or move to one of its neighbors. Hence in each round an agent is at a specific
node. Agents are mobile entities with unlimited memory; from the computa-
tional point of view they are modeled as Turing machines. In applications, these
entities may represent mobile robots navigating in a labyrinth or in corridors of
a building, or software agents moving in a communication network. The purpose
of meeting might be to exchange data previously collected by the agents at nodes
of the network, or to coordinate future network maintenance tasks, for example
checking functionality of websites or of sensors connected in a network.

Agents have different labels which are positive integers. Each agent knows its
own label, but not the label of the other agent. Agents do not know the topology
of the network. They do not know the starting node or activation time of the
other agent. They cannot mark the visited nodes in any way. Each agent appears
at its starting node at the time of its activation by the adversary.

We seek rendezvous algorithms that do not rely on the knowledge of node
labels, and can work in anonymous networks as well (cf. [2]). The importance
of designing such algorithms is motivated by the fact that, even when nodes are
equipped with distinct labels, agents may be unable to perceive them because of
limited sensory capabilities, or nodes may refuse to reveal their labels to agents,
e.g., due to security or privacy reasons. On the other hand, we assume that
edges incident to a node v have distinct labels in {0, . . . , d − 1}, where d is the
degree of v. Thus every undirected edge {u, v} has two labels, which are called
its port numbers at u and at v. Port numbering is local, i.e., there is no relation
between port numbers at u and at v. An agent entering a node learns the port
of entry and the degree of the node. Note that, in the absence of port numbers,
rendezvous is usually impossible, as all ports at a node look identical to an agent
and the adversary may prevent the agent from taking some edge incident to the
current node.

In traditional formulations of the rendezvous problem, meeting is accom-
plished when agents get to the same node in the same round. We want to achieve
a more demanding goal, called rendezvous with detection: agents must become
aware that the meeting is accomplished, simultaneously declare this and stop.
This awareness depends on how an agent can communicate to the other agent
its presence at a node. We use two variations of the beeping model of commu-
nication. In each round an agent can either listen, i.e., stay silent, or beep, i.e.,
emit a signal. In the local beeping model, an agent hears a beep in a round if it
listens in this round and if the other agent is at the same node and beeps. In
the global beeping model, an agent hears a loud beep in a round if it listens in
this round and if the other agent is at the same node and beeps, and it hears
a soft beep in a round if it listens in this round and if the other agent is at

Deterministic Rendezvous with Detection Using Beeps 87

some other node and beeps. The beeping model was introduced in [8] for vertex
coloring and used in [1] to solve the MIS problem. In the variant from [1,8] the
beeping entities were nodes rather than agents, and beeps of a node were heard
at adjacent nodes. The beeping model is widely applicable, as it makes small
demands on communicating devices, relying only on carrier sensing. In the case
of mobile agents, the local and the global beeping models are applicable in dif-
ferent settings. The local model is applicable even for agents having very weak
transmissions capabilities, limiting reception of a beep to the same node. The
global model is applicable for more powerful agents, that can beep sufficiently
strongly to be heard in the entire network, and having a listening capability
of differentiating a beep emitted at the same node from a beep emitted at a
different node.

It should be noted that our local beeping model is an extremely weak way
of communication between agents: they can communicate only when residing
simultaneously at the same node, they cannot hear when they beep, and messages
are the simplest possible. In fact, as mentioned in [8], beeps are an even weaker
way of communicating than using one-bit messages, as the latter ones allow
three different states (0,1 and no message), while beeps permit to differentiate
only between a signal and its absence. Clearly, without any communication,
rendezvous with detection is impossible, as agents cannot become aware of each
other’s presence at a node. Notice also that in the global beeping model it would
not be possible to remove the distinction between hearing a loud beep when the
beeping agent is at the same node and hearing a soft beep when the beeping
agent is at a different node. Indeed, the same strength of beep reception would
make it impossible for an agent A to inform the other agent B of the presence of
A at the same node, and hence rendezvous with detection would be impossible.
The global beeping model is at least as strong as the local one, in the sense that
any algorithm of rendezvous with detection working in the local model works
also in the global model, by simply ignoring soft beeps. We will see that the
converse is not true.

For a given network, the execution time of an algorithm of rendezvous with
detection, for agents with given labels starting in given rounds from given initial
positions, is the number of rounds from the activation of the later agent to the
declaration of rendezvous. For a given class of networks, the time of an algorithm
of rendezvous with detection is its worst-case execution time, over all networks
in the class, all initial positions, all pairs of distinct labels and all starting times.

Our Results. Our first result answers the basic question: Is it possible to achieve
rendezvous with detection in arbitrary networks, and if so, how fast it can be
done? We present a deterministic algorithm of rendezvous with detection work-
ing, even for the local beeping model, in an arbitrary unknown network in time
polynomial in the size of the network and in the length of the smaller label (i.e.,
in the logarithm of this label). We do not assume the knowledge of any upper
bound on the size of the network. The time complexity of our algorithm matches
that of the fastest, known to date, rendezvous algorithm without detection, con-
structed in [21].

88 S. Elouasbi and A. Pelc

However, in this algorithm, agents spend a lot of energy: the number of moves
of an agent is proportional to the time of rendezvous. On the other hand, in
many applications, e.g., when agents are mobile robots, they are battery-powered
devices, and hence the energy that an agent can spend on moves is limited. It is
thus natural to ask if bounded-energy agents, i.e., agents that can make at most c
moves, for some integer c, can always achieve rendezvous with detection as well.
This is impossible for some networks of unbounded size. Hence we rephrase the
question: Can bounded-energy agents always achieve rendezvous with detection
in bounded-size networks? We prove that the answer to this question is positive,
even in the local beeping model but, perhaps surprisingly, this ability comes at a
steep price of time: the meeting time of bounded-energy agents is exponentially
larger than that of unrestricted agents. By contrast, we show an algorithm for
rendezvous with detection in the global beeping model that works for bounded-
energy agents (in bounded-size networks) as fast as for unrestricted agents. Since
algorithms for bounded-energy agents can work only for networks of bounded
size, in these algorithms we assume knowledge of some such upper bound. Due
to space constraints, proofs will appear in the journal version of the paper.

Related Work. The vast literature on rendezvous can be divided according to
the mode in which agents move (deterministic or randomized) and the environ-
ment where they move (a network modeled as a graph or a terrain in the plane).
An extensive survey of randomized rendezvous in various scenarios can be found
in [2], cf. also [3,16]. Rendezvous of two or more agents in the plane has been
considered e.g., in [12,13].

Our paper is concerned with deterministic rendezvous in networks, surveyed
in [19]. In this setting a lot of effort has been dedicated to the study of the
feasibility of rendezvous, and to the time required to achieve this task, when
feasible. For instance, deterministic rendezvous with agents equipped with tokens
used to mark nodes was considered, e.g., in [17]. Time of deterministic rendezvous
of agents equipped with unique labels was discussed in [10,21]. Memory required
by the agents to achieve deterministic rendezvous has been studied in [4,14] for
trees and in [9] for general graphs. In [18] the authors studied tradeoffs between
the time of rendezvous and the total number of edge traversals by both agents
until the meeting.

Apart from the synchronous model used in this paper, several authors have
investigated asynchronous rendezvous in the plane [7,12,13] and in network envi-
ronments [5,11]. In the latter scenario the agent chooses the edge which it decides
to traverse but the adversary controls the speed of the agent. Under this assump-
tion rendezvous in a node cannot be guaranteed even in very simple graphs, and
hence the rendezvous requirement is relaxed to permit the agents to meet inside
an edge.

2 Preliminaries

In the rest of the paper the word “graph” means a simple connected undirected
graph modeling a network. The size of a graph is the number of its nodes.

Deterministic Rendezvous with Detection Using Beeps 89

In this section we recall two procedures known from the literature, that will be
used as building blocks in our algorithms. The aim of the first procedure is graph
exploration, i.e., visiting all nodes of a graph by a single agent. The procedure,
called EXP (m), is based on universal exploration sequences (UXS) [15], and
follows from the result of Reingold [20]. Given any positive integer m, it allows
the agent to visit all nodes of any graph of size at most m, starting from any
node of this graph, using R(m) edge traversals, where R is some polynomial.
After entering a node of degree d by some port p, the agent can compute the
port q by which it has to exit; more precisely q = (p + xi) mod d, where xi is
the corresponding term of the UXS.

The second procedure, due to Ta-Shma and Zwick [21], guarantees ren-
dezvous (without detection) in an arbitrary graph. Below we briefly sketch this
procedure, which will be used in our algorithm of rendezvous with detection for
unrestricted agents.

Let Z+ denote the set of positive integers and let Z∗ denote the set of integers
greater or equal than −1. For any positive integer L, Ta-Shma and Zwick define
a function ΦL : Z+ × Z

+ × Z
∗ −→ Z

∗. The function ΦL is applied by an agent
with label L in a graph G at a node v of G as follows. Let v0 = v and let
v1 be the node adjacent to v0, such that the edge {v0, v1} has port number
1 at v0. Suppose that nodes v0, v1, . . . , vt−1 are already constructed, so that
vi+1 either equals vi or is adjacent to vi. The node vt is defined as follows.
In the case when vt−1 = vt−2 and the degree of vt−1 is d, then vt = vt−1 if
ΦL(t, d,−1) = −1; if ΦL(t, d,−1) = q ≥ 0 then vt is the node adjacent to
vt−1 such that the port number at vt−1 corresponding to edge {vt−1, vt} is q.
In the case when vt−1 �= vt−2, the port number at vt−1 corresponding to edge
{vt−1, vt−2} is p and the degree of vt−1 is d, then vt = vt−1 if ΦL(t, d, p) = −1;
if ΦL(t, d, p) = q > 0 then vt is the node adjacent to vt−1 such that the port
number at vt−1 corresponding to edge {vt−1, vt} is q. Hence the application of
function ΦL at node v defines an infinite walk of the agent with label L in the
graph G. This walk starts at v and in each round t the agent either stays at the
current node or moves to an adjacent node by a port determined by the function
ΦL on the basis of the degree of the current node and of the port by which the
agent entered it. A round t is called active for the agent if vt �= vt−1 and it is
called passive if vt = vt−1.

The following result, proved in [21], guarantees rendezvous without detection
in polynomial time, if two agents apply functions ΦL corresponding to their
labels, in an unknown graph.

Theorem 1. There exists a polynomial P in two variables, with the following
property. Let G be an n-node graph and consider two agents with distinct labels
L1, L2 respectively, starting at nodes v and w of the graph in rounds t1 ≥ t2.
Let t ≥ t1 and let � be the smaller label. If agent with label Li applies function
ΦLi

at its starting node, for i = 1, 2, then agents are simultaneously at the same
node in some round of the time interval [t, t+P (n, log �)]. Moreover, rendezvous
occurs in a round which is active for one of the agents and passive for the other.
The same property remains true if one of the agents is inert and the other agent
applies its function ΦLi

.

90 S. Elouasbi and A. Pelc

3 Rendezvous with Detection of Unrestricted Agents

In this section we describe and analyze an algorithm of rendezvous with detection
which works for unrestricted agents, i.e., for agents that can spend an arbitrary
amount of energy on moves. It works even for the weaker of our two models, i.e.,
for the local beeping model. Our algorithm uses the following procedure which
describes an infinite walk of an agent with label L, based on the above described
application of the function ΦL.

Procedure Beeping walk. Consider an agent with label L starting at node v
of a graph G. Let W be the walk resulting from the application of ΦL in graph
G at node v. Each round of W is replaced by 2 consecutive rounds as follows.
If round t of W is passive, i.e., vt = vt−1, then this round is replaced by two
rounds in which the agent stays at vt and listens. If round t of W is active, i.e.,
vt �= vt−1, then this round is replaced by the following two rounds: in the first of
these rounds the agent goes to vt and beeps, and in the second of these rounds
the agent stays at vt and listens.

We now describe our algorithm for rendezvous with detection. It is executed
by each agent. Note that the execution of procedure Beeping walk, called by
the algorithm, depends on the label of the agent.

Algorithm. RV-with-detection
Perform procedure Beeping walk until you hear a beep
Let s be the round number when you first hear a beep
(counted since your wake-up)
Stay inert forever
Beep in round s + 1 listen in round s + 2
If you hear no beep in round s + 2 then

declare rendezvous in round s + 3 and stop
else

listen in round s + 3, declare rendezvous in round s + 4, and stop.

We now show that Algorithm RV-with-detection correctly accomplishes
rendezvous with detection and works in time polynomial in the size of the graph
and in the logarithm of the smaller label. The agent that starts later will be called
the later agent and the other one the earlier agent. If agents start simultaneously,
these qualifiers are attributed arbitrarily.

Theorem 2. Consider two agents with distinct labels L1, L2 respectively, start-
ing at nodes v and w of an n-node graph in possibly different rounds. Let � be the
smaller label. If both agents execute Algorithm RV-with-detection, then they
meet and simultaneously declare rendezvous in time O(P (n, log �)), i.e., polyno-
mial in n and in log �, after the start of the later agent.

4 Rendezvous with Detection of Bounded-Energy Agents

In this section we study rendezvous with detection of agents that can perform
a bounded number of moves. Let c be a positive integer. A c-bounded agent is

Deterministic Rendezvous with Detection Using Beeps 91

defined as an agent that can perform at most c moves. (Notice that we do not
restrict the number of beeps; indeed, the amount of energy required to make a
move is usually so much larger than the amount of energy required to beep that
ignoring the latter seems to be a reasonable approximation of reality in many
applications.) Can c-bounded agents, for some integer c, perform rendezvous with
detection in arbitrary graphs? The answer to this question is, of course, negative,
even if detection is not required. For any integer c, c-bounded agents starting at
distance larger than 2c cannot meet because at least one of them would have to
make more than c steps. Even if we assume that the initial distance between the
agents is 1, meeting of c-bounded agents is impossible in some graphs. Indeed,
consider two n-node stars whose centers are linked by an edge, with agents
starting at the centers of the stars. In the worst case, at least one of the agents
must make at least n − 1 steps before meeting (to find the connecting edge),
which is impossible for c-bounded agents, when n is large.

Thus, we rephrase the question: Can c-bounded agents always achieve ren-
dezvous with detection in bounded-size graphs? More precisely, for any integer n,
does there exist an integer c, such that c-bounded agents can achieve rendezvous
with detection in all graphs of size at most n? (Notice that, for example, Algo-
rithm RV-with-detection cannot be used here. In this algorithm, the number
of steps performed by an agent with label L is proportional to P (n, log L), and
hence, even when the size n of the graph is bounded, this number can be arbi-
trarily large.) The answer to our question turns out to be positive, even in the
local beeping model. Below we describe an algorithm that performs this task.

4.1 Bounded-Energy Agents in the Local Beeping Model

Our algorithm uses the following procedure, for an integer parameter n.

Procedure Beeping exploration (n). Let EXP (n) be the procedure
described in Sect. 2 that permits exploration of all graphs of size at most n.
Replace each round r of EXP (n) by three consecutive rounds as follows. If in
round r of EXP (n) the agent takes port p to move to node w, then in the first
of the three replacing rounds the agent takes port p to move to w and beeps,
and in the second and third of the replacing rounds it stays at w and listens.

Hence, in each of the three rounds replacing a round r of EXP (n), the agent
is at the same node in Procedure Beeping exploration (n) as it is in Procedure
EXP (n) in round r.

We now describe our algorithm for rendezvous with detection of bounded-
energy agents, executed by an agent with label L in a graph of size at most n.
Recall that R(n) is the execution time of EXP (n). The idea of the algorithm
is the following. Its main block consists of two executions of Procedure Beeping
exploration (n) between which a long waiting period is inserted, during which
the agent is silent (it listens) and inert. The length of this period depends on the
label of the agent. We will prove that, regardless of the delay between the starting
times of the agents, an entire execution of Procedure Beeping exploration (n)
of one of the agents must either fall within the waiting period of the other agent,

92 S. Elouasbi and A. Pelc

or must be executed after both executions of this procedure by the other agent.
This main block of the algorithm executed by a given agent is interrupted in one
of the two cases: either when (a) the agent hears a beep during its waiting period
or after completing its main block, or when (b) it hears beeps in two consecutive
rounds during one of the executions of Procedure Beeping exploration (n).
In case (a) the agent responds by beeps in two consecutive rounds, declares
rendezvous in the next round and stops. In case (b) it declares rendezvous in the
next round and stops.

Below we give the pseudo-code of the algorithm executed by an agent with
label L in a graph of size at most n. During the executions of Procedure Beeping
exploration (n), a boolean variable waiting is set to false, and during the wait-
ing period and after the second execution of Procedure Beeping exploration
(n) it is set to true. We use a boolean valued function condition which takes
the variable waiting as input, and returns, after each round, the boolean value
of the expression (waiting and you hear a beep) or (¬waiting and you hear
beeps in two consecutive rounds)

Algorithm. Bounded-energy-RV-with-detection

waiting := false
Perform the following sequence of actions in consecutive rounds
and verify the value of condition in each round
until the first round when condition becomes true

Perform Procedure Beeping exploration (n)
waiting := true
Stay inert for 6L · R(n) rounds and listen
waiting := false
Perform Procedure Beeping exploration (n)
waiting := true
Stay inert forever and listen

s := the round number when condition becomes true
(counted since your wake-up)

if waiting then
beep in rounds s + 1 and s + 2
declare rendezvous in round s + 3 and stop

else
declare rendezvous in round s + 1 and stop.

Theorem 3. For any positive integer constant n there exists a positive integer
c, such that Algorithm Bounded-energy-RV-with-detection can be executed by
c-bounded agents in any graph of size at most n. If two such agents with distinct
labels execute this algorithm in such a graph, then they meet and simultaneously
declare rendezvous in time O(�∗) after the start of the later agent, where �∗ is
the larger label.

It is interesting to compare the time sufficient to complete the task of ren-
dezvous with detection, given by Algorithm RV-with-detection for unrestricted

Deterministic Rendezvous with Detection Using Beeps 93

agents, with the time given by Algorithm Bounded-energy-RV-with-detection
for bounded-energy agents. This comparison is meaningful on the class of graphs
for which both types of agents can achieve rendezvous with detection, i.e., for
graphs of bounded size. Consider the class Cn of graphs of size at most n,
for some constant n, and consider c-bounded agents for some integer c large
enough to achieve rendezvous with detection on the class Cn using Algorithm
Bounded-energy-RV-with-detection. By Theorem 2, unrestricted agents can
accomplish rendezvous with detection in time O(P (n, log �)), i.e., since n is con-
stant, in time polylogarithmic in the smaller label. By contrast, by Theorem 3,
bounded-energy agents can accomplish rendezvous with detection in time O(�∗),
i.e., linear in the larger label. It is natural to ask if this exponential gap in time,
due to energy restriction, is unavoidable. The following lower bound shows that
the answer to this question is yes. In fact, this lower bound holds even for the
two-node graph, even with simultaneous start of the agents, and even for ren-
dezvous without detection.

Theorem 4. Let c be a positive constant. In the local beeping model, the time
of rendezvous on the two-node graph of c-bounded agents with labels from the set
{1, . . . , M} is Ω(c

√
M).

Theorem 4 implies that in the local beeping model, any rendezvous algorithm
for bounded-energy agents must have time at least Ω(c

√
�∗), where �∗ is the larger

label and c is some constant. Theorems 2, 3 and 4 imply the following corollary.

Corollary 1. Rendezvous with detection of bounded-energy agents is feasible in
the class of bounded-size graphs in the local beeping model, but its time must
be exponentially larger than the best time of rendezvous with detection of unre-
stricted agents in this class of graphs.

4.2 Bounded-Energy Agents in the Global Beeping Model

Our final result shows that in the stronger of our two models, i.e., the global
beeping model, the lower bound on time proved in Theorem 4 does not hold
anymore. In fact, we show that in this model, bounded-energy agents can meet
with detection in the class of bounded-size graphs in time logarithmic in the
smaller label. We will also prove that this time is optimal even in the two-node
graph.

The high-level idea of the algorithm is to first break symmetry between the
agents in time logarithmic in the smaller label, without making any moves,
using the possibility of hearing the beeps of the other agent, wherever it is in the
graph. Then one of the agents remains idle and the other agent finds it using a
bounded number of moves. Correct declaration of rendezvous is possible due to
the distinction between hearing loud and soft beeps.

The main conceptual difference between Algorithm RV-with-detection
(that works even for the local model) and our present algorithm for the global
model is that the former breaks symmetry between agents while they move, which

94 S. Elouasbi and A. Pelc

results in the number of moves polynomial in two parameters: n (which can be
neglected for bounded n) and in the logarithm of the smaller label. Thus the
total number of moves can be arbitrarily large even for bounded-size networks,
and hence impossible for bounded-energy agents. By contrast, our present algo-
rithm uses the possibility of hearing the other agent regardless of its position in
the graph to break symmetry between the agents with no moves, then fixes one
agent and uses an exploration algorithm for the other agent, instead of using
a rendezvous algorithm. In bounded-size networks this makes a crucial differ-
ence because, unlike rendezvous, exploration can be performed using a bounded
number of moves, and hence can be executed by bounded-energy agents.

We first define the following transformations of the label L of an agent. Let
(c1 . . . ck) be the binary representation of the label L. Let T1(L) be the binary
sequence (01c1c1c2c2 . . . ckck01), and let T2(L) be the result of replacing each
bit 0 of T1(L) by the string (00) and each bit 1 by the string (10). Note that the
length of the binary string T2(L) is 2(2k + 4) ∈ O(log L).

The following procedure, executed by an agent with label L and called upon
the activation of the agent, does not involve any moves and permits to break
symmetry between any two agents with different labels.

Procedure. Symmetry-breaking

Let T2(L) = (d1 . . . ds)
i := 1
repeat in consecutive rounds until you hear a beep

if (i ≤ s and di = 1) then beep else listen
i := i + 1

Let r be the round when you first hear a beep (counted since your wake-up)
if you beeped in round r − 1 then

declare round r + 1 red
role := waiting

else
beep in round r + 1
declare round r + 2 red
role := walking;

if the beep you heard was loud then
declare rendezvous in the red round and stop;

Lemma 1. Upon completion of Procedure Symmetry-breaking, both agents
declare the same round to be red. For one of the agents round red is the next
round after it heard a beep for the first time, and this agent sets role := waiting.
For the other agent round red is two rounds after it heard a beep for the first
time, and this agent sets role := walking. The round declared red is O(log �)
rounds after the activation of the later agent, where � is the smaller label.

We will also use a modified version of Procedure Beeping-exploration,
described at the beginning of this section, for an integer parameter n.

Deterministic Rendezvous with Detection Using Beeps 95

Procedure Modified-beeping-exploration (n). Let EXP (n) be the proce-
dure described in Sect. 2 that permits exploration of all graphs of size at most
n. Replace each round r of EXP (n) by two consecutive rounds as follows. If in
round r of EXP (n) the agent takes port p to move to node w, then in the first
of the two replacing rounds the agent takes port p to move to w and beeps, and
in the second replacing round it stays at w and listens.

Hence, in each of the two rounds replacing a round r of EXP (n), the agent
is at the same node in Procedure Modified-beeping-exploration (n) as it is
in Procedure EXP (n) in round r.

Below we give the pseudo-code of the algorithm executed by an agent with
label L in a graph of size at most n.

Algorithm. Fast-bounded-energy-RV-with-detection

Perform Procedure Symmetry-breaking
if role = waiting then

stay idle and listen until you hear a loud beep
let t be the round when you first hear a loud beep
(counted since your wake-up)
beep in round t + 1, declare rendezvous in round t + 2, and stop

else
perform Procedure Modified-beeping-exploration (n)
starting in round red
until you hear a loud beep
let t be the round when you first hear a loud beep
(counted since your wake-up)
declare rendezvous in round t + 1, and stop.

Theorem 5. For any positive integer constant n there exists a positive integer
c, such that Algorithm Fast-bounded-energy-RV-with-detection can be exe-
cuted by c-bounded agents in any graph of size at most n, in the global beeping
model. If two such agents with distinct labels execute this algorithm in such a
graph, then they meet and simultaneously declare rendezvous in time O(log �)
after the start of the later agent, where � is the smaller label. This time is opti-
mal, even in the two-node graph.

5 Conclusion

We presented three algorithms of rendezvous with detection. The first two of
them work even in the local beeping model: one for unrestricted agents in arbi-
trary graphs, and the other for bounded-energy agents in bounded-size graphs.
We showed that in the latter case the meeting time of bounded-energy agents
must be exponentially larger than the best time of rendezvous with detection
of unrestricted agents. More precisely, in order to meet in bounded-size graphs,
bounded-energy agents must use time polynomial in the larger label, while unre-
stricted agents can meet in time polylogarithmic in the smaller label. The third

96 S. Elouasbi and A. Pelc

algorithm works for bounded-energy agents only in the global beeping model,
but it is much faster: it enables such agents to perform rendezvous with detec-
tion in bounded-size graphs in time logarithmic in the smaller label, which is
optimal.

Rendezvous with detection may be considered as a preprocessing procedure
for other important tasks in graphs. One of them is the task of constructing a
map of an unknown graph by an agent. It is well known that this task cannot
be accomplished by a single agent operating in a graph, if it cannot mark nodes
(e.g., a single agent cannot learn the size of an oriented ring). For the same reason
it cannot be accomplished by two non-communicating agents, as they would not
be aware of the presence of each other, and thus each of them would act as
a single agent. By contrast, our algorithms of rendezvous with detection in the
beeping model can serve, with a simple addition, to achieve map construction by
the agents: the algorithm working for arbitrary agents can be used to accomplish
this task in arbitrary graphs, and the algorithms working for bounded-energy
agents can be used to accomplish this task in bounded-size graphs. This addition
can be described as follows. Note that, in all our algorithms, at the time when
agents declare rendezvous, symmetry between them is broken: in the case of
algorithms in the local model, one of the agents heard two beeps at the meeting
node, and the other agent heard only one beep, and in the case of the algorithm
in the global model, one of the agents has role set to waiting and the other
to walking. Hence agents can start simultaneously the following procedure in
the round after rendezvous declaration. The first agent stays inert and acts as a
stationary token, beeping in every second round, while the second agent silently
executes exploration with a stationary token (at the end of which it acquires
the map of the graph), cf. e.g., [6], replacing each exploration round by two
rounds, in the first of which it moves as prescribed and in the second it stays
inert. Beeps of the inert agent allow the circulating silent agent to recognize the
token at each visit and complete exploration and map construction. At the end
of the exploration, the second agent is with the first one and can inform it of the
end of the exploration by beeping in the last round, in which the first agent is
silent (listens). Then the roles of the agents may change to allow the previously
inert agent to acquire the map in its turn. (Note that an agent cannot efficiently
communicate the already acquired map due to the restrictive communication
model.)

References

1. Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a
maximal independent set. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol.
6950, pp. 32–50. Springer, Heidelberg (2011)

2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. International
Series in Operations Research and Management Science. Kluwer Academic Pub-
lisher, Dordrecht (2002)

3. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Oper. Res. 49, 107–
118 (2001)

Deterministic Rendezvous with Detection Using Beeps 97

4. Baba, D., Izumi, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Space-optimal
rendezvous of mobile agents in asynchronous trees. In: Patt-Shamir, B., Ekim, T.
(eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 86–100. Springer, Heidelberg (2010)

5. Bampas, E., Czyzowicz, J., G ↪asieniec, L., Ilcinkas, D., Labourel, A.: Almost opti-
mal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer,
Heidelberg (2010)

6. Chalopin, J., Das, S., Kosowski, A.: Constructing a map of an anonymous graph:
applications of universal sequences. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.)
OPODIS 2010. LNCS, vol. 6490, pp. 119–134. Springer, Heidelberg (2010)

7. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: gathering. SIAM J. Comput. 41, 829–879 (2012)

8. Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer,
Heidelberg (2010)

9. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space
rendezvous in arbitrary graphs. Distrib. Comput. 25, 165–178 (2012)

10. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in
graphs. Algorithmica 46, 69–96 (2006)

11. Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial
cost. In: Proceedings of the 32nd ACM Symposium on Principles of Distributed
Computing (PODC 2013), pp. 92–99 (2013)

12. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005)

13. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous of two robots
with constant memory. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013.
LNCS, vol. 8179, pp. 189–200. Springer, Heidelberg (2013)

14. Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous
in trees. ACM Trans. Algorithms, 9 (2013). Article 17

15. Koucký, M.: Universal traversal sequences with backtracking. J. Comput. Syst.
Sci. 65, 717–726 (2002)

16. Kranakis, E., Krizanc, D., Morin, P.: Randomized Rendez-Vous with limited mem-
ory. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008.
LNCS, vol. 4957, pp. 605–616. Springer, Heidelberg (2008)

17. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous
in a ring. In: Proceedings of the 23rd International Conference on Distributed
Computing Systems (ICDCS 2003), pp. 592–599 (2003)

18. Miller, A., Pelc, A.: Time versus cost tradeoffs for deterministic rendezvous in
networks. In: Proceedings of 33rd Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC 2014), pp. 282–290 (2014)

19. Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks
59, 331–347 (2012)

20. Reingold, O.: Undirected connectivity in log-space. J. ACM 55, 1–24 (2008)
21. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly

universal exploration sequences. In: Proceedings of 18th ACM-SIAM Symposium
on Discrete Algorithms (SODA 2007), pp. 599–608 (2007)

Minimizing Total Sensor Movement for Barrier
Coverage by Non-uniform Sensors on a Line

Robert Benkoczi1, Zachary Friggstad2, Daya Gaur1, and Mark Thom1(B)

1 Mathematics and Computer Science, University of Lethbridge,
Lethbridge, AB T1K 3M4, Canada

{benkoczi,gaur,thom}@cs.uleth.ca
2 Department of Computing Science, University of Alberta,

Edmonton, AB T6G 2E8, Canada
zacharyf@cs.ualberta.ca

Abstract. Barrier coverage is a cost effective approach for intruder
detection applications. It relies on monitoring the perimeter, or barrier,
around the area of interest by placing sensors at appropriate locations on
the barrier. In this paper we consider the problem of barrier coverage of
a line segment by moving sensors along the line containing the segment.
We extend the results existing in the literature by considering the case of
non-uniform sensors placed at initial positions that do not overlap with
the interval of interest.

1 Introduction

One of the fundamental applications of wireless sensor networks is to provide
coverage of an area of interest. When the purpose for coverage is surveillance,
a cost effective approach is to monitor the perimeter of the area in order to
detect intruders. This type of coverage is called barrier coverage. Kumar et al.
[8,9] were among the first to investigate barrier coverage problems. Their work
has motivated a large number of contributions ranging from density estimates of
random deployments [1] to relaxations of coverage requirements that are suitable
for the study of localized algorithms [2], to name just a few examples.

For large scale applications such as border protection, achieving full coverage
by randomly deploying sensors may be too expensive. To reduce the number of
sensors needed for barrier coverage, Czyzowicz et al. [4,5] considered the barrier
coverage problem with mobile or relocatable sensors. The idea is that, once the
initial deployment is complete, the deployed sensors can adjust their position
to attain coverage and thus the deployment of additional sensors is not needed.
Mobility also allows flexibility in choosing areas along the border that need
coverage if full coverage is not an option.

R. Benkoczi and D. Gaur—These authors acknowledges the support for this research
received from an NSERC Discovery Grant.
Z. Friggstad—This research was undertaken, in part, thanks to funding from the
Canada Research Chairs program.

c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 98–111, 2015.
DOI: 10.1007/978-3-319-28472-9 8

Minimizing Total Sensor Movement for Barrier Coverage 99

The optimization problems defined by Czyzowicz et al. [4,5] are one dimen-
sional problems where the barrier is modeled by a line segment and sensors are
initially located on the line containing the segment. The goal is to compute new
positions for a subset of the sensors so that every point in the target line segment
is within the sensing range of at least one sensor. Several objective functions have
been studied: minimizing the maximum distance (MinMax) traveled by one sen-
sor [5], minimizing the number (MinNum) of sensors moved [10], and minimizing
the total (MinSum) travel distance [4].

Problem MinMax was shown by Chen et al. in [3] to be solved in time
O(n2 log n), where n represents the number of sensors. More efficient algorithms
are possible if the sensors are uniform (they have the same covering range).
Czyzowicz et al. [5] distinguish two cases for the barrier problem with uniform
mobile sensors: complete coverage or R ≥ L and incomplete coverage or R < L,
where R represents the sum of covering ranges of all sensors and L represents
the length of the interval to be covered. They give exact algorithms with time
complexity O(n) for the case of R < L and O(n2) for the case R ≥ L. For the
later case, they show that the running time can be improved at the expense of
solution quality. They give a (1+ε) fully polynomial time approximation scheme
(FPTAS) with time complexity sub-quadratic in n and a 2-approximation with
time complexity linear in n. An exact algorithm with time complexity O(n log n)
for uniform sensors in the case R ≥ L was later proposed by Chen et al. [3].

Two dimensional analogues of MinMax and MinSum are considered in [6],
where sensors of arbitrary ranges are located at arbitrary points in the plane and
both Euclidean and rectilinear distances are considered. Barriers are modeled as
line segments in the plane, and variants of the MinMax and MinSum problems
are established according to the number of barriers, whether multiple barriers
are oriented parallel or perpendicular to one another and whether sensors may
move arbitrarily or are restricted to move to the closest point on a barrier.
Dobrev et al. [6] develop exact algorithms for solving the MinMax and MinSum
problems for the 1 barrier and k parallel barrier restricted movement cases, and
show the NP-hardness of MinMax and MinSum in all other cases.

Surprisingly, the combinatorial structure of the MinSum problem is not com-
pletely understood yet. Czyzowicz et al. [4] proved the NP-hardness for the
general problem with non-uniform sensing ranges. We note that their proof con-
structs a MinSum instance where the initial position for some of the sensors
is inside the target line segment. The proof also indicates that constant factor
approximations for the general MinSum problem are not possible unless P = NP.
Except for this inapproximability result, the only restricted instances solved are
those with uniform sensors, for which an exact algorithm with time complexity
O(n) for the case of R < L and an O(n2) exact algorithm for the case R ≥ L
are possible.

We note that in contrast to our approach and those of [5,8], local algorithms
for barrier coverage problems have been studied, in [7].

Our Contributions: We extend the set of instances for the MinSum barrier prob-
lem with movable sensors that can be solved by investigating restrictions on

100 R. Benkoczi et al.

another parameter of the problem: the initial positions of the sensors. We prove
that the problem remains NP-hard even when the initial position of the sensors
is such that the sensing areas do not intersect the target interval. We give a fully
polynomial time approximation scheme (FPTAS) based on dynamic program-
ming for MinSum with non-uniform sensor ranges when the initial positions of
the sensing intervals are on one side of the target interval. We then modify the
dynamic programming algorithm to process intervals in reverse order and extend
the FPTAS to instances where the sensors lie on both sides of the target interval.

In light of the negative result of Czyzowicz et al. [4] concerning the implau-
sibility of constant factor approximations for the general case, and of the fact
that the natural greedy algorithm for MinSum has an Ω(n) performance ratio
(details omitted), our result is best in some sense.

1.1 Notation and Problem Definitions

Suppose we have a region R in the geometric plane with a simple, closed bound-
ary. We are given a set of n wireless sensors Si located at predesignated points
xi. Each sensor Si has a range of detection specified by ri > 0, and triggers a
central alarm upon detecting movement at a point x with Euclidean distance
d(xi, x) ≤ ri.

A barrier coverage of a region is any placement of sensors in the plane to
detect intruders across a maximal portion of the region’s boundary. An opti-
mization problem in this setting is to minimize the total distance traveled by
all sensors such that every point on the boundary is within the sensing range
of some sensor. We refer to the problem as the Minimum Sum Distance, or
MinSum, problem as defined in [4,5].

We consider the one-dimensional version of the MinSum problem in which
the barrier is represented by a line segment. Sensors are represented by points
on the line, and sensor movements are restricted to the line. As argued in the
introduction, we study a new restriction of the MinSum barrier coverage prob-
lem where the sensor ranges do not intersect the target line segment but the
ranges of the sensors are arbitrary. We call this problem the one-dimensional
DisjointMinSum problem.

We adapt the notation from [5]. The barrier is a closed interval I = [0, L] on
the real line, for some L > 0. Each sensor Si is specified by a single point xi on
the real line, and its sensing range is given by interval I(Si, xi) = [xi−ri, xi+ri].
After moving Si by mi units, the resulting range of Si is I(Si, xi + mi) = [xi +
mi − ri, xi + mi + ri]. The sign of mi determines the direction of movement on
the line.

The DisjointMinSum problem is defined for n sensors with initial positions
x1 ≤ x2 ≤ . . . ≤ xn where xi − ri > L or xi + ri < 0 for all 1 ≤ i ≤ n as

min
{ ∑

1≤i≤n

|mi|
}

subject to [0, L] ⊆
n⋃

i=1

I(Si, xi + mi). (1)

Minimizing Total Sensor Movement for Barrier Coverage 101

2 NP-completeness Results

2.1 NP-hardness of LeftDisjointMinSum

In order to motivate the development of an FPTAS, we show that LeftDis-
jointMinSum is NP-complete by reducing from the Partition problem, which is
defined in the following way. Given a sequence of positive integers a1, . . . , an and
an integer B such that

∑
1≤i≤n ai = 2B, find a subset of integers S such that∑

ai∈S ai = B.
From the instance ({ai}1≤i≤n, B), we create a barrier from the line segment

[0, B], and for each integer ai > 0, we create a sensor with range ri = ai/2 and
distance di = |xi|−ri ≥ 0 from 0, xi < 0, for xi determined later in the reduction.
Let S be any subset of sensors whose total range covers all of the barrier. Using
the formula for the cheapest movement covering the barrier completely, we have

c(S) = |S| · B −
|S|∑

i=1

(|S| − i) · asi
+

|S|∑

i=1

dsi
(2)

where the sequence {si}1≤i≤|S| indexes the intervals of S, and is again ordered
so that rs1 ≥ rs2 ≥ . . . ≥ rs|S| .

We choose di in order to ensure that, for any covering sensor subsets S and
S′, l(S) > l(S′) implies c(S) > c(S′). An optimal algorithm for DisjointMinSum
then gives an optimal algorithm for the Partition problem. We need only apply
the optimal algorithm for DisjointMinSum to the reduction of the Partition
problem instance and check that the solution has total length B.

To that end, we decide the values of di. Suppose S, S′ are covering subsets
of sensors satisfying l(S) > l(S′). Using the cost formula, we get

c(S) − c(S′) = (|S| − |S′|) · B −
|S|∑

i=1

(|S| − i) · asi

+
|S′|∑

i=1

(|S′| − i) · as′
i
+

|S|∑

i=1

dsi
−

|S′|∑

i=1

ds′
i

= B

|S|∑

i=1

(
dB

si
+ 1 − |S| − i

B
· asi

)

− B

|S′|∑

j=1

(
dB

s′
j
+ 1 − |S′| − j

B
· as′

j

)

where we define dB
i = di/B. Then c(S) − c(S′) > 0 is equivalent to

|S|∑

i=1

(
dB

si
+ 1 − |S| − i

B
· asi

)
>

|S′|∑

j=1

(
dB

s′
j
+ 1 − |S′| − j

B
· as′

j

)

102 R. Benkoczi et al.

Let dB
i = (2B + 1) · ai − 1 > 0. In particular, we have

|S|∑

i=1

dB
si

+ 1 − |S| − i

B
· asi

=
|S|∑

i=1

(2B + 1 − |S| − i

B
) · asi

>

|S|∑

i=1

2B · asi

where the inequality holds by the following argument. |S| − i < |S| ≤ B, and so
1 − (|S| − i)/B > 0. With the assumptions as1 > 0 and |S| ≥ 1, we establish
strict inequality.

From l(S) − l(S′) ≥ 1, we get that

|S|∑

i=1

2B · asi
−

|S′|∑

j=1

2B · as′
j

= 2B · (l(S) − l(S′)) ≥ 2B

It is easy to see that

2B ≥
|S′|∑

j=1

(
1 − |S′| − j

B

)
· as′

j

giving c(S) > c(S′), combined with the earlier inequalities.

3 Approximation Schemes

3.1 An FPTAS for LeftDisjointMinSum

We devise an FPTAS for the problem when the initial sensor placements lie
entirely to one side of the barrier. By symmetry, we suppose that all sensors lie to
the left of the barrier. We refer to this restricted problem as LeftDisjointMinSum.

We note that in an optimum solution, no two sensors that are moved to form
the barrier will overlap; they are packed from L leftward. Specifically, if S is an
optimum solution and if the sensors s1, . . . , s|S| are indexed in increasing order
of their final position, then xs1 + rs1 + ms1 = L, xs2 + rs2 + ms2 = L − 2rs1 ,
xs3 + rs3 + ms3 = L − 2rs1 − 2rs2 , and so on. This scheme of packing, along
with the following order preservation lemma, is key in structuring the dynamic
programming algorithm that is the basis of our FPTAS. The proof is found in
the appendix.

Lemma 1. Let the sensors be indexed so that r1 ≥ r2 ≥ . . . ≥ rn. Then an
optimum solution consists of a subset of sensors ordered in their final positions
according to this indexing scheme in such a way that

xi + mi < xj + mj if mi > 0, mj > 0, and ri ≤ rj .

where mi represents the distance moved by the i-th sensor in the optimum
solution.

Theorem 1. There is an FPTAS for problem LeftDisjointMinSum with run-
ning time O(n5

ε2).

Minimizing Total Sensor Movement for Barrier Coverage 103

We briefly discuss some intuition before presenting the algorithm and proof.
If L and all the values ri are integers then it is easy to get a pseudo-polynomial
time exact solution. For various integers x and i, we could simply compute the
cheapest solution that covers the range [x,L] using the i longest intervals using
dynamic programming. However, this is inefficient for instances with large values.

However, we cannot simply scale the ri values: if we scaled them down then
the optimum solution may no longer be feasible in the scaled instance and if
we scale them up then the solution we find may no longer be feasible when we
revert to the original ri values. Instead, we use a different approach where the
dynamic programming table is indexed with a budget that must pay for the cost
of the partial solutions, and we scale this budget.

Proof (of Theorem 1). We assume that the sensors are ordered in decreasing
order of range: r1 ≥ r2 ≥ . . . ≥ rn. We describe a recurrence that can be used to
determine the exact optimum solution. Following this, we discuss how to modify
this approach to find near optimum solution in poly(n, 1/ε) time.

For any 0 ≤ i ≤ n and any value z ≥ 0, we let f∗(i, z) be the smallest value
such that we can cover the interval [f∗(i, z), L] using only the first i sensors
(according to the sorted order) with total cost at most z.

Note that f∗(i, z) satisfies the following recurrence relation.

f∗(i, z) = max{min{f∗(i − 1, z), g∗(i, z)}, 0}
where for i > 0 and z ≥ 0 we let

g∗(i, z) := min
0≤x≤z

{f∗(i − 1, z − x) − 2ri : |f∗(i, z − x) − ri − xi| ≤ x}.

Intuitively, this is capturing the idea that either the solution witnessing f(i, z)
uses Si (in which case the min in g is “guessing” how much is spent from z in
moving Si) or else it does not (meaning f(i, z) = f(i−1, z)). We will not actually
use this recurrence in our final algorithm, so we will not prove these claims.

The cost OPT of the optimal complete coverage obtained from among all n
sensors is then

OPT = min
z≥0

{z | f∗(n, z) ≤ 0}

We now present our FPTAS. We first find a value Z that coarsely approxi-
mates the optimum solution. This will be used to discretize the cost of building
partial solutions. Specifically, Z is cost of the coverage returned by the following
greedy algorithm.

1. Sort the sensors in ascending order of |xi|.
2. For each sensor, compute the length-greedy coverage among all sensors of

lesser or equal barrier distance |xi|, if one exists. A length-greedy coverage
moves the sensor of greatest range ri to the rightmost position of the barrier,
and packs further sensors to the rightmost uncovered spot by next greatest ri.

3. Once all length-greedy coverages have been computed, choose the coverage
of least cost and call this cost Z.

The proof of the lemma is found in the appendix.

104 R. Benkoczi et al.

Lemma 2. OPT ≤ Z ≤ n · OPT .

For ε > 0, let ζ = εZ/(n(n + 1)). We slightly modify the recurrence for f∗.
For integers 0 ≤ i ≤ n and 0 ≤ k ≤ �n2/ε� we define values f(i, kζ) and g(i, kζ)
recursively by

f(i, kζ) = min{f(i − 1, kζ), f(i − 1, (k − 1)ζ), g(i, kζ)}
where

g(i, kζ) = min
1≤c≤k

{f(i − 1, (k − c)ζ) − 2ri

s.t. |f(i − 1, (k − c)ζ) − ri − xi| ≤ cζ}
We consider f(i, kζ) = L if i = 0 or k = 0. These f -values approximate the true
f∗ values in the following sense.

Lemma 3. For every 0 ≤ i ≤ n and every integer 0 ≤ k, there is a barrier for
the interval [f(i, kζ), L] that uses the first i sensors and has movement cost at
most k · ζ.

Conversely, for x ≥ 0 suppose there is a barrier for an interval [x,L] that
uses the first i sensors with total movement cost at most z. Let k be such that
k · ζ ≥ z. Then f(i, (k + i)ζ) ≤ x.

The proof of this lemma can be found in the appendix. Given this claim, the
cost of the optimum solution is approximated by k∗ζ where

k∗ = min{kζ | 0 ≤ k ≤ Z

ζ
+ n + 1 and f(n, kζ) ≤ 0} (3)

To see this, let k′ζ be such that OPT − ζ < k′ζ ≤ OPT . Note that (k′ +
n + 1)ζ ≤ OPT + (n + 1)ζ ≤ Z + (n + 1)ζ so k′ is considered in the min in (3).
Furthermore, f(i, (k′ + n + 1)) ≤ 0 by the second part of Lemma 3 and the fact
that OPT < (k′ + 1)ζ.

Now, k∗ is the smallest number such that f(n, k∗ζ) ≤ 0 so k∗ ≤ k′ + n + 1.
By the first part of the claim, there is in fact a barrier for [0, L] with cost at
most k∗ζ so OPT ≤ k∗ζ. Overall, we have computed a value k∗ satisfying

OPT ≤ k∗ζ ≤ (k′ + n + 1)ζ ≤ OPT + (n + 1)ζ

= OPT + (n + 1)
εZ

n(n + 1)
≤ (1 + ε) · OPT

where the last bound uses Z ≤ n · OPT . An actual solution with value at most
(1+ε) ·OPT can be recovered in a standard way by examining how the dynamic
programming table is constructed.

The pseudo-code for this FPTAS is presented in Algorithm 1. Each table
entry f(i, kζ) calculated by this recurrence has 0 ≤ i ≤ n and 0 ≤ k ≤ n2/ε + n
so the number of table entries is O(n3/ε). Furthermore, there are O(n2/ε) values
considered in the min defining g, so calculating all table entries takes O(n5/ε2)
time.

Minimizing Total Sensor Movement for Barrier Coverage 105

Algorithm 1. The FPTAS for LeftDisjointMinSum
1: procedure LeftFPTAS(x, r, L, ε)
2: Z ← a value in [OPT, n · OPT] computed as described above
3: ζ = εZ/(n(n + 1))
4: n ← # of sensors
5: for k from 0 to . . . Z/ζ + n + 1 do
6: f [0, kζ] ← L
7: for i from 1 to n do
8: for k from 0 to Z/ζ + n + 1 do
9: g[i, kζ] ← +∞

10: for c from 0 to k do
11: if |f [i − 1, kζ − cζ] − ri − xi| ≤ cζ then
12: endpt ← f [i − 1, kζ − cζ] − 2ri+1

13: g[i, kζ] ← min(g[i − 1, kζ], endpt)

14: f [i, kζ] ← min(f [i − 1, kζ], g[i, kζ])
15: if k > 0 then
16: f [i, kζ] ← min(f [i, k], f [i, (k − 1)ζ])
17: return min{kζ : k ≤ Z/ζ + n + 1, f(n, kζ) ≤ 0}

3.2 The FPTAS for DisjointMinSum

We now use Algorithm 1 to give an FPTAS on DisjointMinSum. As with the
LeftDisjointMinSum case, we can assume that the sensors are tightly packed.
We also note the following properties for later use in the FPTAS. The proofs are
in the appendix.

Lemma 4. For any minimum-cost complete barrier coverage of a DisjointMin-
Sum instance, we may suppose without loss of generality that there exists a point
x∗ ∈ [0, L] such that the interval [0, x∗) is covered only by sensors Si with xi < 0
and (x∗, L] is covered only by sensors Si with xi > L.

Another property we will use is the absence of “overhang” on one of the sides
of the optimum coverage. A sensor Si overhangs from the right side of a barrier
coverage if xi +mi − ri < L < xi +mi + ri and similarly when hanging from the
left side.

Lemma 5. There exists an optimum barrier coverage in which there is either
no left overhang or no right overhang.

Theorem 2. There is an FPTAS for the DisjointMinSum problem with running
time O(n7

ε3).

To get an FPTAS, it would suffice to guess this middle point x∗ and then use
our FPTAS for LeftDisjointMinSum on the interval [0, x∗] using sensors Si with
xi < 0, and then using the corresponding FPTAS on the interval [x∗, L] using
sensors Si with xi > L. However, there could be too many possible midpoints
to guess.

106 R. Benkoczi et al.

Refining this idea, we choose a small list of guesses for x∗ such that some
value in this list, say x̃, satisfies x̃ ≤ x∗. We remain able to compute a covering
[x̃, L] using sensors Si with xi > L whose total cost is close to that of the covering
the optimum uses over [x∗, L]. The LeftDisjointMinSum sub-problem on [0, x̃] is
then solved using our previous FPTAS.

Proof (of Theorem 2). The FPTAS is based on computing values fR(i, z), which
minimizes the leftmost endpoint of the best coverage purchasable using budget
z, packing from the right of L using the i shortest sensors that lie to the right
of the barrier. If we think of f∗

R(i, z) as starting at L and growing positively to
the left from L, it is given as the recurrence relation

fR(i, z) = max{f∗
R(i − 1, z), g∗

R(i, z)},

where

g∗
R(i, z) = max

x∈[0,z]
{f∗

R(i − 1, z − x) − 2ri :

xi − f∗
R(i − 1, z − x) + ri ≤ x}

We will solve a discretized version of this recurrence f∗
R(i, z). For each x-value

of the form fR(i, z) for this discretized version, we will produce for each fR(i, z)
a coverage of the interval [0, fR(i, z)] using only the sensors that lie to the left
of 0 using our FPTAS for LeftDisjointMinSum. The cheapest coverage obtained
from this process will have a performance ratio of (1 + ε)OPT , where OPT is
the cost of an optimum two-sided uncrossed coverage that has no overhang on
at least one side.

To discretize fR, we start with a coarse estimate of the optimum solution.
Let Z be determined by the following procedure. For a sensor i, let αi be the
distance from xi to the nearest endpoint {0, L}. Try all n guesses (and keep
the cheapest solution found) for the largest value αi for sensors Si used in the
optimum solution. Move all of these sensors Sj with αj ≤ αi to their nearest
endpoint. For the proper guess αi, the total movement so far is at most n times
the total movement used by the optimum to move sensors from their start points
to the endpoints of the interval.

Next, guess the number iL of these sensors that the optimum uses from the
left-sensors. Say the iL longest of these sensors have total length �. Greedily
cover [0, �] using these sensors, and then greedily cover [�, L] using the longest
right-sensors that were moved to L. The movement cost is at most the total
movement of sensors when moving within [0, L] used by the optimum.

If we let Z denote the total movement in this solution, then we have OPT ≤
Z ≤ n · OPT . Let ζ = εZ/(n(n + 1)) as before. We will discretize the indices
of f∗

R over integer multiples of ζ, as in the FPTAS for LeftDisjointMinSum. For
0 ≤ i ≤ n and integers k ≥ 0 we compute the following values recursively.

fR(i, kζ) = max{fR(i − 1, kζ), fR(i − 1, (k − 1)ζ), gR(i, kζ)}

Minimizing Total Sensor Movement for Barrier Coverage 107

where

gR(i, kζ) = max
1≤c≤k

{fR(i − 1, (k − c)ζ) + 2ri

xi− | fR(i − 1, (k − c)ζ) + ri ≤ cζ}

and
fR(0, kζ) = 0 for all k

where, as before, we iterate over k.
As with the previous FPTAS, we have the following claim.

Claim. For every 0 ≤ i ≤ n and every integer 0 ≤ k, there is a barrier for the
interval [fR(i, kζ), L] that uses the shortest i sensors to the right of L and has
movement cost at most k · ζ.

Conversely, for x ≥ 0 suppose there is a barrier for an interval [x,L] that
uses the shortest i sensors to the right of L with total movement cost at most z.
Let k be such that k · ζ ≥ z. Then fR(i, (k + i)ζ) ≤ x.

The proof is essentially identical, so it is omitted from this extended abstract.
Let x∗ denote the midpoint in the optimum solution, so [0, x∗] is covered by

sensors with xi < 0 and [x∗, L] is covered by sensors with xi > L. Let OPTL

and OPTR denote the movement in this optimum solution coming from sensors
on the left and right, respectively.

Let k∗
Rζ be the smallest integer multiple of ζ that is at least OPTR+(nR+1)ζ.

Then fR(nr, k
∗
Rζ) ≤ x∗. We also know there is a covering of [fR(nr, k

∗
Rζ), L] with

cost at most k∗
Rζ by the claim.

Our final algorithm is to approximate each LeftDisjointMinSum problem
formed by the left-lying sensors for each interval of the form [0, fR(nR, k′ζ)] for
some 0 ≤ k′ ≤ Z + nζ. When k′ = k∗

R, the cost of covering [0, fR(nR, k∗
Rζ)] is

at most (1 + ε) · OPTL because we know the interval [0, x∗] can be covered with
cost OPTL and fR(nR, k∗

Rζ) ≤ x∗. The total cost of the cheapest solution that
covers [0, L] by breaking it into two sub-intervals around some value of the form
fR(nR, k′ζ) is at most

(1 + ε) · (1 + ε)OPTL + OPTR + (nR + 1)ζ
≤ (1 + ε) · OPT + (n + 1)ζ
≤ (1 + 2ε) · OPT

The pseudo-code for this procedure is summarized in Algorithm 2. It is called
with the values Z, ζ described above. It is presented at a bit of a higher-level
than Algorithm 1, but the details behind filling out the tables via dynamic
programming are similar. It only computes a value kζ such that OPT ≤ kζ ≤
(1 + ε) · OPT , but it is easy to recover a solution with cost at most kζ by
examining the dynamic programming tables in the standard way.

Overall, computing the fR-values takes O(n5/ε2) time. For each of the O(n2/ε)
values of the form fR(nR, k′ζ), we use the FPTAS for the resulting LeftDisjoint-
MinSum instance for a total running time of O(n7/ε3).

108 R. Benkoczi et al.

Algorithm 2. The FPTAS for DisjointMinSum
1: procedure DisjointMinFPTAS(x, r, L)
2: Z ← a value in [OPT, n · OPT] computed by the procedure described above
3: ζ ← εZ/(n(n + 1))
4: nR ← # of right-sensors
5: xL, rL ← the sub-lists of x, r for the left-sensors
6: find all fR values using dynamic programming.
7: best ← +∞
8: for kR from 0 to Z/ζ + n + 1 do
9: left ← LeftFPTAS(xL, rL, f(RnR, kRζ))

10: best ← min(best, left + kRζ)
11: return best

The above FPTAS works under the assumption that there is an optimal two-
sided barrier coverage with no right overhang. We run the symmetric procedure
under the assumption that there is no left overhang, and return the cheaper of
the two coverages.

4 Conclusion and Open Problems

In this paper we consider the one dimensional barrier coverage problem of a
line segment by mobile sensors. The objective is to minimize the total distance
travelled by the sensors (MinSum). The problem was proposed in [4]. Unlike the
related MinMax problem for which efficient exact algorithms exist [3,5], MinSum
is NP-hard when sensors have arbitrary covering ranges [4]. The hardness proof
also shows that it is unlikely that constant factor approximation algorithms for
MinSum with arbitrary covering ranges exist.

We give the first algorithm (an FPTAS) for MinSum with arbitrary covering
ranges when the sensors’ covering ranges do not intersect the target line segment
and show that this version is also NP-hard. We also mention that the natural
greedy algorithm for the general MinSum problem has an Ω(n) approximation
factor.

Our results motivate several new directions of research. Since the natural
greedy algorithm for MinSum problem has an Ω(n) approximation factor, are
there any o(n) approximations for the general MinSum problem? A natural
generalization of the notion of coverage is k-coverage, where every point in the
target area must be within the sensing range of at least k sensors. In this setting,
both MinSum and MinMax problems are completely open.

A Appendix

A.1 Proofs from Sect. 3

Proof (of Lemma 1). Let S be a collection of sensors covering the barrier [0, L].
If the sensors of S are ordered from right to left and labeled accordingly by the
indices s1, s2, . . . s|S|, then the cost of the barrier is

Minimizing Total Sensor Movement for Barrier Coverage 109

c(S) = |S| · L −
|S|∑

i=1

(|S| − i) · 2rsi
+

|S|∑

i=1

dsi
(4)

where L, ri and di assume the definitions given above. If S is fixed, then c(S) is
minimized by maximizing

∑|S|
i=1(|S|−i)·2rsi

. This is accomplished by re-ordering
the index so that rs1 ≥ rs2 ≥ . . . ≥ rs|S| .

Proof (of Lemma 2). We have OPT ≤ Z because Z corresponds to the movement
in a feasible solution. To see that Z ≤ n · OPT , let X = maxi∈S∗ |xi| where S∗

is the set of sensors moved in an optimum solution. Let OPT = OPT1 + OPT2

where OPT1 =
∑

i∈S∗ |xi|. Think of OPT1 as the cost of moving the optimum
intervals from their start positions to 0 and OPT2 as the cost of moving them
from 0 to their final positions.

Consider the iteration of the greedy algorithm that uses sensors i with |xi| ≤
X. An upper bound on the cost of moving them from their start positions to 0
is n · X ≤ n · OPT1 and an upper bound on moving them further to their final
destinations is OPT2. This is because greedily moving by length is optimum if
all start positions are 0. Therefore, Z ≤ n · OPT1 + OPT2 ≤ n · OPT .

Proof (of Lemma 3). We prove the first statement of Lemma 3 by induction on
i, with the case i = 0 being trivial. So, suppose i > 0. If f(i, kζ) = f(i − 1, kζ)
then there is nothing to prove. Otherwise, let c be such that f(i − 1, kζ) =
f(i − 1, (k − c)ζ) − 2ri and |f(i − 1, (k − c)ζ) − ri − xi| ≤ cζ. By induction, we
can cover [f(i − 1, (k − c)ζ), L] using the first i − 1 intervals with cost at most
(k − c) · ζ. Extending this to a cover of f(i, kζ) costs at most cζ, which proves
this part of the claim.

The second statement is also proved by induction on i, with the case i = 0
again being clear. So, let i > 0 and let x be such that the first i sensors can cover
[x,L] with total movement cost at most z. Say S′ is the collection of sensors used
in this cover. If Si �∈ S′, then by induction we have f(i − 1, (k + i − 1)ζ) ≤ x so
f(i, (k + i − 1)ζ) ≤ x as well. But f(i, (k + i)ζ) ≤ f(i, (k + i − 1)ζ) also holds
(by the recurrence) so f(i, (k + 1)ζ) ≤ x as required.

So, suppose Si ∈ S′. Without loss of generality (by Lemma 1), we may
assume that Si is the leftmost sensor in the cover of [x,L] and that Si moves
mi := x + ri − xi to its position in this cover (this will be positive, otherwise we
are saying sensor i was moved left, in which case it can be discarded from S′ to
get an even cheaper solution). Let c be such that cζ ≤ mi < (c + 1) · ζ, so the
remaining sensors in S′ − {Si} have total movement at most z − mi ≤ (k − c)ζ
in this cover. Now, S′ − {Si} covers [x + 2ri, L] with cost at most x − mi so
f(i − 1, (k − c + i − 1)ζ) ≤ x + 2ri by induction. Because |f(i − 1, (k − c + i −
1)ζ) − ri − xi| ≤ x + ri − xi = mi < (c + 1) · ζ, then by the recurrence for g
(when the min indexes with c + 1) we have f(i, (k + i)ζ) ≤ x.

Proof (of Lemma 4). If we assume a complete barrier coverage containing con-
secutive sensors Si, Sj such that xi < 0, xj > L, and xi + mi > xj + mj ,
then the paths the sensors travel can be “uncrossed”, so that Si takes the for-
mer place of Sj and vice versa. Since the distance traveled by either sensor is

110 R. Benkoczi et al.

only decreased by uncrossing, it follows that there exists some optimum barrier
coverage without crossed sensors.

Proof (of Lemma 5). We can eliminate overhang on one side of any complete
barrier coverage as follows. Suppose we have a coverage with the uncrossed
property, so that there exists a unique x∗ with nL sensors originally positioned
to the left of the barrier covering [0, x∗] and nR sensors originally positioned
to the right covering [x∗, L]. Suppose without loss of generality that nL ≥ nR

and that overhang is present on both sides of the barrier. Each sensor in the
coverage can be shifted contiguously to the left until the rightmost point covered
by the sensor overhanging [0, L] on the right is shifted to L. Since nL ≥ nR, the
reduction in cost required to move the left-side barriers to their new positions is
no less than the added cost of moving the right-side barriers further to the left.
Therefore, we obtain a coverage without right overhang at equal or lesser cost.
A symmetric argument works in the case that nL ≤ nR.

References

1. Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable density estimates for
coverage and connectivity in thin strips of finite length. In: Proceedings of the 13th
Annual ACM International Conference on Mobile Computing and Networking,
MobiCom 2007, pp. 75–86. ACM, New York (2007)

2. Chen, A., Kumar, S., Lai, T.H.: Designing localized algorithms for barrier cover-
age. In: Proceedings of the 13th Annual ACM International Conference on Mobile
Computing and Networking, MobiCom 2007, pp. 63–74. ACM, New York (2007)

3. Chen, D.Z., Gu, Y., Li, J., Wang, H.: Algorithms on minimizing the maximum
sensor movement for barrier coverage of a linear domain. Discrete Comput. Geom.
50(2), 374–408 (2013)

4. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L.,
Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the sum of sensor
movements for barrier coverage of a line segment. In: Nikolaidis, I., Wu, K. (eds.)
ADHOC-NOW 2010. LNCS, vol. 6288, pp. 29–42. Springer, Heidelberg (2010)

5. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Stacho,
L., Urrutia, J., Yazdani, M.: On minimizing the maximum sensor movement for
barrier coverage of a line segment. In: Proceedings of 8th International Conference
on Ad Hoc Networks and Wireless, pp. 22–25 (2002)

6. Dobrev, S., Durocher, S., Eftekhari, M., Georgiou, K., Kranakis, E., Krizanc, D.,
Narayanan, L., Opatrny, J., Shende, S., Urrutia, J.: Complexity of barrier coverage
with relocatable sensors in the plane. In: Spirakis, P.G., Serna, M. (eds.) CIAC
2013. LNCS, vol. 7878, pp. 170–182. Springer, Heidelberg (2013)

7. Eftekhari, M., Kranakis, E., Krizanc, D., Morales-Ponce, O., Narayanan, L.,
Opatrny, J., Shende, S.: Distributed algorithms for barrier coverage using relo-
catable sensors. In: Proceedings of the 2013 ACM Symposium on Principles of
Distributed Computing, PODC 2013, pp. 383–392. ACM, New York (2007)

8. Kumar, S., Lai, T., Arora, A.: Barrier coverage with wireless sensors. Wirel. Netw.
13(6), 817–834 (2007)

Minimizing Total Sensor Movement for Barrier Coverage 111

9. Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Pro-
ceedings of the 11th Annual International Conference on Mobile Computing and
Networking, pp. 284–298. ACM (2005)

10. Mehrandish, M., Narayanan, L., Opatrny, J.: Minimizing the number of sensors
moved on line barriers. In: 2011 IEEE Wireless Communications and Networking
Conference (WCNC), pp. 653–658. IEEE (2011)

A Comprehensive and Lightweight Security
Architecture to Secure the IoT Throughout
the Lifecycle of a Device Based on HIMMO

Oscar Garcia-Morchon(B), Ronald Rietman, Sahil Sharma, Ludo Tolhuizen,
and Jose Luis Torre-Arce

Philips Group Innovation, Research, Eindhoven, The Netherlands
{oscar.garcia,ronald.rietman,sahil.sharma,

ludo.tolhuizen,jose.luis.torre.arce}@philips.com

Abstract. Smart objects are devices with computational and communi-
cation capabilities connected to the Internet forming the so called Inter-
net of Things (IoT). The IoT enables many applications, for instance
outdoor lighting control, smart energy and water management, or envi-
ronmental sensing in a smart city environment. Security in such scenar-
ios remains an open challenge due to the resource-constrained nature
of devices and networks or the multiple ways in which opponents can
attack the system during the lifecycle of a smart object. This paper
firstly reviews security and operational goals in an IoT scenario inspired
in a smart city environment. Then, we present a comprehensive and light-
weight security architecture to secure the IoT throughout the lifecycle of
a device. Our solution relies on the lightweight HIMMO scheme – a novel
key pre-distribution scheme that is both collusion resistance and efficient
– as the building stone enabling not only efficient resource-wise but also
advanced and scalable IoT protocols and architectures. Our design and
analysis show that our HIMMO-based security architecture can be easily
integrated in existing communication protocols such as IEEE 802.15.4 or
OMA LWM2M providing a number of advantages that existing solutions
cannot provide both performance and operation-wise.

Keywords: Lightweight · Key distribution · Security architecture ·
Internet of Things

1 Introduction

The ubiquitous connection of devices to the Internet, the Internet of Things
(IoT), will account for more than a third of the total Internet connections by
2018, according to the Cisco M2M Devices Forecast 2013–2018 [1]. These devices
will be deployed in multiple scenarios including smart homes, healthcare, or
smart cities. In each of these environments, multiple applications are enabled: the
IoT in a smart city can mean connecting city infrastructure such as water meters,
environmental sensors, or lighting infrastructure to automate and improve city
flows and functionality.
c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 112–128, 2015.
DOI: 10.1007/978-3-319-28472-9 9

A Comprehensive and Lightweight Security Architecture to Secure the IoT 113

Privacy and security are still two of the technical issues that remain unsolved.
The reason is that solutions created for traditional computer networks do not
suit the IoT performance, operational and security requirements. For instance,
public-key cryptography allows any pair of devices to setup a secure channel or
enables accountability. However, it is computationally expensive and requires the
exchange of long keys, which has a negative impact during IoT operation. Sym-
metric cryptography is lightweight but it does not scale, in particular regarding
key distribution and management, and this can lead to a lower security level.
For instance, if a wireless network relies on a single key, then the capture of a
single device will break down the whole system. Finally, IoT scenarios involve
both traditional and new threats and security protocols and primitives should be
adapted to address them. In particular, a security solution for the IoT should be
secure and technically feasible (e.g., performance wise) not only during operation
but during the whole lifecycle of a device.

In this context, this paper firstly reviews these operational and security goals
in the context of the lifecycle of a smart object deployed in a smart city sce-
nario. We then propose a comprehensive security architecture that addresses
both goals during the lifecycle of a smart device. Our security architecture relies
on the recently introduced and lightweight HIMMO scheme [2]. In this paper we
show that HIMMO not only provides good performance, but that it also enables
very attractive features from the point of view of deployment, operation, and
maintenance. Our solution relies on an infrastructure of Trusted Third Parties
(TTPs) for the management of the HIMMO security domains, device creden-
tials and keying materials. This facilitates a secure manufacturing process and
distribution of HIMMO keying materials. The easy integration of HIMMO with
standard protocols such as LWM2M or IEEE 802.15.4 and simple extensions of
these protocols allows us to ensure efficient and secure network access and device
registration with a back-end server. Secure network operation is further achieved
in the sense of full collusion resistance and easy and lightweight management of
device credentials.

The rest of the paper is organized as follows: Sect. 2 describes the use cases
for IoT in a smart city scenario, introduces relevant communication protocols,
and analyzes operational and security goals for the IoT. Section 3 reviews the
HIMMO scheme. Section 4 details the proposed security architecture according
to the typical lifecycle of a smart object. Section 5 describes the implementation
and evaluation of the Section main building blocks of our security architecture.
Section 6 discusses how our architecture addresses the identified operational and
security goals and compares it with related work. Section 7 concludes this paper
and points out future work.

2 Background

2.1 Use Cases

The IoT in the context of smart cities enables services such as outdoor light-
ing control, water control, smart energy networks, and environmental sensing [3].

114 O. Garcia-Morchon et al.

For instance, an environmental sensing network based on the IoT can be realized
by means of a wireless mesh network that enables the communication between
sensors: the environmental sensors would use the mesh network to reach a border
router that would further forward the messages containing the gathered mea-
surements towards a back-end system in charge of device and data management.
Here, the devices constitute one of the key enablers of these services.

However, the limited amount of resources, e.g., regarding energy or commu-
nication, has heavily limited and limits the functionality that these systems can
offer. Security is specially affected by this since most cryptographic primitives or
protocols are just too heavy for many use cases so that a designer is confronted
with two options: (i) using strong security, but that negatively affects the oper-
ation of the system and the way a user interacts with the system, or (ii) using
weaker security, in order to not affect the expected system operation.

In this context, it is important to note that devices follow a lifecycle [4] that is
to be considered in order to build a security architecture. This lifecycle includes
several phases: manufacturing, bootstrapping, commissioning, and operational.
In each of these phases, the system should remain secure while operating as
expected.

2.2 Relevant Protocols

The above architecture in which a device communicates over a mesh network
with a back-end system can be realized by means of multiple communication
protocols. For instance, 6LoWPAN [5]/IEEE 802.15.4 [6] networks enable IP
connectivity in a mesh network. Network connectivity from the border router to
the back-end can be based on a cellular link. End to end communication can be
based on OMA LWM2M, in which application data is exchanged between client
and server by means of CoAP [7] and the end to end communication is secured
by means of DTLS [8] using pre-shared keys, raw public-keys or certificates.

While protocols are available, security primitives are not optimal. For
instance, IEEE 802.15.4 networks often rely on a network or system wide
symmetric-key. The performance of DTLS and its cipher modes lack either flex-
ibility or performance in many cases.

2.3 Operational and Performance Goals

The above scenarios have very specific operational and performance needs.
A security architecture for the IoT should address all of them.

Because of the resource-constrained nature of the devices, security solutions
should achieve good performance (O-1) regarding energy consumption, band-
width requirements, number of round trips, memory needs, and CPU usage.

The deployment of an IoT network is usually done in several phases. It should
thus be possible to add devices to a running system in a simple way (O-2).

Scalability is a key requirement so that a very high number of devices
and back-end servers can be easily supported (O-3). In order to ensure this

A Comprehensive and Lightweight Security Architecture to Secure the IoT 115

scalability, it is required to enable easy management of device’s credentials and
attributes in both centralized and distributed communication patterns (O-4).

Another important requirement refers to the easy integration with existing
communication protocols and architectures (O-5). This facilitates adoption and
allows for a smooth transition by avoiding the costs related to a change in the
technology of the network.

Finally, solutions should fit the use cases not only during the operational
phase but throughout the whole lifecycle of a device (O-6). In the context of
IoT this also means that the deployed solutions have to remain secure during a
long period of time (10, 20, or even 30 years) (O-7).

2.4 Attack Model and Security Goals

In addition to the above operational and performance goals, we consider an
attack model in which the opponent can aim at disrupting the system operation
at different stages of the lifecycle of a device. Next, we identify potential attacks
and discuss security goals that aim to prevent them.

First of all, the attacker (either external or insider) can aim at compromis-
ing a root of trust, such as a Certification Authority (CA) in a Public Key
Infrastructure (PKI). This would allow him to gain full control over the system.
One example of this type of attack is the one suffered by DigiNotar [9]. There-
fore, the first security goals refer to being resilient to the compromise of a root
of trust (S-1) and ensuring that a single root of trust cannot monitor and con-
trol communication links (S-2). This last requirement should still be compatible
with key escrow if required (S-3).

The next type of attack focuses on the manufacturing process in which the
devices are configured with credentials and secret keys. If an opponent manages
to get control on a manufacturing facility, then he can modify or copy this
information. An important security goal is to facilitate a secure manufacturing
process that prevents this (S-4).

The next type of attack can happen when the devices are being deployed.
In this case, the back-end server might be exposed to fake devices and, in a
similar way, fake servers might impersonate the actual back-end server to gain
control over the devices. Authentication and authorization of device (S-5) and
back-end server (S-6) is required to prevent this situation. Even with end to
end authentication, the devices that are routing the information could still be
exposed to a Denial of Service (DoS) attack, since they would not be able to
identify by themselves the communicating parties. Thus, another goal is the
prevention of DoS attacks during network access (S-7).

During operation, an attacker might aim at physically capturing devices to
misuse their secret keys and credentials towards the back-end server or towards
any other device in the network. Therefore, a key goal will be that the compro-
mise of any number of devices does not affect the security of the whole system
(S-8). Another related goal is to facilitate the identification and blacklisting of
compromised devices (S-9).

116 O. Garcia-Morchon et al.

Also during operation, another security goal refers to the capability of estab-
lishing a common shared key for providing further security services (S-10). As
the devices will be on the field for many years, a security solution should pro-
vide long term security including resilience against post-quantum attacks (S-11).
Other security goals are perfect forward secrecy (S-12), meaning that a session
key derived from a set of long-term keys cannot be compromised if one of the
long-term keys is compromised in future, and non-repudiation (S-13), e.g. allow-
ing a metering device signing the energy consumption so that there is proof of
the amount of consumed energy.

3 The HIMMO Scheme

HIMMO [2] is a Key Pre-Distribution Scheme (KPS) based on the HI and MMO
problems. HIMMO enables any pair of devices in a system to directly agree on
a pairwise symmetric key based on their identifiers and a secret key-generating
polynomial. HIMMO is the first KPS that achieves collusion-resistance, making
interpolation attacks by colluding nodes infeasible, while being efficient in the
generation of pairwise keys. This means that a network of M devices, a total of
M(M − 1)/2 can be efficiently distributed so that each pair of devices shares
a different pairwise key. Like any KPS [10], HIMMO requires a TTP and three
phases can be distinguished in its operation.

Setup Phase: The TTP, upon reception of some public parameters, generates
a secret root keying material that consists of the coefficients of several bi-variate
symmetric polynomials: R(i)(x, y).

Keying Material Extraction Phase: The TTP provides each node in the
system with the coefficients of the generated polynomial that arises from the
addition of evaluations of the secret bi-variate symmetric polynomials in the
identity of the node, for node ξ we have: Gξ.

Key Generation Phase: A node can compute a pairwise key with any other
node of the system by evaluating its keying material in the identity of the other
node: Kξ,η =

〈〈Gξ(η)〉N

〉
2b . It can be shown that Kξ,η and Kη,ξ need not be

equal but within a certain range.
A detailed description of this procedure can be found in [2,11], and

AppendixA.1.
In addition to the basic scheme for key agreement, HIMMO enables interest-

ing extensions. First, HIMMO supports multiple TTPs as previously introduced
by Matsumoto and Imai [10] enhancing privacy as well as improving the security
of the system—compromising a sub-set of TTPs does not break the overall sys-
tem [2]. Another extension refers to the capability for implicit certification and
verification of credentials at the only cost of a hashing operation. This capabil-
ity builds on the fact that HIMMO is based on identifiers that can be bound to
any bit string by means a one way hash function. This has been used in [11] to
enable the verification of credentials between client and server in a TLS connec-
tion without the need of digital certificates and it is further discussed in Section
AppendixA.2.

A Comprehensive and Lightweight Security Architecture to Secure the IoT 117

4 Design

This section describes the proposed security architecture focusing on the security
goals presented in Sect. 2.4 and the operational goals described in Sect. 2.3. In
the following subsections, we detail our solution according to the lifecycle of a
smart object in which we show how keying materials are managed by means
of a TTP infrastructure. This TTP infrastructure can be used to enable secure
manufacturing of the smart objects (Sect. 4.1). The HIMMO keying material
enables secure network access of a smart object in a typical smart city scenario
(Sect. 4.2). Finally, this HIMMO keying material provides a way of ensuring
secure operation and credential management during normal operation (Sect. 4.3).

Figure 1 depicts the components of our security architecture including: (i) an
infrastructure of roots of trust in charge of handling the HIMMO root key-
ing materials (Sect. 4.1). (ii) A number of manufacturing units producing smart
objects configured with secret keys and credentials (Sect. 4.1). (iii) An authenti-
cation process, in which a smart object registers with a back-end system in order
to get credentials for access to the network (Sect. 4.2). (iv) A secure operation
phase in which smart objects can securely communicate with each other, using
the credentials obtained in the previous step (Sect. 4.3).

4.1 TTP Infrastructure and Smart Object Manufacturing

Our architecture relies on the HIMMO capability for working with multiple
TTPs to address goals S-1, S-2, S-3, S-4, and S-11.

We consider multiple TTPs can generate and securely manage multiple
HIMMO root keying materials. The role of these TTPs is similar to today’s
CA infrastructure with the obvious differences in the underlying technology.

When a new set of devices needs to be manufactured, the back-end server
in charge of those devices will request a subset of the TTPs to extract HIMMO
keying materials linked to some device credentials. In the following, we will
assume that these credentials depend on the unique MAC address of each device
η, e.g., η = f(η′MACaddress). The back-end server will also determine which
factories will get HIMMO keying materials from which TTPs. Next, TTP j
will extract HIMMO keying material Gj

η(y) for device η and securely send these
keying materials to the corresponding manufacturing facility l. Here, each device
η will receive Gj

η(y) and update its locally aggregated keying material as Gη(y) =〈
Gη(y) + Gj

η(y)
〉

N
. In a similar way, the back-end server ξ can request at any

time a new set of keying materials from those TTPs and obtain its aggregated
keying material in a similar way. Note that in this process, even if an attacker
manages to compromise a manufacturing facility or TTP or a combination of
those, the attacker will not gain knowledge about how the whole keying material
of the devices is constituted since this keying material depends on all the root
keying materials issued by multiple TTPs. This is the reason why the above
architecture enables secure manufacturing.

118 O. Garcia-Morchon et al.

...TTP1 TTPQ

...
Factory1

FactoryM

R1 RQ

Gη
1

Gη
M

Back-end server1

...

Back-end serverP

Relay Node

η

Border Router

Gη
1

Gη
Q

η

η

(i)

(ii)

(iii)

(iv)

Fig. 1. Architecture overview.

4.2 The Authentication Process for Network Access

We use the HIMMO keying material to enable secure network access and device
registration in a typical smart city scenario, addressing goals S-5, S-6, S-7,
S-8, S-9, S-10. In this procedure, the joining node η aims to register with a
back-end server after its verification and the back-end server aims to register the
joining node after authenticating it. Although the server can verify the client, it
is equally important that devices in the network can verify the authenticity of the
joining node in order to prevent possible abuse that could lead to DoS attacks.
The verification could be done at different levels in the network to thwart an
attack as early as possible. The protocol below describes how HIMMO can be
applied to a real-world scenario based on an IEEE 802.15.4 [6] mesh network
using 6LoWPAN, typical example of an IoT network, where the DTLS security
protocol ensures end to end security. Note that all keys described below are
pairwise keys generated by means of HIMMO based on the identities, derived
from their MAC addresses, assigned to the nodes during the manufacturing
process.

– Step 1: A joining node η is installed and waits to hear beacons from devices
in a network.

– Step 2: A neighboring node, working as relay node or a border router, regularly
sends a broadcast beacon as part of the normal network traffic.

– Step 3: Upon reception of a network beacon originating, e.g., from a relay
node r, node η will securely send an IEEE 802.15.4 message protected with
the HIMMO key Kη,r =

〈〈Gη(r)〉N

〉
2b . The Key Identifier and Key Identifier

Mode [6] can be used to indicate that HIMMO key derivation is in use.
– Step 4: The relay node will process this message protected at the IEEE

802.15.4 MAC layer, and if the verification of the message sent by η is suc-

A Comprehensive and Lightweight Security Architecture to Secure the IoT 119

cessful, reply with the identity of the border router. Kη,r is to be cached by r
for further communication.

– Step 5: Node η then will start a DTLS [8] handshake towards the back-end
server through relay node r in which the communication at the IEEE 802.15.4
MAC layer is protected by Kη,r. Note that the relay node operates as described
in [12]. Furthermore, the first DTLS message, Client Hello, includes the iden-
tity of the joining node and an authentication token created with Kη,br so
that the border router can verify it the identity of the joining node.

– Step 6: Node r will relay only DTLS traffic from device η. Furthermore, the
border router will only forward the DTLS traffic if the verification of the
authentication token is successful and the identity of the joining node is not
blacklisted.

– Step 7: The back-end server gets the request from the joining node and engages
in a DTLS handshake in which both joining node and back-end server mutu-
ally authenticate each other and verify their credentials. This handshake may
be based on the lightweight HIMMO-based scheme proposed in [11] in which
HIMMO pairwise keys are generated and credentials are verified efficiently.
Upon successful establishment of the DTLS session, the joining node will
receive the network key, KNetwork, from the server.

Upon successful completion of this protocol, the key used to secure IEEE 802.15.4
layer communication on the link between node η and any node ξ that has joined
the network is computed as KNetwork

η,ξ = Kη,ξ ⊕ KNetwork, where ⊕ denotes
bit-wise XOR.

We note that the above protocol relies on the identity-based nature of
HIMMO and its properties to mutually authenticate the joining device and
(i) relay node, (ii) border router, and (iii) back-end server. This allows for early
detection and prevention of DoS attacks at relaying devices and at the border
router. DTLS-HIMMO enables efficient operation [11]. Finally, we also remark
that since the identifier, the MAC address, is linked to the keying material issued
by the TTPs, attacks such as MAC spoofing are not feasible.

4.3 Secure Operation

Secure operation aims at fulfilling security goals S-3, S-5, S-6, S-8, S-9, S-10,
S-11 and all operational and performance objectives.

Firstly, we illustrate how HIMMO ensures a fully collusion resistant mesh
network based on IEEE 802.15.4. IEEE 802.15.4 supports the usage of pairwise
keys between devices, however, key agreement is left out of the standard. There-
fore, in practice, most standards rely on a network or system-wide key so that
if a single device is captured, then the whole network or system breaks down.
Furthermore, compromised devices cannot be easily identified since an attacker
can fake any identity so that securely updating such a network- or system-wide
key is infeasible (in addition to being very costly from an operational point of
view). In our security architecture, secure operation in a IEEE 802.15.4 network
works as follows:

120 O. Garcia-Morchon et al.

– Step 1: Note ξ will advertise its presence by means of unsecured broadcast
beacon.

– Step 2: Node η will obtain a common HIMMO key with device ξ as Kη,ξ =〈〈Gη(ξ)〉N

〉
2b . Node η will also obtain helper data ση,ξ. If node η has joined

the network, then it will use pairwise key KNetwork
η,ξ = Kη,ξ ⊕ KNetwork. If

node η has not joined the network yet, then it will use pairwise key Kη,ξ.
– Step 3: Node η sends a secure IEEE 802.15.4 message to ξ protected with the

pairwise key determined in the previous step. This message contains the MAC
address of the sender (η) and ση,ξ in the Key Identifier field of the 802.15.4
security header.

– Step 4: Node ξ receives the secure message from η. It generates the pairwise
HIMMO key with the MAC address of η as Kξ,η =

〈〈Gξ(η)〉N

〉
2b and recovers

Kη,ξ from Kξ,η and ση,ξ. Assuming that node ξ has already joined the network,
then ξ knows KNetwork so that it can compute KNetwork

η,ξ and process the
incoming message with both Kη,ξ and KNetwork

η,ξ . If the verification of the
message with Kη,ξ is successful, then node η is considered a joining device and
only DTLS traffic for network access is allowed. Alternatively, the message is
verified with KNetwork

η,ξ so that the device is identified as part of the network
and normal routing and data traffic is enabled.

This solution enables pairwise keys between devices based on HIMMO so
that the IEEE 802.15.4 network becomes fully collusion resistant to the physi-
cal capture of devices. Note that this represents a huge improvement with the
state-of-the-art in which most deployments rely on a single network-wide or even
system-wide key that represents a single point of failure. Furthermore, compro-
mised devices can be identified since the HIMMO keying material is cryptograph-
ically bound to the device identifier and in this case it is chosen to be the MAC
address of the device. This means that captured devices can be blacklisted. Note
that the MAC address cannot be spoofed since it is bound to the HIMMO keying
material. Finally, this method allows us to easily differentiate devices that have
joined the network from devices that have not done so yet. This differentiation,
however, could also be determined by indicating which key is used to protect the
packet by using the Key Index field of the Key Identifier in the IEEE 802.15.4
Auxiliary Security Header (ASH) [6]. This would avoid verification of the packet
with two keys in Step 4. The Key Index field (or a part of it) will indicate to
node ξ which key, Kη,ξ or KNetwork

η,ξ , was used to secure the packet.
We further note that HIMMO cannot only be used at MAC layer to generate

pairwise keys between neighboring devices, but it can also be used to enable
secure communication between any pair of devices in the network/system at
application layer by means of DTLS [11]. This is similar to the process described
in previous section with the difference that the communication is not between the
joining device and the back-end server, but between two arbitrary devices. As a
consequence any pair of devices can securely agree on a common symmetric key
used in DTLS and verify any other set of credentials. In addition to the security
advantages, performance benefits will become clear in the next section.

A Comprehensive and Lightweight Security Architecture to Secure the IoT 121

5 Implementation and Evaluation

The design described in Sect. 4 addresses the needs of real-world environments
in Smart Cities such as SmartSantander [3]. This section provides performance
measures for the building blocks that comprise this architecture.

According to its different functionalities and resource requirements, we divide
the HIMMO implementation into two modules: one that provides TTP capabil-
ities and would likely be implemented in a server, and another one that provides
node functionalities and would likely be implemented in a device. Some of these
implementations are available at the HIMMO website www.himmo-scheme.com.

The TTP module allows choosing the HIMMO public parameters described
in AppendixA.1. It also generates the keying materials for the network devices
tailored to the word-length and architecture of each device for optimal perfor-
mance. The TTP module is implemented in Java and can be easily integrated
in a web service.

For the node module implementation, it is worth noting that HIMMO has
been designed to enable very efficient performance in constrained devices. From
Eq. (3) we observe that obtaining a symmetric key just requires the evaluation
of a polynomial of degree α modulo N and taking the b least significant bits.
This means that only α+1 modular multiplications are required to compute the
key. In each multiplication, the B bit identifier multiplies the (α + 1)B + b bit
coefficient and the result is reduced modulo N . These modular operations can
be implemented in a very efficient manner for appropriate choices for N , e.g.,
N = 2(α+1)B+b − 1. Many implementations are possible for the node module
because of the heterogeneous nature of the devices. Specialized implementations
will optimize performance, sacrificing portability.

In order to evaluate the performance of the HIMMO scheme, we have imple-
mented it on three different devices: a very resource-constrained 8-bit CPU
ATMEGA128L running at 8 MHz, the 32-bit NXP LPC1769 LPCXpresso Board
running at 120 MHz, and an Intel i3 3120M (64-bit), at 2.50 GHz running
Xubuntu 14.04. The implementations for the NXP LPC1769 and the Intel i3
3120M are based on our flexible C library that can be easily ported to different
devices and integrated in different protocols. To this end, the library can be
easily configured to work with different CPU word sizes and the whole library,
including the big integer arithmetic required for key generation, is written in C.
On the other hand, the implementation for the ATMEGA128L is optimized in
assembler so that better performance can be achieved.

For very resource constrained devices, specialized implementations are pre-
ferred: our optimized implementation for the ATMEGA128L fits in just 428 bytes
of flash memory. This shows that HIMMO can fit even in very resource con-
strained devices or when integrated as part of the IEEE 802.15.4 logic described
in the above section. We also note that the RAM consumption is linear with α
since we have to keep in memory a term that is (α+1)B + b bits. Tables 1 and 2
provide a brief summary of the performance of the HIMMO scheme implemented
in the above CPUs.

http://www.himmo-scheme.com

122 O. Garcia-Morchon et al.

Table 1. HIMMO performance for B = b = 128 as a function of α.

α 26 34 40 50

Keying material size (KB) 6.90 11.18 15.07 22.83

CPU time (msec) Atmega128L (8-bit @ 8 MHz) 223 367 497 743

NXP LPC1769 (32-bit @ 120 MHz) 7.46 11.82 15.74 23.48

Intel i3 3120M (64-bit @ 2.5 GHz) 0.034 0.053 0.069 0.103

Table 2. HIMMO performance for α = 26 as a function of b = B.

b = B 64 128 192 256

Keying material size (KB) 3.45 6.90 10.34 13.79

CPU time (msec) Atmega128L (8-bit @ 8 MHz) 63 223 393 632

NXP LPC1769 (32-bit @ 120 MHz) 2.55 7.46 14.93 25.16

Intel i3 3120M (64-bit @ 2.5 GHz) 0.015 0.034 0.062 0.100

The above node module can be used to enable the functionality described in
the design section. In particular, it can be easily integrated with IEEE 802.15.4
ensuring a fully collusion resistant network during operation. It can also be used
to enable secure network access and registration by means of DTLS-HIMMO,
achieving functionalities such as mutual authentication and verification, which
today are only possible with public-key cryptography, at the speed and memory
requirements of symmetric cryptography. In this context, the left part of Fig. 2
shows the time elapsed to successfully complete a DTLS handshake in different
modes, we can see that HIMMO with mutual verification is almost 7 times
faster than mutual verification with the ECC alternative. On the right, we can
see the ratio between exchanged data and payload: for a secure interchange of
1 KB this ratio is around 40 % smaller with HIMMO compared with ECC both
providing mutual authentication. More detailed performance measures, as well
as a complete description of this implementation are available on [11].

6 Discussion and Comparison with Related Work

This section discuses how the proposed security architecture fulfills the goals
described in Sects. 2.4 and 2.3, and compares our solution with approaches based
on symmetric cryptography (Pre-Shared Key (PSK)) and on asymmetric cryp-
tography (Public Key Cryptography (PKC)). A PSK is lightweight and very
efficient but, as we can see in Table 3, it is unable to support most of the secu-
rity goals identified in Sect. 2.4. Such a solution is not scalable. We might wish to
share the same key with a large number of devices. This is the current approach
in IEEE 802.15.4 as it does not require any additional infrastructure. However,
this approach leads to a single point of failure —if the key gets compromised,
the security of all the network will be broken— which is a really important

A Comprehensive and Lightweight Security Architecture to Secure the IoT 123

1

1,5

2

2,5

3

3,5

4

4,5

1 10 100

(1)

(2)

(3)

(4)
(5)

0 50 100 150 200

(5)

(3)

(4)

(2)

(1)

ms

Handshake 1 KB

9 KB 90KB

KB KB KB

Fig. 2. (1) ECDH-ECDSA with mutual authentication, (2) ECDH-ECDSA with server
authentication, (3) HIMMO with mutual verification of client’s and server’s credentials
(t = 5, B = 256, b = 32, α = 17), (4) HIMMO with mutual authentication (t = 5, B =
32, b = 32, α = 50) and (5) PSK.

problem in networks where not even the physical integrity of the devices can be
guaranteed. This approach also does not enable identification, authentication,
or authorization of devices. On the other hand, if many (pairwise) keys are dis-
tributed, this involves huge amounts of memory, makes credential management
difficult, and the addition of new devices to the network becomes more complex.
In contrast, HIMMO enables the generation of pairwise keys from the identifiers
assigned to the devices achieving both the simplicity of a single key approach
with the advantages of having many pairwise keys. PKC solves most security
goals, but is much more resource-consuming than PSK or HIMMO in terms of
required CPU time, memory, bandwidth, and round-trips (e.g., see Fig. 2). In
a similar way, in order to comply with security goal S-1 —resiliency to root
of trust compromise— it would be necessary to have multiple CA signing the
certificates; this will increase the certificate length as well as memory usage and
network overhead. As one of the main sources of energy consumption in an IoT
network is the wireless radio, the battery life would also be affected. In contrast,
HIMMO can achieve this property without performance penalty. The integra-
tion with OMA LWM2M would be easy, as DTLS supports PKC. However, it
is not possible to use PKC in IEEE 802.15.4 without protocol modifications.
Furthermore, it would imply a serious degradation in the network performance.
Similarly, it could be possible to use certificates to design a joining protocol which
would prevent DoS attacks, but it would result in a great increase in network
overhead because of the certificate exchanges. Finally, existing PKC solutions
(e.g., all PKC-based cipher-suites in (D)TLS) would break down if a quantum
computer is built. HIMMO and PSK do no not offer perfect forward secrecy
(S-12); the ∗ in the row for (S-12) means that PKC does offer this feature for
some cipher suites, e.g. those based on DHE or ECDHE key exchange. Being
symmetric schemes, HIMMO and PSK do not offer non-repudiation (S-13). We
finally note that these architectures focus on cryptography and network security
protocols. Other complementary approaches exist, e.g., to handle trust between
devices. For instance, in [13], the authors discuss a protocol to manage how

124 O. Garcia-Morchon et al.

Table 3. Comparison between different security architectures. Relative performance
from most efficient (*) to least (***).

Design goals HIMMO PKC PSK

O-1: Performance * *** *

O-2: Easy device addition to a running system ✓ ✓ ✓

O-3: Scalable ✓ ✓ -

O-4: Easy credential management ✓ ✓ -

O-5: Easy integration with existing protocols ✓ - ✓

O-6: Fits device lifecycle ✓ ✓ -

O-7: Long term security ✓ ✓ ✓

S-1: Resilient to root of trust compromise ✓ ✓ -

S-2: Single root of trust cannot monitor ✓ ✓ -

S-3: Key escrow ✓ - ✓

S-4: Facilitates secure manufacturing ✓ ✓ -

S-5: Device authentication and authorization ✓ ✓ -

S-6: Back-end authentication and authorization ✓ ✓ -

S-7: Prevents DoS attacks ✓ ✓ -

S-8: Fully collusion resistance ✓ ✓ -

S-9: Device identification and blacklisting ✓ ✓ -

S-10: Key agreement ✓ ✓ ✓

S-11: Post-quantum resilience ✓ - ✓

S-12: Perfect forward secrecy - ✓∗ -

S-13: Non-repudiation - ✓ -

devices gain trust in each other and also can lose it if a number of devices agree
on it, e.g., agree on a device to be misbehaving. In this case, losing trust means
that those devices can generate a revocation message against the misbehaving
device so that it is excluded from the network.

7 Conclusions

The IoT is an emerging area involving many connected smart devices that need
to be secured during their entire lifecycle. This problem is not solved with cur-
rent security solutions: asymmetric-key cryptography is computationally hungry,
difficult to integrate with protocols, and not suitable for long term deployments,
while the symmetric-key option is extremely efficient, but does not scale and
offers limited security properties. We have reviewed the operational and security
requirements of a real-world IoT scenario and build on top of them a com-
prehensive and lightweight security architecture based on HIMMO. Thus, our
security architecture is tailored to the requirements of IoT, its attack vectors,

A Comprehensive and Lightweight Security Architecture to Secure the IoT 125

and resource requirements. Our solution builds on HIMMO’s excellent perfor-
mance —a combined HIMMO-based key agreement and credential verification
handshake can be done in a few hundred milliseconds even on very resource-
constrained devices— to create a scalable, operationally friendly and secure
architecture. HIMMO can be easily integrated in modern protocols like IEEE
802.15.4 or DTLS, providing, at the relatively low costs of symmetric crypto-
graphic solutions, features that before were only feasible with asymmetric cryp-
tography. Some of the security features enabled by HIMMO are full collusion
resistance, device and back-end authentication and verification, pairwise key
agreement, support for multiple TTPs and key escrow, or protection against
DoS attacks. Because our architecture combines great security features with low
resource needs and allows easy integration in modern protocols, we believe that
it is a very competitive approach to secure the IoT and related emerging areas.

A HIMMO

HIMMO is a Key Pre-Distribution Scheme (KPS), a concept introduced by Mat-
sumoto and Imai in 1987 [10]. Blundo et al. [14] present an elegant and efficient
KPS based on symmetric polynomials. However, their KPS is prone to collusion
attacks: if an attacker has compromised α + 1 nodes, where α is the degree of
the polynomial in any variable, then he can crack the complete system by using
simple (Lagrange) interpolation. There was no known KPS that is both efficient
and not prone to efficient attacks of multiple colluding (or compromised) nodes
(see [2] for further references) until recently the HIMMO scheme solved this
problem. This section reviews the operation of the HIMMO scheme that enables
any pair of devices in a system to directly agree on a common symmetric-key
based on their identifiers and a secret key generating polynomial as introduced in
[15]. Like Blundo’s scheme, HIMMO is based on symmetric polynomials, but it
introduces new features to make simple interpolation attacks by colluding nodes
infeasible. The underlying security principles on which HIMMO relies have been
analyzed in [16,17]. Furthermore, this section describes two protocol extensions
of the HIMMO scheme as described in [2].

We use the following notation: for each integer x and positive integer M , we
denote by 〈x〉M the unique integer y ∈ {0, 1, . . . ,M −1} such that x ≡ y mod M .

A.1 HIMMO Operation

Like any KPS, HIMMO requires a TTP, and three phases can be distinguished
in its operation [10].

In the setup phase, the TTP selects positive integers B, b,m and α, where
m ≥ 2. The number B is the bit length of the identifiers that will be used in
the system, while b denotes the bit length of the keys that will be generated.
The TTP generates the public modulus N , an odd number of length exactly
(α+1)B + b bits (so 2(α+1)B+b−1 < N < 2(α+1)B+b). It also randomly generates
m distinct secret moduli q1, . . . , qm of the form qi = N −2bβi, where 0 ≤ βi < 2B

126 O. Garcia-Morchon et al.

and at least one of β1, . . . , βm is odd. Finally, the TTP generates the secret
root keying material, that consists of the coefficients of m bi-variate symmetric
polynomials of degree at most α in each variable. For 1 ≤ i ≤ m, the i-th root
keying polynomial R(i)(x, y) is written as

R(i)(x, y) =
α∑

j=0

α∑

k=0

R
(i)
j,kxjyk

with 0 ≤ R
(i)
j,k = R

(i)
k,j ≤ qi − 1.

In the keying material extraction phase, the TTP provides each node ξ in
the system, with 0 ≤ ξ < 2B , the coefficients of the key generating polynomial Gξ:

Gξ(y) =
α∑

k=0

Gξ,kyk (1)

where

Gξ,k =
〈 m∑

i=1

〈
α∑

j=0

R
(i)
j,kξj〉qi

〉
N

. (2)

In the key generation phase, a node ξ wishing to communicate with node
η with 0 ≤ η < 2B , computes:

Kξ,η =
〈〈Gξ(η)〉N

〉
2b (3)

It can be shown that Kξ,η and Kη,ξ need not be equal. However, as shown in
Theorem 1 in [2], for all identifiers ξ and η with 0 ≤ ξ, η ≤ 2B ,

Kξ,η ∈ {〈Kη,ξ + jN〉2b | 0 ≤ |j| ≤ 2m}
In order to perform key reconciliation , i.e. to make sure that ξ and η use the same
key to protect their future communications, the initiator of the key generation
(say node ξ) sends to the other node, simultaneously with an encrypted message,
information on Kξ,η that enables node η to select Kξ,η from the candidate set
C = {〈Kη,ξ + jN〉2b | 0 ≤ |j| ≤ 2m}. No additional communication thus is
required for key reconciliation. The key Kξ,η will be used for securing future
communication between ξ and η. As an example of helper data used for key
reconciliation, node ξ sends to node η the number σξ,η = 〈Kξ,η〉2s , where s =

log2(4m + 1)�. Node η can efficiently obtain the integer j such that |j| ≤ 2m
and Kξ,η ≡ Kη,ξ + jN mod 2b by using that jN ≡ Kξ,η − Kη,ξ ≡ σξ,η − Kη,ξ

mod 2s. As N is odd, the latter equation allows for determination of j. As σξ,η

reveals the s least significant bits of Kξ,η, only the b − s most significant bits
Kξ,η, that is, the number �2−sKξ,η, should be used as key.

A.2 Implicit Certification and Verification of Credentials

Implicit certification and verification of credentials is further enabled on top
of the basic HIMMO scheme. A node that wants to register with the system

A Comprehensive and Lightweight Security Architecture to Secure the IoT 127

provides the TTP with its credentials, e.g., device type, manufacturing date,
etc. The TTP, which can also add further information to the node’s credentials
such as a unique node identifier or the issue date of the keying material and its
expiration date, obtains the node’s identity as ξ = H(credentials), where H is
a public hash function. When a first node with identity ξ wants to securely send
a message M to a second node with identity η, the following steps are taken.

– Step 1: Node ξ computes a common key Kξ,η with node η. It uses the computed
common key to encrypt and authenticate its credentials and message M , say
e = EKξ,η

(credentials|M).
– Step 2: Node ξ sends (ξ, e, σξ,η) to node η, where σξ,η is helper data helping

node η to find Kξ,η.
– Step 3: Node η receives (ξ′, e′, σ′

ξ,η). Using σ′
ξ,η, it computes its common key

Kη,ξ′ with ξ′ to decrypt e′ obtaining the message M and verifying the authen-
ticity of the received message. Furthermore, it checks whether the credentials′

in e′ correspond with ξ′, that is, it validates if ξ′ = H(credentials′).

This method not only allows for direct secure communication of message M ,
but also for implicit certification and verification of ξ’s credentials because the
key generating polynomial assigned to a node is linked to its credentials by means
of H. If the output size of H is long enough, e.g., 256 bits, the input (i.e., the
credentials) contains a unique node identifier, and if H is a secure one-way hash
function, then it is infeasible for an attacker to find any other set of credentials
leading to the same identity ξ. The fact that credential verification might be
prone to birthday attacks motivates the choice for the relation between identifier
and key sizes, namely, B = 2b. In this way, the scheme provides an equivalent
security level for credential verification and key generation. The capability for
credential verification enables e.g. the verification of the expiration date of the
credentials (and the keying material) of a node, or verification of the access roles
of the sender node ξ.

A.3 Enhancing Privacy by Using Multiple TTPs

Using multiple TTPs was introduced by Matsumoto and Imai [10] for KPS and
can also be elegantly supported by HIMMO [2]. In this scheme, a number of
TTPs provide a node with keying materials linked to the node’s identifier during
the keying material extraction phase. Upon reception, the device combines the
different keying materials by adding the coefficients of the key generating polyno-
mials modulo N . Key generation is performed as usual. This scheme enjoys two
interesting properties without increasing the resource requirements of the nodes.
First, privacy is enhanced since a single TTP cannot eavesdrop the communica-
tion links. In fact, all TTPs should collude to monitor the communication links.
Secondly, compromising a sub-set of TTPs does not break the overall system.

References

1. Pepper, R.: The Internet of Things is Now: M2M Devices Forecast 2013–2018. IIC
Annual Conference (2014). http://www.iicom.org

http://www.iicom.org

128 O. Garcia-Morchon et al.

2. Garćıa-Morchón, O., Gómez-Pérez, D., Gutiérrez, J., Rietman, R., Schoenmakers,
B., Tolhuizen, L.: HIMMO - A Lightweight, Fully Colluison Resistant Key-
Predistribution Scheme. Cryptology ePrint Archive, Report 2014/698 (2014).
http://eprint.iacr.org/

3. Sanchez, L., Galache, J.A., Gutierrez, V., Hernández, J.M., Bernat, J., Gluhak, A.,
Garćıa, T.: Smartsantander: the meeting point between future internet research
and experimentation and the smart cities. In: Future Network & Mobile Summit
(FutureNetw), pp. 1–8. IEEE (2011)

4. Garcia-Morchon, O., Kumar, S., Keoh, S., Hummen, R., Struik, R.: Secu-
rity considerations in the ip-based internet of things. Internet-Draft draft-
garcia-core-security-06, IETF Secretariat, September 2013. http://www.ietf.org/
internet-drafts/draft-garcia-core-security-06.txt

5. Kushalnagar, N., Montenegro, G., Schumacher, C.: IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem State-
ment, and Goals. RFC 4919 (Informational), August 2007

6. IEEE Computer Society. IEEE Standard for Local and metropolitan area net-
works - Part 15.4 2011 revision: Low-Rate Wireless Personal Area Networks (LR-
WPANs), September 2011

7. Shelby, Z., Hartke, K., Bormann, C.: The Constrained Application Protocol
(CoAP). RFC 7252 (Proposed Standard), June 2014

8. Rescorla, E., Modadugu, N.: Datagram Transport Layer Security Version 1.2. RFC
6347 (Proposed Standard), January 2012

9. JR Prins and Business Unit Cybercrime. DigiNotar Certificate Authority breach
Operation Black Tulip (2011)

10. Matsumoto, T., Imai, H.: On the key predistribution system: a practical solution
to the key distribution problem. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS,
vol. 293, pp. 185–193. Springer, Heidelberg (1988)

11. Garcia-Morchon, O., Rietman, R., Sharma, S., Tolhuizen, L., Torre-Arce, J.L.:
DTLS-HIMMO: Efficiently Securing a Post-Quantum World with a Fully-Collusion
Resistant KPS, Accepted for publication at ESORICS (2015). https://eprint.iacr.
org/2014/1008

12. Kumar, S., Keoh, S., Garcia-Morchon, O.: DTLS Relay for Constrained Environ-
ments. Internet-Draft draft-kumar-dice-dtls-relay-02, IETF Secretariat, October
2014. http://www.ietf.org/internet-drafts/draft-kumar-dice-dtls-relay-02.txt

13. Garcia-Morchon, O., Kuptsov, D., Gurtov, A., Wehrle, K.: Cooperative security in
distributed networks. Comput. Commun. J. 36, 1284–1297 (2013)

14. Blundo, C., de Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.: Per-
fectly secure key distribution for dynamic conferences. Inf. Comput. 146, 1–23
(1998)

15. Garcia-Morchon, O., Tolhuizen, L., Gomez, D., Gutierrez, J.: Towards full collusion
resistant ID-based establishment of pairwise keys. In: Extended Abstracts of the
Third Workshop on Mathematical Cryptology (WMC 2012) and The Third Inter-
national Conference on Symbolic Computation and Cryptography (SCC 2012), pp.
30–36 (2012)

16. Garćıa-Morchón, O., Gómez-Pérez, D., Gutiérrez, J., Rietman, R., Tolhuizen, L.:
The MMO problem. In: Proceedings of ISSAC 2014, pp. 186–193. ACM (2014)

17. Garćıa-Morchon, O., Rietman, R., Shparlinski, I.E., Tolhuizen, L.: Interpolation
and approximation of polynomials in finite fields over a short interval from noisy
values. Exp. Math. 23, 241–260 (2014)

http://eprint.iacr.org/
http://www.ietf.org/internet-drafts/draft-garcia-core-security-06.txt
http://www.ietf.org/internet-drafts/draft-garcia-core-security-06.txt
https://eprint.iacr.org/2014/1008
https://eprint.iacr.org/2014/1008
http://www.ietf.org/internet-drafts/draft-kumar-dice-dtls-relay-02.txt

Maximizing Throughput in Energy-Harvesting
Sensor Nodes

Stanley P.Y. Fung(B)

Department of Computer Science, University of Leicester, Leicester, UK
pyf1@le.ac.uk

Abstract. We consider an online throughput maximization problem in
sensor nodes that can harvest energy. The sensor nodes generate and
forward packets, which cost energy; they can also harvest energy from
the environment, but the amount of energy that can be harvested is not
known in advance. We give a number of algorithms and lower bounds for
the case of a single node. We consider both the general case and some
types of ‘non-idling’ adversaries where we can get better bounds. We also
consider the case of networks with multiple nodes and demonstrate that
some very simple scenarios already admit no competitive algorithms.

1 Introduction

Background. Sensor networks are often deployed in areas where it is infeasible
to maintain a constant energy supply to the sensor nodes. Often the nodes
are equipped with batteries, and a node can only operate until its battery is
exhausted. There are many research work on how to extend the useful lifetime of
the sensor node or the sensor network by careful scheduling. If the sensor node is
equipped with some energy-harvesting device, e.g., solar cells so it can replenish
used energy, it can help make the system work longer or even indefinitely. This
creates a challenge of designing algorithms that can make use of this harvested
energy effectively.

The Model. We consider the scenario where each sensor node senses the environ-
ment, generates packets and sends them to a target destination. First consider a
single node. The model was defined in [12]. Time consists of discrete time steps
1, 2, A packet j is specified by a 3-tuple (r(j), d(j), v(j)), which repre-
sents its release time, deadline and value. A packet with release time r(j) and
deadline d(j) can only be sent in one of the time steps between r(j) and d(j),
inclusive. Sending a packet costs one unit of energy. The sensor is equipped
with a battery with a capacity of C, and an energy-harvesting device that may
harvest some amount of energy h(t) at each time step t. Let e(t) denote the
energy level of the battery at the beginning of time t (excluding energy har-
vested at this time step). A packet can only be sent if the node has sufficient
energy, i.e., e(t) + h(t) ≥ 1. The energy remaining at the next step is given by
e(t + 1) = min(C, e(t) + h(t) − x(t)) where x(t) = 1 if a packet is sent at time
t and x(t) = 0 otherwise. We assume there is no ‘leak’ of the battery so the
c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 129–141, 2015.
DOI: 10.1007/978-3-319-28472-9 10

130 S.P.Y. Fung

energy level stays the same when no packets are sent. The objective is to maxi-
mize the profit or weighted throughput of the schedule, i.e., the sum of values of
all packets sent.

Note that h(t) is not known in advance and only become known at time t.
Packet arrivals are also unknown in advance: packets with release time r(j) are
not known until time r(j). Therefore, this is an online problem. We measure
the performance of online algorithms using competitive analysis [1]: an online
algorithm A is r-competitive if the value produced by A is always at least 1/r that
of the optimal offline algorithm OPT over all input instances. For randomized
online algorithms we use the expected value of A instead for comparison.

Generalizing from a single node, we also consider the model where nodes are
connected into a network. Packets may have different sources and destinations,
and each sensor node needs to forward traffic generated by other nodes as well.
In our model, in each time step each node can send one packet to another node.
Each packet takes one time unit to pass the link between two nodes. Thus if a
packet is sent at time t in an upstream node, it appears as a packet with release
time t + 1 in the next downstream node. Sending a packet takes one unit of
energy, and we ignore the energy required to listen to or receive packets. The
objective is to maximize the total value of packets reaching their destinations.

Before going any further we introduce some definitions and notations. Let
V = maxj v(j)/minj v(j). An instance is underloaded if all packets can be sent by
OPT, respecting deadlines and energy availability. An algorithm or an adversary
(the optimal offline algorithm) is non-idling if, at every time step, it must send
a packet as long as there is energy available and there are packets pending.

Previous Work and Our Contributions. For the case of a single node, the problem
without energy considerations is known as the unit job scheduling problem (UJS)
and was studied extensively; see [5] for a survey. The current best deterministic
upper and lower bounds are 1.828 [4] and 1.618 [3,6,14] respectively while for
randomized algorithms they are 1.58 [2] and 1.25 [3].

There has been a lot of work in the sensor network community on the
problem of energy harvesting although most of them study the problem with
somewhat different objective functions, or assume that there are knowledge of
probability distributions or even complete knowledge of packet arrivals and/or
energy harvesting. For example, [11] assumed that future energy harvesting is
known; [8] assumed both the packet arrivals and energy replenishment follow a
Poisson process. The only algorithmic, worst-case analysis without prior proba-
bility assumptions that we are aware of is [12]. It considers the case of a single
node, and the authors gave deterministic upper and lower bounds of V against
general adversaries. Then they turned their attention to non-idling adversaries
and claimed to give a randomized algorithm that is 1.25-competitive against such
adversaries. We show that this is not true even when energy is not a limiting fac-
tor. (Note: in subsequent communications [9] one of the authors stated that their
‘non-idling’ adversary is more restricted than just not being allowed to idle; it is
not allowed to have any kind of ‘reserving’ of energy by scheduling fewer packets.
It was not made precise what it means, but it seems to share similar spirit of

Maximizing Throughput in Energy-Harvesting Sensor Nodes 131

the strongly non-idling adversary that we define later. In any case, we show that
their upper bound is not correct even when there is unlimited energy, and in
such scenarios any definition of non-idling is irrelevant since there is always no
harm in moving packets earlier to those idle time steps. The authors have also
since published a corrigendum [13] which gave a 2.5-competitiveness proof.) In
fact we prove a general lower bound of 2 for all randomized algorithms, and a
lower bound of Ω(

√
V) for deterministic algorithms, against oblivious, non-idling

adversaries.
As can be seen, a non-idling adversary is still very powerful. Thus we define

a more restricted strongly non-idling adversary, and against such adversaries
we prove a deterministic upper bound of 21 and a matching randomized lower
bound.

Back to the general adversary case, we show that the correct deterministic
competitive ratio should in fact be V +1. We also consider the unweighted packet
case and show that if packets have agreeable deadlines, i.e., packets released
earlier have earlier deadlines, then the Earliest Deadline First algorithm (EDF)
is 1-competitive.

Finally we consider the case of a network of nodes. When energy is not a
restriction, the problem becomes the one considered by [10]. They considered the
case of an uplink tree, where the nodes are connected into a tree and the root node
is the sink, and packets can originate in any node but the destination is always the
sink. This is a common scenario in sensor network applications. They showed that
it is possible to achieve 1-competitiveness for unweighted, underloaded instances.
For general network topologies and general source/destination pairs they gave a
tight O(P log P) competitive ratio bound, where P is the maximum route length.
In the case with energy we demonstrate that the problem has poor cometitive
ratios even for some very simple scenarios.

Due to space constraints some proofs will only appear in the full paper.

2 Non-idling Adversary

Proposition 1. The competitive ratio of RAND [12] is at least 1.265 against an
oblivious, non-idling adversary, even when there are no energy limitations.

In fact we show the following lower bounds for all non-idling randomized
algorithms:

Theorem 1. No non-idling randomized algorithm is better than (2 − 2√
V +1

)-
competitive against an oblivious, non-idling adversary. For deterministic algo-
rithms the lower bound is Ω(

√
V).

1 In [12] it was stated that the greedy algorithm is 2-competitive against non-idling
adversaries, apparently as a corollary from [7] which is about UJS. However our
problem is not a special case of UJS, even for strongly non-idling adversaries. We
give a separate 2-competitive proof, both because of this and because of the difference
in the (strongly) non-idling definitions.

132 S.P.Y. Fung

Proof. Consider a setting with two packets j1(1, 1,
√

V) and j2(1, 2, 1), a battery
with C = 2 and an initial e(1) = 2, and no energy harvested throughout. Suppose
an online randomized algorithm A sends j1 at time 1 with probability p and
j2 with probability 1 − p. (These are the only two possibilities as it is non-
idling.) If p ≤ 1+V

2V , no further packets are released. A can send j2 at time 2
if it has not already done so at time 1, so the expected profit of A, E[A] =
p(

√
V + 1) + (1 − p)(1) = 1 + p

√
V . The optimal profit is clearly 1 +

√
V , so the

competitive ratio is at least

1 +
√

V

1 + p
√

V
≥ 1 +

√
V

1 + 1+V
2V

√
V

=
2V + 2V

√
V

2V + V
√

V +
√

V
=

2V + 2
√

V

V + 2
√

V + 1
= 2 − 2√

V + 1

Otherwise if p > 1+V
2V then j3(3, 3, V) arrives. If A sent j1 at time 1 then it

must send j2 at time 2 since it is non-idling, leaving no energy for j3, whereas if
it sent j2 at time 1 then there is no pending packet to send at time 2 and so has
the remaining energy to send j3. Hence E[A] = p(

√
V + 1) + (1 − p)(1 + V) =

1 + V − p(V − √
V). OPT will send j2 at time 1 and j3 at time 3. Note that this

OPT is non-idling. The competitive ratio is therefore

1 + V

1 + V − p(V − √
V)

>
1 + V

(1 + V) + 1+V
2V

(
√
V − V)

=
2V

2V + (
√
V − V)

= 2 − 2√
V + 1

For deterministic algorithms, the proof is basically the same but p can only
take on two discrete values {0, 1}. If an online algorithm A sends j2 at t = 1
(i.e. p = 0) then no more packets arrive and the competitive ratio is 1 +

√
V .

Otherwise if j1 is sent (p = 1) then j3 arrives and the competitive ratio is
1+V

1+V −(V −√
V)

= Θ(
√

V). ��

3 Strongly Non-idling Adversary

The instances in Theorem 1 illustrate a curious aspect of the problem. When
faced with two packets p and q with v(p) > v(q) and d(p) < d(q), it seems
natural to give preference to p over q. Such algorithms are called rational. Here
however, the algorithm has to send q and discard p, even when v(p) is much
higher than v(q), in order to get good performance by saving the energy for a
later packet.

To get around this, we put further restrictions on what the adversary can do.
We say a packet p dominates another packet q if (i) v(p) > v(q) and d(p) ≤ d(q),
or (ii) v(p) ≥ v(q) and d(p) < d(q). We call a schedule S irrational if there are
two packets p �∈ S and q ∈ S, q is sent in a time step t such that r(p) ≤ t ≤ d(p),
and yet p dominates q. We call an adversary strongly non-idling if it is non-
idling and it never returns an irrational schedule. Note that when there is no
energy limitation or when non-idling is not required, this additional assumption
is redundant: clearly substituting q with p gives a schedule at least as good.
However, what may happen is that sending p first may mean the adversary is

Maximizing Throughput in Energy-Harvesting Sensor Nodes 133

forced to send q later due to its non-idling property, consuming the energy that
could be used for sending future high-value packets, whereas sending q first may
‘kill off’ p and thus save the energy. The situation in the proof of Theorem1
would not happen in strongly non-idling adversaries: OPT would not be allowed
to discard j1.

For strongly non-idling adversaries we first show a simple deterministic lower
bound of 2, then show that the greedy algorithm is 2-competitive and thus
optimal.

Theorem 2. Any deterministic algorithm is at least 2-competitive against a
strongly non-idling adversary.

Proof. Consider a setting with two packets j1(1, 1, 1) and j2(1, 2, 1 + ε), where
ε > 0 is very small, a battery with C = 2 and an initial e(1) = 2, and no energy
harvested throughout. Clearly OPT can send both packets, hence if an online
algorithm A does not send both packets then no more packets arrive, giving a
competitive ratio of at least (2 + ε)/(1 + ε) ≈ 2. Otherwise A sends j1 at t = 1
and j2 at t = 2, consuming all energy. Then j3(3, 3, V) arrives, which A has no
energy to send. OPT sends j2 at t = 1, dropping j1 which a strongly non-idling
adversary can do (it would not be allowed to do so if v(j1) ≥ v(j2)), and then
send j3. The competitive ratio is 1+ε+V

2+ε > 2 for large V . ��
We first define a total ordering of packets as follows. For two packets x and

y, we say x
 y if (i) v(x) > v(y), or (ii) v(x) = v(y) and d(x) < d(y), or
(iii) v(x) = v(y) and d(x) = d(y) and ID(x) < ID(y), where ID() is a unique ID
given to each packet for tie-breaking purposes. The algorithm GREEDY works
as follows: at each time step, as long as there is energy to send a packet and
there is at least one pending packet, send the one that is ‘largest’ according to
the
 ordering, i.e., the packet x such that there is no other packet with y
 x.

We assume OPT and GREEDY tie-break using the IDs consistently: if two
packets x and y have the same values and deadlines, and ID(x) < ID(y) (so
GREEDY favours x), then OPT would not leave x out of its schedule but include
y. In addition, we can assume that if OPT sent two packets x and y, where x
 y,
one at time step t1 and another at t2, where t1 < t2, and that both packets are
available during [t1..t2], then x is sent at t1 and y at t2 and not the other way
round. This follows from a simple exchange argument; note that this does not
affect the energy levels or the non-idling requirement at any other time steps.

Theorem 3. GREEDY is 2-competitive against a strongly non-idling adver-
sary.

Proof. Let G denote the schedule produced by GREEDY. Let e(t) and e∗(t)
denote the energy in the battery at time t of G and OPT respectively. We prove
by induction the invariant that

(Inv-E): at any time t, e(t) ≥ e∗(t)

and at the same time describe how the packet values in OPT can be charged to
those in G.

134 S.P.Y. Fung

Clearly (Inv-E) is true initially. When energy is harvested the battery of G
increases at least as much as that of OPT, unless the battery of G is fully charged
before that of OPT in which case (Inv-E) holds anyway.

Consider a time t, and assume (Inv-E) is true up to time t. If GREEDY does
not send a packet at t, then clearly (Inv-E) is maintained at t + 1. Moreover, if
OPT sends a packet x then by (Inv-E) GREEDY also has the energy to send
packets, so the only reason that it is idle is because x has already been sent
earlier. Charge x to itself in G.

Now suppose GREEDY sends a packet y and OPT sends a packet x. Clearly
(Inv-E) remains true at t+1. If v(x) ≤ v(y), simply charge the value of x to y. If
v(x) > v(y), then x must already be sent by G earlier since otherwise G would
have sent it instead at this time step; charge x to itself in that earlier time step.

Finally suppose GREEDY sends a packet y but OPT idles. We will show
below that this can only happen if OPT has zero energy (e∗(t) = 0 and h(t) = 0).
This means (Inv-E) is still maintained after this time step. No packet values from
OPT need to be charged.

Consider each packet in G, it receives at most two charges, one from a future
copy of itself in OPT and another from a packet sent by OPT at the same time
step which has at most the same value as the packet in G. Summing over all
packets in G, this shows that GREEDY is 2-competitive.

We now return to prove that if GREEDY sends a packet but OPT idles at
time t, then OPT must have zero energy. Suppose this is not true. Then OPT
must have no pending packets at t since it is non-idling. Let x1 be the packet
sent by G at t. This packet x1 must have been sent by OPT at an earlier time
t1 < t, since otherwise it would be pending for OPT at t. Consider the packet x2

sent by G at time t1. This packet must exist, i.e., G cannot idle at t1, because
x1 is pending, and G must have energy to send it because of (Inv-E) and the
fact that OPT has energy to send x1. Moreover, x2
 x1 because otherwise x1

would be sent here instead by GREEDY. x2 must be sent by OPT: otherwise if
d(x2) ≥ t then it would still be pending at t so OPT could not idle at t, whereas
if d(x2) < t then d(x2) < d(x1) and so x2 dominates x1, and thus a strongly
non-idling adversary could not have discarded x2 and schedule x1 at t1. Let t2
be the time where OPT sent x2. It must be that t2 < t, since otherwise OPT
would not idle at t. In fact it must be that t2 < t1: otherwise, if t1 < t2 < t then
both x1 and x2 have been released and have not reached their deadlines during
[t1..t2], so by our assumption OPT would have sent x2 first (because x2
 x1).

We then repeat the argument: again G cannot be idle at t2 and must send
a packet x3, because it has the energy to do so by (Inv-E) and because x2 is
pending at t2. Moreover this means x3
 x2
 x1. Then, x3 must appear in OPT:
if d(x3) ≥ t then OPT would not idle at t; if t1 ≤ d(x3) < t then d(x3) < d(x1)
and x3 dominates x1 and thus OPT could not have discarded x3 when it could
schedule it at t1; if d(x3) < t1 then d(x3) < d(x2) and similarly x3 dominates
x2. Furthermore it must appear in a time step t3 where t3 < t2: it cannot appear
after t since OPT could send it at t; if it appeared between t2 and t1 then OPT
would swap x2 and x3; and if it appeared between t1 and t then OPT would
swap x1 and x3.

Maximizing Throughput in Energy-Harvesting Sensor Nodes 135

Continuing like this, we can build a ‘chain’ of xi’s. In general, let ti be the
time where OPT sent xi, where ti < ti−1 < ... < t1 < t and xi
 xi−1
 ...
 x1.
G cannot be idle at ti because xi, which G sent at ti−1, is pending and it has
at least one unit of energy by (Inv-E). Let xi+1 be the packet sent by G at ti.
Moreover xi+1
 xi, since otherwise G would have sent xi instead of xi+1 at
ti. Then xi+1 must appear in OPT or else a strongly non-idling adversary must
include xi+1 and discard one of x1, ..., xi instead, depending on its deadline.
Moreover it must appear in a time step ti+1 where ti+1 < ti: it cannot appear
after t since OPT could send it at t; if it appeared between tj and tj−1 for some
j > 1 then OPT would swap xi+1 and xj ; and if it appeared between t1 and t
then OPT would swap xi+1 and x1.

This process can go on indefinitely, but there are only a finite number of time
steps before t and all these time steps t1, t2, ... and packets x1, x2, ... are distinct.
Hence we will eventually run into a contradiction. ��

In fact we give a randomized lower bound of 2, showing that randomization
does not help.

Theorem 4. No randomized algorithm is better than (2−ε)-competitive against
a strongly non-idling (and oblivious) adversary.

Proof. In the following we give a construction involving k rounds, and which
shows a lower bound of 2 − 1

k+1 , for any positive integer k. Since k can be made
arbitrarily large this proves the theorem.

Fix the capacity C = 2. At time 1 the battery is full. Fix a large x. At each
round i ≥ 1, an early packet ji(2i − 1, 2i − 1, xi−1) and a late packet ki(2i −
1, 2i, xi−1 + δ) arrive, where δ > 0 is very small (in the following calculations we
ignore δ). Also at round i ≥ 2 a unit of energy is harvested at the beginning,
i.e., h(2i − 1) = 1.

First consider round 1 and suppose at time 1 an online algorithm A sends j1
with probability 1− p1 and k1 with probability p1. If it sent j1 first then it must
send k1 at time 2, consuming all energy, while if it sent k1 first then j1 expires.

If p1 < k+1
2k+1 , then a big packet (3, 3, x) arrives and no further rounds are

released. The expected profit of A is E[A] = p1(1 + x) + (1 − p1)(2) = p1x +
2 − p1, while OPT sends k1 and the big packet. Hence the competitive ratio
R = 1+x

p1x+2−p1
≈ 1

p1
> 2k+1

k+1 for large x. On the other hand, if p1 ≥ 2k
2k+1 , then

no more packets or rounds arrive. OPT gets 2 while E[A] = p1(1) + (1 − p1)(2),
hence R = 2

2−p1
≥ 2k+1

k+1 . Finally, if k+1
2k+1 ≤ p1 < 2k

k+1 , we proceed to round 2.
In general, we only proceed to round i if k+1

2k+1 ≤ p1p2..pj < 2k+1−j
2k+1 for all

previous rounds 1 ≤ j ≤ i − 1. Suppose we are at the beginning of round i, and
two packets and one unit of energy is released. Consider the event (*):

In all previous rounds the late packets were sent immediately on arrival.

Thus none of the early packets were sent and this leaves one unit of energy
(plus the one just harvested). This happens with probability p1p2...pi−1. Let pi

be the conditional probability that A sends ki at time 2i − 1, conditional on

136 S.P.Y. Fung

(*) happens. In this case ji cannot be sent, and there is one unit of energy left
afterwards. And with conditional probability 1 − pi, again conditional on (*), ji

is sent instead, forcing ki to be sent at the next time step and with no energy left
afterwards. Finally, with the rest of probability 1− p1p2...pi−1, in at least one of
the previous rounds both the early and the late packets were sent, meaning there
is no energy left at the beginning of round i (other than the one just harvested),
so only one of ji or ki can be sent (and one of them must be sent). We now
consider three cases.

Case 1: p1p2...pi < k+1
2k+1 . A big packet (2i + 1, 2i + 1, xi) arrives and no more

rounds arrive. Since xi is much larger than any other packet values, we only
consider the value of this big packet in the profits. The only way A can send this
big packet is to have (*) and also send the late packet at this round immediately
on arrival; thus E[A] = (p1..pi)(xi). Clearly OPT can get xi. Hence R = 1

p1..pi
>

2k+1
k+1 .

Case 2: p1p2..pi ≥ 2k+1−i
2k+1 . No further packet arrives. The two packets in round i,

of value xi−1, dominate the profits, hence we only consider them. The only way
that A can sent both of these packets is to have (*), then send the early packet ji

first; this happens with probability p1..pi−1(1−pi). In all other scenarios, A can
send one of the two packets this round. Thus E[A] = xi−1(1 + p1..pi−1(1 − pi)).
OPT gets 2xi−1. Hence

R =
2

1 + p1..pi−1(1 − pi)
=

2

1 + p1..pi−1 − p1..pi
≥ 2

1 + 2k+1−i+1
2k+1

− 2k+1−i
2k+1

=
2k + 1

k + 1
.

Case 3: k+1
2k+1 ≤ p1p2..pi < 2k+1−i

2k+1 . We proceed to round i + 1.
Since Case 3 cannot happen when i = k, the construction stops latest at

round k and in all cases the lower bound is at least (2k + 1)/(k + 1). ��

4 Unrestricted Adversary

4.1 Weighted Instances

In [12] it was shown that, against general adversaries (i.e., they can idle), any
deterministic non-idling rational algorithm is V -competitive. We first show that
the correct competitive ratio for any deterministic non-idling algorithms is in
fact V + 1, rational or not.

Consider the following counterexample with two packets j1(1, 3, 1),
j2(2, 2, V), battery capacity C = 1, initial energy e(1) = 1, and harvesting
energy h(3) = 1 and h(t) = 0 for any other t. A non-idling algorithm must send
j1 at time 1 and then cannot send j2. OPT would send j2 and j1 at time 2, 3
respectively, obtaining a profit of V + 1. Thus the competitive ratio is at least
V + 1.

The following lemma is useful for a number of results later on. Given the
schedules of OPT and that of an online algorithm A, we say a time step t is an

Maximizing Throughput in Energy-Harvesting Sensor Nodes 137

OPT-only step if OPT sends a packet at t, but A does not despite having at
least one pending packet, because it has no energy. We call a time step A-only if
A sends a packet, but OPT does not despite having at least one unit of energy.

Lemma 1. For the k-th OPT-only step in the schedule, there must be at least
k A-only steps before it in the schedule.

Theorem 5. Any non-idling algorithm is (V + 1)-competitive.

Proof. We consider how to charge the values of packets sent by OPT to those
by the online algorithm A. Any packet sent by OPT is charged to itself in A if it
is also sent by A. If at time t OPT sends a packet x that A does not send, and
A sends another packet y instead at this time step, then charge x to y. Clearly
v(x)/v(y) ≤ V . If at time t OPT sends x but A idles because it has no pending
packets, then x must have been sent by A already and therefore its value is
already charged. Thus the only remaining case is when OPT sends x but A idles
because it has no energy to send any packet, i.e., it is an OPT-only step.

Suppose there are a total of k OPT-only steps. By Lemma 1, there are at
least k A-only steps. We charge each of the k packets in these OPT-only steps
to each of these k packets in A in A-only steps (in some arbitrary way). Again,
if x is the packet in OPT making the charge and y is the one in A receiving it
then v(x)/v(y) ≤ V .

Each packet in A is charged by at most two packets: one which is itself,
and the other either from OPT in the same time step, or from some OPT-only
time steps, but not both. Thus the ratio of total charges received by a packet
to the value of the packet sent by A is at most V + 1. This shows that A is
(V + 1)-competitive. ��

We can also easily prove matching randomized upper and lower bounds of
Θ(log V):

Theorem 6. Against unrestricted adversaries, any randomized algorithm
is Ω(log V)-competitive. There exists an O(log V)-competitive randomized
algorithm.

4.2 Unweighted Instances

It might appear that if packets are unweighted, EDF is optimal. However it
is not the case: following the same example in the beginning of the previous
subsection, EDF, or any non-idling algorithm, is not better than 2-competitive.
It also follows from Theorem 5 that any non-idling algorithm is 2-competitive.

It can be observed from those examples that such ‘deadline inversion’ is the
problem to getting optimal schedules. We formalise this by showing that for
instances with agreeable deadlines, i.e. d(i) < d(j) implies r(i) ≤ r(j), EDF is
1-competitive against unrestricted adversaries. Note that EDF is 1-competitive
for unweighted instances against non-idling adversaries (without the agreeable
deadline assumption) since neither OPT nor the online algorithm can idle and

138 S.P.Y. Fung

clearly it is best to send the packet with the earliest deadline when it is the
only thing that distinguishes packets. Therefore, in a sense we can replace the
requirement of a non-idling adversary with agreeable deadlines to get to 1-
competitiveness. Note that agreeable deadline instances include the case where
all packets have the same ‘lax time’ (d(j) − r(j)) as a special case.

Similar to Theorem3, we use IDs as a consistent way of tie-breaking dead-
lines. We assume EDF prefers packets with earlier release times among those
that have the same deadline, and if release times are also equal, then the one
with a smaller ID. We say x ≺ y if d(x) < d(y), or d(x) = d(y) and r(x) < r(y),
or d(x) = d(y) and r(x) = r(y) and ID(x) < ID(y).

We also assume OPT follows a canonical structure, in that: (i) if it sent a
packet x at time t1 before sending a packet y at time t2, and r(y) ≤ t1, then
it must be that x ≺ y; (ii) OPT does not idle unnecessarily, i.e., if OPT was
idle at t1 and sends a packet x at a later time step t2, then it must be that x
cannot be moved earlier to t1 without affecting other parts of the schedule (e.g.
due to energy availability), or that simply x was not released at t1, or that there
is no energy available at t1. Both assumptions are without loss of generality by
applying standard exchange arguments.

Lemma 2. Let e∗(t) and e(t) be the energy in the battery of OPT and EDF at
time t respectively. Then at any time t,

Claim 1: e∗(t) ≥ e(t).
Claim 2: if OPT sent a packet x at t then EDF could not send x before t.

Proof. We prove both claims together by induction on t. Both claims are obvi-
ously true for the first time step t = 1. It is also easy to see that Claim 1 is true
for t = 2: it can only be falsified if OPT sent a packet at time 1 but EDF idles,
but they have the same starting energy and the same set of pending packets, so
EDF must also send a packet if OPT can.

Suppose Claim 1 is true for all time steps up to and including t, and Claim
2 is true for all time steps up to but excluding t. Claim 1 is true for time t + 1
unless OPT sends a packet x at t but EDF idles. It is also true if any idling of
EDF is due to that it has no energy (e(t) + h(t) = 0). But if e(t) + h(t) > 0,
EDF will send x instead of staying idle unless x has already been sent. Hence
it remains to prove that x cannot have been sent earlier in EDF, i.e., to prove
Claim 2 is true at time t.

So suppose x was sent by EDF at time t′ < t. Consider the two cases.

Case 1: OPT is idle at t′. EDF has the energy to send a packet, so e(t′)+h(t′) > 0,
and applying the induction hypothesis of Claim 1 to time t′, e∗(t′) ≥ e(t′). Hence
e∗(t′) + h(t′) > 0 and OPT has the energy to send a packet at t′. So the only
reason why x is not sent by OPT at t′ must be that during (t′..t], there is an
energy-critical time step, i.e. a step s where e∗(s) + h(s) = 1 and a packet z
is sent by OPT there, so that if x was sent at t′ instead it would use up one
unit of energy and z then could not be sent at s. Furthermore assume s is the
earliest such energy-critical step in (t′..t]. We have z ≺ x since otherwise OPT

Maximizing Throughput in Energy-Harvesting Sensor Nodes 139

would swap x and z. Hence either d(z) < d(x), which implies r(z) ≤ r(x) by
the definition of agreeable deadlines, or d(z) = d(x) and the definition of ≺ also
implies r(z) ≤ r(x). But then z could have been sent by OPT at t′ because it
has energy available and because there are no other energy-critical step between
t′ and s. Hence there is a contradiction.

Case 2: OPT sent a packet y at t′. y must still be pending in EDF at t′ by
induction hypothesis on Claim 2, yet EDF chooses to send x, hence x ≺ y. But
then OPT would have swapped x and y (note that d(x) ≤ d(y)). ��
Theorem 7. EDF is 1-competitive for unweighted instances with agreeable
deadlines (against unrestricted adversaries).

Proof. Consider each packet x sent by OPT at a time step t. If EDF sends some
packet at t, charge x to that packet. Otherwise, EDF idles despite the fact x
is still pending (by Claim 2 of Lemma 2), so it can only be because it has no
energy, i.e., it is an OPT-only step. By Lemma 1, there must be at least as many
A-only steps as OPT-only steps, so pair them up arbitrarily and charge the
packet values as in the proof of Theorem5.

Any packet sent by EDF can only receive charge from one other packet: if it
is an A-only step that it only receives from a packet in an OPT-only step, and
if it is a step where both OPT and A send packets then it gets charged from the
corresponding packet in OPT. ��

As a note, this automatically means that EDF is V -competitive for weighted,
agreeable-deadline instances.

5 Network Topologies

Here we consider a network with more than one node. We will restrict ourselves
to unweighted packets. We use the notation (r(j), d(j), s(j), t(j)) for a packet
j where s(j) and t(j) are the source and destination nodes. We use hN (t) to
denote the energy harvesting function for node N .

The situation is already very bad even for unweighted instances:

Proposition 2. The competitive ratio is unbounded even for line networks and
even for unweighted instances if packets have different destinations.

Proof. Consider a line network with four nodes a, b, c, d and two packets
p1(1, 3, a, c), p2(1, 5, a, d). All batteries are initially empty. We have ha(1) = 1
and ha(t) = 0 for t ≥ 2, hb(1) = hc(1) = 0. Hence an online algorithm A can
only send one of the two packets. If A sends p1, then hb(2) = 0, so p1 will expire.
OPT sends p2 instead, with hb(3) = 1, hc(4) = 1. If A sends p2 instead, then
hb(2) = 1 but hc(t) = 0 for all t, so p2 expires while OPT sends p1. ��
Proposition 3. EDF has an infinite competitive ratio even when all packets
have the same source and destination in a line network with only three nodes.

140 S.P.Y. Fung

Proof. Consider a line network a, b, c and two packets p1(1, 3, a, c), p2(1, 4, a, c).
Again nodes have empty batteries initially, ha(1) = 1 and ha(t) = 0 afterwards,
and hb(t) = 0 for all t �= 3 and hb(3) = 1. EDF sends p1 first, but node b has
no energy at time 2 and hence p1 expires, and node a has no energy at time 2
onwards so p2 also expires. OPT sends p2 at time 1, waits at node b at time 2
until it has energy at time 3. Thus EDF gets 0 while OPT gets 1. ��

To try to get around this, we make an additional assumption that the instance
is underloaded. We note that it is quite common in the real-time systems com-
munity to consider underloaded instances. However we still have the following:

Proposition 4. For a line network where all packets have a common desti-
nation (the sink), any non-idling algorithm is at least (n + 1)-competitive for
unweighted and underloaded instances against unrestricted adversaries, where n
is the number of nodes (excluding the sink).

Proof. Consider a line network with n nodes (in this order) N0, N1, ..., Nn where
N0 is the sink. Each node N1..Nn have C = 1, initial battery energy 0 and the
following energy harvesting function: h(1) = 1, h(t) = 0 for 2 ≤ t ≤ n + 1, and
h(t) = 1 for t ≥ n + 2. Packet p0 is released to node Nn with r(p0) = 1 and
d(p0) very large. For each 1 ≤ i ≤ n, packet pi is released to node Ni with
r(pi) = n + 1 and d(pi) = n + i + 1. These packets are tight, i.e., they must be
forwarded immediately at every node to reach N0 in time. A non-idling algorithm
will send p0 along the line from time 1 to n, consuming the only unit of energy
at each node along the way. Then when the tight packets arrive at time n + 1,
they cannot be forwarded immediately and hence all are lost. OPT withholds
p0 and stays idle up to and including time n. At time n + 1 it forwards each of
p1..pn by one node. Starting at time n + 2 all nodes have plenty of energy, so
they continue to forward packets p1..pn to the sink. Finally p0 is sent. ��

We believe the bound is indeed tight, i.e., for underloaded instances any non-
idling algorithm is O(n)-competitive in line networks with a common sink, or
even for uplink trees where n is the total number of vertices. Note that without
energy limitations EDF is 1-competitive for uplink trees, but for arbitrary non-
idling algorithms it can also be as bad as (n + 1)-competitive. Also, it is not
true that the competitive ratio may be upper bounded by the depth of the tree
rather than the number of nodes: we have an example to show that any non-
idling algorithm is Ω(n)-competitive for an uplink tree even with a depth of 2.

6 Conclusion

Most importantly we want to get an upper bound in the case of uplink trees or at
least line networks. In the single node case, it is interesting to see whether there
are other ways to get non-trivial competitiveness with reasonable assumptions.
The power of randomized algorithms, or algorithms that choose to idle, remain to
be investigated. For example in the unrestricted adversary case, it is not clear
whether it is possible to get (idling) algorithms with competitive ratio better
than V + 1; or for non-idling algorithms, what are the upper bounds.

Maximizing Throughput in Energy-Harvesting Sensor Nodes 141

References

1. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press, New York (1998)

2. Chin, F.Y.L., Chrobak, M., Fung, S.P.Y., Jawor, W., Sgall, J., Tichý, T.: Online
competitive algorithms for maximizing weighted throughput of unit jobs. J. Dis-
crete Algorithms 4(2), 255–276 (2006)

3. Chin, F.Y.L., Fung, S.P.Y.: Online scheduling with partial job values: does time-
sharing or randomization help? Algorithmica 37(3), 149–164 (2003)

4. Englert, M., Westermann, M.: Considering suppressed packets improves buffer
management in quality of service switches. SIAM J. Comput. 41(5), 1166–1192
(2012)

5. Goldwasser, M.H.: A survey of buffer management policies for packet switches.
SIGACT News 45(1), 100–128 (2010)

6. Hajek, B.: On the competitiveness of online scheduling of unit-length packets with
hard deadlines in slotted time. In: Proceedings of 35th Annual Conference on
Information Sciences and Systems, pp. 434–438 (2001)

7. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,
M.: Buffer overflow management in QoS switches. SIAM J. Comput. 33(3), 563–
583 (2004)

8. Lei, J., Yates, R., Greenstein, L.: A generic model for optimizing single-hop trans-
mission policy of replenishable sensors. IEEE Trans. Wirel. Commun. 8(2), 547–551
(2009)

9. Li, F.: Personal communication (2014)
10. Mao, Z., Koksal, C.E., Shroff, N.S.: Optimal online scheduling with arbitrary hard

deadlines in multihop communication networks. In: Proceedings of IEEE INFO-
COM, pp. 2463–2471 (2013)

11. Moser, C., Brunelli, D., Thiele, L., Benini, L.: Real-time scheduling for energy
harvesting sensor nodes. Real-Time Syst. 37, 233–260 (2007)

12. Wang, H., Zhang, J.X., Li, F.: Worst-case performance guarantees of scheduling
algorithms maximizing weighted throughput in energy-harvesting networks. Sus-
tainable Comput.: Inform. Syst. 4, 172–182 (2014)

13. Wang, H., Zhang, J.X., Li, F.: Corrigendum to worst-case performance guarantees
of scheduling algorithms maximizing weighted throughput in energy-harvesting
networks. Sustain. Comput.: Inf. Syst. 5, 64 (2015)

14. Zhu, A.: Analysis of queueing policies in QoS switches. J. Algorithms 53, 137–168
(2004)

On Verifying and Maintaining Connectivity
of Interval Temporal Networks

Eleni C. Akrida1(B) and Paul G. Spirakis1,2

1 Department of Computer Science, University of Liverpool, Liverpool, UK
Eleni.Akrida@liverpool.ac.uk

2 Computer Technology Institute and Press “Diophantus” (CTI), Patras, Greece
P.Spirakis@liverpool.ac.uk

Abstract. An interval temporal network is, informally speaking, a net-
work whose links change with time. The term interval means that a link
may exist for one or more time intervals, called availability intervals of
the link, after which it does not exist (until, maybe, a further moment
in time when it starts being available again). In this model, we consider
continuous time and high-speed (instantaneous) information dissemina-
tion. An interval temporal network is connected during a period of time
[x, y], if it is connected for all time instances t ∈ [x, y] (instantaneous
connectivity). In this work, we study instantaneous connectivity issues
of interval temporal networks. We provide a polynomial-time algorithm
that answers if a given interval temporal network is connected during a
time period. If the network is not connected throughout the given time
period, then we also give a polynomial-time algorithm that returns large
components of the network that remain connected and remain large dur-
ing [x, y]; the algorithm also considers the components of the network
that start as large at time t = x but dis-connect into small components
within the time interval [x, y], and answers how long after time t = x
these components stay connected and large. Finally, we examine a case
of interval temporal networks on tree graphs where the lifetimes of links
and, thus, the failures in the connectivity of the network are not con-
trolled by us; however, we can “feed” the network with extra edges that
may re-connect it into a tree when a failure happens, so that its con-
nectivity is maintained during a time period. We show that we can with
high probability maintain the connectivity of the network for a long time
period by making these extra edges available for re-connection using a
randomised approach. Our approach also saves some cost in the design of
availabilities of the edges; here, the cost is the sum, over all extra edges,
of the length of their availability-to-reconnect interval.

1 Introduction and Motivation

A great variety of systems in society, technology and nature can be modelled as
networks, linked with edges; from the Internet to the web of social acquaintances,

Supported in part by (i) the School of EEE and CS and the NeST initiative of
the Univeristy of Liverpool, and (ii) the FET EU IP Project MULTIPLEX under
contract No. 317532.

c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 142–154, 2015.
DOI: 10.1007/978-3-319-28472-9 11

On Verifying and Maintaining Connectivity of Interval Temporal Networks 143

from the transport network of a city to the nervous system of the human body.
The structure of a network describes the several connections between the partic-
ipating entities and helps us understand or predict the behaviour of dynamical
systems. However, in many cases the links between the participating entities do
not always remain active but change or disappear as time progresses. A temporal
network is, informally speaking, a network that changes with time. Both tradi-
tional and modern networks, such as communication networks, social networks,
transportation networks and physical systems, can be modelled as temporal.

Dynamic networks in general have been attracting attention over the past
years, exactly because they model real-life applications. The study of temporal
networks in particular is quite interdisciplinary, which is also reflected in liter-
ature where the object of study may have different names - temporal graphs,
temporal networks, evolving graphs, time-stamped graphs etc. Kempe et al. [14]
considered the single-labelled discrete-time model of temporal graphs, where
every edge may become available (for use) only at a discrete moment in time,
called the label of the edge; their main motivation was to examine how basic
graph properties change in this temporal setting. In their multi-labelled model,
Mertzios et al. [17] extended the model of [14] to many labels per edge and
mainly examined the number of labels needed for a temporal design of a net-
work to guarantee several graph properties with certainty. They also provided
an algorithm to compute foremost time-respecting paths; in this discrete-time
model, a time-respecting path is a path in which successive edges have strictly
increasing time labels and a foremost time-respecting path is one that reaches
the destination vertex at the earliest possible time. Random edge availabilities
in the discrete-time model of temporal networks were first considered by Akrida
et al. [1] in order to study the Expected Temporal Diameter of temporal graphs.

Assuming the availability of an edge for a whole time-interval [t1, t2] or mul-
tiple such time-intervals, and not just for discrete moments, is a clearly natural
assumption since time is indeed a continuous measure. Bui-Xuan et al. [4] con-
sider a class of dynamic networks where the changes in the topology can be
predicted in advance and in which each node and each edge comes with a list
of time intervals; they give algorithms for computing foremost time-respecting
paths, shortest (minimum hop count) time-respecting paths and fastest (mini-
mum time) time-respecting paths in this model. Fleischer and Tardos [11] con-
sider a continuous-time model of dynamic graphs and prove continuous versions
of known discrete-time flow algorithms for dynamic flow problems. Fleischer
and Skutella [10] also engage in the study of flows in a continuous-time model of
dynamic graphs. Further related work includes [2,3,5,6,9,12,13,15,16,18–21].

1.1 Our Contribution

In this work, we restrict our attention to continuous time and consider systems in
which only the connections between the participating entities may change, while
the entities remain unchanged. So we consider networks of a fixed vertex set, each
edge e of which is available over a set of time intervals Le = {[t1, t′1], . . . , [tk, t′k]}.
Each interval indicates a period of availability of e; the unprimed times mark

144 E.C. Akrida and P.G. Spirakis

the start of the availability period and the primed times mark the end. This is a
model that could naturally represent several systems, such as proximity networks
where a link may represent that two entities have been close to each other for
some extent of time, or infrastructural systems like the Internet, or even seasonal
food webs where a time interval may represent the fact that one species is the
main food source of another for a specific period of the year.

We give a polynomial-time deterministic algorithm that decides if a given
interval temporal network is connected during a given period (cf. Sect. 3); if
the network is not connected, the algorithm returns the maximal interval from
the beginning of the given period during which the network stays connected.
We then provide a polynomial-time algorithm that decides if a given interval
temporal network has large enough connected components during a given time
period; here, the size of the components in question is determined by a parameter
provided by the user as input to the algorithm (cf. Sect. 4). Finally, we provide
a probabilistic analysis of a scenario where the lifetime of the intervals assigned
to the edges of a network on a tree graph are not designed via a deterministic
process and are unknown to us; instead, the edges may fail unexpectedly and
we are required to supply the network with more available edges so that, when
a break in the connectivity of the network happens, we can re-connect it. We
wish not to keep all these extra edges available for re-connection at all times,
i.e., we wish to maintain connectivity but by paying a low cost on keeping extra
edges available. Assuming that the cost of keeping additional edges available
is linear to the sum of lengths of their availability intervals, we show a low
cost construction. Other work for maintaining some structure or property like
connectivity in probabilistic dynamic graphs includes [7,8].

2 Preliminaries

We focus here on networks, the links of which are not always available. The
availability of a link is described via a set of time intervals, one set per edge.

Definition 1 (Interval Temporal Network). Let G = (V,E) be a (di)graph.
An interval temporal network on G is an ordered triplet G(L) = (V,E,L), where
L = {Le = {[t1, t′1], . . . , [tke

, t′ke
]}, for some ke ∈ N, ti, t

′
i ∈ R

+, ti < t′i, i =
1, 2, . . . , ke : e ∈ E} is an assignment of availability intervals to the edges (arcs)
of G. L is called a labelling of G.

The availability intervals of an edge (arc) e represent the continuous time
intervals at which e is active. When we say that an edge (arc) is active or available
during the interval [a, b], for some a, b ∈ R, it means that the edge exists in the
network ∀t ∈ R

+, t ∈ [a, b]. For the analysis throughout the paper, we assume
the intervals [t1, t′1], . . . , [tke

, t′ke
] to be disjoint.1 Every time a change in the

network happens, i.e., an edge starts or stops being available, we have changes

1 We can assume this, because if an edge e ∈ E has overlapping availability intervals,
then we can consider their union as an availability interval of e.

On Verifying and Maintaining Connectivity of Interval Temporal Networks 145

in the topology of the network; so, in a sense, an interval temporal network can
be viewed as a sequence of graphs, one after every topology change. However,
representing such networks as evolving graphs, i.e., the sequence of states of
the network after each change, is not as efficient. The interval representation is
indeed a very compact representation of such kinds of evolving graphs.

A basic assumption that we follow is that when a message or an entity passes
through an available link at time t, then it can pass through a subsequent link
only at some time t′ ≥ t and only at a time at which that link is available.
However, unlike what is assumed in the discrete-time model of [1,14,17], here
we consider instant information dissemination through a path of the underlying
(di)graph, if the consecutive edges (arcs) are consistently labelled. In fact, our
model considers very high speed of information dissemination, resembling fibre-
optic communication, but the small time needed to send a message through a
link is considered negligible for the analysis. Consider, for example, an interval
temporal network G(L) and a path p of G(L) such that all edges of p are available
at some time t = t0; if some information starts at time t0 from one endpoint of
p, it can arrive at time t0 to the other endpoint.

Definition 2 (Connectivity of Interval Temporal Networks). An interval
temporal network G(L) = (V,E,L) is connected at a given time instance t0 if
the edges that are available at time t0, i.e., the edges that have an availability
interval which includes t0, induce a spanning tree.

3 Connectivity of Interval Temporal Networks During
a Given Time Period

A fundamental issue for any given network, dynamic or not, is to verify if the
network is connected (over time, in the dynamic case), i.e., information can travel
via edges between any ordered pair of vertices in it. In this section, we consider
interval temporal networks and address the issue of their connectivity.

One can think of an interval temporal network as a dynamic network, where
the changes in the topology of the network happen whenever an availability
interval of an edge starts or finishes, but can view it as static in between these
(instantaneous) changes. Since information can travel instantaneously in interval
temporal networks, for such a network to be connected over a time period, all
the instances of the “static” networks that are formed during that period need
to be connected.

We provide below a polynomial-time procedure to determine if a given inter-
val temporal network is connected throughout a particular time period. Hence-
forth, we denote by E(t) the set of edges that are available at time t, and t is
not the finish time of the availability interval that includes t.2

2 E(t) are the edges that are available at t and do not stop being available (immedi-
ately) after time t.

146 E.C. Akrida and P.G. Spirakis

Theorem 1. There is a polynomial-time algorithm (cf. Algorithm1) which,
given an interval temporal network G(L) on n vertices and numbers x, y ∈
R

+, x < y, answers whether G(L) is connected during the time period [x, y], i.e.,
is connected for every time instance t ∈ [x, y]. If for some a ∈ [x, y], [x, a] ⊆ [x, y]
is the maximal sub-period of [x, y] during which G(L) remains connected, then
the algorithm also returns the length of that period, a − x.

Algorithm 1. Connectivity of interval temporal networks
Input: A temporal network G(L) of n vertices and numbers x, y ∈ R

+ such that x < y
Output: Answer if G(L) remains connected during the time interval [x, y]

1: if E(x) induces a spanning tree, T , of G then
2: Sort the edges in T according to the finish time of their availability interval;

//For every edge in T , we only consider the interval that includes x
3: Let A = {ei, with interval [ai, bi] : i = 1, . . . , n − 1} be the sorted list;
4: if b1 ≥ y then
5: return “Network is connected” and “Duration of survival =” y − x; //If all

edges in T remain available until (at least) time y
6: else
7: E′ := {e ∈ E(T) : be = b1}; //b1 is the first time instance at which T

becomes disconnected. E′ is the set of edges of T that stop being available at
time b1.

8: T := T \ E′; //T is now a forest, i.e., consist of a collection of trees
9: Remove E′ from A;

10: Let T1, T2, . . . , Ti, i ∈ N be the connected components of T ;
11: while T is disconnected do
12: if ∃j, k = 1, 2, . . . , i : ∃e = (u, v) ∈ E(b1) : u ∈ V (Tj) ∧ v ∈ V (Tk) then
13: Find the Tj , Tk trees of T that e connects; //If there is an edge of G

with endpoints in different connected components of T and is available
at time b1, then add it to T

14: Merge Tj , Tk and e into a single tree;
15: Update the number i of connected components of T ;
16: Insert e in the sorted list A;
17: else
18: return “Network is disconnected” and “Duration of survival =” b1 −x;

19: Break;
20: Go to line 4
21: else
22: return “Network is disconnected” and “Duration of survival =” t − x;

Description of the Algorithm. The idea behind Algorithm1 is that G(L) is
connected during a period [x, y] if and only if G(L) has a spanning tree for every
time instance in [x, y].

Initially, Algorithm 1 finds a spanning tree of the input network G(L) at
time x. If no such tree exists, then at time x the network is disconnected and
the algorithm terminates. If a spanning tree T exists at time x, then T remains
connected until one (or more) of its edges stop being available. Denote by b1

On Verifying and Maintaining Connectivity of Interval Temporal Networks 147

the first moment in time at which T disconnects. T consists now of a number
of connected components and, in fact, T is a forest (collection of trees). The
algorithm checks whether there are edges of G(L) that are available at time
b1, which can be added to T and re-connect it. More specifically, the algorithm
finds an edge that is available at time b1 and has endpoints in different connected
components of T . The algorithm adds that edge to T and checks if this addition
re-connects it. If not, then it looks for yet another edge that is available at time
b1 and has endpoints in different connected components of (the current) T . This
process continues until T is re-connected or we cannot find any more edges of
G(L) that are available at time b1 and have endpoints in different connected
components of T . If at any step of the process there do not exist edges that
can re-connect T , then the algorithm returns that the network is disconnected.
However, if we can find appropriate edges to re-connect T , then we form another
spanning tree of the network, available from time b1 onwards, and the same
procedure continues. The algorithm answers that the network is connected if we
form a spanning tree, all the edges of which are available until the end of the
period in question, namely until time y.

Running Time. The running time of Algorithm1 depends on the number of
times that the spanning tree changes during [x, y]. The spanning tree can only
change when one or more edges stop being available, so the above number is in
general upper bounded by the total number of intervals assigned to the edges of
the network:

M =
∑

e∈E

|Le|

Initially, to find E(x) we need to look at every edge e ∈ E and decide if x is
between the start and finish time of one of e’s availability intervals. Performing
a binary search on the ordered set of start times and the ordered set of finish
times of e’s availability intervals, we can decide if e ∈ E(x) in time O(log |Le|).
So, to compute E(x) and check if it induces a spanning tree, we need time:

M ′ = O(
∑

e∈E

log |Le|)

Next, time O(n log n) is required to sort the edges in T , where n is the number
of vertices in the network. Then, for every time T changes, we need time M ′ to
find the new set of available edges at the time. We need time O(n) to find the
connected components that can be re-connected by the addition of an available
edge at the time and update T . Since we add at most O(n) edges to re-connect
T , the addition of all edges and the updates of T take a total of O(n2) time. Also,
time O(n) is required to insert the added edges in the sorted list A. Therefore, the
running time of Algorithm1 is O

(
M ′+n log n+M ·(M ′+n2)

)
= O

(
M ·(M ′+n2)

)
.

148 E.C. Akrida and P.G. Spirakis

4 Large Connected Components During
a Given Time Period

In this section, we examine if, given an interval temporal network G(L) of n
vertices, numbers x, y ∈ R

+ and a parameter 0 ≤ ε ≤ 1, we can find one or
more large enough subsets of the vertices of G which remain connected and
remain large within the time interval [x, y]. The matter of how large we want
the components to be is handled by adjusting ε, which gives us a lower bound
of ε · n on the size of the components we are looking for. In this section, we
provide an algorithm that efficiently solves the above problem. Henceforth, a
“large enough” connected component will be a component of size at least ε · n.

Notice that any connected component C of G(L), at time t = x, that is not
large enough can be omitted by any algorithm that solves the above problem.
Even if the vertices of C connect with more vertices in G(L) at a later moment in
time within [x, y], resulting in a large enough connected component C ′ of G(L)
at that time, C ′ is not a component that was connected throughout [x, y].

Theorem 2. There is a polynomial-time algorithm which, given an interval
temporal network G(L) on n vertices and numbers x, y ∈ R

+, x < y, returns
all subgraphs of G of size ε · n, 0 ≤ ε ≤ 1, that remain connected and
large (i.e., is always of size at least ε · n) during the time period [x, y]. If
[x, a] ⊆ [x, y], a ∈ [x, y], is the maximal sub-period of [x, y] during which such a
component remains connected, then the algorithm also returns the length of that
period, a − x.

Description of the Algorithm. Algorithm 2 receives as input an interval
temporal network of n vertices and an interval [x, y] during which we want to
check whether one or more large components of the network remain connected.
The algorithm also takes a non-negative parameter ε no larger than 1. This
parameter defines how large we want our components to be; more specifically,
the algorithm will only look for components of size (number of vertices) at least
ε · n. The algorithm returns all those subsets of the vertices of the initial graph,
if any, that remain connected (and large) during [x, y]. Furthermore, it returns
the duration of connectivity (survival duration) of any large enough component
that was connected at time t = x but disconnects at some point in [x, y].

To do so, the algorithm initially checks which connected components, if any,
are large enough at time x, and ignores all the rest. Then, the algorithm treats
each and every one of these large components similarly, but separately. Namely,
for each one of them the algorithm finds a spanning tree T and sorts all its edges
according to the finish time of their availability interval, considering only the
interval that includes time x. If the same tree remains connected during [x, y],
then the algorithm returns the respective component. Otherwise, if the tree
disconnects at a moment t0 in time, the algorithm employs a similar process to
the one used in Algorithm 1, i.e., tries to reconnect the remainder of the tree via
edges that are available at t0. If T cannot be re-connected, then the algorithm

On Verifying and Maintaining Connectivity of Interval Temporal Networks 149

Algorithm 2. Connectivity of interval temporal graphs
Input: A temporal network G(L) of n vertices, numbers x, y ∈ R

+ such that x < y
and parameter ε : 0 ≤ ε ≤ 1

Output: All components of G(L) of size ε · n that remain connected during the time
interval [x, y]

1: Find the set E(x) of available edges at time x, distinguish the connected compo-
nents and delete those of size smaller than ε · n;

2: for each of the remaining connected components do
3: Find a spanning tree, T ;
4: n′ = |V (T)|;
5: Sort the edges in T according to the finish time of their availability interval;

// For every edge in T , we only consider the interval that includes x
6: Let A = {ei, with interval [ai, bi] : i = 1, . . . , n − 1} be the sorted list;
7: if b1 ≥ y then
8: return V(T) and “Duration of survival of component = ” y − x;
9: else

10: E′ := {e ∈ E(T) : be = b1}; // b1 is the first time instance at which T
becomes disconnected. E′ is the set of edges of T that stop being available at
time b1.

11: T := T \ E′;
12: Remove E′ from A;
13: Let T1, T2, . . . , Ti, i ∈ N be the connected components of T ;
14: while T is disconnected and |V (T)| = n′ do
15: if ∃j, k = 1, 2, . . . , i : ∃e = (u, v) ∈ E(b1) : u ∈ V (Tj) ∧ v ∈ V (Tk) then
16: Find the Tj , Tk trees of T that e connects; //If there is an edge of G

with endpoints in different connected components of T and is available
at time b1, then add it to T

17: Merge Tj , Tk and e into a single tree;
18: Update the number i of connected components of T ;
19: Insert e in the sorted list A;
20: else
21: for each connected component C of T with size smaller than ε · n do
22: T = T \ C;
23: return “Duration of survival of component = ” b1 − x;
24: for each connected component, C′, of T do
25: T := C′;
26: n′ = |V (T)|;
27: Go to line 7;

checks the sizes of its connected components; it ignores those that are not large
enough, while “processing” the rest similarly and separately as before. For each
component that is ignored in the process, the algorithm returns the duration of
its survival, meaning how long its vertices stayed connected since time x. The
algorithm stops when there are no more components that are large enough or
when the last component stays connected until time y.

150 E.C. Akrida and P.G. Spirakis

Running Time. It is easy to see that the running time of the algorithm for
each separate component is the same as the running time of Algorithm 1. Since
there are at most 1

ε connected components of size at least ε · n in G(L) during

[x, y], the running time of Algorithm2 is O
(

1
ε

(
M · (M ′ + n2)

))
.

5 Low Cost Maintenance of a Tree Structrure

In this section, we consider an interval temporal network on an underlying clique
of n nodes, i.e., all

(
n
2

)
links between nodes of the network may exist.

The connectivity of the network needs to be maintained at all moments in
time via a tree structure, i.e., a spanning tree of the clique. Each node of the tree
performs an individual application determined by the operator of the structure
and each link (edge) is active (alive) during a time-interval also decided by the
operator, after which the link fails. We have the liberty to provide the operator
with extra edges from the clique to re-connect a spanning tree when a link fails;
note here that after a new edge is added to the tree structure, the operator then
assigns to it a “lifetime” interval, which is determined by the application, anew.
The extra edges that we can provide come from the edges of the clique that
are not currently used in the tree structure, i.e., a total of

(
n
2

) − (n − 1) edges.
We need to assign to every such edge e out of the

(
n
2

) − (n − 1) an availability
interval, Ie, so that when the tree structure becomes dis-connected, there is an
appropriate such edge available to re-connect it. We call those edges reserved
edges and the set that consist exactly of all those edges (with their availability
intervals) reservoir, denoted by R.3

Definition 3 (Cost of the Reservoir). The cost of the reservoir is defined as
the sum, over all reserved edges, of the length of the edges’ availability interval:

c =
∑

e∈R

|Ie|

Let T be the tree structure that is handled by the operator. We consider
the time period between 0 and n and we assume that the breaks/failures in the
connectivity of T happen once inside every consecutive time interval of length
Δ ≥ α log n, for some α > 1.2 (Low-frequency-of-link-breaks assumption). We
are not able to predict when exactly the failures happen, nor are we able to
foresee which link will fail next. We also assume worst case breaks in the tree
topology within each Δ-interval. The trivial design of the availabilities of the
reserved edges would be to make them all available throughout the considered

time period [0, n]. However, this yields cost c =
∑(n

2)−n+1

i=1 n ∈ O(n3). We will

3 Notice, here, the distinction between the availability of an edge and the lifetime of
an edge: availability refers to the interval that we assign to a reserved edge with the
purpose to re-connect the tree when it breaks, and lifetime refers to the interval that
the operator assigns to an edge after it is inserted in the tree structure and is the
time interval after which the respective link in the tree structure will fail.

On Verifying and Maintaining Connectivity of Interval Temporal Networks 151

show how to provide the network with available reserved edges with lower cost,
so that the network connectivity is maintained with high probability (whp).4 In
order to re-connect the tree in the worst case of breaks in the tree topology, each
reserved edge needs to have been randomly assigned to an availability interval
to allow for the same probability of re-connection for all edges.

Theorem 3. Let α ∈ {x ∈ R|x ≥ 0.75}. If failures of the edges happen once
in every consecutive Δ ≥ α log n time-intervals, then there exists a reservoir of
cost O(n2 log n) that keeps a spanning tree available during [0, n] whp.

Proof. Partition the time interval [0, n] into consecutive equisized sub-intervals
b1, b2, . . . , b n

β log n
of length β log n, β ∈ R, 0.75 ≤ β ≤ α, called boxes.5 For every

reserved edge e ∈ R independently, select a box uniformly at random to be the
availability interval of e. For every edge e ∈ R, the probability that e is assigned
a particular box bi, i = 1, 2, . . . , n

β log n as its availability interval is:

Pr[Ie = bi] =
β log n

n

Denote by m′ the number of edges in R that are assigned to a particular box
bi, i = 1, 2, . . . , n

β log n , m′ = |{e ∈ R : Ie = bi}|. The expected value of m′ is:

μ = E[m′] =
β log n

n
· (n(n − 1)

2
− n + 1

)
=

βn log n

2
− 3β log n

2
+

β log n

n

By Chernoff bounds, we get that the probability that m′ is close to the
expected number of edges in a particular box bi, i = 1, 2, . . . , n

β log n is:

Pr[m′ ∈ (1 ± 1
2
)μ] ≥ 1 − e− 1

4μ

= 1 − e− 1
4 · β log n

n ·(n2
2 − n

2 −n+1)

≥ 1 − 1

n
βn
16

, for n large enough (n ≥ 6)

We now show that when a failure happens in T , we can whp find an edge in R
which is available at that particular moment in time. Consider the specific box bi

that includes the time moment at which the failure in T happens. The number of
edges in bi that can re-connect T depends on where the failure happens, i.e., on
the sizes6 of the two connected components after the failure. If n1 and n2 are the
sizes of the connected components of T after a failure, then the probability that
a particular edge e ∈ bi can re-connect T after being added to the structure is:

4 An event occurs with high probability if, for any γ ≥ 1, the event occurs with
probability at least 1 − cγ

nγ , where cγ depends only on γ.
5 The last box is not necessarily of size exactly β log n but this does not affect the

analysis.
6 The size of a component is the number of its vertices.

152 E.C. Akrida and P.G. Spirakis

Pr[e ∈ bi re-connects T] =
n1 · n2

(n1+n2)·(n1+n2−1)
2

≥ 2n1n2

(n1 + n2)2

The probability that no edge of bi reconnects T after a failure is:

Pr[no e ∈ bi re-connects T] ≤ (
1 − 2n1n2

(n1 + n2)2
)m′

So, the probability that there is an edge in bi that re-connects T is:

Pr[bi re-connects T] ≥ 1 − (
1 − 2n1n2

(n1 + n2)2
)m′

≥ 1 − (
1 − 2n1n2

(n1 + n2)2
) 3μ

2

In the worst case, T dis-connects into a component of size n − 1 and a single
vertex. So, we can reconnect T after a failure with probability:

Pr[bi re-connects T] ≥ 1 − (
1 − 2(n − 1)

n2

) 3βn log n
4 − 9β log n

4 + 3β log n
2n

≥ 1 − (
1 − 2(n − 1)

n2

) 3
4βn log n

≥ 1 − 1
n0.9 3

2β
, for n large enough (n ≥ 10)

= 1 − 1
n1.35β

n→+∞−−−−−→ 1

We require β ≥ 0.75 so that the above event happens whp. The probability
that within the time period [0, n], there is a box that will not re-connect T is:

Pr[∃bi, i = 1, . . . ,
n

β log n
: bi doesn’t re-connect T] ≤

n
β log n∑

i=1

1
n1.35β

=
n

β log n
· 1
n1.35β

n→+∞−−−−−→ 0

So, we can almost surely7 re-connect T during [0, n] by employing the above
random assignment of availability intervals to the reserved edges, having total

cost c =
∑(n

2)−n+1

i=1 β log n ∈ O(n2 log n). 	

Conjecture. If failures of the edges happen once in every consecutive Δ ≥
α log n time-intervals, we conjecture that there is no reservoir of cost o(n2 log n)
that keeps a spanning tree available during [0, n] whp.

Open Problem 1. For spanning tree breaks of frequency o(log n) within the
time period [0, n], the reservoir of Theorem 3 does not re-connect T whp. It
remains an open question to derive a scheme that does so for breaks of so high
frequency.

Open Problem 2. What is a low cost reservoir to maintain a spanning tree of
the clique network, if the failures in the links of the tree happen randomly, e.g.,
if each link receives a lifetime given by the Exponential Distribution?
7 Note that increasing the size of the boxes by a constant factor, i.e., increasing the

lower bound for β and α, can enforce the re-connection probability to also increase.

On Verifying and Maintaining Connectivity of Interval Temporal Networks 153

References

1. Akrida, E.C., G ↪asieniec, L., Mertzios, G.B., Spirakis, P.G.: Ephemeral networks
with random availability of links: diameter and connectivity. In: Proceedings of the
26th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)
(2014)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

3. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover time
of a simple random walk on evolving graphs). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

4. Bui-Xuan, B.-M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(2), 267–285 (2003)

5. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. (IJPEDS) 27(5),
387–408 (2012)

6. Clementi, A.E.F., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time of
edge-markovian evolving graphs. SIAM J. Discrete Math. (SIDMA) 24(4), 1694–
1712 (2010)

7. Cooper, C., Klasing, R., Radzik, T.: A randomized algorithm for the joining proto-
col in dynamic distributed networks. Theor. Comput. Sci. 406(3), 248–262 (2008)

8. Duchon, P., Duvignau, R.: Local update algorithms for random graphs. In:
Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 367–378. Springer,
Heidelberg (2014)

9. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the complexity
of information spreading in dynamic networks. In: Proceedings of the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 717–736 (2013)

10. Fleischer, L., Skutella, M.: Quickest flows over time. SIAM J. Comput. 36(6),
1600–1630 (2007)

11. Fleischer, L., Tardos, É.: Efficient continuous-time dynamic network flow algo-
rithms. Oper. Res. Lett. 23(3–5), 71–80 (1998)

12. Gavoille, C., Peleg, D., Perennes, S., Raz, R.: Distance labeling in graphs. In:
Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 210–219 (2001)

13. Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and con-
nectivity. SIAM J. Comput. 34(1), 23–40 (2004)

14. Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for
temporal networks. In: Proceedings of the 32nd Annual ACM Symposium on The-
ory of Computing (STOC), pp. 504–513 (2000)

15. Koch, R., Nasrabadi, E., Skutella, M.: Continuous and discrete flows over time - a
general model based on measure theory. Math. Methods OR 73(3), 301–337 (2011)

16. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic net-
works. In: Proceedings of the 42nd Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 513–522 (2010)

17. Mertzios, G.B., Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Temporal network
optimization subject to connectivity constraints. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp.
657–668. Springer, Heidelberg (2013)

154 E.C. Akrida and P.G. Spirakis

18. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Causality, influence, and compu-
tation in possibly disconnected synchronous dynamic networks. In: Baldoni, R.,
Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 269–283.
Springer, Heidelberg (2012)

19. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method. Algorithms
and Combinatorics, vol. 23. Springer, Heidelberg (2002)

20. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs.
In: Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing
(DIALM-POMC), pp. 104–110 (2005)

21. Scheideler, C.: Models and techniques for communication in dynamic networks. In:
Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 27–49. Springer,
Heidelberg (2002)

Beachcombing on Strips and Islands

Evangelos Bampas1, Jurek Czyzowicz2, David Ilcinkas1(B), and Ralf Klasing1

1 LaBRI, CNRS and University of Bordeaux, Talence, France
{evangelos.bampas,david.ilcinkas,ralf.klasing}@labri.fr

2 Département d’informatique, Université du Québec en Outaouais,
Gatineau, Canada

Jurek.Czyzowicz@uqo.ca

Abstract. A group of mobile robots (beachcombers) have to search
collectively every point of a given domain. At any given moment, each
robot can be in walking mode or in searching mode. It is assumed that
each robot’s maximum allowed searching speed is strictly smaller than
its maximum allowed walking speed. A point of the domain is searched if
at least one of the robots visits it in searching mode. The Beachcombers’
Problem consists in developing efficient schedules (algorithms) for the
robots which collectively search all the points of the given domain as
fast as possible.

We first consider the online Beachcombers’ Problem, where the robots
are initially collocated at the origin of a semi-infinite line. It is sought to
design a schedule A with maximum speed S, defined as S = inf�

�
tA(�)

,

where tA(�) denotes the time when the search of the segment [0, �] is
completed under A. We consider a discrete and a continuous version of
the problem, depending on whether the infimum is taken over � ∈ N

∗

or � ≥ 1. We prove that the LeapFrog algorithm, which was proposed
in [Czyzowicz et al., SIROCCO 2014, LNCS 8576, pp. 23–36 (2014)],
is in fact optimal in the discrete case. This settles in the affirmative a
conjecture from that paper. We also show how to extend this result to
the more general continuous online setting.

For the offline version of the Beachcombers’ Problem, we consider the
single-source Beachcombers’ Problem on the cycle, as well as the multi-
source Beachcombers’ Problem on the cycle and on the finite segment.
For the single-source Beachcombers’ Problem on the cycle, we show that
the structure of the optimal solutions is identical to the structure of
the optimal solutions to the two-source Beachcombers’ Problem on a
finite segment. In consequence, by using results from [Czyzowicz et al.,
ALGOSENSORS 2014, LNCS 8847, pp. 3–21 (2014)], we prove that the
single-source Beachcombers’ Problem on the cycle is NP-hard, and we
derive approximation algorithms for the problem. For the multi-source
variant of the Beachcombers’ Problem on the cycle and on the finite seg-
ment, we obtain efficient approximation algorithms.

Part of this work was done while Jurek Czyzowicz was visiting the LaBRI as a
guest professor of the University of Bordeaux. This work was partially funded by
the ANR project DISPLEXITY (ANR-11-BS02-014). This study has been carried
out in the frame of “the Investments for the future” Programme IdEx Bordeaux –
CPU (ANR-10-IDEX-03-02).

c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 155–168, 2015.
DOI: 10.1007/978-3-319-28472-9 12

156 E. Bampas et al.

One important contribution of our work is that, in all variants of
the offline Beachcombers’ Problem that we discuss, we allow the robots
to change direction of movement and search points of the domain on
both sides of their respective starting positions. This represents a sig-
nificant generalization compared to the model considered in [Czyzowicz
et al., ALGOSENSORS 2014, LNCS 8847, pp. 3–21 (2014)], in which
each robot had a fixed direction of movement that was specified as part
of the solution to the problem. We manage to prove that changes of
direction do not help the robots achieve optimality.

1 Introduction

A group of n mobile robots have to explore collectively a given one-dimensional
domain. The robots may be initially collocated or dispersed in the domain. At
every moment of time, a robot can be either in walking mode or in searching
mode. A robot in walking mode traverses the domain with a speed not exceeding
its maximal walking speed. A robot in searching state can travel using at most
its maximal searching speed, which is strictly smaller than its walking speed,
reflecting the fact that a searching activity is more time-consuming. Different
robots may have distinct maximal walking and searching speeds. A robot can
change mode, speed, and direction of movement instantaneously. There is no
communication between the robots during the execution of the algorithm. In
the Beachcombers’ Problem, the goal is to design a schedule for the movement
of all robots so that the domain is searched as fast as possible. A domain is said
to be searched under a given schedule, if every point of the domain is visited by
at least one robot in searching mode.

As pointed out in [11], where the Beachcombers’ Problem was introduced,
there are numerous examples in quite diverse domains in which exploration using
two-speed robots arises as a natural model for the underlying processes. For exam-
ple, foraging or harvesting a field may take longer than inadvertent walking. In
computer science, web page indexing or code inspection require a more involved
investigation. A common feature of these examples is that the activity of search-
ing, or other action to be performed on the territory, takes more time than
casual territory traversal. The analogy to beachcombers has been introduced in
[11] to bring out that, e.g., a beachcomber looking for things of value performs
a meticulous search of the beach, which takes significantly more time than sim-
ply walking from one point of the beach to another. Further motivation for the
two-speed model can be found in [11,12].

Preliminaries and Notation. We consider searching schedules using two-speed
robots in the following one-dimensional geometric domains: the cycle of a known
circumference L, the finite straight line segment of a known length L, and on
the semi-infinite line [0;+∞). The efficiency of the search in the first two cases
is expressed in terms of the time tf when the search of the cycle is completed
or, equivalently, the speed L/tf of the process. However, in the latter case, the
schedule efficiency is better expressed by the speed of the search, represented by

Beachcombing on Strips and Islands 157

inf�
�

tA(�) where tA(�) denotes the time when the search of the segment [0; �] is
completed. In the discrete version of the problem, the infimum inf�

�
tA(�) is over

� ∈ N
∗. On the other hand, in the continuous setting, the infimum inf�

�
tA(�) is

taken over � ≥ 1.
A schedule for the robots is defined by a strictly increasing sequence of times

t0, t1, · · · , as well as, for every robot i and every interval [tj , tj+1], for j ≥ 0,
a mode (walking or searching), a speed (respecting the maximum speed of the
chosen mode), and a direction of movement. A schedule is correct if, for every
point p of the domain, there exists a time moment at which p is visited by a robot
in searching mode. For any fixed robot i, we refer to the individual schedule of
robot i as the trajectory of robot i. Clearly, this sequence of intervals is finite in
the offline case and infinite in the online setting.

Observe that while the model allows to use any speed not exceeding the
maximal speed given for the robot’s mode, we can restrict consideration only to
using its maximal searching and walking speeds. Also notice that any searching
schedule may be converted to another one, which has the property that all sub-
segments which were being searched have pairwise disjoint interiors. Therefore,
when looking for the optimal searching schedule, it is sufficient to restrict con-
sideration to schedules whose searched sub-segments may only intersect at their
endpoints.

Previous Work. The Beachcombers’ Problem was introduced and studied in
[11]. An optimal (offline) algorithm was presented for the problem in which
all robots are initially located on one endpoint of a finite segment of known
length. Furthermore, a 2-competitive (online) algorithm was presented for the
case where all robots are initally collocated on the origin of a semi-infinite line.
In [12], the Beachcombers’ Problem was studied for the case of more than one
starting positions on a finite segment of known length. For a fixed number t ≥ 2
of starting positions, the t-source Beachcombers’ Problem on a finite segment
asks to find t starting points on the segment, an assignment of the robots to the
starting points, and a search schedule which concludes the search of the finite
segment as quickly as possible. It was shown in [12] that this problem is NP-hard
for t = 2, even when all robots have the same walking speed, that the optimal
solution can be computed efficiently when all robots have the same searching
speed, and that there exist a deterministic approximation algorithm for t = 2
and a randomized approximation algorithm for general t.

Our Contributions. In Sect. 2, we study the online Beachcombers’ Problem on
the semi-line [0;+∞). We prove that the LeapFrog algorithm, which was pro-
posed in [11], is in fact optimal in the discrete case. This settles in the affirmative
a conjecture from [11]. We also show how to extend this result to the more general
continuous online setting.

As regards the offline Beachcombers’ Problem, we consider in Sect. 3 the
single-source Beachcombers’ Problem on the cycle. We show that the structure
of the optimal solutions to the single-source Beachcombers’ Problem on a cycle

158 E. Bampas et al.

is identical to the structure of the optimal solutions to the two-source Beach-
combers’ Problem on a finite segment, as defined in [12]. This implies that the
results from [12] for the case of two distinct sources are carried over to the case
of the cycle, yielding an NP-hardness result as well as the existence of efficient
approximation algorithms for the problem. In particular, the NP-hardness of
the single-source Beachcombers’ Problem on the cycle seems at first somewhat
surprising, in view of the existence of an efficient algorithm generating optimal
schedules for the single-source problem on a finite segment.

Furthermore, in Sect. 4, we explain how to modify the arguments from Sect. 3
so as to obtain approximation algorithms for the multi-source variant of the
Beachcombers’ Problem on the cycle and on the finite segment. Our results for
the cycle topology provide a partial answer to an open question posed in [11,12],
concerning the study of the problem in different domain topologies.

One further important contribution of our work is that, in all variants of the
offline Beachcombers’ Problem that we discuss, we allow the robots to change
direction of movement and search points of the domain on both sides of their
respective starting positions. This represents a significant generalization com-
pared to the model considered in [12], in which each robot had a fixed direction
of movement that was specified as part of the solution to the problem. On an
intuitive level, allowing the robots to zigzag should not result in a faster sched-
ule. However, no proof of this intuition had been found until now. We manage
to prove that changes of direction do not help the robots achieve optimality.

Due to lack of space, proofs are omitted.

Related Work. Searching and exploration have been studied in numerous papers
considering graphs or geometric environments (e.g. [1,4,5,7,8,14,16–18,21]).
The performance of the searching or exploration is typically expressed by the
trajectory length or the time used by the mobile agent.

Many searching and exploration algorithms are studied in the online setting,
i.e., the target position or sometimes other parameters of the environment are
a priori unknown (cf. [2,3,9,14,16,19,20]). Efficiency of such algorithms is typ-
ically measured by the competitive ratio, i.e., the ratio of the time spent by the
online algorithm with respect to the time of the optimal offline algorithm.

Most of the papers studying searching and exploration concern single robots.
Sets of collaborating mobile robots were studied, e.g., in [10,15,22,23]. Tradeoffs
between the number of robots and the time of exploration were derived in [19].

The majority of the research on mobile robots concerns robots having the
same mobile speed. Robots with distinct speeds were considered in the context of
sensor energy efficiency [25], for designing fast converging population protocols
[6], and for patrolling the boundary of an environment [13,24].

2 The Online Beachcombers’ Problem on the Semi-line

In this section, we consider two variants of the online beachcombers’ problem on
the semi-line. The first one corresponds to the online problem presented in [11].

Beachcombing on Strips and Islands 159

Definition 1 (Discrete Online Beachcombers’ Problem). Given n robots
with walking speeds wi and searching speeds si < wi, for 1 ≤ i ≤ n, initially
collocated at the origin of a semi-line [0;+∞), the problem consists in finding a
correct schedule for this semi-line. The discrete online speed of a schedule A is
defined as inf�∈N∗ �

tA(�) , where tA(�) denotes the time when the search of the
segment [0; �] is completed.

Definition 2 (Continuous Online Beachcombers’ Problem). Given n
robots with walking speeds wi and searching speeds si < wi, for 1 ≤ i ≤ n,
initially collocated at the origin of a semi-line [0;+∞), the problem consists in
finding a correct schedule for this semi-line. The continuous online speed of a
schedule A is defined as inf�≥1

�
tA(�) , where tA(�) denotes the time when the

search of the segment [0; �] is completed.

The idea of the LeapFrog algorithm is to make all sufficiently fast robots,
forming the so-called swarm of the algorithm, meet at some regular intervals.
For this purpose, each robot of the swarm is assigned a specific fraction of such
regular interval that it has to search (the robot walks the rest of the interval). For
each robot, the assigned searching subinterval is calculated as a function of the
walking and searching speeds of all the robots participating in the swarm. The
robots repeat the same behavior in each interval, always all of them meeting at its
extremities. Although all robots are always used in the optimal offline algorithm
presented in [11], some robots whose walking speeds are too slow (informally, not
larger than the average speed of the swarm) may not participate in the swarm
and thus may be never used in the online LeapFrog algorithm.

The main purpose of this section is to prove the optimality of the Algorithm
LeapFrog described in [11]. Our first step toward this goal is to restrict ourselves
to particular schedules, which are much simpler to analyze but are nevertheless
at least as efficient (in terms of online speeds) as general ones. The following
simple lemma holds both for the discrete and the continuous cases.

Lemma 1. For every correct schedule S, there exists a correct schedule S′ whose
both online speeds are not smaller than the respective ones of S, and such that
every moving agent always moves in the initial direction at the full speed per-
mitted by its current mode. Moreover, the interiors of the segments searched by
the different robots do not overlap.

Let LF be the discrete online speed of Algorithm LeapFrog. Before proving
that Algorithm LeapFrog is optimal in terms of discrete online speed, we prove
the slightly weaker result that no correct schedule can have a continuous online
speed larger than LF.

Lemma 2. The continuous online speed of any correct schedule is at most LF.

Theorem 1. The discrete online speed of any correct schedule is at most LF.

Concerning the continuous online speed metrics, it is possible to obtain a
slightly more precise result than the one of Lemma 2.

160 E. Bampas et al.

Lemma 3. If there are at least two robots and Algorithm LeapFrog uses all the
robots, then any continuous online speed of any correct schedule is less than LF.

It turns out that simple variations of Algorithm LeapFrog can match the
bounds given in Lemmas 2 and 3.

In Algorithm LeapFrog, all agents participating in the swarm are synchro-
nized at every integer point, that is, they all arrive at the same time at every
integer point. For any positive integer N , we denote by LeapFrogN the variant of
LeapFrog for which the agents participating in the swarm synchronize every 1/N
units of distance, instead of every unit as in the original Algorithm LeapFrog. It
is easy to check that the continuous online speed of Algorithm LeapFrogN tends
to LF as N tends toward infinity. The family of algorithms {LeapFrogN}N∈N∗ is
thus optimal in the case when there at least two robots and Algorithm LeapFrog
uses all the robots (cf. Lemma 3).

If there is only one robot, then the only reasonable algorithm is the one in
which the single robot always searches at its maximal speed. This algorithm
is in fact Algorithm LeapFrog, and its continuous online speed is equal, in this
special case, to its discrete online speed LF. Lemma 2 thus shows that Algorithm
LeapFrog is optimal also in this case.

The remaining case is when there are at least two robots, but the swarm
of Algorithm LeapFrog does not use all the robots. In this particular case, we
consider the following adaptation LeapFrog′ of Algorithm LeapFrog. Let r, with
searching speed s, be some robot not participating in the swarm in Algorithm
LeapFrog. In our adaptation LeapFrog′, this robot r searches the semi-line from
its beginning at its maximum searching speed s during 1/LF time units before
stopping forever. Let p be the point at which r stops. All the robots of the swarm
walk at the walking speed of the slowest walker among them until reaching
point p. (Note that this walking speed is larger than LF by construction of the
swarm.) At this point, all swarm robots execute Algorithm LeapFrogN as if
p was the origin of the semi-line, with N defined as follows. The integer N is
chosen sufficiently large so that, at any time at least 1/LF, the swarm has always
searched one segment of length 1/N ahead of the normal Algorithm LeapFrogN .
One can prove that the continuous online speed of Algorithm LeapFrog′ is equal
to LF, which is optimal by Lemma 2.

3 Single-Source Beachcombers on the Cycle

The purpose of this section is to show that the structure of the optimal solutions
to the offline Beachcombers’ Problem on the cycle is identical to the structure
of the optimal solutions to the two-source Beachcombers’ Problem on a finite
segment, as defined in [12]. This implies that the results from [12] for the case of
two distinct sources are carried over to the case of the cycle, even if the agents
are allowed to zigzag. The (offline) single-source Beachcombers’ Problem on the
cycle is defined as follows:

Beachcombing on Strips and Islands 161

Definition 3 (BPC – Beachcombers’ Problem on the Cycle). Consider a
cycle CL of circumference L and n robots r1, r2, . . . , rn, initially placed at point
0 of the cycle, each robot ri having searching speed si and walking speed wi, such
that si < wi. The Beachcombers’ Problem consists in finding an efficient correct
searching schedule A of CL. The speed SA of the solution to the Beachcombers’
Problem equals SA = L/tf , where tf is the finishing time of A.

The (offline) t-source Beachcombers’ Problem on the segment was defined
in [12] as follows:

Definition 4 (t-SBP – t-Source Beachcombers’ Problem [12]). Consider
an interval IL = [0, L] and n robots r1, . . . , rn, each robot ri having searching
speed si and walking speed wi, such that si < wi. The t-Source Beachcombers’
Problem consists in finding an efficient correct searching schedule A of IL, in
which the robots are divided into at most t groups with each group being ini-
tially placed on a particular point of the segment (the source) and having a fixed
direction of movement. The speed SA of the solution to the Beachcombers’ Prob-
lem equals SA = L/tf , where tf is the finishing time of A.

Note that the model of [12] precludes by definition any change of direction
of movement for the robots, since each group of robots has a fixed direction of
movement which is specified as part of the solution to the t-SBP problem. On
the other hand, in our model for BPC, no such restriction is imposed but we are
able to prove that changing directions does not help the robots.

In the following propositions and lemmas, we will refer to schedules for BPC,
unless it is explicitly stated otherwise.

Proposition 1. For every correct schedule S, there exists a correct schedule S ′

whose completion time is not greater than that of S and which additionally sat-
isfies the following properties:

1. Every pair of arcs searched by the robots under S ′ have disjoint interiors.
2. During every time interval of S ′, every robot i is either stopped or it moves

at the maximum speed wi or si, according to its chosen mode during that
interval.

In view of Proposition 1, we will assume in the following that the trajectory of
each robot i is characterized by a sequence of arcs (Ai,j)0≤j≤σi

and, for each arc,
a mode (searching or walking) and a direction (clockwise or counterclockwise),
such that in each arc the robot is moving at the maximum allowed speed. Note
that an arc Ai,j may correspond to one or more consecutive time intervals of the
schedule.

Lemma 4. For every correct schedule S, there exists a correct schedule S ′ whose
completion time is not greater than that of S and in which the trajectory of every
robot in S ′ satisfies the following:

162 E. Bampas et al.

– It either stops at the origin at time 0, or it searches a sequence of arcs in
clockwise (resp. counterclockwise) direction, in order of increasing clockwise
(resp. counterclockwise) distance from the origin, and then it either stops or
it moves counterclockwise (resp. clockwise) to the origin and then searches a
sequence of arcs in counterclockwise (resp. clockwise) direction, in order of
increasing counterclockwise (resp. clockwise) distance from the origin.

– In between arcs that the robot searches clockwise (resp. counterclockwise),
it walks clockwise (resp. counterclockwise) straight from the end of the last
searched arc to the beginning of the next one.

– The robot stops at the moment when it searches a non-empty arc for the last
time.

– Traversing the circle clockwise from the origin, we first encounter all the arcs
that are searched by the robot in the clockwise direction and, subsequently, we
encounter all the arcs that are searched by the robot in the counterclockwise
direction.

Lemma 5. For every correct schedule S, there exists a correct schedule S ′ whose
completion time is not greater than that of S and in which, while moving from the
origin in a clockwise direction, one first encounters all the arcs that are searched
by some robot moving in clockwise direction under S ′, and then one encounters
all the arcs searched by some robot moving in counterclockwise direction under S ′.

We call a schedule that satisfies the properties guaranteed by Proposition 1,
Lemmas 4 and 5 normal :

Definition 5 (Normal Schedules). A schedule is called normal if every
robot’s trajectory is either empty (the robot stops at time 0), or it consists of
one clockwise or counterclockwise leg, as defined below, or it consists of two legs
in opposite directions, such that after the first leg the robot returns to the origin
by walking at full speed backwards over the first leg.

A clockwise (resp. counterclockwise) leg is a part of a robot’s trajectory that
starts at the origin and consists of searching at full speed a sequence of arcs in
order of increasing clockwise (resp. counterclockwise) distance from the origin.
In between searched arcs, the robot walks at full speed in the clockwise (resp.
counterclockwise) direction from the end of the last searched arc to the beginning
of the next one.

In addition, a normal schedule satisfies the following properties:

1. Every pair of searched arcs (not necessarily by the same robot) have disjoint
interiors.

2. For every robot, each of its legs corresponds to at most one loop around the
circle and, if its trajectory has two legs, they do not overlap.

3. While moving from the origin in a clockwise direction, one first encounters
all the searched arcs that belong to clockwise legs, and then one encounters
all the searched arcs that belong to counterclockwise legs.

It follows from the proofs of Proposition 1, Lemmas 4 and 5 that, for every
correct schedule S that is not normal, there exists a correct normal schedule S ′

Beachcombing on Strips and Islands 163

that has smaller or equal completion time. In other words, we can guarantee all
of the properties ensured by Proposition 1, Lemmas 4 and 5 simultaneously. In
the following, we will assume normal schedules without loss of generality. In fact,
a careful examination of the proofs reveals that, in all cases, the modification
of S to S ′ strictly decreases the completion time of at least one robot. This is less
obvious in Lemma 5, but it suffices to apply the modification described in the
proof for a pair of arcs a, b, such that one of them is the last searched arc in some
robot’s clockwise leg or the last searched arc in some robot’s counterclockwise
leg. It is easy to check that if S does not satisfy the property in the statement
of Lemma 5, then there exists at least one such pair of searched arcs. We thus
have the following:

Lemma 6. For every non-normal correct schedule S, there exists a normal cor-
rect schedule S ′ whose completion time is not greater than that of S and in which
at least one robot requires strictly less time to complete its trajectory.

With every fixed normal schedule S, we associate the corresponding partition
of the circle into pairwise interior-disjoint arcs, each of which is searched by a
single robot that is moving in the same direction over a continuous time interval.
In view of Lemma 4, we may assume that the origin is not in the interior of any
of the arcs.

Definition 6. Let S be a normal schedule. We denote by A+
S (resp. A−

S) the set
of searched arcs that belong to clockwise (resp. counterclockwise) legs of robots.
For a, b ∈ A+

S ∪ A−
S , we write a ≺ b if a clockwise traversal starting from the

origin encounters arc a before arc b.

For the purpose of stating the next lemma, given a normal schedule S with
completion time T , we will denote by I(S) the inclusion-maximal set of searched
arcs that satisfies the following property: Each arc in I(S) is searched by a robot
that stops strictly earlier than T and

⋃
I∈I(S) I is a continuous arc that contains

the origin. We will denote by R(S) the number of distinct robots that search the
arcs in I(S).

Lemma 7. Let S be a normal correct schedule with completion time T , such
that there exists ε > 0 and at least one robot that stops at time T − ε. Then,
there exists a normal correct schedule S ′ with completion time at most T and
R(S ′) > R(S).

Repeated applications of Lemma 7 yield Corollary 1, from which Corollaries 2
and 3 follow immediately:

Corollary 1. In every optimal and normal schedule, all robots terminate their
trajectories simultaneously.

Corollary 2. Every optimal schedule is normal.

Corollary 3. In every optimal schedule, the trajectory of each robot contains at
least one leg.

164 E. Bampas et al.

We are now ready to further restrict the structure of optimal schedules. We
first show that each robot searches only one arc per leg (Lemma 8), then that
there are no crossing robots (Lemma 9, cf. Definition 7), and then that each
robot performs only one leg (Lemma 10).

Lemma 8. In every optimal schedule, each leg of the trajectory of each robot
contains exactly one searched arc.

Definition 7 (Crossing Robots). Let S be a normal schedule. We say that a
pair of robots i, j cross under S if robot i searches arcs a+

i ∈ A+
S and a−

i ∈ A−
S ,

robot j searches arcs a+
j ∈ A+

S and a−
j ∈ A−

S , and a+
i ≺ a+

j ≺ a−
i ≺ a−

j .

Lemma 9. No optimal schedule contains a pair of crossing robots.

Lemma 10. In every optimal schedule, the trajectory of each robot contains
exactly one leg.

Lemma 10 is the main technical tool for connecting the optimal schedules for
BPC instances to the optimal schedules for 2-SBP instances.

Lemma 11. Let I be an instance of 2-SBP on an interval of length L and let J
be an instance of BPC with the same set of robots on a circle of circumference L.
The completion time of the optimal schedule is the same in both instances.

We obtain now, as immediate corollaries of Lemma 11 and the results in [12],
the NP-hardness of BPC, as well as the existence of deterministic and randomized
approximation algorithms for BPC.

Theorem 2. BPC is NP-hard, even when all robots have the same walking speed.

Theorem 3. BPC admits a 0.5568-approximation algorithm that runs in
O(n log n) time.

Theorem 4. BPC instances in which all robots have the same search speed can
be solved optimally in time O(n log n).

Theorem 5. BPC admits a randomized algorithm which achieves an expected
approximation ratio of 3

4 , needs O(n) random bits, and runs in O(n log n) time.

4 Multi-Source Beachcombers on the Line and Cycle

We now leverage our techniques from the previous section to obtain results for
the multi-source version of the beachcombers’ problem on the line and on the
cycle, while allowing changes of direction as in BPC (Definition 3). We define
the problem t-SBPLz:

Beachcombing on Strips and Islands 165

Definition 8 (t-SBPLz – t-Source Beachcombers’ Problem on the Line
with Zigzags). Consider a line segment of length L and n robots r1, . . . , rn, each
robot ri having searching speed si and walking speed wi > si. Find an efficient
correct searching schedule A of the segment, in which the robots are divided into
at most t groups with each group being initially placed on a particular point of
the segment (the source). The speed SA of the solution equals SA = L/tf , where
tf is the finishing time of A.

Similarly, we define t-SBPCz (t-Source Beachcombers’ Problem on the Cycle
with zigzags), where, instead of a segment of length L, the robots have to search
a cycle of circumference L. Note that, in contrast to t-SBP (Definition 4), the
robots are allowed to change direction of movement and, in particular, to search
segments on both sides of their respective starting points.

By following the arguments for BPC from Sect. 3 and modifying the proofs
as necessary, we can prove that, for a fixed choice of starting points and a fixed
allocation of the robots to those starting points, the equivalents of Lemma 6 and
Corollaries 1, 2 and 3 hold for t-SBPLz as well, with the only difference that a
normal schedule for t-SBPLz is defined as follows:

Definition 9 (Normal Schedules for t-SBPLz). Given a fixed choice of t
starting points and a fixed allocation of the robots to those starting points, a
schedule for t-SBPLz is called normal if every robot’s trajectory is either empty
(the robot stops at time 0), or it consists of one leftward or rightward leg, as
defined below, or it consists of two legs in opposite directions, such that after the
first leg the robot returns to the origin by walking at full speed backwards over
the first leg.

A rightward (resp. leftward) leg is a part of a robot’s trajectory that starts at
its assigned source and consists of searching at full speed a sequence of segments
toward the right (resp. left) in order of increasing distance from the source. In
between searched segments, the robot walks at full speed to the right (resp. left)
from the end of the last searched arc to the beginning of the next one.

In addition, a normal schedule satisfies the following properties:

1. Every pair of searched segments (not necessarily by the same robot) have
disjoint interiors.

2. The given segment of length L is partitioned into t regions, such that each
region is associated with exactly one starting point, and the robots originating
from the associated starting point are confined within that region.

Subsequently, we obtain the following lemma, which corresponds to
Lemma 10.

Lemma 12. Given a fixed choice of t starting points and a fixed allocation of the
robots to those starting points, in every optimal t-SBPLz schedule, the trajectory
of each robot contains exactly one leg.

The following Lemma connects the optimal schedules for t-SBPLz instances
to the optimal schedules for 2t-SBP instances.

166 E. Bampas et al.

Lemma 13. Let I be an instance of 2t-SBP on a segment of length L and let J
be an instance of t-SBPLz with the same set of robots on a segment of length L.
The completion time of the optimal schedule is the same in both instances.

We thus obtain, in view of the results for t-SBP [12], the following results for
t-SBPLz:

Theorem 6. t-SBPLz instances in which all robots have the same search speed
can be solved optimally in time O(n log n).

Theorem 7. t-SBPLz admits a randomized algorithm which achieves an
expected approximation ratio of 1 − (

1 − 1
2t

)2t, needs O(n log t) random bits,
and runs in O(n log n) time.

Finally, we prove that the optimal solution to a t-SBPCz instance with a given
swarm on a cycle of circumference L shares its structure with the optimal solution
to a t-SBPLz instance with the same swarm on a segment of length L. Indeed,
the normal schedules for t-SBPCz are essentially the same as those for t-SBPLz,
except that the region associated with each starting point is now an arc of the
cycle.

Lemma 14. Given a fixed choice of t starting points and a fixed allocation of the
robots to those starting points, in every optimal t-SBPCz schedule, the trajectory
of each robot contains exactly one leg.

Lemma 15. Let I be an instance of t-SBPLz on a segment of length L and
let J be an instance of t-SBPCz with the same set of robots on a cycle of cir-
cumference L. The completion time of the optimal schedule is the same in both
instances.

In view of Theorems 6 and 7, we obtain the following results for t-SBPCz:

Theorem 8. t-SBPCz instances in which all robots have the same search speed
can be solved optimally in time O(n log n).

Theorem 9. t-SBPCz admits a randomized algorithm which achieves an
expected approximation ratio of 1 − (

1 − 1
2t

)2t, needs O(n log t) random bits,
and runs in O(n log n) time.

5 Concluding Remarks

There are several directions in which the study of the search and exploration
using two-speed robots may continue. An obvious one is to improve the approxi-
mation ratio for the versions of the problem that are NP-hard. In this respect, we
should investigate whether zigzags may help to obtain approximate solutions, at
least for particular combinations of searching and walking speeds of the robots
(note that we know from the present paper that zigzags never help to obtain
optimal solutions). Another direction is to study the configurations of robots’
speeds and/or environments for which optimal solutions can be computed effi-
ciently. Finally, it is worthwhile to consider different and more general search
domains, such as non-simple closed or open curves.

Beachcombing on Strips and Islands 167

References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput.
29(4), 1164–1188 (2000)

2. Albers, S.: Online algorithms: a survey. Math. Program. 97(1–2), 3–26 (2003)
3. Albers, S., Schmelzer, S.: Online algorithms - what is it worth to know the future?

In: Vöcking, B., Alt, H., Dietzfelbinger, M., Reischuk, R., Scheideler, C., Vollmer,
H., Wagner, D. (eds.) Algorithms Unplugged, pp. 361–366. Springer, Heidelberg
(2011)

4. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Acad-
emic Publishers, Dordrecht (2002). vol. 55

5. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf.
Comput. 106, 234–234 (1993)

6. Beauquier, J., Burman, J., Clement, J., Kutten, S.: On utilizing speed in networks
of mobile agents. In: ACM SIGACT-SIGOPS 2010, pp. 305–314. ACM (2010)

7. Beck, A.: On the linear search problem. Isr. J. Math. 2(4), 221–228 (1964)
8. Bellman, R.: An optimal search problem. Bull. Am. Math. Soc. 62, 270 (1963)
9. Berman, P.: On-line searching and navigation. In: Fiat, A., Woeginger, G.J. (eds.)

Online Algorithms 1996. LNCS, vol. 1442, pp. 232–241. Springer, Heidelberg (1998)
10. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent

and oblivious robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp.
208–219. Springer, Heidelberg (2010)

11. Czyzowicz, J., G ↪asieniec, L., Georgiou, K., Kranakis, E., MacQuarrie, F.:
The Beachcombers’ problem: walking and searching with mobile robots. In:
Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 23–36. Springer,
Heidelberg (2014)

12. Czyzowicz, J., Gasieniec, L., Georgiou, K., Kranakis, E., MacQuarrie, F.: The
multi-source Beachcombers problem. In: Gao, J., Efrat, A., Fekete, S.P., Zhang,
Y. (eds.) ALGOSENSORS 2014, LNCS 8847. LNCS, vol. 8847, pp. 3–21. Springer,
Heidelberg (2015)

13. Czyzowicz, J., G ↪asieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by
mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M.
(eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011)

14. Czyzowicz, J., Ilcinkas, D., Labourel, A., Pelc, A.: Worst-case optimal exploration
of terrains with obstacles. Inf. Comput. 225, 16–28 (2013)

15. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of
unknown graphs by multiple agents. Theor. Comput. Sci. 385(1–3), 34–48 (2007)

16. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Com-
put. Sci. 361(2), 342–355 (2006)

17. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. In: Foundations of
Computer Science, FOCS 1990, pp. 355–361. IEEE (1990)

18. Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environ-
ment (extended abstract). In: Foundations of Computer Science, FOCS 1991, pp.
298–303. IEEE (1991)

19. Dereniowski, D., Disser, Y., Kosowski, A., Paj ↪ak, D., Uznański, P.: Fast collabora-
tive graph exploration. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D.
(eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 520–532. Springer, Heidelberg
(2013)

20. Fleischer, R., Kamphans, T., Klein, R., Langetepe, E., Trippen, G.: Competitive
online approximation of the optimal search ratio. SIAM J. Comput. 38(3), 881–898
(2008)

168 E. Bampas et al.

21. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theor. Comput. Sci. 399(3), 236–245 (2008)

22. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration.
Networks 48(3), 166–177 (2006)

23. Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.: Online graph exploration
algorithms for cycles and trees by multiple searchers. J. Comb. Optim. 28, 480–495
(2012)

24. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct
speeds. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676,
pp. 598–608. Springer, Heidelberg (2012)

25. Wang, G., Irwin, M.J., Fu, H., Berman, P., Zhang, W., Porta, T.L.: Optimizing
sensor movement planning for energy efficiency. ACM Trans. Sens. Netw. 7(4), 33
(2011)

Radio Aggregation Scheduling

Rajiv Gandhi1, Magnús M. Halldórsson2,3, Christian Konrad2(B),
Guy Kortsarz1, and Hoon Oh1

1 Department of Computer Science, Rutgers University, Camden, NJ, USA
{rajivg,guyk,hoon}@camden.rutgers.edu

2 ICE-TCS, School of Computer Science, Reykjavik University, Reykjavik, Iceland
{mmh,christiank}@ru.is

3 RIMS, Kyoto University, Kyoto, Japan

Abstract. We consider the aggregation problem in radio networks: find
a spanning tree in a given graph and a conflict-free schedule of the edges
so as to minimize the latency of the computation. While a large body of
literature exists on this and related problems, we give the first approxi-
mation results in graphs that are not induced by unit ranges in the plane.

We give a polynomial-time Õ(
√

dn)-approximation algorithm, where d is
the average degree and n the number of vertices in the graph, and show
that the problem is Ω(n1−ε)-hard (and Ω((dn)1/2−ε)-hard) to approxi-
mate even on bipartite graphs, for any ε > 0, rendering our algorithm
essentially optimal. We target geometrically defined graph classes, and
in particular obtain a O(log n)-approximation in interval graphs.

1 Introduction

Wireless sensor networks consist of autonomous sensors that typically moni-
tor physical or environmental conditions. They use wireless communication to
cooperatively aggregate the recorded data and forward it to a central location,
the sink. The information desired is commonly in the form of a compressible
function, such as “max” or “average”, in which in-network processing can be
used to speed up the processing and greatly reduce transmission energy. At the
same time, interference from simultaneous transmissions must be managed for
successful reception.

In this paper, we consider the data aggregation problem in general graphs, or
radio networks. The objective is to minimize the latency, or the longest time it
takes for any message to reach the sink. The task is two-fold: (a) to construct a
directed spanning tree, an in-arborescence, and (b) to form a conflict-free sched-
ule of the transmissions (the edges) that obeys the ordering of the arborescence.
A schedule is conflict free if whenever a node is to receive a message, none of its

Gandhi and Oh are partly supported by NSF grants CCF 1218620 and CCF
1433220. Halldórsson and Konrad are supported by Icelandic Research Fund grant-
of-excellence no. 120032011. Kortsarz is partly supported by NSF grant CCF
1218620.

c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 169–182, 2015.
DOI: 10.1007/978-3-319-28472-9 13

170 R. Gandhi et al.

other neighbors also transmit (causing interference), and a node can transmit to
only one of its neighbors at a time.

This problem, which we dub Radio Aggregation Scheduling (Ras), has been
widely studied under the name Minimum Latency Aggregation Scheduling in the
wireless networking literature. Most of the existing works consider the setting
where nodes are points in the plane with a fixed transmission radius, which cor-
responds to the case of unit disc graphs (UDG). It is, however, well known that
wireless environments are always much more complicated [1,21] — unless oper-
ating in vacuum in outer space. One popular approach in recent years has been
to switch to the SINR model of interference, which is known to add more realism.
However, its standard form also makes strong assumptions about the geometric
nature of communicability and interference and thus ignores the unpredictability
seen in practice. To go beyond these assumptions, we initiate here the study of
aggregation in more pessimistic models, starting with general graphs. To empha-
size the distinction of using graphs rather than planar positions, we refer to the
problem as Ras.

By reversing the direction of the aggregation process, we can also view it as
a broadcasting problem where:

1. [one-on-one] a node can only talk to one other node at a time, while
2. [interference from neighbors] a node can hear from its neighbor only if none

of its other neighbors transmit.

We refer to this communication model as the radio-unicast model. It relates
closely to two other classic broadcasting problems: telephone broadcast, where
(1) holds but there are no conflicts from other neighbors (in essence, modeling
aggregation in wired networks); and radio broadcast, where (2) holds, but a node
can transmit to all its neighbors in the same time slot. As we shall see, however,
Ras is significantly harder to solve in general than either of these problems.

In the telephone model, in each communication round, the successful trans-
missions form a (directed) matching. In the radio-unicast model, successful
transmissions form what we call a Ras-legal matching (see Sect. 2 for precise
definitions). For any two edges (s1, r1) and (s2, r2) in a Ras-legal matching con-
necting senders s1, s2 to receivers r1, r2, it is required that neither (s1, r2) nor
(s2, r1) are edges contained in the input graph, thus excluding all potential inter-
ference. This is closely related to the notion of an induced matching. A matching
is induced if the edges of the subgraph induced by the matched vertices are pre-
cisely the edges of the matching. A Ras-legal matching hence lies somewhere
between a matching and an induced matching, see Fig. 1.

Previous Work on Ras. All previous works on Ras consider the setting where
nodes are points located in the plane with unit length transmission radii [3,7,15,
25,26]1. This corresponds to the study of Ras in unit disc graphs, which has been
shown to be NP-complete [7]. All algorithms known for unit disc graphs compute

1 In [15], unit interval graphs as well as grids and tori are considered, which are all
subclasses of unit disc graphs.

Radio Aggregation Scheduling 171

Fig. 1. Left: A matching is a subset of vertex-disjoint edges. Center: The edges of
the graph induced by the vertices of an induced matching are precisely the edges of
the induced matching. Right: In a Ras-legal matching, every receiver is connected to
precisely one sender.

aggregation schedules of lengths Θ(Diam + Δ), where Diam is the diameter of
the input graph and Δ the maximal degree. Since every aggregation schedule
is of length at least Diam, these algorithms constitute O(Δ)-approximation
algorithms which only give trivial approximation guarantees in graphs with large
maximum degree (e.g. if Δ = Θ(n)). Despite the considerable effort put into the
study of Ras on unit disc graphs, no better approximation ratios are known.

One difficulty in obtaining improved approximation ratios in unit disc graphs is
to bound the length of an optimal aggregation schedule OPT in terms of properties
of the input graph. For instance, in unit interval graphs, it is known that OPT =
Ω(Diam+ω(G)), where ω(G) is the clique number (size of the largest clique) of the
input graph [15]. It is also known how to compute an aggregation schedule of length
O(Diam + ω(G)), which hence constitutes an O(1)-approximation algorithm (in
[15], a 2-approximation is obtained). No interesting bounds on OPT are known for
unit disc graphs or any other non-trivial graph class.

Our Contributions. We initiate a systematic study of Ras, starting with
general graphs. We prove that it is NP-hard to approximate Ras within a factor
of n1−ε (Theorem 4) and (dn)1/2−ε (Corollary 1) even in bipartite graphs,
for any ε > 0, where n is the number of vertices of the input graph and d is
the average degree. On the positive side, we present a Õ(

√
dn)-approximation2

algorithm for sparse general graphs (Theorem 5), almost matching our lower
bound.

Next, we are interested in whether improved algorithms can be obtained for
geometrically defined graph classes that contribute to metric-sensitive models
of actual wireless environments. We focus here on interval graphs. They can
be seen as one-dimensional projections of disc graphs that capture the aspect
of different radii, and we present a highly non-trivial O(log n)-approximation
algorithm (Theorem 6). The key part of our analysis is the identification of
subgraphs that provide interesting lower bounds on the length of an optimal
aggregation schedule.

Further Related Work. Aggregation problems have been extensively stud-
ied in the wireless literature; see the surveys [12,17]. As previously mentioned,

2 We use the notation Õ(.), which equals the usual O(.) notation where all poly-
logarithmic factors are ignored.

172 R. Gandhi et al.

Ras has been considered in unit disc graphs [3,7,15,25,26] and O(Δ)-
approximation algorithms are known. Furthermore, it has also been shown that,
in unit disc graphs, if the interference radius is strictly larger than the transmis-
sion radius, then constant factor approximations can be obtained [25]. Optimal
algorithms are known for grids and tori [14]. In trees, Ras is equivalent to the
telephone broadcast problem, which has a textbook dynamic programming solu-
tion [19, Prob. 6.16]. This exhausts the list of previous work known on Ras.

A different setting for aggregation problems is where the nodes are located
at points in the plane and can use power control to reach any other node.
Kesselman and Kowalski [18] showed that aggregation can then be achieved
in O(log n) slots. If interference and transmissions follow the geometric SINR
model, Moscibroda and Wattenhofer [23] showed that poly-logarithmic slots suf-
fice, which was improved to optimal O(log n) [16].

For broadcast in the radio model, Chlamtac and Weinstein [8] proved the first
upper bound of O(Diam · log2 n), with Diam being the diameter of the graph,
which was improved to O(Diam · log n + log2 n) soon afterwards by Bar-Yehuda
et al. [5]. The best bound known on the number of rounds, O(Diam + log2 n),
given by Kowalski and Pelc [22], is optimal in light of results of Alon et al. [2]
and Elkin and Kortsarz [10].

The first approximation for telephone broadcast was an additive O(
√

n)
approximation [20]. This was improved to a multiplicative O(log2 n)-factor by
[24], and then to O(log n) in [4]. The best approximation known for the prob-
lem is O(log n/ log OPT) [11], which is O(log n/ log log n), since OPT ≥ log2 n
always holds. The best lower bound known is a factor 3 − ε, given in [9].

Outline of the Paper. We give formal definitions of our problems in Sect. 2.
Then, in Sect. 3, we present our hardness results for general graphs, and in
Sect. 4, we present our algorithm for sparse general graphs. Finally, in Sect. 5,
interval graphs are discussed.

Due to space restrictions, the proofs of lemmas, theorems, claims and obser-
vations marked by (*) are postponed to the full version of this paper.

2 Problem Definition and Notations

Radio Aggregation Scheduling. We are given as input a graph G = (V,E)
and a node s ∈ V which is the sink node of the aggregation problem. We view
G as a bidirected graph, i.e., all edges appear directed in both directions.

We seek a schedule, which is a sequence M1,M2, . . . , Mt of directed matchings
in G. The union ∪iMi of these matchings induces a directed spanning tree (in-
arborescence) A directed toward s. Each matching Mi corresponds to a set of
transmissions that can be successful simultaneously; namely, each matching must
be Ras-legal in G: if (u, v), (w, z) ∈ Mi then (u, z), (w, v) �∈ E(G). Finally,
the edges of A occur in the matchings in order of precedence induced by the
arborescence: if (u, v) ∈ Mi and (v, w) ∈ Mj then i < j. Namely, a node can only
forward its message once it has heard from all of its children. Then an optimal

Radio Aggregation Scheduling 173

solution to the Radio Aggregation Scheduling problem (Ras) is a schedule of
minimal length.

Broadcasting in the Radio-Unicast Model. Since reversing the slots of an
aggregation schedule gives a broadcast, and vice versa, both viewpoints can be
used to tackle Ras. In the broadcast version of the problem, node s ∈ V is the
source node and holds a message that is to be sent to all other nodes V \ {s} in
the graph. In each round, we seek a Ras legal matching between the informed
nodes (those that know the message) and the uninformed nodes (those that
don’t know the message yet). Initially, there is only a single informed node, the
source node s. When an uninformed node receives the message, it joins the set
of informed nodes and can serve as a sender in upcoming rounds. We denote this
communication model where each round induces a Ras-legal matching as the
radio-unicast model. An optimal solution to the broadcasting problem then is a
broadcasting schedule that informs all nodes in the minimal number of rounds.

It turns out that the broadcasting perspective of Ras is more convenient
when presenting our algorithms. All our algorithms solve the broadcasting prob-
lem in the radio-unicast model.

Notation. Let G = (V,E) be the input graph. Unless stated differently, n
denotes the number of vertices of G, d the average degree, Δ the maximum
degree, and Diam the diameter. Those quantities may also appear as functions,
e.g. Δ(H), d(H) and Diam(H) denote the respective quantities of graph H.

We write distG(u, v) for the number of hops between nodes u and v in graph
G. Let NG(u) denote the set of neighbors of vertex u in G, and for a set S of
vertices, let NG(S) = (∪u∈SNG(u)) \ S. We write degG(u) the degree of u in
G. Furthermore, for a graph G, we denote its vertex set by V (G) and its edge
set by E(G). Given a subset of vertices U ⊆ V , we denote the subgraph of G
induced by the vertices U by G[U].

3 Approximation Hardness of Ras

In this section, we prove that Ras is hard to approximate within factors n1−ε

(Theorem 4) and (dn)1/2−ε (Corollary 1), for every ε > 0. Before giving our lower
bound construction, we introduce further required notations and definitions.

Further Definitions. We denote the chromatic number of a graph G with χ(G),
and the independence number (size of a maximum independent set) with α(G).
Our lower bound construction relies on semi-induced matchings and a specific
graph product that we discuss first.

A matching is called an induced matching if there is no edge from one end-
point of an edge in the matching to an endpoint of another edge in the matching.
The semi-induced matching has a general definition (see [6]) but we only give
the definition for bipartite graphs that is simpler and all we need.
Definition 1 (Semi-induced Matching). Let G = (U, V,E) be a bipartite
graph with a total ordering u1, . . . , un of U . A semi-induced matching is a match-
ing so that if (ui, a) and (uj , b) are in the matching and i < j, then there is no
edge between uj and a.

174 R. Gandhi et al.

Let Im(G) be the size of the largest induced matching of G and Sim(G) the size
of the largest semi-induced matching. Observe that Im(G) ≤ Sim(G), for any
graph G.

Next, we make use of the following graph product:

Definition 2 (Inclusive Graph Product). The inclusive graph product of
G = (V,E) and H = (V ′, E′), denoted by G ∨ H, has vertices {(xG, xH) | xG ∈
V, xH ∈ V ′}. A pair of vertices (xG, xH) ∈ V (G ∨ H) and (yG, yH) ∈ V (G ∨ H)
is connected iff (xG, yG) ∈ E or (xH , yH) ∈ E′.

We denote Gk = G ∨ G ∨ . . . ∨ G when there are k copies of G. This graph has
nk vertices.

The following equalities are folklore for the specific product we chose:

χ(Gk) = χ(G)k, (1)
α(Gk) = α(G)k. (2)

Intermediate Problem: Induced Matching Cover. We shall consider a
problem on bipartite graphs that is closely related to Ras. Given a bipartite
graph B = (U, V,E), let ImCov(B) denote the minimum number of induced
matchings that together contain (or cover) all the vertices of V . Suppose that
nodes U are informed and nodes V are uninformed. Then, it takes precisely
ImCov(B) rounds in order to inform V . This is summarized in Observation 1.

Observation 1 (*). Let B = (U, V,E) be a bipartite graph. Suppose all the
vertices in U know the message. Then, the minimum number of rounds it takes
to inform V in the radio-unicast model equals ImCov(B).

Lower Bound Construction. In order to prove our hardness result, we will use
the construction of Feige and Kilian [13] which shows that it is hard to determine
whether a graph G on n vertices has small chromatic number χ(G) ≤ nε (“yes
instance”) or has a small independence number α(G) ≤ nε (“no instance”), for
any ε > 0.

Let G be a graph on n vertices as used in the construction of Feige and
Kilian. From G, using a construction similar to the one in [6], we will construct
a bipartite graph Be(Gk) on Θ(nk) vertices so that:

ImCov(Be(Gk)) ≤ χ(G), and (3)
Im(Be(Gk)) ≤ k · n + α(G)k. (4)

Suppose now that one bipartition of Be(Hk) is informed and the other one is
uninformed. Then, if G is a “yes instance” (i.e. it has small chromatic number),
the whole graph can be informed quickly using Inequality 3 and Observation 1.

Suppose now that G is a “no instance” (i.e. it has small independence num-
ber). Then, by Inequality 4, Im(Be(Gk)) is small, too. Using the obvious relation-
ship ImCov(Be(Gk)) ≥ |V (Be(Gk))|/Im(Be(Gk)), we see that ImCov(Be(Gk))
is large which implies that informing the whole graph takes many rounds.

The previous gap-reduction argument is made rigorous in the following. To
this end, for a graph G, we first define the graph Be(G).

Radio Aggregation Scheduling 175

Definition 3. Given a graph G = (V,E), the graph B(G) = (V, V̄ , EB) is a
bipartite graph with a copy of V on each side. There is an edge (v, ū) ∈ EB if
(v, u) ∈ E. The graph Be(G) results from B(G) by adding the edges {(v, v̄) :
v ∈ V }.

Next, we prove Inequalities 3 and 4 in Claims 2 and 3, respectively.

Claim 2 (*). Let G = (V,E) be a graph. Then, Be(G) = (V, V̄ , E′) can be
decomposed into χ(G) induced matchings that are pairwise disjoint and together
contain all of V̄ , i.e., ImCov(Be(G)) ≤ χ(G).

Claim 3 (*). Let G be a graph, k an integer. Then, Im(Be(Gk)) ≤ k ·n+α(G)k.

Finally, we prove our hardness results in Theorem 4 and Corollary 1.

Theorem 4. The Ras problem is hard to approximate on bipartite graphs
within a factor of N1−δ, for any δ > 0, where N is the number of vertices.

Proof. We use the gap reduction of Feige and Kilian [13]: for any ε > 0, it is hard
to distinguish between the case (“yes” instance) when a graph G is nε-colorable,
i.e., when χ(G) ≤ nε, and the case (“no” instance) when there is no independent
set of size at least nε, i.e., α(G) < nε.

Let ε be such that 1/ε = 2
1/δ�, and let k = 1/ε. Consider Be(Gk) =
(Vk, V̄k, Ek) and let Hk be the graph obtained by adding to Be(Gk) a complete
binary tree of depth O(log |Vk|) whose set of leaves contains Vk. Hk is clearly
bipartite, too. We show that it is hard to approximate the number of rounds in
a Ras schedule of Hk.

Suppose that the root of the binary tree is the source node of the broadcast
problem. Let OPT denote the length of a shortest broadcast schedule. Observe
that informing the nodes of the complete binary tree, and thus also the nodes in
Vk, requires only O(log n) slots. Informing V̄k after Vk has been informed takes
ImCov(Be(Gk)) rounds, by Observation 1. Thus, OPT = ImCov(Be(Gk)) +
O(log n).

If G is a yes-instance, χ(G) ≤ nε, so by Claim 2 and Inequality 1,

ImCov(Be(Gk)) ≤ χ(Gk) = χ(G)k ≤ nkε = n.

and hence
OPT = ImCov(Be(Gk)) + O(log n) = O(n).

If G is a no-instance, α(G)k ≤ nkε = n, so by Claim 3, Im(Be(Gk)) = O(n),
and

OPT ≥ ImCov(Be(Gk)) ≥ |Vk|
Im(Be(Gk))

= Ω(nk−1).

The ratio between the bounds for the two cases is Ω(nk−2). Recalling that
the size of Hk is given by N = |Hk| = Θ(nk), we get that the approximation
hardness is Ω(nk−2) = Ω(N/n2) = Ω(N1− 2

k) = Ω(N1−δ). �

176 R. Gandhi et al.

Corollary 1 (*). The Ras problem is hard to approximate on bipartite graphs
within a factor of (dN)

1
2−δ, for any δ > 0, where N is the number of vertices.

Corollary 1 renders our Õ(
√

dn)-approximation algorithm that we present in
the next section essentially best possible.

The graphs used in the proofs of Theorem 4 and Corollary 1 have a diameter
of O(log n). By adding additional edges, their diameters can be reduced to 2.
This shows that unlike in the radio model, broadcasting in the radio-unicast
model is no easier in graphs of low diameter.

4 Õ(
√
dn)-approximation Algorithm

We now present a Õ(
√

dn)-approximation algorithm for Ras in general graphs
G = (V,E) with average degree d. We consider the broadcasting perspective in
the radio-unicast model. Before presenting our algorithm, we discuss simulation
results that allow us to reuse existing algorithms designed for the telephone and
the radio models.

Simulation Between Models. We derive now (rather straightforward) bounds
on Ras schedules, utilizing its relationship to better studied broadcast problems.

Recall that in the telephone model, there are no conflicts if two neighbors of
a node both transmit. However, a node can only transmit to one of its neighbors
in a given round. In the radio model, when a node transmits, its message goes to
all of its neighbors. However, an uninformed neighbor receives the message only
if exactly one of its neighbors is transmitting in that round.

Our problem shares the unicast transmission rule with the telephone model
and the reception conflicts with the radio model. Algorithms for these models
can be simulated in our models.

Lemma 1. A round in the radio (telephone) model can be simulated in Δ (2Δ−
1) rounds in the unicast-radio model, respectively.

Proof. Suppose a set S of nodes transmits in a given round in the radio model.
Assume without loss of generality that the neighbors of each node are ordered
in an arbitrary order. We can then simulate it with Δ rounds, where in round i,
each node in S forwards the message to its i-th neighbor.

Suppose a directed matching M that corresponds to the transmissions of a
round in the telephone model. For each edge e ∈ M , there are at most 2(Δ − 1)
edges in M within distance 2 in G. We can color the edges in M “first-fit” using
2Δ − 1 colors so that each color class induces a Ras-legal matching. �

Simulating the algorithm of Kowalski and Pelc for radio broadcast [22], and
using Lemma 1, we obtain the following corollary.

Corollary 2. There is a polynomial-time algorithm for Ras that computes an
aggregation schedule of length O(Δ(Diam+log2 n)) and thus constitutes a O(Δ+
Δ log2(n)/Diam)-approximation algorithm.

Radio Aggregation Scheduling 177

In the previous corollary, we used the fact that Diam is a trivial lower bound
on the length of an optimal schedule. In light of the hardness results in Sect. 3,
this bound is close to best possible.

Complete binary trees with degrees at least log2 n provide examples show-
ing that the O(Δ(Diam + log2 n)) bound of Corollary 2 generally cannot be
improved.

Center Selection. Our algorithm uses as a subroutine solutions to a classic
facility location problem. In Center Selection, we are given a graph G =
(V,E), a set X ⊆ V of possible sites for centers, a set C ⊆ V of clients, and a
parameter k. We wish to find a set S ⊆ X of k centers, such that the maximum
distance from a client to the nearest center is minimized. For a set of centers
S ⊆ X, let ρ(G,S,C) := maxv∈C distG(v, S) be the covering radius of S in G.
The objective of Center Selection is to find an S ⊆ X of cardinality k which
minimizes ρ(G,S,C).

A greedy algorithm, which we denote by Greedy-CS(G,X,C, k), gives a
3-approximation to this problem.3

Lemma 2 (*). Greedy-CS is a 3-appr. algorithm for Center Selection.

Ras Scheme. In Algorithm 1, we present an algorithm for the broadcast
problem in the radio-unicast model. We assume that the optimal value OPT
(length of a shortest broadcast scheme) is known by the algorithm. This can be
ensured e.g. by running the algorithm multiple times trying the different values
{log n, . . . , n} for OPT and returning the best solution (log n is an obvious lower
bound).

Let s ∈ V be the source node. To keep the presentation simple, we assume
that degG(s) ≥

√
dn. If this is not the case, then we first inform an arbitrary

node s′ of degree at least
√

dn in at most OPT rounds which then takes the role
of s. Clearly, the length of a minimum length schedule of the modified instance
with source s′ is at most by OPT longer than the length of a minimum length
schedule with source node s. Hence, by solving the instance with source node s′,
we may lose an additive 2·OPT term. However, since our obtained approximation
factor is polynomial, this factor is negligible. Last, if no node of degree at least√

dn exists, then we simply apply the simulation result of Corollary 2, and we
immediately obtain an Õ(

√
dn)-approximation algorithm.

First, our algorithm informs the large-degree nodes, i.e., nodes L of degree
at least K =

√
dn. The number of large degree nodes is bounded by |L| ≤ K,

as otherwise the degree sum of the graph would be greater than K2 = dn =
2|E(G)|. Thus, by transmitting serially on shortest paths (with no transmissions
occurring simultaneously), the nodes in L can be informed in time O(K ·OPT).
In order to inform the small-degree nodes V \L, we simulate the radio-broadcast
algorithm of [22] on the subgraph G[C], where C = V \ L. To make this work in

3 While the result is surely well known, we were not aware of a reference for this
particular version, and thus include the algorithm and a proof in the full version of
this paper for completeness.

178 R. Gandhi et al.

Algorithm 1. Broadcast in the radio-unicast model for sparse general graphs

Require: G = (V, E) input graph, let K =
√

dn; s source node of degree at least K
1: Let L ← {v : degG(v) ≥ K}, C = V \ L, and X = N(L) ∩ C
2: Inform the nodes in L sequentially along shortest paths from s
3: Let S ← Greedy-CS(G[C], X, C, K · OPT)
4: Inform all nodes in S using single hops from L
5: Simulate the radio broadcast algorithm of [22] on G[C] until all nodes are informed

the desired number of rounds, we have to ensure that for each node in C, there is
an informed node within distance O(OPT) in G[C]. In the following lemma, we
show that the set S found by the greedy center selection algorithm guarantees
this property.

Lemma 3. Each node in C is within distance at most 3 · OPT from a node in
S in the induced subgraph G[C], i.e., ρ(G[C], S, C) ≤ 3 · OPT.

Proof. Let Q be the set of nodes in C that are informed (directly) by nodes in
L in the optimal broadcasting scheme. At most |L| of them can be informed
in a single round, so |Q| ≤ |L| · OPT ≤ K · OPT . The nodes v ∈ C \ Q must
then all satisfy distG[C](v,Q) ≤ OPT and thus ρ(G[C], Q,C) ≤ OPT . The
center selection algorithm Greedy-SC positions K · OPT ≥ |Q| nodes, that by
Lemma 3 yields a 3-approximation of the covering radius, giving ρ(G[C], S, C) ≤
3 · ρ(G[C], Q,C) ≤ 3 · OPT . �
The previous lemma is the main ingredient of the analysis of our main result:

Theorem 5 (*). There is a polynomial time randomized approximation algo-
rithm for Ras with approximation factor Õ(

√
dn).

5 Interval Graphs

Let G = (V,E) be an interval graph. For an interval v ∈ V , denote by l(v) and r(v)
its left and right boundaries. For x, y ∈ R, let G[x, y] denote the subgraph of G
induced by the intervals that are entirely contained in [x, y], that is, V (G[x, y]) =
{v ∈ V : l(v) ≥ x and r(v) ≤ y}. Furthermore, denote by len(v) the length
of interval v. We write lmax for the length of a longest interval in G. W.l.o.g., we
assume that all interval boundaries are integers in {1, . . . , 2n}, and all interval
boundaries are distinct (every interval graph has such a representation).

Before presenting our algorithm, we show that the clique number of an inter-
val graph G (the size of a largest clique in G) provides a lower bound for the
length of an optimal schedule. This lemma is similar to Lemmas 2 and 3 of [14].

Lemma 4 (*). OPT ≥ ω(G)/2.

Next, our algorithm relies on the subroutine Diam-path(G) that, given a
connected interval graph G, returns a shortest-distance path that dominates all
vertices of G.

Radio Aggregation Scheduling 179

Diam-path(G). Let u1 ∈ V (G) be the interval with smallest left boundary, and
let u2 ∈ V (G) be the interval with largest right boundary. Let Vp ⊆ V (G) be
the subset of proper intervals, that is, the set of intervals v ∈ V (G) that are not
contained in another interval. In other words, v ∈ Vp if, and only if, there is no
v′ ∈ V (G) with l(v′) < l(v) < r(v) < r(v′). Since all interval boundaries are
distinct, both u1 and u2 are proper intervals and hence in Vp. Diam-path(G)
returns a shortest path from u1 to u2 in the graph G[Vp]. This “diameter path”
has length at most Diam(G).

Algorithm. Similar to our algorithm for sparse general graphs, we assume that
the value of OPT is known. Furthermore, assume that the input graph G is
connected. We will decompose G hierarchically as follows. Let G1 = G and
let P1 = Diam-path(G1). Furthermore, for integers i ≥ 1, let Ui ⊆ V be the
subset of intervals whose lengths are contained in ((12)ilmax, (12)i−1lmax]. Then,
we define the subgraph H1 = G[V (P1)∪U1] consisting of intervals of the largest
length class plus a diameter path, where V (P1) denotes the intervals contained
in path P1. As P1 is a diameter path, V (P1) can be informed in Diam(G) time.
In Lemma 5, we will argue that the subgraph H1 is 4-claw-free4, and, using this
property, we will show in Lemma 6 that U1 can be informed in O(OPT) rounds.
Thus, overall in O(OPT) rounds, the nodes V (H1) are informed.

Next, given the subgraph Gi, we define inductively Gi+1 ⊆ Gi to be the
subgraph induced by the set of yet uninformed intervals, that is, Gi+1 =
G[V (Gi) \ V (Hi)]. Let Pi+1 be a collection of diameter paths of the connected
components of Gi+1 as computed by Diam-path, and let Hi+1 = Gi+1[V (Pi+1)∪
(Ui+1 ∩ V (Gi+1))] consisting of yet uninformed intervals of length class i+1 and
a collection of diameter paths, where V (Pi+1) denotes the intervals contained
in the diameter paths Pi+1. Similar as before, once V (Pi+1) has been informed,
by Lemma 6, we can inform V (Hi+1) in O(OPT) time. The key part of our
argument is that V (Pi+1) can be informed by V (Pi) in O(OPT) time, which is
proved in Lemma 7. Our argument shows that given an interval v ∈ V (Pi), there
are at most O(OPT 2) intervals in V (Pi+1) that intersect with v, and we prove
that they can be informed in O(OPT) time. Thus, for every i, the nodes V (Hi)
can be informed in O(OPT) rounds.

As lmax ≤ 2n and every interval is of length at least 1, there are O(log n)
length classes. Hence, in O(log(n)·OPT) rounds, all nodes V (G) can be informed.

Analysis. We are going to prove the following theorem:

Theorem 6. There is a polynomial-time algorithm for Ras in interval graphs
with approximation factor O(log n).

The theorem follows from the previous description of the algorithm together
with the main Lemmas, Lemmas 6 and 7. In Lemma 6, we show that nodes
V (Hi) can be informed in O(OPT) rounds if nodes V (Pi) are informed, and
in Lemma 7, we show that nodes V (Pi) can be informed in O(OPT) rounds if
V (Pi−1) are informed.
4 A graph is 4−claw-free, if it doesn’t contain the complete bipartite graph K1,4 as an
induced subgraph.

180 R. Gandhi et al.

We first state simple observations about the employed quantities in our
algorithm.

Observation 7. All intervals in subgraph Gi are of length at most (12)i−1lmax.

Observation 8. No interval in V (Hi) \ V (Pi) contains an interval of Pi, that
is, for every v ∈ V (Hi) \ V (Pi) there is no u ∈ V (Pi) such that l(v) < l(u) <
r(u) < r(v).

Observation 8 follows by construction of Pi. The path Pi is constructed via
algorithm Diam-path which only chooses proper intervals.

Next, we show that the graphs Hi do not contain K1,4 as an induced sub-
graph.

Lemma 5 (*). For any i, the subgraph Hi is 4-claw-free.

Last, we prove the main lemmas, Lemmas 6 and 7, that show that the subtasks
of our algorithm can all be performed in O(OPT) rounds.

Lemma 6. Suppose that the vertices of Pi have been informed. Then, V (Hi)
can be informed in O(OPT) rounds.

Proof. We color the vertices of Pi alternately with four colors, where each color
is used on every fourth vertex. Since Pi is a diameter path, nodes with the same
color must have disjoint neighborhoods. Processing the colors in sequence, the
nodes of each color inform their neighbors in Hi in parallel. Since Hi is 4-claw-
free, each node has at most 3ω(Hi) ≤ 3ω(G) ≤ 6 · OPT neighbors, and using
Lemma 4, the lemma follows. �
Lemma 7. Nodes Di+1 can be informed by nodes Di in O(OPT) rounds.

Proof. Let φi+1 : Di+1 → Di be a mapping so that φi+1(v) = u ⇒ u ∈ N(v).
Next, produce a 4-coloring of Di with color classes D1

i , . . . , D4
i , as in the proof of

Lemma 6. Iterate now through the color classes Dj
i . In each iteration, all nodes

u ∈ Dj
i inform the nodes φ−1

i+1(u) simultaneously as follows: Let C1 . . . Ck denote
the connected components of G[φ−1

i+1(u)]. Node u informs every OPT -th interval
of every connected component Cj . If |Cj | < OPT then an arbitrary interval of
Cj is informed. Thus, u requires O(k + |φ−1

i+1(u)|/OPT) rounds. In Claim 9, we
will prove that k = O(OPT) and |φ−1

i+1(u)| = O(OPT 2).

Claim 9 (*). |φ−1
i+1(u)| = O(OPT 2) and the number of components of

G[φ−1(u)] is O(OPT).

Thus, the previous step requires O(OPT) rounds. Next, the informed nodes of
φ−1

i+1(u) inform the uninformed nodes of φ−1
i+1(u). Since φ−1

i+1(u) is a collection
of paths, and since for every uninformed node of φ−1

i+1(u) there is an informed
node within distance OPT , this step clearly can be done in O(OPT) rounds.
This completes the proof. �

Radio Aggregation Scheduling 181

References

1. Aguayo, D., Bicket, J., Biswas, S., Judd, G., Morris, R.: Link-level measurements
from an 802.11 b mesh network. ACM SIGCOMM Comput. Commun. Rev. 34(4),
121–132 (2004)

2. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J.
Comput. Syst. Sci. 43, 290–298 (1991)

3. An, M.K., Lam, N.X., Huynh, D.T., Nguyen, T.N.: Minimum data aggregation
schedule in wireless sensor networks. I. J. Comput. Appl. 18(4), 254–262 (2011)

4. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Message multicasting in heteroge-
neous networks. SIAM J. Comput. 30(2), 347–358 (2000)

5. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: an exponential gap between determinism and random-
ization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)

6. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Graph products revisited: tight
approximation hardness of induced matching, poset dimension and more. In:
SODA, pp. 1557–1576. SIAM (2013)

7. Chen, X., Hu, X., Zhu, J.: Minimum data aggregation time problem in wireless
sensor networks. In: Jia, X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794, pp.
133–142. Springer, Heidelberg (2005)

8. Chlamtac, I., Weinstein, O.: Distributed “wave” broadcasting in mobil multi-hop
radio networks. In: ICDCS, pp. 82–89 (1987)

9. Elkin, M., Kortsarz, G.: A combinatorial logarithmic approximation algorithm for
the directed telephone broadcast problem. SIAM J. Comput. 35(3), 672–689 (2005)

10. Elkin, M., Kortsarz, G.: Polylogarithmic additive inapproximability of the radio
broadcast problem. SIAM J. Discrete Math. 19(4), 881–899 (2005)

11. Elkin, M., Kortsarz, G.: Sublogarithmic approximation for telephone multicast. J.
Comput. Syst. Sci. 72(4), 648–659 (2006)

12. Fasolo, E., Rossi, M., Widmer, J., Zorzi, M.: In-network aggregation techniques
for wireless sensor networks: a survey. IEEE Wirel. Commun. 14(2), 70–87 (2007)

13. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput. Syst.
Sci. 57(2), 187–199 (1998)

14. Gagnon, J., Narayanan, L.: Minimum latency aggregation scheduling in wireless
sensor networks. In: Gao, J., Efrat, A., Fekete, S.P., Zhang, Y. (eds.) ALGO-
SENSORS 2014, LNCS 8847. LNCS, vol. 8847, pp. 152–168. Springer, Heidelberg
(2015)

15. Guo, L., Li, Y., Cai, Z.: Minimum-latency aggregation scheduling in wireless sensor
network. J. Comb. Optim., 1–32 (2014)

16. Halldórsson, M.M., Mitra, P.: Wireless connectivity and capacity. In: SODA (2012)
17. Incel, O.D., Ghosh, A., Krishnamachari, B.: Scheduling algorithms for tree-based

data collection in wireless sensor networks. In: Nikoletseas, S., Rolim, J.D.P. (eds.)
Theoretical Aspects of Distributed Computing in Sensor Networks, pp. 407–445.
Springer, Heidelberg (2011)

18. Kesselman, A., Kowalski, D.: Fast distributed algorithm for convergecast in ad hoc
geometric radio networks. In: WONS, pp. 119–124. IEEE (2005)

19. Kleinberg, J., Tardos, É.: Algorithm Design. Pearson Education, Boston (2006)
20. Kortsarz, G., Peleg, D.: Approximation algorithms for minimum-time broadcast.

SIAM J. Discrete Math. 8(3), 401–427 (1995)
21. Kotz, D., Newport, C., Gray, R.S., Liu, J., Yuan, Y., Elliott, C.: Experimental

evaluation of wireless simulation assumptions. In: MSWiM, pp. 78–82 (2004)

182 R. Gandhi et al.

22. Kowalski, D.R., Pelc, A.: Optimal deterministic broadcasting in known topology
radio networks. Distrib. Comput. 19(3), 185–195 (2007)

23. Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless net-
works. In: INFOCOM (2006)

24. Ravi, R.: Rapid rumor ramification: approximating the minimum broadcast time
(extended abstract). In: FOCS, pp. 202–213 (1994)

25. Wan, P.J., Huang, S.C.H., Wang, L., Wan, Z., Jia, X.: Minimum-latency aggrega-
tion scheduling in multihop wireless networks. In: MOBIHOC, pp. 185–194. ACM
(2009)

26. Xu, X., Wang, S., Mao, X., Tang, S., Li, X.Y.: An improved approximation algo-
rithm for data aggregation in multi-hop wireless sensor networks. In: FOWANC,
pp. 47–56. ACM (2009)

Gathering of Robots on Meeting-Points

Serafino Cicerone1, Gabriele Di Stefano1, and Alfredo Navarra2(B)

1 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università degli Studi dell’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy

{serafino.cicerone, gabriele.distefano}@univaq.it
2 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia,

Via Vanvitelli 1, 06123 Perugia, Italy
alfredo.navarra@unipg.it

Abstract. We consider the gathering problem of oblivious and asyn-
chronous robots moving in the plane. When n > 2 robots are free to
gather anywhere in the plane, the problem has been solved in [Cieliebak
et al., SIAM J. on Comput., 41(4), 2012]. We propose a new natural
and challenging model that requires robots to gather only at some pre-
determined points in the plane, herein referred to as meeting-points.

Robots operate in standard Look-Compute-Move cycles. In one cycle,
a robot perceives the robots’ positions and the meeting-points (Look)
according to its own coordinate system, decides whether to move toward
some direction (Compute), and in the positive case it moves (Move).
Cycles are performed asynchronously for each robot. Robots are anony-
mous and execute the same distributed and deterministic algorithm.

In the new proposed model, we fully characterize when gathering can
be accomplished. We design an algorithm that solves the problem for all
configurations with n > 0 robots but those identified as ungatherable.

1 Introduction

The gathering task is a basic primitive in robot-based computing systems. It
has been extensively studied in the literature under different assumptions. The
problem asks to design a distributed algorithm that allows a team of robots to
meet at some common place. Varying on the capabilities of the robots as well
as on the environment where they move, very different and challenging aspects
must be faced (see, e.g. [2,7,9–11,14,15], and references therein).

In this paper we consider a very minimal setting. We are interested in robots
placed in R

2 where they can freely move but they must meet at some pre-
determined points, herein called meeting-points. We call this new problem the
Gathering on Meeting-Points problem, shortly gmp.

The work has been partially supported by the Italian Ministry of Education,
University, and Research (MIUR) under national research projects: PRIN
2010N5K7EB “ARS TechnoMedia – Algoritmica per le Reti Sociali Tecno-Mediate”
and PRIN 2012C4E3KT “AMANDA – Algorithmics for MAssive and Networked
DAta”, and by the National Group for Scientific Computation (GNCS-INdAM).

c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 183–195, 2015.
DOI: 10.1007/978-3-319-28472-9 14

184 S. Cicerone et al.

Initially, no robots occupy the same location, and they are assumed to be:
Dimensionless: modeled as geometric points in the plane; Anonymous: no unique
identifiers; Autonomous: no centralized control; Oblivious: no memory of past
events; Homogeneous: they all execute the same deterministic algorithm; Asyn-
chronous: there is no global clock that synchronize their actions; Silent : no direct
way of communicating; Unoriented : no common coordinate system, no compass,
no chirality. Robots are equipped with sensors and motion actuators, and operate
in Look -Compute-Move cycles (see, e.g. [11]). In one cycle a robot takes a snap-
shot of the current global configuration (Look) in terms of relative robots and
meeting-points positions, according to its own coordinate system. Successively,
in the Compute phase it decides whether to move toward a specific direction or
not, and in the positive case it moves (Move).

During the Look phase, robots are assumed to perceive multiplicities, that
is, whether a same point is occupied by one or more robots, but not the exact
number. In the literature, this is called global-weak multiplicity detection [7,11,
12]. Herein we simply call it multiplicity detection. Note that robots always detect
whether a meeting-point and one or more robots occupy the same location.

Cycles are performed asynchronously, i.e., the time between Look, Compute,
and Move phases is finite but unbounded, and it is decided by an adversary for
each robot. Moreover, during the Look phase, a robot does not perceive whether
other robots are moving or not. Hence, robots may move based on outdated
perceptions. In fact, due to asynchrony, by the time a robot takes a snapshot
of the configuration, this might have drastically changed when it starts moving.
The scheduler determining the Look-Compute-Move cycles timing is assumed to
be fair, that is, each robot performs its cycle within finite time and infinitely
often. In the literature, this kind of scheduler is called Asynchronous (Asynch).
Different options for the scheduler are: Fully-synchronous (FSynch), where all
robots are awake and run their Look-Compute-Move cycle concurrently and each
phase of the cycle has exactly the same duration for all robots; Semi-synchronous
(SSynch), that coincides with the FSynch model with the only difference that
not all robots are necessarily activated during a cycle.

The distance traveled within a move is neither infinite nor infinitesimally
small. More precisely, the adversary has also the power to stop a moving robot
before it reaches its destination, but there exists an unknown constant δ > 0 such
that if the destination point is closer than δ, the robot will reach it, otherwise
the robot will be closer to it of at least δ. Note that, without this assumption, an
adversary would make it impossible for any robot to ever reach its destination.

Considering the model without meeting-points, the problem has been solved
in [5] for any number of robots n > 2. Adding meeting-points can sometimes
help in designing a gathering algorithm while sometimes can play for the adver-
sary. In fact, meeting-points are like anchors in the plane that never move, and
hence if they are “favorably” placed, they may suggest the final gathering point.
Contrary, when the placement of the meeting-points induces nasty symmetries,
then they can be completely useless in terms of orientation, and it might be a
real trouble for the robots to agree on a common meeting-point where to gather.

Gathering of Robots on Meeting-Points 185

The rationale behind the choice of introducing meeting-points is twofold.
From the one hand, we believe the model is theoretically interesting, as it is a
hybrid scenario in between the classical environment where robots freely move
in the plane (see, e.g., [1,5]), and the more structured one where robots must
move on the vertices of a graphs (see, e.g., [8,13]), implemented here by the
set of meeting-points. On the other hand, meeting-points for gathering purposes
might be a practical choice when robots move in specific environments where
not all places can be candidate to serve as gathering points.

Optimization issues have been addressed in [3,4]. The same strategies cannot
be applied here since a wider set of configurations must be now considered.

Our Results. The first contribution is that of introducing the so called meeting-
points for the well-know gathering problem under the Look-Compute-Move
model. Although the new formulation of the gathering problem seems to be
rather close to the original one [5], it turns out to require challenging strategies.
In fact, there exist ungatherable configurations, characterized by some symme-
tries, regardless the number of robots, and the most of configurations have been
approached with new stigmergy methodologies since the previous techniques
cannot be applied, even those proposed in [3,4].

We fully characterize when gmp can be solved. We exploit the ungatherability
results from [3], holding also in the stronger FSynch setting. Then, for all other
configurations, we design a distributed algorithm that solves the problem for any
number n > 0 robots. The new algorithm works in the weakest Asynch setting.

2 Definitions and General Ungatherability Results

In this section we formally define the gmp problem, and then we recall
from [3]: the view of a configuration, relations between symmetries and the view,
ungatherability results, and the concept of Weber-points of a configuration.

Problem Definition. The system is composed of n mobile robots. At any time,
the multiset R = {r1, r2, . . . , rn}, with ri ∈ R

2, contains the positions of all the
robots. The set U(R) = {x | x ∈ R} contains the unique robots’ positions. M is
a finite set of fixed meeting-points in the plane representing the only locations
in which robots can be gathered. The pair C = (R,M) represents a system
configuration. A configuration C is initial at time t if at that time all robots
have distinct positions (i.e., |U(R)| = n). A configuration C is final at time t if
(i) at that time each robot computes or performs a null movement and (ii) there
exists a point m ∈ M such that ri = m for each ri ∈ R; in this case we say that
the robots have gathered on point m at time t.

We study the gathering on meeting-points problem (shortly, gmp), that
asks to transform an initial configuration into a final one. A gathering algorithm
for gmp is a deterministic distributed algorithm that brings the robots in the
system to a final configuration in a finite number of cycles from any given initial
configuration, regardless the adversary. We say that an initial configuration C is
ungatherable if there are no gathering algorithms for gmp with respect to C.

186 S. Cicerone et al.

Fig. 1. The counter-clockwise order in which a robot perceives the configuration from
r is (r, m1, r1, r2, m2, r3, m3) and V−(r) = (0◦, d(r, cg(M)), r, α1, d(r, m1), m, α2,
d(r, r1), r, α2, d(r, r2), r, α3, d(r, m2), m, α4, (r, r3), r, α5, d(r, m3), m).

Configuration View and Symmetries. Given two distinct points u and v in the
plane, let d(u, v) denote their distance, line(u, v) denote the straight line passing
through these points, and (u, v) (resp. [u, v]) denote the open (resp. closed)
segment containing all points in this line that lie between u and v. The half-line
starting at point u (but excluding the point u) and passing through v is denoted
by hline(u, v). Given two lines line(c, u) and line(c, v), we denote by �(u, c, v)
the angle (ranging from zero to less than 360◦) centered in c and with sides
hline(c, u) and hline(c, v).

Given a configuration C = (R,M), cg(M) is the center of gravity of points in
M , that is the point whose coordinates are the mean values of the coordinates
of the points of the set. In [3] it has been defined a data structure called view
and computable by each robot r (according to its local coordinate system) for
any point p ∈ R ∪ M . Essentially, a robot r that needs to evaluate the view of
a point p, first computes cg(M) and then, starting from the direction given by
hline(p, cg(M)) and looking around from p (in clockwise and counter-clockwise
manner), it determines the order (p = p0, p1, . . . , p|U(R)|+|M |), pi ∈ R ∪ M ,
in which all robots and meeting-points appear. From such order of points, the
configuration’s view is produced by replacing each point pi with a triple αi, di, xi

formed by, in order and for i > 0, αi = �(p0, p, pi), di = d(p, pi), and xi ∈
{r, m, x} according whether pi is a robot position, a meeting-point, or a position
where a multiplicity occurs (cf. Fig. 1). The triple associated to p0 represents
the point p where d0 is equal to d(p, cg(M)). Finally, by considering r < m < x,
it is possible to order the two strings V−(p) and V+(p) associated to the view
of each point p according to clockwise or counter-clockwise look. So, the view
of p is V(p) = min{V+(p),V−(p)}, and then V(C) =

⋃
p∈U(R)∪M{V(p)}. Notice

that, even if robots do not have a common understanding of the handedness
(chirality), by computing V(C) they all get the same information.

Robots can use V(C) not only to share a common view about C but also to
determine whether a configuration is “symmetric” or not. Let ϕ : R2 → R

2 a map
from points to points in the plane. It is called an isometry or distance preserving
if for any a, b ∈ R

2 one has d(ϕ(a), ϕ(b)) = d(a, b). Examples of isometries in the

Gathering of Robots on Meeting-Points 187

plane are translations, rotations and reflections. An isometry ϕ is a translation
if there exists no point x such that ϕ(x) = x; it is a rotation if there exists a
unique point x such that ϕ(x) = x (and x is called center of rotation); it is a
reflection if there exists a line � such that ϕ(x) = x for each point x ∈ � (and �
is called axis of reflection).

An isometry of an initial configuration C = (R,M) is an isometry in the
plane that maps robots to robots (i.e., points of R into R) and meeting-points
to meeting-points (i.e., points of M into M). Isometries for C do not include
translations as the sets R and M are finite.

If C admits only the identity isometry, then C is said asymmetric, otherwise
it is said symmetric (i.e., C admits rotations or reflections). If C is symmetric
due to an isometry ϕ, a robot cannot distinguish its position at r ∈ R from
r′ = ϕ(r). As a consequence, two robots (e.g., one on r and one on ϕ(r)) can
decide to move simultaneously, as any algorithm is unable to distinguish between
them. In such a case, there might be a so called pending move, that is, wlog r
performs its entire Look-Compute-Move cycle while r′ does not terminate the
Move phase, i.e. its move is pending. Clearly, all the other robots performing
their cycles are not aware whether there is a pending move, that is they cannot
deduce the global status from their view. This fact greatly increases the difficulty
to devise a gathering algorithm for symmetric configurations.

The following results states that each robot can use the view V(C) to deter-
mine whether C is symmetric or not.

Lemma 1 [3]. An initial configuration C = (R,M), |M | > 1, admits a reflection
(rotation, resp.) if and only if there exist p, q ∈ R∪M , such that V+(p) = V−(q)
with p and q not necessarily distinct (V+(p) = V+(q), with p �= q, resp.).

From this results we get that, for an asymmetric configuration C, it is unique
the point (robot or meeting-point) having the minimum view.

Lemma 2. Let C = (R,M) be a non-rotational initial configuration, and � be
a line passing through cg(M). If the line perpendicular to � at cg(M) is not a
reflection axis for C, then � admits a North-South orientation.

The above lemma implies that, under certain conditions, all robots can agree
about the North of a line � passing through cg(M), and in case about the “north-
ernmost” robot or meeting-point on �.

Ungatherability Results. In this section we recall a sufficient condition for a
configuration to be ungatherable: if this applies then gmp is not solvable. Note
that the results hold also for the case of the synchronous environments FSynch.

Corollary 1 [3]. An initial configuration C = (R,M) is ungatherable even in
FSynch if it admits a rotation with center c and c �∈ R ∪ M or it admits a
reflection with axis � and � ∩ (R ∪ M) = ∅.
So, if a configuration admits a reflection (rotation, resp.) then the gathering is
possible only if on the axis (center, resp.) there are robots or meeting-points.

188 S. Cicerone et al.

Weber-Points. Let C = (R,M) be an initial configuration. We define the Weber-
distance of C as the value Δ(C) = minm∈M

∑
r∈R d(r,m). The name of Weber-

distance is due to the following remark: given a set of points T ⊆ R
2, the

Weber-point of T is a well known concept and corresponds to a point p such
that p = argminp′∈R2

∑
t∈T d(t, p′). It is well known that (i) if the points in T

are not on a line, then the Weber-point of T is unique [16], and (ii) the Weber-
point of T is not computable in general [6]. The Weber-distance of a point
m ∈ M in C is denoted as wd(C,m) and is defined as wd(C,m) =

∑
r∈R d(r,m).

Hence, a point m ∈ M is called Weber-point of C if wd(C,m) is minimum, that
is wd(C,m) = Δ(C). Symbol wp(C) is used to denote the set containing all the
Weber-points of C (notice that the wp(C) may contain more that one point and
that such points can be easily computed since M is finite).

We recall now a characterization about the set of Weber-points after the move
of a robot toward a Weber-point. From now on, we use the sentence “robot r
moves toward a meeting-point m” to mean that r performs a straight move
toward m and the final position of r lies on the interval (r,m].

Lemma 3 [3]. Let C = (R,M) be a configuration with m ∈ wp(C) and r ∈ R.
If C′ = (R′,M) is the configuration obtained after r moved toward m, then all
the Weber-points in wp(C′) lie on hline(r,m) and m ∈ wp(C′) ⊆ wp(C).

3 Gathering for GMP

In this section we provide a solution for the gmp problem. We start by providing
a partition of the set I containing all the possible initial configurations for gmp.
According to Corollary 1 there are configurations in I that are ungatherable. The
class of such configurations is denoted by U and contains any initial configuration
C fulfilling one of the following conditions:

– C admits a rotation with center c and c �∈ R ∪ M ;
– C admits a reflection with axis � and � ∩ (R ∪ M) = ∅.

In the remaining of this section we provide a gathering algorithm for the gmp
problem in the most general Asynch setting when the input configuration
(R,M) is restricted to I \ U . Moreover we assume |R| > 1 and |M | > 1, as
otherwise the solution is straightforward: in fact, if |R| = 1 it is sufficient that
the only robot reaches a meeting-point and if |M | = 1 all the robots can move
toward the only meeting-point.

Before starting the description of the algorithm we introduce some additional
concepts and notation. Given a configuration C, let O1, O2, . . . , Ot, t ≥ 1, be all
the circles centered in cg(M) such that Oi ∩R �= ∅ for each 1 ≤ i ≤ t. Moreover,
ρi represents the radius of Oi, and we assume ρi < ρj if i < j. If a robot is on
cg(M), then ρ1 = 0. Let OM be the smallest circle that is centered in cg(M)
and contains all points in M , and let ρM be its radius.

All the initial configurations processed by the algorithm, along with those
with one multiplicity created during the execution, are partitioned as follows:

Gathering of Robots on Meeting-Points 189

Procedure: Compute
Input: Configuration C = (R, M)

1 Let c = cg(M), d = max{ρt−1, ρM}, d′ = max{ρt, ρM};
2 if C ∈ S1 then move toward the meeting-point with unique multiplicity;
3 if C ∈ S2 then move toward cg(M);
4 if C ∈ S3 then
5 if r on cg(M) then move at distance ρ2/2 from cg(M) in any direction;

6 if C ∈ S4 then
7 if r on O1 then move at distance ρ2/2 from cg(M) on hline(cg(M), r);

8 if C ∈ S5 then
9 NumGuards = 0;

10 Call Guards() /* Guards modifies NumGuards */ ;
11 if NumGuards �= 0 then
12 Call MakeMultiplicity();

13 if C ∈ S6 then Call AtMost3Bots();

S0: any final configuration C where all the robots form one multiplicity on some
meeting-point;

S1: any configuration C �∈ S0 with only one multiplicity on some meeting-point;
S2: any C = (R,M) �∈ ⋃1

i=0 Si, with cg(M) ∈ M ;
S3: any C �∈ ⋃2

i=0 Si admitting a rotation;
S4: any C = (R,M) �∈ ⋃2

i=0 Si with one robot r on O1 such that 0 < ρ1 < ρ2/2
and (R \ {r},M) ∈ S3.

S5: any C �∈ ⋃4
i=0 Si, with more than 3 robots.

S6: any C �∈ ⋃4
i=0 Si, with at most 3 robots.

It easily follows that {U ,S2,S3, . . . ,S6} is a partition of I. Note that configura-
tions in classes S0 and S1 are the only non-initial ones handled by the algorithm.

The general algorithm, executed by each robot, is represented by Procedure
Compute. It is divided into six parts, according to the subdivision of the non-
final configurations. The procedure and the sub-procedures represent what a
generic robot r executes during the Compute phase once it has detected the
class which the perceived configuration belongs to.

The general strategy of the algorithm is to transform each initial configura-
tion C ∈ ⋃6

i=2 Si into a configuration C′ ∈ S1 by moving robots to create a multi-
plicity on some meeting-point m. Once this occurs, all robots can always detect
m and the gathering can be easily finalized. This approach is easy to obtain
when there is a meeting-point m on cg(M) (i.e., configurations in S2) since m
is always recognizable by all robots. Whereas, it is not applied in rotational (or
quasi-rotational) configurations with a robot on cg(M) (i.e., configurations in
S3 or S4) that are transformed in configurations in S5 or S6.

Then, the core of the algorithm is given for cases S5 and S6 where some sub-
procedures later defined are invoked. For handling configurations in such classes,
the strategy of our algorithm is composed of four phases:

1. select one or two robots, denoted as guard(s);
2. place suitably the guard(s), if required;

190 S. Cicerone et al.

3. crate a multiplicity by means of robots not designated as guard(s);
4. finalize the gathering on the created multiplicity.

The selection of the guard(s) is done among the robots furthest from cg(M). Due
to the limited number of symmetries that a configuration can admit, it is always
possible to select one or two robots that are moved away from cg(M) so that they
are always recognizable. The algorithm selects two guards, which are equivalent,
only for reflexive configurations where a single guard cannot be pointed out. As
final positioning for the guards, we chose a sufficiently large distance from cg(M)
that depends on the radius of the current Ot−1. Once guards are correctly placed,
all other robots cooperate in order to create a multiplicity on a meeting-point.
In practice, stigmergy paradigms are applied, that is guards are used in place of
a compass so that all robots get oriented by observing their positions. From this
orientation they deduce what will be the final gathering point and hence move
there. Such a point is a meeting-point m that maintains its peculiarity while
robots move toward it. For instance, if we chose among the meeting-points the
northernmost of minimum Weber distance, then as soon as robots start moving
toward it, its Weber distance decreases. Eventually, the meeting-point m will
remain the only one of minimum Weber distance, according to Lemma 3.

According to the assumed multiplicity detection, once a multiplicity is cre-
ated, robots are no longer able to compute the Weber distance accurately. Hence,
our strategy assures to create the first multiplicity over m, and once this hap-
pens all robots move toward it without creating other multiplicities. Moves are
always computed without creating undesired multiplicities. Clearly, the move-
ment of the guards (during the above phase 2) cannot create any multiplicity
since they are moved from Ot to the outer space. Afterward, since robots move
straightly toward m, then two robots meet only at the final destination point,
unless they move along the same direction. In such a case, we make robots move
without overtaking each other. In particular if a robot r is moving toward a
point p and there is another robot r′ in the open segment (r, p), then r moves
toward a point p′ on (r, p) such that d(r, p′) = d(r,r′)

2 . In this way, undesired
multiplicities are never created. Once a multiplicity is created on m, it is then
easy to move all other robots (including the guards) toward it, by exploiting the
multiplicity detection. Hence the gathering is easily finalized.

The next theorem provides the correctness of our algorithm.

Theorem 1. There exists a gathering algorithm that solves the gmp problem
for an initial configuration C if and only if C ∈ I \ U .

3.1 Classes S1,S2,S3, and S4

In this section we describe how configurations in the first four classes are handled
by our algorithm. Concerning classes S1 and S2, robots can move concurrently
toward the unique multiplicity, or cg(M), respectively.

Lemma 4. Given a configuration C in class S1 or S2, Procedure Compute
leads to a configuration C′ in class S0, eventually.

Gathering of Robots on Meeting-Points 191

Consider now the case where the initial configuration C admits a rotation
(C ∈ S3) or it “almost” admits a rotation (C ∈ S4). Since in case of rotations it
is generally impossible to identify specific robots suitable for the role of guards,
when C is in S3 the algorithm first breaks this symmetry by moving the robot
in the center of the rotation c. Notice that a robot must be on c as otherwise
either C ∈ S2 or C ∈ U . Class S4 has been introduced to assure that the robot
moving from c reaches a target (a distance ρ2/2 from c) and stops there before
the positioning of the guard(s) starts.

Lemma 5. Given an initial configuration C = (R,M) in class S3 or S4, Proce-
dure Compute leads to a configuration C′ in class S5 or S6, eventually.

3.2 Class S5

In this section, configurations of class S5 are addressed. As described at the
beginning of the section, our algorithm makes use of a stigmergy paradigm, that
is some robots (namely, the “guards”) are used in place of a compass so that
all robots get oriented by observing their positions. We now formally define the
guards of a configuration.

Definition 1. Let C = (R,M) be an initial configuration with ρt ≥ d = 3 ·
max{ρt−1, ρM}. If Ot ∩ R = {r} then r is a guard. Assume Ot ∩ R = {r1, r2}
and r1, r2 are symmetric with respect to an axis � of M . If C is reflexive according
to � or there exists a meeting-point which is unique according to some property,
then r1 and r2 are two guards.

According to the notion of guards, in order to finalize the gathering, the
configuration evolves in four different stages: the first two stages are devoted to
(1) select one or two robots that are guards or that can be moved until they
become guards, and (2) suitably move the guards, if necessary. These first two
stages are realized by means of Procedure Guards. The third stage concerns
(3) making a multiplicity by means of robots that are not guards. Procedure
MakeMultiplicity realizes it. The last stage requires (4) finalizing the gath-
ering on the created multiplicity according to Lemma 4.

We now shortly introduce Procedure Guards applied by robots in order to
detect whether the guards exist or if they have to be created. Procedure Guards
is invoked when it is recognized that the initial configuration C taken as input
belongs to S5. Procedure Guards checks how many robots reside on Ot and
then calls the corresponding subroutine. Note that, according to Definition 1,
guards are at distance at least 3d from the center cg(M), while all the remaining
robots and all the meeting-points are at distance at most d from cg(M). In this
way, once guards are recognized, the other robots start moving toward a specific
meeting-point and they will never exceed distance d from cg(M).

Conversely, when there are no guards, the configuration must be transformed
so that a new configuration with one or two guards is created. During the trans-
formation, one or two robots must be selected and moved far from cg(M) until

192 S. Cicerone et al.

Procedure: Guards
Input: Configuration C = (R, M) with circles Oi, i = 1, 2, . . . , t

1 if Ot ∩ R = {r1} then Call CheckOne(C, r1);
2 if Ot ∩ R = {r1, r2} then Call CheckTwo(C, r1, r2);
3 if |Ot ∩ R| > 2 then Call CheckMany(C);

Procedure: CheckOne
Input: Configuration C = (R, M) and robot r1 on Ot

1 if ρt ≥ 3d then NumGuards = 1; exit;
2 Let x = hline(c, r1) ∩ Ot−1;

3 Let C′ be the configuration obtainable from C by assuming r1 on x;

4 if ρt − ρt−1 ≤ d and C′ is reflexive with axis � �= line(c, x) and C′ ∈ S5 then
5 Let r2 be the robot symmetric to r1 in C′ with respect to �;
6 if r = r2 then
7 move r on hline(c, r) at distance ρt from c; /* Possible pending move */

8 else
9 if r = r1 then move r on hline(c, x) at distance 3d from c;

reaching a position compatible with the definition of guards. In particular, if two
guards must be created, then the designed robots must move at distance 3d from
cg(M) in two steps: first they are moved both at distance 2d, and afterward 3d.
This double step is done so as the difference between the distances of the two
guards (that might move asynchronously) from cg(M) is always kept below d in
order to distinguish the case where only one guard must be created. During the
phase in which robots are moved to create guards, d is initially defined as the
maximum between ρt−1 and ρM . Sometimes we make use of d′ = max{ρt, ρM}
instead of d; this happens when the guard(s) have not started moving yet, and
Ot is occupied also by robots that will not become guards.

Once Guards completed its task (and, due to the adversary, it may require
several but finite many executions made by the guard robots), the variable
NumGuards is set to one or two and hence MakeMultiplicity starts. Of
course, also this procedure may require several executions to complete its task.
Then, according to Lines 8–12 of Procedure Compute, Procedure Guards
is called again each time MakeMultiplicity restarts. In such executions,
Guards has only to recognize that guard(s) are settled.

So, the next lemmata can be stated.

Lemma 6. Given a configuration C = (R,M) in class S5, Procedure Guards
eventually leads to a configuration C′ ∈ S5 with 1 or 2 guards. Moreover,

(i) if C′ has one guard, then either C′ is asymmetric or it admits a reflection
axis with the guard on the axis;

(ii) if C′ has two guards, then either C′ is reflexive and the two guards are sym-
metric, or C′ is asymmetric, � is a reflection axis for M , and the two guards
are symmetric with respect to �.

Lemma 7. If Procedure Guards returns a configuration C with 1 or 2 guards,
then Procedure MakeMultiplicity leads to a configuration C′ ∈ S1, eventually.

Gathering of Robots on Meeting-Points 193

Procedure: CheckTwo
Input: Configuration C = (R, M) and robots r1 and r2 on Ot

1 Let c = cg(M);
2 if C is reflexive then
3 Let � be the axis of symmetry;
4 if r1 and r2 are on � then
5 Let r′ be the northernmost robot between r1 and r2;

6 if r = r′ then move r on hline(c, r) at distance 3d′ from c;

7 else
8 if ρt ≥ 3d then NumGuards = 2; exit;
9 if ρt ≥ 2d then

10 if r ∈ {r1, r2} then move r on hline(c, r) at distance 3d from c;

11 else
12 if r ∈ {r1, r2} then move r on hline(c, r) at distance 2d from c;

13 else
14 if ρt ≥ 3d then
15 Let � be the bisector of α = �(r1, c, r2);
16 if � is an axis of reflection for M then
17 if M ∩ � �= ∅ then NumGuards = 2; exit;
18 else
19 Let M ′ be the set of meeting-points in M ∩ OM , closest to �, and with

minimum Weber-distance;

20 if |M ′| = 1 then NumGuards = 2; exit;

21 if r is the robot on Ot with minimum view then
22 move r on hline(c, r) at distance 3d′ from c

Procedure: CheckMany
Input: Configuration C = (R, M)

1 if C is reflexive with axis � then
2 Let r1 and r2 be the robots on Ot that are not on � but closest to it (and the

northernmost in case of ties);

3 if r ∈ {r1, r2} then move r on hline(c, r) at distance 2d′ from c;

4 else
5 if r is the robot on Ot with minimum view then
6 move r on hline(c, r) at distance 3d′ from c

3.3 Class S6

Since each configuration C ∈ S6 has two or three robots only, then the app-
roach of Sect. 3.2 that makes use of guards cannot be always applied since there
might be not enough remaining robots to create a multiplicity. Here we briefly
summarize the strategy implemented by Procedure AtMost3Bots().

If C has only two robots r1 and r2 and is reflexive without robots on the axis
�, then the approach is to move both the symmetric robots by small steps toward
a meeting-point m on the axis. Small steps are required in order to maintain � as
recognizable. During the movements, the following invariant is used: the triangles
(r1,m, h1) and (r2,m, h2), where h1 and h2 are the projections of r1 and r2 on
�, respectively, remain similar after the movements. The small movements are
repeated until the two robots reach m.

194 S. Cicerone et al.

Procedure: MakeMultiplicity
Input: Configuration C = (R, M)

1 if NumGuards = 1 then
2 Let g be the guard and let � = hline(c, g) ;
3 if M ∩ � �= ∅ then
4 Let m ∈ M ∩ � be the meeting-point closest to g;
5 if r �= g then move r toward m;

6 else
7 Let X =

⋃
m∈M hline(c, m) ∩ Ot;

8 if r = g then move r on Ot toward any closest point in X;

9 if NumGuards = 2 then
10 Let g1, g2 be the guards and � be the bisector of �(g1, c, g2);

11 Let M ′ = M ∩ �;

12 if |M ′| �= ∅ then
13 Let M ′

W ⊆ M ′ be the set of meeting-points with minimum Weber-distance;

14 if |M ′
W | = 2 then

15 Let m be the northernmost meeting-point in M ′
W ;

16 if r �∈ {g1, g2} and r is not on � then move r toward m;

17 else
18 if r �∈ {g1, g2} then move r toward m, being M ′

W = {m};

19 else
20 Let M ′′ be the set of meeting-points on OM , closest to �, and with minimum

Weber-distance;

21 if M ′′ = {m} then
22 if r �∈ {g1, g2} then move r toward m;

23 else
24 if r is the robot on � with minimum view then
25 move r toward any m ∈ M ′′;

In all the other cases one guard is created. In particular: if the there are three
robots, once the guard is created the remaining robots can create a multiplicity
(and hence a configuration in S1 is created); if there are two robots, once the
guard is created then (1) the other robot can move toward the meeting-point
closest to the guard, and (2) the guard can move toward the occupied meeting-
point until finalizing the gathering.

4 Conclusion

We have studied a new version of the gathering problem of anonymous and obliv-
ious robots in the plane. Robots are required to gather at some predetermined
meeting-points. Robots operate in the Look-Compute-Move cycle model empow-
ered with the multiplicity detection. We provide a new deterministic distributed
gathering algorithm that solves the problem for all initial configurations but
those proved to be ungatherable. Introducing meeting-points is a natural and
challenging choice, and the resolution of the gathering problem within this model
is of main interest in robot-based computing systems.

Revisiting other existing models for the gathering or even other problems
with respect to the meeting-points represents intriguing research directions.

Gathering of Robots on Meeting-Points 195

References

1. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple
crash faults. In: IEEE 33rd International Conference on Distributed Computing
Systems (ICDCS), pp. 337–346 (2013)

2. Chalopin, J., Dieudonné, Y., Labourel, A., Pelc, A.: Fault-tolerant rendezvous
in networks. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014, Part II. LNCS, vol. 8573, pp. 411–422. Springer, Heidelberg (2014)

3. Cicerone, S., Di Stefano, G., Navarra, A.: Minimum-traveled-distance gathering
of oblivious robots over given meeting points. In: Gao, J., Efrat, A., Fekete, S.P.,
Zhang, Y. (eds.) ALGOSENSORS 2014, LNCS 8847. LNCS, vol. 8847, pp. 57–72.
Springer, Heidelberg (2015)

4. Cicerone, S., Di Stefano, G., Navarra, A.: MinMax-distance gathering on given
meeting points. In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol.
9079, pp. 127–139. Springer, Heidelberg (2015)

5. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

6. Cockayne, E.J., Melzak, Z.A.: Euclidean constructibility in graph-minimization
problems. Math. Mag. 42(4), 206–208 (1969)

7. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering asynchronous and oblivious
robots on basic graph topologies under the look-compute-move model. In: Alpern,
S., Fokkink, R., G ↪asieniec, L., Lindelauf, R., Subrahmanian, V.S. (eds.) Search
Theory: A Game Theoretic Perspective, pp. 197–222. Springer, New York (2013)

8. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering on rings under the look-
compute-move model. Distrib. Comput. 27(4), 255–285 (2014)

9. Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P.,
Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous
robots with limited visibility. In: 23rd ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), pp. 139–148 (2011)

10. Farrugia, A., G ↪asieniec, L., Kuszner, �L., Pacheco, E.: Deterministic rendezvous in
restricted graphs. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater,
J.-J., Wattenhofer, R. (eds.) SOFSEM 2015-Testing. LNCS, vol. 8939, pp. 189–200.
Springer, Heidelberg (2015)

11. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, San Rafael (2012)

12. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Randomized gathering of mobile
robots with local-multiplicity detection. In: Guerraoui, R., Petit, F. (eds.) SSS
2009. LNCS, vol. 5873, pp. 384–398. Springer, Heidelberg (2009)

13. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theoret. Comput. Sci. 390, 27–39 (2008)

14. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in
the Ring. Morgan & Claypool, San Rafael (2010)

15. Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks
59(3), 331–347 (2012)

16. Weiszfeld, E.: Sur le point pour lequel la somme des distances de n points donnés
est minimum. Tohoku Math. 43, 355–386 (1936)

Mutual Visibility with an Optimal Number
of Colors

Gokarna Sharma1(B), Costas Busch2, and Supratik Mukhopadhyay2

1 Department of Computer Science, Kent State University, Kent, OH 44242, USA
gsharma2@kent.edu

2 School of Electrical Engineering and Computer Science, Louisiana State University,
Baton Rouge, LA 70803, USA

{busch,supratik}@csc.lsu.edu

Abstract. We consider the following fundamental Mutual Visibility
problem: Given a set of n identical autonomous point robots in arbitrary
distinct positions in the Euclidean plane, find a schedule to move them
such that within finite time they reach, without collisions, a configuration
in which they all see each other. The robots operate following Look-
Compute-Move cycles and a robot ri can not see other robot rj if there
lies a third robot rl in the line segment connecting the positions of ri

and rj . Moreover, n is not assumed to be known to the robots. We study
this problem in the robots with lights model, where each robot has an
externally visible persistent light which can assume colors from a fixed
set of colors and the color set is identical to all the robots. This model
corresponds to the classical model of oblivious robots when the number of
colors c = 1 in the color set. Therefore, we focus here on the objective of
minimizing the number of colors required to successfully solve Mutual
Visibility. Di Luna et al. [16] presented two algorithms and showed
that Mutual Visibility can always be solved without collisions with
c = 3 colors for both semi-synchronous and asynchronous robots under
both rigid and non-rigid moves. In this paper, we present and analyze an
improved algorithm which requires only c = 2 colors and works for both
semi-synchronous and asynchronous robots under both rigid and non-
rigid moves; this is optimal since any algorithm for Mutual Visibility
needs at least 2 colors in the robots with lights model, when n is not
known. We employ a non-trivial technique which moves all the interior
robots first to the boundary of the initial convex hull and then the robots
in the boundary of the hull (except the corners) to outside of the hull
until all the robots eventually become corners, without the need of any
third color. Our result is interesting in the sense that asynchronicity and
non-rigidity of robot movements have no effect on Mutual Visibility
with respect to the number of colors needed to successfully solve it. We
also provide an improved solution to the Circle Formation problem.

1 Introduction

Consider a set of n autonomous point robots (n is not known) operating in the
Euclidean plane R

2 which are anonymous, indistinguishable, and without any
c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 196–210, 2015.
DOI: 10.1007/978-3-319-28472-9 15

Mutual Visibility with an Optimal Number of Colors 197

direct means of communication. Initially, each robot is in the distinct positions
of R2 and equipped with a local coordinate system and sensor capabilities (i.e.,
vision) to determine the positions of other robots. The local coordinate system
of a robot may be different with that of other robots. The robots execute the
same algorithm. They operate in Look-Compute-Move cycles, i.e., when a robot
becomes active, it uses its vision to get a snapshot of its surroundings (Look),
computes a destination point based on the snapshot (Compute), and finally
moves towards the destination (Move). There has been an extensive research
in distributed computing literature under the assumption that the robots are
oblivious – each robot has no memory of its past Look-Compute-Move cycles –
and visibility is unobstructed - three collinear robots are mutually visible to each
other [2,8,9,12,20,23].

In this paper, we consider obstructed visibility [1,3–6,10] – a robot ri can
see robot rj iff there is no other robot in the line segment connecting their
positions – and study this fundamental Mutual Visibility problem: Starting
from the arbitrary distinct positions in R

2, determine a schedule to reposition the
robots without collisions such that, within finite time, they reach a configuration
where they all see each other. Although obstructed visibility is considered before
in the classical oblivious robots model for the Spreading problem [4] and in the
so-called fat robots model [1,6,12,18], the technique of [4] cannot be generalized
for Mutual Visibility, since it works only in the one-dimensional space R

1,
and the techniques of [1,6,12,18] are also not suitable since collisions are allowed.

We study Mutual Visibility in the robots with lights model initially sug-
gested by Peleg [19], where each robot has an externally visible light that can
assume colors from a fixed set and communicate with other robots using these
lights [7,11,12,14,19,22]; the reason for considering robots with lights model is
that there is no Mutual Visibility algorithm in the oblivious robots model
when n is not known. The lights are not erased at the end of each cycle in this
model and the robots are oblivious, except the direct communication capability
provided by lights. Moreover, this model generalizes the classical oblivious robots
model since a light with only one possible color acts as no light. Therefore, the
objective in the robots with lights model is to minimize the number of colors.
We have the following theorem for the optimality of any Mutual Visibility
algorithm in the robots with lights model [16].

Theorem 1 (Optimality). Any algorithm for the Mutual Visibility prob-
lem needs at least 2 colors under the robots with lights model, if n is not known
to the robots.

We consider both semi-synchronous and asynchronous robots under both
rigid and non-rigid moves. In the semi-synchronous (SSynch) setting, the robots
operate in rounds but all robots may not be activated in a round and the
robots that are activated perform their cycles in a perfectly synchronous setting,
whereas in the asynchronous (ASynch) setting, there is no common notion of
time and no assumption is made on the duration of each operations and the
delay between them except that it is finite. We say that the moves of robots are
Rigid if an adversary does not have the power to stop a moving robot before

198 G. Sharma et al.

reaching its destination, otherwise the moves of robots are Non-Rigid. The only
constraint on Non-Rigid moves is that the robot moves at least a minimum dis-
tance δ > 0 (otherwise Mutual Visibility might never be solved).

In the literature, Di Luna et al. [17] were the first to study this problem.
They gave an algorithm that solves it with c = 6 colors in SSynch and with
c = 10 colors in ASynch under both Rigid and Non-Rigid moves. Later,
Vaidyanathan et al. [21] gave an algorithm in the fully synchronous (FSynch)
setting that optimizes time complexity but not the number of colors (i.e., their
algorithm needs c = 12 colors). Recently, Di Luna et al. [16] gave two algorithms,
one for Rigid SSynch robots and the other for the rest of the combinations,
and proved the following theorem.

Theorem 2 (Di Luna et al. [16]). Mutual Visibility is solvable without
collisions for (a) SSynch robots under Rigid moves with 2 colors, always;
(b) SSynch robots under Non-Rigid moves with 3 colors, always; (c) ASynch
robots under Rigid moves with 3 colors, always; and (d) ASynch robots under
Non-Rigid moves with 3 colors, if the robots agree on the direction of one axis.

In this paper, we give an algorithm which guarantees the following theorem.

Theorem 3 (Our Result). Mutual Visibility is solvable without collisions
for (a) SSynch robots under both Rigid and Non-Rigid moves, and ASynch
robots under Rigid moves with 2 colors, always; and (b) ASynch robots under
Non-Rigid moves with 2 colors, if the robots agree on the direction of one axis.

Our algorithm asks robots to position themselves in the vertices of the convex
polygon so as to solve Mutual Visibility. It first differentiates the robots in
the boundary of the convex polygon from the robots that are in the interior
of that polygon, and asks the internal robots to move to the boundary of that
polygon. After all internal robots reached the boundary, it differentiates the
robots that are in the vertices (corners) with those in the edges of that polygon.
The robots in the vertices never move and the algorithm asks the robots in
the edges to move in the area outside of the hull without making the corner
robots internal. Non-trivial technique of repeated moving of internal robots to
the hull boundary and the side robots to outside of the hull is used until all
side robots eventually become the vertexes of the polygon, without the need of
any additional color besides 2 colors needed to differentiate internal robots from
the robots in the convex hull boundary. Our technique is interesting because the
same technique works for both SSynch and ASynch robots under both Rigid
and Non-Rigid moves; Di Luna et al. [16] used two different techniques, one for
Rigid SSynch robots and the other for the rest of the combinations. Moreover,
our technique shows that asynchronicity and non-rigidity of robot moves have no
impact on the solvability of Mutual Visibility with respect to the number of
colors (except for Non-Rigid ASynch robots, where we give a 2-color solution
under the assumption that the robots agree on one axis).

As a byproduct, our algorithm solves the Circle Formation problem –
position robots on the perimeter of a circle – under obstructed visibility through

Mutual Visibility with an Optimal Number of Colors 199

a simple modification. Our algorithm uses 2 colors for SSynch robots and 3
colors for ASynch robots under both Rigid and Non-Rigid moves. The best
previous solution to this problem uses 3 colors for SSynch robots under Non-
Rigid moves and 4 colors for ASynch robots under both Rigid and Non-Rigid
moves [16].

We proceed as follows. We discuss model and some preliminaries in Sect. 2.
We then present our algorithm and analyze it for Rigid SSynch robots in
Sect. 3, and analyze it for Non-Rigid SSynch, Rigid ASynch, and Non-Rigid
ASynch robots in Sects. 4, 5, and 6, respectively. In Sect. 7, we discuss how to
modify our algorithm to solve Circle Formation problem. Many proofs and
details are omitted due to space constraints.

2 Model and Preliminaries

Consider a set of n anonymous robots R := {r1, r2, . . . , rn} operating in the
Euclidean plane R

2; n is not assumed to be known. Each robot ri has its own
coordinate system centered in itself and it knows its position with respect to
its coordinate system. We denote by pi(t) ∈ R

2 the position occupied by robot
ri ∈ R at time t. A robot ri sees robot rj at time t if and only if the line
segment pi(t)pj(t) does not contain any other robot at time t. Two robots ri
and rj are said to collide at time t if pi(t) = pj(t). If no ambiguity arises, we
omit t from ri(t) and rj(t), and use ri to denote both the robot ri and its position
pi. Moreover, robots have their own unit of distance which may not agree on the
unit of measure of other robots. Robots may not agree on the orientation of their
coordinate system, i.e., there is no common notion of clockwise direction.

Each robot ri is equipped with an externally visible persistent light which
can assume any color from a fixed finite set of colors C. The colors in C are the
same for all robots in R. We use variable ri.light to denote the light of a robot
ri. The color of the light of a robot r at time t can be seen by all robots that
are visible to r at time t. Each robot executes the same algorithm locally every
time it is activated.

A configuration C is a set of n tuples in C ×R
2 which defines the position and

color of a robot. Let Ct denote the configuration at time t. Let Ct(ri) denote the
configuration Ct for robot ri. A configuration C is obstruction-free if ∀ri ∈ R,
we have that |C(ri)| = n (all robots can see each other). Let Ht denote the
convex hull formed by Ct which can be easily computed using Graham’s convex
hull algorithm [15]. Let ∂Ht = Vt ∪ St denote the robots in the boundary of Ht,
where Vt ⊆ R are the set of robots lying at the corners of Ht and St ⊆ R are
the set of robots lying at the sides (or edges) of Ht. The robots in the set Vt

are called corner robots and in the set St are called side robots. The robots in
Vt ∪ St are called external robots. The robots in the set It = Ht\∂Ht are called
internal robots. Given a robot ri ∈ R, we denote by Ht(ri) the convex hull of
Ct(ri). Given two points a, b ∈ R

2, we denote by
←→
ab the line that contains them.

We denote by |ab| the length of the line segment ab connecting points a and b.

200 G. Sharma et al.

Fig. 1. An illustration of safe zone for edge e = v1v2 and also for the robots in e.

Moreover, given a, b, d ∈ R
2, we use ∠abd to denote the angle with vertex b and

sides ab and bd.
At any time t, a robot ri ∈ R is either active or inactive. When active, ri

performs a sequence of Look-Compute-Move (LCM) operations: a robot takes the
snapshot of the positions of the robots visible to it in its own coordinate system
(Look); executes its algorithm using the snapshot which returns a destination
point x ∈ R

2 and a color c ∈ C (Compute); and sets its own light to color c
and moves towards the computed destination x ∈ R

2 (if x is different than its
current position), if any (Move). We consider two schedulers for the activation
of the robots in R: SSynch and ASynch. In SSynch, the time is discrete and
at each time instant t a subset of the robots (from empty set to all of R) are
activated and perform their LCM operations instantaneously, ending at time
t + 1. Therefore, we use round t in SSynch instead of time t. In ASynch, each
robot acts independently from the others and the duration of the LCM operations
of each robot is finite but unpredictable, i.e., there is no common notion of time.
More precisely, we assume that the Look operation is instantaneous, but the
Compute and Move operations can take an unpredictable but bounded amount of
time, unknown to the robot. Moreover, there may be unpredictable but bounded
delay between Look-Compute and Compute-Move operations.

We assume that the execution starts at time 0. Therefore, at time t = 0, the
robots start in an arbitrary configuration C0 occupying distinct positions in R

2

and the color of the light of each robot is set to Off. The Mutual Visibility
problem is defined as follows: Given any C0, reach in finite time an obstruction-
free configuration without collisions. An algorithm is said to solve Mutual
Visibility if it always achieves an obstruction-free configuration regardless of
the choices of the adversary and from any arbitrary initial configuration. We
measure the quality of the algorithm by counting the number of distinct colors
in the set C needed to solve Mutual Visibility.

Let e = v1v2 be a line segment connecting two corner robots v1 and v2 of Ht.
A safe zone is the portion of plane outside Ht such that the corner robots v1 and
v2 of Ht remain as the corner robots despite the movements of the side robots
in that area. Following Di Luna et al. [17], the safe zone of e, denoted as S(e),
consists of the portion of plane outside Ht, such that for all points x ∈ S(e), we
have that ∠xv1v2 ≤ 180−∠v0v1v2

4 and ∠v1v2x ≤ 180−∠v1v2v3
4 (the left of Fig. 1).

Side robots may not always be able to compute S(e) exactly due to the mutual
obstructions of visibility which lead to different local views. However, if there is

Mutual Visibility with an Optimal Number of Colors 201

only one side robot in e, then it can compute S(e) exactly. When there are more
than one robot in e, S′(e) computed by a robot based on its local view is such
that S′(e) ⊆ S(e) (the right of Fig. 1 for robot r).

3 Mutual Visibility for Rigid SSynch Robots

In this section, we consider the Mutual Visibility problem for Rigid SSynch
robots. We present and analyze an algorithm (Algorithm 1) and prove that it
solves Mutual Visibility for Rigid SSynch robots with only 2 colors. We
will prove later that this algorithm works also for Non-Rigid SSynch, Rigid
ASynch, and Non-Rigid ASynch robots with only 2 colors, whereas two differ-
ent algorithms were designed in [16] and needed 3 colors except Rigid SSynch
robots. Algorithm 1 uses Algorithms 2–4 as subroutines.

Our algorithm works in two phases similar to the algorithm of Di Luna
et al. [17]: (i) interior depletion (ID) and (ii) side depletion (SD). However, our
algorithm uses 2 colors to perform these phases in contrast to at least 6 colors
needed in [17]. The goal of the ID phase is to reach a configuration CID in which
there are no robots in the interior of HID, i.e., all the robots in R are in the set
∂HID. The goal of the SD phase is to move all the robots in the set SID to outside
of HID to become corner robots. After all robots in SID become corner robots,
our algorithm terminates solving Mutual Visibility. Note that the robots in
VID never move and only the robots in SID move to become corner robots in
the SD phase. Two colors are used: C = {Off, External} and C is same for all
the robots in R. The restriction of only 2 colors in the set C makes this problem
challenging. Therefore, our algorithm executes the SD phase multiple times and
it consists of the execution of the ID and SD phases repeatedly until all robots
in R become corners. We prove later that this is indeed possible without any
additional color besides 2 colors in C. We also prove that the SD phase starts
only after the ID phase finishes, i.e., they are executed in sequence one after
another without overlap.

Interior Depletion: The objective of this phase to have all robots that are
already in ∂HID and the newly become side robots colored External. This phase
works as follows. In C0, the lights of all robots in R are set to Off. If a robot ri
with light Off is activated at some round k, and it sees that Ck(ri) contains a
region of plane that is free of robots and wider than 180◦ (wide exactly 180◦),
then ri knows it is a corner (a side) and sets its light to External (Lines 17, 19 of
Algorithm 1, Line 1 of Algorithm 2, Line 1 of Algorithm 4). The side robot with
light External does not move as long as it can see robots whose light is still Off
(Line 2 of Algorithm 4). This guarantees that the SD phase starts only after the
ID phase finishes. If a robot ri with light Off is activated at some round k, and
its sees that it is in the interior of Hk(ri), it moves to position itself on one of its
nearest visible edges of ∂Hk(ri) using the technique described in Algorithm3; we
omit detailed description of the technique due to space constraints. The edge of
∂Hk(ri) is visible to ri when it is occupied by only robots with lights External.

202 G. Sharma et al.

Algorithm 1. Mutual Visibility algorithm for robot ri for any time
k > 0
1 // Look-Compute-Move cycle for robot ri

2 Ck(ri) ← configuration Ck for robot ri (including ri);
3 Hk(ri) ← convex hull of the positions of the robots in Ck(ri);
4 if |Ck(ri)| = 1 then Terminate;
5 else if Hk(ri) is a line segment then
6 if |Ck(ri)| = 2 then
7 Let rj ∈ Ck(ri);
8 if ri.light = Off then
9 ri.light ← External;

10 Move orthogonal to line ←→rirj by any non-zero distance;
11 else if rj .light = External then Terminate;
12 else if |Ck(ri)| = 3 then
13 Let rj , rl ∈ Ck(ri);
14 if ri.light = Off ∧ rj .light = External ∧ rl.light = External then
15 ri.light ← External;
16 Move orthogonal to line ←→rjrl by any non-zero distance;
17 else if ri is a vertex robot of Hk(ri) then Corner(ri,Ck(ri),Hk(ri));
18 else if ri is an interior robot of Hk(ri) then Internal(ri,Ck(ri),Hk(ri));
19 else if ri is a side robot of Hk(ri) then Side(ri,Ck(ri),Hk(ri));

Algorithm 2. Corner(ri,Ck(ri),Hk(ri))
1 if ri.light = Off then ri.light ← External;
2 else if ∀r ∈ Ck(ri), r.light = External ∧ no three robots in Ck(ri) are in a line

∧ no robot r ∈ Ck(ri)\{ri} is in the interior of Hk(ri) then Terminate;

We will prove later that all the robots will be positioned on the boundary of H0

without collisions at the end of this phase. Note that only 2 colors are used.

Side Depletion: This phase is similar to the edge depletion phase of [17];
however the edge depletion phase of [17] requires at least c = 6 colors whereas our
algorithm needs only c = 2 colors. Therefore, this phase is crucial is minimizing
the number of colors to 2 in solving Mutual Visibility and a non-trivial
technique is needed to make it possible; note that only 2 colors are used by our
algorithm and [17] in the ID phase.

In this phase, a side robot, as soon as it is activated, moves from its edge
e = v1v2 to a point in the safe zone S(e) as defined in Sect. 2 without changing its
color. Specifically, if a side robot ri with light External is activated at some round
k, it checks whether all the robots in its local view Ck(ri) have light External
and there is no robot in the interior of Hk(ri) (Line 2 of Algorithm 4). If this is
the case, it computes a point x in S(e) based on its local view and moves to x
without changing its color (Lines 3–7 of Algorithm4). Due to the assumptions
of the SSynch model, not all side robots in e may reach to their safe zones
S(e). When robots in e are activated at round k + 1 and they find that they are

Mutual Visibility with an Optimal Number of Colors 203

Algorithm 3. Internal(ri,Ck(ri),Hk(ri))
1 if ri.light = Off ∧ there is no robot r ∈ Ck(ri)\{ri} with light External in the

interior of Hk(ri) then
2 Order the robots in Hk(ri) starting from any arbitrary robot v1 in clockwise

order so that T = {v1, . . . , vlast}, where v1 is the first robot and vlast is the
last robot;

3 Let c, d be any pair of two consecutive robots in T with c.light = External
and d.light = External;

4 Let HPcd be the half-plane divided by line parallel to
←→
cd that passes

through ri such that ri /∈ HPcd (but the robots c, d are in HPcd);
5 Q ← set of line segments cd such that there is no robot in HPcd (including

cd) with light Off;
6 if Q is empty then return;
7 else

8 ef ← the line segment in Q between two robots e, f that is closest to ri;

9 m ← midpoint of ef ;
10 α ← angle ∠emri;

11 Move to the point x = α·|ef |
180◦ from endpoint e in ef ;

12 else if ri.light = External then ri.light ← Off;

Algorithm 4. Side(ri,Ck(ri),Hk(ri))
1 if ri.light = Off then ri.light ← External;
2 else if ∀r ∈ Ck(ri), r.light = External ∧ no robot r ∈ Ck(ri)\{ri} is in the

interior of Hk(ri) then
3 Order the robots in counterclockwise order of ri such that the order is

Ti = {v3, v2, ri, r, v0}, where v3 is the first robot non-collinear in clockwise
direction of ri with v3.light = External, v2 is the robot that is collinear with
ri in clockwise direction with v2.light = External, and r is collinear in
counterclockwise direction with r.light = External, and v0 is the first
non-collinear robot in counterclockwise direction with v0.light = External;

4 Compute angles α = 180 − ∠v0rri and β = 180 − ∠riv2v3, and set
γ = min{α/4, β/4};

5 Compute a point x′ such that ∠x′v2ri = γ and a point x′′ such that
∠x′′rri = γ;

6 x ← x′ or x′′ whichever is nearest to e;
7 Move perpendicular to e with destination x;

internal robots in their local convex hulls at round k +1, they change their color
of Off indicating that they now become internal robots (Line 12 of Algorithm3).
Among the robots that moved to S(e) at least one becomes corner robot and it
does not move in any future rounds. The newly become internal robots deplete
again to ∂H before any other robot in the boundary moves to S(e).

A robot ri terminates at round k and does not move in future rounds as soon
as it satisfies the condition that all the robots in its local view Ck(ri) have light

204 G. Sharma et al.

External, no three robots in Ck(ri) are in a line, and no robot in Ck(ri) is in the
interior of H (Line 2 of Algorithm 2). Due to vision, we can easily see that robots
can decide on whether they satisfy all the conditions for the termination. When
all robots in R terminate, the configuration is strictly convex, and therefore
Mutual Visibility is solved.

There are two special cases in our algorithm. The first special case is when
n = 1 (Line 4 of Algorithm1). The second special case is when H0 is a line
segment. These cases are handled using the technique described in Lines 4–16
of Algorithm 1.

3.1 Analysis of the Algorithm

We now analyze our algorithm for Rigid SSynch robots. We first provide the
analysis of our algorithm for the ID phase. Specifically, we show that, starting
from any initial configuration C0, the ID phase finishes in finite time and no
collision of robots occur during the execution. Particularly, we prove the following
lemmas.

Lemma 1. Given any initial configuration C0, ∃k ∈ N
+ such that Ik = ∅ in Ck.

Lemma 2. Given any initial configuration C0, no collisions of robots occur until
Ik = ∅ is reached at some round k ∈ N

+ in Ck.

We now provide the main result from the analysis of the ID phase.

Theorem 4. Given any initial configuration C0, there is some round k ∈ N
+

in which the robots in R occupy different positions of Hk, and both the corner
robots and side robots have light External.

We now show that the detection of the absence of internal robots in the
local convex hull H(ri) of each robot ri implies the global absence of internal
robots from H. In particular, we have the following lemma which is similar to
[17, Lemma 2].

Lemma 3. Given a robot ri ∈ R with light External and a round k ∈ N
+, if all

the robots in Ck(ri) have light External and no robot is in the interior of Hk(ri),
then Ck does not contain internal robots with respect to H0.

Denote by CID the configuration Ck at round k ∈ N
+ after the ID phase of

our algorithm such that Ik = ∅ and by HID the convex hull created by CID.
We have the following lemma that shows how many other robots a side robot ri
sees in CID.

Lemma 4. Given a configuration CID and a side robot ri in some edge e = v1v2
of HID with neighbors rl and rr. Let V (HID\e) denote the robots in HID except
the robots in e (including the endpoint robots). Robot ri sees all the robots in the
set V (HID\e) ∪ {rl, rr}.

Mutual Visibility with an Optimal Number of Colors 205

According to Lemma 4, suppose no robot is moved to S(e) in Fig. 2, i.e., the
configuration is CID. Then, the side robot r in e = v1v2 sees all the robots in all
the edges of HID except edge e (i.e., the robots in V (HID\e)) and the robots r2
and v2 in e (its neighbors in e). We now analyze our algorithm for the SD phase.
We start with the following observation which shows that SD phase starts only
after the ID phase finishes.

Observation 1. Given any initial configuration C0, if a configuration Ck is
reached at some round k ∈ N

+ such that Ik = ∅, then the side depletion phase
starts at round k′, where k′ = k + 1.

Lemma 5. Given a configuration CID and an edge e = v1v2 of HID, if a robot
ri ∈ e moves from e, it moves inside the safe zone S(e).

Lemma 6. Consider a corner robot ri of Hk′ with ri.light =External, ∀k ∈ N
+

such that k > k′, even if the robots in any edge e of Hk′ moved to S(e), ri is a
corner robot of Hk and ri.light = External.

Lemma 7. Let X(e) > 0 be the number of side robots in e = v1v2 that moved
to S(e) at some round k, then at least a robot in X(e) becomes corner and does
not move in any future round k′ > k.

We showed in Lemma 4 the number of robots that are visible to a side robot
ri in any edge e of HID. We now prove the following lemma for (i) the number
of robots that are visible to a robot that is still in e when X(e) robots are moved
to S(e) and (ii) the number of robots that are visible to the robots in X(e).
This visibility proof is crucial since we ought to guarantee that before any other
robot in any edge e move to S(e), all the robots that became internal due to the
movement of the side robots at some previous round become side robots again.

Lemma 8. Given two configurations Ck and Ck′ , k′ = k + 1, and an edge e =
v1v2 of Hk such that ri ∈ e in Ck and ri ∈ S(e) in Ck′ . Let X(e) > 0 denote the
side robots in e that moved to S(e) at round k. Moreover, let V (Hk\e) denote the
robots in Hk except the robots in e (including the endpoint robots). Furthermore,
let el and er are the edges of Hk in the left and right of e. Then,

– If there is no side robot in both el and er, each robot r ∈ X(e) sees robots in
the set V (Hk\e) and at least two other robots in e or in S(e).

– If there are side robots in both el and er, each robot r ∈ X(e) sees at least
robots in the set V (Hk\e)\{v0, v3} and at least two other robots in e or in
S(e), where v0 and v3 are the nearest robots from e in el and er.

– If there are side robots in either el or er, each robot r ∈ X(e) sees at least
robots in the set V (Hk\e)\{v0} (if no side robots in er) or V (Hk\e)\{v3} (if
no side robots in el) and at least two other robots in e or in S(e).

– If there is no side robot in e at round k′, then each robot r ∈ X(e) sees the
robots in the set V (Hk\e) and at least two other robots in the set X(e)∪{v1, v2}.

– If there is a robot rm ∈ e at round k′ and X(e) = 1, then rm sees the robots
in the set V (Hk\e) ∪ {rl, rr} ∪ X(e), where rl and rr are the neighbors of rm
in e in Ck′ .

206 G. Sharma et al.

Fig. 2. An illustration of the robots in the set V (Hk\e) that a robot in S(e) or in e sees

– If there is a robot rm ∈ e at round k′ and X(e) ≥ 2, then rm sees the robots
in the set V (Hk\e) ∪ {rl, rr} and at least two robots in X(e).

The claims above also hold at round k′ when the side robots in V (Hk\e) move to
their respective S(e)’s at round k.

An example is given in Fig. 2 for the illustration of Lemma8. Robot r2 that
moved to S(e), e = v1v2, sees all the robots in V (Hk\e) except v3 in some cases,
since r may fall in the line segment r2v3 when v3 moved to its S(e). The robots
a and b see all the robots even if they moved to their respective S(e). The side
robot r sees all the robots of V (Hk\e) even if a and b moved to their S(e) and
the robots r1, r2 and v2 of e.

Lemma 9. Given a configuration Ck and an edge e = v1v2 of Hk, no robot in
any edge e of Hk moves to S(e) if there is an internal robot with light ∈ {Off,
External}.
Lemma 10. Given a configuration CID, let e = v1v2 be an edge with q ≥ 1 side
robots. Eventually all these robots will become corner robots and set their lights
to External.

We now provide the main result from the analysis of our algorithm.

Theorem 5. Our algorithm solves Mutual Visibility for Rigid SSynch
robots with 2 colors in the robots with lights model.

Proof. We have from Theorem 4 that from any initial non-collinear configuration
C0, we reach a configuration CID where IID = ∅ in finite time. We have from
Lemma 3 that robots can locally detect whether the configuration CID is reached
and start executing the SD phase (Observation 1). We also have from Lemma 6
that the corner robots can only increase during the execution of the algorithm.
We have from Lemma 10 that side robots in each edge e of HID eventually
become corners. Therefore, starting from any non-collinear configuration C0, all
robots eventually become corners of a convex hull and can not obstruct each
other, solving Mutual Visibility.

Mutual Visibility with an Optimal Number of Colors 207

Therefore, it only remains to show that, starting from any initial collinear
configuration, the robots correctly evolve into some non-collinear configuration
from which applying the analysis above, the robots become corners of a convex
hull and terminate. If n ≤ 3, we can immediately prove that robots become
corners and terminate through a case analysis. For n = 1, when the only robot
becomes active it sees no other robot, that is, it changes its color to External
and immediately terminates. For n = 2, the robot changes its color to External
when it becomes active for the very first time and moves orthogonal to line rirj
that connects it to the only other robot rj it sees in C(ri). When ri realizes later
that |C(ri)| is still 2 and rj .light =External, it simply terminates. For n = 3, if
ri realizes that both of its neighbors in C(ri) have light set to External and are
collinear with it, it sets its light to External and moves orthogonal to that line.
When it becomes active next time, it finds itself at one of the corner and simply
terminates as it sees all the other robots in the corners of the hull with light set
to External. For n ≥ 4, let a and b be two robots that occupy the vertices of the
line segment H0 (i.e., the endpoint robots of H0). Nothing happens until a or b
is activated, setting its light to External, and moving orthogonal to H0. After a
or b moved, the other robots in H0, when become active, realize that they are
not in a line anymore and enter the normal execution of our algorithm. It is also
easy to see that after the line segment H0 evolves in a polygonal shape, it does
not become line segment anymore. Note that in the whole process only 2 colors
are used in the color set C. Therefore, the theorem follows. �

4 Mutual Visibility for Non-Rigid SSynch Robots

In this section, we consider Mutual Visibility for Non-Rigid SSynch robots.
We analyze the same algorithm (Algorithm 1) and show that it also solves
Mutual Visibility for Non-Rigid SSynch robots with only 2 colors.

For the ID phase, Lemmas 1 and 2 hold also in this setting. This is because
the internal robots that are activated in a round perform their LCM operations
in perfect synchrony and move at least a minimum distance of δ > 0 in every
round. Moreover, the side robots in ∂H0 do not move to S(e) until they see
robots with light Off, and until the ID phase is not finished, the robots in ∂H0

see at least a robot with light Off. Therefore, Theorem 4 also holds for the ID
phase for Non-Rigid SSynch robots.

For the SD phase, Lemmas 3–8, 10, and Observation 1 hold without changes.
We can guarantee that Lemma 9 also holds for Non-Rigid SSynch robots but
proof argument needs to change. Therefore, we prove the following lemma similar
to Lemma 9 for Non-Rigid SSynch robots.

Lemma 11. For Non-Rigid SSynch robots, given a configuration Ck and an
edge e = v1v2 of Hk, no internal robot ri in any edge e of Hk moves to S(e) if
there is an internal robot with light ∈ {Off, External}.

Finally, we have the following main theorem for Non-Rigid SSynch robots.

Theorem 6. Our algorithm solves Mutual Visibility for Non-Rigid
SSynch robots with 2 colors in the robots with lights model.

208 G. Sharma et al.

5 Mutual Visibility for Rigid ASynch Robots

In this section, we consider the Mutual Visibility problem for Rigid ASynch
robots. We analyze the same algorithm (Algorithm 1) and show that it also solves
Mutual Visibility for Rigid ASynch robots with only 2 colors.

For the ID phase, only the collision avoidance proof gets slightly more com-
plex, otherwise the algorithm works similar to Rigid SSynch robots. Therefore,
we obtain Theorem 4 for Rigid ASynch robots after we prove the following
lemma for collision avoidance. Note that due to ASynch robots, we use a spe-
cific time t ∈ R instead of a round k ∈ N in this and next section.

Lemma 12. Given any initial configuration C0, no collision of robots occur
until Ik = 0 is reached at some round k ∈ N

+ in Ck, even if the Rigid ASynch
robots execute our algorithm.

Therefore, we prove the following theorem for Rigid ASynch robots.

Theorem 7. Our algorithm solves Mutual Visibility for Rigid ASynch
robots with 2 colors in the robots with lights model.

6 Mutual Visibility for Non-Rigid ASynch Robots

In this section, we discuss how our algorithm (Algorithm 1) can be modified
to solve Mutual Visibility for Non-Rigid ASynch robots with only c = 2
colors. Similar to the algorithm of Di Luna et al. [16], we need the assumption of
the robots to agree on one axis, say North (i.e. y-axis). The idea here is similar
to the algorithm of Di Luna et al. [16]: If an internal robot sees that the light of
every robot that lies to the North of it is set to External, it moves. If there are
more than one robot that are eligible to move, then only two endpoint robots
are allowed to move. The termination is guaranteed by making sure that each
robot always moves straight to the North.

Theorem 8. Our algorithm solves Mutual Visibility for Non-Rigid
ASynch robots with only 2 colors in the robots with lights model, provided that
the robots agree on one axis.

We obtain our main result, Theorem 3, combining the results of Theorems 5–8.

7 Circle Formation Problem

Our algorithm can be modified to solve the Circle Formation problem where
the goal is to place the robots in the perimeter of a circle [8–10,13]. The best
previous solution [16] used 3 colors for Non-Rigid SSynch robots and 4 colors
for ASynch robots under both Rigid and Non-Rigid motions. We have the
following theorem.

Theorem 9. Circle Formation problem is solvable without collisions by
(a) both Rigid and Non-Rigid robots with 2 colors in SSynch, always;
(b) Rigid robots with 3 colors in ASynch, always; and (c) Non-Rigid robots
with 3 colors in ASynch, if the robots agree on the direction of one axis.

Mutual Visibility with an Optimal Number of Colors 209

References

1. Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for
gathering many fat mobile robots in the plane. In: PODC, pp. 250–259 (2013)

2. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. In: SODA, pp. 1070–1078 (2004)

3. Bolla, K., Kovacs, T., Fazekas, G.: Gathering of fat robots with limited visibility
and without global navigation. In: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC 2012 and SIDE 2012. LNCS,
vol. 7269, pp. 30–38. Springer, Heidelberg (2012)

4. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems.
Theor. Comput. Sci. 399(1–2), 71–82 (2008)

5. Cord-Landwehr, A., Degener, B., Fischer, M., Hüllmann, M., Kempkes, B., Klaas,
A., Kling, P., Kurras, S., Märtens, M., auf der Heide, F.M., Raupach, C., Swierkot,
K., Warner, D., Weddemann, C., Wonisch, D.: Collisionless gathering of robots
with an extent. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović,
R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 178–189.
Springer, Heidelberg (2011)

6. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane.
Theor. Comput. Sci. 410(6–7), 481–499 (2009)

7. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of
lights: synchronizing asynchronous robots using visible bits. In: ICDCS, pp. 506–
515 (2012)

8. Défago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile
robots with convergence toward uniformity. Theor. Comput. Sci. 396(1–3), 97–112
(2008)

9. Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile
robots. TAAS 3(4), 16:1–16:20 (2008)

10. Dutta, A., Gan Chaudhuri, S., Datta, S., Mukhopadhyaya, K.: Circle formation by
asynchronous fat robots with limited visibility. In: Ramanujam, R., Ramaswamy,
S. (eds.) ICDCIT 2012. LNCS, vol. 7154, pp. 83–93. Springer, Heidelberg (2012)

11. Efrima, A., Peleg, D.: Distributed models and algorithms for mobile robot systems.
In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil,
F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 70–87. Springer, Heidelberg (2007)

12. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile
robots. Synth. Lect. Distrib. Comput. Theory 3(2), 1–185 (2012)

13. Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by
mobile robots: solving the uniform circle formation problem. In: Aguilera, M.K.,
Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol. 8878, pp. 217–232.
Springer, Heidelberg (2014)

14. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous of two robots
with constant memory. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013.
LNCS, vol. 8179, pp. 189–200. Springer, Heidelberg (2013)

15. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite
planar set. Inf. Process. Lett. 1(4), 132–133 (1972)

16. Luna, G.A.D., Flocchini, P., Chaudhuri, S.G., Poloni, F., Santoro, N., Viglietta, G.:
Mutual visibility by luminous robots without collisions. To appear in Information
and Computation (2015). arxiv.org/abs/1503.04347

17. Di Luna, G.A., Flocchini, P., Gan Chaudhuri, S., Santoro, N., Viglietta, G.: Robots
with lights: overcoming obstructed visibility without colliding. In: Felber, P., Garg,
V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 150–164. Springer, Heidelberg (2014)

http://arxiv.org/abs/org/abs/1503.04347

210 G. Sharma et al.

18. Luna, G.A.D., Flocchini, P., Poloni, F., Santoro, N., Viglietta, G.: The mutual
visibility problem for oblivious robots. In: CCCG (2014)

19. Peleg, D.: Distributed coordination algorithms for mobile robot swarms: new direc-
tions and challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.)
IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005)

20. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

21. Vaidyanathan, R., Busch, C., Trahan, J.L., Sharma, G., Rai, S.: Logarithmic-time
complete visibility for robots with lights. In: IPDPS, pp. 375–384 (2015)

22. Viglietta, G.: Rendezvous of two robots with visible bits. In: Flocchini, P., Gao,
J., Kranakis, E., der Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243,
pp. 286–301. Springer, Heidelberg (2014)

23. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)

Mobile Agents Rendezvous in Spite
of a Malicious Agent

Shantanu Das1, Flaminia L. Luccio2(B), and Euripides Markou3

1 LIF, Aix-Marseille University, Marseille, France
2 DAIS, Università Ca’ Foscari Venezia, Venezia, Italy

luccio@unive.it
3 DIB, University of Thessaly, Lamia, Greece

Abstract. We examine the problem of rendezvous, i.e., having multiple
mobile agents gather in a single node of the network. Unlike previous
studies, we need to achieve rendezvous in presence of a very powerful
adversary, a malicious agent that moves through the network and tries
to block the honest agents and prevents them from gathering. The mali-
cious agent can be thought of as a mobile fault in the network. The
malicious agent is assumed to be arbitrarily fast, has full knowledge of
the network and it cannot be exterminated by the honest agents. On
the other hand, the honest agents are assumed to be quite weak: They
are asynchronous and anonymous, they have only finite memory, they
have no prior knowledge of the network and they can communicate with
the other agents only when they meet at a node. Can the honest agents
achieve rendezvous starting from an arbitrary configuration in spite of
the malicious agent? We present some necessary conditions for solving
rendezvous in spite of the malicious agent in arbitrary networks. We
then focus on the ring and mesh topologies and provide algorithms to
solve rendezvous. For ring networks, our algorithms solve rendezvous in
all feasible instances of the problem, while we show that rendezvous is
impossible for an even number of agents in unoriented rings. For the
oriented mesh networks, we prove that the problem can be solved when
the honest agents initially form a connected configuration without holes
if and only if they can see which are the occupied nodes within a two-
hops distance. To the best of our knowledge, this is the first attempt to
study such a powerful and mobile fault model, in the context of mobile
agents. Our model lies between the more powerful but static fault model
of black holes (which can even destroy the agents), and the less powerful
but mobile fault model of Byzantine agents (which can only imitate the
honest agents but can neither harm nor stop them).

S. Das—This work has been partially supported by the ANR - MACARON project
(anr-13-js02-0002).
F.L. Luccio—This work has been partially supported by the PRIN 2010 Project
Security Horizons.
E. Markou—Part of this work has been done while this author was visiting Università
Ca’ Foscari Venezia. This research has been co-financed by the European Union
(European Social Fund – ESF) and Greek national funds through the Operational
Program “Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) — Research Funding Program: THALIS-NTUA (MIS 379414).

c© Springer International Publishing Switzerland 2015
P. Bose et al. (Eds.): ALGOSENSORS 2015, LNCS 9536, pp. 211–224, 2015.
DOI: 10.1007/978-3-319-28472-9 16

212 S. Das et al.

Keywords: Asynchronous · Mobile agents · Rendezvous problem ·
Malicious agent

1 Introduction

One of the fundamental problems in distributed computing with mobile robots
or agents is the problem of gathering all agents at a single location, known as
the rendezvous problem. Rendezvous is important for example, for coordination
between the agents or for sharing information or for planning a collaborative
task. This problem has been well studied for the fault-free environment but
there are very few results on solving rendezvous in the presence of faults, in
particular, in the presence of a hostile entity that could prevent the agents from
achieving their task. As in most previous works, we model the environment as
a connected graph with multiple mobile agents moving along the edges of the
graph; the objective is to gather them at a single node of the graph. In this
context, the hostile entity may be either stationary (e.g. a harmful node in the
graph) or mobile (e.g. a virus propagating on a network). Methods for protecting
mobile agents from malicious host nodes have been proposed, e.g. based on
the identification of the malicious host [14]. However, the issue of protecting a
network (hosts and mobile agents) from a malicious and mobile entity is still
wide open (see [18] and references therein).

A model for a particularly harmful node which has been extensively studied
is the black hole, where a node which contains a stationary process destroys all
mobile agents upon visiting it, without leaving any trace. In this case, although
the hostile entity is very powerful, it is stationary; the mobile agents can simply
avoid the black hole once its location is known. Thus, the main issue is locating
the black hole [14,17,19]. Locating and avoiding a malicious entity that is also
mobile and moves from node to node of the graph, seems to be a more difficult
problem. A recent result considers the problem of rendezvous in the presence
of Byzantine agents [12]. A Byzantine agent is indistinguishable from the legit-
imate or honest agents, except that it may behave in an arbitrary manner and
may provide false information to the honest agents in order to induce them to
make mistakes, thus preventing the rendezvous of the honest agents. Thus, the
issue here is identifying the Byzantine agents and distinguishing them from the
honest agents. Note that the Byzantine agent cannot actively harm the agent
or physically prevent the agents from gathering. In this paper, we consider a
more powerful adversary called a malicious agent which can actively block the
movement of an honest agent to the node occupied by the malicious agent. For
example, when two honest agents are close to each other, the malicious agent can
enter the path between the two agents and prevent them from meeting. We inves-
tigate the feasibility of rendezvous in the presence of such a powerful adversary.
In particular, the malicious agent is more powerful than the honest agents; it can
move arbitrarily fast through the graph, has full information about the current
configuration (i.e. the graph and location of the agents), and has knowledge of
the next action to be taken by each honest agent. On the other hand, the honest

Mobile Agents Rendezvous in Spite of a Malicious Agent 213

agents are relatively weak; they are anonymous finite automata, they move asyn-
chronously without any prior knowledge of the graph and they can communicate
only locally on meeting another agent at the same node. We remark here that
the malicious agent is distinguishable from the honest agents, so the question of
identifying the malicious agent (as in Dieudonne et al. [12]), does not arise here.

We believe this is an interesting model for studying mobile faults in a graph,
that has never been considered before. In some sense this model can be seen as
an extension of the model of networks with delay faults. For example, Chalopin
et al. [8] consider the problem of rendezvous in the presence of an adversary
that can prevent an agent from moving for an arbitrary but finite time. In their
case, the agent cannot be blocked forever as in our scenario. Our model can
also be contrasted with the model for network decontamination or, cops and
robbers search games on graphs, where a team of good agents (called cops) tries
to capture a fast fugitive (robber). The fugitive or hostile entity is exterminated
as soon as one of the cops reaches it. Thus the behavior of the hostile entity, in
this case, is opposite to that of the malicious agent in our model – instead of
blocking the honest agents, the hostile entity tries to get away from the good
agents.

In terms of practical motivation for this research, we can think of the mali-
cious agent as representing a virus that may spread around the network. While in
the classical decontamination problem the aim is to extinguish the virus, in our
setting the virus cannot be extinguished and has to be contained in one part of
the network, thus dividing the network into unstrusted and trusted subnetworks.
This scenario can be compared to the problem of botnets, i.e. a subnet of com-
promised computers (bots), typically used for denial-of-service attacks on the
internet. The untrusted subnetwork in our model can be seen as a botnet, and
the botmaster who controls the bots represents the malicious agent. An honest
agent that resides on a node protects the trusted network from the untrusted
one by running some protection mechanism (e.g. a firewall, an intrusion detec-
tion mechanism, etc.). Thus the malicious agent cannot enter a node already
occupied by an honest agent. On the other hand the botnet is dynamic, and it
may reduce its dimension (i.e., when the botmaster leaves the host) or it may
increase it only on hosts not occupied, i.e., not protected by an agent. Honest
agents may expand towards the untrusted hosts which are not controlled by the
botmaster anymore by running botnet detection mechanisms (see, e.g., [25]). We
are then interested in solving the rendezvous problem in the trusted subnetwork,
and we want to study how this malicious behaviour affects the solvability of the
Rendezvous problem.

Related Work: The rendezvous problem has been studied for agents moving
on graphs [2] or for robots moving on the plane [9], using either deterministic or
randomized algorithms. In the fault-free scenario, the rendezvous problem can
be solved relatively easily, even in asynchronous networks, when the network
has an asymmetry (e.g., a distinguished node), and can be explored by the
agents, since the mobile agents can simply be instructed to meet at such a
distinguished node. However, this is not the case for symmetric networks, or when

214 S. Das et al.

the agents is incapable of visiting all nodes of the network, and the rendezvous
problem in such settings is non-trivial and not always solvable even in simple
topologies such as the ring network [21]. Symmetry-breaking for the rendezvous
problem can be achieved by attaching unique identifiers to the agents (see, e.g.,
[10,24]), or in the anonymous case using tokens as in e.g., [6,11]. With respect
to hostile environments, the Rendezvous problem has been studied when there is
a black hole or other stationary faults in the network [7,13,23]. Another model
for hostile nodes has been presented in [3,20], where the authors have studied
how a more severe (than a black hole) behaviour of a malicious host affects the
solvability of the Periodic Data Retrieval problem in asynchronous networks.
A well studied problem in the context of a mobile adversary is the problem of
graph searching where a team of mobile agents has to decontaminate the infected
sites and prevent any reinfection of cleaned areas. This problem is equivalent to
the one of capturing a fast and invisible fugitive moving in the network. For
results on this and related problems see, e.g., [4,15,16,22].

Gathering of mobile agents has been also studied in the plane when there
are faulty agents which may crash [1,5] and in networks with delay faults [8] or
in the presence of Byzantine agents [12], as mentioned before. However, to the
best of our knowledge, the rendezvous problem has never been studied under
the presence of hostile agents that may block other agents from having access
to parts of the network.

Our Results: In this paper we consider a network modelled as a connected
undirected graph with multiple honest agents located at distinct nodes of the
graph. There is also a hostile entity which is mobile, called the malicious agent.
It cannot harm the honest agents but can prevent them from visiting a node:
an honest mobile agent cannot visit a node which is occupied by a malicious
agent and vice versa. We are interested in solving the rendezvous of all honest
agents in this hostile environment. Our objective is to study the feasibility of
rendezvous with minimal assumptions. Thus, we consider the weakest possible
model for the honest agents. The honest agents are finite state automata with
local communication capability and having no prior knowledge of the network.
In Sect. 2 we show some configurations in which the problem is unsolvable and
we discuss properties that must be respected by any correct algorithm for the
problem. For the rest of the paper, we consider ring and mesh networks – two
topologies that can be explored even by a finite automaton. In Sect. 3 we present
a rendezvous algorithm for ring networks. For oriented rings, we have a univer-
sal algorithm that achieves rendezvous starting from any initial configuration,
despite the existence of a malicious agent. We prove that the problem is unsolv-
able for any even number of agents in unoriented rings. Finally, we present an
algorithm for rendezvous of any odd number of agents in unoriented rings, thus
solving the problem in all solvable instances. In Sect. 4 we consider oriented mesh
topologies and we prove that the problem can be solved when the agents initially
form a connected configuration without holes if and only if they can detect which
are the occupied nodes within a distance of two hops. We show that this latter
capability is necessary to achieve rendezvous even for connected configurations

Mobile Agents Rendezvous in Spite of a Malicious Agent 215

without holes. We conclude in Sect. 5 with a discussion about future research
directions for this new model. For space limitation, proofs of some lemmas and
theorems have been omitted; these can be found in the full version of the paper.

2 Preliminaries

2.1 Our Model

We represent the network by a graph G = (V,E) composed by |V | = n anony-
mous nodes or hosts and |E| edges or connections between nodes. Each host
is connected to other hosts by bidirectional asynchronous FIFO links (i.e., an
agent cannot overtake another agent moving in the same edge), and it is capable
of serving agents by a mutual exclusive mechanism (i.e., an agent at a node u
must finish its computation and move or decide to stay, before any other agent
at u starts its computation or another agent visits u). The links incident to a
host are distinctly labelled but this port labelling (unless explicitly mentioned),
is not globally consistent. In the network there are some mobile agents which are
independent computational processes with some constant internal memory. The
agents are initially scattered in the network (i.e., at most one agent at a node),
and can move along its edges. An agent arriving at a node u, learns the label
of the incoming port, the degree of u and the labels of the outgoing ports. We
assume there are k honest anonymous identical agents A1, A2, . . . Ak, and one
malicious agent M which may deviate from the proper operations. The initial
locations of the honest and malicious agents are decided by an adversary. We
describe below the capabilities and behaviour of honest and malicious agents.

Honest Agents: An honest agent located at a node u can see all other agents
at u (if any), and can also read their states. It can also read the degree of u and
the labels of the outgoing ports. The agents are anonymous, cannot exchange
messages and cannot leave messages at nodes. They are identical finite state
automata, hence they have some constant memory. The agents do not know n
and k. Two agents travelling on the same edge in different directions do not
notice each other, and cannot meet on the edge. Their goal is to rendezvous at
a node.

Malicious Agent: We consider a worst case scenario in which the malicious
agent M is a very powerful entity compared to honest agents: It can move
arbitrarily fast inside the network (since the model is asynchronous and the
adversary is combined with the malicious agent) and it can permanently ‘see’
the positions of all the other agents. It has unlimited memory and knows the
transition function of the honest agents. When it resides at a node u it prevents
any honest agent A from visiting u (i.e., it “blocks” A): if an agent A attempts
to visit u it receives a signal that M is in u (botnet detection) and in that case
we say that A bumps into M . The malicious agent can neither visit a node which
is already occupied by some honest agent, nor cross some honest agent in a link.
It also obeys the FIFO property of the links (i.e., it cannot overpass an honest
agent which is moving on a link).

216 S. Das et al.

We call a node u occupied (respectively, free or unoccupied) when one or
more (no) honest agents are in u. We notice here that some of our impossibility
results hold even for stronger models, e.g., when honest agents have unlimited
memory, distinct identities, knowledge about the size of the network, visibility,
etc. Our algorithm for the ring topology only requires the capabilities of the
honest agents mentioned above while for the mesh topology we assume that the
honest agents also have the ability to scan whether a node within a two-hops
distance, is occupied or not.

2.2 Basic Properties

In this section we show a special class of configurations for which the problem
is unsolvable. Intuitively, those are configurations in which the malicious agent
can keep separated at least two agents forever.

Definition 1. Let C be a configuration of a number of agents in a graph G with
a malicious agent. The configuration C is called separable if there is a connected
vertex cut-set F composed of free nodes which, when removed, disconnects G so
that not all occupied nodes are in the same connected component.

Lemma 1. Rendezvous is impossible for any initial configuration in a graph G
which is separable, even if the agents have unlimited memory, distinct identities
and can always see their current configuration.

Proof. Let C be an initial configuration which is separable, and let F be a con-
nected vertex cut-set, whose removal disconnects G so that not all occupied nodes
are in the same connected component. Let u, v be two occupied nodes which are
in different connected components of G and let A,B be the honest agents located
at u, v respectively. Due to asynchronicity an adversary can introduce delays to
A’s and B’s movements while at the same time the malicious agent, which has
been initially placed at a node in F , can move everywhere in F (since F has only
free nodes and it is connected) preventing agents A,B, from visiting any node in
F . Since all paths between u and v include at least one node of F , agents A,B
can never meet, no matter how powerful they are. ��

Hence for every initial separable configuration the problem is unsolvable. A
natural question is whether there are non-separable initial configurations for
which the problem is unsolvable. The answer is yes and one can easily find such
configurations. We now state sufficient conditions under which the problem is
unsolvable for a separable (initial or not) configuration of agents.

Definition 2. Let Ct be a configuration at time t ≥ 0 (i.e., initial or not) of a
number of agents in a graph G with a malicious agent. The configuration Ct is
called separating if Ct is separable and either Ct is an initial configuration or
the following conditions hold:

– there is a node xm ∈ Ft (Ft is any vertex cut-set of Ct as defined in
Definition 1) and a path of nodes (x0, x1, . . . , xm) so that x0 is free at time
0 and,

Mobile Agents Rendezvous in Spite of a Malicious Agent 217

– the sequence of nodes (x0, x1, . . . , xm) can be partitioned in k ≤ t+1 contiguous
subsequences (x0

0, . . . , x
0
i), (x

1
i+1, . . . , x

1
j), . . . , (x

k
l+1, . . . , x

k
m), where 0 ≤ i <

j < l < m and,
– the nodes (xs

w, . . . , x
s
r) belonging to the same subsequence s are free at time s,

where 0 ≤ s ≤ k and nodes (xk
w, . . . , x

k
r) are free at time t.

Lemma 2. Rendezvous is impossible for any separating configuration in a graph
G, even if the agents have unlimited memory, distinct identities and can always
see their current configuration.

Intuitively, Lemma 2 states that if Ct is a separable configuration, and in Ct

there is a free node x so that either: (i) x has been always free or, (ii) there
are paths of nodes which eventually become free and they form a connection
between a free node at C0 and x, then there are at least two agents in Ct which
will never meet. Hence, any correct algorithm for the solution of the problem
should avoid creating a separating configuration.

3 Rendezvous in a Ring Network

In this section we will study the rendezvous problem in bidirectional rings with
a malicious agent M . Notice that in a ring topology there are no separable (and
hence no separating either) configurations, since there cannot exist a connected
cut-set composed of free nodes whose removal would disconnect the ring. How-
ever, since the ring is highly symmetric, rendezvous is impossible even if the
agents have unlimited memory and have full knowledge of the configuration,
since an adversary can keep synchronized the agents so that they always take
the same actions at the same time and therefore they maintain their initial dis-
tances (the malicious agent can keep on moving synchronized with the honest
agents). Thus, in order to solve the problem we need to add some constraints to
the model. A natural step is to assume that there is a special node labeled o∗ in
the ring which can be recognized by the agents. Note that the malicious agent
is so powerful that it could place itself on o∗ and never move from there. Our
strategies also work under this scenario. We now present algorithms for solving
the problem in oriented and unoriented rings.

3.1 Oriented Ring

In an oriented ring, the two incident edges at each node are labelled as clockwise
or counter-clockwise in a consistent manner; so, all agents agree on the ring
orientation.

The idea of the algorithm is the following. Each agent moves in the clockwise
direction until it meets o∗ or bumps into M . For the first three times that the
agent bumps into M without meeting o∗, it reverses its direction and contin-
ues moving in the opposite direction. Due to the FIFO property and the fact
that the agent cannot pass over M , we can show that if an agent bump into
M after reversing directions at least three times, then the other agents should

218 S. Das et al.

Algorithm 1. RV-OR : Rendezvous of k ≥ 2 agents in oriented rings
Let i := 0;
DIR := Clockwise;
while not Stopped do

Move DIR until you bump into M or meet o∗ or a stopped agent;
i=i+1;
if you met a Stopped agent then

Become Stopped and Exit loop;

if i = 1 or i = 2 then
if Current node is o∗ then

Become Stopped and Exit loop;

else if Bumped into M then
Reverse direction (DIR := inverse(DIR));

if i = 3 then
if Current node is o∗ or Bumped into M then

Reverse direction (DIR := inverse(DIR));

if i = 4 then
if Current node is o∗ or Bumped into M then

Become Stopped and Exit Loop ;

have bumped into M at least twice, without meeting the special node o∗ (see
Lemma 3). After an agent has already bumped into M three times, the next
time it bumps into M or meets o∗ it stops. On the other hand, if the agent
meets o∗ before it bumps into M twice, then the agent stops at o∗, and all the
other agents will arrive at o∗ after bumping into M at most once. The algorithm
called RV-OR is presented below.

Lemma 3. During the execution of the algorithm, if an agent bumps into M in
the fourth iteration of the while loop, then any other agent must have bumped
into M at least two times.

Lemma 4. Algorithm RV-OR solves rendezvous of k ≥ 2 agents in spite of one
malicious agent, in any oriented ring containing one special node o∗.

3.2 Unoriented Rings

In unoriented rings, each agent has its own notion of clockwise and the agents
may not agree on the clockwise direction. In this case rendezvous is not always
feasible.

Lemma 5. For any even number k ≥ 2, the rendezvous problem for k honest
agents and one malicious agent cannot be solved in any bidirectional unoriented
anonymous ring with a special node o∗, even if the agents know k.

Mobile Agents Rendezvous in Spite of a Malicious Agent 219

We now present an algorithm for solving rendezvous of k agents, for any
odd integer k, in an unoriented asynchronous ring network. Notice that in an
unoriented ring, if we follow an algorithm similar to Algorithm RV-OR it is
possible that the agents form two distinct groups that gather at two distinct
nodes. However, since the total number of agents is odd, exactly one of the two
groups would have even number of agents, thus one of the agents of this group
could move to collect all the other agents. The algorithm must ensure that there
are at most two groups of agents, i.e. there are at most two distinct nodes where
the agents stop in the initial phase. In our algorithm, an agent stops at o∗ only
if it has seen it at least three times, while moving in the same direction. This
implies that this agent has traversed the complete ring two times and while M
has moved at least once around the ring. So, there could be no agents moving
in the opposite direction. On the other hand if some agent stops while bumping
into M , then any agent moving in the same direction would reach this node with
the stopped agent before reaching M or o∗. In all cases, there will be at most two
nodes where the agents stop. When two or more agents have gathered at a node
v, one of the agents called the searcher1 reverses direction and moves to search
for the other agents. The searcher only stops when it reaches the other node w
containing stopped agents. If the number of agents gathered at node w is even
then the searcher becomes a Collector and it collects all agents and returns to
node v. Note that the agent does not need to count the number of other agents
as the algorithm depends only on the parity of the size of the group of agents.
The complete algorithm, called RV-UR is presented in a following table.

Lemma 6. Consider an anonymous ring consisting of n nodes, including a spe-
cial node o∗ and one malicious agent. If k ≥ 2 honest agents execute Algorithm
RV-UR, then, after a total number of O(kn) edge traversals the honest agents
correctly rendezvous, if k is odd.

The following result summarizes the results of this section:

Theorem 1. In any anonymous and asynchronous ring with a special node o∗

and one malicious agent, k honest agents having constant memory and no knowl-
edge about their number, can solve the rendezvous problem if and only if either
the ring is oriented or k is odd.

We briefly consider the case when there could be multiple malicious agents in
the network. In this case, rendezvous is feasible only if all the malicious agents
are located in a continuous segment of the ring with no honest agent in between.
This scenario is equivalent to the one with a single malicious agent and thus the
same algorithm would work in this case.

4 Rendezvous in an Oriented Mesh Network

We now study the problem in an oriented mesh network. In view of Lemma 1, ren-
dezvous is impossible for separable initial configurations. Hence, in this section
1 We select as searcher the second agent that arrives at node v.

220 S. Das et al.

Algorithm 2. RV-UR : Rendezvous in unoriented rings
Case 0. Initial state

Move clockwise until:

Case 0.1. You meet node o∗ unoccupied for the third time:

Change state to stopper;

Case 0.2. You bump into M trying to move from a node that hosts only you:

Change state to stopper;

Case 0.3. You meet an agent not at node o∗:
Case 0.3.1. The agent you meet is alone and is a stopper:

Change state to transformer-1;

Case 0.3.2. Every other agent at the node is at state final:

Change state to stopper;

Case 0.3.3. You meet a stopper and at least one agent at state final:

Change state to transformer-2;

Case 1. State transformer-1

Wait until all other agents change to state final;

Change state to searcher;

Case 2. State searcher

Move counter-clockwise until you bump into M while you try to move from a node u:

Case 2.1. You see one or more agents at u and all of them are at state final:

Change state to stopper;

Case 2.2. You see no agent at u or an agent not at state final:

Change state to collector;

Case 3. State stopper

Wait until:

Case 3.1. You see a transformer-1 or transformer-2: Change state to final;

Case 3.2. You see a collector: Follow collector;

Case 3.3. You see a terminator: Change state to terminator;

Case 4. State collector

Wait until every other agent at the node changes its state to stopper;

Collect everyone;

Move clockwise collecting every agent you meet, until you meet an agent at state final;

Change state to terminator;

Case 5. State final

Wait until:

Case 5.1. You see a collector: Change state to stopper;

Case 5.2. You see a terminator: Change state to terminator;

Case 6. State transformer-2

Wait until every other agent at the node changes its state to final;

Change state to final;

Case 7. State terminator

Wait until every other agent at the node changes its state to terminator;

Exit;

we study the problem for a special class of non separable initial configurations
and we give an algorithm that solves the problem for this type of configurations.
In particular, we focus on initial configurations where the induced subgraph of

Mobile Agents Rendezvous in Spite of a Malicious Agent 221

the occupied nodes is connected without holes, i.e., there is no connected set of
unoccupied nodes surrounded by occupied nodes. At the end of the section we
discuss the solvability of the problem in other classes of initial non separable
configurations.

First observe that even in configurations that consist of a simple path of occu-
pied nodes, the problem is unsolvable in the considered model due to network
asynchronicity: Initially all agents have the same input and thus (following any
potentially correct algorithm), they should all try to move; however, an adver-
sary may slowdown all agents, except for one not located at the endpoints of the
path, hence creating a separating configuration. Thus, by Lemma 2 the prob-
lem is unsolvable. Therefore, the agents need to be able to gain some knowledge
about their current configuration before they move in order to avoid creating
a separating configuration. We enhance our model by giving the agents, the
capability to discover all occupied nodes within a distance of d-hops.

Definition 3. We say that an agent A located at a node x can see (or scan) at a
distance d or it has d-visibility if A can decide for any node u within a distance
of d hops from x, whether u is occupied or not by an honest agent.

We emphasize that, if a node u scanned by agent A is occupied, A cannot
tell how many agents are in u, or read their states. When the agents have a
d−visibility capability we assume that moves are instantaneous, i.e., an agent
cannot be traveling along an edge while another agent is scanning its neighbour-
hood. Unfortunately, as we show below, even when the agents have 1−visibility
(i.e., they can only scan their neighbours), the problem remains unsolvable for
some connected without holes configurations.

Lemma 7. The rendezvous problem is unsolvable in an oriented mesh with a
malicious agent for initial connected without holes configurations, even when the
agents are capable of scanning their adjacent nodes.

Hence we further equip the agents with the capability of discovering the
occupied nodes within a two-hops distance. In that case, as we show below, the
problem can be solved for any connected without holes initial configuration.

We present an algorithm which instructs the agents to move only to occupied
nodes in a way that they maintain the connectivity and they do not create holes.
In order to describe the algorithm we define eleven local configurations as shown
in Fig. 1. In these configurations, empty circles represent free nodes, while circles
containing black dots represent occupied nodes. The remaining vertices on the
figures represent nodes which may be either occupied or free. The agent (let
us call it A) which is located below a horizontal arrow in cases (a-g), moves
horizontally as depicted by the arrow. The agent (let us call it B) which is
located left of a vertical arrow in cases (h-m), moves vertically as depicted by
the arrow. Hence the algorithm can be described as follows:
Algorithm RV-Mesh: If an agent has a view (within two hops) like the one
of agent A or B described before, then this agent moves towards the direction
shown by the corresponding arrow; otherwise the agent does not move.

222 S. Das et al.

Fig. 1. View of the scanning agent located below (cases a-g) or left (cases h-m) of
the depicted arrow. Occupied nodes are depicted as cycles containing black dots, while
free nodes are depicted as empty cycles. Nodes which are within two hops from the
scanning agent but not shown, can be either occupied or free. The scanning agent will
move East in cases (a, b), West in cases (c, d, e, f, g), South in case (h), and North in
cases (i, l,m).

Nodes which are within two hops from the scanning agent and are not shown
in those configurations can be either occupied or free. If the location of the
scanning agent is close to the border of the mesh and some of the nodes in those
eleven configurations do not exist, then the agent acts as it would act if those
nodes existed in its view and were free. Moreover, while an agent A located at a
node u is executing its scan or compute phase then no other operation can take
place at u before A moves or decides to stay (i.e., no other agent at u can start
scanning and no other agent can arrive at u). That is, operations at a node u are
executed in mutual exclusion. Notice that if two adjacent agents want to swap
positions they can only do it at the same time.

Lemma 8. Given an n × m oriented mesh, for any connected configuration
without holes of at least three occupied nodes, there is at least one agent whose
view is in one of the configurations depicted in Fig. 1.

Lemma 9. Given an n × m oriented mesh, consider a connected configuration
of k agents in two occupied nodes. According to Algorithm RV-Mesh, after a
total number of at most k+1 edge traversals there will be only one occupied node.

Lemma 10. Given an n × m oriented mesh, consider any connected configu-
ration without holes of k agents occupying at least 3 nodes. After any number
of moves according to Algorithm RV-Mesh, the resulting configuration is also
connected without holes. Furthermore, the number of occupied nodes will strictly
decrease after at most k edge traversals, reaching the value of only one occupied
node after at most O(k2) edge traversals.

In view of Lemmas 7, 8, 9 and 10 we have:

Theorem 2. The rendezvous problem for k ≥ 2 agents can be solved for any
initial connected without holes configuration of agents in an n×m oriented mesh
if and only if the agents are able to discover the occupied nodes within a distance
of two-hops.

Mobile Agents Rendezvous in Spite of a Malicious Agent 223

If the initial non separable configuration is different from the one considered
above, then even the 2-visibility capability is not sufficient anymore to solve
rendezvous. In fact the problem remains unsolvable for connected configurations
with holes even when the agents are able to discover the occupied nodes within
any constant distance. The problem is also unsolvable for some disconnected non
separable configurations. Hence it appears that for many initial non separable
configurations in an oriented mesh, the combination of the asynchronicity and
the limited view (to any constant fraction of the complete view) makes the
problem unsolvable.

5 Conclusion

In this paper we studied deterministic protocols for the rendezvous of k ≥ 2 hon-
est agents in asynchronous networks with a malicious agent which can prevent
the agents from reaching any node it occupies. We have presented algorithms for
oriented and unoriented ring networks which gathers the honest agents within
O(kn) edge traversals for all feasible instances of the problem. We have also
presented a deterministic protocol for oriented n × m meshes which leads the
agents to rendezvous within O(k2) edge traversals for any initial connected with-
out holes configuration when the agents can discover the occupied nodes within
a distance of two-hops (which is a necessary condition). Given the novelty of
the model there are many interesting open questions. The first is whether the
problem can be solved in unoriented meshes for connected configurations with-
out holes when the agents are capable of scanning within a constant distance. It
would be also interesting to study randomized protocols for some of the unsolv-
able cases, and also to study this problem in synchronous networks with unit-
speed cooperating agents and unit-speed/infinite-speed malicious agents. Finally,
it would be interesting to study the problem in (m+ 1)-connected graphs in the
presence of m malicious agents, or in the solved cases presented in this paper in
the presence of malicious agents that show a more severe behaviour.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput. 36(1), 56–82 (2006)

2. Alpern, S., Gal, S.: Searching for an agent who may or may not want to be found.
Oper. Res. 50(2), 311–323 (2002)

3. Bampas, E., Leonardos, N., Markou, E., Pagourtzis, A., Petrolia, M.: Improved
periodic data retrieval in asynchronous rings with a faulty host. In: Halldórsson,
M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 355–370. Springer, Heidelberg
(2014)

4. Barriere, L., Flocchini, P., Fomin, F.V., Fraigniaud, P., Nisse, N., Santoro, N.,
Thilikos, D.: Connected graph searching. Inf. Comput. 219, 1–16 (2012)

5. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple
crash faults. In: IEEE 33rd International Conference on Distributed Computing
Systems, ICDCS 2013, 8–11 July 2013, Philadelphia, Pennsylvania, USA, pp. 337–
346 (2013)

224 S. Das et al.

6. Chalopin, J., Das, S.: Rendezvous of mobile agents without agreement on local
orientation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide,
F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 515–526. Springer,
Heidelberg (2010)

7. Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs
with faulty links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 108–122.
Springer, Heidelberg (2007)

8. Chalopin, J., Dieudonné, Y., Labourel, A., Pelc, A.: Fault-tolerant rendezvous
in networks. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014, Part II. LNCS, vol. 8573, pp. 411–422. Springer, Heidelberg (2014)

9. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate
sensors and movements. SIAM J. Comput. 38, 276–302 (2008)

10. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) every-
where. In: Proceedings of 21st Annual ACM-SIAM Symposium on Discrete Algo-
rithms (2010)

11. Das, S., Mihalák, M., Šrámek, R., Vicari, E., Widmayer, P.: Rendezvous of mobile
agents when tokens fail anytime. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS
2008. LNCS, vol. 5401, pp. 463–480. Springer, Heidelberg (2008)

12. Dieudonne, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algo-
rithms 11(1), 1 (2014)

13. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in
a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS
2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)

14. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole
in an anonymous ring. Algorithmica 48(1), 67–90 (2007)

15. Flocchini, P., Huang, M.J., Luccio, F.L.: Decontamination of chordal rings and tori
using mobile agents. Int. J. Found. Comput. Sci. 3(18), 547–564 (2007)

16. Flocchini, P., Huang, M.J., Luccio, F.L.: Decontamination of hypercubes by mobile
agents. Networks 3(52), 167–178 (2008)

17. Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: optimal
black hole search with pebbles. Algorithmica 62(3–4), 1006–1033 (2012)

18. Flocchini, P., Santoro, N.: Distributed security algorithms for mobile agents. In:
Cao, J., Das, S.K. (eds.) Mobile Agents in Networking and Distributed Computing,
Chap. 3, pp. 41–70. Wiley, Hoboken (2012)

19. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation
results for black hole search in arbitrary graphs. TCS 384(2–3), 201–221 (2007)

20. Královič, R., Mikĺık, S.: Periodic data retrieval problem in rings containing a mali-
cious host. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058,
pp. 157–167. Springer, Heidelberg (2010)

21. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem
in the Ring. Synthesis Lectures on Distributed Computing Theory. Morgan and
Claypool Publishers, San Rafael (2010)

22. Luccio, F.L.: Contiguous search problem in sierpinski graphs. Theory Comput.
Syst. 44, 186–204 (2009)

23. Yamauchi, Y., Izumi, T., Kamei, S.: Mobile agent rendezvous on a probabilistic
edge evolving ring. In: ICNC, pp. 103–112 (2012)

24. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In:
Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp.
610–621. Springer, Heidelberg (1996)

25. Zeng, Y., Hu, X., Shin, K.: Detection of botnets using combined host- and network-
level information. In: IEEE/IFIP DSN 2010, pp. 291–300, June 2010

Author Index

Akrida, Eleni C. 142

Bagchi, Amitabha 13
Bampas, Evangelos 155
Beauquier, Joffroy 41
Benkoczi, Robert 98
Betti Sorbelli, Francesco 13
Biniaz, Ahmad 1
Blanchard, Peva 41
Burman, Janna 41
Busch, Costas 196

Cicerone, Serafino 183
Citovsky, Gui 57
Czyzowicz, Jurek 155

Das, Shantanu 211
Di Stefano, Gabriele 183

Elouasbi, Samir 85

Friggstad, Zachary 98
Fung, Stanley P.Y. 129

Gandhi, Rajiv 169
Gao, Jie 57
Garcia-Morchon, Oscar 112
Gaur, Daya 98

Halldórsson, Magnús M. 71, 169

Ilcinkas, David 155

Klasing, Ralf 155
Konrad, Christian 71, 169

Kortsarz, Guy 169
Kranakis, Evangelos 1, 27
Krizanc, Danny 27
Kutten, Shay 41

Luccio, Flaminia L. 27, 211

Maheshwari, Anil 1
Markou, Euripides 211
Mitchell, Joseph S.B. 57
Mukhopadhyay, Supratik 196

Navarra, Alfredo 183

Oh, Hoon 169

Pelc, Andrzej 85
Pinotti, Cristina Maria 13

Ribeiro, Vinay 13
Rietman, Ronald 112

Sharma, Gokarna 196
Sharma, Sahil 112
Smid, Michiel 1
Smith, Brett 27
Spirakis, Paul G. 142

Thom, Mark 98
Tolhuizen, Ludo 112
Tonoyan, Tigran 71
Torre-Arce, Jose Luis 112

Zeng, Jiemin 57

	Preface
	Organization
	Online Packing Beyond the Worst Case(Invited Paper)
	Contents
	Plane and Planarity Thresholds for Random Geometric Graphs
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 The Threshold for Having a Connected Subgraph on k Points
	3 The Threshold for G(n,r) to be Plane
	4 The Threshold for G(n,r) to be Planar
	5 Conclusion and Further Results
	References

	Connectivity of a Dense Mesh of Randomly Oriented Directional Antennas Under a Realistic Fading Model
	1 Introduction
	2 Related Work
	3 Modeling Directional Mesh Networks
	4 Connectivity
	5 Simulation Results for the Fading and Ideal Models
	6 Conclusions
	References

	Maintaining Intruder Detection Capability in a Rectangular Domain with Sensors
	1 Introduction
	1.1 Preliminaries and Notation
	1.2 Our Results
	1.3 Related Work

	2 Main Results
	2.1 Connectedness and Surface Graphs
	2.2 One-Dimensional Blocking
	2.3 Two-Dimensional Blocking

	3 Extensions and Open Problems
	References

	The Weakest Oracle for Symmetric Consensus in Population Protocols
	1 Introduction
	2 Model and Definitions
	2.1 Population Protocol
	2.2 Schedules and Histories
	2.3 Executions
	2.4 Oracles
	2.5 Comparison Between Oracles
	2.6 Symmetric Consensus

	3 Impossibility of Consensus Without Oracle
	4 Symmetric Consensus with DejaVu
	5 Weakest Oracle for Symmetric Consensus
	6 Conclusion and Perspectives
	References

	Exact and Approximation Algorithms for Data Mule Scheduling in a Sensor Network
	1 Introduction
	2 Related Work
	3 Single Mule Scheduling
	3.1 Exact Algorithms on a Line or a Tree
	3.2 Hardness
	3.3 Approximation Algorithm

	4 k-Mule Scheduling
	4.1 Sensors on a Line
	4.2 Sensors in a General Metric Space

	5 No Data Loss Scheduling
	5.1 Exact Algorithm on a Line
	5.2 Hardness
	5.3 Approximation Algorithm

	6 Different Capacities
	6.1 k-Mule Scheduling
	6.2 No Data Loss Scheduling

	7 Conclusion
	References

	Limitations of Current Wireless Scheduling Algorithms
	1 Introduction
	2 Model and Definitions
	3 Lower Bounds for First-Fit Algorithms
	3.1 Scheduling with Fixed Power Schemes
	3.2 Scheduling with Power Control

	4 Lower Bounds for Uniform Randomized Algorithms
	References

	Deterministic Rendezvous with Detection Using Beeps
	1 Introduction
	2 Preliminaries
	3 Rendezvous with Detection of Unrestricted Agents
	4 Rendezvous with Detection of Bounded-Energy Agents
	4.1 Bounded-Energy Agents in the Local Beeping Model
	4.2 Bounded-Energy Agents in the Global Beeping Model

	5 Conclusion
	References

	Minimizing Total Sensor Movement for Barrier Coverage by Non-uniform Sensors on a Line
	1 Introduction
	1.1 Notation and Problem Definitions
	2 NP-completeness Results
	2.1 NP-hardness of LeftDisjointMinSum

	3 Approximation Schemes
	3.1 An FPTAS for LeftDisjointMinSum
	3.2 The FPTAS for DisjointMinSum

	4 Conclusion and Open Problems
	A Appendix
	A.1 Proofs from Sect. 3

	References

	A Comprehensive and Lightweight Security Architecture to Secure the IoT Throughout the Lifecycle of a Device Based on HIMMO
	1 Introduction
	2 Background
	2.1 Use Cases
	2.2 Relevant Protocols
	2.3 Operational and Performance Goals
	2.4 Attack Model and Security Goals

	3 The HIMMO Scheme
	4 Design
	4.1 TTP Infrastructure and Smart Object Manufacturing
	4.2 The Authentication Process for Network Access
	4.3 Secure Operation

	5 Implementation and Evaluation
	6 Discussion and Comparison with Related Work
	7 Conclusions
	A HIMMO
	A.1 HIMMO Operation
	A.2 Implicit Certification and Verification of Credentials
	A.3 Enhancing Privacy by Using Multiple TTPs

	References

	Maximizing Throughput in Energy-Harvesting Sensor Nodes
	1 Introduction
	2 Non-idling Adversary
	3 Strongly Non-idling Adversary
	4 Unrestricted Adversary
	4.1 Weighted Instances
	4.2 Unweighted Instances

	5 Network Topologies
	6 Conclusion
	References

	On Verifying and Maintaining Connectivity of Interval Temporal Networks
	1 Introduction and Motivation
	1.1 Our Contribution

	2 Preliminaries
	3 Connectivity of Interval Temporal Networks During a Given Time Period
	4 Large Connected Components During a Given Time Period
	5 Low Cost Maintenance of a Tree Structrure
	References

	Beachcombing on Strips and Islands
	1 Introduction
	2 The Online Beachcombers' Problem on the Semi-line
	3 Single-Source Beachcombers on the Cycle
	4 Multi-Source Beachcombers on the Line and Cycle
	5 Concluding Remarks
	References

	Radio Aggregation Scheduling
	1 Introduction
	2 Problem Definition and Notations
	3 Approximation Hardness of Ras
	4 (dn)-approximation Algorithm
	5 Interval Graphs
	References

	Gathering of Robots on Meeting-Points
	1 Introduction
	2 Definitions and General Ungatherability Results
	3 Gathering for GMP
	3.1 Classes S1, S2, S3, and S4
	3.2 Class S5
	3.3 Class S6

	4 Conclusion
	References

	Mutual Visibility with an Optimal Number of Colors
	1 Introduction
	2 Model and Preliminaries
	3 Mutual Visibility for Rigid SSynch Robots
	3.1 Analysis of the Algorithm

	4 Mutual Visibility for Non-Rigid SSynch Robots
	5 Mutual Visibility for Rigid ASynch Robots
	6 Mutual Visibility for Non-Rigid ASynch Robots
	7 Circle Formation Problem
	References

	Mobile Agents Rendezvous in Spite of a Malicious Agent
	1 Introduction
	2 Preliminaries
	2.1 Our Model
	2.2 Basic Properties

	3 Rendezvous in a Ring Network
	3.1 Oriented Ring
	3.2 Unoriented Rings

	4 Rendezvous in an Oriented Mesh Network
	5 Conclusion
	References

	Author Index

