
Chapter 3
Tropospheric Modeling from GPS

Abstract The dynamics of the neutral atmosphere is of great interest to a mete-
orologist who predicts weather and climatologist who performs climate modeling.
Modeling the effect of GPS signals for the above applications require information
about the properties of the atmosphere. This chapter provides a modeling of tro-
pospheric delay from the effect of the propagation GPS signals in the atmosphere.
The modeling will include the overview of the empirical models of zenith tropo-
spheric delay together with the mapping function.
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3.1 The Neutral Atmosphere and Its Composition

Monitoring of the dynamics of the atmosphere shows that they are composed of
several chemically distinct gasses, the relative amounts of which within the lower
atmosphere may be determined. The composition and structure of this unique
resource are important keys to understanding circulation in the atmosphere,
short-term local weather patterns and long-term global climate changes.

Characterizing the atmosphere, by the way, radio wave is propagated that leads
to a subdivision of neutral atmosphere and ionosphere. The neutral atmosphere
layer consists of three temperature-delineated regions: the troposphere, the strato-
sphere and part of the mesosphere. It is often simply referred to as the troposphere
because in radio wave propagation, the troposphere effects dominate. Hence, to the
GPS researcher, the “troposphere” is generally referred to the neutral atmosphere at
altitudes 0–40 km (Gregorius and Blewitt 1999). On the other hand, when speaking
of the troposphere, it will be clear from the context, whether it referred to the neutral
atmosphere or the specific layer.

The layers of the troposphere are defined by their characteristics such as tem-
perature, pressure, and chemical composition. Pressure and density decrease as a
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function of altitude following the exponential barometric law. In general, the tem-
perature in the troposphere decreases linearly with height at a rate of 6.5 °C km−1

(on average). The actual value of this temperature gradient is a function of height,
season and geographical location. At the top of the troposphere, at a boundary layer
between 12 and 18 km (mean sea level, MSL), the temperature remains approxi-
mately constant at a level of −60 to −80 °C. However, this boundary still has weather
such as clouds formation and precipitation, wind blows, and the atmosphere interacts
with the surface of the Earth below. This part of the neutral atmosphere is called the
tropopause. The upper part above the tropopause is referred to as the stratosphere,
up to an altitude of 40 km temperature increases again in the stratosphere up about
50 km altitude (as the mesosphere). The stratosphere is mainly responsible for
absorbing the ultraviolet radiation. Between 50 and 80 km above MSL, the tem-
perature drops again in the mesosphere. At the outer reaches of the Earth, atmo-
sphere is the thermosphere with an initial slow temperature increase. Figure 3.1
shows the detailed subdivisions of the atmosphere with characteristic features such
as temperature, ionization, and propagation (Seeber 1993).

3.2 Tropospheric Delay Modeling

Yuan et al. (1993) described that the troposphere affects the propagation of GPS
radio signals in two ways. First, waves travel slower in the atmosphere (‘bending
effect’) than they are in free-space. Second, they travel in a curved path rather than a
straight-line (‘geometrical delay or excess path delay’). Both effects arise

Fig. 3.1 Possible subdivision schemes of the Earth’s atmosphere adapted from Seeber (1993)
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significantly due to the refractivity variations in the atmosphere along the ray path
and the modeling will take into account of these effects.

3.2.1 Refraction of GPS Signals in the Troposphere

Refraction effects are generally caused by an inhomogeneous propagation medium.
The refractive index is often thought of as an “optical density” and for the ordinary
ray it is constant and independent of direction. When the radio signals traverse the
Earth’s atmosphere, they are affected significantly by variations in the refractive
index of the troposphere. Refraction bends the ray path and thereby lengthens it,
further increasing the delay. The refractive index of a material is the factor by which
the phase velocity of electromagnetic radiation is slowed in that material, relative to
its velocity in a free-space. The tropospheric propagation delay can be determined
from models and approximations of the atmospheric profiles.

The refractive index of the troposphere is constituent of gasses slightly greater
than unity. The resulting decrease in velocity increases the time taken for signal to
reach a receiver’s antenna, thereby increasing the equivalent path length. The
combination of these two effects is called the troposphere refraction component of
propagation delay. Both L1 and L2 frequencies of GPS are affected by atmospheric
refraction. This refractive delay obtained from biases between the satellite receiver
range measurements.

3.2.1.1 Refractive Index

Like all electromagnetic waves, the ranging signals broadcasted by the GPS
satellites can be described by Maxwell’s equations. The propagation media in the
equations are characterized by the magnetic permeability (μ) and the electric per-
mittivity (ε). The velocity of an electromagnetic wave is characterized by the
refractive index, n. These represent the ratio of the free-space speed (c) of elec-
tromagnetic wave to its media speed (v) and are related by Maxwell’s equation
(Brunner 1993). Therefore, the refractive index of a medium is given as

n ¼ c
v
ffiffiffiffiffiffi
e l

p ð3:1Þ

Solution of Maxwell’s equation can be difficult to obtain if μ and ε are functions
of position. Basically, Snell’s Law equation is commonly used to determine a
refractive index for a simple case with two or three different mediums. However,
one method based on the first principle of Newton’s second law (see Griffith 1999)
can be used to show where the neutral part of atmosphere acts as a nondispersive
medium for the radio frequency.
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3.2.1.2 Refractivity

The refractivity of the atmosphere determines the amount of “bending” of the radio
waves. The refractive index of moist air is different from unity because its con-
stituents suffer polarization induced by the electromagnetic field of the radio sig-
nals. As the electromagnetic waves in the atmosphere propagate just slightly slower
than in a free-space, the refractive index is close to unity in the terrestrial atmo-
sphere. It is convenient to define the refractivity (Brunner 1993):

N ¼ 106 n� 1ð Þ ð3:2Þ

where n is the refractive index of radio wave in an air at ambient condition and N is
the total refractivity of radio wave.

In the equation of state, total refractivity is a function of temperature, partial
pressure of dry air, and partial pressure of water vapor that can be derived using the
following expression (Smith and Weintraub 1953):

N ¼ Nd þNw ¼ k1
Pd

TK|ffl{zffl}
dry

þ k2
Pw

TK|ffl{zffl}
dipolemoment

þ k3
Pw

T2
K|ffl{zffl}

dipole oritentation|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wet

ð3:3Þ

where ki (i = 1…3) is the refraction constants are empirically determined and the
most significant recent evaluations of the refractivity constants are summarized in
Table 3.1, Pd is the partial pressure of dry air (mbar), TK is the surface air tem-
perature (Kelvin) and Pw is the partial pressure of water vapor (mbar).

Thayer (1994) took into account the nonideal gaseous behavior of the atmo-
sphere and improved the refractivity formula as shown in Eq. 3.3. This reduced the
computation uncertainty of 0.6 % before down to 0.02 %. Therefore, the refractivity
N can be written as

N ¼ k1
Pd

TK

� �
Z�1
d þ k2

Pw

TK
þ k3

Pw

T2
K

� �
Z�1
w ð3:4Þ

Table 3.1 Determinations of the refractivity constants (Bevis et al. 1994; Suparta 2008)

Reference k1 (K mbar−1) k2 (K mbar−1) k3 (K
2 mbar−1) × 105

Smith and Weintraub (1953) 77.61 ± 0.01 72 ± 9 3.75 ± 0.03

Boudouris (1963) 77.59 ± 0.08 72 ± 11 3.75 ± 0.03

Thayer (1974) 77.61 ± 0.01 47.79 ± 0.08 3.776 ± 0.04

Hill et al. (1982) – 98 ± 1 3.583 ± 0.03

Hill (1988) – 102 ± 1 3.578 ± 0.03

Clynch (1990) 77.604 ± 0.02 75 ± 0.1 3.75 ± 0.01

Bevis et al. (1992) 77.60 ± 0.05 70.4 ± 2.2 3.739 ± 0.012

Bevis et al. (1994) 77.60 ± 0.09 69.4 ± 2.2 3.701 ± 1200
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In the above equation, Pw is obtained from relative humidity (H) as recom-
mended by World Meteorological Organization Technical Note No. 8 (WMO 2000)
and given by

Pw ¼ H
100

exp �37:2465þ 0:213166 TK � 2:56908 � 10�4 T2
K

� � ð3:5Þ

Both the dimensionless Z�1
d and Z�1

w are the inverse compressibility factors for dry
air and water vapor constituents, respectively, to account for nonideal gas behavior.
They have been experimentally determined by Owens (1967) and given as follows

Z�1
d ¼ 1þ P� Pwð Þ 57:97� 10�8 1þ 0:52

TK

� �
� 9:4611� 10�4 T

T2
K

� 	
ð3:6Þ

Z�1
w ¼ 1þ 1650

Pw

T3
K

1� 0:01317 T þ 1:75� 10�4 T2 þ 1:44� 10�6 T3� � ð3:7Þ

The first term of the Thayer Eq. 3.4 can be reformulated as a function of total
moist air density (ρtot), allowing its direct integration by applying the hydrostatic
equation (Davis et al. 1985). Consequently, the refractivity constant k2 is also
substituted with a new constant k02 (Bevis et al. 1994) and the final expression for
the total refractivity can be given as a sum of a hydrostatic (as opposed to dry) and
wet components. The expression for total refractivity from Eq. 3.4 can be rewritten
by separating the dry and wet terms as follows:

N ¼ k1
Pd

TK

� �
Z�1
d|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

dry

þ k2
Pw

TK
þ k3

Pw

T2
K

� �
Z�1
w|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wet

ð3:8Þ

By introducing ρtot (Wallace and Hobbs 1997) and measured quantity of pres-
sure, P is, respectively, given as

qtot ¼ qd þ qw and P ¼ Pd þPw ð3:9Þ

The first ideal gas equation, applied to dry air (ρd) and water vapor (ρw) were
introduced by Spilker (1996), respectively.

Pd ¼ qdRdTKZd and Pw ¼ qwRwTKZw ð3:10Þ

A relation between molar mass of dry air and water vapor, and universal gas
constant in the equation of state for ideal gasses in Eq. 3.10 can be approximated by

Rd ¼ R
Md

; Rw ¼ R
Mw

; and
Rd

Rw
¼ Mw

Md
ð3:11Þ
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Let us now consider the dry part of the refractivity formula in Eq. 3.8

k1
Pd

TK

� �
Z�1
d ¼ k1

Pd

TK

qdRdTK
Pd

¼ k1 qtot � qwð ÞRd ¼ k1qtotRd � k1qwRd ð3:12Þ

Considering the ideal gas equation for water vapor in the Eqs. 3.10 and 3.11,
Eq. 3.12 can be written as

k1
Pd

TK

� �
Z�1
d ¼ k1qtotRd � k1

Pw

TK

Mw

Md
Z�1
w ð3:13Þ

Substitution of this expression into the total refractivity formula in Eq. 3.8 yields

N ¼ k1Rdqtot þ k2
Pw

TK
� k1

Pw

TK

Mw

Md
þ k3

Pw

T2
K

� �
Z�1
w ð3:14Þ

where the dry inverse compressibility factor is eliminated. The total refractivity is
then given as

N ¼ k1Rdqtot þ k02
Pw

TK
þ k3

Pw

T2
K

� �
Z�1
w ð3:15Þ

with

k02 ¼ k2 � k1
Mw

Md
¼ 22:1� 2:2ð Þ ð3:16Þ

where R is the universal gas constant (8314.34 J kmol−1 K−1), Rd is the specific gas
constant for dry air (287.054 J kg−1 K−1), Rw is the specific gas constant for water
vapor (461.5184 J mol−1 K−1), ρtot is the total mass density (moist air density) of
the troposphere (kg m−3), ρd is the density of dry air (kg m−3), ρw is the density of
water vapor (kg m−3), Mw is the molar mass of water vapor (28.9644 kg kmol−1),
and Md is the molar mass of dry air (18.0152 kg kmol−1). Expanding on devel-
opment of refractivity as a function of wet and hydrostatic components, it is pos-
sible to examine their individual contribution to the tropospheric path delay.

3.2.2 Tropospheric Path Delay

There are two main parameters which play an important role during the propagation
between transmitter (GPS) and receiver: pseudorange and carrier phases. All these
propagation effects and time offsets have to be determined to account accurate
estimation of position from range data. Thus, to understand comprehensively about
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tropospheric path delay modeling, the basic properties of radio waves propagation
in the troposphere will first be described.

The basic physical law for the propagation is Fermat’s principle: Light (or any
electromagnetic wave) will follow the path between two points (P1 and P2 are ends
of S) involving the least travel time. We define the electromagnetic (or optical)
distance between source and receiver as

L ¼
Z

c dt ¼
Z

c
v
dS ¼

Z
S

nðsÞdS ð3:17Þ

where L is the delay of radio wave (so-called optical path length or electromagnetic
distance, total tropospheric delay), n(s) is the index of refraction which varies as a
function position along the curved ray path L, S is the electromagnetic path, dS is
infinitesimal parts of the path length, and c and v are speed of the radio signals in
free-space and in medium, respectively. If we denote the geometrical distance or the
straight-line (rectilinear) path in a free-space by

G ¼
Z
G

dG ð3:18Þ

where G is the geometrical distance and dG is an infinitesimal part of the path
length in free-space.

Figure 3.2 shows the GPS signals traveling through the troposphere. The total
delay, then, is the sum of these two components and can be written as

DL ¼
Z
S

nðsÞ dS� G ð3:19Þ

or,

DL ¼
Z
S

nðsÞ � 1ð ÞdS�
Z
G

dG ð3:20Þ

DL ¼
Z
S

nðsÞ � 1½ �dS
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
The slowing effect

þ ½S� G�|fflfflffl{zfflfflffl}
The bending effect

ð3:21Þ

where ΔL is the total tropospheric delay stated in terms of equivalent increase in
path length, S is the true path along L which the radio wave propagates and G is the
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shortest geometric path along which the signal would transverse, and assuming as
n = 1. In the first term of Eq. 3.21, the integral is performed along the line increment
dS of straight ray path (excess path delay) from a receiver to a GPS satellite.

The second term indicates the geometric delay due to ray path bending. The
bending term [S − G] is much smaller, about 1 cm or less, for path with elevation
angle greater than 10°. Bending is about 1 mrad for a 15° elevation angle and its
associated excess path length is about 1 cm, which is usually neglected since it
represents *0.1 % of the total path delay (see Bock and Doerflinger 2001). For
rays oriented along the zenith and in the absence of horizontal gradients in index

Fig. 3.2 GPS signals traveling through troposphere and the tropospheric path delay geometry
(Suparta 2008)
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refractivity n, the ray path is straight-line and the bending term vanishes. Excess
path length due to signal retarding in the troposphere in Eq. 3.21, or slant path delay
(Davis 1985), is expressed as

DLz ¼
Z
S

nðsÞ � 1½ �dS ð3:22Þ

where DLz is the total tropospheric delay in the zenith direction, which is referred as
the ZTD.

However, in the troposphere several simplifying assumptions can be made to
simplify Eq. 3.22. First, the atmosphere is assumed to be spherically symmetric,
that is, the Earth is a sphere and the properties of the atmosphere vary only with
geometric radius. In this way, the atmosphere can be considered layered with a
refractive index characterizing each layer. Second, the atmosphere is usually
assumed to be azimuthally symmetric, that is, with no variation of the refractive
index in azimuth of each layer. In this way, the electromagnetic ray is confined to a
plane defined by the start and end points of the ray and the geocentric. These
assumptions allow us to represent the refractive index profile as a function of
geocentric radial distance only, n(h). On application of the refractivity in Eq. 3.2,
Eq. 3.21 for S can then be written as

GþDLz ¼
Zh1
h0

nðhÞ sec bzðhÞdh ð3:23Þ

where the refractive index is integrated along the path between points h0 and h1,
which are the geocentric distance of the user’s antenna and the geocentric distance
of the ‘top’ of troposphere, respectively. Angle αz is the true (unrefracted) satellite
zenith angle and hence constant along the unrefracted path. Angle βz is the actual
(refracted) zenith angle of the ray path at distance h (see Fig. 3.2). The path delay is
caused by variation of n from unity, hence

GþDLz ¼
Zh1
h0

nðhÞ � 1½ � sec bzðhÞdhþ
Zh1
h0

sec bzðhÞdh ð3:24Þ

This gives in the first term the excess delay equivalent path length and in the
second term the geometric length along the curved path. To obtain the total tro-
pospheric delay DLzð Þ, we can subtract the geometric distance in free-space to get
the following integral equation (Langley 1996):
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DLz ¼
Zh1
h0

nðhÞ � 1½ � sec bzðhÞdh
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

symmetric

þ
Zh1
h0

sec bzðhÞdh�
Zh1
h0

sec azdh

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
d�asymmtric

2
666664

3
777775 ð3:25Þ

To summarize, the first integral accounts for the difference between the elec-
tromagnetic distance and geometric distance along the ray path and the bracketed
integrals account for curvature of the ray path, i.e., the difference between the
refracted and rectilinear geometric distances. The total tropospheric delay by
inserting Eq. 3.2, can be simplified as

DLz ¼ 10�6
Z

actual

NðhÞdhþ d ð3:26Þ

For easy modeling of the tropospheric delay, the total refractivity at distance h, N
(h) in the troposphere can be explicitly written as the contribution of a wet (Nw) and
a hydrostatic (Nh) component. Therefore, Eq. 3.26 can be written as

DLz ¼
Z

Nhdhþ
Z

Nwdh
� �

10�6 þ d ð3:27Þ

and symbolically, as

DLz ¼ Lh þ Lwð Þþ d ð3:28Þ

where Lh represents the hydrostatic delay and Lw is the wet delay.
Propagation delays at arbitrary elevation angles are determined from the zenith

delay and arecalled the “mapping functions.” As the zenith delay can be expressed
as the sum of the hydrostatic and wet components, mapping functions can be
developed in order to map separately the hydrostatic and wet components.
Tropospheric delays increase with decreasing satellite elevation angle. This is
accounted for by multiplying the zenith delay by a correction factor, m. In general,
total tropospheric delay from Eq. 3.28, following Davis et al. (1985), can be
rewritten as

DLz ¼ mhZHDþmwZWDð Þþ d ð3:29Þ

where DLz is the total delay along the zenith path called zenith path delay (ZPD),
sometimes called the zenith total delay (ZTD) or zenith tropospheric delay (m).
ZHD and ZWD are the hydrostatic zenith delay and the wet zenith delay, which
both in meter, and θ is the satellite elevation angle (degrees). The last symbol
in Eq. 3.29, δ is the tropospheric correction (recently, known as a gradient
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tropospheric delay, d ¼ mðhÞ cot h GN cos az þGE sin az½ � symmetric effects into
account (δ = 0, the asymmetric components are neglected by setting the cutoff
elevation angle ≥ 10°), and m is the obliquity factor from sec αz (αz = 90° − θ, is the
azimuth angle), separated into mh and mw, the hydrostatic and wet mapping
functions, respectively. GN and GE are the components of the gradient vector in the
north and east directions, respectively.

3.3 Empirical Models of Tropospheric Delay

In the past several decades, a number of tropospheric propagation models have been
reported in the scientific literature. Much research has gone into the creation and
testing of tropospheric refraction models to compute the refractivity along the path
of signal travel. The various tropospheric models differ primarily with respect to the
assumption made regarding the vertical refractivity profiles and the mapping
functions to map the delays to the arbitrary elevation angles. To model the tropo-
spheric delay, many models use information about the surface pressure, tempera-
ture, and relative humidity to derive zenith or slant delay estimates. However, most
models require certain conditions in, or make assumptions about, the atmosphere
above the station. Among the commonly used models for the tropospheric delay are
Saastamoinen (1972), Hopfield (1969), Modified Hopfield (Goad and Goodman
1974), Davis (1985), Herring (1992), Lanyi (1984), and Niell (1996, 2000). In this
section, only the first three models are discussed. These models are most widely
used due to their high accuracy, practicality, and suitable with the GPS
measurements.

3.3.1 The Saastamoinen Model

The Saastamoinen model (SAAS) was developed for high elevation angles. This
model has become popular among GPS users due to its accuracy. This model
assumes that the atmosphere is in hydrostatic equilibrium, which follows from the
ideal gas law. Under hydrostatic equilibrium, the local pressure, which is assumed
isotropic, provides the balancing force against the atmospheric weight per unit area.
Models for the ZTD, ZHD, and ZWD as derived by Saastamoinen (1972) will be
described in this subsection.

Considering only the delay in the zenith direction, Eq. 3.25 reduces to

DLz ¼ ZTD ¼
Zh1
h0

nðhÞ � 1½ �dh ¼ 10�6
Zh1
h0

NðhÞdh ð3:30Þ
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or, explicitly using Eq. 3.16,

ZTD ¼ 10�6
Zh1
h0

k1Rdqtotdh

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hydrostatic

þ 10�6
Zh1
h0

k02
TK

þ k3
T2
K

� �
PwZ�1

w dh

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wet

ð3:31Þ

The first term in Eq. 3.31 represents the ZHD. By assuming a radio signal arrives
from a zenith direction, the ZHD can be written as

ZHD ¼ 10�6k1Rd

Z1
h0

qtotðhÞdh ð3:32Þ

Under the condition of hydrostatic equilibrium, the hydrostatic equations is

dP ¼ �gðhÞqtotðhÞdh ð3:33Þ

where dP is the differential change in surface pressure (mbar), g(h) is the accel-
eration due to gravity as a function of height (ms−2), ρtot(h) is the density of moist
air as a function of height, and dh is the differential change in height (m).

Integrating Eq. 3.33 yields

Z0
P

dP ¼ �
Z1
h0

qtotðhÞgðhÞdh ¼ �P ð3:34Þ

Introducing the weighted mean gravity acceleration, gm, the ZHD can be written
as

ZHD ¼ 10�6k1Rd
P
gm

ð3:35Þ

The second term in Eq. 3.31 is ZWD. The ZWD can also be integrated after
specifying suitable relationships for temperature and water vapor pressure with
height. Unfortunately, water vapor is rarely in hydrostatic equilibrium and varies
significantly throughout the troposphere; hence, specifying an accurate relationship
with height is difficult. However, it is common in meteorology to model the average
decrease of water vapor (or total pressure) with height as an exponential function
with exponent γ. From Smith (1966), the mixing ratio (w) of water vapor to moist
air has been given approximately by
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w ¼ w0
P
P0

� �c

ð3:36Þ

where the zero subscript indicate surface (i.e., MSL) value. However,
w ¼ Mw=Mð Þ es=Pð Þ;w0 ¼ Mw=Mð Þ e0=P0ð Þ and by substitution and re-arrangement,
we can obtain:

es ¼ e0
P
P0

� �cþ 1

ð3:37Þ

This provides a relationship for the average decrease in water vapor pressure
with height. Separating the two ZWD components in Eq. 3.32 and ignoring the wet
compressibility factors we have

ZWD ¼ 10�6k02

Zr1
r0

Pw

TK
drþ 10�6k3

Zr1
r0

Pw

T2
K
dr ð3:38Þ

By specifying a linear lapse rate (positive), β for temperature, the temperature
throughout the troposphere can be represented as

T ¼ T0
P
P0

� �Rd b
g

ð3:39Þ

Combined with Eq. 3.35, allows for integration of Eq. 3.38. The formulation
given by Askne and Nordius (1987) for ZWD is

ZWD ¼ 10�6k02Rd

gm cþ 1ð ÞPw þ 10�6k3Rd

gm cþ 1� bRd=gmð Þ
Pw

TK
ð3:40Þ

where the mean temperature of the water vapor Tm ¼ T 1� bRd
gmðcþ 1Þ


 �
units of

Kelvin. By using the models in Eqs. 3.35 and 3.41, a general formulation for the
ZTD is found as

ZTD ¼ 10�6k1
Rd

gm
Pþ 10�6 Rd

gm

k02
ðcþ 1Þ þ

k3
ðcþ 1� bRd=gmÞTK

� �
Pw ð3:41Þ

The ZTD model from Eq. 3.41 assumes that the delay caused by the ray bending
and horizontal layer atmospheres is neglected. In general, because of a radio signal
can come from slant directions, Saastamoinen (1972) and Hopfield (1969) develop
a ZTD model by including slant delays (or slant tropospheric delay, STD) and
internally cover a mapping function.
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To derive of the ZTD model from Saastamoinen, we start with a truncated
Taylor expansion of sec z in Fig. 3.3:

sec z ¼ sec z0 þ sec z0 tan z0Dz ¼ sec z0 1þ tan z0Dzð Þ ð3:42Þ

where, Δz = z − z0 = −θ and tan z = r0 θ/(r − RE). So by approximating tan
z ≈ tan z0, Eq. 3.42 becomes

sec z ¼ sec z0 1� tan2 z0
r � RE

RE

� �
ð3:43Þ

with this expression, the STD reads

STD ¼ 10�6
Z1
RE

N sec z dr ð3:44Þ
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Earth's surface
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Fig. 3.3 Geometry of a ray arriving through a spherical atmosphere
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¼ 10�6 sec z0

Z1
RE

N dr � R�1
E tan2 z0

Z1
RE

N r � REð Þdr
2
4

3
5 ð3:45Þ

The first term between the brackets in Eq. 3.45 is the zenith delay. The second term
is a correction term of which the integral part can be subdivided into three
sub-integrals

Z1
RE

N � r � REð Þdr ¼
ZrT
RE

N � r � REð Þdr
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

1

þ
Z1
rT

N � r � rTð Þdr
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

2

þ rT � REð Þ
Z1
rT

N dr

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
3

ð3:46Þ

where rT is the radius of the tropopause, S is the traveled distance through the
atmosphere, RE is the radius of the Earth, z is the zenith angle at the top of the
atmosphere, and z0 is the zenith angle at the surface. Saastamoinen assumed the
neutral atmosphere to consist of only two layers: the troposphere and the strato-
sphere. In this model, the troposphere is a polytrophic layer reaching up to rT and
the stratosphere is an isothermal layer, which for practical integration can be
considered infinitely high. Each of the three integrals can be evaluated based on the
refractivity profiles associated with the temperature profile.

The following evaluate of the integrals of Eq. 3.46, where Saastamoinen
obtained his zenith delay model. In the troposphere, the temperature decreases with
altitude. From this, the derivation of a pressure profile based on dry air we have
differential equation

dP
Pd

¼ � gm
Rd T

dh ð3:47Þ

The gravitation to be constant with height and equal to a mean value is
considered.

gm ¼
R1
h0

qmðhÞgðhÞdhR1
h0

qmðhÞdh
ð3:48Þ

For isothermal layer like the tropopause, the pressure profile is found by inte-
gration of Eq. 3.47

Pd ¼ Pd0 exp � h� h0
H

� �
; H ¼ RdT

gm
ð3:49Þ
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In case of polytrophic layers, like the troposphere and stratosphere, the tem-
perature lapse rate (β = −dT/dH) is assumed linear with height (H). We integrate the
right-hand side of Eq. 3.48 over dT,

Pd ¼ Pd0 exp � T
T0

� �lþ 1

; l ¼ gm
Rdb

� 1 ð3:50Þ

From Eqs. 3.12, 3.49, and 3.50, the refractivity profile of dry air can also be
derived. For polytrophic layers

Nd

Nd0
¼ k1Pd=T

k1Pd0=T0
¼ T

T0

� �l

; l ¼ �1 ð3:51Þ

In an isothermal layer (T = T0) we find

Nd

Nd0
¼ Pd

Pd0
¼ exp � h� h0

H

� �
ð3:52Þ

where Pd0 is the pressure of dry air at the surface of the layer (mbar), Nd0 is the dry
refractivity at the surface of the layer, T0 is the temperature at the surface of the
layer (K), h0 is the height above MSL at the surface of the layer (km), h is the height
above MSL (km), and H is the scale height in km (H = r − RE, see Fig. 3.3).

For the first integral in Eq. 3.48

N ¼ N0
T
T0

� �l

and T ¼ T0 � bH )
H ¼ � T0

b

� �
T
T0

� 1
� �

;

dH
dT

¼ � 1
b

8>><
>>: ð3:53Þ

After some straightforward computations, this results in

Z1
RE

N � r � REð Þdr¼
ZTT
T0

N0
T
T0

� �l

� T
b

� �
T
T0

� 1
� �

1
b
dT

¼ Rd

g2m 1� Rdb=gmð Þ N0T
2
0 � NTT

2
T

� 
� Rd

gm
rT � REð ÞNTTT

ð3:54Þ

where N0 is the refractivity at Earth’s surface (the index T stands for values at the
tropopause), T0 is the temperature at surface (or antenna) height (°C), β is the
temperature lapse rate (0.0062 K km−1), μm is the constant, lm ¼ gm

Rdb
� 1, and gm is

the mean acceleration gravity (9.784 ms−2).
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The second integral, can be evaluated by using the assumption of an exponential
profile of Eq. 3.52 and effective height (Hm)

N ¼ NT exp � r � rT
H


 �
; Hm ¼ RdTT

gm
ð3:55Þ

and results in

Z1
rT

N r � rTð Þdr ¼ Rd

gm

� �2

NTT2
T ð3:56Þ

The third integral is similar to Eq. 3.46 and results in

rT � REð Þ
Z1
rT

Ndr ¼ rT � REð Þ10�6k1
Rd

gm
PT ¼ Rd

gm
rT � REð ÞNTTT ð3:57Þ

Summation of the three integral gives the total integral

Z1
RE

N r � rTð Þ dr ¼ Rd

gm

� �2 N0 T2
0 � Rdb=g

2
m


 �
NT T2

T

1� Rdb=gm

2
4

3
5 ð3:58Þ

With Eq. 3.31, the total Saastamoinen model then becomes

ZTDSAAS ¼ 10�6 sec z0

Z1
RE

N dr � R�1
E tan2 z0 �

Z1
RE

N r � REð Þdr
2
4

3
5)

ZTDSAAS ¼ 10�6k1
Rd

gm
sec z0 Pþ 1255

TK
þ 0:05

� �
es � BðrÞ tan2 z0

� 	 ð3:59Þ

where

BðrÞ ¼ 1
RE

gm
Rd

1
k1

Z1
r0

N r � REð Þ dr ð3:60Þ

Tabular values for the correction term B(r) are given by Saastamoinen (1972).
The correction terms δR and B(r) can be interpolated from Table 3.2. Saastamoinen
did not mention the exact theoretical standard atmosphere he used to find the tabular
values of B(r). However, the standard values at MSL as also later used in the 1976
US Standard Atmosphere (TMSL = 288.15 K, PMSL = 1013.25 mbar), as well as the
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values r0 = 6360 km and hT = 15 km, fit quite well. A slightly different table for the
B(r) values can be found in Saastamoinen (1972).

The ZTD of Saastamoinen model has refined his model by adding an additional
term is used to account for the delay caused by the ray bending, δR as a complete
form:

ZTDSAAS ¼ 10�6 k1
Rd

gm
sec z0 Pþ 1255

TK
þ 0:05

� �
Pw � BðrÞ tan2 z0

� 	
þ dR

ð3:61Þ

where k1 is the hydrostatic refractivity constant (k1 = 77.6 ± 0.05 K mbar−1), B(r) is
the correction term of height dependent (mbar), δR is the correction term of ray
bending (m), and z0 is the zenith distance of the satellite or apparent zenith angle
z0 = 90° − θ.

Looked at the first term in Eq. 3.61, the ZHD is with a mapping function sec z0.
The mean gravitational acceleration depends on latitude and height of the antenna.
Based on Saastamoinen (1972) approximation, the weighted mean gravity (gm) is
used to correct the gravitational acceleration at the center of mass of the vertical
atmospheric column directly above the station depends on height at site and
geodetic latitude, and is given as follows (Davis et al. 1985):

gm ¼ 9:784 f u; hð Þ ð3:62Þ

Table 3.2 Correction terms for Saastamoinen neutral delay model (Hofmann-Wellenhof et al.
2001)

Zenith distance Station height above sea level (km)

0 0.5 1 1.5 2 3 4 5

60°00′ 0.003 0.003 0.002 0.002 0.002 0.002 0.001 0.001

66°00′ 0.006 0.006 0.005 0.005 0.004 0.003 0.003 0.002

70°00′ 0.012 0.011 0.010 0.009 0.008 0.006 0.005 0.004

73°00′ 0.020 0.018 0.017 0.015 0.013 0.011 0.009 0.007

75°00′ 0.031 0.028 0.025 0.023 0.021 0.017 0.014 0.011

76°00′ 0.039 0.035 0.032 0.029 0.026 0.021 0.017 0.014

δR, m: 70°00′ 0.050 0.045 0.041 0.037 0.033 0.027 0.022 0.018

78°00′ 0.065 0.059 0.054 0.049 0.044 0.036 0.030 0.024

78°30′ 0.075 0.068 0.062 0.056 0.051 0.042 0.034 0.028

79°00′ 0.087 0.079 0.072 0.065 0.059 0.049 0.040 0.033

79°30′ 0.102 0.093 0.085 0.077 0.070 0.058 0.047 0.039

79°45′ 0.111 0.101 0.092 0.083 0.076 0.063 0.052 0.043

80°00′ 0.121 0.110 0.100 0.091 0.083 0.068 0.056 0.047

B(r), mbar 0.156 1.079 1.006 0.938 0.874 0.757 0.654 0.563
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Finally, the expression for ZHD from Saastamoinen can be written as follows:

ZHDSAAS P;u; hð Þ ¼ 2:2768� 0:0024ð Þ P
f u; hð Þ ð3:63Þ

where f ðu; hÞ ¼ 1� 0:00266 cosð2uÞ � 0:00028h; is the correction factor for the
local gravitational acceleration, u is the site latitude (in degrees) and h is the height
of the site above the ellipsoid (in km). Accurately, with Eq. 3.63, for any location
on Earth, when the surface pressure is given, the ZHD value can be computed.

From the second term in the bracket of Eq. 3.61, Saastamoinen (1972) determine
the ZWD with an assumption that the partial pressure water vapor and temperature
were decreased linearly with height. The final expression of ZWD is

ZWDSAAS ¼ 0:002277
1225
Ts

þ 0:05
� �

Pw ð3:64Þ

where Ts is the surface temperature in °C and Pw is the partial water vapor in mbar.

3.3.2 The Hopfield Model

Hopfield (1969) developed a dual quartic zenith model of the refractivity with
different quartics for the dry and wet atmospheric profiles using real data of surface
measurements (pressure, temperature, and humidity) covering the whole Earth. This
model assumes that the atmosphere is in hydrostatic equilibrium, which follows
from the ideal gas law. The model also assumes the acceleration due to gravity and
lapse rate in temperature is constant with height derived from a least-square fit to
collected data. The model expresses the total delay in terms up to the fourth power
of the refractive index. A representation of the dry and wet refractivity can be
written as a function of height h above the surface by

NTrop
j ðhÞ ¼ NTrop

j;0 1� h
hj

� �4

ð3:65Þ

with total refractivity at surface of the Earth given as

NTrop
j;0 ¼ NTrop

d;0 þNTrop
w;0 ¼ k1

P
TK|fflffl{zfflffl}

dry

þ k2
Pw

TK
þ k3

Pw

T2
K|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

wet

ð3:66Þ

where j is the subscript for dry component (replace j by d) and wet component
(replace j by w). NTrop

j is the refractivity above the Earth surface, NTrop
j;0 is the

refractivity at the surface of the Earth, k2 and k3 are refraction constants
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(k2 = −12.96 K mbar−1 and k3 = 5.718 × 105 K2 mbar−1), and hj are the hydrostatic
and wet thickness of atmospheric layer (m), respectively.

It assumes the atmosphere is a single polytrophic layer, thickness hd was
obtained by using global radiosonde data (Hofmann-Wellenhof et al. 2001):

hd ¼ 40;136þ 148:72 TK ð3:67Þ

Unique values for hd cannot be given because they depend on location and tem-
perature. Figure 3.4 shows the thickness of polytrophic layers for the tropospheric.
The effective troposphere heights are given as 40 km ≤ hd ≤ 45 km and
10 km ≤ hw ≤ 13 km for dry and wet components, respectively. The effective height
for the wet component hw is usually set to a default value of 11 km. Alternatively,
Mendes and Langley (1998) found the relation between the surface temperature and
the tropopause height denoted as HT (in meters),

hw ¼ HT ¼ 7;508þ 0:002421 exp
T

22:90

� �
ð3:68Þ

Referring to Fig. 3.4, substitution of Eqs. 3.66 and 3.67 into the general Eq. 3.30
for the tropospheric path delay (ZPD) yields

ZPD ¼ 10�6NTrop
j;0

Z
1� h

hj

� �4

ds ð3:69Þ

Dry

h = 0

Observation site

Wet

Earth's
surface

h
w ~ 11 km

h
d ~ 40 km

Fig. 3.4 Thickness of polytrophic layers for the troposphere adapted from Hofmann-Wellenhof
et al. (2001)
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The integral can be solved if the delay is calculated along the vertical direction
and if the curvature of the signal path is neglected. Extracting the constant
denominator, Eq. 3.69 becomes

ZPD ¼ 10�6NTrop
j;0

1
h4j

Zh¼hj

h¼0

hj � h
� �4

dh ð3:70Þ

For an observation site on the Earth’s surface (i.e., h = hs) and after integration,

ZPD ¼ 10�6NTrop
j;0

1
h4j

� 1
5

hj � h
� �5 h ¼ hj

h ¼ hs

�����
" #

ð3:71Þ

The evaluation of the expression between the brackets gives the ZPD as follows:

ZPD ¼ 10�12

5
NTrop
j;0

1
h4j

hj � hs
� �5 ð3:72Þ

where hs is the height position of the receiver at site (in meters). If hs = 0 as shown
in Fig. 3.4, Eq. 3.72 can be rewritten as given by Hofmann-Wellenhof et al. (2001)
and separating the hydrostatic and wet components, the total ZPD (in meters) is

ZPD ¼ 10�12

5
NTrop
j;0 hj ¼ 10�6

5
NTrop
d;0 hd þNTrop

w;0 hw
h i

ð3:73Þ

The model in its present form does not account for an arbitrary elevation angle of
the signal. Considering the line of sight, an obliquity factor must be applied for
projecting the dependence of the zenith delays to the slant direction as a mapping
function. Therefore, a slight variation of the Hopfield model contains an arbitrary
elevation angle θ at the observation site using 1/sin (θ2 + 6.25)1/2 as a mapping
function for the hydrostatic component and 1/sin (θ2 + 2.25)1/2 for the wet com-
ponent. Hence, the total tropospheric delay at a zenith can be written as follows

ZTDHOP hð Þ ¼ ZHDHOPðhÞþZWDHOPðhÞ ð3:74Þ

where

ZHDHOPðhÞ ¼ 10�6

5

77:64 P
TK

sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2 þ 6:25Þ

q hd ð3:75Þ

ZWDHOPðhÞ ¼ 10�6

5
ð�12:96TKÞþ 3:718� 105

sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2 þ 2:25Þ

q es
T2
K

� �
hw ð3:76Þ
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3.3.3 The Modified Hopfield Model

The reference of station height on the Earth surface is inaccurate because of the
terrestrial points to be referred to a global frame. To overcome this limitation, the
atmospheric layer is considered to have azimuthally symmetry in ZTD estimation.
Therefore, the modified Hopfield model (Hofmann-Wellenhof et al. 2001) is refined
introducing the lengths of position vectors instead of height to correct the Hopfield
model for the determination of refractivity and denoting the earth’s radius by RE,
the corresponding lengths are rhyd ¼ RE þ hhyd and r ¼ RE þ hwet as shown in
Fig. 3.5. RE is taken as 6,378,137 meters in this paper. The empirical representation
of refractivity to the Modified Hopfield model, Nj as a function of height h above
the surface can be written as (Hofmann-Wellenhof et al. 2001),

NTrop
j ðrÞ ¼ NTrop

j;0
rj � r
rj � RE

� �4

ð3:77Þ

Fig. 3.5 Geometry for tropospheric path delay based on modified Hopfield model is adapted from
Hofmann-Wellenhof et al. (2001)
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where for the hydrostatic refractivity component subscript j is replaced by hyd and
for the wet refractivity component subscript j is replaced by wet, respectively. In the
equation, NTrop

j represent the refractivity above the earth surface and NTrop
j;0 is the

refractivity at the surface of the earth.

In this work, we corrected the refractivity by taking the dry Z�1
dry


 �
and wet

Z�1
wet

� �
inverse compressibility factors into account for the determination of NTrop

j;0

assuming that a nonideal gas represents the neutral atmosphere layer. Both the
formula for Z�1

dry and Z�1
wet have been determined empirically by Owens (1967) as

shown in Eqs. 3.6 and 3.7. By applying the ideal gas equation of state to the dry
refractivity component in the Thayer equation (1974), Ndry ¼ k1 Pdry=TK

� �
Z�1
dry; the

dry inverse compressibility factor Z�1
dry


 �
is eliminated and this term is changed to

the hydrostatic term, Nhyd ¼ k1 P=TKð Þ: The refraction constant k2 in the wet term of
Eq. 3.66 is also corrected with a new constant k02 as shown in Eq. 3.17. The total
refractivity at the surface of the earth is then given as

NTrop
j;0 ¼ NTrop

hyd;0 þNTrop
wet;0 ¼ k1

P
TK|ffl{zffl}

hydrostatic

þ k02
Pwet

TK
Z�1
wet|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

dipolemoment

þ k3
Pwet

T2
K
Z�1
wet|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

dipole orientation

0
BBB@

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wet

ð3:78Þ

where in the first term is hydrostatic refractivity in equilibrium state and the last
term is the wet refractivity component. In Eq. 3.78 the ‘dry’ term has been replaced
by ‘hydrostatic’ term.

Taking Eq. 3.78 for the hydrostatic delay and introducing mapping function
1= cos zð Þ; where zenith angle, zðrÞ ¼ 90� � hðrÞ is a variable and θ is the elevation
angle at the observation site as shown in Fig. 3.5, the ZHD after applying the sine
law can be expressed as

ZHD ¼ 10�6 NTrop
hyd;0

rhyd � RE
� �4

Zr¼rd

r¼RE

rðrhyd � rÞ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2

p dr ð3:79Þ

where the terms in the integral are constant except for r which is variable and
a ¼ RE cos h: Assuming the same model for the wet component, the corresponding
formula is given by

ZWD ¼ 10�6 NTrop
wet;0

rwet � REð Þ4
Zr¼rw

r¼RE

rðrwet � rÞ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2

p dr ð3:80Þ
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The integral in both equations can be solved by a series expansion of the integrand.
Adopting the series expansion of Goad and Goodman (as cited in
Hofmann-Wellenhof et al. 2001) the solution to the integral rj is given as follows:

rj ¼ R2
E 1þ hj

RE

� �2

� a2
" #1=2

� R2
E � a2

� 1=2 ð3:81Þ

Solutions of the total ZTD (in meters) as a function of θ, P, T, and H from Eqs. 3.79
and 3.80 can be expressed as (Suparta et al. 2008)

ZTD ¼ 10�6NTrop
j;0

1þ 4aj
r2j
2 þ 6a2j þ 4bj


 �
r3j
3 þ 4aj a2j þ 3bj


 �
r4j
4

þ � � � a4j þ 12a2j bj þ 6b2j

 �

r5j
5 þ 4ajbj a2j þ 3bj


 �
r6j
6

þ � � � b2j 6a2j þ 4bj

 �

r7j
7 þ 4ajb3j

r8j
8 þ b4j

r9j
9

2
66664

3
77775 ð3:82Þ

aj ¼ � sin h
hj

and bj ¼ � cos2 h
2hjRE

ð3:83Þ

In general, Eq. 3.82 can be written as (Hofmann-Wellenhof et al. 2001)

ZTD h;P; T ;Hð Þ ¼ 10�6NTrop
j

X9
k¼1

ak;j
k

rkj

 !
ð3:84Þ

In Eqs. 3.82 and 3.83, the factor of 10−6 was corrected from 10−12 in
Hofmann-Wellenhof et al. (2001: 115) to meet a consistency solution from
Eqs. 3.79 and 3.80. In Eq. 3.83, hj (in meters) represent hhyd and hwet are the
effective height for the hydrostatic and wet components, respectively. In this work,
hh in Eq. 3.67 is used and the tropopause height or wet component (hwet) is set to
11 km. The elevation angle is extracted from the GPS signals. In Eq. 3.84, k is the
tropospheric layer.

Comparing the ZTD accuracies for both Hopfield and Saastamoinen models, the
standard deviations of both models have very small difference of about 0.2 and
12.4 mm for the hydrostatic and wet components, respectively. Note that unlike the
Hopfield and Saastamoinen models described earlier for the zenith delay, the
Modified Hopfield model is also introduced for slant delays.
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3.4 The Mapping Function

A mapping function is defined as the ratio of the electrical path length (also referred
to as the delay) through the atmosphere at a geometric elevation, to the electrical
path length in the zenith direction (Niell 2000). It is developed due to the tropo-
spheric delay is the shortest in the zenith direction and becomes larger with
increasing zenith angle. For GPS measurement of zenith PWV, the signal delay in
each direction to each GPS satellite is not generally estimated individually. Instead,
the individual delays are mapped from each individual satellite direction to a single
zenith delay. This mapping method assumes that the delay is independent of azi-
muth. This assumption could never be made because of the significant increase in
delay that is seen when the signal travels through much more of the atmosphere at
lower elevations. Mapping functions account for the delay for individual satellite
view and map them to the zenith direction.

Similar to the tropospheric models, many mapping functions have been pro-
posed, such as Black (1978), Baby et al. (1988), Chao (1972), Davis et al. (1985),
Herring (1992), Hopfield (1969), and Niell (1996). However, three mapping
functions above are widely used because it included the hydrostatic and wet
mapping functions. Those models of Davis, Herring, and Niell are called CfA-2.2
(Harvard–Smithsonian Center of Astrophysics), MTT (Massachusetts Institute of
Technology, MIT Haystack Observatory), and new mapping functions, respec-
tively. The CfA-2.2 mapping function (Davis et al. 1985) was designed to achieve
sub-centimeter accuracy at 5 degrees elevations. The MTT mapping function
(Herring 1992) can be used to represent the elevation angle dependence of the
tropospheric delay with an RMS of less than 0.2 mm for elevation angles larger
than 3 degrees. The last one is the new global mapping function by Niell (1996),
namely the Niell Mapping Function (NMF). The NMF mapping functions almost
similar to the MTT, which can be used for elevation angles down to 3 degrees.

Nowadays, the NMF mapping derived from Very Long Base Interferometry
(VLBI) observations is the most widely used and known to be most accurate and
easily implemented functions. Niell (1996) recognized that mapping functions like
those of CfA-2.2, MTT, and Ifadis (1992) which all depend on surface tempera-
tures. Unfortunately, the temperatures are much more variable in particular at
higher altitudes both diurnally and on longer time scales, resulting in an error in the
mapping. Therefore, NMF was developed to be independent of surface meteoro-
logical parameters. In this section, a simplest (cosecant) mapping function is
introduced, then the Niell mapping function. The selection of this functional model
is based on its ability to perform well in both low and high elevation and its
independence meteorological parameters (Leick 1995).
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3.4.1 The Cosecant Mapping Function

Foelsche and Kirchengast (2001) introduce a simple “geometric” mapping function
(Fig. 3.6), where only the free parameter is an “effective height” of the atmosphere,
corresponding to about the first two scales height above the surface. The simplest
mapping function is the cosecant of the elevation angle that assumes both the
curvature of the earth and the curvature of the path of the GPS signal propagating
through the atmosphere can be approximated as plane surfaces. This is a reasonably
accurate approximation only for high elevation angles with a small degree of
bending.

To simplify Fig. 3.6, the value of ds/dr is defined to be the ratio of the slant
straight-line ray path length within the effective height, Satm (Satm = s) to the Hatm

itself.

ds=dr ¼ Satm=Hatm ð3:85Þ

The above equation in other ways can be written in the form directly expressing
the deviation from the simple cosecant law

ds
dr

¼ 1

cos z Sflat
Satm

ð3:86Þ

where dr is the difference in radius (distance to the center of the Earth) of the two
layers, ds is the distance difference, z is the zenith angle at an arbitrary layer, Sflat

Fig. 3.6 Propagation of GPS signals approximated as a planar surface (Suparta 2008)
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would be the ray path within Hatm in a flat (plane-parallel) atmosphere and ds/dr is
the mapping function, later known as m(z). Therefore, Eq. 3.86 is rewritten as

mðzÞ ¼ 1

cos z Sflat
Satm

ð3:87Þ

For the planar atmosphere, assume that the Earth is flat and refractivity is
constant, hence Satm ffi Sflat: The cosecant mapping function becomes
1/sin (elevation). As can be seen in Fig. 3.6, for an infinitesimal thin layer we have

mðzÞ ¼ 1
cos z

	 sec z ! mðhÞ ¼ 1
sin h

ð3:88Þ

Because of the curvature of the atmosphere, this zenith angle change along the
ray path. A simple mapping function in Eq. 3.88 is limited for use above *60
degrees elevation. As the ratio of the thickness of the atmosphere to the radius of
the earth decreases, the atmosphere appears more planar. This thickness varies with
latitude and season. Thus, a possible proxy for the mapping function is some
quantity that is a measure of the thickness of the atmosphere. The more complex
mapping functions are based on the truncation of the continued fractions. This type
of mapping functions includes Chao (1972), Davis et al. (1985), Marini (1972), and
Niell (1996). The following is the description the Niell mapping function.

3.4.2 The Niell Mapping Function

Differing from most typical tropospheric delay models, Niell has developed
hydrostatic and wet mapping functions with new forms and their combined use to
reduce errors in geodetic estimation for observations as low as 3° in elevation.
Although it has no parameterization in terms of actual meteorological conditions,
they agree as well or better than mapping functions calculated from radiosonde
profiles. In fact, when there is no information about the state of the atmosphere
other than at the surface, the variation of the mapping function is found to be better
modeled in terms of the seasonal dependence of the atmosphere, which is taken to
be sinusoidal and in terms of the latitude and height above sea level of the site. The
form adopted for this mapping function is the continued fraction of Marini (1972)
with three constants but normalized to unity at the zenith as proposed by Herring
(1992).

Marini (1972) was the first one to come up with the idea to use continued
fractions. The most recent mapping functions are those of Herring (1992), Ifadis
(1992), and Niell (1996), which used the continued fractions. Continued fractions
have the advantage over models with Taylor’s expansions like the Saastamoinen
model because they fit for nearly the whole range of zenith angles (see Fig. 3.3).
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The following is one type of the mapping function presented by Herring (1992)
with continued fractions

Mðz0Þ ¼ 1þ a= 1þ b=ð1þ c=ð1þ � � �ÞÞð Þ
cos z0 þ a

cos z0 þ b
cos z0 þ c

cos z0 þ ���

ð3:89Þ

where a, b, and c are mapping function coefficients to be determined. For low
precision, the coefficients can be set to a = b = c = 0, which yields the cosecant
model as introduced in Sect. 3.4.1.

Based on the continued fraction, Niell (1996) has developed hydrostatic and wet
mapping functions with new forms and combinations. It is used to reduce errors in
geodetic estimation to provide a better fit and give better accuracy over the latitude
range 43° N to 75° N for observations down to 3 degrees elevation. The form
adopted for Niell mapping function is the continued fraction of Marini (1972) with
three a, b, and c constants in the following.

mjðhÞ ¼

1
1þ aj

1þ bj
1þ cj

sin hþ aj

sin hþ bj
sin hþ cj

ð3:90Þ

In addition to a latitude and seasonal dependence due to varying solar radiation,
the hydrostatic mapping function should also be dependent on the height above the
geoid of the point of observation because the ratio of the atmosphere “thickness” to
the radius of curvature decreases with height. This does not apply to the wet
mapping function since the water vapor is not in hydrostatic equilibrium and the
height distribution of the water vapor is not expected to be predictable from the
station height. The Niell mapping function for the hydrostatic (replace j by hyd) and
wet (replace j by wet) components is of the following form

mjðhÞ ¼ mhðhÞþDmðhÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
hydrostatic

þmwetðhÞ ð3:91Þ

For the hydrostatic mapping function, Niell (1996) adjusted the heights above
the geoid. The sensitivity of the hydrostatic mapping function to the height above
MSL was determined by beginning the ray-trace with nine different elevation angles
between 3 and 90 degrees to give both the hydrostatic and wet path delays of each
of the nine standard profiles with the values of pressure, temperature, and relative
humidity at 1 and 2 km altitude. The height correction, Δm(θ), is given by

Dm hð Þ ¼ dmðhÞ
dh

h ð3:92Þ

46 3 Tropospheric Modeling from GPS



where h is the height of the site above geoid in meters. The analytic height cor-
rection coefficients is taken to be

dmðhÞ
dh

¼ DmðhÞ ¼ 1
sin h

� f h; aht; bht; chtð Þ ð3:93Þ

Here, f h; aht; bht; chtð Þ represents the three-term continued fraction expressed by
Eq. 3.94 in the Marini mapping function,

f h; aht; bht; chtð Þ ¼ 1þ aht=ð1þ bht=ð1þ chtÞÞð Þ
sin hþ sin hþ aht=ðsin hþ bht=ðsin hþ bhtÞÞð Þ ð3:94Þ

In the above equation, the coefficients aht = 2.53 × 10−5, bht = 5.49 × 10−3, and
cht = 1.14 × 10−3 was determined by least-square fits to the height corrections at the
nine elevation angles. In these fittings, Niell used one for north latitudes of 15° for
the whole year and two for north latitudes of 30°, 45°, 60°, and 75°, for the months
January and July as tabulated in Cole et al. (1965).

Finally, the hydrostatic mapping function has normalized to yield a value of
unity at the zenith and with a height correction, Δm(θ), which can be written as

mhydðhÞ ¼ 1þ a=ð1þ b=ð1þ cÞÞð Þ
sin hþða= sin hþðb= sin hþ cÞÞ þ

1
sin h

� f h; aht; bht; chtð Þ
� 	

h ð3:95Þ

For Niell, wet mapping function can be written as

mwetðhÞ ¼ 1þ a=ð1þ b=ð1þ cÞÞð Þ
sin hþða= sin hþðb= sin hþ cÞÞ ð3:96Þ

The coefficients a, b, and c in Eq. 3.89 were derived from temperature and
relative humidity profiles of the U.S. Standard Atmosphere which is dependent on
the latitude at North regions 15° (tropical), 30° (subtropical), 45° (midlatitude), 60
and 75° (subarctic) for the months of January (Winter) and July (Summer) and takes
seasonal variations into account. Niell assumes that the Southern and Northern
hemispheres are antisymmetric in time, i.e., the seasonal behavior is the same. In
addition, he assumes the equatorial region is described by the 15° N latitude profile
while the polar region is described by the 75° N latitude profile.

For the hydrostatic component, these coefficients are determined based on
height, latitude, and DoY (day of year). However, for the wet mapping function,
they depend only on the latitude. The coefficients for hydrostatic mapping function
can be interpolated based on the parameter values extracted from Table 3.3 by the
following interpolation rule.
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For latitude uj j 
 15�

Fðu; tÞ ¼ Favgð15�ÞþFampð15�Þ cos 2p
DoY � T0
365:25

� �
ð3:97Þ

For latitude range 15� 
 uj j 
 75�;

Fðu; tÞ ¼ FavgðuiÞþ Favgðuiþ 1Þ � FavgðuiÞ
�  u� ui

uiþ 1 � ui

þ � � � FampðuiÞþ ½Fampðuiþ 1Þ � FampðuiÞ�
u� ui

uiþ 1 � ui

� �

cos 2p
DoY � T0
365:25

� � ð3:98Þ

For latitude uj j � 75�;

Fðk; tÞ ¼ Favgð75�ÞþFampð75�Þ cos 2p
DoY� T0
365:25

� �
ð3:99Þ

where φ is the user’s latitude and the subscripts refer to the nearest tabular latitude,
F is the mapping function calculated coefficients a, b, and c, separated into average
values and amplitudes. T0 is the day of a year for “maximum winter” which is set to
28 for Northern Hemisphere and 211 for the Southern Hemisphere. The average
and amplitude values of the hydrostatic mapping function coefficients are listed in
Table 3.3.

For the latitude uj j 
 15�,

Fðu; tÞ ¼ Favgð15�ÞþFampð15�Þ � cos 2p
DoY� T0
365:25

� �
ð3:100Þ

For the latitude uj j � 75�,

Fðk; tÞ ¼ Favgð75�ÞþFampð75�Þ � cos 2p
DoY� T0
365:25

� �
ð3:101Þ

In case of the wet mapping function, the interpolation rule is also following the
equation, but the average values for awet, bwet, and cwet are shown in Table 3.4.

For the latitude uj j 
 15�,

Fðu; tÞ ¼ Favgð15�Þ ð3:102Þ
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For the latitude range 15� 
 uj j 
 75�,

Fðu; tÞ ¼ FavgðuiÞþ Favgðuiþ 1Þ � FavgðuiÞ
� 

:
u� ui

uiþ 1 � ui
ð3:103Þ

For the latitude uj j � 75�,

Fðu; tÞ ¼ Favgð75�Þ ð3:104Þ

Conclusively, Tables 3.3 and 3.4 show the dependency of coefficients a, b, and
c on temporal and spatial conditions for hydrostatic and wet mapping functions,
respectively. To use the mapping function for any latitude, linear interpolation
between the coefficients is required. Above 75° the same coefficients may be used
as those at 75°. Between 15° N and 15° S, the coefficients may be considered
constant. On this basis, the NMF mapping functions were estimated to be error by
less than 4 mm from 12° down to 3° in comparison to the MTT mapping functions
of Herring, but with smaller biases relative to ray traces than the MTT mapping
functions.
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