
Survey on Software-Defined Networking

Jiangyong Chen1,2(✉), Xianghan Zheng1,2(✉), and Chunming Rong3

1 College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China
29424176@qq.com

2 Fujian Key Laboratory of Network Computing and Intelligent Information Processing,
Fuzhou 350108, China

3 Department of Computer Science and Electronic Engineering, University of Stavanger,
Stavanger, Norway

Abstract. Recently, both the academia and industry have initiated research
directed toward the integration of software-defined networking (SDN) tech‐
nologies into the next generation of networking. In this paradigm, SDN trans‐
fers the control function from the traditional distributed network equipment
to the controllable computing devices, which makes the underlying network
infrastructure abstract to network services and applications. In this study, we
survey OpenFlow-based SDN solutions that were recently proposed in both
academia and industry. We consider technical issues, including SDN require‐
ment, OpenFlow-based approach, challenges, and possible approaches. In
addition, security breaches and possible solutions are described. Our survey
is based on recent research publications.

Keywords: OpenFlow · SDN · Network virtualization · Security

1 Introduction

Traditional network architecture faces a few disadvantages [1]. First, protocols tend to be
defined in isolation and solve a specific problem without the benefit of any fundamental
abstractions. This condition has resulted in the primary limitation of traditional networks:
complexity. Second, the complexity of traditional networks makes applying a consistent
set of access, security, QoS, and other policies difficult for IT. Inconsistent policies cause
an enterprise to become vulnerable to security breaches, non-compliance with regulations,
and other negative consequences. Third, the network becomes complex with the addition
of thousands of network devices that must be configured and managed, which makes the
network unscalable. Finally, the vendors are dependent: carriers and enterprises seek to
deploy new capabilities and services in rapid response to transforming business needs or
user requirements. However, equipment product cycles of the vendors hinder their ability
to respond, and these cycles can range from a period of three years or more.

As the next generation of network architecture, software-defined networking (SDN)
technologies have many advantages. From the operator point of view, the core idea of
SDN is the separation of the control plane and forwarding plane, which simplifies the
network structure and layer, and reduces network construction and maintenance costs.

© Springer International Publishing Switzerland 2015
W. Qiang et al. (Eds.): CloudCom-Asia 2015, LNCS 9106, pp. 115–124, 2015.
DOI: 10.1007/978-3-319-28430-9_9



Centralizing the control of multi-vendor environments reduces complexity through
automation and high innovation rate. Centralizing also increases network reliability and
security, and granular network control.

SDN technologies have greatly improved in recent years. However, these technol‐
ogies are still far from mature. In the promotion of Cisco and other manufacturers, IETF,
IEEE, and other standards organizations removes links to SDN and OpenFlow, and
retains the programmability. Thus, the generalized concept of SDN is extended, which
refers to various basic network architectures based on programmable open-interface
software, and will control forwarding logic separation. Although the data center deploy‐
ment case has had many SDNs, SDN deployment in a large-scale network has not been
considered for the future.

In the following sections, we conduct a survey on SDN. Our survey is mainly based
on a few typical research projects and recent research. In Sect. 2, we introduce the SDN
requirement. Section 3 specifies the key component of OpenFlow-based SDN. Appli‐
cation scenarios are described in Sect. 4. Section 5 introduces challenges and possible
solutions. Conclusions and open issues are presented in Sect. 6.

2 Requirement Statement

In this section, we briefly describe the requirement of SDN systems.

1. Availability, stability, and efficiency. These concepts are the basic requirement at
the system level.

2. Transport requirement. The designed protocol and interaction model should deliver
reliable and efficient data.

3. Network programmable. The routing policy in the control function should be user
definable.

4. Network virtualization. Network virtualization can not only help the administrator
from every new access-domain physical-connection network virtual function, but
can also effectively reduce waste allocation.

5. Centralized control and visualization. The controller must realize enterprise authen‐
tication and authorization, as well as completely isolate each virtual network. The
SDN controller must be able to control the communication rate.

6. Interworking. Interoperability requires an appropriate protocol that both sustains the
SDN communication interfaces and provides backward compatibility with existing
IP routing and multiprotocol label switching control-plane technologies.

7. Security. The security requirement of SDN mainly focuses on the application layer
and control layer; digestion includes application authorization, authentication, and
isolation-policy conflict.

8. Extendibility. The system must also be able to mitigate the effects of broadcast
overhead and growth of network flow table entries.

116 J. Chen et al.



3 Software Defined Network

OpenFlow, as a prototype implementation method of SDN, represents the SDN control-
architecture forward-separation technology. OpenFlow-based SDN is different from the
traditional network-distributed architecture and overturns the traditional network oper‐
ating mode.

3.1 System Architecture

SDN architecture is mainly divided into an infrastructure layer, control surface layer,
and application layer, as shown in Fig. 1.

Fig. 1. Structure of OpenFlow switch.

The SDN controller is responsible for maintaining the global network view, and this
controller updates the table information of switches in the flow through southbound APIs
(e.g., OpenFlow protocol [2]) to realize centralized control of the network. The application
layer interacts with the control layer through northbound APIs, which formulate rele‐
vant business rules (e.g., network configurations and application requirements) to realize
network control and service programmability. In theory, SDN network routing considers a
global view. Therefore, SDN has the natural advantage of in-routing decision-making.

3.2 Component Description

1. OpenFlow Switch: OpenFlow switch is responsible for the data forwarding func‐
tion. Main technical details are composed of three parts [3]: flow table, security
channel, and OpenFlow protocol.

2. SDN Controller: The control layer enforces all the policies to the underlying devices
via southbound APIs using a network operating system (NOS). The crucial objective
of NOS is to provide abstractions, essential services, and northbound APIs to
developers. Communications between NOSs are realized through east–west APIs.

Survey on Software-Defined Networking 117



Early SDN technology has received considerable academic attention, such as the
typical work of SDN of ForCES [4], 4D Architecture [5], RCP [6], SANE, [7] and
Ethane [8].

3. Southbound APIs: Southbound APIs [9] are the crucial instrument for clearly
separating control and data plane functionality. However, defining a switch-level
negotiation framework that allows transparent translation among differentiated
switches is necessary because of the interoperability and heterogeneity problem of
existing protocols (e.g. OpenFlow from 1.0 to 1.4, etc.). Moreover, current TCAM
storage (from 4K to 32K entries) is insufficient in a large-scale network (e.g., IDC).

4. Northbound APIs: The northbound interface is mostly a software ecosystem that
translates application requirements into low-level service requests. Existing control‐
lers, [10] such as Floodlight, Trema, Onix [18], and OpenDaylight, have proposed
and defined their own specific northbound APIs. Therefore, the research includes an
investigation of the general northbound framework that supports different types of
currently northbound API and vertically oriented northbound API management.

5. East–West APIs: East–westbound APIs are a key component that includes import/
export data among distributed controllers, algorithms for data consistency models,
and monitoring/notification capabilities, which is important especially in large-scale
networks, such as a data center and wireless networks.

4 Application Scenarios

4.1 Optimized Network Planning and Deployment

The WAN backbone network completely switches to OpenFlow network to plan a path
of flow, which greatly optimizes network traffic. Network bandwidth utilization rate is
greatly improved, the network becomes stable, management is simplified, and cost is
reduced. Traffic engineering for flow control and route planning can clearly provide a
clear picture of what happened inside the network. Traffic engineering will allow enter‐
prises to control new service-need dynamic-service level protocol. Without the need for
capacity expansion, the supplier can better control the quality of services because they
can be completely based on the need to configure and remove network space.

4.2 Highly Extendable and Efficient Data Center

SDN and OpenFlow improve network manageability, utilization rate, and cost effec‐
tiveness of using programming. Since the beginning of 2012, all shaft connections of
Google data centers have been using this architecture, and the network utilization rate
has reached 95 %.

Google summarizes the advantages of SDN as follows: First, the network structure
is unified, which simplifies the configuration, management, and optimization. Second,
centralized traffic engineering achieves efficient use of cyber source. Third, the system
can realize the rapid polymerization of cyber source and average distribution, and some
network behaviors can be predicted.

118 J. Chen et al.



OpenFlow protocol is at the early stage of development. Google research results
show that the existing OpenFlow protocol is sufficient to support the development of
many network applications. However, the router and the function of the controller for
identification remains a topic under discussion, and function configuration is a problem
that has yet to be addressed and resolved.

4.3 Good Virtualization and Security Control

To achieve communication between the monitoring of network virtual machine and
network virtual isolation based on SDN, research on VxLAN network virtualization
mechanism needs to be conducted based on multi-tunnel support, and efficient isolation
of virtual machine communication network between multiple tenants needs to be
achieved, as shown in Fig. 2.

Fig. 2. Virtual machine communication monitoring.

On the basis of this observation, SDN realizes an integration network device monitor;
network data-flow sampling statistics, and business user-flow monitoring technology by
designing an SDN virtual machine network sensing system. The OpenFlow statistical
method based on streaming technology facilitates the flow and priority of each data
analysis in real-time virtual machine communication flow. The method can help to
defend against network attacks. It can also be used to conduct network traffic monitoring
of different tenants and applications, determine the current state of network fault diag‐
nosis, address hidden dangers, and adjust the routing strategy in real time.

5 Challenges and Solutions

The existing hardware platform gives rise to a smooth evolution of virtual network
compatibility and long-term coexistence of challenges. The old equipment determines
how the new network can be fitted and ensures the smoothness of the function and
performance, as well as provides support for business challenges.

Survey on Software-Defined Networking 119



5.1 Network Management Challenges

(1) Forged traffic flows
Network elements can be used to launch a DoS attack against OpenFlow switches
(e.g., exhaust TCAMs) and controller resources from attackers.
Solution: Identifying abnormal flows by adopting intrusion detection systems with
support for runtime root-cause analysis could be helpful.

(2) Attack switch vulnerabilities
One single switch could be used to slow down or drop network packets, clone or
tamper network traffic, and even forge requests or inject traffic to overload neigh‐
boring switches or controllers.
Solution: These challenges can be addressed by using mechanisms of software
attestation, such as autonomic trust management solutions for software components
[11], to monitor and detect the behavior of network devices.

(3) Attack control plane communications
The network elements can be used to generate DoS attacks or for data theft. The
TLS/SSL model is not enough to establish and ensure trust between controllers and
switches. This lack of trust guarantees the creation of a virtual black hole network
(e.g., using OpenFlow-based slicing techniques [12]), which allows data leakage
during normal production traffic flows.
Solution: Securing communication with threshold cryptography across controller
replicas [13], oligarchic trust models with multiple trust-anchor certification author‐
ities or the use of dynamic, automated, and assured device association mechanisms
may be considered to guarantee trust between the control plane and data plane
devices.

(4) Attack controller vulnerabilities
Severe threats to SDN are crucial. A common intrusion detection system [14] may
have difficulty in labeling a behavior as malicious through the exact combination
of events that trigger a particular behavior.
Solution: Many techniques can be used in this situation, such as replication,
employing diversity, and recovery.

(5) Trust cannot be ensured between the management applications and controller
The certification approach is the main difference from the referred threat. Techni‐
ques of certifying network devices are different from those used for applications.
Solution: Adopting mechanisms for autonomic trust management could guarantee
that the application is trusted during its lifetime.

(6) Attack administrative station vulnerabilities
These administrative stations have been an exploitable target in the current network.
Reprogramming the network from a single location is simplified.
Solution: The use of protocols requires double-credential verification and also
using assured recovery mechanisms to guarantee a reliable state after reboot.

(7) Lack of trusted resources for forensics and remediation
The cause of a detected problem will be understood, which then initiates the process
to a fast and secure recovery mode. The resources will be useful if their trustwor‐
thiness (authenticity and integrity) can be assured.

120 J. Chen et al.



Solution: Logging and tracing are commonly used mechanisms and are needed
both in the data and control planes. However, they should be indelible (a log that
is guaranteed to be immutable and secure) to be effective. Furthermore, logs should
be stored in remote and secure environments.

5.2 Trusted Association Establishment

Switch-Controller Association: A simple approach would be for controllers to keep
authenticated white lists of known trusted devices. However, this approach lacks the
edibility desired in SDN. Another way is to trust all switches until their trustworthiness
dip goes below an accepted threshold. At that point, all devices and controllers would
then automatically isolate the switch.

APP-Controller Association: A dynamic trust model [11] is required because software
components exhibit changing behaviors from exhaustion, bugs, or attacks. In this study,
the authors use a holistic notion of trust to allow a trustor to assess the trustworthiness
of the trustee by observing its behavior and measuring this behavior based on quality
attributes, such as availability, reliability, integrity, safety, maintainability, and confi‐
dentiality. The proposed model can also be applied to define, monitor, and ensure the
trustworthiness of relationships among system entities.

Cloud infrastructure hardware trusted measurement based on TPM: The software
execution platform process is initiated by using a TPM security module stored before‐
hand with software and hardware equipment boot measurement verification value based
on the key step of starting process of cloud services platform equipment, such as integrity
measurement. If the measure and verification value is consistent, then the device is
reliable. Otherwise, further security updates are isolated. This method focuses on the
underlying hardware process of the cloud infrastructure to ensure a credible verification
process for hardware boot security of the cloud infrastructure (Fig. 3).

Fig. 3. TPM-based virtual machine management.

Survey on Software-Defined Networking 121



5.3 Detect, Correct, or Tolerate Faults

A switch that is dynamically associated with different controllers in a secure way could
automatically tolerate faults. A switch increases control plane throughput and reduces
control delay [36] by choosing the quickest-responding controller.

Increasing the data plane programmability would be helpful in this respect. One
approach involves replacing some of the traditional functionalities of custom ASIC
[37] by using common-purpose CPUs inside the switch. Another approach could act
on behalf of the switch using a proxy element. With a common-purpose microcom‐
puter, the element could simply attach to the switch by being deployed in a small
black box.

Replication is one of the most important techniques to improve the dependability of
the system. The application is replicated with some instances in the example. Controllers
should be replicated as well.

Attackers discover vulnerable targets in the network using various scanning techni‐
ques. One method to defend against these attacks is the use of random virtual IP addresses
using SDN. This technique involves managing a pool of virtual IP addresses in the Open‐
Flow controller, which is assigned to the network hosts, and hides real IP addresses from
the outside network. Moving target defense is a form of adaptive cybersecurity.

5.4 Data Integrity and Confidentiality

A security technology [e.g., transport layer security (TLS)] can mitigate threats to
mutual authentication between the controllers and their switches. Currently, Open‐
Flow specifications describe the use of TLS. However, TLS standard is not speci‐
fied, and the security feature is optional. A full security specification must be defined
to secure the connection and protect the data transmitted across the controller-switch
interface. With a single controller controlling a set of network nodes, the necessary
security may be provided through authentication with TLS. However, access control
and authorization becomes complex in this way. The increase of potential unauthor‐
ized access could lead to the manipulation of the node configuration and malicious
traffic through the node.

An OpenFlow vulnerability assessment focuses on the lack of TLS adoption from
major vendors and the possibility of DoS [17] attacks. The lack of TLS use could lead
to the insertion of modified and fraudulent rules.

6 Summary

In this study, we conducted a survey on SDN. SDN provides a new solution for the
future development of the Internet. Currently, SDN must reconsider the real network
deployment process and optimize performance, scalability, security, and distributed
control requirements. Many open questions related to SDN have yet to be answered.
First, a few proposals should be presented with regard to the SDN issue to test the
real network and evaluate its availability and efficiency. Moreover, the interworking
between SDN and conventional traditional network should be further studied.

122 J. Chen et al.



Second, the inconsistent control logic and the extensibility of control plane of SDN
remain to be discussed. Third, proposed SDN security reinforcement schemes are not
comprehensive and are still theoretical.

References

1. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., Shenker, S.: NOX:
towards an operating system for networks. ACM SIGCOMM Comput. Commun. Rev. 38(3),
105–110 (2008)

2. Jean, T., Puneet, S., Sujata, B., Justin, P.: Sdn and Openflow evolution: a standards
perspective. Computer 47, 22–29 (2014)

3. Mckeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J.: OpenFlow: Enabling innovation in campus networks. ACM
SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

4. Yang, L., Dantu, R., Anderson, T., Gopal, R.: Forwarding and control element separation
(ForCES) framework. RFC 3746 (2004)

5. Greenberg, A., Hjalmtysson, G., Maltz, D.A., Myers, A., Rexford, J., Xie, G., Yan, H., Zhan,
J., Zhang, H.: A clean slate 4D approach to network control and management. ACM
SIGCOMM Comput. Commun. Rev. 35(5), 41–54 (2005)

6. Caesar, M., Caldwell, D., Feamster, N., Rexford, J., Shaikh, A., Merwe, J.: Design and
implementation of a routing control platform. In: Proceedings of the 2nd USENIX
Symposium on Networked Systems Design and Implementation (NSDI), pp. 15–28. USENIX
Association, Boston (2005)

7. Casado, M., Garfinkel, T., Akella, A., Freedman, MJ., Boneh, D., Mckeown, N., Shenker, S.:
SANE: a protection architecture for enterprise networks. In: Proceedings of the 15th
Conference on USENIX Security Symposium, pp. 137–151. USENIX Association,
Vancouver (2006)

8. Casado, M., Freedman, M.J., Pettit, J., Luo, J., Mckeown, N., Shenker, S.: Ethane: taking
control of the enterprise. In: Proceedings of the SIGCOMM 2007, pp. 1–12. ACM Press,
Kyoto (2007)

9. Tootoonchian, A., Ganjali, Y.: HyperFlow: a distributed control plane for OpenFlow. In:
Proceedings of the 2010 Internet Network Management Workshop/Workshop on Research
on Enterprise Networking (INM/WREN) USENIX Association, San Jose (2010)

10. Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., Ramanathan, R.,
Iwata, Y., Inoue, H., Hama, T., Shenker, S.: Onix: A distributed control platform for large-
scale production networks. SIGCOMM Comput. Commun. Rev. 38(3), 105–110 (2008). In:
Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation (OSDI). USENIX Association, Vancouver (2010)

11. Yan, Z., Prehofer, C.: Autonomic trust management for a component- based software system.
IEEE Trans. Dep. Sec. Comput. 8(6), 810–823 (2011)

12. Sherwood, R., et al.: FlowVisor: a network virtualization layer. Technical report, Deutsche
Telekom Inc. R&D LabStanford University, Nicira Networks (2009)

13. Desmedt, Y.G.: Threshold cryptography. Eur. Trans. Telecommun. 5(4), 449–458 (1994)
14. Heller, B., Sherwood, R., McKeown, N.: The controller placement problem. In: HotSDN.

ACM (2012)
15. Kreutz, D., Ramos, F., Verissimo, P.: Towards secure and dependable software-defined

networks. In: Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking. ACM, pp. 55–60 (2013)

Survey on Software-Defined Networking 123



16. Braga, R., Mota, E., Passito, A.: Lightweight DDoS flooding attack detection using NOX/
OpenFlow. In: IEEE 35th Conference on Local Computer Networks (LCN). IEEE, pp. 408–
415 (2010)

17. Fundation O N. Software-defined networking: the new norm for networks. ONF White Paper
(2012)

18. Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., Ramanathan, R.,
Iwata, Y., Inoue, T. Hama, H., Shenker, S.: Onix: a distributed control platform for large-
scale production networks. OSDI 2010 (2010)

124 J. Chen et al.


	Survey on Software-Defined Networking
	Abstract
	1 Introduction
	2 Requirement Statement
	3 Software Defined Network
	3.1 System Architecture
	3.2 Component Description

	4 Application Scenarios
	4.1 Optimized Network Planning and Deployment
	4.2 Highly Extendable and Efficient Data Center
	4.3 Good Virtualization and Security Control

	5 Challenges and Solutions
	5.1 Network Management Challenges
	5.2 Trusted Association Establishment
	5.3 Detect, Correct, or Tolerate Faults
	5.4 Data Integrity and Confidentiality

	6 Summary
	References


