
Theory of Programs

Bertrand Meyer(&)

ETH Zurich, Zurich, Switzerland
bertrand.meyer@inf.ethz.ch

“Computer science” (informatics) is really program science since a computer, by itself
too general a machine to be of practical interest, yields useful machines through pro-
grams that people write for it. While the theoretical study of programs fills volumes,
few people realize that a handful of concepts from elementary set theory suffice to
establish a clear and practical basis.

Among the results:

• To describe a specification or a program, it suffices to define one relation and one set.
• To describe the concepts of programming, concurrent as well as sequential, three

elementary operations on sets and relations suffice: union, composition and
restriction.

• These techniques suffice to derive the axioms of classic papers on the “laws of
programming” as straightforward consequences.

• To define both program correctness and refinement, the ordinary subset operator
“�” suffices.

Paragraphs labeled “Intuition” relate the concepts to the experience of readers
having done some programming. Readers with knowledge of previous views of the-
oretical informatics will find comparisons in “Comment” paragraphs. Section 5 pro-
vides more discussion.

1 Programs

A program is a simple mathematical object: a constrained relation over a set of states.

Definition: Program, specification, precondition, postcondition.

Notation: A ↔ B is the set of binary relations between A and B, that is, P (A × B). The domain
of a relation r is written r and its range �r.

Intuition: A program starts from a certain state and produces one of a set of possible
states satisfying properties represented by post. Pre tells us which states are acceptable
as initial states.

© Springer International Publishing Switzerland 2015
B. Meyer and M. Nordio (Eds.): LASER 2013-2014, LNCS 8987, pp. 159–189, 2015.
DOI: 10.1007/978-3-319-28406-4_6

In the general case, more than one resulting state can meet the expectation
expressed by post. Correspondingly, post is a relation rather than just a function.

The definition covers continuously running programs, such as those embedded in
devices, since they are just repetitions of individual state transformations. Particular
choices for S and for acceptable post and Pre determine particular styles of pro-
gramming, such as the following.

Definition: Deterministic, functional, imperative, object-oriented, object, procedural.

Notation: For a relation r in A ↔ B and subsets X and Y of A and B respectively, r (X) denotes
the image of X, and r −1 (Y) the reverse image of Y, by r. The relation is a “function” (short for
“possibly partial function”) if r ({x}), for any element x of A, has at most one element. If it
always has one, r is “total”. A → B is the subset of A ↔ B containing total functions only. An
integer interval is written m. .n. Section 4.2 will present a more elaborate structure for S in
which the above characterizations apply to the “store” part.
Sp, Prep and postp are the state set, precondition and postcondition of a program p. In addition,
discussions of an indexed set of programs pi will use Si, Prei and posti for the i-th program.

The principal concepts of programming, studied in the rest of this presentation, are
independent of such choices of style and of the properties of S.

Definition: Feasibility.

Intuition: Prep tells us when we may apply the program, and postp what kind of result
it must then give us. A program/specification is safe for us to use if it meets its
obligation whenever we meet ours. Feasibility expresses this property: for any input
state satisfying Prep, at least one output state satisfies postp.

Comment: It would be possible in principle, and would makes theoretical discussions
easier, to avoid the introduction of feasibility as a separate condition: define the concept
of program by post only, and just define Pre as post; then every program is feasible.
Such a model, however, does not adequately reflect the practice of programming. Often
we get a general relation (such as Result2 ≅ input), clearly defined but not realizable for
every possible input state; we must find an input domain (such as input ≥ 0) on which it
is possible to satisfy the postcondition. Hence the need for “program” as the general
concept and “feasible program” as a desirable special case.

Definition: Program equality.

160 B. Meyer

Notation: For a relation r and subsets X and Y of its source and target sets, r / X and r \ Y are
r restricted to domain X (meaning r \ (X × S)) and corestricted to codomain Y (meaning
r \ (S × Y)). Two straightforward properties (restriction and corestriction theorems) are that
r=X�X and rnY � Y .

Intuition: The results of a program only matter when it is applied to input states
satisfying the precondition. Equality as defined is, strictly speaking, only an equiva-
lence relation, but it coincides with ordinary equality (same precondition, same post-
condition) on feasible programs and makes refinement — introduced next — an order
relation rather than just a preorder.

Comment: While it is customary to distinguish between programs and specifications,
all definitions of the purported difference are vague, for example that a specification
describes the “what” and a program the “how”. The reason for the vagueness is that the
difference does not exist. It is impossible to assign a given artifact solely to one of the
two categories. An assignment instruction is implementation to the application pro-
grammer and specification to the compiler writer. (See also Sect. 3.) Any useful notion
has to be relative: artifact 1 “specifies” artifact 2.

Definition: Refines, specifies, abstracts.

Notation: r�
X
r’ X means (r /X) � r’; in other words, whenever r maps an element of X to a

result, r’ maps it to the same result. The same conventions applies to other operators on
relations, as in r¼

X
r’. Note the names (extension, weakening, strengthening) associated with the

three conditions of the definition.

Intuition: A refinement of p gives more detail than p, but still satisfies all properties of
p relevant to users of p. So it must cover all of p’s states, accept all the input states
p accepts and, for these states, only yield results that p could also yield. It may have
more states, a more tolerant precondition, and yield only some of the results that
p could yield (reduce non-determinism).

Comment: In practice we might want a refined program to work on a different set of
states. In that case S1 would map to a subset of S2, rather than being that subset (P1).
Generalizing the notion of refinement in this spirit is possible, but does not seem worth
the trouble.

Theorem: Refinement Theorem.

Theory of Programs 161

Proof: Since � is an order relation, reflexivity, antisymmetry and transitivity hold for
the program’s state set and precondition parts. For the postcondition part, reflexivity is
trivial; antisymmetry follows from P3 since post1 �

Pre1
post2 and post2 �

Pre2
post1 imply

that post1 and post2 coincide on Pre1 (identical to Pre2 because of P2), which is what
we need for the definition of program equality; for transitivity, if Y � X then
r3 �

Y
r2 �

X
r1 and imply r3 �

X
r1.

Notation: The refinement theorem justifies writing “p2 refines p1” as p2 � p1. This is
an example of a general convention: extending to programs an operator § on relations,
so that p2 § p1 means post2 § post1, with a suitable condition on the preconditions.
More examples appear below.

Definition: Implementation.

Intuition: Not every refinement of a specification is feasible. For example the infea-
sible program having the empty relation as its postcondition and S as its precondition
refines every specification over S. Hence the importance of finding feasible refinements,
also known as implementations. This concept still does not provide a distinction
between programs and specifications.

Theorem: Implementation Theorem.

Intuition: The statement — if a specification has a feasible refinement, it is itself
feasible — seems obvious in light of the words it uses, but in fact requires a proof.

Proof: Let p be the specification and i the implementation; we must prove that
Prep � postp. Weakening tells us that Prep � prei, and feasibility of i that Prei � posti.

Hence property A: Prep � posti. Strengthening tells us that posti �
Prep

postp, hence

property B: posti \Prep � postp. From A and B we deduce that Prep � postp.

2 Operations on Specifications and Programs

The fundamental operations of elementary set theory yield fundamental operations on
specifications and programs:

• Union gives choice (intersection, for its part, does not have a directly useful
application).

• Restriction gives conditionals.
• Composition of relations gives sequence (“compound” or “block” in programming

languages).

162 B. Meyer

• Composition combined with union for symmetry gives concurrency (parallelism).
• Composition of a relation with itself a variable number of times (power) gives

loops.

The following definitions cover all these programming constructs and some others.
Only the first three (those of Sect. 2.1) refer directly to the basic concepts defined so
far; all the rest follow as combinations of these three.

2.1 Basic Constructs

Definition: Choice, Composition, Restriction.

Notation: In the “postcondition” column, the semicolon “;” denotes composition of functions or
relations, in the order of application, so that (r; s) (X) is s (r (X)). (Mathematical texts often use
s o r for r; s.) “Dijkstra” means the notation of [3].

Comment: The first two operators transpose well-known mathematical operations,
union in the first case and composition in the second, to programs. They consequently
retain their symbols, “[” and “;”. No confusion results since it is always clear whether
the operands are sets (including relations) or programs.

Comment: In the definition of program composition, it might seem sufficient to use
post1 ; post2 for the postcondition (rather than (post1 \ Pre2) ; post2); but that approach is
incorrect because post1 could pass on to post2 some elements that do not satisfy Pre2. An
example (with S a set of integers) is p1 = <{[1, 1], [1, 2]}, {1}> and p2 = <{[1, 1], [2, 2]},
{1}>; then post1 ; post2 is {[1, 1], [1, 2]}, but results from applying post2 to 2, not part of
its precondition. At first sight the precondition Pre1 \ post1

−1 (Pre2) appears to guard
against this risk, but it does not: this precondition guarantees that p1 yields at least one
element satisfying Pre2, but does not stop p1 from also yielding other results that do not
satisfy Pre2. (Underlying this discussion is a mathematical property of the image
operator: r (r−1 (C)) � C, a superset property only, not an equality.) We will see that
invariant preservation (Sect. 2.7) also requires the corestriction to Pre2. (Instead of
corestriction we may use restriction: (post1 \ Pre2); post2 is equal to post1; (post2 /Pre2).)

Theory of Programs 163

Notation: For a known set of states S, <post, Pre> is the program of postcondition post and
precondition Pre.

Theorem:

Proof: The definition of feasibility is Prep � postp. For choice, we note that for rela-

tions r1 and r2 r1 [r2 ¼ r1 [r2; for composition, that r1; r2 ¼ r1 \ ðr�1
1 ðr2ÞÞ (for r1 ; r2

to be applicable to an element x, r1 must be applicable to x and yield from x at least one
element to which r2 is applicable); for restriction, that r=C ¼ r \C.

Theorems: Properties of the basic operators directly reflect those of their mathematical
counterparts. Choice, like union of sets, is commutative; composition of programs, like
composition of relations, is not. Choice and composition are associative, so we may
apply them without parentheses to any number of operands, as in p1; p2; …; pn. In
addition:

(Choice, however, does not distribute over composition.) The proofs are straight-
forward but must cover both postcondition and precondition.

The following programs are of interest, all of them feasible, the first two total: Skip,
the identity over S, with postcondition λx: S | {x} (always applicable, changes nothing);
Havoc, with postcondition S × S (always applicable, but we may not assume anything
about the result); and Halt, defined as <∅,∅> (empty relation as postcondition and, for
feasibility, empty set as precondition).

Notation: generalized lambda notation serves to define relations in A ↔ B, using either λx: A |
Y where Y is a subset of B (as here for Skip), or λx1: A; x2: B | p (x1, x2) where p is a two-variable
predicate. A program/specification is total if its precondition is S.

164 B. Meyer

Theorems:

Comment (Varieties of Non-determinism): p1 does not generally refine p1 [p2 because
of the precondition Pre1 [Pre2. “Internal choice”, which has the same postcondition as
choice but the precondition Pre1 \ Pre2, satisfies refinement but not distributivity from
composition, P11. (Consider q = <{[0, 1], [0, 2]}, {0}>, p1 = <{[1, 0]}, {1}>, p2 = <
{[2, 0]}, {2}>: under internal choice the precondition is empty for the left side of P11
and {1} for the right side).

Another terminology is that choice is “angelic” and internal choice can be “de-
monic”. The theory of programs has a demonic sister, obtained by choosing internal
choice for all the operator definitions that rely on choice. The discussion will point out
places where the difference matters.

Notation: “[” for choice is a new example (after “�” for refinement) of extending set
operators to programs. The following application of this idea is also useful:

(There is no need for a restriction notation p /C since we already have C: p.) The first
of the following properties shows that corestriction can be defined from restriction and
composition.

Theorems:

Theory of Programs 165

The restriction and corestriction theorems apply to programs: C : p�C and

pnC�C.

Notation: In the same spirit, the range and domain notations apply to programs: p is a
synonym for Prep; and (more importantly) �p is a synonym for postp (p), the set of
values that p can actually yield.

Properties P20 and P21 extend to all well-behaved operators in the following sense.

Definition: Refinement safety.

Counter-Examples: Intersection of programs, defined as intersecting both postcondi-
tions and preconditions, is not refinement-safe: with a set of integers for S, {0} for all
preconditions, and postconditions {[0, 0], [0, 1]} for p1 and p2, {[0,0]} for q1 and
{[0,1]} for q2, the conditions of the definition are met, but q1 \ q2, with an empty
postcondition, does not refine p1 \ p2, which is just p1. Another counter-example is
program difference (set difference of postconditions, intersection of preconditions). The
theory of programs, however, eschews such operators:

Theorem:

In a corresponding sense, the program properties “functional” and “object-oriented”
are refinement-safe (but not their contraries, “imperative” and “procedural”).

2.2 Atomic Concurrency

Composition, while associative, is not commutative: when we combine existing pro-
grams or specifications, it forces us to decide in which order we want them to perform.
If you find this obligation irksome, you need concurrency. Concurrent combination (in
its “atomic” form) is sequential composition made symmetric through association with
its quintessentially commutative colleague, choice.

Definition: Concurrency.

166 B. Meyer

Theorems: Concurrency is commutative, associative and refinement-safe. In addition:

Concurrency generally does not refine composition, but in one particular case it does.

Definition: Commuting programs.

Example and Counter-Example: If S is the set of functions PERSON → Z, recording
people’s bank account balances, consider an infinite set of programs, defined for any
person p and any integer n: the postcondition of depositp,n expresses that the output
differs from the input only by having the balance of p increased by n, and similarly for
withdrawp,n. All these programs commute with each other. They do not commute,
however, with the program resetp setting p’s balance to zero.

Theorem:

(Not just refinement, but equality. Immediate generalization to more than two
programs.)

Intuition: Commuting programs are a boon for concurrent computation, since they
open up many possible realizations for “computing” program results (finding values
satisfying postp) on actual “computers” (the physical devices that ensure postcondi-
tions). Assume for example a large number of deposit and withdraw operations with
various clients and amounts. If the specification is that at the end of the trading day the
balance of each should be correct (initial, plus accumulated deposits, minus accumu-
lated withdrawals), any assignment of the operations among any number of computers
in any order is suitable. In such cases concurrency is an optimization mechanism.

Comment: Commuting is not refinement-safe: with {0, 1} as preconditions, the pro-
grams of postconditions {[0, 0], [1, 1]} (i.e. Skip) and {[0, 0], [1, 0]} both refine
p = {[0, 0], [1, 0], [1, 1]}, which commutes with itself, but do not commute since
composing them in both orders respectively gives 1 and 0 for 1. Abstraction (the
inverse of refinement) also does not preserve commuting: Skip and p do not commute
even though Skip commutes with itself and refines both. On the other hand:

Theory of Programs 167

Theorem:

2.3 Non-atomic Concurrency

The atomic concurrency operator has a fixed level of granularity, defined by its
operands: if they are themselves complex programs built out of simpler components, it
will not interleave these components. For example let on be “switch on the light”, off
“switch it off” and p “say whether the light is on”. Assuming that in the initial state the
light is on, (on; off) || p will always say no, regardless of which of the operands of “||”
goes first, since (on; off) is equal to Skip.

The practice of concurrency often calls for finer-grain control on concurrency. Here
you might want p to execute at the beginning, in the middle (between on and off), or at
the end. Such flexibility causes much of the difficulty of concurrent programming, since
it opens up the possibility of “data races” (inconsistent orderings of operations, in some
executions only); but a general theory of programming must provide a model for it,
given here by a ternary operator.

Notation: the only new symbol is the comma, used at a place where the semicolon of com-
position could also appear. The reuse of “||” is only for convenience: the “Notation” entry
describes a new three-operand operator. Its “Definition” entry relies on the previously defined
atomic concurrency operator “||”. No confusion arises since the non-atomic operator only occurs
in conjunction with the comma.

Comment: We do need a specific operator, because proposing a distributive-style law
involving standard composition “;” would raise inconsistencies. For example, (on; off) ||
p cannot give any other result than Skip || p; if you want to allow interleaving, you
should specify a finer level of granularity, as in (on, off) || p. In the first case the atomic
unit of concurrency on the left side is (on; off); in the second case there are two atomic
units, on and off.

Non-atomic concurrency is associative on its first two operands p1 and p2, so you
may use commas to separate any number of program operands of non-atomic con-
currency. (Reduced to one operand, as in (p1) || q, atomic and non-atomic “||” coincide,
as they should for consistency.) You may also put q first, writing q || (p1, p2). In other
words, the notation lets you use a comma, to specify a finer granularity of interleaving,
where you might otherwise use a semicolon.

168 B. Meyer

Theorems:

Proof of P41: The left side is (p1; p2; q) [(p1; q; p2), which from P39 (itself a direct
consequence of the definition) is a subset of the right side; similarly for P42. Both of
these properties appear in [8] as fundamental axioms of concurrency, but here they are
simple theorems.

It is straightforward to symmetrize the non-atomic concurrency notation to (p1, p2) ||
(q1, q2), yielding the generalized law of exchange from [8]: (p1 || q1); (p2 || q2) � (p1, p2)
|| (q1, q2).

2.4 Conditionals

Definition: Conditionals.

Notation: C’, for a subset C of S, is its complement: S — C. The usual programming notation is
“not C ” (see Sect. 2.5 below). The guarded conditional is in fact not new since if p1 [] p2 end
was introduced in Sect. 2.1 as a synonym for p1 [p2, but it highlights the important case of p1
and p1 being restrictions.

Theorems: The guarded conditional is commutative; the corresponding property for
if-then else is that (if C then p1 else p2 end) = (if C’ then p2 else p1 end). Both
operators are associative; as a consequence they can be applied to more than two
operands (if-then-else uses elseif for the second to next-to-last branches, as in if C1

then p1 elseif C2 then p2 else p3 end), and to just one: for the guarded conditional, if C:
p end is the same as C: p; for if-then-else, by convention, if C then p end is an
abbreviation for if C then p else Skip end.

Theorems: Both forms are distributive over choice and concurrency, but not over
composition. The guarded conditional is commutative, but not if-then-else. In addition
(direct consequences of earlier theorems, particularly P19 and P21):

Theory of Programs 169

Proof: For P48, see P8 and P9. As seen next, “\” in these rules can also be written
“and”.

2.5 Conditions

Two special conditions are useful for building programs. True is another name for S,
and False another name for the empty set. They should not be confused with the
similarly named constants of propositional calculus: True and False are, like all con-
ditions, sets (subsets of S). In fact the theory of programs relies on set theory rather than
directly on logic, although it is easy to define boolean-like operators on conditions:
and and or as other names for “\” and “[”, not as another name for complement (in
P50 we may write C’ as not C), implies or “⇒” as other names for “�”, and so on.
Here, in addition to P19, are some properties involving operations on conditionals.

Theorems:

Proof: For P54, note that the postcondition of p \ False is postp \ (S × False), that is,
an empty relation (since False is the empty set).

170 B. Meyer

2.6 Loop

Definition: Repetition constructs.

Notation: in the second definition of the while loop, it does not matter how we parenthesize the
“\”; see P27. Since composition is associative, the inductive expression for fixed repetition can
also be written (pi; p).

Intuition: loop p end is the program that performs like p repeated some finite (but
unknown) number of times. Cyclic programs, such as those on embedded devices,
follow this pattern. The rest of the present discussion concentrates on the from a until
C loop b end loop, which starts like a then performs like b, the loop’s “body”, as many
times as needed (possibly zero) until reaching a state satisfying C. In slightly different
terms: for the loop to yield a result from a given input state x, that result must be the
first element of C reached by successive executions of b after a. All the previous states
are not in C, so they are in C’, meaning that what we are iterating is not the whole b but
just C’: b.

From distributivity follows another expression of the loop:

Theorem: Loop Lemma.

Notation reminder: �p, a subset of postp, is the set of values that p can produce.

Intuition: qi represents a restricted version of the loop, which yields a result (satisfying
C) after exactly i iterations. The loop is the union of all such partial versions of it.

Comment: Unlike previous constructs, the loop does not automatically get feasibility
from the feasibility of its operands: it is possible for a, b and all qi to be feasible, while
l is not. (A trivial example is from Skip until False loop Skip end.) A loop is feasible if
and only if for every suitable state s there exists an integer i (typically not the same for
different s) such that a; (C’: b) i ({s}) contains an element in C; in other words, that qi
({s}) is not empty.

Theory of Programs 171

The feasibility condition for loops relies on the notion of invariant.

2.7 Invariants

Definition: Invariant.

Intuition: An invariant is called that way because if it holds before application of p it
will hold afterwards. More precisely, for the initial condition we need not the whole of
I but just p\ I, since results of p only matter when it starts from the precondition. The
following two theorems ensue directly from the definition.

Theorems:

Comment: Properties involving intersection are usually not as strong as those
involving union, because r (I \ J) is only a subset of r (I) \ r (J), rather than equal to it
as with “[”; but P61 has both operators on an equal footing.

Theorem: Invariant Refinement Theorem.

Comment: In practice, the precondition often stays the same under refinement, but in
the general case p2 might have a broader precondition; there is no guarantee that the
original invariant will hold for the new states, hence the restriction to Pre1.

Definition: Invariant-preserving operator.

Example: Program composition is invariant-preserving.

Proof: Assume I is an invariant of both p1 and p2. The definition of program com-
position (Sect. 2.1) gives (post1 \ Pre2); post2 as the postcondition of q = (p1 ; p2). From
26 and properties of image ((r1; r2) (A) = r2 (r1 (A))) and restriction ((C: r) (A) = r (C \
A)), it follows that postqðq\ IÞ ¼ post2ðPre2 \Res1Þ where Res1 ¼ post1ðq\ IÞ. Since
I is an invariant of p1, Res1 � I; since it is also an invariant of p2, then, post2 (Pre2 \
Res1) � I.

172 B. Meyer

Comment: The discussion after the definition of program composition in Sect. 2.1
noted that taking just post1; post2 as postcondition for p1; p2 would not yield a feasible
result: we need the corestriction to Pre2. This property is also essential for invariant
preservation: without it we would be applying post2 not to Pre2 \ Res1 but just to Res1,
on which post2 does not preserve the invariant.

This result about composition is only a particular case of the following general
property.

Theorem: General Invariant Theorem.

Proof: The result for all the basic operators (choice, sequence, restriction) follows
from the set-theoretical properties of relational image, including the following in
addition to those used in the preceding proof: r (C [D) = r (C) [r (D); r (C \
D) � r (C) \ r (D); r (C) \ D � r (C). The subsequent operators (concurrency,
conditional) are defined from the basic ones and retain their invariant preservation.

Every element of the infinite unions that define loops is made out of basic operators
and, by induction, is invariant-preserving. Since union maintains this property, the
loops themselves possess it. They benefit, however, from a more specific form of the
notion of invariant.

Definition: Loop invariant.

The Invariant Refinement Theorem, P62, implies that a “loop invariant” is an
“invariant”, in the general sense, of the part of the loop that comes after initialization
(a). The following theorem yields a stronger form of the relationship between the two
concepts.

Theorem: Loop Correctness Theorem.

Intuition: The theorem characterizes the fundamental property of loops [5, 11]: the
goal of a loop is to obtain on exit (�l) a combination of the exit condition (C) and a
judiciously chosen invariant (I, a weakening of the desired result).

Proof: Since I is an invariant of C’: b, it is an invariant of (C’: b) i for any integer i;
since I is also a subset of �a, it follows that qi � I for every i, with qi as defined in the
Loop Lemma, P58. Then, from the second part of the Loop Lemma, �l� I. In addition,
the corestriction theorem tells us that qi �C as well, again for every i; this property
extends to �l.

Theory of Programs 173

Comment: Despite its fundamental role, the Loop Correctness Theorem does not fully
cover the theory of loops because it says nothing about feasibility. It states that loop
results — elements of �l — possess interesting properties, but not that such elements
exist for every legal input state. In fact, a loop yielding no results at all (an empty �l)
would satisfy the theorem. In the traditional terminology of theoretical informatics, the
theorem is a “partial correctness” result, useful only if we can also guarantee “ter-
mination”. The complementary theorem follows.

Theorem: Loop Feasibility Theorem.

Notation: a “well-founded” (or “Noetherian”) relation is one that admits no infinite chain.

Proof: Assume b[C is a loop invariant and C’: postb is well-founded. For any element
s of a, define S0 as a ({s}) and Si+1 as (C’: postb) (Si). Both Si and qi are subsets of a;
(C’: b) i; what distinguishes qi is that its elements are also in C. Assume that these two
subsets are disjoint for all i. Induction shows that Si is not empty: since a is feasible, S0 is
not empty; and if Si is not empty, the invariant property tells us that Si � b[C; with Si
disjoint from qi this really means Si �ðb[C0Þ which implies, b being feasible, that Si+1,
the image of Si by C’: postb, is not empty. But then elements of successive non-empty
sets in the infinite sequence Si are related by C’: postb, an impossibility since the relation
is well-founded. As a consequence, the disjointness assumption (Si \ qi = ∅ for all i)
cannot hold. So for every s there exists an i such that applying a; (C’: b) i— the program
iterating the loop i times — to s yields an element of C. That element is in qi and hence
in �l, showing that the loop is feasible.

Comment: While the theorem gives a general condition for loop feasibility, it is often
not practical to check directly that C’: postb, the loop body, is well-founded. A standard
technique is to map states to a simpler domain on which it is easier to check that the
counterpart of postb is well-founded, according to the following definition.

Definition: Loop variant.

(Strictly speaking, v only needs to be total on ð [qiÞ [ðC0 \ ð [qiÞÞ.) The existence
of a variant shows that postb itself is well-founded, fulfilling the second condition of the
Loop Feasibility Theorem. The most frequent choice for V is the set of natural integers.

174 B. Meyer

3 Contracted Programs

There is, as noted, no difference of principle between specifications and programs. In
practice we are used to different connotations for these terms. Since the distinction is so
commonly accepted, let us see if we can find a justification serious enough to earn it a
place in the theory of programs.

We already saw that the first attempt, stating that specifications are abstract and
programs concrete, does not make the cut, since “level of abstraction” is a relative
notion (the example was an assignment instruction, abstract for some and concrete for
others). A seemingly more promising intuition is that programs are executable while
specifications are purely descriptive. But that is also not right, even if we ignore the
case frequently made for “executable specification” formalisms and stick to more
traditional forms of the concepts. “Executable” cannot mean “directly appropriate for
execution on a computer”, since in that case the notion would depend on hardware
details. It has to mean “expressible in a programming language’. A staple example is
that Result2 ≅ input is a specification whereas a particular square root computation,
using for example Newton’s algorithm, is a program. But such examples also fail, since
there are many programming languages today in which you can just write
Result2 = input and let the compiler figure out the implementation.

Just like the distinction between abstract and concrete is relative, the distinction
between descriptive and executable shifts with the evolution of language and compiler
technology. To find a true difference, we must look elsewhere.

The relevant criterion is correctness. As captured by the notion of feasibility, a
specification can be inconsistent (if it tells you that the result must be zero and also that
it can be one) or consistent; but it makes no sense to ask whether it is correct. Correct
with respect to what? Probably with respect to the customers’ desires, or to their actual
needs, but these would have to be written down as another, higher-level specification,
only pushing the problem further. We do know, however, what it means for a program
to be correct: it performs according to a stated specification. Correctness is a relative
notion.

Indeed what truly distinguishes a program from a specification, in the common
usage of these terms, is neither the level of abstraction nor the possibility of execution,
but the existence of two programs/specifications in the sense of the present theory, such
that one of them is a refinement (as also defined above) of the other. The following
notation reflects this analysis.

Definition: Contracted program, specification part, contract, implementation part,
correctness.

Theory of Programs 175

Reminder: An implementation of p is a feasible refinement of p. The refinement
theorem, P5, indicates that p is feasible as well. The definition of refinement indicates
that the precondition of b is a superset of Pre and its postcondition a subset of post.
(The name b stands for “body”.)

Intuition and Comment: The notion of contracted program simply introduces a pro-
gramming notation for the concept of refinement. Since a program is useless without a
precise understanding of what it is supposed to do, program authors should only
produce contracted programs. Regrettably, this practice is not yet universal.

The above definition provides a final clarification of what programs in the usual
sense of the term (contracted programs in the present theory) really are: a program is
a proof obligation. Writing require Pre do b ensure post end is a way to state that
b must refine p, and requires the author, before clicking “Compile”, let alone clicking
“Run”, to click “Verify”.

Theorem:

Comment: In this case, since we keep the implementation and go to a new specifi-
cation, we can only strengthen the precondition and weaken the postcondition.

The following concepts are defined for given Pre, post and b.

Definitions: Weakest precondition, strongest postcondition.

Intuition: postb — post is a set difference between two relations, giving us the set of
pairs that belong to the first but not to the second. Its domain, postb��post, is the set of
states for which b produces at least one result that post could never produce. Sub-
tracting this domain from b, the domain of b, gives us the set of states on which b is
guaranteed to agree with post.

The following property justifies the terms “strongest” and “weakest”.

Theorem:

Proof: Let p be <post, Pre>. Since b is a refinement of p, postb �
Pre

post by the defi-

nition of refinement, yielding the first property of the theorem. By refinement, Pre� b;

176 B. Meyer

the just mentioned property postb �
Pre

post implies that postb��post is disjoint from Pre,

so Pre� b��postb��post, giving us the second property.

As a corollary, we get a compact definition of program correctness.

Theorems:

Theorems:

(and so on). As an example of why P74 is not an equality, consider postconditions
{[0, 1], [0, 2]} for b, {[0, 1]} for p and {[0, 2]} for q, all with precondition {0}. Then
both b wp p and b wp q are empty (since b — p has postcondition {[0, 2]} and b —
q has {[0, 1]}), but b wp (p [q) is {0}. This property is related to the comment (after
P25) that in the angelic theory p1 does not generally refine p1 [p2.

Definition: Generalizing refinement to contracted programs.

Comment: It is possible to generalize the definition further by having different spec-
ification parts.

Definition and theorem: Most Abstract Implementation.

Intuition: The most abstract implementation is the specification used as its own
implementation.

Theory of Programs 177

4 States and Environments

The exact nature of S, the state set, varies considerably between application domains
and the formalisms supporting programming (programming languages as defined next
in Sect. 5). Some properties, however, are common to most variants.

4.1 Mappings

The state tracks the evolution, during the computation, of certain elements of infor-
mation relevant to the results. As a consequence, a state almost always includes (as its
essential components) one or more mappings between these elements and their current
values. “Mapping” is a general term roughly equivalent to “function”; in programming,
since the memories of both humans and computers are finite, these functions will also
be finite. S, then, includes components of the form for appropriate
sets of names and values.

Notation: is the set of possibly partial functions, and the set of finite
functions, from A to B. Inclusions are: and

.

4.2 Environment and Store

It is common for the state to have two clearly identified components: the environment
and the store, also known as the static and dynamic parts. In a simple variant, with a set
Var (for “variables”) of names and a set Type representing the types of possible values,
the environment is of the form and the store of the form

. This division reflects the typical process of executing programs on a
computer:

• A first step known as compilation creates the environment.
• The actual computation, known as execution, takes place in the second step, which

builds and transforms the store, constrained by environment built in the first step.

One of the advantages of this approach is that it requires programmers to define
types for every variable, making it possible to detect mistakes (such as applying a
boolean operation to integer variables) in the first step; in that case the second step does
not take place until the programmer has corrected the mistake. Such a process limits the
risk of erroneous computation. Another advantage is that it is not necessary to repeat
the first step once it has succeeded: subsequent executions of the same program,
applied to different input states, can use the result of the compilation.

178 B. Meyer

Definitions: Declaration, instruction.

Intuition: It is good practice to separate the two kinds of operation; declarations set up
the environment; instructions, working in a defined environment, change only the store.

Comment: The characterization of programming styles (functional, object-oriented) in
Sect. 1 properly applies to the store component of the state. So do the definitions of
Skip and Halt (Sect. 2.1) if we wish to treat these operations as instructions.

4.3 Notational Principles: Cartesian Product Considered Harmful

The preceding discussion has stopped short of specifying S as the cartesian product
E ×M where E is the environment andM (for “memory”) the store. It does not even use
the common programming-like “record” notation (environment: E; store: M) (mathe-
matically denoting a function in , where Tag is the set of names to the left
of the colons and U the union of the sets to their right, with the constraint that the
function’s values for the i-th tag are in the i-th set). The two models are isomorphic and
either one would be suitable for a purely mathematical discussion, but for modeling
software concepts they are too constraining.

The reason is that the theory of programs, like the development of programs, calls
for more incremental notations, allowing us to extend and adapt existing models. Both
cartesian product and the record notation are closed: if you have defined a concept such
as “state” through a particular set of components, such as the environment and the
store, and later want to add a component, you must rework all previously defined
operations (functions or relations) on states. An example of such an operation is a
declaration, defined as λ e, m | [d (e), m] where d is an function on the environment (for
example, if e is or includes a mapping in , d yields a new version of the
mapping, extended with a new pair such as [n, INTEGER]). If you add a third com-
ponent to the concept of state, this definition, which yields a pair rather than a triple, no
longer makes sense.

Cartesian product is not the only culprit: definition by alternation is just as bad. It is

common to use definitions of the form L¼D JjK, specifying that an element of L is
disjointly either an element of J or an element of K. (Again there is a simple mathe-
matical model, applicable even if J and K are not disjoint: the notation describes pairs
in {1, 2} × (J [K) such that the second element is in J for 1 and in K for 2, with
generalization to any number of alternatives.) This notation suffers from the same
drawback: adding an alternate breaks all previous derivations.

Theory of Programs 179

In programming, the “object-oriented” method of programming, with its concept of
“inheritance”, is an effective remedy to these problems. Solutions are also necessary on
the theoretical side.

This article does not introduce the details of the appropriate notation but it is useful
to see the principal convention, used as the replacement for cartesian product. When a
set needs to be defined with a number of components, we give each a name, as in

This mathematical notation simply asserts the existence of two total functions,
environment in S → E and store in S → M. Projections are written (for a state s) s.
environment and s.store. A function on composite objects defined from functions on
their components is of the form

denoting a function in S → S, with the important rule that the function leaves
unchanged any component not named, here store; the example is just a notation for the
function that for any state of components e and m yields the state of components
d (e) and m. At first sight, these notations are equivalent to the cartesian product and
record forms, but there is a practical difference: you can include as many “component”
and “on” definitions as you like, even for the same target set S, in an incremental
fashion. In many cases, the existing specification can remain unchanged; in particular,
existing function definitions using on do not name the new components, and indeed in
general they do not need to change them, so you can just rely on the rule that anything
not named is unchanged.

Such definitions are cumulative: mathematically, the resulting specification is the
cartesian product of all the on … component declarations. (This convention assumes
that the network of declarations involves no recursion; it can be extended through
fixpoint techniques to support recursive definitions.) A similar convention applies to
sets defined by alternation.

In both cases, a simple notation supports “lifting” an operation on a component into
an operation on the whole. For example if d is an operation on the environment it is
convenient to treat it also as an operation on the state, which as in the above on …
component example leaves all other components unchanged.

This article will not need further details of these techniques, but it is important to
know of their existence, since they are useful for the practical development of speci-
fications and programs.

180 B. Meyer

4.4 Kinds of State

While the precondition is a set of states, the postcondition in the general case is a
relation over two states, initial and final; a common term is “two-state assertion”. For
example, we may want to specify that the initial state contains a positive number
(precondition, a set) and the final state its approximate square root (postcondition, a
relation between input and output).

Some postconditions, for example “the output is positive”, do not involve the initial
state:

Definition: Markovian, one-state.

Notation: x r y, for a relation r, expresses that [x, y] 2 r (the relation connects the two elements).
The equality in the definition is equivalence (equality between two boolean properties).

Intuition: A Markovian postcondition characterizes only the final state, regardless of
the input.

Comment: A useful program produces different results for different inputs, and so is
generally not Markovian if considered as a whole. But postconditions are often
expressed as intersections (conjunctions) of properties, some of which can be
Markovian; for example the result’s square is close to the input and the result is
non-negative. The Markovian property can also characterize intermediate steps in the
program. This observation extends to the following state properties.

Definition: Trivial, irrelevant, relevant.

Intuition: If a state is trivial, a transition to any other state will fulfill the postcondition.
If it is irrelevant, it plays no role in whether the next state satisfies the postcondition.

Theorem:

Proof: We may assume a non-empty Pre. (⇒) Assume the specification is feasible. If a
state s in Pre is irrelevant and not trivial, s post s1 holds for no s1. Feasibility implies
Pre� post, meaning there is an s1 such that s post s1, yielding a contradiction. (⇐)
Assume every state s in Pre is either trivial or relevant. If it is trivial, it is in post. If it is
relevant, then there exist s1 and s2 so that either s post s1 or s post s2, so it is also in
post.

Theory of Programs 181

5 Languages and Programming

“Programming” is the act of writing correct programs according to the preceding
definitions. Such a program has two parts: the contract represents the goal of the
program, as advertised to its users; the implementation represents the operations that
will run on the computer. The definition ensures that the implementation matches the
contract.

5.1 Programming Languages

If the contract is given, in the form of Pre and post, programming consists of solving
require Pre do b ensure post end, viewed as an equation of which b is the unknown.

The Most Abstract Implementation, as defined above, yields a trivial solution, often
non-deterministic, to the equation: postb = post /Pre, Preb = Pre. The reason why that
solution is generally of little use, and programming an interesting endeavor, is the
practical difference between contract and implementation. For b we seek a relation
postb that a material computer can process (not necessarily directly, but through the
services of tools such as “compilers”). For the specification, since the goal is to
describe the problem, we can rely on a broader set of mathematical mechanisms.

In both cases we need a repertoire of mathematical tools to build programs and
specifications.

Definition: Programming language, specification language.

Intuition: A programming language is a set of possible programs. Any useful pro-
gramming language is infinite, but it is derived from a few basic postconditions and
preconditions, and a few operators to combine them. Many of these basic elements,
introduced in the earlier sections of this presentation, can be used by programming
languages regardless of the application domain:

• Havoc, Skip and Halt as base programs, with True and False (S and ∅) as base
preconditions.

• The program construction operators of Sect. 2, including the three basic ones
(choice, composition and restriction) and those derived from them (concurrency,
conditionals, loops).

Beyond these universal elements, a language will offer specific mechanisms for the
intended application domain, beginning with a suitable set S of states and a suitable set
of operations over S.

182 B. Meyer

Since specification and implementation are often considered separate activities, it is
frequent to find separate specification and programming languages. A better approach
is to use a single language; this approach is in fact required if we want to produce
correct programs (contracted programs), which include both a contract and an
implementation. (As noted after the definition of refinement, it is possible to define a
variant of the theory in which the state set changes under refinement, but at the price of
much added complexity.) Many contemporary approaches to producing reliable soft-
ware are hampered by this failure to understand the fundamental unity of the pro-
gramming process: in spite of the obvious differences in levels of abstraction, the
problems and solutions, for which this presentation offers a mathematical framework,
are the same. (Reference [13] discusses the seamlessness of the development process in
a software-engineering rather than mathematical context, and [14] develops its appli-
cation to software requirements.)

Absent such a single framework, not only is it hard to produce correct software;
even expressing what it means for the program to be correct is a challenge, since the
implementation and specification belong to different worlds (such as an ordinary
programming language and some specification framework). One must define a map-
ping between these two worlds, an approach that introduces complexity and introduces
its own correctness issues.

With a single S and a single specification and programming language, the language
description will identify, among the language’s mechanism, the subset suitable for
implementation. Then the requirement on program authors is simply to produce a final
version require Pre do b ensure post end of the program in which the implementation
part b only relies on that subset. Establishing correctness means establishing:

• Refinement: b � <post, Pre>.
• Feasibility: Pre� post (or alternatively, thanks to the implementation theorem P5,

Preb � postb if the preceding condition holds).

One can express these properties convincingly, and prove them, since all three
components, post, Pre and b, are part of the same mathematical framework, even if the
last one restricts itself to a subset of that framework’s mechanisms.

5.2 Approaches to Programming

The most common approach to programming today ignores the Pre and post elements
of the definition, concentrating only on building implementations b from a program-
ming language with the hope that in some informal sense they will match the corre-
sponding user needs. We may call this the “hacking approach”; it has little to commend
itself if correctness is part of the objectives.

At the other extreme, a “refinement approach” [1, 15, 17] has made its mark in
informatics research and led to such development methods as B. If we set out to
implement a given contract, the Most Abstract Implementation theorem P75 tells us
that we may use the contract itself — specifically, <post, Pre> — as its own first

Theory of Programs 183

implementation. Refinement as a software development method starts with this first
version and repeatedly takes advantage of theorems to choose a “refinement” in the
sense of the formal definition, P2 and P3, of the previous implementation until reaching
an implementation that belongs to the implementation part of the language.

This approach is elegant but faces some obstacles:

• Hindsight: we seldom know the entire specification in advance. This uncertainty is
not necessarily a mark of incompetent software engineering: the very process of
implementation suggests new elements of specification — “esprit de l’escalier” as
discussed in [13].

• Extendibility: even if the specification is initially clear, it usually changes as a
project progresses and after initial deliveries. If a change affects a property that was
used in an early step of the refinement process, it becomes necessary to redo much
of the work. (Invariants, which play an important role in refinement methods, can
help control this change process [2].)

• Reusability: A top-down refinement process does not easily take into account
implementations previously produced for variants or subsets of the problem. It is
desirable for a development process to accommodate a bottom-up component,
supporting reuse.

The ideal process should combine the best elements of the “hacking” and “re-
finement” approaches, retaining the practicality of the first and the rigor of the second.
It is not the goal of the present discussion to present such a process, but a general
definition helps set the stage.

Definition: Programming.

The starting point for any step in the process may indifferently be:

• A contract element, for which we have to devise a satisfactory implementation
(top-down).

• Existing implementation elements (bottom-up). Ideally these elements already have
full contracts. In practice, they often have no contracts, or incomplete ones; part of
the process then involves uncovering the precise intent of the components and
writing the contracts.

This approach seems to yield the necessary flexibility while accommodating the
need for rigor and proofs. It yields a useful view of programs.

Slogan: Program.

184 B. Meyer

6 Discussion

This article applies to programming the standard method on which science and engi-
neering rely to solve practical problems in any application domain:

• Develop a mathematical model resulting in equations (in the present case, the
feasibility equation Pre� post and the program equation require Pre do b ensure
post end, where b is the unknown).

• Solve the equation.
• Build the solution in the application domain.

The main argument for the model developed in the preceding sections is the
simplicity of its premises: the mathematical baggage is elementary set theory, learned
in high school around the age of 15; the construction relies on just three mechanisms
from that theory: union, composition and restriction. The approach seems to have the
potential to cover all the relevant concepts of programming, although the present article
takes only a first dig.

6.1 Axioms or Theorems?

In theoretical informatics the habit has often been different: devising axiomatic theo-
ries. The most developed example is the admirable work of Hoare and colleagues
[7, 8]. A notable property of these efforts is that they postulate their laws; then “of
course, the mathematician should also design a model of the language, to check
completeness and consistency of the laws, to provide a framework for the specifications
of programs, and for proofs of correctness” [7]. The justification for this method —
postulate your ideal laws, the model will follow — is that it has, in Russell’s words
cited in [9], “the advantages of theft over honest toil”.

However good the wisecrack, this is not how normal mathematics works. Unless
your last name is Euclid or Peano, or your first name Alfred or Bertrand (and even in
this last case, only if you have a hereditary peerage), few people will pay attention to
axioms you assert on them as if walking down from Mount Sinai. Imagine a world
where every mathematical concept were defined axiomatically; in trigonometry, sine
and cosine would be postulated as functions satisfying certain properties — the sum of
their squares is 1, the derivative of the former is the latter, and so on; and similarly for
every important notion. People would quickly tire of having to make incessant leaps of
faith.

We expect instead, when presented with new results, to see them derived, in the
form of definitions and theorems, from what we already know. True, it is often a mark
of elegance, for the presenter of a theory and of the laws that it satisfies, to prove that it
is the simplest possible construction satisfying these laws; but it is a mark of politeness
to perform this feat only as a bonus step, coming after an explanation relying only on
material already familiar to the reader.

Stretching Russell’s aphorism, we may note that even if Balzac’s observation (“The
secret of great fortunes without apparent cause is a forgotten crime”) may explain the
origin of some hereditary peerages, just as axioms explain the foundations of

Theory of Programs 185

mathematics, in practice most hereditary peers find it less bothersome to obtain the
objects of their daily desires through “honest toil”, or at least honest means, than by
stealing.

These observations do not rule out occasional reliance on the axiomatic method in
the introduction of theories. Aphorisms aside, however, it is hard to justify asserting
properties as postulates when they can be proved as theorems. When a manageable
mathematical derivation from known concepts exists, it should be the first choice.

As the presentation of the theory of programs has attempted to show, such exactly
is the situation with programming. Programs are just relations over sets. An informal
and non-exhaustive review of the axioms of classic articles such as [7] and its extension
to concurrency [8] (not considering properties specific to individual calculi), as well as
[6, 10], suggests that most of the properties they introduce can be derived, often
straightforwardly, from the framework of this article; many indeed appear above as
theorems.

Many authors seem to have a suspicion, conscious or not, of the set-theoretical basis
of programming; but most — an important exception is Hehner with his “predicative
programming” [6]— resist the obvious solution of explicitly building the theory on that
basis. They prefer to throw in axioms, even if these axioms mimic the elementary
properties of set operators. A dizzying example is the seminal “Laws of Programming”
article [7] (together with the more recent [8]), whose authors axiomatically introduce
operators with names such as “[” for non-deterministic choice and “�” for refinement.
They never suggest that these could actually be the standard mathematical operators
bearing the same names; but they cover several pages of Communications of the ACM
with such fascinating “axioms” as P [(Q [R) = (P [Q) [R. One wonders whether the
thought ever arose that if it associates like union, commutes like union, distributes like
union, and typographically uses the exact symbol of union, perhaps it is union.

6.2 Keeping Simple Things Simple

Because informatics already struggles to describe inherently complex phenomena, we
should not introduce complexity of our own making. Programming theory does not
always keep the complexity of the descriptions commensurate with the complexity of
the described. Another seminal paper of great elegance [10] introduces the “natural
semantics” of the if-then-else conditional thus:

q j � ðE2) aÞ
q j � ðif True then E2 else E3 endÞ) a

Z

with a similar rule for the False case. In words: if in the environment ρ the expression
E2 evaluates to α, then in ρ the expression if True then E2 else E3 end also does. The
companion rule tells us that if E3 evaluates to β the expression with False instead of
True evaluates to β.

In reality, if-then-else is a very simple concept. It expresses that one may solve a
problem by partitioning the domain into two parts and using a different solution in

186 B. Meyer

each. Euler would undoubtedly have explained it to his 15-year-old princess pupil [4]
by a little illustration:

and she would have understood on the spot. (A pedagogical presentation of the theory
of programs’ concepts should indeed use Euler-Venn diagrams throughout, although
this article has shunned them under the presumption that its putative audience does not
need pictures.)

Instead, the above “natural” semantics refers to advanced concepts of mathematical
logic and notions such as the “environment” (ρ), which are a distraction from the idea
of a conditional instruction. These observations do not put into question the value of
[10] and other classic semantic articles, which were conceived as research advances,
not tutorials. But they highlight the benefit, as a domain gets understood better, of
seeking simplicity and trimming down the set of prerequisite concepts to the
indispensable.

6.3 De-emphasizing the Program Text

One source of complication in theories of programming is reverence for the program
text.

Almost every discussion of programming — where “almost” is just to be on the
safe side — starts by defining a programming language. (Denotational or operational
semantics often starts with two languages, one to express programs and the other to
express their meanings.)

This attitude seems to be a leftover from the early days when parsing was the
difficult problem. Programmers and theorists were awe-struck when Backus, Bauer,
Hopper and others showed that instead of coding with zeros and ones it was possible to
use a human-readable notation and have it translated automatically. The program text
became the alpha and omega of programming. But it is only an artifact. A computer is a
mathematical machine for computing pairs in relations. All the rest is decoration.

Programming is no more about programs than electricity is about plugs.
Parsing is the original computer science problem and even though it has long lost

its theoretical difficulty it remains our unconscious template for all others. Semantic
specification, for example, often looks like a smarter kind of parsing, also starting from
program texts and deriving its properties — just more interesting properties. Denota-
tional semantics, in particular, defines “meaning functions” operating on program texts.
Electrical engineers, if they worked that way, would start from plugs, dutifully noting
how different Swiss, French and Italian plugs are from each other. In reality, of course,
what counts is the electrical current — the same in all three countries, with their
interconnected networks — and specifically the relevant equations.

In programming too a more productive approach — the application to semantics of
the idea of unparsing, the reverse of parsing — is to start from an analysis of what we

Theory of Programs 187

need mathematically: what kinds of postconditions and preconditions give rise to useful
specifications and realistic implementations. From this analysis we construct pro-
gramming notations, not the other way around. For example we do not start from
if-then-else as a given construct of interest, but identify the union of two relations as a
relevant concept. We consequently derive suitable notations to express it, each adapted
to different mathematical situations: if the relations’ domains are provably disjoint, if
C then p else q end; otherwise, the guarded conditional if C: p [] D: q end.

Far from lessening the value of the traditional objects of interest in informatics,
such as programs and programming languages, this reversal of perspective makes them
even more interesting, turning them from arbitrary products of taste and circumstance
into rationally justified modes of expression for useful mathematical concepts.

6.4 The Basic Duality

The presentation of the theory has highlighted a characteristic property of program-
ming: the natural need for two distinct methods to assess what a program can do and
whether it will actually get to do it. This separation is hardly a revelation: in theoretical
discussions of programming it recurs under many guises, such as partial correctness
versus termination, safety versus liveness, loop invariants versus loop variants. The
present discussion provides more evidence of its inevitability. Note the two loop
theorems (Loop Correctness, P64, and Loop Feasibility, P65) and the separate defi-
nitions of “program” and “feasible program”. Even the attempt to define “correct
programs” in a single formula, P68, requires two operands reflecting the two sides of
the question. In [3] Dijkstra also attempted to cover loops through a single rule, but in
practice one must still separately use an invariant and a variant. Partly blessing, partly
curse, the duality seems to be an inescapable part of informatics, reflecting some
built-in limits of human reason.

7 Perspectives

The thesis of this article is that it is possible to found all of programming on a small set
of concepts from elementary set theory. The discussion has shown the basic applica-
tions, but is only a start. (Also note that the theorems have not been mechanically
checked.) Future tasks include:

• Reconstructing entire programming languages on that basis.
• Using the theory to build a “Formal Language Innovation Platform” (FLIP) for

experimenting with programming language mechanisms.
• Developing it towards specific approaches to programming, particularly

object-oriented.
• Assessing whether the approach can produce effective program verification tools.
• Assessing whether it can help teach programming, including at the elementary level.

188 B. Meyer

Acknowledgments. The authors invoked explicitly or not in Sect. 6 (Hoare and coauthors,
Kahn, Dijkstra, Scott/Strachey/Plotkin and other pioneers of denotational semantics), comple-
mented by Abrial for his work on Z and B and by Mills and Gries, deserve deep acknowledg-
ments for pioneering the formal approach to programs and programming. Back’s and Morgan’s
seminal work on refinement (following Wirth’s) is another fundamental inspiration. Hehner’s
work on Predicative Programming is a comprehensive theory of programming based on binary
relations, corresponding to the postconditions of the present work. (I am also indebted to him for
a particularly careful reading of the first draft.) Also influential have been informal comments by
David Parnas on the merits of different assertion styles. A note by Shaoying Liu [16], criticizing a
purported deficiency in classical refinement approaches (the risk of refining into an unfeasible
program), suggested the need for a proper notion of feasibility.

I am grateful to Daniel de Carvalho and Colin Adams for corrections on the first draft.

References

1. Back, refinement papers
2. Michael Butler: Personal communication
3. Dijkstra: A Discipline of Programming
4. Euler: Lettres à une Princesse d’Allemagne sur divers Sujets de Physique et de Philosophie,

pp. 1760–1762
5. Furia, Meyer, Velder: Computing Surveys invariant article
6. Hehner: Predicative Programming
7. Hoare: Original paper on Laws of Programming
8. Hoare, van Staden: Newer article
9. Hoare, van Staden: Slides accompanying [8]
10. Kahn: Natural Semantics
11. Meyer: IFIP 1980 paper
12. Meyer: ETL
13. Meyer: OOSC
14. Meyer: Multirequirements
15. Morgan: Programming from Specifications
16. Shaoying Liu: paper and slides from the 2014 Futatsugi Festschrift
17. Wirth: Stepwise refinement

Theory of Programs 189

	Theory of Programs
	1 Programs
	2 Operations on Specifications and Programs
	2.1 Basic Constructs
	2.2 Atomic Concurrency
	2.3 Non-atomic Concurrency
	2.4 Conditionals
	2.5 Conditions
	2.6 Loop
	2.7 Invariants

	3 Contracted Programs
	4 States and Environments
	4.1 Mappings
	4.2 Environment and Store
	4.3 Notational Principles: Cartesian Product Considered Harmful
	4.4 Kinds of State

	5 Languages and Programming
	5.1 Programming Languages
	5.2 Approaches to Programming

	6 Discussion
	6.1 Axioms or Theorems?
	6.2 Keeping Simple Things Simple
	6.3 De-emphasizing the Program Text
	6.4 The Basic Duality

	7 Perspectives
	Acknowledgments
	References

