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1 Introduction

Over the past few years, there has been a dramatic evolution of our technological
ability to gather and share information. This has enabled the collection, distribution,
and analysis of vast amounts of data, in ways never before possible. While there has
not been a distinct watershed moment, this type of increasingly large data collection
has come to be known as “big data,” and is defined by the National Science
Foundation as involving “large, diverse, complex, longitudinal, and/or distributed
data sets generated from instruments, sensors, Internet transactions, email, video,
click streams, and/or all other digital sources available today and in the future.”
(National Science Foundation 2010).

While big data has applications in many fields, its potential in the biomedical
research settings is among the most exciting. Through the creation of big data health
repositories, researchers are able to gather information from a multitude of clinical
and research sources, greatly expanding the breadth of their data, while allowing
them to more widely share information with other researchers (Bollier and Firestone
2010). This enables researchers to study conditions in an entirely new way, ideally
allowing advances to be made more quickly. Crucially, big data facilitates more

B.E. Berkman
Department of Bioethics, Clinical Center, and Bioethics Core, National Human Genome
Research Institute, National Institutes of Health, Bethesda, Maryland, USA

Z.E. Shapiro
Harvard Law School, Cambridge, Massachusetts, USA

L. Eckstein
The Faculty of Law, University of Tasmania, Tasmania, Australia

E.R. Pike (X))
Presidential Commission for the Study of Bioethical Issues, Washington, DC, USA
e-mail: elizabeth.pike @bioethics.gov

© Springer International Publishing Switzerland (outside the USA) 2016 53
J. Collmann and S.A. Matei (eds.), Ethical Reasoning in Big Data,
Computational Social Sciences, DOI 10.1007/978-3-319-28422-4_5



54 B.E. Berkman et al.

efficient analysis of data by allowing complex work to be spread out across multiple
investigative sites. Additionally, by allowing data to be aggregated across many
different investigational sites, big data allows researchers to solve challenging or rare
health problems that had previously proven difficult to investigate.

This potential for big data to advance our understanding of human disease has
been particularly heralded in the field of genomics. Recent technological advances
have accelerated the massive data generation capabilities of genomic research.
Next-generation sequencing techniques now use semiconductors and nanotechnol-
ogy that increase the speed with which genomes are sequenced, resulting in a
dramatic reduction in the time needed to sequence a given genome. This has allowed
researchers to undertake larger scale genomic research, with significantly more
participants, further spurring the generation of massive amounts of data. The
advance of technology has also triggered a significant reduction in cost, allowing
large-scale genomic research to be increasingly feasible, even for smaller research
sites. This trajectory is likely to continue, as researchers predict that more advanced
DNA sequencing technologies will be able not only to generate terabase-scale
sequence data in seconds, but they will be able to sequence genomes for little or no
cost (Schadt 2012). Along with more advanced methods of sequencing genomes,
there have been improvements in the methods for collecting, storing, and sharing the
data, particularly using computer-based databases, which have facilitated the rise of
big data in genomics. We will use the term Large Scale Genomic Repositories
(LSGRs) to refer to these research resources. The rise of genetic research has trig-
gered the creation of many LSGRs, some of which contain the genomic information
of more than a million research participants.

While LSGRs have genuine potential, they also have raised a number of ethical
concerns. Most prominently, commentators have raised questions about the privacy
implications of LSGRs, given that all genomic data is theoretically re-identifiable.
Privacy can be further threatened by the possibility of aggregation of data sets, which
can give rise to unexpected, and potentially sensitive, information. But beyond pri-
vacy concerns, LSGRs also raise questions about participant autonomy, public trust
in research, and justice. In this chapter, we explore these ethical challenges, with the
goal of elucidating which ones require closer scrutiny and perhaps policy action.

2 The Promise of LSGRs

While all scientific research produces data, genomic analysis is somewhat unique in
that it inherently produces vast quantities of data. Every human genome contains
roughly 20,000-25,000 genes, each comprised of over three million base pairs, so
that even the most routine genomic sequencing or mapping will generate enormous
amounts of data (International Human Genome Sequencing Consortium 2004).
Since most studies include many different individuals, each with their own unique
genomes, sequencing genomes of groups or populations produces huge quantities
of data for researchers to analyze.
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LSGRs are not merely a useful tool in organizing and compiling genetic
research. Genomic research is a natural fit for big data, due to the complex nature of
gene-based therapies and investigations, which necessitate the study and compar-
ison of many individual genomes. For common diseases, it has become clear that a
range of genomic variants can play a part in determining a given individual’s risk
for certain diseases or particular health outcomes. In order to find those variants,
each of which might only make a small contribution to a given health risk,
researchers must study a large number of both healthy and affected individuals, in
order to identify the relevant genomic differences.

The vast quantity of data generated by such an analysis would once have
overwhelmed even the most well-funded research labs. However, the use of LSGRs
has enabled widespread data sharing, allowing analysis efforts to be spread across
any number of investigational sites. This reduces analytic bottlenecks, while per-
mitting more timely data analysis than any one investigative team would be able to
accomplish on their own.

Aggregation also facilitates the study of rare diseases, where it is often difficult
to find and recruit sufficient numbers of subjects with the relevant condition.
LSGRs facilitate the collection of data from a geographically broad range of
research sites, allowing advances in understanding that would be impossible to
produce from studying small groups of individuals. By allowing data aggregation
and pooling of data from many investigational sites, genetic underpinnings of
various conditions can be identified, allowing researchers to begin the search for
targeted therapies to combat some of the most devastating, and rare, genetic based
conditions. LSGRs provide adequate statistical power to address questions that
were previously infeasible due to logistical and funding limitations. Aggregation of
disparate data sets also can allow researchers to make novel connections, or reveal
trends not readily apparent in any one data set.

Given the potential of LSGRs to advance our understanding of disease, it is easy
to understand why scholars predict that the use of LSGRs will only accelerate in the
coming years. Indeed, there are already signs that LSGRs will become an
increasingly common feature of the research landscape. In particular, a recent NIH
genomic data-sharing policy requires that any researcher who receives funding for
the production of genomic data must deposit their sequence data in a central
repository (Genomic Data Sharing 2014). Policies like this are the first step in
creating more widespread and informative LSGRs, and indicate that LSGRs may
become a common feature of any significant genomic research.

Beyond the 2014 NIH genomic data-sharing policy, there are several examples
of well-funded, emerging LSGRs that have already contributed significantly to our
understanding of genomics and human disease. One example is the Million Veteran
Program (MVP), started by the Department of Veterans Affairs in May of 2011.
The MVP contains genomic, and some clinical information, from veterans who
receive their care from VA and who volunteer to participate in the program. The
initial benefits of this database are already being realized, with the VA using this
information to identify patterns of illness following deployment.
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Additionally, President Obama’s “Precision Medicine Initiative” includes as a
centerpiece a national repository containing health records and genomic sequence
data from more than one million volunteers. The hope is that such a database will
allow researchers to study the mechanisms by which peoples’ genes, environment,
and lifestyle affect their health, in ways not possible without the pooling of large
amounts of data. By combining genomic information into population studies,
hidden genomic influences may be identified. Beyond potentially revealing the
causes of various conditions, this could elucidate opportunities for targeted thera-
pies, allowing the development of cures with maximum efficacy.

3 Privacy and Re-identification

Despite LSGRs’ promise for scientific advancement, their increasing ubiquity raises
considerable privacy challenges (Lane et al. 2014). Most genomic samples and data
are included in LSGRs premised on a promise of anonymity. A major concern is
that this promise might be undermined by the possibility of re-identification
(Rothstein 2010). While technically very difficult, re-identification can occur when
researchers apply bio-informatic techniques that cross-reference existing, identified
data sets with the genomic information contained in the LSGRs. These concerns are
far from theoretical. Indeed, several groups of researchers have demonstrated that
re-identification is possible, even with the limited information contained in
de-identified LSGRs. In a seminal study led by Gymrek and colleagues, researchers
were able to discover the identity of some individuals whose genomes had been
sequenced as part of a genomics project. The research team wrote an algorithm that
was able to infer an individual’s array of genetic markers, called a haplotype, from
the nucleotide sequence of his Y chromosome. The team then searched
genealogical databases for the names of men with corresponding Y-chromosome
haplotypes, and, after cross-referencing the last names with publicly available
records, correctly identified several individuals (Gymrek et al. 2013).

Another study utilized public databases, which make genome-scale RNA
abundance profiles (which reveal the amount of RNAs in different cells) available to
anybody with the internet. Researchers were able to generate DNA barcodes from
these data, which could be screened against DNA databases kept by government
agencies (to identify DNA samples associated with unsolved crimes for example). It
is possible that comparing these data sets could reveal the identity of a research
participant. In 2012, Schadt and colleagues utilized RNA abundance measurements
to infer a DNA-based barcode that was specific enough to re-identify individuals
whose data was part of a collection of hundreds of millions of individual genotypic
profiles obtained in a completely different research context (Schadt et al. 2012).
Researchers have also reported that a personal large-scale SNP genotypic profile is
sufficient to resolve whether an individual participated in a specific genome-wide
association study, even if the study reports only summary statistics such as allelic
frequencies (Homer et al. 2008).
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With re-identification existing as an increasingly real possibility, attention has
shifted to the challenges associated with offers of anonymity in genetic research.
Re-identification concerns are heightened further by the aggregation of ever-greater
amounts of information on the internet. This aggregation problem creates a novel
threat to privacy, as cross-referencing this information with LSGRs can give rise to
unexpected and potentially sensitive inferences and information. Furthermore,
recent research has raised the possibility that scientists could use genetic markers
from DNA in order to create a fairly accurate picture of an individual’s face,
highlighting that we are only beginning to realize some of the privacy implications
raised by access to genetic information (Claes et al. 2014).

The above discussion highlights the potential for re-identification of genetic
research participants. However, a more nuanced understanding of the risks that such
re-identification poses to participants warrants closer scrutiny. A helpful way of
assessing such risks is separating out participants’ welfare and non-welfare interests
(Tomlinson 2009). Welfare risks are best thought of as individual direct harms that
represent a real personal risk to the individual. In contrast, non-welfare risks do not
present a risk of immediate personal harm, but rather represent abstract harms to an
individual’s wishes, desires, or preferences. A non-welfare risk can be said to occur
when an individual loses control over their personal information (Tomlinson 2009).
We address these different kinds of harms separately in the next sections.

4 Welfare Interests

Genomic big data research may expose subjects to psychological, social, and eco-
nomic harms, particularly if the research reveals sensitive information about
re-identified individuals, or racial/ethnic/geographic groups with which they identify.
Psychological harms include undesired changes in thought processes and emotion
(e.g., episodes of depression, confusion, feelings of stress, guilt, and loss of
self-esteem). Social and economic harms might include embarrassment within a
participant’s business or social group, loss of employment, or criminal prosecution
caused, for example, by invasions of privacy and breaches of confidentiality.
Additionally, some social and behavioral research may yield information about
individuals that could “label” or “stigmatize” the subjects, either as individuals or
through association with a specific group. While these harms are often cited as reasons
to worry about genomic research, evidence of these harms is thus far quite low.

4.1 Psychological Harms

Arguments about psychological harms assume that research participants will be given
distressing information about their genetic health risks, which will cause undue
negative emotions. There is a robust psychological literature, however, that suggests



58 B.E. Berkman et al.

that people are more emotionally adaptable than they think, and that we are terrible at
affective forecasting, or predicting our future emotional reactions to negative events.
While we often assume that learning about genetic risk for serious diseases will be
devastating, in reality, the data suggest that the negative psychological effects of
learning such information are generally transient and mild. This has been attributed to
two psychological concepts: immune neglect and the focal illusion. Immune neglect
refers to “the failure to anticipate how easily and quickly we make sense of and adapt
tonegative events.” (Peters et al. 2014). The related focal illusion bias “is the tendency
to focus on the affective consequences of a single, focal future event, while ignoring
the emotional impact of non-focal events on well-being.” (Peters et al. 2014).

The minimal psychological impact of negative genetic information has been
demonstrated in a range of contexts (Heshka et al. 2008). For example, the
REVEAL studies (Risk Evaluation and Education for Alzheimer’s disease) were
the first randomized controlled trials designed to evaluate the impact of suscepti-
bility testing using the Alzheimer’s Disease (“AD”) susceptibility gene APOE-¢4.
These comprised a series of four multi-site, randomized clinical trials examining
psychosocial and behavioral responses to genetic risk assessment for AD using
APOE disclosure (Roberts et al. 2011). The studies found little negative emotional
impact (Green et al. 2009). Another systematic review similarly found no increased
distress within the year after testing, and actually demonstrated a decrease in stress
for many participants post-test (Broadstock et al. 2000). Similarly, a review of the
literature on responses to genetic testing of cancer susceptibility found that there
was very little evidence of adverse psychological effects observed among people
who learn that they have a genetic predisposition to certain cancers (Meiser 2005).
Similar data exists for testing range of other conditions, including Huntington’s
disease, breast cancer, and colon cancer, among others.

While we do not mean to minimize the possibility of psychological harms
resulting from disclosure of genetic risk information, the existing literature should
force us to consider whether our society is “systematically overestimate[ing] the
durability and intensity of the affective impact of events on well-being.” (Peters
et al. 2014). Our argument is merely that policy makers and the scientific com-
munity should be cautious about using the psychological concerns of receiving
genetic test results to justify regulations that will have a profound impact on the
scientific enterprise.

4.2 Discrimination

Genetic discrimination (“GD”) commonly refers to “the differential treatment of
asymptomatic individuals or their relatives on the basis of their real or assumed
genetic characteristics.” (Otlowski et al. 2012). Differential treatment can occur
within interpersonal and institutional domains, but institutional domains have been
the focus of regulatory efforts. Objective evidence of GD has been difficult to
establish and, until recently, its prevalence and depth has been largely undocumented.
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Some studies have even presented positive evidence suggesting skepticism about
GD’s scope. A U.S. study on insurance outcomes published in 2009 surveyed 47
unaffected individuals with a genetic predisposition to breast cancer, concluding,
“[r]esults suggest fear of GD is prevalent, yet data do not support evidence that GD
exists.” (McKinnon et al. 2009). Two adverse events were reported to have
occurred when individuals changed health insurance. The study found no reports of
job discrimination due to genetic status or family history of cancer. Furthermore, we
are not aware of any instances in which GD has arisen from genetic research
projects. In the closest available report, Kathy Hudson and others reported a case
study in 1995 in which a research geneticist determined—outside the context of a
research project—that a four-year old boy carried a genetic alteration that causes
long QT-syndrome. His father subsequently was unable to obtain insurance cov-
erage for his son because of this mutation (Hudson et al. 1995).

In the U.S., early experience with the Genetic Information Non-Discrimination
Act (GINA) similarly suggests that perhaps there is less cause for concern than
previously thought. Enacted in 2008, GINA was passed as a way to combat fears that
genetic discrimination was a barrier to adoption of clinical genetic testing (Prince and
Berkman 2012). The law works both prospectively (prohibiting employers and health
insurance companies from receiving genetic information) and retrospectively
(punishing bad actors who have illegally used genetic information as the basis
for employment or actuarial decisions). While a watershed achievement, there
have been remarkably few cases brought under the law (Genetic Information
Non-Discrimination Act Charges 2014). Since 2010, there has been an annual
average of just 48 cases reaching merit resolution and damages have not been sub-
stantial, averaging less than $1 million in total annual awards. While there have been
more documented instances of discrimination in the life insurance and long-term care
insurance areas, a systematic review of existing data led researchers to conclude that
no policy intervention is currently justified, concluding that “with the notable
exception of studies on Huntington’s disease, none of the studies reviewed here (or
their combination) brings irrefutable evidence of a systemic problem of GD that
would yield a highly negative societal impact.” (Joly et al. 2013).

As with the discussion of psychological harms, we do not mean to minimize the
problem of genetic discrimination. It is certainly possible that genetic discrimina-
tion could eventually become a serious problem. While policy-makers should be
cautious about imposing burdens on the research enterprise when there is little
evidence of a current widespread problem, there is reason to guard against dis-
missing GD too quickly. As genetic information becomes more available and as our
knowledge of the links between phenotype and genotype improves, insurance
companies and others may take the opportunity to incorporate the information into
decision-making. In one study, researchers at Georgetown University asked
underwriters from insurance companies to underwrite hypothetical applicants who
had received a genetic test result indicating increased risk of a future health con-
dition. In seven of 92 total decisions, underwriters said they would deny coverage,
place a surcharge on premiums, or limit covered benefits based on an applicant’s
genetic information. Adverse determinations were dispersed among the surveyed
underwriters, across the hypothetical examples and despite relevant state-level
proscriptions on genetic discrimination (Politz et al. 2007).
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5 Non-welfare Interests

5.1 Trust

Even though there might not be current evidence of extensive individual welfare
harms, one still must be concerned about the threat of harm to the non-welfare
interests of participants. This can result from the lack of control over their samples
and data, as well as the harm of broken promises, as participants participate in
research with the expectation that they will not be personally identified by the data,
and that their data will not be publically linked to them. Even if this does not result
in tangible economic or mental harm to the individual, participant’s non-welfare
interests can be harmed by the release of this information. For these reasons,
maintaining trust in the research enterprise and in the process of developing LSGRs
is fundamental to the ongoing success of LSGRs and the research enterprise. And
yet, the way that LSGRs are currently being created falls short of best practices for
establishing and fostering trust.

Although some of the samples stored in LSGRs are collected from people who
have provided consent for the genetic material to be used in a wide array of research
projects, in other cases, the samples stored in LSGRs were collected without the
source’s knowledge or consent. For example, researchers often rely on samples
collected as medical waste—blood or bodily tissue obtained in the clinic in excess
of what was strictly necessary for testing or diagnosis. Current U.S. laws and
guidelines allow the excess medical waste to be collected and stored in LSGRs
without the source’s knowledge or consent. Collection and storage of medical waste
is generally governed by the Health Insurance Portability and Accountability Act’s
Privacy Rule, which places only limited restrictions on the ability to collect and
store medical waste without consent. When samples are de-identified, the Privacy
Rule places no restrictions on their use or disclosure. Even samples stored with
specific identifiers can be used or disclosed under the Privacy Rule if the infor-
mation is released as part of a “Limited Data Set” or if an Institutional Review
Board has waived the requirement that individuals provide informed consent.

Researchers also rely on samples collected through the process of newborn
screening—a public health screening process whereby newborns’ heels are pricked
and blood is collected and tested in the first few days of the child’s life. Newborn
blood spots are thought to be “an especially rich source of research material: they
are stable over time, they constitute an unbiased collection of samples since they
represent the entire population, and they can potentially be linked to basic demo-
graphic information” (Suter 2014). In many cases, the collection of a newborn’s
blood occurs without the parents’ knowledge or consent (Suter 2014). The samples
are then retained, in some cases indefinitely, for a range of subsequent uses
(Citizens” Council on Health care 2009). The research use of newborn samples
accelerated in 2009 due to an NIH grant that funded the Newborn Screening
Translational Research Network, a national repository of newborn blood samples
for use in research (Scutti 2014).
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Although the federal Common Rule governing research with human subjects
generally requires that investigators obtain informed consent from research partic-
ipants, consent often is not required for research involving genetic samples. First, to
the extent research samples are de-identified, the research is not considered human
subjects research at all such that the Common Rule requirements (including the
requirement of informed consent) do not apply. Second, even research using iden-
tifiable biospecimens may nevertheless be exempt from the Common Rule
requirements of informed consent if data is “recorded by the investigator in such a
manner that subjects cannot be identified, directly or through identifiers linked to the
subjects.” Third, even if the research is not considered exempt, an IRB is permitted
to waive the requirements for informed consent in certain circumstances. Research
using identifiable biospecimens can often qualify for waiver because the sheer
number of people from whom genetic data has been collected renders re-contact and
obtaining informed consent impracticable or impossible (Geetter 2011).

Given the lack of legal limitation, it is unsurprising that there are vast numbers of
samples that are likely to have been collected without people’s knowledge or
consent. As of 1999, the RAND Corporation estimated that U.S. research reposi-
tories contained 307 million tissue samples. These samples were taken from
178 million individuals, accounting for almost two-thirds of the American popu-
lation (Eiseman 2000). The RAND report conservatively assumed that the number
of samples would grow by 20 million per year, which would mean that more than
600 million samples are being stored today, which does not even fully account for
new sources of biological samples (direct-to-consumer genetic testing, criminal
databases, etc.) that were just emerging at the end of the 20th century. It does not
seem like much of an exaggeration to conclude, therefore, that “virtually everyone
has his or her tissue on file” (Dunn 2012).

The potential for loss of trust in LSGRs when people learn that their genetic
material has been collected, stored, and used without their knowledge or consent is
high, and hugely consequential. This loss of trust has already occurred at the state
level. In two states, Texas and Minnesota, parents learned that blood samples from
their newborns had been collected without their consent and had been stored and
used for a range of purposes including research. They subsequently brought suit.
The Texas lawsuit, Beleno v. Texas Department of Health Services, ultimately led
to the state agreeing to incinerate approximately 5.3 million newborn blood samples
(Waldo 2010). The Minnesota lawsuit, Bearder v. Minnesota, ended with the state
agreeing to “destroy all blood samples in long-term storage ... and to pay nearly $1
million in legal costs.” (Olson 2014).

These cases go beyond potential legal and financial consequences to highlight
the less tangible ramifications of insufficiently informing and accommodating the
views of potential participants in large-scale genetic research. Notably, Andrea
Beleno, the named plaintiff in the Texas lawsuit, stated that she might have con-
sented to the collection and subsequent use of her newborn’s genetic data if she had
trust in the enterprise: “If they had asked me ... I probably would have consented.
The fact that it was a secret program really made me so suspicious of the true
motives, there’s no way I would consent now” (Roser 2009). Surreptitious
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collection and use—collecting and using samples without the knowledge and
consent of the source—leads to lack of trust in the enterprise. Without trust in the
mission of LSGRs, LSGRs are at risk of the type of lawsuits that resulted in
incineration of millions of samples along with a more widespread loss of faith in the
medical research establishment more broadly.

5.2 Autonomy

Informed consent is a cornerstone of research ethics. However, LSGRs have forced
a reexamination of existing regulations and norms. Traditionally, there was a clear
distinction between data that included identifiers (e.g., name, date of birth, social
security number, etc.) and data that had been de-identified. Under the Common
Rule, secondary research involving de-identified data has not been considered to be
human subjects research, and thus has not required IRB review. This regulatory
distinction ultimately meant that consent has not been required for much of the
genomic data contained in research repositories.

In large part because of concerns about re-identification of genomic data, pro-
posed changes to the Common Rule look to obliterate the distinction between
identified and de-identified data (Federal Policy for the Protection of Human
Subjects 2015). The net effect of this change will be to require some kind of
informed consent for any sample or data that will be used for research. While
adopting a posture that seems more respectful of individual autonomy, this change
could have a profound effect on the research enterprise generally, and on LSGRs in
particular. The proposed rules would likely only apply prospectively, and would
introduce the requirement of consent to collecting samples and data for subsequent
use where one did not exist before.

Implementation of this new requirement will depend, in part, on whether par-
ticipants are willing to accept the idea of blanket or broad consent. Blanket consent
refers to the notion that a participant could give their consent at a single interaction,
but would give permission for ongoing, open-ended use. Broad consent is similarly
non-specific, but includes provisions wherein future uses are subject to some
constraints (e.g., not for morally controversial topics, such as cloning). Blanket and
broad consent can be compared to other approaches that require more study-specific
consent, which obviously provide more information to a potential participant, but at
significant cost to the research enterprise (Grady et al. 2015).

Some form of broad consent is expected to be part of the revisions to the
Common Rule. Furthermore, there is evidence to suggest that participants are
willing to accept such an approach. While a complete analysis is beyond the scope
of this chapter, the data seems to indicate that individuals want to be asked for their
permission once, but do not need to be approached to provide consent for specific
subsequent uses (Wendler 2006; Chen et al. 2005). In fact, in one recent survey of
various consent models for the use of stored genetic samples, potential participants
viewed real-time specific consent as the least desirable option (Tomlinson et al.
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2015). Unfettered blanket consent was also not widely supported, with subjects
seeming to prefer the broad consent model where one-time permission is given, but
when there are limits on controversial research uses, or a mechanism to withdraw at
any point.

Any informed consent paradigm will involve some tradeoffs between burden on
the research enterprise and participants’ ability to exercise control over the use of
their samples. As LSGRs proliferate, it seems untenable to continue with the status
quo, where research is being conducted on samples and data without participant
knowledge or consent. However, in the interest of minimizing burden on the
research enterprise, careful consideration should be given to the rules that will be
imposed. If implemented thoughtfully, broad consent seems like it could be an
acceptable and appropriate compromise between respecting autonomy and facili-
tating research.

In addition to prospective consent, two additional autonomy-related concerns are
raised by the proliferation of LSGRs. First, there are retrospective questions about
the appropriateness of using genomic data and samples when there is inadequate or
problematic evidence of consent. We term this the “grandfathering problem.” When
researchers seek to access genetic samples, many of which might be very old, how
much evidence of high quality informed consent is required before allowing
research to be conducted? For instance, perhaps a researcher retires and transfers a
career’s worth of samples to a biobank. Some of those samples might have been
collected before modern informed consent laws and norms were in place, meaning
that consent has not been documented, or is non-existent for any form of research
with the samples. Or perhaps some of those samples were collected for a specific
research purpose, and the consent form never mentioned the possibility of any sort
of genetic research methodology (or mentioned only rudimentary forms of genetic
analysis) suggesting that consent could be inadequate. Even more challengingly,
some of those samples might have been collected from vulnerable populations (e.g.,
prisoners, psychiatric patients, adults lacking capacity, etc.).

Given that norms and rules evolve, we cannot simply apply today’s consent
standards to yesterday’s samples and data. On the other hand, it seems ethically
problematic to knowingly use research resources of questionable provenance.
Important conceptual work will have to be done to develop an ethical framework
that considers a number of relevant factors. First, we need to establish the extent to
which inadequate or missing informed consent is ethically problematic in a range of
scenarios. For example, having firm evidence that samples were collected from
vulnerable individuals without consent raises more concerns than a mere lack of
documentation of informed consent. Second, we need to decide how strongly to
weigh the feasibility of obtaining additional, present-day consent for subsequent
research use as a way of demonstrating respect for individual autonomy against the
additional burdens placed on the research enterprise. It is appropriate to seek
re-consent in certain situations, but there should be limits on the burdens imposed
on the research enterprise. Finally, we need to explore the weight that we are
willing to give to the unique qualities or irreplaceable scientific value that a given
set of samples or data might possess.
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We suggest that an appropriate balance between these three factors would allow
questionable samples and data to be grandfathered only in cases where the unique
scientific value outweighs the relevant ethical concerns. As one possible model, the
National Human Genome Research Institute has instituted a policy stating that as of
a specific date, previously collected samples can continue to be used for genomic
data sharing as long as the existing consent forms are not inconsistent with such
use. In order to discourage researchers from only using previously collected sam-
ples indefinitely, this rule only remains in place for five years. After that time,
researchers will need a strong scientific justification to continue using samples that
were not obtained with specific consent for broad data sharing.

The final autonomy-related concern exacerbated by the proliferation of LSGRs
relates to the right to withdraw from research. Enrolling in research is not just a
one-time decision; it is a well-established principle of research ethics that partici-
pants have the right to withdraw from participation at any time. In the context of
actual physical participation in research, this is conceptually straight-forward as an
individual can choose not to show up or to leave the study premises. But in the
context of LSGRs, where data are being shared widely throughout the research
community, withdrawal can be difficult or impossible. LSGRs should be designed
such that individuals retain some ability to pull their information back should they
choose. However, once the data has been widely shared, absolute eradication of
data might not be feasible. LSGRs should prompt a re-examination of what the right
to withdraw from research actually entails, and should encourage construction of
consent forms that manage participant expectations accordingly.

5.3 Justice

There are two primary justice concerns arising out of LSGRs. The first relates to the
unfortunate lack of diversity in genomic medicine. While genomic research has
been presented as an important tool for unlocking the potential of genomic medi-
cine, research efforts thus far have focused almost exclusively on people of
European descent. For example, as of 2011, less than 10 % of participants included
in genome-wide association studies (“GWAS”) were not of European decent
(Rotimi 2012). In the U.S., one study found that 92 % of GWAS participants were
white, and only 3 % were African-American (Haga 2010). The worry is that without
a broader racial and ethnic focus, researchers will develop a skewed understanding
of which variants are relevant to human disease. Genotype-phenotype associations
will be less generalizable for underrepresented populations, meaning that the
majority of medical benefits will flow to an already advantaged segment of our
global population. As Carlos Bustamante and colleagues stated:

It is tempting to focus on populations that are motivated, organized, medically compliant
and otherwise easy to study. But by failing to develop resources, methodologies and
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incentives for underserved people, we risk perpetuating the health disparities that plague the
medical system. Those most in need must not be the last to receive the benefits of genetic
research. (Bustamante et al. 2011).

In order to avoid exacerbating health care inequality, LSGRs need to focus on
engaging and recruiting under-represented populations.

LSGRs also run the risk of creating group harms. Beyond individual
re-identification, there is a concern that through aggregating a sufficient amount of
genetic information, and allowing it to be compared to other available databases,
LSGRs may permit inferences about groups of people that could be considered
harmful on a number of levels. First, there is a risk that genetic information could be
mobilized to stigmatize or discriminate against individuals due to their perceived
membership in a particular group. Often described as a “group-mediated harm to
individuals,” this kind of harm can arise in situations when a group is associated
with increased genetic risk for having a particularly stigmatizing disease or trait
(Hausman 2007). Genetic information also can cause harms to groups themselves
where such groups have “structures, leadership, causal capacities, and interests that
are distinct from and not reducible to the interests of their members” (Hausman
2008). An evolutionary genetics study reporting migration patterns, for example,
could present results that differ from group lore thereby undermining the group but
not necessarily harming its members. There are many ways in which this kind of
group harms can be expressed, including loss of status in the majority society,
self-stigmatization, and dignitary harms to the community (Freeman et al. 2006).

LSGRs pose a particular risk of creating both kinds of group harms because even
though data contained in genomic repositories are not associated with personal
information, racial and ethnic information is often retained (Hausman 2008).
Furthermore, research has made it possible to infer ancestry about a given indi-
vidual with high reliability, particularly when that individual is from a structured
group whose genetic material has been relatively isolated. This means that as
genomic data is shared widely, research might produce associations between racial
or ethnic groups, and certain traits or medical predispositions. One such example
arose in New Zealand in 2006, when researchers reported a variant of the “warrior
gene”—associated with traits such as aggression, violence, and impulsivity—as
being “strikingly overrepresented” in New Zealand Maori. A lead researcher was
quoted as saying that “obviously” the findings meant that Maori men were “going
to be more aggressive and violent and more likely to get involved in risk-taking
behavior like gambling.” (AAP 2006). The claim generated widespread media
attention, and led to immediate opposition from Maori and other commentators
(Crampton and Parkin 2007).

The fact that certain population groups can have higher frequencies of certain
genotypes based on historical patterns of migration, isolation, and other features of
population genetics warrants vigilance about the potential for group-mediated
harms from genetic research (Hartl and Clark 2007). Even though the individual
participants might have agreed to take part in research, current models of informed
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consent and promises of privacy do not offer protection from these kinds of
group-mediated harms. Because of this, LSGRs present wider-ranging threats than
those raised by typical research.

Given these concerns, the question is whether or how policy-makers should
impose governance structures on LSGRs to minimize risks to groups. To date, there
has been some consideration of group harms, at least in the context of the
NIH GWAS data sharing policy which required data access committees (DACs) to
ensure that proposed research did not pose a risk of creating group harms. It is not
clear whether that policy has been effective, and the more recent NIH genomic data
sharing policy has dropped concerns about group harms entirely. While a formal
review body might not be necessary, other governance options might mitigate
worries about group harms. LSGRs could consider requiring that researchers
seeking access to data agree to specific limits on data usage when conducting
analyses with sensitive data (e.g., race, ethnicity, geography). Alternatively,
researchers could stipulate that their results will not unduly impact any specific
group in a foreseeably adverse way, placing the burden on the investigator to
consider the ramifications of their findings.

6 Conclusion

The capacity to utilize big data represents a substantial shift in the research land-
scape; our ability to collect, store, share and aggregate data in such expansive ways
is a monumental opportunity, but will surely also present significant ethical chal-
lenges. While existing policies and procedures may need to be modified to better
protect subjects, some scholars have gone further, suggesting that fundamentally
new standards of practice should be developed to deal with the unique ethical
concerns created by LSGRs (Gymrek et al. 2013). Our analysis suggests, however,
that caution is warranted before any major policies are implemented. Much atten-
tion has been directed at privacy concerns raised by LSGRs, but perhaps for the
wrong reasons, and perhaps at the expense of other relevant concerns. We do not
think that there is yet sufficient evidence to motivate enactment of major policy
changes in order to safeguard welfare interests, although there might be some
stronger reasons to worry about subjects’ non-welfare interests. We also believe
that LSGRs raise genuine concerns about autonomy and justice. Big data research,
and LSGRs in particular, have the potential to radically advance our understanding
of human disease. While these new research resources raise important ethical
concerns, any policies implemented concerning LSGRs should be carefully tailored
to ensure that research is not unduly burdened.
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