Chapter 19
On One Boundary-Value Problem with Two
Nonlocal Conditions for a Parabolic Equation

Olga Danilkina

Abstract This work is concerned with a boundary-value problem for a parabolic
equation with nonlocal integral conditions of the second kind. Existence and
uniqueness of a generalized solution are proved.

19.1 Introduction

In recent years, nonlocal problems for PDEs have received a great deal of attention
as a convenient way of description of different physical phenomena. These problems
arise in a wide variety of applications, including heat conduction, processes in
liquid plasma, dynamics of ground waters, thermo-elasticity and some technological
processes.

In this paper, our main interest lies in the field of nonlocal problems with integral
conditions that generalizes the discrete case. We mention the first papers in this
area [6, 14] devoted to problems for parabolic equations. Then these results were
extended [2, 7-11, 13, 16, 26, 28, 29]. For papers related to nonlocal problems for
other evolution equations, we refer the reader to [1, 3-5, 12, 17, 19-25, 27].

In [25], the author studied two problems for the hyperbolic equation

U — Uy + (X, u = f(x, 1)
with the initial condition
u(x,0) = ¢(x),  u(x,0) = Y(x)

and two types of nonlocal conditions.
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Case 1 :

1

/Ki(x)u(x, HNdx=0, i=1,2.
0

Case 2 -

l

u(0,1) — / Ki(x, Hu(x, 1) dx = 0,
0
1

uy(l, 1) — / K> (x, Hu(x, ) dx = 0.

0
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Motivated by the ideas of Pulkina [25], in this paper we extend the results of
Pulkina [25] to a special class of boundary-value problems with nonlocal integral
conditions for parabolic equations. The proof of the main result is based on the

method of energy estimates and the Faedo—Galerkin approximations.

19.2 Preliminaries

In the cylinder Q7 = {(x,7): x € (0,1), t € (0, T)} we consider the problem for the

equation
U = Uyy + c(x, Hu
with the initial condition

u(x,0) = ¢(x)

and the nonlocal conditions

1 l

u(0,1) = | Ki(x, Hue(x, 1) dx + | My(x, H)u(x, t) dx,
/ /
! !

u(l,t) = /Kz(x, Huy(x, 1) dx + /Mz(x, Hu(x, 1) dx.
0

0

(19.1)

(19.2)

(19.3)

(19.4)
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In this paper, we shall assume that the following assumptions are satisfied.

(A1) ¢(x,1) € C(Qr), ¢(x) € C'[0,1]; _
(A2) Kl(xs t)» KZ(x’ t)v Ml(x’ t)v MZ(x’ t) € CI(QT)

We note that presence of partial derivatives on the right-hand side of the nonlocal
conditions (19.3), (19.4) can cause difficulties in constructing of a priori estimates.
Therefore, to avoid this we integrate by parts in (19.3), (19.4) and obtain

l

u(0,1) = Ky (I, Hu(l, 1) — K1(0, H)u(0, t) + /Rl(x, Hu(x, t) dx, (19.5)
0
I

u(l,t) = K (1, Hu(l, ) — K5 (0, H)u(0, 1) + /Rz(x, Hu(x, 1) dx, (19.6)
0

where Rl ()C, t) = Ml (xv t) - (Kl ()C, t))x’ RZ(xv t) = MZ(-x’ Z‘) - (KZ(xv t))x~

Let Wzl’O(QT) be the usual Sobolev space. We define the space V,(Q7) which

consists of elements of WZI’O(QT) with the norm

1
|ul* = ess sup /uz(x,t)dt—i—/ui(x, t)dxdt.

0<1<T
or

Definition 19.1. A function u(x, 1) € V,(Qr) is said to be a generalized solution
to the problem (19.1), (19.2), (19.5), (19.6) provided for any function n(x,) €
W) (Qr), n(x,T) = 0, the following integral identity holds:

/ (—un; + uny — cun) dxdt
Or
i T

- / (07 (x, 0) dx + / (K2 (0.97(0. 1) — Kx (0, yn(l, 1) (0. ) dr

0 0

T
+/(K2(l, n, 1) — K (L, )n(0, 1) u(l, t) dt
0
+/(R1(x, Hn(l, 1) — R2(0,5)n(0, 1)) u(x, t) dx dt. (19.7)
Oor

Lemma 19.2. Let a function u(x,t) be a solution to the problem (19.1), (19.2),
(19.5), (19.6). Then the following identity holds:
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l

1
Efuz(x,r)dx—}—/ufdxdt:

0 Or

fora.e. t €[0,T].
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1 1
5[ (p2(x)dx+/cu2dxdt
0

or
+/K2(l, (1, 1) dt—/K1 (L, Hu(0, Hyu(l, 1) dt
0 0

+fK1(O, Nu? (0, t)dt—[Kz(O, Hu(0, tu(l, 1) dt

0 0

+ / Ri(x, Hyu(x, 1) dxu(l, t) dt
or

- / Ry (x, u(x, t) dxu(0, t) dt
Or

Proof. Let a function u(x,7) € W,(Q,) and satisfy the integral identity (19.7) for
all functions n(x, 1) € W, (Qr), n(x,T) = 0. For an arbitrary 7 € [0, T], we take

Nt = {

u(x, 1), 0 <t<r,
0, <t<T.

After integration by parts in (19.7) we obtain

l

1
§/u2(x,r)dx+/ufdxdt=

0 0

1

1
E[(pz(x)dx—i—/cuzdxdt

0 Or

+ 0/ K> (1, 0y (1, 1) dt — O/ K1 (L, £)u(0, f)u(l, 1) dt

T T

+/K1(O, Nu? (0, t)dt—[Kz(O, Hu(0, tyu(l, 1) dt

0 0

+ / Ri(x, yu(x, 1) dxu(l, 1) dt
Q'[

- / Ry (x, u(x, t) dxu(0, t) dt.

QT

(19.8)
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We shall prove that a function u(x,t) € V,(Qr) also satisfies (19.8). To this aim
consider a sequence v™(x,t) € W21 (Qr) which satisfies the identity (19.7) and
hence, (19.8), that is

! !
1 1
3 f (v™?(x, 7) dx + / () dxdt = 3 / @2(x) dx + f c(v™)* dx dt
0 0O 0 [0

T

+ / K>(1, ) (v™)*(1, t) dt

0

—/K1 (1, Hv™ (0, H)v™ (1, 1) dt
0

T

+ / K1(0,1)(v™)*(0, 1) dt

0

— / K>(0,5)v™(0,0)v™ (I, 1) dt
0

+ / Ry (x, t)v™ (x, £) dxv™(l, t) dt
0.

- / Ry (x, £)v™ (x, ) dx v™ (0, t) dt.
O
(19.9)

Note that W} (Q,) is dense in VZI‘O(QT) [15] and hence, in V,(Q7). Therefore, there
exists a function u* € V,(Qr) such that [v™ — u*|p, — 0 as m — oo:

!
ess sup /(v”‘ —u*) dx + /(v’” —u*)2dxdt — 0.
0<t<T
0 Or

It implies that v"'(x,#) — u™* strongly in L,(0,1) and v}*(x,f) — u} strongly
in L,(Qr). We also note that v — u™ in Ly(Qr). Our next aim is to estimate
terms on the right-hand side of (19.9). The assumptions (A1), (A2) imply that there
exist positive numbers ¢y, k, such that |c(x,?)| < ¢, |K2(x,1)| < ko. Applying
e-inequality [18]

I
V] o = / (evf + C(e)v?) dx
0
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we obtain

T

/ K (L)1, 1) dt| < ky / ("(1,1))* dt
0

0
< kae| [V []* + ko Cel 0"
< H (I71P + ["1P) (19.10)
where H; = max{k,¢, k,C,}. Similarly, we derive the estimates

T

/Kl(o, D" (0,0)*di| < Hy (|01 + [[v"]?) (19.11)
0
/ (K1 (1) + K2(0,0)0™ (0, )" (1, 1) de| < Ha (I[P + [l"[P). (19.12)
0

To obtain an estimate for the term

/ Ri(x, )v™ (x, ) dxv™ (1, t) dt,
[

we use Young’s inequality and the Cauchy—Schwartz inequality and then

/ Ry (x, )v™ (x, £) dxv™ (I, t) dt
QT

l T
<3 / (0" (1, )2 dt + % / (0" (x, 1)) dx dt.
0 Qf
Similarly,

/R1 (x, V" (x 1) dxv™ (1, 1) dt| < Hy ([0 + [[v™] ) (19.13)

T

and

/Rz(x, NV (x, 1) dx v (0, 1) dt| < Hs (||v2]]> + [[v"]%) (19.14)

T
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where the constants H;, i = 2,3,4,5 do not depend on m. Furthermore, we note
that

/c(v’")zdxdt < cr|[v™|2. (19.15)
QT
Therefore, using strong convergence v”(x,t) — wu* and the estimates (19.10)-
(19.15) we pass to the limit as m — oo in and obtain (19.8) for u(x, t) € V,(QOr).
Lemma 19.3. Let a function u(x,t) be a solution to the problem (19.1), (19.2),
(19.5), (19.6). Then there exists H > 0 such that |u|p, < H.

Proof. By Lemma 19.2, the solution u(x, f) satisfies the integral identity (19.8). We
shall estimate the right-hand side of (19.8). Note that for g/, &, > 0

l

u?(0,1) < / (e102 + C(en?) dx, (1, 1)
0
1

< / (ezui + C(sz)u2) dx

0

and hence,

i
[u(0, Hu(l, 1)| < / (e1 + Sz)uf + (C(ey) + C(Sz))uz) dx
0

NI'—‘

Therefore,

T T T

!
/K2(1 Nut(l, 1) dt| < kzsf/u dxdt+k2C5//u2dxdt, (19.16)
0 0 0 0

0
/ (Ki(1,t) + K2(0, 1)) u(0, t)u(l, 1)

ki + k
< (1—;—2)(81 +82)/u§dxdt+

O

ke + k
M(cgl +C.,) [ u? dx dt.

Oc
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Moreover,
/ Ri(x, Hu(x, 1) dxu(l,t) dt
0«
1 2
E(rl +1Cy,) | (ulx,1))" dx dt
QT
82[ 2
+7 (uy(x, 1) dx dt
and

/ Ry(x, Hu(x, 1) dxu(0, 1) dt
QT

l(rz +1C,,) / (u(x, 1)) dx dt

QT

+%l /(ux(x, 1)? dx dt. (19.17)

N

From the estimates (19.16)—(19.17) and the integral identity (19.8) it follows that

1 l

1
/uz(x,t)dx+/u dxdt < 5/¢2(x)dx+P[u2dxdt.

0 Or Or
In particular,

i 1

1
/uz(x, T)dx < E/goz(x)dx—i—P/uzdxdt. (19.18)

0 0 QO
By Gronwall’s lemma we conclude that

l

[uz(x, 1) dxdt < H, fwz(x)dx, (19.19)
O 0
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and hence,

!
f u(x, 1) dxdt < H, / @*(x) dx. (19.20)
O 0

Therefore, from (19.19) and (19.20) we obtain

|ulg, < H.

19.3 The Main Result

In this section we shall prove existence and uniqueness theorem for the prob-
lem (19.1), (19.2), (19.5), (19.6).

Theorem 19.4. Let the conditions (A1)—(A2) hold and

(A3) Ki(£1,0), K2(§,0) =0,i=1,2,& =0, & =1, Ki(l,1) = K»2(0,1),

(A4) RI+R <1

Then there exists a unique generalized solution to the problem (19.1), (19.2),
(19.5), (19.6).

Proof. The proof of the theorem is organized as follows. First, to prove the existence
part we construct a sequence of Faedo—Galerkin approximations and show its
convergence to the solution of the problem. Second, we prove uniqueness of the
generalized solution. Let a system of functions {¢;(x)} € C'[0,[] be complete in
W, and

Li=j
(¢r, %‘)Lz(o,z) - { 0,i#].

We define for each N € N the approximate solution in the following form

N
WV (x, 1) = Z CkN(t)wk(x),

k=1

where the functions c,(f) are unknown for the moment. We shall consider ¢ ()
which are solutions to the Cauchy problem

l 1 1

/uﬁvfpidx—i—/uf(p{dx—/c(x,t)uNwidx

0 0 0
= K1(0, )" (0, 0)9i(0) — K1 (L, yu™ (1, 1)i(0)
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I I
+ /Rl(x, Hu dxp;(0) —/Rz(x, Hu dxp;()

0 0

— K> (0, 0)u™ (0, (1) + Ko (L, 0y (L, )i (D),

N (0) = (¢. ¢).

i =1, N. We write the Cauchy problem (19.21)—(19.22) such that
d N
N N _ TN
ZCi () + ;:] cp (DALi(t) =0, i=1,N,

where

l

1
Ari(t) = | o (0@ (x) dx — | c(x, ) (x)gi(x) dx
/ /

1
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(19.21)

(19.22)

(19.23)

—i(0) (Kl (L, (D) — K (0, )i (0) + /Rl(xv Dy (x) dx)

0
1

+ i) (Kz(l» Her(l) — K2(0, )er(0) + /Rz(x’ D r(x) dx) .

0

We estimate the coefficients Ay ; as follows:

l 1

1 1
40 = 5 [Pt 5 [P

0

(=]

l 1

/%mw+ [d@m

0 0

+

N ol
N ol

l

+M@(mmmwwmm+%+%/dww)

0
I

r 1
+M@(bmmwwmm+§+5/%mw)

0
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The assumptions (A1)—(A2) imply that A;; are bounded. Therefore, the Cauchy
problem has a unique solution ¢} € C'(0,7) and all approximations u" (x, ) are
defined. The next aim is to show that the sequence {u™(x,f)} converges to the
solution to the problem (19.1), (19.2), (19.5), (19.6). To this aim we multiply
each (19.21) by ¢V (z), sum it up from i = 0 to i = N and integrate the result
with respect to ¢ from O to #; < T. Thus we obtain

1 l
1 2 1
u® (x, ll) dx+ (uf:’) dedt = = | @*(x)dx+ [ c(™)? dxdt
2 (s [l =g [ oace |
+ /Kz(l, D@ (1, 1))* dt
0
- / K\ (1, 0)u™ (0, t)u (1, 1) dt
0
+ [ K0 0,007 dr
0
— /Kz(o,t)u"’(o, D (1, 1) dt

0

+ / Ry (x, )™ (x, 1) dx ™ (1, 1) dt
O

— / Ry (x, t)uN(x, ) dx uN(O, 1) dt.
O

Therefore, from Lemmas 19.2 and 19.3 it follows that {uN | or < Const. It implies

that there exists a subsequence of {u" (x, #)} which converges weakly in L,(0, /) and
uniformly with respect to ¢ € [0, T] to some function u(x, 7) [18]. We shall prove
that this function u(x, r) satisfies the integral identity (19.7) from the definition of
a generalized solution to the problem (19.1), (19.2), (19.5), (19.6). To this end, we
multiply each (19.21) by a smooth function d;(¢), d;(T) = 0, sum it up fromi =1

to i = N, integrate with respect to 7 from O to 7 and denote oV = Z d;(t)pi(x).

i=1
As a result we obtain
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T
f (—(uN, V) + W, o) — (cu, @N/))
0

1

T |
— / ()" (x,0) dx + / Ry (x, ) (x, 1) dx @V (0, 1) dt
0 0 0

T 1 T
- / / Ry (x, ™ (x, £) dx @V (1, 1) dt — / K>(0, 1) (0, )@V (1, 1) dt
0 0 0
T T
+ / KLy (1, )@Y (1, 1) dt — / Ki(L,u (1, )@V (0, 1) dt
0 0
T
- / K10, )™ (1, 1)@V (0, 1) dt. (19.24)

0

Since V', @', &V € L,(Qr), the subsequence {uNn(x, 1)} converges weakly in
L,(Qr), so it is possible to pass to the limit in (19.24) as m — oo for any fixed oV
Thus, for any u(x, ) € V2(Qr) the following identity holds

/T (— @) + (. @) = (e, ™))
0

1 T 1
= [go(x)cDN/(x,O)dx—F//Rl(x, t)u(x,t)dx@N/(O,t)dt
0 00

T

T 1
- / / Ry (x, ulx, £) dx @V (I, 1) dt — / K>(0, Hu(0, Y@V (1, 1) dt
0 0 0
T T

+ / K (L tyu(l, @Y (1, 1) dt — / KL tyu(l, )@V (0, 1) dt

0 0

T
+ / K1 (0, u(l, HdN (0, £) dt. (19.25)
0

Denote @ = | Jsv_, @V The set @ is dense in WJ(Qr) and hence, there exists
a function @(x,7) € W1(Qr) that is the limit of the sequence oV Finally, we
conclude that the relation (19.25) holds for all functions ®(x,7) € Wi(Qr) and
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therefore, there exists the solution u(x,t) € V,(Qr) to the problem (19.1), (19.2),
(19.5), (19.6) in sense of Definition 19.1. Assume that there exist two different gen-
eralized solutions u; (x, 1), uy(x,t) € V2(Qr) to the problem (19.1), (19.2), (19.5),
(19.6). Then

u=u —uy € V2(Qr)

satisfies the following identity

/ (—un, + un, — cun) dxdt
Or

=/(R1(x, Hn(l, 1) — Ry(0,H)n(0,1)) u(x, t) dx dt
Or

T
+ [(Kl(o,t)n(o,t)—Kz(O, O, 1) u(0, 1) dt
0

T
+ / (K (L,on(, 1) — K11, H)n(0, 1)) u(l, t) dt. (19.26)
0
We take

0, b<t<T,

N, =1 ;
Ju(x,7)dt, 0 <1<b,
b

where b € [0, T] is arbitrary. Note that
n(x,1) € Wy(Qr), n(x,T) = 0

and since 7y = uy, S0 Ny € Lp(Qr). We substitute n(x, f) into (19.26) and express
u, u, in terms of 7. Then (19.26) becomes

/Q (=07 + N — enne) dxd
= [ 0100~ Ra0.00(0.0) ) e
b
+ fo (K1(0.5)n(0,1) — K»(0.0)n (L. 1)) n,(0., 1) dr

T
+ / (K (L, n(l, 1) — Ky (1, 0)n(0, 1) (1, t) dt. (19.27)
0
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Integrating by parts in (19.27) we obtain

1

[ni(x,O)dx—i—/r],zdxdt
0 Q
!

1
=3 —/c(x, 0)n*(x, O)dx—l—/ctnzdt

0 )

N =

+ /(—Rl(x, Hn(l, 1) + R2(0,1)n(0, 1)) n,(x, t) dx dt
Op

b
1 1
+§mm®#mm+5/mxam#mﬁm
0
1 1 b
+5m@m%@m+5/mxm»#@om
0

b
—mmmmmm&m—/mmnmmmmwm
0

b b
+ /Kl(l, Hn(l, 1),m(0, t)dt—/(Kg(O,t)),n(l, Hn0,t)dr. (19.28)
0

0
Under the assumptions (A1)-(A2) from (19.28) we obtain the following estimate

!
/nf(x,O)dx+/nt2dxdt§ (c1b+P1b2)/nfdxdt—i—Pz/nidxdt,
0 O [ O

where

k3 + 2ky4

Pi=2+4c+ , Py =221 + ksl + 3kul).
Since b > 0 is an arbitrary, so let b be such that 1 —c;b — Ch? > 0 and in particular,

5 1
l—Clb—Cb Z—.
2



19  On One Boundary-Value Problem 285

That is,

—cp + /e +2C
belov]),v=— T ——.

2C

Then for all b € [0, v]

1
1
/r}i(x,O)dx—i— E/nfdxdzspzfnidxdt. (19.29)
0 Op b
t
Define the function u(x,7) = [u(x, ) dt. Then n(x,7) = y(x,7) — y(x,b) for ¢ €

0
[0, b] and (19.29) can be represented as

1
1
[yi(x, b)dx + 3 /y,2 dxdt < P, /(y(x, 1) — y(x, b))fc dx dt,

0 O [
which implies that

1

/ Ya(x,b)dx < P, / ((x, 1) — y(x, b))? dx dt

0 )

1
<2P, [ y2(x, 1) dx dt + 2P2b / y2(x, b) dx.
0
O

1
In particular, for b < —— we obtain
4P,

l

/ y2(x,b) dx < 4P, / yi(x, 1) dxdt. (19.30)
0 Op

1
The estimate (19.30) is valid for all b € [0, b;], where by = min P Vo
p)

From (19.30), Gronwall’s lemma and the condition y,(x,0) = 0 we obtain that
y2(x,b) = 0 for all b € [0,b;]. And hence, 1,(x,7) = 0, € [0,b;]. Then
from (19.30) it follows that n,(x, ) = u(x,t) = 0, ¢t € [0, b;]. Likewise, we repeat
the above arguments and obtain u(x, ) = 0 for all 7 € [by, 2b;] and so on. Finally,
we conclude that u(x, f) = 0 in Qy that in turn implies uniqueness of the solution to
the problem (19.1), (19.2), (19.5), (19.6).
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