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Preface

The LASER Summer School, organized by the Chair of Software Engineering at ETH
Zurich, covers the concepts and practice of software engineering. Since its inception in
2004, the LASER Summer School has focused on an important software engineering
topic each year. This volume contains selected lecture notes from the 10th LASER
Summer School on Software Engineering: Software for the Cloud and Big Data, held
during September 8–14, 2013, in Elba, Italy, and the 11th LASER Summer School on
Software Engineering: Leading-Edge Software Engineering, held during September
7–13, 2014, in Elba, Italy.

This book contains contributions by Sebastian Proksch, Veronika Bauer, and Gail C.
Murphy on building a recommendation system; Michael Jackson on behaviors as
design components of cyber-physical systems; Carlo Ghezzi, Giovanni Paolo Gibilisco,
Claudio Menghi, and Marco Miglierina on a control-theoretic approach to self-adaptive
systems; Sebastian Burckhardt on consistency in distributed systems; Sven Amann,
Stefanie Beyer, Katja Kevic, and Harald Gall on software mining studies; and Bertrand
Meyer on a theory of programs.

We would like to thank the lecturers and their co-authors for contributing to this
volume. We are grateful to Claudia Günthart, Nadia Polikarpova, Julian Tschannen,
and the members of the ETH Chair of Software Engineering for assisting with the
organization of the LASER Summer School. We thank Google, Microsoft, and ETH
Zurich for their financial support.

September 2015 Bertrand Meyer
Martin Nordio
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Abstract. Software developers must interact with large amounts of dif-
ferent types of information and perform many different activities to build
a software system. To ease the finding of information and hone work-
flows, there has been growing interest in building recommenders that are
intended to help software developers work more effectively. Building an
effective recommender requires a deep understanding of the problem that
is the target of a recommender, analysis of different aspects of the app-
roach taken to perform the recommendations and design and evaluation
of the mechanisms used to present recommendations to a developer. In
this chapter, we outline the different steps that must be taken to develop
an effective recommender system to aid software development.

1 Introduction

Software developers perform many different activities when building a software
system: writing code, testing code, deploying to the cloud, coordinating via email
and meetings, and many more [70]. Each of these activities requires finding and
interacting with different kinds of information, using different tools and deter-
mining and preparing for the next activity to perform. For example, as part of
writing code, a developer may inspect other code repositories to understand pos-
sible solutions, may browse web sites with relevant programming information,
and may ask colleagues for information before programming a possible solution
to the problem at hand and preparing to test the solution. For novice devel-
opers, performing these activities can be overwhelming. For expert developers,
performing these activities near optimally is often impossible.

To ease the performance of activities and help hone workflow, recom-
mender systems for software engineering have been introduced. Recommenders
for software engineering are “software applications that provide information
items estimated to be valuable for a software engineering task in a given con-
text” [97]. Software developers are used to interacting with some recommenders
that are directly related to coding activities. For example, in many integrated

c© Springer International Publishing Switzerland 2015
B. Meyer and M. Nordio (Eds.): LASER 2013-2014, LNCS 8987, pp. 1–42, 2015.
DOI: 10.1007/978-3-319-28406-4 1
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development environments, such as the Eclipse IDE1, there are recommenders
to overcome such problems as missing import statements in Java code. Recom-
menders for other activities and workflows have also been proposed, including
recommenders for where code should be restructured [29], for which commands
to learn next [76], and for requirements discovery [38], to name just a few. Rec-
ommenders for software engineering have been shown to provide productivity
benefits; for example, the Eclipse Mylyn recommender, which provides individ-
ual recommendations of which source code is associated with a task, has been
shown to improve developer productivity [53].

Given the wide range of activities a software developer performs, there are
many untapped opportunities for improving software development with recom-
menders. In this chapter, we break the process of building a new recommender
down into a series of steps:

– framing the problem (Sect. 2),
– determining the inputs (Sect. 3),
– building the recommender (Sect. 4),
– delivering the recommendations (Sect. 5), and
– evaluating the utility of the recommender (Sect. 6).

We describe each step using an example of a recommender to help a devel-
oper use an API of a library or framework with which they are unfamiliar.
There are many ways in which such a recommender may be built and in how
the recommender provides recommendations to a developer. As one example,
the recommender could watch the code the developer is writing. If the developer
becomes unsure of which type or method in an API of the framework to use,
the developer can ask the recommender for suggestions. Based on the parts of
the framework the developer is using, information collected about how other
developers have used the framework and documentation and tutorial informa-
tion gathered from web pages about the framework, the recommender could
produce a list of suggested parts of the framework to use along with associated
documentation.

Through this chapter, we use the following terminology. We use the terms
toolsmith to refer to the individual or individuals designing and developing a
software engineering recommender. We use the terms user and developer to
refer to the individual making use of a software engineering recommender.

2 Framing the Problem

The first step in building a recommender is to determine what problem the
recommender is intending to solve and to determine the assumption that a rec-
ommender can provide suggestions of value to a developer facing the problem.
We refer to the many activities in this step as framing the problem.

1 www.eclipse.org, verified 15/11/14.

www.eclipse.org
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The definition for a software engineering recommender we described in the
introduction provides a basis on which to investigate the problem and solution
targeted by a recommender. Specifically, when considering building a recom-
mender, we must be clear about the task and context to which the recommender
will apply. Additionally, we must consider for what kinds of developers, or target
users, a recommender is intended.

The notion of a task targeted by a recommender refers to the particular goal
of a developer at a given point in time, such as to implement an assigned feature
in source code. Although a developer is always aware of the current task, the
task may not be explicitly represented.

The notion of the context of a recommender refers to the information and
tool environment in which the task is being performed, such as the source code
and other artifacts available and the set of tools that can be used to perform
the task. The context also captures the steps of a developer’s activities for the
given task.

The notion of target users for a recommender helps define when and what
kinds of information a recommender might provide: novices typically have fun-
damentally different information need compared to expert users. Whilst the first
group might find frequent proposals helpful, the latter often has a low tolerance
for interruptions of their work that present already known facts.

Example 1: Task, context, and target users

For the recommender to help a developer use an API introduced in Sect. 1,
the task is to find relevant types from the API to implement a specific piece
of functionality by means of an unfamiliar library or framework.

The context includes the source code on which the developer is working and
web pages, including question and answer sites and open source repositories
that provide examples of use of the parts of the framework of interest. The
context may also include the actions a developer has taken recently in the
development environment, such as recent searches for types or recent changes
to the code.

Our target users are experienced developers using a specific framework
with which they are unfamiliar.

In the absence of a recommender, developers may need to invest signif-
icant effort to manually search web pages and repositories. This may entail
significant interruptions to their workflow, decreasing their productivity [71].

2.1 Understanding Task and Context

Obtaining a detailed understanding of the tasks that a recommender should sup-
port is critical for the success of the recommender. Without a detailed under-
standing, mismatches may occur between the perception of a task and the reality
of a task that render recommendations invalid.

Assessing the Problem: A first activity to undertake is to assess the problem
in terms of its generality, its frequency of occurrence and the impact of not
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addressing the problem adequately. We use the term generality to refer to
the range of kinds of developers and range of different kinds of contexts—or
situations— across which the problem occurs. We use the term frequency to
refer to the number of times the problem occurs in a given context. We use the
term impact to refer to the severity of the problem, measured in such ways as the
perceived productivity gain or loss or the cost of recovering from the problem.

Example 2: Challenges

When using an API, the vocabulary problem [30] occurs frequently: a devel-
oper might correctly assume the presence of a specific functionality. However,
they might not guess the terminology or logical structure that the framework
designers used to capture the respective concepts [40]. As a result, they will
lose a significant amount of time before finding the required information.

Detailing the Problem: After establishing that a task is relevant enough to expend
effort to provide support, we need to understand the task in detail. This involves
understanding the scope of the task, the time at which it appears in different
workflows, and the different contexts that exist when the task manifests. Based
on this information, we need to pin down which aspects of a task we might
support with a recommender. Observational study of developer activities and
workflows is a rich method for obtaining a qualitative and detailed understand-
ing of the task of interest. Furthermore, this study method can reveal useful
information about the context and the preferences of the target user group.
Other study methods can help to complete the picture; for instance, qualitative
and quantitative surveys and interviews can add requirements and clarifications
that may have been hidden during observation. We can distill the pieces of infor-
mation retrieved from the qualitative studies into scenarios and use cases that
allow us to focus clearly on the specific situation we are going to support with
the recommender.

Example 3: Assessing the problem

Observation: During coding, a developer reaches a point at which the devel-
oper is no longer sure which method of a framework’s API to use next.
The developer browses through the API by scrolling through the results
of the code completion offered by the IDE. The developer looks to see if
a more experienced colleagues is available. Last, the developer switches
to the browser and formulates tentative queries to find a solution. Once
a suitable solution has been found, the developer copies the solution into
their IDE and adapts it to their context.

Interview: In a follow-up interview, the developer states that she was expect-
ing a different logical organization of the framework. Furthermore, she
was reluctant to switch to the browser immediately because this inter-
rupts her train of thought. In the end, she realized that she had expected
different vocabulary for the given context.
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Table 1. Methods that support framing activities based on [66].

Method Scope Types Sources

AEIOU Find components of
problem domain

Qualitative, Exploratory [116]

Contextual
inquiry

Understand workflow,
discover invisible work
items

Qualitative, Exploratory [9,46]

Think aloud
protocol

Capture reasoning guiding
task execution

Qualitative, Exploratory,
Evaluative

[28]

Observation Collect sequence of
interactions

Qualitative, Exploratory [37,55,108,
120,121]

Interviews Collect judgement and
impressions of target
users

Qualitative, Exploratory,
Generative,
Evaluative

[55]

Laddering Extract reasoning behind
claims (e.g., during
interviews)

Qualitative, Exploratory [36,39,95,99,
114]

Literature
reviews

Understand current
approaches including
benefits and limitations

Qualitative, Exploratory [11]

Concept
mapping

Integrate multiple sources
of information

Qualitative, Generative [5,6,87,88,93]

Personas Clearly define target
user(s)

Qualitative, Generative [17,18,25,33]

Scenarios Identify concrete
situation(s) of interest

Qualitative, Generative [15,16,33,103]

Although we have presented these activities as first in a chain of activities
to build a recommender, the activities may be interspersed with activities from
other steps. In particular, choosing the aspects of a task to support partially
involves considering available inputs (detailed in Sect. 3), investigating techni-
cal feasibility (see Sect. 4) and considering potential delivery mechanisms (see
Sect. 5).

2.2 Supporting Methods and Techniques

There are many techniques available to help determine and assess the problem.
Table 1 outlines specific methods that can be used for framing. We might need
to begin with an exploratory technique to broadly understand the problem and
the situation in which it occurs. When we need to better understand aspects
of the problem in detail, a qualitative technique may be helpful. A generative
technique helps suggest possible solutions based on how a user works. As we
understand the problem in more detail, we might form hypotheses about the
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People in your situation regularly used
the following types and methods:

some.other.Type

yet.another.One

doSomething() : int 

yet.another.One 

otherCall(String, int) : void 

Fig. 1. Hotspot recommender

People with a similar navigation history
usually visit the following :

some.other.Type 
yet.another.One 
package.TypeName 
invent.more.Names
the.last.One

Fig. 2. Navigation recommender

problem and potential solutions that an evaluative technique can help assess to
further a toolsmith’s understanding. As a toolsmith frames the problem, he or
she will use multiple of these techniques. To further investigate a technique, the
table indicates sources for further information.

2.3 Framing Results

The activities undertaken to frame the problem enable answer to the following
questions:

– Who will be the user of the recommender?
– What problem is solved by the recommender?

• In which contexts can the recommender be used?
• When does the supported task start and end?

– Which solution is offered by the recommender?
– What is the value proposition of the recommender?

To provide concreteness to the outcome of framing, we answer these questions
for four different aspects of the API usage problem that have been addressed by
recommenders reported in the literature.

All examples assume that a developer works in an IDE and writes source code
that uses a library or framework. The recommenders support common tasks like
navigation in the code base, searching for examples, learning an API, and solving
the task in case the developer is stuck.

Hotspot Recommender: For frameworks, it is often the case that some enti-
ties of the framework are supposed to be used in the context of others. In most
user interface frameworks, for example, it is common to derive a super class
that represents a Pane and to add widgets like Button or TextField to it.
Another example is static methods that are used to access special entities of the
framework.

User: Novice developers that are still unfamiliar with an API.
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Problem: Writing source code in the editor of their IDE, novice developers are
often not aware of classes relevant in their current context. They lose time,
because they have to identify good terms first in order to find them or ask
colleagues for help.

Recommender: The recommender suggests classes and methods that are regularly
used in the current context.

Value: Time is saved when learning a new API. Even developers who know the
API can benefit from convenient suggested access to relevant classes.

A sketch of a possible interface to a recommender that provides this kind
of support is shown in Fig. 1. Working examples have been introduced in prior
work, for example by Bruch et al. [13] and by Kersten [52].

Navigation Recommender: Object-oriented programming modularizes code
into separate classes. Code must represent many different crosscutting concerns;
the modularization can only capture a small number of concerns, leading to
code for a concern being scattered across classes. To understand and change
crosscutting code, developers have to navigate through many classes.

User: Developers working with existing code bases.
Problem: It is necessary to visit a number of different classes to understand or

change all affected locations for a change of a crosscutting concern. Search-
ing is not an efficient mechanism to use, because the locations are usually
unknown and difficult to locate through search. As a result, developers spend
significant time browsing the source code and may miss locations of interest.

Recommender: The developer is pointed to other locations in the code base that
are related to the current task.

Value: Developers work more efficiently with lower cognitive overhead and the
likelihood of missing a location is lower.

A sketch of a possible interface to a recommender that provides this kind
of support is shown in Fig. 2. Working examples have been introduced in prior
work, for example by DeLine et al. [22], Singer et al. [106], and Lee and Kang [57].

Snippet Recommender: To use frameworks and libraries efficiently, it is not
uncommon that multiple classes of the framework have to be combined to work
together. These classes have to be instantiated, configured, orchestrated, and
executed as intended by the creators. In orchestrating this interaction, there are
non-obvious pitfalls, such as implicit interaction protocols, necessary checks for
corner cases, or simply incompatible configurations. Developers regularly search
for working example code to understand how a specific API is used correctly.

User: Developers who work with frameworks or libraries.
Problem: Developers who lack experience with a particular API may find the

API difficult to use. Sometimes, a single small piece of code is the difference
between gaining the functionality desired from the framework or not. Find-
ing examples of how to use a framework takes a lot of time and it can be
challenging to find useful examples.
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Snippet Recommender

try {
     ServerSocket server = new ServerSocket(8080);
     Socket client = server.accept();
     Writer out = new PrintWriter(client.getOutputStream(), true);
     Reader isr = new InputStreamReader(client.getInputStream());
     Reader in = new BufferedReader(isr);
} catch(Exception e) {
     e.printStackTrace();
}

try {
     ServerSocket server = new ServerSocket(8080);
     Socket client = server.accept();

Same enclosing context
You also use ServerSocket.accept()
Most people use BufferedReader here

Fig. 3. Snippet recommender

Recommender: Related code snippets are provided that show how a specific API
is used in released software.

Value: The most common rule in software engineering is monkey see, monkey do.
Seeing how something is done correctly can significantly shorten the time to
learn it.

A sketch of a possible interface to a recommender that provides this kind
of support is shown in Fig. 3. Working examples have been introduced in prior
work, for example by Holmes et al. [44], Nguyen et al. [80], and Sahavechaphan
and Claypool [101].

Documentation Recommender: When learning a new API, the first step is
often to read the documentation, the FAQs, and the tutorials provided by the
creators of a framework. However, the resources are often outdated or do not
exist at all. These resources may also not cover special cases as these cases were
not anticipated by the creators of the framework. Sometimes, the framework
simply does not meet the expectation and behaves differently. As a result, many
developers use Q&A sites, such as StackOverflow2 or other platforms, to find
help or discuss their issues.

User: Developers that work with frameworks or libraries.
Problem: User-generated documentation is scattered across the internet, but it

is hard to find for an individual developer. Most of the time the biggest chal-
lenge is finding the best search term to find the best document. Searches can
require significant time and developers are likely to miss relevant information
posted to an arbitrary platform.

Recommender: Related posts from various sources in the internet are aggregated
and presented to the developer. They refer to the same context and discuss
similar problems.

2 stackoverflow.com, verified 18/02/15.

http://stackoverflow.com
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Documentation Recommender

Is Socket.read(byte) guarante...
What to do when ServerSoc...
ServerSocket listenes without...

seem relevant to your current task:

Fig. 4. StackOverflow recommender

Value: The time to find related documentation is significantly reduced.

A sketch of a possible interface to a recommender that provides this kind of
support is shown in Fig. 4. Working examples have been introduced in prior work,
for example by Henß et al. [42], Ponzanelli et al. [90], and Subramanian et al. [110].

3 Determining the Inputs

The toolsmith of a software engineering recommender must determine the inputs
available to make a recommendation. The inputs available are dependent upon the
context in which the intended recommender is to be used. If the recommender is
to be used during programming in an IDE, there may be a number of inputs read-
ily available including the source for the system and documentation for libraries
being used. If the recommender is to suggest discussion threads in a forum, only
information referred to in the forum may be available. When a toolsmith intends
to make use of historical information as part of the possible inputs, the toolsmith
must also determine how much of the historical information may be relevant to the
recommendations. For instance, the past history of a source code file may not be
relevant to a recommender suggesting how to overcome import statement prob-
lems in Java code, whereas the entire history of a forum may be relevant to deter-
mining to which discussions a current discussion pertains.

When designing the recommender, the toolsmith must consider the following
questions:

– What kinds of information will the recommender require? For instance, will
the recommender require source code, requirements, or information about a
developer’s activities?

– For each kind of information required, will the recommender require only the
current state of the information or also historical information? For instance,



10 S. Proksch et al.

will the recommender require only the current state of a source file or previous
revisions of the source file stored in a source code repository?

– If historical information is required, how far back in the history is the infor-
mation relevant? For instance, are all issues in an issue repository relevant or
only the past few months or years?

– If a desired source of information is not available in all instances, what are
the alternatives? How will the lack of the information affect the quality of the
recommendations?

To give a sense of the range of issues that must be considered by the tool-
smith, we outline the range of types of input data that might be used and the
preparation that might be required on those data types to be usable by the
recommender.

3.1 Kinds of Input Data

There are multiple kinds of input data that could be used to drive a recom-
mender. All input kinds come with advantages and drawbacks. There is no input
class that is generally better than the rest, the toolsmith has to pick or combine
inputs that are suitable for the recommender at hand.

Static Analysis. Input data may be generated by a static analysis of source
code, either from the program on which the developer who will receive recom-
mendations is working or from the large repositories of open source data that
are accessible. The input data gained from static analysis is precise by definition
because it follows the rules of the programming language. However, it can be
challenging to ensure the source code of interest can be processed. For instance,
all dependencies must be resolvable if the source code must be compiled. Addi-
tionally, toolsmiths may need to use a pre-processing or a screening step to
ensure source code considered is of a suitable quality.

In addition to the information taken from the analyzed source code (e.g.,
involved types, invoked methods, etc.), further information about the editing
process can be included as well (e.g., edit location, last change, etc.).

Example 4: Input from static analysis

To generate input for the Hotspot Recommender, a static analysis could
extract all imports for each class to link all references between classes. For a
more precise linking, the references could be extracted on method level, such
that information about which other methods are called from within a specific
method body is available.

User Feedback. A valuable kind of input data is feedback provided by devel-
opers that use the recommender, which may come via implicit feedback that is
generated by transparently tracking interactions or explicit feedback provided
by users. Unfortunately, this kind of input can be difficult to gather both due to
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ensuring appropriate consent is obtained and due to needing to motivate users
to participate in providing feedback.

Tracked user interactions can be interpreted as implicit feedback [51]. For
example, it is often possible to transparently capture all interactions of a devel-
oper while she is using an IDE. To achieve this, all existing tools have to be
instrumented so that using the tools generates interaction events that can be
stored. For example, to identify which features of an IDE are used, you could
add a second listener to every button and menu item that logs every click in the
IDE. Previous research has conducted such experiments [74].

While implicit feedback primarily contains information about the recom-
mender that is used, it also provides feedback about the task at hand. Consider
the case where a tool like the default code completion in Eclipse is instrumented
to capture all interactions. The collected data can be used to analyze how devel-
opers typically use code completion, but it is also possible to use it as input to
build a new recommender system for intelligent call completion [4].

Example 5: Generating navigation traces

Navigation traces could be tracked by monitoring the interaction of a devel-
oper to generate input for the Navigation Recommender. These traces describe
how a developer navigated in the source code. Assuming that developers are
not just randomly navigating all files, the order in which files were visited can
be interpreted as implicit feedback about the relatedness of different files. It
is expected to find patterns in such a data set taken from a large crowd of
developers even though novice developers might visit irrelevant files regularly.

The tracking can happen on different levels: a simple approach could track
the order in which files are opened or visited [106]. A more sophisticated
approach could add more meta-data to those navigation steps to differentiate
more, such as the navigation kind (e.g., the file was opened by browsing the
source code or by explicitly searching for it), timing information (e.g., how
long was the file visited), about the actions in the file (e.g., did the user scroll,
were changes made), and so on.

Examples of explicit feedback are numerical ratings of recommendations, the
reordering of proposals, or adding comments. A more traditional approach would
be to use a questionnaire to learn about opinions and preferences of users. While
the former can usually be incorporated when a recommender system is built, the
later kind of feedback is hard to incorporate as input. However, it can serve as
data for the evaluation of the system so its value should not be underestimated.

Example 6: Rating code snippets

Additional input for the Snippet Recommender could be generated by giving
the developer the option to mark unrelated snippets. These rating can be used
to further improve the data mining techniques or for evaluation purposes.

Whatever feedback is about to be collected –implicit or explicit– it is nec-
essary to think about means of anonymization and to respect the privacy
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of the participants. Many people, especially developers, are very concerned about
this and will not participate otherwise.

Unstructured Input. It is hard to use unstructured input to build a recom-
mender, because at some point it needs to map to structured elements that are
proposed to the developer. However, a plethora of unstructured information is
available in the internet, which makes considering it as input worthwhile. Map-
ping structured and unstructured information works in both directions.

Destructuring: Source code is an example of a very structured form of input.
However, it also contains substantial semantic information for the developer
that is irrelevant for the compiler. Examples of the semantic information are
identifiers in the source code like variable or method names and descriptions
or explanations in comments. Noise can be reduced from this information by
applying text mining techniques like stemming [64], by using automated spell
correction to remove typos, or by identifying characteristic terms with a term
frequency analysis [102].

Domain knowledge in software engineering can help to further improve the
quality of the data. For example, it is common practice to split identifiers at the
humps of the camel case notation [41]. Of course, there are also problems that
cannot be tackled automatically, such as uncommon abbreviations or the simple
fact that comments might be written in different languages.

Example 7: Destructuring of structured information

For the running example, we could tokenize the source code, split identifiers
into words, and identify characteristic terms in comments. This converts a
structured class file into a plain-text document that can be processed by
established information retrieval techniques.

Structuring: Another source of input is the internet with reams of unstructured
documentation and knowledge about software engineering tasks. Traditional
sources are examples in books, tutorials, or lists of frequently asked questions.
These traditional sources are often provided by the originators of the item of
interest, such as a library or language, to demonstrate the use of the item. Newer
examples of unstructured documentation are user-provided content in such form
as blogs, forum posts, wiki pages, bug reports in issue repositories, or question
and answer sites (e.g., StackOverflow).

Often, the unstructured content is labeled with structured elements; this
labelling occurs in bug trackers, references to commit ids, ratings for postings,
amongst others. The unstructured content may also contain semi-structured ele-
ments; that is, parts for which structure is expected but cannot be enforced as
in example code snippets in postings and bug references in commit messages.
If these semi-structured elements are preserved or if hidden structure can be
recovered, they can help in mapping the content back to structured elements.
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Example 8: Structuring of unstructured information

StackOverflow threads could be analyzed to generate input for the Documen-
tation Recommender. For each thread, a vector of characteristic words could
be created. Additionally, a dictionary could be created over all threads that
contains the most characteristic words for StackOverflow discussions. The lat-
ter is used to locally identify characteristic words in a source file. After that,
related threads could be identified.

Another example that extracts information from StackOverflow was given
by Subramanian et al. [110]. They created a tool called Baker that can recover
code snippets from postings, add code elements to make them compile, and
resolve all contained types. This type information is very valuable for the map-
ping of a source file under edit to relevant documentation on StackOverflow.

3.2 Preparing the Input Data

Once the input necessary to build the recommender is determined and an appro-
priate source for this data is identified, the input data has to be collected and
transformed into a format that is processable by a machine.

Collection: A toolchain is necessary that automatically extracts the input data
from the data sources. In addition to providing an import tool that extracts
information from the input source, it is also necessary to think about a data
management strategy. The extracted data need to be systematically stored on
the hard-drive to make it easy to maintain it. This is true for all steps of the
building process and all generated intermediate artifacts.

Clean-Up: Automatically extracted input data is usually very noisy: the data
points can be incomplete, erroneous, or duplicated. The data needs to be cleaned
before it is used in further steps and checked for validity. If a data point is iden-
tified as incorrect, it should be corrected—if possible—or discarded otherwise.
It is important that this filtering is done very carefully and that the amount of
filtered data points is analyzed. If the ratio of filtered data is too big, it might be
necessary to provide a more robust implementation of the data collector instead.

Preprocessing: The collected data is usually not directly processable, because it
is optimized for space efficiency, ease of collection, or for any other reason. A
preprocessing step has to be applied to the raw data to transform it into a format
that is processable by the following steps. Several collected data points might be
aggregated into a single data point or the information might be enriched from
other sources.

4 Building the Recommender

Once the inputs are determined, the toolsmith must choose one or more mech-
anisms for taking the inputs and transforming those inputs into a set of recom-
mendations. This set may be empty, may have just one recommendation or may
have a number of, possibly ranked, recommendations.
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There are a variety of mechanisms that can be used to build a recommender
system. Felfernig and colleagues break the mechanisms into collaborative filter-
ing, content-based filtering and knowledge-based recommendation [50]. In this
chapter, we briefly describe a broader set of mechanisms: static information,
heuristic, data mining and machine learning, and collaborative filtering. We do
not try to provide a comprehensive description of each mechanism category but
instead describe how each mechanism might be applied to provide the example
recommender we have been considering in this chapter. Our intent is to demon-
strate that no one mechanism dominates, but instead the choice of mechanism
must be made in concert with the quality of the recommendations to be produced.

4.1 Static Information

Perhaps the easiest approach to creating a recommender is to build upon the
syntax or the static type system of a programming language. All necessary infor-
mation is taken from the editing environment and the programming language.
Examples of such a system are the Eclipse code completion3 or Visual Studios
IntelliSense.4 Another example is a syntax recommender that completes language
constructs like loops, conditions, etc.

Naturally, a recommender of this type typically performs well in terms of the
speed of providing recommendations because few computations are necessary
that are not already being performed. On the other hand, recommendations only
reflect syntactically correct and type safe completions. The recommendations are
not sensitive to the task at hand and are not based on any rationale so many
proposals may be meaningless. As a result, a lot of recommendations may be
presented to a developer and the expected precision of the recommendations
is low. A recommender like this might be used by novice developers to explore
available options or by seasoned project members to understand an existing code
base during maintenance tasks.

An example of a more sophisticated approach that leverages type information
isBaker, a tool that resolves types in code snippets from StackOverflow [110]. After
the resolution is done, it is possible to bidirectionally link the example snippets and
the corresponding API documentation. A link to the API is very convenient when
browsing StackOverflow, and a list of usage examples of an API element is helpful
to understand correct usage when reading the API documentation.

Example 9: Static information

A simple approach to build the Navigation Recommender aggregates all types
used in the class currently under edit. The aggregation is presented in a list
to provide an overview of frequently used items and to provide short cuts for
the navigation. A drawback of this simple approach is that it cannot link new
items, which are not yet included in the code. For further improvement, a
ranking could be introduced to the listing by ordering the items according to
the occurrence count.

3 http://www.eclipse.org/jdt/overview.php#JDT Text, verified 02/14/15.
4 http://msdn.microsoft.com/en-us/library/hcw1s69b.aspx, verified 02/14/15.

http://www.eclipse.org/jdt/overview.php#JDT_Text
http://msdn.microsoft.com/en-us/library/hcw1s69b.aspx
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4.2 Heuristics

A heuristic approach provides solutions for a problem that are based on experi-
ence or intuitions. No perfect proposals are expected from such systems, quality
is usually traded in for execution time, memory consumption, or implementation
effort. Sometimes these approaches are also called “recommendation systems in-
the-small” [49].

There are three ways to come up with such heuristics. The straightforward
approach is to leverage the experience of an expert in that domain. The heuristic
reflects the intuition of the expert about the problem. However, it is also possible
to identify heuristics in a more systematic manner. Data mining techniques can
be applied to an available data set, to identify the heuristic and optimize or
validate it for this dataset. Alternatively, by instrumenting the recommender
tool and logging interaction with it, machine-learning techniques can be used to
learn and refine the heuristic for the recommender on-the-fly.

Using heuristics for a recommender system has several advantages. They
are comparably easy to implement, because they are usually not built with a
sophisticated data mining technique. Therefore, it is not necessary to provide
a complex infrastructure or big datasets as input to create a model for the
recommender. Additionally, proposals can usually be computed very fast because
the computation is only based on local data.

However, there are also some drawbacks. A heuristic does not produce optimal
solutions, the precision and recall of the proposals is usually lower than for
more sophisticated approaches. Additionally, substantial experience is typically
necessary to identify valid and helpful heuristics and even then, it is still possible
that the intuition of the expert is wrong.

There are many examples where heuristics are used to create recommender
systems in software engineering. Suade identifies related groups of program
elements and links them together [96]. Strathcona recommends source code
examples similar to the current coding context, which are matched with sim-
ple heuristics [45]. Quick Fix Scout ranks quick fix5 proposals by the reduction
of compilation errors that a selection results in [78].

Example 10: Heuristic recommender

A trivial heuristic for the documentation recommender example is to use the
current location in the source code to extract a search query for StackOver-
flow. For example, a search query could be generated that just contains the
unqualified names of all implemented interfaces of the current class or the
name of method that encloses the current coding location. The search query
could be passed to StackOverflow and all resulting threads are just listed in
the browsing window of the recommender.

5 QuickFix is an Eclipse tool that can be triggered to get context sensitive support.



16 S. Proksch et al.

4.3 Data Mining and Machine Learning

Applying data mining or machine learning techniques to explore large amounts
of data can also create recommender systems. The availability of increasing
amounts of open source software and corresponding artifacts (e.g., bug reports)
makes it more feasible to build recommenders in this way. The goal is to find
re-occurring relationships or to detect patterns in the data that present valuable
information about the inner workings of software.

Data mining and machine learning are rapidly changing areas, the techniques
in these areasmost related to recommendation systems in software engineering are:

Pattern detection: Often, the amount of available data makes it necessary to
reduce information before it can be used to create recommendations. Many
techniques exist that solve this by reducing the data to identified patterns,
such as frequent items mining, association rule mining, or clustering. Apply-
ing these techniques is very common in the area of recommendation systems
for software engineering [2,13,57,61,63,65,72,112].

Classification: Often it is necessary to classify new data points and to assign
labels in an automatic way. A simple application of this approach is a junk
detector for a mailbox, but it is also relevant for software engineering. An
example application is the detection of outliers or anomalies [91,117]. It
is also relevant in many recommender systems for the identification of the
proposal that is most similar to a given context.

Information retrieval: and text mining Large amounts of data are available in
the internet. However, most of it is stored in an unstructured form. There
are many approaches that extract or recover knowledge from unstructured
sources [40,43,64,90,102,110].

Online learning: In many cases, the data to be mined is not available when a
recommender is build. Many approaches suffer from this cold start problem6.
Online learning solves this issue with incremental learning [4]. The mining
of increments, instead of complete datasets, also improves scalability.

Feature learning: It is hard to identify relevant features that best describe the
current context. Previous work presented automated approaches that sup-
port this step [10,81].

In the area of recommendation systems in software engineering, these topics
are usually intertwined and are not mutually exclusive. For example, after apply-
ing clustering techniques to build a model from data, classification techniques
are used to find the best cluster in case of a request to the recommender. Another
example is the application of information retrieval techniques to various sources
to extract data. This data is analyzed afterwards with data mining techniques.

If a new recommender is to be built, there is not the one optimal technique
that every recommender should use. The best solution always depends on the
concrete recommendation problem. Exploring and developing possible solutions

6 Also called the ramp-up problem [97].
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is usually an iterative approach that requires the toolsmith to analyze inter-
mediate results and improve the learning stepwise by fine-tuning configuration
options. Usually many configuration options exist and have to be evaluated to
find the best combinations. To give a sense of the ways in which data mining
and machine learning can be used, we cover several techniques that apply to the
recommenders we introduced in Sect. 2.3.

Frequent Itemset Mining. Can be applied to databases of items I =
{i0, i1, ..., in} to detect set of items that frequently occur together. The apri-
ori algorithm is the standard way to detect frequent itemsets [3]. The core idea
of the algorithm is to calculate the support of all items, i.e., their count in the
database. Afterwards, the items are combined to sets of items. A set is discarded
if its support is lower than a defined threshold.

This kind of data-mining has been successfully applied to create recommen-
dation systems for software engineering. Nguyen et al. created the mining tool
GrouMiner that extracts code snippets from a large corpus of example source
code [83]. Li et al. base their inference of violation rules for their tool PR-Miner
on frequent itemsets that are mined from source code [59].

Example 11: Frequent itemset mining

To come up with a snippet recommender, the structural context can be used.
All programming constructs (e.g., loops, conditions, statements, etc.) are
broken down into smaller pieces. Similar to GrouMiner, these pieces are
iteratively combined to identify frequent snippets. If a recommendation is
requested, the structural context of the current edit location is used to find
and rank related snippets. The snippets are then presented to the developer
in an ordered list.

Association Rule Mining. Can be applied to databases of items I =
{i0, i1, ..., in} to detect relations between items [2]. The mining algorithm identi-
fies rules for reoccurring item combinations of the form A ⇒ B, where A,B ⊆ I.
A is called the antecedent or body, B is called the consequent or head. Each rule
also has values for confidence and support. The confidence value denotes how
likely it is to observe B if A is given, the support denotes how likely it is to
observe A. The apriori algorithm first mines frequent item sets in the database
and uses those sets to infer the association rules [3].

Based on a given set of mined rules, proposals are generated by finding
matching rules with unfulfilled implications. For example, assume that a rule
ix → iy, iz was learned. Assume further that the recommender is triggered in a
context where ix can be extracted from the context, but iy or iz are not present.
In such a case, both could be recommended. Instead of creating boolean propos-
als, the recommender could be further refined by calculating a probability for
each proposal by taking confidence and support of affected rules into account.

Association rule mining was successfully applied in the area of recommenda-
tion system in software engineering, for example in [13,61,65,72].



18 S. Proksch et al.

Example 12: Create a hotspot recommender

To create the hotspot recommender based on association rules, the available
input information is restricted to the structural context information of the
current enclosing method of the code that is edited (context ci) and all fully-
qualified method names mj that can be observed in that context. It is easy
to bootstrap a database consisting of the items I = {c1, .., ci,m1, ...mj} by
analyzing a source code repository.

The association rules are mined in the database, in which each data point
consists of a single context c and multiple method invocations mj . The same
information is extracted from source code being edited by the developer and
used to calculate proposals, whenever a recommendation is requested.

Clustering. Is usually applied to identify patterns and to group similar items.
Using the same input as for association rules, one could use clustering algorithms
like Canopy [68], K-means [62], or Expectation Maximization [23] to group sim-
ilar items in the data into a cluster. All items in a cluster can be reduced to
a representative value; for example, by averaging over all items in a cluster to
calculate its centroid or by selecting the most representative item that is closest
to the centroid. Huge amounts of input data are reduced to a smaller number
of clusters, this leads to smaller models, better scaling approaches, and removes
noise from the data.

After the input is clustered, a separate strategy is necessary to create pro-
posals. In case of a request to the recommender system, a query is generated
from the context of the developer. The query is then classified according to the
clusters to come up with proposals. You can use the best match or a combination
of the most similar examples to the query and combine them for the recommen-
dation [12]. An alternative is to use probabilistic approaches like naive Bayes to
assign a probability instead of assigning a single class and propose a list.

Clustering was successfully applied in the area of recommendation system in
software engineering, for example in [57,63,112].

Example 13: Clustering

The approach to create a hotspot recommender by means of clustering is
very similar to the previous example. The algorithm uses the same database
I, detects similar items and groups them together in a cluster. In case of a
recommendation request, a list of proposals can be generated from the cluster
that is most similar to the context in which the recommender was triggered.

Event-Stream Mining: Frequent episode discovery can be applied to detect
frequently reoccurring patterns in streams [1,56], these patterns are often called
sequences or episodes. A stream s consists of events e1, e2, ..., en. Approaches
that mine event streams often assume that the events build a Markov chain,
a special case of a hidden Markov model [82]. These chains have the property,
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that the probability of any event en is only influenced by the previous i events
en−i, en−i+1, ..., en. Restricting the event stream like this is often called a sliding
window approach [31].

To apply these concepts to create recommendation systems for software engi-
neering, the problem at hand either has to have event-based input or needs to
be mapped to an event stream. There are examples were this was successfully
applied. Wasylkowski et al. mapped source code to an event stream and mined
temporal properties [117], this approach could be easily adapted to mining of
navigation traces. Singer et al. mine the navigation histories of developers to
identify related files [106]. Pradel et al. mined event streams taken from execution
traces to capture usage protocols in automata [92]. Gabel et al. created an app-
roach that learns and enforces temporal properties in method call sequences [31].

Example 14: Navigation-event stream

The navigation steps of developer form a stream of navigation events. A nav-
igation recommender could be built by mining this stream to identify reoc-
curring navigation sequences. Whenever recommendations are requested, the
navigation history of a developer is then used to propose likely next navigation
steps to related files.

Text Mining: Prior work has shown that source code is natural and that it
is possible to build a language model that captures the regularities [43]. There-
fore, it is possible to apply established techniques from text mining to extract
knowledge, as already discussed in Sect. 3.1.

Prior work introduced different ways to bridge the gap between unstructured
information and the structured world of source code in which the developer is
supported. Heinemann et al. tokenized source code and included variable names
to better capture the intention of a developer [40]. Ponzanelli et al. identified
important terms in source code [90]. They used these terms for a textual search
on StackOverflow and ranked the results. Subramanian et al. recovered hidden
source code structures from StackOverflow posts [110]. They introduced deduc-
tive linking to resolve missing typing information and bidirectionally link API
documentation and examples on StackOverflow.

Example 15: Text mining

Text mining can be applied to create a documentation recommender. In a first
step, all postings of StackOverflow are analyzed and characteristic terms are
identified for all threads. If a recommendation is requested by a developer, the
current source file is analyzed in a similar fashion: the source file is tokenized
and characteristic terms are extracted for it. Proposals are created by finding
the threads that are most similar to the current development context.
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4.4 Collaborative Filtering

With collaborative filtering, a large dataset can be filtered for information [32,
111]. Observing the interactions of multiple users with items of a system gen-
erates the dataset. Examples of these interactions could be “buying a book”,
“reading an article”, or “rating a post”. The interactions can be positive indi-
cators (e.g., a specific interaction was observed), boolean ratings (e.g., like or
dislike), or continuous ratings (e.g., five-star rating).

There are two different approaches to use this data for recommendations.
A user-based approach interprets the interactions as preferences of a user that
describe opinions or personal taste. To generate recommendations for a user,
similar users are identified based on shared preferences. Preferences of these
similar users that are still unknown to the user in question are then proposed
by the system. While this works well, the approach does not scale in practice. A
newer approach is an item-based calculation. An item-to-item matrix is created
that contains pairwise similarities of all items in. The similarity sim(ia, ib) is
calculated based on the ratings of all users that rated both items, usually the
cosine similarity is used for that. Existing ratings of a user u for items similar to
p are used to calculated the expected rating r(u, p), i.e., an item p that is still
unrated by user u. The drawback of this approach is that recommendations are
not only based on a user but also on an item. To come up with the best recom-
mendation, a recommender would need to iterate over all items and calculate
the expected rating.

Collaborative filtering can be applied in different domains by mapping the
concept of users and items accordingly. In the area of software engineering, a user
could be a class definition and items could be method invocation. If a method
invocation m exists in class c, it represents an interaction of c with m [69,118].

Example 16: Collaborative navigation recommendations

A recommender for the navigation recommender example could be created
with collaborative filtering: assume that the navigation history between dif-
ferent contexts c is tracked for a developer with tuples of the form (cfrom, cto)
where each tuple represents one navigation step. The rating of each navigation
step is determined by its usefulness for the developer. This rating could be
decided based on a threshold, such as higher rating is assigned if a developers
stays in the target context long enough, if changes are performed there, or if
the developer does not return to the original context. These tuples are used
to build a large context to context matrix that contains the similarity of all
contexts. This matrix is used to recommend the next navigation step to a
developer by identifying users with similar navigation preferences.

Developers navigate all the time and they work on very different tasks each
day. Simply aggregating the traces by user mixes up navigation histories for
different tasks and is of little help to identify similar navigations. To make the
navigation traces more precise, they should be generated by coding session or -
if possible - even by task, to make it easier to find similar navigation histories.
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5 Delivering the Recommendations

Even if a recommender can provide perfect recommendations, the recommender
is not helpful unless it is designed to deliver the recommendations such that the
recipient can act upon the information in a timely manner without interrupting
or distracting more important parts of a task. Although there are many ways to
deliver a recommendation, careful design is necessary to meet the constraints of
providing recommendations. Even though a developer might need the informa-
tion, it should be presented at a suitable point in time, at which the developer
is not interrupted (e.g., after a specific time of inactivity or after a save action).

The following examples discusses trade-offs for the delivery of different rec-
ommenders that were introduced in Sect. 2.3.

Example 17: User requirements delivery

Considering the snippet recommender, the recommender might be capable of
auto-completing the proposed source code snippets in the editor. Depending
on the scope of the recommended snippets, user feedback may be required for
the auto-completion, such as selecting or creating missing types. A developer
that is using this recommender may expect an immediate response time and a
clear presentation of available options. The developer may also want to see an
explicit presentation of the differences between available recommendations.

Considering the documentation recommender that proposes related web
pages, the recommendation might happen at a different time, even after the
developer has integrated a recommendation into their code. When presenting
ranked articles from the web, developers may be willing to wait longer for
presentation of the information than for an auto-complete mechanism, as long
as this delay does not block their workflow. Information that is not provided
immediately should be presented in a separate window.

5.1 Delivery Quality Factors

Murphy-Hill and Murphy propose five quality characteristics that must be
considered when delivering recommendations, namely understandability, trans-
parency, assessability, trust, and timing [77]. These quality characteristics follow
the natural flow of activities and decisions a developer using a software engineer-
ing recommender must make. If the flow is smooth between a developer’s actions,
the willingness of developers to rely on the recommender may rise. Frictions in
this workflow risk interrupting the train of thoughts of developers using a rec-
ommender, who, subsequently, will perceive the recommender as a burden to
their work.

Example 18: Delivery quality, user and toolsmith perspectives

In designing the delivery mechanism for our API usage recommender, we must
consider the following questions.
Understandability: What does the recommender suggest?

The API usage recommender will present the user with snippets of



22 S. Proksch et al.

framework code implementing a specific functionality, suggesting to
include the code at the currently active point in a source code editor.
From a toolsmith perspective, it is necessary to understand the exact
steps of the delivery, e.g., which options are presented to the developer to
select and insert the recommended code.

Transparency: Why is the recommendation provided in this context?
To justify the recommendations, our recommender would present reason-
ing based on which the recommendations were derived, such as: “in similar
contexts, other developers have used the following functions”. The tool-
smith should consider the amount of detail needed by the developer to
comprehend the reasoning behind the recommendation.

Assessability: Is this recommendation relevant to my task?
Our recommender complements the recommendations on the code level
with information from the web, presenting the user with natural language
descriptions of the recognized issues. This “summary” might increase the
speed in which the user can assess the relevance to their current task.

Trust: Will the recommender integrate the proposed change in a good way?
When proposing changes to the code that exceed the scope of a few lines,
the front end needs to provide the user with the possibility to interact with
the insertion process. Possibilities could be guided stepwise execution of
code changes, or a preview mechanisms.

Timing: When is the recommendation most useful?
There are several scenarios that can be supported with the example rec-
ommenders. In one scenario, the recommendation might be useful when
the developer is stuck with their current task. In this case, we could wait
for them to invoke the recommender manually. In another scenario, we
could make the developer aware that there is a better way to solve their
current task as soon as the recommender is sufficiently confident that the
proposed solution is beneficial over what the developer is currently doing.
For each scenario, toolsmiths should consider the exact workflow to find
out natural points for providing the information to the developer.

Toolsmiths aiming for a smooth delivery need a very detailed understanding
of the task, context, and user group they want to support (see Sect. 2). If these
have been carefully framed initially, we can fall back on rich sources of informa-
tion when designing the delivery mechanism. It is important to note that, whilst
framing greatly increases the chances to get the user interface right, we still need
to plan for several iterations to validate and improve our delivery mechanism (for
UI evaluation methods see Sect. 6).

When selecting options for delivery, toolsmiths need to make choices in two
important domains: interaction and presentation.

5.2 Interaction

Depending on the nature of the information presented by the recommender,
toolsmiths need to choose between proactive or reactive paradigms to bring the
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results to the attention of the developer [77]. In the former, the recommender
provides the user with results proactively whilst in the latter, the user explicitly
prompts the recommender. Triggers for proactive recommending could be specific
actions executed by the user, such as navigation and browsing patterns, or the
specific current work context. Whilst a proactive interaction ensures that users
do not miss potentially useful recommendations, it risks distracting users when
it does not exactly fit their current needs. Thus, proactive interaction should be
used only when the timing of the recommendation is critical (i.e. the recommen-
dation is only useful right now and not at a later point) and the relevance can
be assessed quickly.

For more extensive information with a longer validity, the user’s attention
can be attracted proactively; however, this should occur in a non-invasive way
that allows the user to defer the reaction to a later point in time.

Example 19: Interaction choices

According to our framing, we want to support developers that are in the
process of implementing a given functionality with an unfamiliar framework.
This task requires them to build a clear mental model of what they are trying
to achieve. Our recommender provides two kinds of information to support
this task: on the one hand, it proposes functions of the framework by means
of code in the style of the snippet or hotspot recommenders. On the other
hand, it provides usage guidance from established websites, as proposed by the
documentation recommender (for details on the recommenders, see Sect. 2.3).

Our recommender could support developers by means of a combination of
proactive and reactive interaction, depending on their preferences and usage
scenarios: we can assume a scenario in which developers will invoke the recom-
mender whenever they do not know how to continue. We can, therefore, choose
a reactive paradigm for the code recommendation, minimizing the interrup-
tions to the user’s workflow. To ease the assessability of the recommendations,
we could proactively display the matching web resources for each recommen-
dation the developers assess. In another scenario, we might provide the code
recommendations proactively, and present additional information only when
the developer prompts for it. In this scenario, the timing for drawing the
developers attention to the recommendations is critical to avoid distraction.

Since both scenarios provide benefit to developers, we could consider offer-
ing both interaction modes and allow users to pick which they consider more
suitable for their current task.

To make a decision for either of the paradigms, toolsmiths need to consider
when information is required and how long it will be valid. These factors weigh
against the cost of interruptions and context switches. In addition, studying the
paradigms with which the developer usually performs similar tasks provides cues
on how to craft a smooth integration into their workflow. The less friction the
developers perceive, the higher they will estimate their productivity [71] and the
value provided to them by the recommender.
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5.3 Presentation

Three questions need to be answered with respect to the quality criteria intro-
duced in the last section.

First, what kind of information must be shown to the user? If the recom-
mendation involves information that is close, in terms of cognitive distance, to
the user’s current task, it might be sufficient to show the user the suggestions
proposed by the recommender, possibly enhanced by pretty printing highlight-
ing key words or concepts. Users need to establish a complex mental model to
understand and assess the recommendations. Therefore, the toolsmith needs
to provide background information and possibly provide additional information
to surface why a recommendation is being made. It is important to consider
the type of information that our recommender delivers. Does it communicate
structure, locations in code, natural language, and key concepts? How many ele-
ments or information chunks does the recommender need to convey? Different
ways exist to visualize software related information, the section depends on these
characteristics (e.g., [24]).

Second, how will we make the information in a recommendation accessible?
Our initial framing of the problem (Sect. 2) could help here in deciding whether to
provide a separate tool or to integrate the recommender into an existing toolchain
and interface. The integration of a recommender into a toolchain has to consider
the interactions that make sense when no recommendations are available or when
supplementary material, such as retrieved from a website, is unavailable due to
being offline or on a slow connection.

Third, how should we capture the user’s attention when recommendations
are available? Many options are available, ranging from visual cues, such as
annotations in editors, to popup windows [77]. Again, the results of framing
may provide us with cues as to which kind of notification might be acceptable
for the given situation.

Example 20: Visualization choices

According to our framing, we want to support developers that are implement-
ing a given functionality. The required framework is unfamiliar to them. We
aim to support them with suitable code propositions as well as background
information on how to solve the given problem within the framework. This
means that they will be focused on working within their IDE. To minimize
the friction of using the recommender, it might be a good option to integrate
the recommendations in their given development environment.

UI Representation Options. The UI choices are influenced by the nature of
the information, as well as by the chosen representation: One approach is to pig-
gyback our recommendations onto existing UI concepts. For instance, code rec-
ommenders often hook into already existing auto-complete functionality, which
is usually triggered by keyboard shortcuts, thus integrating seamlessly into a
developer’s workflow. Using known graphical expressions, such as annotations
and icons, is another way to tap into a conceptual vocabulary that is known to
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Fig. 5. A potential API usage recommender - In this example, navigation, snippet, and
documentation recommenders (see Sect. 2.3) are integrated into separate windows of
an IDE. We build on the Prompter system that automatically suggests StackOverflow
question and answers that may be relevant to the code being written (two views on
right of screen) [90]. The recommender also shows classes used commonly by developers
as part of using this API, building on ideas presented in Team Tracks for sharing
navigation information, and an example of the API in use (bottom left of the screen),
building on ideas from the Strathcona system for recommending examples [45].

our users. This way of reusing proven concepts has the benefits of being intuitive
to our target group. However, this way of presenting recommendations carries
the significant risk to overload the work environment. Current IDEs feature 500+
keyboard shortcuts7 (involving up to four keys) which makes finding a suitable

7 Counted from an eclipse cheat-sheet at http://de.scribd.com/doc/60629986/
Eclipse-Keyboard-Shortcuts.

http://de.scribd.com/doc/60629986/Eclipse-Keyboard-Shortcuts
http://de.scribd.com/doc/60629986/Eclipse-Keyboard-Shortcuts
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command very challenging. As a result, we need to study carefully how to inte-
grate and provide the recommendations even in already highly functionality rich
environments.

Another approach is to develop new UI concepts that are tailored to the
recommendations. For instance, in the API usage example, a navigable ontology
of related framework functionality could be presented to users, enabling them
to surf a specific part of the problem space. Or, new visual cues could be intro-
duced to create user awareness of available recommendations with additional
information encoded into the cues. An example of such tailored cues is the petal
visualization for code smells [75]. An advantage of tailored UI concepts is that we
can fit them perfectly to our kind of information. However, they require users to
get acquainted with and learn how to read the visualizations. As a consequence,
we cannot rely on proven strategies; we need to address the burden of validating
the usefulness of the representation ourselves. This can incur a significant effort
in evaluating the front-end iteratively with user studies.

In the following, we assume that the recommender will be integrated into
an IDE8. Whilst this decision removes some presentation options, we still need
to decide on how to present the recommendations to the user. Table 2 presents
methods and techniques that can help when designing the user interface.

Integrating a Recommender in a Given Toolset. When integrating a rec-
ommender into an existing toolset, we need to consider a highly diverse range of
topics starting from consistent interaction paradigms, to competition for screen
real estate. Figure 5 displays a screenshot of such a possible recommender. The
following paragraphs highlight several critical points of integration.

One detail that impacts the smoothness of integration is the adoption of the
established interaction paradigms and conceptual vocabulary. We can reduce
friction of use if we study carefully the characteristics of the host environment
and make sure that we follow its conventions as much as possible. Aspects to
consider include the predominance of reactive over proactive interaction, the
logic of concept names or the conventions behind visual cues in the form of
icons. Consistency in this respect supports users in intuitively understanding
the suggestions of the recommender.

The number of recommendations can exceed the space available to represent
them. In these cases, toolsmiths need ways to structure the content in a meaning-
ful way. In the software engineering code recommender tradition, this situation
is addressed either by delivering a small subsets of the results (such as the top
five proposals [40]) or by presenting the results ranked by confidence [13].

Depending on the flexibility of the host environment, users might expect
configuration options with respect to window arrangements, commands, and
notifications. One important rule is that the user should remain in command.
As a consequence, they should be able to determine which information to see.

8 Following the argument that too many context switches between the use of different
tools can significantly impact the productivity of a developer [73].



How to Build a Recommendation System for Software Engineering 27

Table 2. Methods that support UI development activities based on [66].

Method Scope Types Sources

Card sorting Find out how users
would categorize the
information

Quantitative, Qualitative,
Exploratory, Generative,
Observational

[8,19,84,86,
109]

Contextual
inquiry

Determine when,
where, and how to
display information

Qualitative, Innovative,
Exploratory,
Observational

[9,46]

Critical
incident
technique

Obtain feedback on
when and how users
get blocked or
supported

Quantitative, Qualitative,
Exploratory

[27,100,104,
105,113]

Prototyping Validate technical
feasibility and
workflow support of
design

Qualitative, Generative [47,60,115]

Scenarios Determine which
information is
valuable when

Qualitative, Exploratory,
Generative, Evaluative

[15,16,33,103]

Task analysis Find a natural point to
provide the
information

Qualitative, Exploratory,
Observational

[20,37,54,55]

Wizard of Oz Evaluate current UI
choices

Quantitative, Qualitative,
Generative, Evaluative,
Observational

[14,26,34,89]

Furthermore, they must have the option to deactivate every proactive interaction
mechanism the recommender offers.

Whatever innovative or conventional representation we choose, we need to
validate it by collecting feedback from our users in an iterative process.

6 Evaluation

Each recommender consists of two parts, the proposal presentation and the rec-
ommender engine that creates the proposals. The quality of recommendations
produced by different algorithms and in different situations may need to be eval-
uated to determine the overall best algorithm to embed in the recommender.
However, even the best recommender is meaningless if its presentation of the
recommendations is not understandable or the meaning of the proposals are
hard to grasp so the presentation part needs to be evaluated as well. Unfortu-
nately, evaluation is one of the hardest steps in building a useful recommender.
There is no golden approach to achieve a perfect evaluation, it always depends
on the problem and approach. The two main aspects of evaluation, accuracy and
presentation, are intertwined.
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In this section, we provide an overview of considerations in evaluation and
provide references to other works that consider aspects of evaluation in more
detail. The scientific community has a natural interest in creating reproducible,
repeatable results, and reusable datasets. Therefore, this section also includes a
discussion of good practices that every toolsmith should consider if a scientific
publication of an approach is planned.

6.1 Recommender Engine

The evaluation of the underlying recommender engine should allow a compari-
son of different recommender approaches. The goal is to show that one approach
is better than another. All recommender systems might be based on different
models internally, but they are designed to provide the same kind of recommen-
dations in the end. You cannot compare different types of recommenders.

Previous work stressed that it is necessary to use standardized datasets and
common evaluation metrics in evaluations and that significance tests should
support the findings [58]. Different options exist to evaluate a recommender
system and all of them are valid alternatives. However, they present different
advantages and drawbacks and a careful decision is necessary [94].

Evaluation Strategies. There are two ways to conduct an evaluation: empir-
ical user studies and automated experiments. The selection depends on the
aspects of the recommender that should be validated.

User Studies. Test the integrated recommender system with users. Developers
may be observed as they use the recommender and such aspects as task com-
pletion can be measured. The assessment of the recommender may then involve
comparisons of measurements with and without the recommender. User studies
provide a very good insight in the impact of a recommender system on devel-
opers. However, major effort is necessary to conduct such an evaluation. Addi-
tionally, there are different biases: (1) The results are always intertwined with
the presentation. It is not possible to evaluate an approach in separation, you
can only measure the difference between two approaches within the same rec-
ommender type. (2) The results depend on the developers. Running study with
novice developers and repeating it with experts may lead to different results.

It is important to consider both the evaluation environment and the evalua-
tion task for a user studies, because they represent large differences in the setup.
The two most contrary cases of user studies are controlled experiments and field
studies.

A controlled experiment is conducted, if the evaluation should prove a strong
implication. A controlled experiment takes place in an environment, in which
external variables that influence the experiment are controlled or their influence
on the results of the experiment is eliminated [107]. To conduct the experiment,
the participants are grouped and different tasks are assigned to the groups. The
tasks are manually designed and reflect a specific problem that is solved by the
recommender system. Each group solves its task while having access to only one
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specific version of the recommender system. The performance is measured for all
groups and the results of the different groups are analyzed to compare different
approaches. The drawback of this approach is that it is hard to find participants,
most of the time they have to be paid, so funding is necessary.

The focus of a field study is more to show causal effects. It is conducted
in the work environment of the participants and better reflects a real scenario.
The participants work on their day-to-day tasks, so it is necessary to think
about means for a performance assessment, perhaps by observing and assess-
ing them personally. Sometimes it is also possible to track participant behavior
and to automatically assess the behaviors. Often, this kind of evaluation is con-
ducted in collaboration with companies, who provide access to the developers.
The involvement of companies may introduce additional overhead and there
might be limitations to which kinds of results can be reported upon.

There are many nuances of evaluation styles in between controlled exper-
iments and field studies. One example is a case study, which is similar to a
controlled experiment. The main difference is that the environment in which
the participants work is not controlled and that the participants usually work
unsupervised [7]. While this results in more realistic results, it is usually a lot
harder to assess the performance of the participants. A meaningful metric for
the performance needs to be identified to create comparable results.

Example 21: Field study

To evaluate the navigation recommender in a user study, we would conduct a
field study. We instrument both the IDE of the developers and their browsers.
We collect the context in which a user is working and detect visited Stack-
Overflow threads in the browser history. The combination of this information
can be used to automatically evaluate, whether the recommender system is
capable of proposing the visited threads, given the working context.

There is no clear answer which evaluation style to choose. The choice mainly
depends on the question to answer and the available resources.

Automated Experiments. Present an alternative, in which the evaluation does
not involve users. There are two styles in which an experimental evaluation can
be conducted: case-study style and cross-folding style.

In case study style experiments, the toolsmith usually picks several corner
cases and checks the proposed solutions from the tool with the expected outcome
that is known a priori. The test scenarios are explicitly selected and the validation
is correct. However, a high manual overhead is necessary to select the cases and,
therefore, the number of scenarios is usually very limited. The evaluation might
underline the strong scenarios of the approach, if only few scenarios are used and
might miss scenarios in which the approach does not work well.

Example 22: Case-study-style experiments

To evaluate all kinds of recommenders introduced before, the toolsmith could
pick examples from tutorials, books, guidelines, etc. that relate several classes
or link to external documentation. It is also possible to manually craft
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examples; for example, by coming up with a problem and manually selecting
related StackOverflow posts. The automated evaluation then analyzes if the
external information is proposed by the recommender system, when queried
in the specific scenario.

In cross folding style, observed examples are used as ground truth, evaluated
through cross validation, a general technique used to evaluate the quality of a
recommender system. The available dataset is split into n different buckets. One
bucket is used as validation set and the remaining n− 1 buckets as the training
set. This cross folding over the buckets ensures that no data point is used for
training and validation at the same time, which would result in a over-fitting
to the data. It is possible to use all available input for validation by rotating
the validation bucket. Instead of creating the buckets by a random split over all
available data, the toolsmith should ensure that all data extracted from a single
project is assigned to the same bucket to avoid a bias introduced by inner-project
relation (e.g., special coding or naming conventions).

Example 23: Cross-folding-style experiments

An n-fold cross validation could be used to evaluate the hotspot recommender.
The input data is combinations of contexts (i.e., enclosing methods) and con-
tained method calls. By removing some contained method calls, incomplete
observations are created that can be given as queries to the recommender sys-
tem. The removed method calls represent the expected outcome. The accuracy
is determined by comparing the actual proposals and the expectation.

Evaluation Metrics. Regardless of the strategy that is used for the evaluation,
it is necessary to represent the accuracy of an approach in a number that can
be compared between the different approaches. There are a number of standard
evaluation metrics that can be used for this purpose.

Recommender systems in software engineering usually propose either a single
item or a group of items. To evaluate these proposals, they are compared to an
expected outcome, such as a single item or a group of items. The proposals
can be classified into true positives (i.e., relevant proposals), false positives (i.e.,
irrelevant proposals), and false negatives (i.e., missing proposals). If it is possible
to enumerate all items that should not be proposed, then it is also possible to
take true negatives into account (i.e., proposals that are left out correctly). These
numbers are the same for all metrics, which metric to choose depends on the
concrete recommender.

Most of the time evaluations consider input that was collected before so
the categorization is easy (e.g., related files for the navigation recommender).
However, sometimes there is no oracle that can identify true positives or true
negative. Considering our StackOverflow recommender, we do not have a clas-
sification for all existing threads so it is hard to automatically decide about the
relatedness of a given recommendation to the problem at hand without manual
classification. Additionally, automated evaluation techniques have to show that
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Fig. 6. Different curves types

their automatic categorization reflects the human intuition. Many evaluations
simply assume that without ever analyzing this assumption.

Precision and Recall are two common metrics used to assess the quality of
recommender systems that propose a set of recommendations. While precision
measures the ratio of correctly proposed items, recall measures the ratio of how
many of the missing items are actually proposed.

precision =
#TP

#TP + #FP
recall =

#TP

#TP + #FN

Both numbers can be visualized in a plot as shown in Fig. 6a. The optimal
point is (1, 1), which means that all missing and no irrelevant items were pro-
posed. However, real experiments usually show curves as shown. The precision
is initially high, but decreases constantly with an increasing recall. An alterna-
tive visualization is a receiver operating characteristic (ROC) curve as shown in
Fig. 6b. Here, the true positive and false positive rates are plotted. The optimal
point in a ROC curve is (0, 1). Here the true positive rate is very high with few
false positives. The closer the curve gets to the imaginary diagonal, the worse
is the prediction quality. The diagonal itself would be the result of a random
guessing approach and represents the worst case possible. Previous work has
already proved that both the precision and recall curve and the ROC curve are
related [21].

While these visualizations are helpful for the toolsmith in the tuning phase,
they cannot be used in experiments, because it is hard to programmatically
decide which plot is better. This is illustrated in Fig. 6b: while Algo 1 provides
better values in the left part of the plot, Algo 2 is better in the right part. The
solution is to calculate the area under curve (AUC ) for both plots, this creates
a comparable number for both approaches and the better one can be selected.

The same problem exists for precision and recall. Here, calculating the Fn

measure combines both values into a single value that is comparable. The para-
meter n controls the weight of both values and can be used to emphasize the
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effect of one value. Usually F1 is calculated, which represents the geometric mean
of both values.

Fn = (1 + n2) · precision · recall
n2 · precision + recall

An alternative measure for the quality of the proposals is accuracy. In addi-
tion to the positive proposals, it also takes the negative proposals into account.
Therefore, all items that should not be proposed need to be enumerable.

accuracy =
#TP + #TN

#TP + #FP + #TN + #FN

Recommender system that present a list of ranked proposals to find one
missing item, are usually evaluated with top-k precision. Only the top k proposals
are considered for the evaluation, if the missing item is included, it is considered a
hit, otherwise a miss. The result of the evaluation lists the average top-k precision
over all queries to the recommender system. The question is how many proposals
should be presented to the user? Of course, less is preferable, because it is easier
for the user, but the correct proposals should also be included in the list as many
times as possible. To answer this, different k values are usually compared in a
plot like the one shown in Fig. 7. The curve make it easy to decide how much an
increase of k pays off in terms of quality. However, picking the right k is always
a trade-off between achieved quality and ease of use.

Example 24: Evaluation metrics

To evaluate the navigation recommender, we could use collected navigation
traces and remove the last step. By feeding the previous steps to the rec-
ommender, the next step is guessed in form of a list of candidate files. The
previously removed step is searched in this list and its position is used to
assess the quality.

The performance of different numbers of presented candidates could be
compared in a top-k precision plot. This visualization is useful to fine-tune
the number of files that should be proposed by the recommender. Usually,
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the top-k precision saturates with an increasing k. The challenge is to select
a reasonably small k that is as close to the saturation point as possible.

The easiest way to evaluate the documentation recommender, is to conduct
a user study. It is very time-consuming to automatically evaluate the quality
of proposed StackOverflow threads. However, this can be done after collecting
the data. Every time a developer triggers the recommender, the current work-
ing context and the proposed threads are stored. Afterwards, the relatedness
is manually categorized for all proposals and the precision is calculated.

6.2 Presentation of Recommendations

Apart from the learning algorithm, the presentation of the recommendations
needs to be evaluated as well to ensure that the recommender is useful to devel-
opers. Creating a recommender system is a two-step iterative process of design-
ing the proposal presentation and evaluating its usefulness. Section 5 already
presented techniques for designing, the focus of this section is on the evaluation.

The proposal presentation and the underlying recommendation engine are
strongly intertwined in an evaluation. The perceived usefulness of the propos-
als is biased when bad recommendations are made, however, both are usually
developed in parallel and it is impossible to expect good recommendations from
an early version of the recommendation engine. To avoid a bias in these early
stages, different techniques need to be used to evaluate the presentation that
reflect the maturity of the recommender engine.

According to Murphy-Hill et al., the toolsmith should select an evaluation
strategy for the evaluation that has the same level of commitment as the design
approach [77]. We base the ideas in this section on their work and introduce
evaluation strategies for three different stages in the creation process of a rec-
ommender system.

Up-Front UI Evaluation: When building a new recommender system for software
engineering, you should evaluate your idea as soon as possible to validate that the
recommender solves a real problem, provides value for developers, and that the
presentation mechanism actually helps to access and use the recommendations.
This is even necessary in the case when an established presentation concept is
reused, because even though the recommender representation by itself is clear
and clean-cut, it might interfere with other elements in the developer’s work
area or lead to an increased cognitive effort. It is not necessary to provide any
working implementation in order to conduct an up-front evaluation. Instead, we
can use sketches of a mock-up created in the early design stages and a clear
vision of the recommender to explain its value to others.

A heuristic evaluation can be achieved by presenting the mock-up to users
to get early feedback on the idea and the concept. As, in our case, developers
are the target user group, they serve as a panel of experts that evaluate the
usefulness of the new approach compared to established usability practices [85].

An alternative approach is to conduct an cognitive walkthrough as proposed
by Wharton et al. [119]. In a first step, the toolsmiths can exercise this by
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themselves, but eventually users are walked through the interactions step-by-
step. This is useful to validate that the recommender provides value to them
without disturbing their workflow. In addition, walkthroughs make it possible
to detect and remove inconsistent, disturbing, or incomplete concepts early on
and to fine-tune the interaction with the recommender system.

Example 25: Up-front evaluation

The mock-ups that are shown in Sect. 2.3 could be used to discuss the concepts
with developers. By illustrating all possible clicks in the mock-up, they can
also be used in a cognitive walkthrough.

Early UI Evaluation: In order to evaluate a working tool as soon as possible,
the first part of the recommender that should be implemented is the presen-
tation. There is no need for the recommendation engine to be implemented; it
can be replaced with a fake recommender that simulates the recommendation
process. This can be done by either operating it manually in the background
or by hardcoding specific answers into the fake recommender. This approach is
called “Wizard of Oz” experiment [67].

The advantage of this evaluation approach is that the recommendations are
perfect and, therefore, their quality does not influence the evaluation of the
presentation. However, depending on the way the fake recommendations are
created, either the production of recommendations has a high latency or the
evaluated system supports only a limited number of working cases. In the later
case, the manual effort of providing the examples is also very high.

Example 26: Early evaluation

Conduct a user study in which developers work on a specific task that is
supported by the recommender system. A basic evaluation could use a ques-
tionnaire to formally capture opinions of the developers. More sophisticated
evaluations have been introduced in Table 1. For example, the toolsmith could
interview the participants [55], use think-aloud programming techniques [28],
or establish basic measurements of the performance.

Integrated Evaluation: As soon as both the proposal presentation and the rec-
ommender engine are implemented, the whole system can be evaluated in an
integrated evaluation by conducting a user study.

Example 27: Integrated evaluation

A user study can be conducted to evaluate the example recommenders. The
main challenge is to find a way to measure the performance of the developer.
This could be achieved via measurement of the average duration it takes a
participant to finish a specific task or via calculation of the ratio of tasks that
are correctly implemented by the study participants.
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Evaluating the presentation of a recommender is a very time-consuming task.
Many papers stop at one kind of evaluation and very few involve users. There is
a chance for future evaluation to improve this situation.

6.3 Considerations for Good Scientific Practice

If a publication of the recommender system is intended, the toolsmith should
follow good scientific practices. It is the focus of this section to introduce several
practices that should be considered by the toolsmith.

An extensive evaluation of the approach is mandatory. It is expected that it
shows that the approach generalizes to a large number of scenarios. Therefore,
it is necessary that a diverse set of input scenarios is used and that this set is
representative for the common case [79].

It is necessary not only that the findings are published, but that all necessary
information is provided to allow other researchers to reproduce the results. Many
publications do not meet this requirement [98]. The toolsmith needs to publish
all tools used for the evaluation. Additionally, it is necessary to carefully describe
the environment of the evaluation, especially if standard software is used that
needs to be configured for the concrete use case. The exact configuration options
need to be provided.

In addition to the evaluation tools, a reusable data set should be provided
as well [48]. Both the raw input data and the preprocessed dataset should be
published as artifacts. This is necessary to reproduce the results of the work, but
it also encourages other researchers to solve the same recommendation task with
different approaches. If external data is used (e.g., results from search engines
or posts on Q&A sites), it is advisable to not reference the website directly, but
to publish a local snapshot of the data (e.g., [35]). This snapshot serves as a
stable base for a comparable evaluation, even though that evaluation might be
run years after the original publication.

The published artifacts should support future extensions of the work. It
should be easy for other researchers to try new ideas and to compare their results
with the published work. A detailed description of implementation details helps
other researchers to understand design decisions and supports an adaptation of
the work.

7 Summary

Recommenders can help a developer perform the myriad of activities that must
occur to build and deploy a successful and useful software system. However, it is
far easier to hypothesize potentially useful recommenders than it is to construct
a recommender and show that the recommender actually does provide value to a
developer. In this chapter, we have outlined the questions that must be asked and
the steps taken by a toolsmith to go froman idea of a recommender to focusingwork
on building that recommender and showing its value proposition. Through the use
of examples and pointers to the literature, we have shown the variety of choices a
toolsmith must make in the iterative process of recommender development.
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Abstract. System behaviour is proposed as the core object of software devel-
opment. The system comprises both the software machine and the problem
world. The behaviour of the problem world is ensured by the combination of its
given properties and the interacting behaviour of the machine. The fundamental
requirements do not mandate specific system behaviour but demand that the
behaviour exhibit certain desirable properties and achieve certain effects. These
fundamental requirements therefore include usability, safety, reliability and
others commonly regarded as ‘non-functional’. A view of behaviour content and
structure is presented, based on the Problem Frames approach, leading to a
specification in terms of concurrent behaviour instances created and controlled
within a tree structure. Development method is not addressed in this short paper;
nor is software architecture. For brevity, and clearer visibility of the thread of the
paper’s theme, much incidental, explanatory, illustrative and detailed material is
relegated to end notes. A final section summarises the claimed value of the
approach in addressing the characteristic challenges of cyber-physical systems.

1 Introductory Remarks

In a cyber-physical system the software controls a part of the physical and human
world. The system comprises both the computing equipment and the parts of the
physical world it governs. Examples are vending machines, radio-therapy machines,
cars, aircraft, trains, lifts, cranes, heart pacemakers, automatic lathes, ATMs, and
countless others.
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This paper aims to explain and justify an improved version of the Problem Frame
approach [1] to the development of such systems. The approach deals with the
pre-formal1 work that creates a bridge from the stakeholders’ purposes and desires2,
leading to a detailed software specification, emphasising the centrality of the system
behaviour. The main text of the paper is itself no more than an outline: some illus-
trations, clarifications and additional details are presented in notes, along with appeals
to some eminent authorities.

The process of creating the bridge must start from the stakeholders’ purposes and
desires—that is, from the system requirements. But the satisfaction of those require-
ments by the running system in operation starts from the other end. The machine—the
system’s computing equipment executing the system’s software—interacts with the
physical problem world to monitor and control what happens there: it is the resulting
system behaviour3 that must satisfy the requirements. The system behaviour is the
essential product of software development.

The requirements4 are desired properties of the system behaviour; but they are
distinct from it. The development problem, therefore, is to design a behaviour that
satisfies the requirements, with an accompanying software specification that can be

1 The work described is pre-formal because its desired product is a documented understanding of the
system, sufficiently sound and well-structured to justify and guide the subsequent deployment of
formal techniques. As von Neumann and Morgenstern wrote [3]:

“There is no point in using exact methods where there is no clarity in the concepts and issues to
which they are to be applied. Consequently the initial task is to clarify the knowledge of the
matter by further careful descriptive work.”

In addition to careful description, software development demands exploration, invention and design.
These activities must be open to unexpected discoveries, and should therefore not be constrained by
a priori commitment to the tightly restricted semantics of a formal language. This does not mean
that pre-formal work is condemned to gratuitous vagueness. It means only that for describing each
particular topic and aspect that will be encountered the appropriate semantics and appropriate scope
and level of abstraction cannot be exactly determined in advance. The freedom to make these
choices in an incremental, opportunistic and emergent fashion should not be hampered by premature
choice of a formal language.

2 The stakeholders of a system are those people and organisations who have a legitimate claim to
influence the design of the system behaviour. Some stakeholders—for example, the driver of a car or
the wearer of a cardiac pacemaker—are themselves participants in the system behaviour. Others—for
example, the representative of a regulatory body or of the company paying for the system—are not.
Stakeholder purposes and desires may be formally or informally satisfiable, and may be observable
in the problem world or outside it.

3 The word system is often used to denote only the machine executing the software. Here, instead, we
always use it to denote the machine and the physical problem world together. For a cyber-physical
system the execution of the software is merely a means to obtain a desired behaviour in the physical
world outside the machine, and has no significance except in that role. We use the word behaviour to
denote either an assemblage of processes with multiple participants or an instance of the execution of
the assemblage; which is meant should be clear from the context in each case.

4 There are many kinds and forms of requirements. Some are constraints on budgets and delivery
dates, on the composition and organisation of the development team, and other such matters of
economic or social importance. Here we are concerned only with those requirements whose
satisfaction is to be judged solely by the behaviours and effects of the system in operation.
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shown to ensure that behaviour. Evaluating whether a proposed behaviour design is
satisfactory must be a co-operative task for developers and stakeholders together5;
producing and validating the accompanying software specification is primarily the
developers’ responsibility.

2 The World and the Machine

The problem world is, in general, a heterogeneous6 assemblage of identifiable distinct
parts of the material and human world that are of interest to the stakeholders. These
parts are called problem domains: a vital task in development is investigating and
analysing their given properties and behaviours on which the design will rely7. These
properties are given, in the sense that they are independent of the machine8; but in
combination with the domains’ acceptance of the constraints imposed by the machine9

they will determine the system behaviour10.

5 A stakeholder criterion of requirement satisfaction may lie far outside the problem world: for example,
the system may be required to attract a large number of new, as yet unidentified, customers in new
markets. A requirement may be insufficiently exact to allow rigorous validation: for example, that the
behaviour of a car should never surprise its driver. Satisfaction of such requirements must be carefully
considered by the stakeholders and developers during the design work; but cannot be formally
demonstrated and can be convincingly evaluated only by experience with the installed system.

6 The problem world of an avionics system, for example, includes the airframe, its control surfaces and
undercarriage, the engines, the earth’s atmosphere, the airport runways, the aviation fuel, the pilots
and other crew, the passengers, the gates for embarkation and disembarkation, other aircraft, the air
traffic control system, and so on.

7 We regard the problem domains as given in the sense that the task of software engineering, per se, is
not to develop or redesign physical artifacts, but to create software that will monitor and control their
behaviour. In practice, of course, some projects may demand a degree of co-design of physical and
software artifacts, and software engineers will have a central contribution to make to that work.

8 The given properties and behaviours of a physical problem domain are constrained by the laws of
physics, by its designed or otherwise constituted form, and also by its external environment.
A domain is potentially capable of exhibiting varying behaviours according to the contexts in which
it may be placed.

9 Constraints on a domain’s potential behaviour are applied by its context. In a cyber-physical system
the immediate context comprises its physical neighbours—the machine and other domains with
which it interacts. A domain that does not interact directly with the machine may be constrained by
causal chains involving other domains.

10 The system behaviour is not to be conceived or expressed as a set of stimulus-response pairs or in
any other similarly fragmented form. It extends over time, and is to be understood as a whole. As
Poincaré asked [4]:

“Would a naturalist imagine that he had an adequate knowledge of the elephant if he had never
studied the animal except through a microscope?”
“It is the same in mathematics. When the logician has resolved each demonstration into a host
of elementary operations, all of them correct, he will not yet be in possession of the whole
reality; that indefinable something that constitutes the unity of the demonstration will still
escape him completely.”

The disadvantages of a fragmented view of behaviour are made explicit in another paper elsewhere
[5].
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The problem world must not exclude human domains. People participate in systems
in many different roles—for example: as a casual user of a vending machine, as a plant
operator, as the driver of a car or train or the pilot of an aircraft, as a passenger, as the
patient in a surgical operation or a radiotherapy system, as the recipient of medication
dispensed by an infusion pump, as the wearer of a cardiac pacemaker, as a source of
problem world data that is otherwise inaccessible11 to the machine. In various ways and
to various extents the physical and behavioural properties of a human participant
contribute to the system behaviour12. The development must investigate and under-
stand them in all their relevant aspects.

We speak of the machine in the singular: a development problem has multiple
problem domains, but only one machine. This is, of course, a conceptual simplification:
the computing equipment of a realistic system may be distributed, and even shared with
another system. The simplification is appropriate in an initial view of the problem:
while the physical structure of the problem world is largely given, and offers clear
enough distinctions among problem domains, the structure of the machine13, which we
must develop, has not yet been designed14.

3 Challenges of Cyber-Physical Systems

Each system presents its own particular challenges to the developers; but some
important challenges are common to all cyber-physical systems that are to any degree
critical. Among the most salient are two intertwined challenges: formal description of
the ineluctably physical problem world, and dependable design of the complex system
behaviour. If the system behaviour resulting from its interactions with the designed
software is to be the subject of fully convincing reasoning, the problem world must be

11 For example, to describe the precise layout of a road junction for a traffic control system, and the
positions within it of the lights, vehicle sensors and pedestrian crossing request buttons.

12 For example, the physiology of a recipient of a cardiac pacemaker is crucial to the system design. So
too is the physical size of a machine press operator whose safety depends on the limited arm span
which prevents the operator from pressing the start button with one hand while the other hand is in
the danger area.

13 The machine specification produced by the development approach presented here is simultaneously
physical—being explicitly described in terms of its interfaces to the physical world—and abstract—
because it need not necessarily correspond to a software or hardware module of the eventual
implementation.

14 The problem world naturally presents itself to us as populated by distinct entities or domains,
whereas the machine does not. The design process, briefly presented in later sections, allows
decomposition of what was initially postulated to be one machine into two or more smaller
machines.
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formally described. But the problem world is not a formal universe15: any formalisation
is an approximation, at best barely adequate to its particular purpose, context and use.
The system behaviour of any realistic system is inevitably complex, and the non-formal
nature of the problem world adds greatly to this complexity.

The response to the physicality challenge must itself be twofold. First: it must
embody the practice of a sound modelling discipline16 to minimise uncertainty in the
mapping between each description and its physical subject. This is a requirement for
any development method, and we will not discuss it further here.

Second: a dependable structuring of the system behaviour must address both the
inherent complexity of the system’s function and purpose, and the added complexity
due to the non-formal physical problem world. Inherent complexity arises from the
multiplicity of system functions, features, modes and phases of any realistic system.
Further, design of a critical system is likely to demand a wide operating envelope,
encompassing a very wide variety of conditions in which the system must behave
dependably. This inherent complexity cannot be mastered by ad hoc variations within
one monolithic behaviour. Instead, multiple behaviours must be specifically designed
for specific conditions and functions and activated as conditions and needs demand.

The complexity added by the physicality of the problem world springs from real-
ity’s deviations from any one formal model, manifested as equipment failures, unex-
pected behaviour due to neglected physical effects, operator errors, and other
exceptional contingencies. These deviations must be accommodated while maintaining
safe and dependable—though possibly degraded—operation. This complexity may
require a variety of formalisations of the same physical domains17, which in turn
requires a variety of behaviours that depend on those domains.

15 In an unjustly neglected response [16] to Fred Brooks’s acclaimed talk No Silver Bullet, Wlad
Turski wrote:

“There are two fundamental difficulties involved in dealing with non-formal domains also
known as ‘the real world’:

(1) Properties they enjoy are not necessarily expressible in any single linguistic system.
(2) The notion of mathematical (logical) proof does not apply to them.”

This is the salient challenge that physicality presents to dependable system design. It is absent from
abstract mathematical problem worlds, such as the world of integers and the problems of finding and
dealing with large primes.

16 Such a discipline would contribute to solving the problem characterised in an illuminating paper
[17] by Brian Cantwell Smith as the relationship between the model and the world: “In the end, any
adequate theory of action, and, consequently, any adequate theory of correctness, will have to take
the model-world relationship into account”. A discipline of description should constitute a major
topic of research in its own right, but the need has been largely ignored by the software engineering
community. Some aspects are touched on informally in a 1992 paper [18] and a 1995 book [19].
Further work is in progress but is not discussed in the present paper.

17 For example, tolerating faults in physical equipment may demand at least two formalisations. In
one, the equipment is assumed faultless, and the associated behaviour relies on that faultless
functionality. In the other, the potentiality for fault is acknowledged, and the associated behaviour
relies only on residual domain properties that allow faults to be detected, diagnosed, and mitigated.
The two behaviours may be concurrently active, and the two—even potentially conflicting—
formalisations are relied on simultaneously.
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4 Dependability and the Problem World Boundary

The general form of a development problem is shown in Fig. 1.

The single striped box represents the machine; the plain boxes represent problem
domains; the solid lines (labelled a,b,.. f) represent interfaces of physical shared
phenomena such as events and states18. Together, the machine, the problem domains,
and their mutual interfaces constitute the system; the system boundary is represented by
the dotted box. The ellipse represents the system behaviour19 resulting from the
interaction of the machine with the problem world. The document symbol represents
the requirements.

Let us suppose that the developers have calculated or otherwise determined that the
desired system behaviour is to be B; and that their designed behaviour of the machine
at its problem world interfaces a,b,c is M20. Then, if the given behaviours of the
problem domains are {Wi}, it is necessary for system dependability to demonstrate
convincingly the fundamental entailment, that

Fig. 1. Problem diagram

18 Phenomena are shared in the CSP [6] sense that more than one domain participates in the same
event, or can observe the same element of a domain state. A shared event or shared mutable state is
controlled by exactly one participating domain and observed by the other participants.

19 In the problem diagram a symbol with a dashed outline represents a symbolic, possibly informal,
description. The behaviour ellipse represents a behavioural description of the system. The
requirements symbol represents a description of stakeholder desires and purposes. The level of
abstraction at which the subject matter is described will, of course, vary according to the context and
purpose of the description.

20 The relationship between machine, problem world properties and system behaviour is complex. It
should not be assumed that the machine design can be derived formally, or even systematically,
from the other two. In particular, there may be more than one machine that can achieve a chosen
behaviour in a given problem world.
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M; Wif g j ¼ B:

That is: the designed machine M installed as shown in the problem world whose
given domain properties are {Wi}, will ensure the behaviour B21. For a critical system
this demonstration should be formal22, to provide the strongest possible assurance of the
system behaviour. The domain properties {Wi}—and the machine specification M—
must therefore be captured in an adequate formalisation that is sufficiently faithful23 to
the physical realities it approximates.

21 As Harel and Pnueli rightly observe [7]:

“While the design of the system and then its construction are no doubt of paramount importance
(they are in fact the only things that ultimately count) they cannot be carried out without a clear
understanding of the system’s intended behavior. This assertion is not one which can be easily
contested, and anyone who has ever had anything to do with a complex system has felt its
seriousness. A natural, comprehensive, and understandable description of the behavioral aspects
of a system is a must in all stages of the system’s development cycle, and, for that matter, after it
is completed too.”

22 The intrusion of non-formal concepts and concerns vitiates a formal demonstration. The system
boundary is therefore related in its aim, though not in its realisation, to Dijkstra’s notion of program
specification as a firewall. He wrote [8]:

“The choice of functional specifications—and of the notation to write them down in—may be
far from obvious, but their role is clear: it is to act as a logical ‘firewall’ between two different
concerns. The one is the ‘pleasantness problem,’ i.e. the question of whether an engine meeting
the specification is the engine we would like to have; the other one is the ‘correctness problem,’
i.e. the question of how to design an engine meeting the specification…. the two problems are
most effectively tackled by… psychology and experimentation for the pleasantness problem and
symbol manipulation for the correctness problem.”

Dijkstra’s aim was to achieve complete formality in program specification and construction. Our aim
here is to preserve a sufficient degree of formality within the system boundary to achieve
dependability of system behaviour. The firewall ensures—pace Dijkstra’s dismissive characterisa-
tion of the ‘pleasantness problem’—only that what is inside is sufficiently formal: not that
everything outside is informal. Some requirements are formal: for example, the requirement in an
electronic purse system that money is conserved in every transaction even if the transaction fails.

23 All formalisation of the physical world, at the granularity relevant to most software engineering
(though not, perhaps, to the engineering of experiments in particle physics) is conscious abstraction.
Because the physical world, at this granularity, is not a formal system, a formal model can be only
an approximation to the reality. In a formal world, after the instruction sequence

‘‘x :¼ P; y :¼ x; x :¼ y00
the condition “x = P” will certainly hold. But in a robotic system, after the sequence

‘‘x :¼ P; Arm:moveTo xð Þ; x :¼ Arm:currentPosition00
the condition “x = P” may not hold. Moving the arm and sensing its position both involve state
phenomena of the physical world. Movement of the arm may fail, and will certainly be imprecise;
and the resulting position will be imprecisely sensed and further approximated in the machine by
a floating-point number.

Unreliability and approximation limit the dependability of any cyber-physical system [9] and
the confidence that can be legitimately placed in formal demonstration. A crucial concern in the
design of a critical system is achieving acceptable dependability within these limits.
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Furthermore, the problem world and machine must be regarded as a closed system:
the demonstration of the fundamental entailment must not rely on any assertion that
cannot be inferred from the physical laws of nature and the explicitly stated properties24

of the problem domains25. These constraints on the problem world necessitate the
distinction26 shown in Fig. 1 between the system behaviour and the stakeholders’
requirements—which are often informal, and often related to parts of the world outside
the system boundary.

5 Complexity of System Behaviour

Satisfying the system requirements may demand great behavioural complexity. Some
of this complexity springs from normal system operation, which may comprise many
necessary functions and features structured in multiple phases and modes27. Interaction
among these functions (especially when they operate concurrently, but also when they
are consecutive, or nested, or alternating) is a source of further complexity28. Some
complexity is due to the need to detect and mitigate equipment faults, operator errors or
other exceptional events. Some springs from the need to coordinate normal operation

24 The given properties of each problem domain must be investigated and explicitly described:
together, they provide the {Wi} in the entailment M,{Wi} |= B. It is a mistake to elide these
descriptions into a single description encompassing both the machine and the problem domains.
A separate description of a domain’s given properties clearly distinguishes what the machine relies
on from what it must achieve, and allows those potential properties and behaviours to be made
explicit that the machine, by its behaviour, suppresses, avoids or neglects.

25 The system can be closed in the necessary sense by internalising external impacts on the problem
domains. Suppose, for example, that domains A and B are both vulnerable to failure of a common
electrical power supply P. If P is not included as a problem domain, electrical power failure in A
must be formalised as a spontaneous and unpredictable internal event of A, and similarly for B. It is
then impermissible to assert that power failures of A and B are coordinated, since there is no
problem domain to which this co-ordination can be ascribed. Similarly, in an automotive system the
driver must be included as a problem domain if the driver’s physical capabilities and expected
behaviours are relied on to prove the entailment M,{Wi} |= B.

26 Unfortunately, in many development projects this distinction is elided, and requirements are stated
as explicit direct descriptions—albeit often fragmented descriptions—of system behaviour. This is a
mistake, exactly parallel to the classic mistake of specifying a program by giving a procedural
description of its behaviour in execution.

27 For example, an avionics system must support the normal sequence of flight phases: gate departure,
taxiing, take-off, climbing, cruising, and so on. A radiotherapy system must support the normal
prescription and treatment protocols: prescription specification and checking, patient positioning,
position adjustment, beam focusing, dose delivery, beam shutoff, and so on.

28 In telephone systems of the late 20th century such features as call forwarding, call blocking and
voicemail proliferated. The complexity resulting from their interactions caused ever-increasing
difficulty in the development of those systems, and often produced inconvenient and disagreeable
surprises for users. This feature interaction problem [10, 11] became widely known: it was soon
recognised as a serious problem in most realistic systems.
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with equipment maintenance and repair. Some is due to the need to maintain safe
operation even in extreme adverse conditions.

In general, dependable system behaviour means behaviour that varies in a com-
prehensibly dependable29 way, according to what is possible and desirable in different
circumstances. Fault tolerance, for example, does not demand that normal functional
behaviour continue in the presence of a major fault, but permits it to be replaced by a
different behaviour, functionally degraded but dependable and preserving safety30.
Complex system behaviour is understood as a combination of simpler constituent
behaviours. A constituent behaviour has the same structure and pattern as the complete
system behaviour pictured in Fig. 1: it has a machine, an assemblage of problem
domains, and a number of relevant requirements. The development problem, both for
the complete behaviour and for each constituent behaviour, has two interrelated
aspects: to design a behaviour to satisfy the requirements; and to specify an associated
machine that will ensure that behaviour31.

An ill-chosen constituent can complicate the task of developing the whole to which
it belongs—either by itself presenting excessive difficulty in its own development, or
by leaving a misshapen residual complement32. Identifying suitable constituent beha-
viours is the primary task in structuring the system behaviour. An essential guide in this

29 ‘Comprehensibly dependable’ does not imply ‘predictable’. A realistic systemhas problemdomains—
notably its human participants—that exhibit non-deterministic behaviour. In general, therefore,
prediction of system behaviour is always contingent.Whatmatters is that neither the developers nor the
human participants should be surprised by unexpected occurrences of anomalous behaviour.

30 For example, if the main power supply fails in a passenger lift system the car is to be moved, under
auxiliary power, to the nearest floor for the passengers to disembark. If the hoist cable breaks a more
radical solution is necessary: the lift car is locked in the shaft to prevent free fall, and the passengers
must then wait to be rescued by an engineering crew.

31 The development problem for a constituent behaviour is spoken of as a subproblem. Initially the
constituent behaviour is considered in isolation from other behaviours, ignoring both its interactions
at common problem domains and its interaction with its controlling behaviour. (Behaviour control is
discussed in Sect. 8.)

32 The second of Descartes’s famous rules of thought [12] was:

“Divide each problem that you examine into as many parts as you can and as you need to solve
them more easily.”

Leibniz rightly observed in response [13]:

“This rule of Descartes is of little use as long as the art of dividing remains unexplained… By
dividing his problem into unsuitable parts, the inexperienced problem-solver may increase his
difficulty.”

Any discipline that aims to master complexity by decomposition must identify and apply criteria of
component simplicity.
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task is a set of explicit criteria of behavioural simplicity. These criteria include: reg-
ularity of the machine’s software structure33; constancy of given domain properties
during the behaviour34; a clear and tersely explicable purpose for the behaviour35; and
simplicity of the causal pattern by which the machine ensures the behaviour in the
problem world36.

6 Large Behaviour Structure: Principles

This structuring of complex system behaviour, in terms of constituent behaviours, aims
above all at producing an understandable and verifiable37 specification of system
behaviour. It is not the immediate aim of this structuring to produce a modular software
structure capable of translation into efficient executable code. If a specification is
executable, that is an advantage. But the primary aim is intelligibility of the system
behaviour, demanding a correspondence between constituent behaviours and functional
purposes that can be understood and evaluated by the stakeholders38.

A constituent behaviour should initially be analysed in a simplified form in which
its possible interactions with other behaviours are ignored: consideration of those

33 A machine’s software structure is regular if there is no structure clash [14]. That is: the dynamic
structure of the software clearly composes the dynamic structures at its interfaces to problem
domains.

34 Reasoning about the relationship between the machine and the system behaviour is greatly
complicated if the given domain properties are not constant. For example, they may vary with
environmental conditions or with varying loads imposed by varying requirements on the system
behaviour.

35 Both top-down and bottom-up design of the system behaviour are used as necessary. If—as is the
case for any realistic system—no tersely explicable purpose of the whole system behaviour can be
identified, bottom-up design must be used: the purpose of the whole will then emerge from the
designed combination of the constituents.

36 The causal pattern by which the machine ensures the problem world behaviour is what Polanyi [15]
calls the operational principle of a contrivance—and a system is a contrivance in his sense.
Simplicity of this causal pattern is one important characteristic of a simple behaviour.

37 Formal verification of a specification proves the entailment M, {Wi} |= B. Some additional formal
and informal verification is needed to demonstrate the quasi-entailment {Wi}, B |* R—that is, that
the requirements are satisfied. Demonstrating that the formalisation of the given problem world is
sufficiently faithful to the physical reality is an entirely distinct task: it is inherently non-formal, and
is typically both the hardest and the most vital.

38 For example, an automotive feature such as Cruise Control or Stop-Start must correspond to an
identifiable part or projection of the system behaviour specification, not to a collection of
stimulus-response pairs distributed among many parts of the whole specification.
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interactions and the complexities they introduce should be postponed until a later point
at which the behaviours are to be combined39. The same strategy—an incremental
approach to inescapable complexity40—can be applied to other complexities due to
exceptional conditions that can arise within the behaviour itself.

Initially considering constituent behaviours—more exactly, candidate constituent
behaviours41—in isolation encourages an important separation of concerns. To the
greatest extent possible, the functional content of each behaviour should be separated
from the control of its initiation and, in certain circumstances, of its termination. Since
the concept of a constituent behaviour rests on a relationship of inclusion of an instance
of one behaviour in an instance of another, this separation cannot be complete. But its
aim remains valid: to maintain modularity in the explicit structure of the behaviour
specification42. This modularity supports the understanding of each constituent beha-
viour as an independent unit of system functionality: it must be allowed to persist as
long and as fully as possible, throughout the development and use of the
specification43.

39 It makes obvious sense to understand the components before addressing the task of their
composition. Neglect of this principle is the Achilles heel of top-down decomposition and of its
cousin stepwise refinement.

40 The third of Descartes’s famous rules of thought [12] was:

“… to conduct my thoughts in such order that, by commencing with objects the simplest and
easiest to know, I might ascend by little and little, and, as it were, step by step, to the knowledge
of the more complex; assigning in thought a certain order even to those objects which in their
own nature do not stand in a relation of antecedence and sequence.”

41 Candidate constituent behaviours arise both in top-down decomposition, as briefly illustrated in
Sect. 7, and in bottom-up development, in which candidate constituents are identified piecemeal. In
both cases each candidate constituent must be analysed, and its simplicity evaluated, before it can be
definitely accepted as a component in the system behaviour design.

42 Traditional block-structured programming establishes frame conditions for modules based on scope
rules. In a cyber-physical system such frame conditions are frustrated by the connectedness of the
physical problem world: behaviours interact unavoidably at physical domains that are common—
directly or indirectly—to their problem worlds.

43 Eagerness to rush to design a software architecture is usually misplaced. One freedom that software—
unlike hardware—allows to its developers is the freedom of malleability of their material. Many
structural transformations are possible that can preserve chosen specification properties of the source
while endowing the target with a completely new property suited to efficient implementation for
program code construction and execution. Knowing that such transformations are available,
developers should resist the temptation to cast behaviour specifications in the form of an architecture of
software modules. The machine associated with the behaviour in each subproblem should be regarded
as a projection, not a component, of the complete software.
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7 Large Behaviour Structure: Designed Domains

Large behaviour structure is defined in terms of a designed structure of the machines
that ensure the constituent behaviours44. One—but not the only—design motivation for
structuring is decomposition45: a behaviour which is proving less simple than originally
expected, is restructured with two or more constituent behaviours.

Figure 2 shows, in general terms, a trivial case. In behaviour B0, machine MB0
monitors Domain X and controls Domain Y so that its behaviour is kept in some
required relationship with Domain X. The Stop Switch allows behaviour B0 to be
terminated on command. On analysis, we are supposing, the tasks of monitoring X and
controlling Y prove too complex to be combined in a single undecomposed behaviour
B046: so B0 is decomposed into B0’ and two constituent behaviours BX and BY.

In B0, the information obtained from Domain X and needed for proper control of
Domain Y would be represented and maintained in a data structure in the local store of
machine MB0. In B0’ this data structure has been ‘promoted’ from a machine local
variable to a problem domain, X-to-Y, common to the two constituent behaviours BX
and BY. A problem domain originated in this way is represented by a box with a single
stripe: it is a designed domain because it is a design artifact of the software develop-
ment, not a given part of the physical problem world of the original undecomposed
problem47.

In general, the function of a designed domain is to communicate information across
time and space between parts of the system behaviour which we want—or are com-
pelled—to separate. The X-to-Y domain allows the constituent behaviours BX and BY
to be separated for reasons of behaviour simplicity, while allowing each to conform to

44 Associated with each machine, from its expression as a problem in the pattern of Fig. 1, are the
documented descriptions: M of the machine; {Wi} of the problem domains’ given properties and
behaviours; and B of the system behaviour. The machine is also associated with the relevant
requirements {Rj}. It is this assemblage of descriptions that define the behaviour: the machine is the
designed means of realising each of its necessary instances.

45 This is top-down structuring. It starts from a firm conception of the function of the whole behaviour
to be developed, and, level by level, identifies constituent parts that for any reason should be
regarded as separate components. In a realistic cyber-physical system the proliferation of functions
and features demands extensive use of bottom-up structuring, in which initially there is no firm
conception of the whole behaviour: it emerges only gradually from the piecemeal identification and
combination of constituents. Bottom-up structuring is briefly discussed later, in Sect. 8.

46 For example, because there is a structure clash [14]: the process structures of BX and BY are
incompatible, and the simplicity criterion that stipulates regular process structure cannot be satisfied
in a single undecomposed behaviour B0.

47 It may seem paradoxical—or, at least, inconsistent—to promote a designed domain, which was
merely a local data structure in the software of a machine, as a legitimate problem domain on all
fours with the physical domains Domain X and Domain Y. But of course the unpromoted local
variable was physically realised in the store of the machine MB0. Its promotion merely makes
visible and explicit what was previously hidden and implicit. From the point of view of MBX and
MBY it is a problem domain, external to those machines, to be respectively controlled and
monitored.
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the general pattern and structure of a development problem as shown in Fig. 1, and to
benefit from the attendant advantages. The concept of a designed domain is very
versatile: its ubiquitous utility reflects the ubiquitous utility of program variables. Some
examples of designed domains are: a database in a bank accounts system; a data
structure in a road traffic control system, representing the road layout and the positions
of traffic light units, pedestrian buttons and vehicle sensors; a train operating timetable;
the seat configuration data maintained for each driver by the software of a luxury car;
the content and format of a document in an editing and presentation system; and
countless others48.

Fig. 2. Decomposition of a simple behaviour

48 A designed domain, once identified in a proposed or existing system, raises many important
questions about its purpose, use and realisation. Between which behaviours does the domain
provide communication? Of which behaviour’s machine is the domain a local variable? Can the
domain be instantiated more than once? How long does each instance persist? By which behaviours
are the values of the domain state initialised and mutated? The reader may wish to ponder these
questions for the examples mentioned in the text. Consider, for instance, the road layout domain in
the traffic system. It is a designed domain for the traffic control behaviour. In which other behaviour
is it a designed domain? Of which machine is it a local variable? Considering these questions can
identify important large-scale concerns in system design. For example: a database associated with
the operating parameters and constraints of a chemical process plant or a power station can be
regarded as a designed domain. Safety demands that update access to this database must be
explicitly controlled by the machine of which it is a promoted local variable. Apparent absence of
such a machine from the behaviour specification indicates a severe safety exposure.
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In some of these examples the designed domain is clearly an analogical model of
the problem world—dynamic in the accounts system, and static in the traffic system49.
In other examples it is less obviously a model of the physical problem world. In the
editing system, for example, it would be very contrived to regard the document domain
as a model of the editing events by which it was created. But in all cases the purpose of
a designed domain, as of a program variable, is to communicate information between
separate behaviours performed or evoked by the machine50.

8 Large Behaviour Structure: Control Mechanism

The original machine of a decomposed behaviour controls the machines corresponding
to its immediate constituent behaviours. This control relationship induces a rooted tree
whose nodes are machines and designed domains, represented in a behaviour control
diagram as shown in Fig. 3:

Fig. 3. Behaviour control diagram: controlling and controlled machines and a designed domain

49 A model is an artifact providing information about its subject. We may distinguish analogic from
symbolic models. A symbolic model—for example, a set of equations or a state transition diagram—
is entirely abstract. The notational expression of a symbolic model itself carries no information about
the subject: essentially, the model is simply a description that allows formal reasoning in the hope of
revealing or proving some implied property or behaviour of its subject. An analogic model—for
example, a system of water pipes demonstrating the flow of electricity in a circuit—is a physical
object whose physical characteristics are analogues of those of the subject: water flow is analogous to
electric current, pipe cross-section to the inverse of electrical resistance, a tank to a battery, and so on.
Often, a software model such as a database or an assemblage of objects is an analogic model of its

subject. Each subject entity is analogous to a certain type of record or object; relationships between
entities are analogous to pointers or record keys, and so on. The motivation for an analogic model is
clear: the model is a surrogate, immediately available to the software, for historical or current aspects
of the subject that are not readily accessible to direct inspection.
The danger of an analogic model is, of course, confusion of properties peculiar to the model with

those belonging also—albeit by analogy—to the subject. Breaking a water pipe causes water to spill
out; but breaking a wire in an electric circuit causes no analogous effect. A well-known example of
such confusion in software engineering is the common uncertainty about the meaning of a null value
in a cell of a relational database table.

50 In the word processing system, for example, the document designed domain communicates
information between the editing behaviour and other behaviours—storage, printing, transformation,
and others—in which the document participates.
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A machine node can be either a leaf or the root of the tree or of a subtree; a
designed domain node can only be a leaf. A machine node represents possible
instantiations of the machine: each instantiation starts the machine’s execution and
hence starts the corresponding problem world behaviour. The machine root node of the
tree represents an instantiation of the whole system by an external agent; in any other
case a machine is instantiated by its immediately controlling machine51. Machine
execution instances may be specialised by arguments bound to instances of problem
domains52.

Temporal relationships among machine instances, including concurrency, are
determined by the controlling machine53. For example, the execution pattern in Fig. 3
may be:

in which MBX and MBY execute concurrently.
Machine execution may be terminated in several ways. First: a terminating beha-

viour may come to an autonomous designed halt—that is, a halt corresponding to a
particular final outcome foreseen in the design of the machine54. Second, although the
instantiating agent of a machine is responsible for ensuring that the relevant assumed
conditions are present at instantiation, changing environment conditions and other
vicissitudes may require pre-emptive abortion of the instantiated behaviour by the
instantiating agent55. Third: it may be necessary in the ordinary course of system
execution to bring a non-terminating behaviour, or a terminating behaviour that has not
yet reached a designed halt, to an orderly stop—for example to cease operation of a
vending machine when next there is no customer interacting with the machine. This,
too, must be commanded by the instantiating agent.

51 The behaviour control diagram shows only the parent-child relationship. The dynamic rules and
patterns of instantiations are not shown in the diagram but only in the specification or program text
of the controlling machine. Although designed domains appear in a behaviour control diagram, their
associations with individual behaviours by membership of their problem worlds are not represented.

52 Where a problem domain is populated by multiple individual entities there will be behaviours
whose instantiations must be specialised in this way. In a library system, for example, a loan
behaviour must be specialised to the borrowed book and the borrowing member.

53 Instances of distinct behaviours, and distinct instances of the same behaviour, suitably specialised,
may be temporally related by concurrency or in any other way governed by the controlling
behaviour.

54 A designed halt may occur when the goal of the behaviour been attained or has become
unattainable. The associated failure condition is within the envisaged results of execution, and must
be clearly distinguished from a failure of the assumed environment conditions—which, by
definition, is not addressed within the behaviour’s own design.

55 Pre-emptive abortion is typically needed only in emergency conditions. In a lift system, for
example, the normal lift service behaviour must be pre-emptively aborted if the hoist cable breaks;
in an automotive system, the cruise control behaviour must be aborted if a crash impact is detected.
Abortion is, of course, not represented as a behaviour state in Fig. 4. Pre-emptive abortion destroys
the behaviour instance, which therefore no longer has any state.
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Where two constituent behaviours fulfil closely related functions, their controlling
behaviour becomes responsible for orderly termination of the whole. For example, in a
system to control paid admissions to a zoo, there may be two constituent behaviours:
one to manage payments, the other to manage admissions. On terminating the system
behaviour when the zoo closes it is necessary for the controlling behaviour to command
an orderly stop of the payments, followed by an orderly stop of admissions when the
payments received have been exhausted—or, perhaps when it is clear that there are no
more visitors to be admitted.

The controlled states of a machine are shown in Fig. 4.
On instantiation the machine enters its initialising state. If initialisation completes

successfully the machine enters its running state; alternatively, it may first reach a
designed halt, or receive a stop command from its controller. A stop command causes
the machine to halt at the next occurrence of a stable problem world state satisfying a
defined condition: for example, orderly termination of a lift behaviour might require the
lift car to be stationary at a floor with the doors open56. While stopping, the machine
may reach a state [term] in which it is designed to terminate unconditionally, or it may
first reach a stable [non-term] state at which termination is not unconditional.

The controller can observe—but not modify—the states of the controlled behaviour
shown in Fig. 4, along with more specific state details explicitly exported by the
controlled behaviour. For example, the Halted state may be accompanied by an indi-
cation failed or OK.
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ising 

Running 

Orderly 
Stopping 

 

 

Stopped 

Halted 

stop/ 

stop/ 

/halt 

[initialised] 

/halt 

[term] 
  /halt 

[not-term] 
  /halt 

Fig. 4. Standard interface for behaviour control

56 An orderly stop of lift service might take two forms. The fast form brings the lift car to the nearest
floor to allow passengers to disembark because the normal power supply has failed and the lift is
moving under emergency power; the slower form brings the car to the ground floor under normal
power to allow lift service to be suspended without inconveniencing users.
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9 Bottom-up Structuring of Large Behaviour

The starting point for the problem depicted in Fig. 2 was a broad, somewhat abstract,
understanding of the functional goal of B0: maintaining a certain stated relationship
between domains X and Y, constraining Y but not X. Understanding of this abstract
goal behaviour B0 led to the problem diagram on the left in Fig. 2. On closer
examination of the problem, simplicity criteria demanded the decomposition to beha-
viours B0’, BX and BY. Understanding of the desired abstract goal behaviour B0, and
the analysis which revealed its complexity, anchored the decomposition and provided a
first view of the constituent behaviours BX and BY. B0 might even be imagined as the
initial step in a refinement process of which the decomposition, and the design of the
three behaviours and the designed domain X-to-Y, are the product of imagined sub-
sequent steps. The end effect of these refinement steps is that the original causal chain
X → MB0 → Y has been refined to X → MBX → X-to-Y → MBY → Y57.

For a complete system of realistic size and complexity no abstract goal behaviour
can be identified that captures the overall behaviour as a whole58. Instead, the many
modes, features, functions, phases, fault mitigations and exception handlers present an
almost chaotic population of foreseeable constituent behaviours. Some candidates may
be motivated by apparently discrete features or by particular requirements. Others may
be hard to identify clearly or even to think of. The eventual interactions and temporal
relationships among these candidate behaviours are largely unknown when develop-
ment is begun. Study and design of these interactions and relationships cannot begin
until the constituent behaviours have themselves been brought under some degree of
intellectual control by identifying and analysing the subproblems that will define them.

When some candidate constituent behaviours have been identified and analysed in
their simplest forms, it becomes possible to consider their relationships and interac-
tions. The whole behavioural structure of the system is progressively59 built up as a
behaviour control tree of accepted candidates. Some constituent behaviours are iden-
tified from needs arising only in the process of constructing the tree. Some constituent

57 This refinement process is imaginary because formal refinement cannot be a reliable technique in a
non-formal world: the more concrete models may vitiate unacceptable or impractical simplifications
in their more abstract predecessors. For example, in Fig. 2 the interposition of the designed domain
may introduce sources of latency or error that were implicitly excluded in behaviour B0. When
development has been completed it may be possible to retrofit the complexities of the concrete
reality to an elaborated abstraction; but this exercise would belong to ex post facto rationalisation
and formal verification, not to development method.

58 In the absence of an identified and broadly understood abstract goal behaviour that comprehensibly
includes all its constituent behaviours, the overall behaviour must emerge eventually from work on
the constituent behaviours at lower levels. No starting point for a refinement process can be
identified, because nothing definitive can be said of the overall behaviour while it has not yet
emerged.

59 The bottom-up construction of the behaviour tree is progressive only in the sense that constituent
behaviours are gradually pieced together as their individual designs and interactions become
progressively clearer. In general, the intermediate products of the construction process will
constitute a forest rather than a tree. It is too optimistic to conceive of this forest as an ordered
structure, similar to a layered hierarchy to be built up in successive layers from the bottom upwards.
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behaviours and designed domains are introduced by local applications of top-down
design. Very often these designed domains will be analogic models of parts of the
system. Behaviour control may be exerted to terminate one behaviour in order to allow
another, incompatible, behaviour to be initiated.

10 From Behaviour Specification to Software Execution

The distinction between the problem and subproblem view, as sketched in Figs. 1 and 2,
and the behaviour control diagram, as exemplified in Fig. 3, is essentially the distinction
between a set of system behaviour views and a unified software view60.

The software specification, in terms of machine executions, resulting from the
approach described here can be regarded as a large concurrent program, in which each
instantiated machine execution corresponds to a process execution. (We note, however,
that if two concurrent behaviours produce identical machine responses to the same
instance of a problem world event or state change, duplication of the response may be
assumed to be harmful. It is then necessary to ensure that the response occurs only once
in the problem world for each occurrence of the stimulus.)

If the problem world descriptions {Wi} are expressed in a suitable form they may
form the basis for a simulation of the physical problem world, as is normal practice for
some systems (an avionics example is presented by O’Halloran [2]). Alternatively, if
actual instances of the problem world are conveniently, cheaply and safely available,
they may provide a test environment for the software.

Finally, for some purposes—including formal verification of pre-formal reasoning—
it may prove expedient to fragment the machine behaviour specification into a set of
stimulus-response pairs. In this transformation the structure and dynamic state of the
behaviour control tree, the designed domains, and the text pointers of the machine
instances must all be faithfully represented.

11 System Behaviour and the Salient Challenges

This paper has sketched an approach to development whose central theme and constant
concern is the structuring and design of the system behaviour. The system behaviour is
the visible intended effect of software execution, and is therefore the true end product
of software development. The identification of the stakeholders’ role as stating and
validating desired properties of the system behaviour—rather than mandating beha-
vioural details—is entirely appropriate: responsibility for designing a feasible beha-
viour that exhibits those properties must lie with the developers.

60 An obvious possible extension is a third view. The problem diagrams show the relationships
between machines and problem domains at the level of each constituent behaviour; the behaviour
control diagram shows the relationships among machines. A third view would show the
relationships among the problem domains induced by their interfaces of shared phenomena,
including interfaces to the machines. The form and representation of such an extension is a topic of
further work.
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The focus on system behaviour provides an intellectual tool for addressing the
salient development challenges of cyber-physical systems. The behaviour control tree,
of which a trivial example is shown in Fig. 3, allows the complex overall behaviour to
be comprehended in a nested structure of potentially concurrent constituent behaviour
components. There is a parallel here with the advantages of classical structured pro-
gramming. The nested behaviour structure establishes a tree of regions of the system’s
operating envelope61, each with the accompanying assumptions that justify the chosen
formalisations of the problem world properties. Construction of this tree must proceed
largely bottom-up. Until a good understanding has been achieved of its components at
every level, it is impossible to determine the scope either of proposed invariant
requirements or of the validity of proposed formalisations of given problem domain
properties.

At the level of a constituent behaviour the approach to complexity is incremental.
In a subproblem the behaviour is initially considered in isolation as a complete system
in itself. This initial treatment clarifies the simplest case of the behaviour, in which
nothing goes wrong and there is no interference from interaction with other behaviours
at common problem domains. At later stages the subproblem is revisited to address
these and other sources of complexity. For example: deviation from the simplest case to
handle a minor exception; modification to ensure compatibility with other behaviours;
and interaction with the controlling parent or child behaviours. It may then become
necessary to distinguish multiple versions of the behaviour according to the com-
plexities of the context.

The fundamental thesis of this paper is that behaviour is an indispensable concept
for developing dependable cyber-physical systems. The approach briefly presented here
is still very much a work in progress, aiming to address, directly and effectively, the
salient challenges of behavioural design and structuring.
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Abstract. Software systems are usually developed to provide a fixed set
of functionalities within given environmental conditions. However, in the
last few years, there has been an increasing interest in systems that can
autonomously modify their behavior in response to dynamic changes
occurring in their execution environment. In one word, they must be
self-adaptive. Self-adaptation requires the ability to discover and ana-
lyze changes, and to react by applying an adequate set of adaptation
actions. The choice of the adaptation actions to apply can be performed
in a model-driven fashion, that is by evaluating their effectiveness on a
model of the system that is kept alive and updated at run-time.

We describe an approach to the design of self-adaptive systems that
frames self-adaptation as a control theory problem. Our approach con-
siders the architecture of the application, represented through a Discrete
Time Markov Chain (DTMC); the running environment upon which
it is deployed, described through a Queuing Model (QM); and a cost
model, specified through a Dynamic System. At run-time the system
autonomously increases or decreases the amount of resources allocated
to different components of the application in response to changes of both
workload intensity and distribution, and of performance of the comput-
ing resources. The adopted policy both minimizes costs and maintains
the desired QoS, in terms of average response time. We evaluate our
approach simulating a cloud computing application in a cloud infrastruc-
ture. This computing environment has been chosen because it allows
on-demand access to a configurable pool of resources that can be easily
provisioned and released at run-time.

1 Introduction

In the last few years, adaptive systems have been gaining increasing interest in
the research community. This was mainly motivated by the requirement to design
systems that operate in a world that constantly evolves over time [3]. Changes
may occur in the environment in which the application is running and their effect
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may lead to violations of the requirements the system is expected to satisfy. To
prevent violations, self-adaptive systems can modify their behavior [9]. This is
mainly obtained through suitable monitors and reasoning mechanisms, which
continuously probe the environment wherein the system is running, and select
the most suitable set of adaptation actions to cope with changes, respectively.

A systematic approach to the design of self-adaptive systems can be framed
in a model-driven way; that is, the strategy employed to manage changes can
be based on the use of models. The behavior of the running system is speci-
fied through a model that is kept alive and updated at run-time. The model
is repeatedly verified to check for possible requirements violations. It is then
used by an appropriate controller to compute the most suitable set of adapta-
tion actions to be performed. This arrangement offers several advantages [8,10].
First, describing the system through a formal, mathematical model offers the
possibility to better understand the system and its dynamics. Second, models
provide a rigorous way to build a controller able to manage changes at run-time.

Self-adaptive systems can be characterized in terms of their flexibility and
assurance. Flexibility refers to the capability of the system to manage changes.
Assurance instead refers to the capability of proving the correct behavior of the
system at run-time after any change [14]. Flexibility and assurance are usually in
conflict and strongly depend on the strategy employed in the controller design.
Several approaches require the full definition and the complete tuning of the
model of the system and how it reacts to the different changes at design time.
In these cases the developer specifies how the system is going to adapt at run-
time over a set of predefined changes. These approaches privilege assurance over
flexibility, since the behavior of the controller over the set of possible adapta-
tion actions is statically analyzed. In contrast, other approaches autonomously
identify and tune the model of the system at run-time. In these cases, the app-
roach is really flexible since the system is able to cope with every type of change,
but it may lack assurance about the behavior of the controller. Finally, hybrid
approaches combine design-time and run-time techniques to conjugate the flex-
ibility guaranteed by using models at run-time with the assurance gained with
the use of design-time models. Usually, in these approaches the developer iden-
tifies at design-time a set of parameters that are monitored and used during the
run-time adaptation process.

This paper proposes a hybrid approach to autonomously regulate the
resources allocated to the different components of the system at run-time. The
approach explicitly considers the architecture of the application, the running
environment upon which the application is deployed and a cost model that
describes the monetary charges of the different resources. A Discrete-Time
Markov Chain (DTMC) is used to describe the architecture of the application,
that is how its different components interact. A Queuing Model (QM) speci-
fies how these components manage the requests once deployed in the running
environment and allows us to compute the response time of each of these com-
ponents. A Dynamic System is used to represent how the costs change over time.
Starting from these models, we compute the global specification of the system,
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which is kept alive and updated at run-time. The specification is used to derive
a constraint minimization problem in which the objective function specifies the
cost of using the system and the constraint enforces an upper bound to the
average response time.

We evaluate our approach using a Cloud computing application exam-
ple, since cloud computing allows on-demand access to a configurable pool of
resources that can be easily provisioned and released [21]. The example pre-
sented in this work uses the Infrastructure as a Service (IaaS) paradigm, which
offers the possibility to allocate and de-allocate new virtual machines dynami-
cally at run-time. We assume that the application under design has to comply
with a given Service-Level Agreement (SLA) that prescribes an upper bound on
response time. The goal is to self-adapt by regulating the amount of resources
allocated to the different components of the application over time (scale) to
minimize costs while fulfilling an SLA requirement.

The paper is organized as follows. Section 2 presents an overview of our app-
roach and its main aspects. Section 3 illustrates the case study that is considered
throughout this paper. Section 4 provides an overview of the modeling paradigm
we used. The proposed controller is presented in Sect. 5. The results we obtained
are discussed in Sect. 6. Section 7 describes related works in the context of adap-
tive systems with a special focus on the Cloud. Finally, Sect. 8 presents the
conclusions and outlines future work.

2 Overview of the Approach

This section presents an overview of the proposed hybrid approach which is
represented in Fig. 1. This approach relies on two different phases: the design-
time and the run-time phase.

The design-time phase concerns the development of a model of the running
system that is used to dynamically modify its behavior at run-time. This model
includes (i) a Discrete Time Markov Chain (DTMC) describing the behavior
of the application under development, (ii) a Queuing Model (QM) describing
how the requests are computed by the different components of the application,
and (iii) a Discrete Time Dynamic System (DTDS) describing how the costs
associated with the allocation of different resources of the system change over
time.

Discrete Time Markov Chains are used to describe how the different compo-
nents of the application under development interact with each other. A DTMC
is a state-based modeling formalism that shows how the configuration of the sys-
tem changes over time through state transitions. In our approach, each state of
the DTMC represents a component. We use the term component to indicate any
independently running code unit. It might be a service in the service-oriented
sense. Because the states of a DTMC, which represent components, are repre-
sented as graph nodes, when no ambiguity arises, we use the terms component,
state, and node interchangeably. Transitions specify how the different requests
flow from one component to another. Furthermore, in DTMCs transitions are
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labeled with probabilities, which specify the likelihood of the transitions to be
performed, i.e., the probability of a request to be forwarded from one component
to another.

Queuing Models specify how requests are processed in the different nodes.
Components can be replicated on a number of virtual machines, which altogether
define a group1. QMs are particularly suitable to effectively analyze the perfor-
mance of the system. The idea is that at any time a certain number of requests
(λ) arrive at a particular node of the system. A request can be immediately
processed if a virtual machine is available; otherwise it must be queued. Each
virtual machine handles the incoming requests with a given service time. QMs
provide a simple, analytic way to compute the waiting time and the response
time of different requests in the system.

Fig. 1. An overview of the approach

Discrete Time Dynamical Systems (DTDS) are a mathematical formalism
that specifies how a system configuration evolves over time. A DTDS represents
the current configuration of the system through a vector of variables, which is
updated at each time instant. The update function computes its output values in
relation with the current configuration and the inputs of the system. A configu-
ration defines the allocation of resources at any time instant, and this can used to
reason about the costs involved in using resources over time. Specifically, in our
case a configuration describes the allocation of virtual machines to components
and the goal we wish to achieve is to satisfy the response time requirements at
minimum cost.

The DTMC, QM and the DTDS describe the system under development from
different perspectives: the architecture of the application, the response time of
1 An autoscaling group in the Amazon cloud’s terminology.
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its components, and the costs of the running system. These three models are
aggregated during the mapping phase into a single, fully comprehensive run-
time model of the application. The run-time model of the application allows
computation of the total response time of the whole application and its cost.
In particular, since the different components of the application are deployed on
diverse resources, each node of the DTMC is associated to a QM, through which
one can compute its response time in relation with the number of allocated
resources. Furthermore, each node of the DTMC is associated to a DTDS. The
DTDS allows one to compute the costs of the allocated resources and prevents
removal of resources from the running system when no benefit are gained (e.g.,
if resources are allocated on a hourly basis they should be removed only when
the hour in which they were activated expires).

The mapping procedure also allows the developer to specify the set of para-
meters (aspects) that can change and to associate these parameters to suitable
monitors or estimators. For example, the developer may specify that the proba-
bility of performing a certain transition of the DTMC changes at run-time (e.g.,
the probability of booking mountain hotels increases in snowing days).

During the run-time phase the model of the system is used to derive a con-
straint optimization problem which will be solved at run-time to compute the val-
ues of N1, N2 . . . Nn that are the number of machines that must be (de-)activated
for each component. The optimization problem includes a cost function that
specifies how costs change in relation with the number of machines allocated
to the different components, and a set of constraints that force the system to
guarantee a desired response time. These constraints are generated with regards
of the DTMC, the QM and the Discrete Time Dynamic System.

The parameters of run-time models are continuously estimated and the
model of the system (and the corresponding constraint optimization problem) is
updated consequently. For example, in Fig. 1 the unknown parameters include
the incoming workload of the system (λ) the probabilities of forwarding the
requests to the different nodes of the application (p1, p2 . . . pn) and the service
time of each of these nodes (μ1, μ2 . . . μn). The controller computes the solu-
tion of the optimization problem to calculate the set of adaptation actions to
be performed in response to changes. In our specific case, the controller acts on
the number of machines (N1, N2 . . . Nn) that are allocated for each component.
The idea is that the controller increases the number of machines when the total
response time of the system violates a desired SLA, while decreases it to reduce
costs when the resources allocated to each service are over-provisioned.

3 Case Study

This section introduces the case study used to evaluate our approach, which
refers to a web application offering users a way to buy tickets for theatrical events.
Users access the application via a browser and interact via HTTP requests.
The application is deployed on a cloud environment and exploits the dynamic
provisioning of resources to autonomously increase the number of machines that
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serve the application under the peaks of workload (e.g., when the booking of new
theatrical events starts). The different components of the application interact to
satisfy users requests. These requests include:

– browsing a set of static pages. For simplicity we consider only the homepage
of the web site and the associated request home;

– searching for a particular pièce, with the search request;
– selecting a seat for the selected performance, with the pick seat request;
– purchase the ticket by making an online payment, with the buy request.

Figure 2 shows the internal architecture of the application. The application
has been divided in two main tiers: a front-end and a back-end. The front-end
tier contains a web server that is the entry point for all the requests. Some of
these requests can be directly handled by accessing a set of static web pages;
others require the invocation of the back-end to collect the required information.
The back-end tier hosts the business logic of the application; it includes the data
manager to access a shared database, the seat manager to manage the available
seats for each pièce and to avoid conflicts in the reservations, and the payment
system that takes care of the charge.

Fig. 2. Architecture of the application

The components of the application illustrated in Fig. 2 interact to provide
the desired functionalities. Figure 3 shows the interactions needed to accomplish
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the buy request. The web server sends a buySeat request to the seat manager
that checks the actual availability of the seat and locks it. The seat manager
forwards the request to the payment service responsible for the purchase. Other
interactions triggered by the web server, omitted here, may be described in a
similar way. Table 1 specifies the set of components necessary to process each
request.

Fig. 3. Buy request processing Sequence Diagram

In our case study, each component of the application is hosted by a dedicated
pool of resources (or auto-scaling group). These resources are hosted on a Cloud
platform that offers an IaaS solution, such as Amazon EC2. The connectivity,
the management of hardware resources and the load balancing among different
machines are delegated to the Cloud provider. However, the application adminis-
trator is in charge of deciding the number of machines of each auto scaling group
and is charged according to a pay-per-hour strategy. Our adaptive solution is
able to autonomously allocate and de-allocate machines in the different pool of
resources when something change. The case study contemplates the following
changes:

– workload conditions: the request rate changes over time. For example, there
may exists a seasonal relation between the period of the year and the requests
of buying certain tickets (e.g., the booking of arena theater tickets increases
during summer). Furthermore, the first day a particular ticket is on sale
exposes the system to a peak of requests;

– user preferences: the likelihood of different user requests is influenced by envi-
ronmental factors. The first day a particular ticket is sold the probability a
user performs a pick seat or a buy request with respect to a search request
increases, while usually the user searches for date and periods of particular
events (i.e., search requests);



70 C. Ghezzi et al.

Table 1. Set of components necessary to process each request

Request Necessary components

Home Web Server

Search Web Server, Data Manager

Pick seat Web Server, Seat Manager, Data Manager

Buy Web Server, Seat Manager, Payment

– cloud parameters: the behavior of the cloud environment changes. The process-
ing rate of each resource of the Cloud environment usually increases or
decreases when other processes are removed from or deployed on the pool
of resources.

4 Modeling Paradigm

This section presents an overview on the modeling formalisms involved in this
work and how they are used to design self-adaptive systems considering the case
study presented in Sect. 3.

4.1 Discrete Time Markov Chain

Starting from the classical definition of Discrete Time Markov Chain [2]
(DTMC), we formalize a DTMC as a tuple M = 〈S, P, si, sf AP, L〉, where:

– S is a finite set of states;
– P : S × S → [0, 1] is the transition probability function, such that ∀s ∈

S,
∑

s′∈S P (s, s′) = 1;
– si ∈ S is the initial state of the system;
– sf ∈ S is the final state of the system2. Furthermore, sf is the only state such

that P (s, s) = 1. Formally, �s ∈ S | (P (s, s) = 1) ∧ (s �= sf );
– AP is the set of atomic propositions;
– L : S → 2AP is the labeling function that associates to each state the set of

atomic propositions that are true in that state.

The transition probability relation P specifies the probability to move from
one state to another in one step, that is, by a single transition. The notation
P (sj , sk) indicates the entry (j, k) of the matrix P , that corresponds to the
probability of moving from the state sj to the state sk of M. A state s ∈ S
is absorbing if and only if P (s, s) = 1. A DTMC is absorbing if there exists an
absorbing state (that in our case is the absorbing state) and from any state it is
possible to eventually reach an absorbing state. A state s ∈ S is transient if and
2 Note that, in general, more final states can be supported. In this work we consider

a single final state to represent the successful completion of requests.
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only if starting in s there is a non zero probability that we will never return to
s. A state is recurrent if it is not transient. Note that in an absorbing DTMC
the only recurrent states are absorbing states.

An absorbing DTMC can be described using the canonical form as speci-
fied in Formula 1. The canonical form decomposes the matrix P in four differ-
ent sub-matrices. Matrix Q (t × t) contains the transition probabilities between
transient states. Matrix R (t×r) contains the transition probabilities from tran-
sient states to absorbing states (i.e., final states). Matrix 0 represents transitions
from absorbing states to transient ones, which must be zero for the definition of
absorbing state. Matrix I (r× r) represent transitions between absorbing states,
which must be the identity matrix for the definition of absorbing state.

P =
(

Q R
0 I

)

(1)

In our case the only absorbing and recurrent state is the final state. This
implies that I is a 1 × 1 matrix and R is a column vector of length t containing
the transition probabilities of reaching the final state.

The probability pn
j,k of reaching state sj from sk in n steps is the element

(i, j) of the matrix Pn. In an absorbing Markov chain, the probability that
the process will be absorbed is 1 (i.e., Qn → 0 as n → ∞). For an absorbing
Markov chain the matrix Z, computed as specified in Formula 2, is called the
fundamental matrix for P [18]. The entry zk,j of Z gives the expected number of
times that the process is in the transient state sj if it is started in the transient
state sk. Since in our case requests always enter the system in the initial state
si, the entry ni,j of Z represents the expected number of time the request visit
the state (service) sj .

Z = (I − Q)−1 (2)

Therefore, the ith row of Z (i.e., the row corresponding to the initial state)
represents the row containing the expected number of times an incoming request
transits on each node of the DTMC. We call z the transposition of this row
vector.

Let us consider the example described in Sect. 3. The architecture of the
application illustrated in Fig. 2 is converted into an equivalent DTMC that is
illustrated in Fig. 4. Each component of the architecture is mapped on a state of
the DTMC. Transitions specify how requests are forwarded through the differ-
ent components of the architecture. Furthermore, transitions are enriched with
probabilities that specify the likelihood of forwarding a request on each of the
transitions. Note that an additional state i.e., the final state, is added to specify
that the request has been correctly computed and exits the system. Note that
the probabilities p1,2, p1,3 . . . are monitored and estimated at run-time as done,
for example, by Epifani et al. in [10].
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Fig. 4. DTMC of the architecture presented in Sect. 3

4.2 Queuing Models

Queuing models are commonly used to analyze various performance metrics
of different kinds of systems (e.g., communication devices, software system,
servers) in front of changes in the workload. These systems are usually com-
posed by processing nodes that serve requests. Since the processing capacity of
these resources is limited, usually, each processing node also contains a buffer
that stores incoming requests temporarily, until the processing resource becomes
available. The queuing model can implement different service policies (e.g.,
FIFO, LIFO, Processor Sharing) and multiple processing resources sharing the
same queue.

Queuing models are usually described using the Kendall notation [19]. This
notation represents a queue node as a triple a/b/c, where a represents the dis-
tribution of the inter-arrival time of requests, b represents the service time dis-
tribution, and c the number of resources that are used in each node to process
the incoming requests. Usually a and b are replaced by G or M , where G stands
for a general distribution and M represents a Markovian process (a Poisson
distribution). Other more complex types of distributions can also be specified.

For simplicity in this work we consider each processing resource modeled as
pool of M/M/1 queues, and we split the incoming workload λ equally among the
machines of the pool, this way each queue will have an incoming workload equal
to λ/N3. The queuing model allows an easy computation of its performance
and, more precisely, of the average service time (that is the time spent in the
queue plus the time needed by the resource to process the request). The average
service time ω at the time t is computed using the Formula 3 [1]. The variable
N(t) models the number of replicas of the resource, μ(t) represents the processing
rate and λ(t) is the arrival rate. Note that the values of N , μ and λ change over
time and that Formula 3 is valid only if the denominator is strictly positive.

3 Note that the approach can be easily extended to consider an M/M/n model.
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ω(t) =
1

μ(t) − λ(t)
N(t)

(3)

Recalling the DTMC modeling of the service based architecture of Sect. 4.1
each node of the DTMC represents a core service of the application. In our Cloud
based deployment of the application each service is hosted on an auto-scaling
group, which is modeled by a queue. The average response time of each node
sj of the DTMC is given by Formula 4, where λj(t) is computed by multiplying
the incoming workload λ(t) with the jth entry of matrix Z given by Formula 2.

ωj(t) =
1

μj(t) − λj(t)
Nj(t)

(4)

Given the vector ω(t) that contains the average response time of each node of
the DTMC (ωj(t)), the total response time of the application (QM plus DTMC)
is computed by multiplying the estimated response time at each node and the
number of times an incoming request is expected to transit for that node, and
summing all together, as specified in Formula 54.

Ω(t) = ω(t)T × z(t). (5)

4.3 Discrete Time Dynamic Systems

Discrete time dynamic systems are a mathematical formalism that is used to
describe the system and its evolution over time in a rigorous manner. This section
only presents the main aspects related to discrete time dynamic systems. The
interested reader can refer to [24] for details. The main characteristic of a discrete
time dynamic system is the discrete nature of time, that is changes to the values
of the system variables occur in distinct separate instants of time. A discrete
time dynamic system interacts with the world by means of two different vectors
of variables: u and y. The vector u ∈ Rp contains the set of input variables,
which affect the actions executed on the dynamic system from external agents.
Conversely, the vector y ∈ Rn contains the set of output variables, which usually
represent the output of the system or the values of some variables of interest.
Finally, the vector x ∈ Rn contains the set of state variables. State variables
are used to describe the internal configuration of the dynamic system, i.e., the
variables of interest to compute the output of the system. Formally, a discrete
time dynamic systems is usually described through a set of equations as specified
in Formula 6.

x(k + 1) = f(x(k), u(k), k) (6a)
y(k) = g(x(k), u(k), k) (6b)

4 The model that is obtained by connecting QMs into a network enriched with the
probabilities of moving from one node to another is also known as Jackson Net-
work [16].
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Equation 6a, called state equation, computes the state of the system at the
time instant k + 1 (x(k + 1)) starting from the state of the system at the time k
(x(k)) and its current input (u(k)). The value of the next state is computed by an
appropriate function f(·, ·, ·). Equation 6b is the output equation and describes
the relation between the state of the system (x(k)), its input (u(k)) and the
output variables (y(k)) through function g(·, ·, ·).

In our case, the discrete time dynamic system is used to keep track of how
many machines are active and when the different machines have been activated.
As previously introduced, each component of the application is deployed on
different auto scaling nodes. The set of all the auto scaling nodes of the cloud
platform upon which the components of the application are deployed is indicated
as I. For each auto scaling node i of the DTMC, the vector Ni of length 60,
specifies the number of machines that were activated 0, 1, . . . 59 minutes earlier.
We assume that the pricing model of cloud services is pay-by-the-hour and that
the controller is activated every minute. The assumed pricing model reflects a
common practice of today’s Cloud providers, who charge users for one hour
of usage of a single service at the beginning of the hour (e.g., Amazon Web
Services pricing model). The assumption on the control period is reasonable,
since starting a machine usually takes more than a minute. In this work, we
consider very fast startup of machines; if longer time have to be considered the
controller period is easily adaptable.

The dynamic behavior of the system is expressed through the state equations
in Formula 7, which specify the relation between the state of the system at time
t and t + 1. More precisely, at the time instant t + 1, the number of machines
that were been activated j minutes earlier, is stored in the cell j of the vector
Ni, that is Ni(t+1)[j]. This value is equal to the number of machines that were
activated j − 1 minutes earlier the time instant t plus, possibly, the number
of machines that are currently activated or deactivated N∗

i (t + 1). The input
variable N∗

i (t + 1) is an integer number (positive or negative) that contains the
number of machines that are added (positive) or removed (negative) from the
system at the time instant t + 1. When a machine reaches the 60th minute of
operation after its activation, reaching the last cell of the vector Ni, it re-enters
the system in the first cell of vector Ni. This behavior models the fact that if the
machine is not shut down the cost of an entire new hour of utilization is added.
The value of N∗

i (t + 1) is determined by the controller described in Sect. 5.

Ni(t + 1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

× Ni(t) +

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
...
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

· N∗
i (t + 1) (7)

The total number of machines (Ni(t + 1)) that are active in each node i ∈ I
of the DTMC at the time t + 1 is computed using Formula 8, which sums the
number of machines that are activated 0, 1 . . . 59 min earlier.
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Ni(t + 1) =
∑

j∈{0...59}
N i(t + 1)[j]. (8)

5 Runtime Adaptation

The model presented in Sect. 4 is used to trigger the run-time adaptation process.
The main idea is that the run-time adaptation mechanism can autonomously
modify the overall behavior by allocating and de-allocating resources to the
different components of the application, i.e., the number of machines of each auto
scaling node, to satisfy the current workload requests. This is done by translating
the model described in Sect. 4 into a constrained optimization problem that
identifies the number of machines to be allocated or de-allocated from each
auto scaling group, guaranteeing the required response time constraint while
minimizing costs.

The run-time adaptation procedure presented in this section is also able to
manage a set of changes that can occur at run-time. These changes include
(i) the probabilities of moving through the different states of the DTMC, (ii) the
processing rate μ(t) of each node and (iii) the current incoming workload. These
elements are continuously monitored or estimated at run-time. The estimation
of the parameters is out of the scope of this work, the interested reader may
refer to [10] for additional information.

Since we assume a pay-by-the-hour pricing model, whenever a machine begins
the hour, switching it off before the hour ends will not reduces costs, since
the whole hour is already payed. Therefore our controller will not shut down
machines before ending the allocated hour. At every periodic control instant
(1 min in our experiments) the controller adapts by either switching on or off a
certain number of machines. These are modeled by a decision variable N

∗
, which

is a vector that contains the number of machines added or removed in every auto-
scaling group. A positive number specifies that new machines should be added
to the ones already running, while a negative number describes the number of
machines that should be switched off among those finishing the allocated hour.

minC · N
∗
(t + 1) (9a)

Ω(t + 1) < Td (9b)

N
∗
(t + 1) + Nf (t) > 0 (9c)

Nj(t + 1) >
λ̂j(t + 1)
μ̂j(t + 1)

(9d)

The constrained optimization problem that our controller periodically solves
using iterative methods is specified in Formulae 9a to 9d. The objective function
in Formula 9a specifies that the solution must minimize the total cost, which
is equal to the sum of all the values in vector N

∗
, weighted with the cost per

machine of the specific auto-scaling group C. The constraint in Formula 9b
imposes that the average service time for a single request Ω(t + 1) should not
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exceed the given threshold Td. The constraint in Formula 9c imposes that the
number of machines must be positive. Nf is the vector of machines ending their
payed hour, which is obtained from N i. Finally, the constraint expressed by
Formula 9d is a necessary condition for Formula 3 to be valid, where λ̂j(t + 1)
and μ̂j(t + 1) are the estimated arrival rate and service rate at node j at time
t + 1, respectively, while Nj(t + 1) is the total number of machines at node j at
time t+1, which depends on our control variable according to Formulae 7 and 8.

6 Results

This section presents the results of our run-time adaptation mechanism through-
out simulations. The non-ideal nature of an actual cloud deployment is repro-
duced by the introduction of artificial noise. Note that the performance of the
adaptation mechanism strongly depends on the accuracy of the estimation of
the working conditions at the time instant t + 1. More precisely, the estimation
of the workload (λ̂(t + 1)), the probabilities (Q̂(t + 1)) and the service rates
(μ̂(t + 1)) are subject to noise. Formally, they are specified as described in For-
mula 10 where ηλ(t + 1), ηQ(t + 1) and ημ(t + 1) are the noise in the workload,
probabilities and service rate estimations.

λ̂(t + 1) = λ(t + 1) + ηλ(t + 1) (10a)

Q̂(t + 1) = Q(t + 1) + ηQ(t + 1) (10b)
μ̂(t + 1) = μ(t + 1) + ημ(t + 1) (10c)

We analyze the behavior of the control mechanism in four different scenarios
(i) the workload changes, but the probabilities and the service rate of each auto-
scaling group are fixed (ii) the service rate of the different auto-scaling group
change, but the workload and the probabilities of the DTMC are fixed (iii) the
probabilities change, but the workload and the service rate of each auto-scaling
group are fixed (iv) the workload, the probabilities and the service rates change.

Figure 5 shows the behavior of the system when the workload changes. If
the workload increases (e.g., Fig. 5(a) time instants 500 m–800 m) or decreases
(e.g., Fig. 5(a) time instants 200 m–500 m), the controller augments or decreases
the number of machines in charge of processing these requests (see Fig. 5(b) time
instants 500 m–800 m and 200–500 m, respectively). Note that the controller does
not remove a machine if it is not expiring. For example, in Fig. 5(b) no machines
are removed in the period included between time instants 360 m–420 m, this is
due to the fact that the usage of a machine is priced by the hour even if it is
shut down before the end of the hour. This gives at the graph a steps shape.
Figure 5(c) shows the response time of the system. Note that in some cases the
requirement is violated. This happens because the controller is subject to un-
predicted spikes of workload, the ηλ(t + 1), that make the requirement violated.
Note that these violations can be prevented by a more precise estimation of
ηλ(t + 1).
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Fig. 5. Behavior of the system when the workload changes

Figure 6 evidences the behavior of the system in response to changes in
the service rate of the different auto-scaling groups. If the service rate of an
auto-scaling group increases (decreases) a set of running machines are removed
(added) from the running system. For example, in Fig. 6(a) from time instant
400 m to 700 m the service rate of the auto-scaling group s2 increases. There-
fore, as evidenced in Fig. 6(b) a set of machines are removed from s2. Note that
since we have introduced some noise on the estimation of the service rates of
the different nodes (see Fig. 6(a)), in some cases the SLA is violated as depicted
in Fig. 6(c). However, this can be handled either by considering the noise in the
estimation in the definition of the SLA or by improving the algorithms used to
asses the service rates.

Figure 7 evidences the behavior of the run-time adaptation procedure in
response to changes in the probabilities of the transitions of the DTMC. If the
probability of a transition to be performed increases (decreases) the number of
machines allocated to the different auto-scaling groups is modified accordingly.
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Fig. 6. Behavior of the system when the service rate changes

For example, in Fig. 7(a) from time instant 300 m to 500 m the probability of
performing the transitions 1–3 (p1,3) and 1–2 (p1,2) increases and decreases,
respectively. Therefore, as evidenced in Fig. 7(b), a set of machines are added
(removed) from the auto-scaling group s2 (s3). The violations in the SLA evi-
denced in Fig. 7(c) are, again, caused by errors in the estimation of the proba-
bilities of the DTMC.

Finally, Fig. 8 describes the response time of the system when the proba-
bilities, the service rates and the workload change. Compared to the previously
described experiments, in this case, the violations in the SLA increase. The cause
is due to the noises that are added on the estimations of the probabilities of the
service rates and on the workload.
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Fig. 7. Behavior of the system when the probabilities of the DTMC change
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Fig. 8. Behavior of the system when the probabilities, the service rates and the work-
load change

7 Related Works

Self adaptive systems have been strongly studied in the last few years due to
their ability of autonomously manage changes that occur in their operating envi-
ronment. The realization of these systems is chained to the solution of a set of
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sub-problems which include among others, (i) the selection of the adaptation
actions to employ after unexpected changes, and (ii) the verification that new
configurations of the system are complied with its requirements.

The first problem concerns when and how adaptation is performed. The dif-
ferent approaches proposed in literature exploit theories, such as control theory,
models, such as Causal Networks, and procedures, such as optimization algo-
rithms, to select the most suitable set of adaptation actions to apply. For exam-
ple, Filieri et al. [11] use a control theory based approach to support reliability
requirements. Pasquale et al. [4] describe how to realize a requirements-driven
adaptation mechanism. More precisely, the requirement model, that is specified
using a goal modeling technique, is mapped into a Causal Network that is used
at run-time to trigger the adaptation procedure. Ardagna et al. [27] manage
adaptation by solving an optimization problem that allows to select the amount
of resources to be (de)allocated at run-time in the running system.

The second problem refers to the procedure that is performed, after any
change, to verify if the new configuration of the system is aligned with its require-
ments. One of the possible ways to solve this problem in an efficient way is the
generation of constraints [12,15,25]. The developer identifies at design time a
set of aspects (e.g., parameters) that can change at run-time. These aspects may
include the probabilities of the transitions to be performed, as in [12], or sub-
components of the application [15,25]. Based on these aspects, at design time,
a (set of) constraint(s) is pre-computed. At run-time, when something change,
instead of verifying everything from scratch, the part that has been modified
is only verified against the constraints previously generated, with obvious time
advantages.

In the context of the Cloud self adaptiveness refers to the ability of
autonomously modify the resources allocated to the different components of the
application in response to workload changes. Gambi et al. [14] and Calcavecchia
et al. [7] analyze and classify some of these approaches. The former classifies the
approaches in relation with their flexibility and assurance which measure the
capability of the controller to adapt to unknown or unexpected situations and
the capacity of the controller to provide formal guarantees on the behavior of the
system, respectively. The latter considers parameter proper of the Cloud, such
as their service model (IaaS, PaaS,SaaS), the structure of the controller (e.g.,
hierarchical, distributed). The works that are discussed in the following provide
a high level overview of the current research trends in the area5.

A first class of approaches concerns the one that provide formal guarantees
on the correct behavior of the controller at run-time. A completely specified
model representing the real system is required to perform full static analysis
before deploying the self-adaptive system. Bi et al. [6] present a dynamic tech-
nique to determine the number of virtual machines using a queue model to
represent a multi-tier application. The number of machines is chosen as a result
of a non-linear constraint optimization problem where only the incoming work-
load changes. The use of a performance model allows to give formal guarantees

5 For a deeper analysis the interested reader can refer to [7,14].
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on the response time of the system. Benanni et al. [5] tackle the provisioning
problem by using separate performance models for Online Analytical Processes
(OLAP) and Online Transactional Processes (OLTP). The utility function of
OLAP processes aims at maximizing the throughput while the one of OLTP
minimizes the response time. To assess the performance of a provisioning con-
figuration according to OLAP processes a closed Queue Network (QN) model is
used and for OLTP an open QN is preferred.

The second class of approaches consider the model as partially specified,
that is several parameters are left unspecified and monitored and updated at
run-time. The system is adaptive with respect to variations in the values of
these parameters. Calcavecchia et al., [7], proposed a probabilistic and distrib-
uted approach where each service is an autonomous agent able to either spawn a
new machine or remove itself based on current resource demand. Patikirikorala
et al. [23] presented another adaptive mechanism where different models are
used at run-time, some of which are static, while others are parametric, and
the most suitable one is chosen according to a mechanism they named Multi-
Model Switching and Tuning. Miglierina et al. [22] built a dual layer controller
to manage both auto scaling of machines and load balancing based on availabil-
ity constraints, minimizing costs, the model is chosen at design-time but some
parameters are updated at run-time.

Finally, the third class concerns approaches that do not rely on a stable repre-
sentation of the real system. These approaches can manage every type of change,
but there is no formal guarantee on their correct behavior. Jiang et al., [17] pro-
pose the use different prediction algorithms to estimate the incoming workload
and a majority voting algorithm to select between the results of these predictions.
Li et al., [20] consider the provisioning problem, using a reinforcement learning
approach, and the allocation of the applications of the resources allocated. The
Q-Learning algorithm [26] is exploited by servers to distributively learn the best
sequence of actions to perform in the different conditions in which the system is
operating. Gambi et al., [13] analyzes the same problem using Kriging models,
which are surrogate models that are able to efficiently be trained online even
with small data sets.

8 Conclusion and Future Work

This paper is a further step toward the realization of systems that are adaptive.
It presents an approach to develop software that autonomously modifies the
amount of resources that serve its components when environmental conditions
change. These conditions include (i) the probabilities of requests to be forwarded
to the different components of the application (ii) the processing rate of the
different resources upon which these components are deployed (iii) the incoming
workload that the system has to manage.

The approach requires the developer to define at design time the architec-
ture of the application (its components and their interaction) through a Dis-
crete Time Markov Chain (DTMC); the running environment upon which it is
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deployed through a Queuing Model (QM); and a cost model through a Dynamic
System. These models are aggregated to generate the whole, full-comprehensive,
model of the system which is used at run-time to identify the resources to be
added or removed from the running system. When something changes, the model
is updated and an optimization problem, which is obtained starting from this
model, is solved. The solution contains the number of machines to be added or
removed, minimizes costs and maintains the desired QoS, in terms of average
response time.

We evaluate our approach simulating a cloud computing application in a
cloud infrastructure. This computing environment has been selected because it
allows on-demand access to a configurable pool of resources that can be easily
provisioned and released at run-time. The preliminary results obtained in this
work encourage further analysis on the applicability of the approach. As future
work we aim to evaluate the performance of the approach on a real case study to
evidence its advantages. Furthermore, other modeling formalisms, such as more
complex queue models (e.g., M/M/c) can be considered to specify the system
under development.
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Abstract. Data replication is a common technique for programming
distributed systems, and is often important to achieve performance or
reliability goals. Unfortunately, the replication of data can compromise
its consistency, and thereby break programs that are unaware. In par-
ticular, in weakly consistent systems, programmers must assume some
responsibility to properly deal with queries that return stale data, and
to avoid state corruption under conflicting updates. The fundamental
tension between performance (favoring weak consistency) and correct-
ness (favoring strong consistency) is a recurring theme when designing
concurrent and distributed systems, and is both practically relevant and
of theoretical interest.

In this course, we investigate how to understand and formalize consis-
tency guarantees, and how we can determine if a system implementation
is correct with respect to such specifications. We start by examining
consensus, a classic problem in distributed systems, and then proceed to
study various specifications and implementations of eventually consistent
systems.

As more and more developers write programs that execute on a virtualized
cloud infrastructure, they find themselves confronted with the subtleties that
have long been the hallmark of distributed systems research. Devising message
protocols, reading and writing weakly consistent shared data, and handling fail-
ures are notoriously challenging, and are gaining relevance for a new generation
of developers.

With this in mind, I devised this course to provide a mix of techniques and
results that may prove either interesting, or useful, or both. In the first half,
I am presenting well-known results and techniques from the area of distributed
systems research, including:

– A beautiful, classic result: the impossibility of implementing consensus in the
presence of silent crashes on an asynchronous system [7] (Sect. 2.5).

– An algorithm that shows how impossibility is relative, by “achieving the
impossible” for all practical purposes: the PAXOS protocol [11] (Sect. 2.6).

– The machinery needed to present these topics: labeled transitions systems and
asynchronous protocols (Sect. 2).

In the second half, I focus on the main topic, which are consistency models
for shared data. This part includes:
c© Springer International Publishing Switzerland 2015
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– A formalization of strong consistency (sequential consistency, linearizability)
and a proof of the CAP theorem [1,8] (Sect. 3).

– A general examination and formalization of various models for eventual consis-
tency, which decomposes sequential consistency and introduces the arbitration
and visibility relations in its place (Sect. 4.1).

– Several example architectures for implementing various versions of sequential
or eventual consistency (Sect. 4.2).

These lecture notes are not meant to serve as a transcript. Rather, their pur-
pose is to complement the slides [2] used in the lectures by providing the tech-
nical depth and precision that is difficult to achieve in a lecture. Although the
material is technically self-contained, I highly recommend that readers study the
slides alongside these lecture notes, because the slides provide additional moti-
vation and contain many more examples and visualizations (such as diagrams
or animations) that bring the material to life.

Update: Since giving the original lectures at the LASER summer school, I have
expanded and revised much of the material presented in Sects. 3 and 4. The result
is now available as a short textbook [3] that provides a thorough introduction
to commonly used consistency models and protocols.

1 Preliminaries

We introduce some basic mathematical notations for sets, sequences, and rela-
tions. We assume standard set notations for set. Note that we write A ⊆ B to
denote ∀a ∈ A : a ∈ B. In particular, the notation A ⊆ B does neither imply
nor rule out either A = B or A �= B. We let N be the set of all natural numbers
(starting with number 1), and N0 = N ∪ {0}. The power set P(A) is the set of
all subsets of A.

Sequences. Given a set A, we let A∗ be the set of finite sequences (or “words”) of
elements of A, including the empty sequence which is denoted ε. We let A+ ⊆ A∗

be the set of nonempty sequences of elements of A. Thus, A∗ = A+ ∪ {ε}. For
two sequences u, v ∈ A∗, we write u · v to denote the concatenation (which is
also in A∗). If f : A → B is a function, and w ∈ A∗ is a sequence, then we
let f(w) ∈ B∗ be the sequence obtained by applying f to each element of w.
Sometimes we write Aω for the set of ω-infinite sequences of elements of A.

Multisets. A finite multiset m over some base set A is defined to be a function
m : A → N0 such that m(a) = 0 for almost all a (= all but finitely many). The
idea is that we represent the multiset as the function that defines how many
times each element of A is in the set. We let M(A) denote the set of all finite
multisets over A. When convenient, we interpret an element a as the singleton
multiset containing a. We use the following notations for typical operations on
multisets (using a mix of symbols taken from set notations and vector notations),
∅ for the empty multiset (= the constant 0 function λa.0), m + m′ for multiset
union (meaning λa.m(a)+m′(a)), m ≤ m′ for multiset inclusion (meaning ∀a ∈
A : m(a) ≤ m′(a)), a ∈ m for multiset membership (meaning m(a) ≥ 1), and
m − m′ for multiset difference (meaning λa.max(0,m(a) − m′(a))).
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Relations. A binary relation r over A is a subset r ⊆ A × A. For a, b ∈ A,
we use the notation a

r−→ b to denote (a, b) ∈ r, and the notation r(a) to denote
{b ∈ A | a

r−→ b}. We generalize the latter to sets in the usual way, i.e. for A′ ⊆ A,
r(A′) = {b ∈ A | ∃a ∈ A′ : a

r−→ b}. We use the notation r−1 to denote the inverse

relation, i.e. (a r−1

−−→ b) ⇔ (b r−→ a). Therefore, r−1(b) = {a ∈ A | a
r−→ b}

(we use this notation frequently). Given two binary relations r, r′ over A, we

define the composition r; r′ = {(a, c) | ∃b ∈ A : a
r−→ b

r′−→ c}. We let idA be
the identity relation over A, i.e. (a idA−−→ b) ⇔ (a = b). For n ∈ N0, We let An

be the n-ary composition A;A . . . ;A, with A0 = idA. We let A+ =
⋃

n≥1 An

and A∗ =
⋃

n≥0 An. For some subset A′ ⊆ A, and a binary relation r over A,
we let r|A′ be the binary relation over A′ obtained by restricting r, meaning
r|A′ = r ∩ (A′ × A′).

Orders. A binary relation r over A is a partial order if for all a, b, c ∈ A:

– It is irreflexive: a � r−→ a
– It is transitive: (a r−→ b) ∧ (b r−→ c) ⇒ (a r−→ c)

Note that partial orders are acyclic (if there were a cycle, transitivity would
imply a → a for some a, contradicting irreflexivity). We often visualize partial
orders as directed acyclic graphs. Moreover, in such drawings, we usually omit
transitively implied edges, to avoid overloading the picture.

A partial order does not necessarily order all elements. In fact, that is pre-
cisely what distinguishes it from a total order: a partial order r over A is a total
order if for all a, b ∈ A such that a �= b, either a

r−→ b or b
r−→ a. All total orders

are also partial orders.
Many authors define partial orders to be reflexive rather than irreflexive. We

chose to define them as irreflexive, to keep them more similar to total orders, and
to keep the definition more consistent with our favorite visualization, directed
acyclic graphs, whose vertices never have self-loops.

This choice is only superficial and not a deep distinction: consider the familiar
notations < and ≤. Conceptually, they represent the same ordering relation, but
one of them is reflexive, the other one is irreflexive. In fact, if r is a total or
partial order, we sometimes write a <r b to represent a

r−→ b, and a ≤r b to
represent (a r−→ b) ∨ (a = b).

A total order can be used to sort a set. For some finite set A′ ⊆ A and a
total order r over A, we let A′.sort(r) ∈ A∗ be the sequence obtained by sorting
the elements of A′ in ascending <r-order.

2 Models and Machines

To reason about protocols and consistency, we need terminology and notation
that helps us to abstract from details. In particular, we need models for machines,
and ways to characterize their behavior by stating and then proving or refuting
their properties.
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2.1 Labeled Transition Systems

Labeled transitions systems provide a useful formalization and terminology that
applies to a wide range of machines.

Definition 1. A labeled transition system is a tuple L = (Cnf, Ini,Act,→)
where

– Cnf is a set of system configurations, or system states.
– Ini ⊆ Cnf is a set of initial states. These represent valid starting configurations

of the system.
– Act is a set of action labels.
– → ⊂ (Cnf × Act × Cnf) is a ternary transition relation. We write x

a−→ y to
denote (x, a, y) ∈→.

When using an LTS to model a system, a configuration represents a global
snapshot of the state of every component of the system. Actions are abstractions
that can model a number of activities, such as sending or receiving of messages,
interacting with a user, doing some internal processing, or combinations thereof.
Labeled transition systems are often visualized using labeled graphs, with ver-
tices representing the states and labeled edges representing the actions.

We say an action a ∈ Act is enabled in state s ∈ Cnf if there exists a s′ ∈ Cnf
such that s

a−→ s′. More than one action can be enabled in a state, and in
general, an action can lead to more than one successor state. We say an action
a is deterministic if that is never the case, that is, if for all s ∈ Cnf, there is at
most one s′ ∈ S such that s

a−→ s′.
Defining an LTS to represent a concurrent system helps us to reason precisely

about its executions and their correctness. An execution fragment E is a (finite
or infinite) alternating sequence of states and actions:

s0
a1−→ s1

a2−→ s2
a3−→ . . .

and an execution is an execution fragment that starts in an initial state. We
formalize these definitions as follows.

Definition 2. Given some LTS L = (Cnf, Ini,Act,→), an execution frag-
ment for L is a tuple E = (len, cnf, act) where

len ∈ (N0 ∪ ∞) (the length)
cnf : {0 . . . len} → Cnf (the configurations)
act : {1 . . . len} → Act (the actions)

such that for all 1 ≤ i ≤ len, we have cnf(i − 1)
act(i)−−−→ cnf(i). An execution is

an execution fragment E satisfying E.cnf(0) ∈ Ini.

We define pre(E) = E.cnf(0) and post(E) = E.cnf(E.len) (we write
post(E) = ⊥ if E.len = ∞). Two execution fragments E1, E2 can be con-
catenated to form another execution fragment E1 · E2 if E1.len �= ∞ and
post(E1) = pre(E2).
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We say a configuration c ∈ Cnf is reachable from a configuration c′ ∈ Cnf if
there exists an execution fragment E such that c′ = pre(E) and c = post(E).
We say a configuration c ∈ Cnf is reachable if it is reachable from an initial
configuration.

Reasoning about executions usually involves reasoning about events. An
event is an occurrence of an action (the same action can occur several times
in an execution, each being a separate event). Technically, we define the events
of an execution fragment E to be the set of numbers Evt(E) = {1, 2, . . . , E.len}.
Then, for events e, e′ ∈ Evt(E), e < e′ means e occurs before e′ in the execution,
and E.act(e) is the action of event e.

Given an execution fragment E of an LTS L, we let trc(E) ∈ (L.Act∗∪L.Actω)
be the (finite of infinite) sequence of actions in E, called the trace of E. If all
actions of L are deterministic, then E is completely determined by E.pre and
E.trc. For that reason, traces are sometimes called schedules.

In our proofs, we often need to take an existing execution, and modify it
slightly by reordering certain actions. Given a configuration c and a deterministic
action a, we write post(c, a) to be the uniquely determined c′ satisfying c

a−→ c′,
or ⊥ if it is not possible (because a is not enabled in c). Similarly, we write
post(c, w), for an action sequence w ∈ A∗, to denote the state reached from c by
performing the actions in w, or ⊥ if not possible. In the remainder of this text,
all of our LTS are constructed in such a way that all actions are deterministic.

Working with deterministic actions can have practical advantages. For test-
ing and debugging protocols, we often need to analyze or reproduce failures
based on partial information about the execution, such as a trace log. If the log
contains the sequence of actions in the order they happened, and if the actions
are deterministic, it means that the log contains sufficient information to fully
reproduce the execution.

2.2 Asynchronous Message Protocols

An LTS can express many different kinds of concurrent systems, but we care
mostly about message passing protocols in this context. Therefore, we specialize
the general LTS definition above to define such systems. Throughout this text,
we assume that Pid is a set of process identifiers (possibly infinite, to model
dynamic creation). Furthermore, we assume that there is a total order defined
on the process identifiers Pid. For example, Pid = N.

Definition 3. A protocol definition is a tuple

Φ = (Pst,Msg,Act, ini, ori, dst, pid, cnd, rcv, snd, upd)

where

– Pst is a set of process states, with a function

ini : Pid → P(Pst) (initial states)
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– Msg is a set of messages, with properties

ori : Msg → Pid (the origin)
dst : Msg → Pid (the destination)

– Act is a set of actions, with properties

pid : Act → Pid (the process)
cnd : Act → P(Pst) (the condition or guard)
rcv : Act → ⊥ ∪ Msg (received message, if any)
snd : Act × Pst → M(Msg) (sent messages)
upd : Act × Pst → Pst (process state update)

– the message received by an action targets the same process:

∀a ∈ Act : (rcv(a) �= ⊥) ⇒ (dst(rcv(a)) = pid(a)).

– only finitely many actions apply at a time:

∀s ∈ Pst : ∀m ∈ (⊥ ∪ Msg) : |{a ∈ Act | (cnd(a) ∈ s) ∧ (rcv(a) = m)}| < ∞.

We call actions a that receive no message (i.e. rcv(a) = ⊥) spontaneous. For
convenience, given a protocol definition Φ, we write Φ.Pst, Φ.Msg, etc. to denote
its components.

Definition 4. Given a protocol definition Φ as above, we construct a corre-
sponding labeled transition system LΦ = (CnfΦ, IniΦ,ActΦ,→Φ) as follows:

– Configurations: CnfΦ = (Pid → Φ.Pst)×M(Φ.Msg). The meaning is that each
configuration is a pair (P,M) with P being a function that maps each process
identifier to the current state of that process, and M being a multiset that
represents messages that are currently “in flight”. For a configuration c, we
write c.P and c.M to denote its components.

– Actions: ActΦ = Φ.Act.
– Initial states: IniΦ = {(P, ∅) | ∀p ∈ Pid : P (p) ∈ Φ.ini(p)}
– Transition Relation: define →Φ such that (P,M) a−→Φ (P ′,M ′) iff all of the

following conditions hold:
1. the guard is satisfied: P (Φ.pid(a)) ∈ Φ.cnd(a)
2. the received message (if any) is removed: either Φ.rcv(a) = ⊥ and M ′ =

M , or Φ.rcv(a) ∈ M and M ′ = M − Φ.rcv(a)
3. the sent messages are added to the message pool: M ′ = M + Φ.snd(a)
4. the local state is updated, all other states remain the same:

∀p ∈ Pid : P ′(p) =
{

Φ.upd(a, P (p)) if p = Φ.pid(a)
P (p) otherwise

When reasoning about an execution E of LΦ, we define the following nota-
tional shortcut: Ep,i = E.cnf(i).P (p).
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process state
| preference : {0, 1}; // initially one of {0, 1}
| decision : {⊥, 0, 1}; // initially ⊥
messages
| Proposal(p : Pid, b : {0, 1}) //sent from p to l
| Announcement(q : Pid, b : {0, 1}) //sent from l to q

action propose(p : Pid) at p
| sends Proposal(p, preference)

action announce(p : Pid, b : {0, 1}) at l
| receives Proposal(p, b)
| condition decision = ⊥
| sends ∑

q∈Pid Announcement(q, b)

| updates decision ← b

action learn(q : Pid, b : {0, 1}) at q
| receives Announcement(p, b)
| updates decision ← b

Fig. 1. Example strawman protocol for a leader-based consensus, with a fixed leader
l ∈ Pid.

Example. Consider a simple protocol where the processes try to reach consensus
on a single bit. We assume that the initial state of each process contains the bit
value it is going to propose. We can implement a simple leader-based protocol
to reach consensus by fixing some leader process l ∈ Pid. The idea is based on
a “race to the leader”, which works in three stages: (1) each process sends a
message containing the bit value it is proposing to the leader, (2) the leader,
upon receiving any message, announces this value to all other processes, and
(3) upon receiving the announced message, each recipient decides on that value.

We show how to write pseudocode for this protocol in Fig. 1. Our notation
is somewhere between pseudocode and formulae (see Fig. 1). It defines all the
components of Φ listed in Definition 3 in several sections with the following
meanings:

– In the process state section, we define the set PstΦ and the initial state
function iniΦ. The process state is expressed as a product of several named
typed variables, and we show the initial value of each variable in the comment
at the end of each line.

– In the messages section, we define the set Msg and the functions ori and dst.
Each message has a name and several named typed parameters. We show how
the functions ori and dst (which determine the origin and destination of each
message) are defined in the comment at the end of each line.

– The remaining sections define the actions, with one section per action. The
entries have the following meaning:

• The first line of each action section defines the action label, which is a
name together with named typed parameters. All action labels together
constitute the set Act. The comment at the end of the line defines the pid
function, which determines the process to which this action belongs.
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• The receives section defines the rcv function. If there is a receives line
present, it defines the message that is received by this action, and if there
is no receives line, it specifies that this action is spontaneous.

• The sends section defines the snd function. It specifies the message, or
the multiset of messages, to be sent by this action. We use the multiset
notations as described in Sect. 1, in particular, the sum symbol is used
to describe a collection of messages. We omit this section if no messages
are sent.

• The condition section defines the cnd function, representing a condition
that is necessary for this action to be performed. It describes a predicate
over the local process state (i.e. over the variables defined in the process
state section). We omit this section if the action is unconditional.

• The updates section defines the upd function, by specifying how to
update the local process state. We omit this section if the process state is
not changed.

One could conceivably formalize these definitions and produce a practically
usable programming language for protocols; in fact, this has already been done
for the programming language used by the Murφ tool [6], an explicit-state model
checker that is suitable for model checking protocols defined in this style, and
which inspired our pseudocode formalization.

Consider the consensus protocol shown in Fig. 1. Is this a good protocol? Not
really. It’s not all that bad: we shall see that it is actually a correct consensus
in the absence of failures, and it works even if there are crash failures as long
as only non-leader processes fail. However, it is susceptible to leader failures.
Also, it has some oddities: participants can keep sending inordinate numbers of
propose messages. The decision value is written twice on the leader. Perhaps
worst: the protocol is more complicated than necessary. The leader could just
send its own proposal immediately to everyone.

2.3 Consensus Protocols

What makes a protocol a consensus protocol? Somehow, we start out with a
bit on each participant describing its preference. When the protocol is done,
everyone should agree on some bit value that was one of the proposed values.
And, there should be progress eventually, i.e. the protocol should terminate with
a decision.

We now formalize what we mean by a consensus protocol, by adding functions
to formalize the notions of initial preference and of decisions.

Definition 5. A consensus protocol is a tuple

(Pst,Msg,Act, ini, ori, dst, pid, cnd, rcv, snd, upd, pref, dec)

such that

– (Pst, . . . , upd) is a protocol.
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– pref is a function Pid × {0, 1} → Pst with the following meaning: pref(p, b) is
the initial process state to be used for a process whose initial preference is b.
We require that for all p, ini(p) = {pref(p, 0), pref(p, 1)}.

– dec is a function Pst → {⊥, 0, 1}; For a process state s, dec(s) = ⊥ means
no decision has been reached, otherwise dec(s) is the decision that has been
reached.

For example, for the strawman protocol, we define pref(p, b).preference = b
and pref(p, b).decision = ⊥, and we define dec(s) = s.decision.

Next, we formalize the correctness conditions we briefly outlined at the begin-
ning of this section, and then examine if they hold for our strawman. For an
execution E, we define the following properties:

1. Stability. If a value is decided at a process p, it remains decided forever:

∀p ∈ Pid : ∀i < E.len : (dec(Ep,i) �= dec(Ep,i+1)) ⇒ (dec(Ep,i) = ⊥)

2. Agreement. No two processes should decide differently:

{0, 1} �⊆ {dec(Ep,i) | i ≤ E.len and p ∈ Pid}
3. Validity. If a value is decided, this value must match the preference of at

least one of the processes:

{dec(Ep,i) | i ≤ E.len and p ∈ Pid} ⊆ {⊥} ∪ {b | ∃p : pref(p, b) = Ep,0}
4. Termination. Eventually, a decision is reached on all correct1 processes:

∀p ∈ (Pid \ F ) : {0, 1} ∩ {dec(Ep,i) | i ≤ E.len} �= ∅
Does our strawman protocol satisfy all of these properties, for all of its exe-

cutions? Certainly, this is true for the first three.

1. Strawman satisfies agreement and stability. There can be at most one
announce event, because only the leader can perform the announce action,
and the leader sets the decided variable to true after doing the announce,
which prevents further announce actions. Therefore, all decide actions must
receive a Announcement message sent by the same announce event, thus all
the actions that write a decision value write the same value. Decision values
are stable: there is no action that writes ⊥ to the decision variable.

2. Strawman satisfies validity. Any announce event (for some bit b) receives
a Proposal message that must have originated in some propose event (with
the same bit b), which has as a precondition that the variable proposal = b.
Thus, b matches the preference of that process.

Termination is however not satisfied for all executions. For example, in an
execution of length 0, no decision is reached. Perhaps it would be more reasonable
to restrict our attention to complete executions:
1 We talk more about failures later. For now, just assume that the set F of faulty
processes is empty.
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Definition 6. An execution fragment E is complete if it is either infinite or
terminated, i.e. if either E.len = ∞, or if no actions are enabled in E.post.

Does the strawman satisfy termination on all complete executions? The
answer is again no. For example, consider an initial configuration where the
preference of process p is 0. Then we can have an infinite execution

propose(p, 0) propose(p, 0) propose(p, 0) propose(p, 0) . . .

Clearly, no progress is made and an unbounded number of messages is sent.
No decision is reached.

Still, it appears that this criticism is not fair! It is hard to imagine how
any protocol can achieve termination unless the transport layer and the process
scheduler cooperate. Clearly, if the system simply does not deliver messages, or
never executes actions even though they are enabled, nothing good can happen.
We need fairness: some assumptions about the “minimal level of service” we
may expect.

Informally, what we want to require is that messages are eventually delivered
unless they become undeliverable, and that spontaneous actions are eventually
performed unless they become disabled. We say an action a ∈ Act receives mes-
sage m ∈ Msg if rcv(a) = m. We say m ∈ Msg is receivable in a configuration s
if there exists an action a that is enabled and that receives m.

Definition 7. A message m is neglected by an execution E if it is receivable
in infinitely many configurations, but received by only finitely many actions. A
spontaneous action a is neglected by an execution E, if it is enabled in infinitely
many configurations, but performed only finitely many times.

Definition 8. An execution E of some protocol Φ is fair if it does not neglect
any messages or spontaneous actions.

Definition 9. A consensus protocol is a correct consensus protocol if all
fair complete executions satisfy stability, agreement, validity, and termination.

Strawman is Correct. We already discussed agreement and validity. Termi-
nation is also satisfied for fair executions, for the following reasons. Because the
propose action is always enabled for all p, it must happen at least once (in fact, it
will happen infinitely many times for all p). After it happens just once, announce
is now enabled, and remains enabled forever if announce does not happen. Thus
announce must happen (otherwise fairness is violated). But now, for each q,
decide is enabled, and thus must happen eventually.

Fair Schedulers. The definition of fairness is purposefully quite general; it
does not describe how exactly a scheduler is guaranteeing fairness. However, it
is useful to consider how to construct a scheduler that guarantees fairness. One
way to do so is to schedule an action that has maximal seniority, in the sense
that it is executing a spontaneous action or receiving a message that has been
waiting (i.e. been enabled/receivable but not executed/received) the longest:
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Definition 10. Let Φ be a protocol, let E be a finite execution of LΦ, and let
a ∈ ActΦ be an action that is enabled in post(E). Then, we define the seniority
of a to be the maximal number k such that either (1) some message m in rcv(a)
is receivable in E.cnf(E.len−k) but has not been received by any action E.act(j)
where E.(E.len−k) < j ≤ E.len, or (2) a is a spontaneous action that is enabled
in E.cnf(E.len−k) but is not equal to any E.act(j) where (E.len−k) < j ≤ E.len.

Lemma 1. If a scheduler always picks the most senior enabled action, the result-
ing schedule is fair.

Proof. Assume to the contrary that there exists an execution that is not fair,
that is, neglects a message or spontaneous action.

First, consider that a message m is neglected. This means that the message
is receivable infinitely often, but received only finitely many times. Consider
the first configuration where it is receivable after the last time it is received, say
E.cnf(k). Since m is receivable in infinitely many configurations {E.cnf(k′) | k′ >
k} but never received, there must be infinitely many configurations {E.cnf(k′) |
k′ > k} where some enabled action is more senior than the one that receives m
(otherwise the scheduler would pick that one). However, an action can only be
more senior than the one that receives m if it is either receiving some message
that has been waiting (i.e. has been receivable without being received) at least as
long as m, or a spontaneous action that has been waiting (i.e. has been enabled
without being performed) at least as long as m. But there can only be finitely
many such messages or spontaneous actions, since there are only finitely many
configurations {E.cnf(j) | j ≤ k}, and each such configuration has only finitely
many receivable messages and enabled spontaneous actions, by the last condition
in Definition 3; thus we have a contradiction.

Now, consider that a spontaneous action is neglected. We get a contradiction
by the same reasoning. ��

Independence. The notion of independence of actions and schedules is also
often useful. We can define independence for general labeled transition systems
as follows:

Definition 11. Let L = (S, I,Act,→) be a LTS. Two actions a, a′ ∈ L are
called independent if for all configurations c ∈ Cnf in which both a and a′ are
enabled, the following conditions are true:

– They do not disable each other: a is enabled in post(c, a′) and a′ is enabled in
post(c, a).

– Their effect commutes: post(c, a · a′) = post(c, a′ · a).

For protocols, actions performed by different nodes are independent. This is
because executing an action for process p can only remove messages destined
for p from the message pool, it can thus not disable any actions on any other
process. Actions by different processes always commute, because their effect on
the local state targets local states by different processes, and their effects on the
message pool commute.
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We call two schedules s, s′ ∈ Act∗ independent if for all a ∈ s and a′ ∈ s′,
a and a′ are independent. Note that if two schedules s, s′ are independent and
possible in some configuration c, then post(c, s · s′) = post(c, s′ · s). Visually, this
can be seen by doing a typical tiling argument.

2.4 Failures

As we probably all know from experience, failures are common in distributed
systems. Failures can originate in the transport layer (a logical abstraction of
the network, including switches, links, proxies, etc.) or the nodes (computers
running the protocol software). Sometimes, the distinction is not that clear (for
example, messages that are waiting in buffers are conceptually in the transport
layer, but are subject to loss if the node fails).

We now show how, given a protocol Φ and its LTS as defined in Sect. 2.2,
Definition 3, we can model failures by adding failure actions to the LTS defined
in Definition 4.

Modeling Transport Failures. Failures for message delivery often include
(1) reordering, (2) loss, (3) duplication, and (4) injection of messages. In our
protocol model, reorderings are already allowed, thus we do not consider them to
be a failure. To model message loss, we can add the following action to the LTS:

ActloseΦ = ActΦ ∪ {lose(m) | m ∈ Msg}
(P,M)

lose(m)−−−−→ (P ′,M ′) ⇔ ((P = P ′) ∧ (m ∈ M) ∧ (M ′ = M − m))

Similarly, we can add an action for message duplication:

ActduplicateΦ = ActΦ ∪ {duplicate(m) | m ∈ Msg}
(P,M)

duplicate(m)−−−−−−−→ (P ′,M ′) ⇔ ((P = P ′) ∧ (m ∈ M) ∧ (M ′ = M + m))

We can also model injection of arbitrary messages:

ActinventΦ = ActΦ ∪ {invent(m) | m ∈ Msg}
(P,M)

invent(m)−−−−−−→ (P ′,M ′) ⇔ ((P = P ′) ∧ (M ′ = M + m))

However, we will not talk more about the latter, which is considered a byzan-
tine failure, and which opens up a whole new category of challenges and results.

Masking Transport Failures. Protocols can mask message reordering, loss,
and duplication by affixing sequence numbers to messages, and using send and
receive buffers. Receivers can detect missing messages in the sequence and re-
request them. In fact, socket protocols (such as TCP) use this type of mechanism
(e.g. sliding window) to achieve reliable in-order delivery of a byte stream. In
practice, however, just using TCP is not always good enough, because TCP
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connections can themselves fail. Often, resilience against transport failures needs
to be built into the protocol in some form.

A common trick to tolerate message duplication in services is to design the
service calls to be idempotent, meaning that executing a message twice has the
same effect as executing it just once. For example, setting the value of some
parameter twice is harmless. Properly written REST protocols use the verb
PUT to mark such requests as idempotent, allowing browsers and proxies to
duplicate them.

Modeling Node Failures. Typical node failures considered by protocol design-
ers are crash failures (a process permanently stops at some point), and crash-
recovery failures (a process stops at some point, then recovers later). Sometimes,
byzantine failures are also considered, where faulty nodes exhibit arbitrary
behavior, but we are skipping that topic. Typical terminology is to call a process
correct if it does never experience a crash failure, and if it encounters only finitely
many crash-recovery failures. We let F ⊂ Pid be the subset of faulty processes,
i.e. processes that may be incorrect (it is acceptable for processes in F to be
actually correct in any given execution).

In a crash failure, the process state is permanently lost, and the process never
takes another action. In a crash-recovery failure, the process can recover some
or all of its state from some form of durable storage (if it cannot, there is little
reason for a process to continue under the same identity). The part of the state
that is lost in crashes is called “soft state”. Often, message buffers are soft state,
thus it is possible that messages are lost or duplicated if the crash occurred
during a transition that receives or sends messages.

In asynchronous systems, it is often important to distinguish between silent
crashes and noisy crashes. Silent crashes mean that other processes have no way
to distinguish between a slow response and a crashed process, which can be a
real problem as we shall see below. Noisy crashes mean that other processes
can use failure detectors to get information about whether a crash occurred.
In some situations (e.g. inside a data center), it is often quite feasible to build
failure detectors, in particular approximate failure detectors, and they can be
very helpful for designing protocols. However, in other situations failure detection
is impossible. For example, if a server loses contact to a JavaScript app running
in somebody’s browser, it does not know if this was a temporary connection
failure and the app will reconnect at some future time, or if the user has closed
the browser and will never return.

In the following, we consider only silent crash failures. To model them, we use
a modified definition of fairness: we allow executions to be ‘unfair’ if this unfair-
ness is consistent with processes crashing, in the sense that crashed processes
perform no more actions and receive no more messages after they crash.

Definition 12. An execution E of LΦ for some Φ is a complete F -fair
execution if there exists a partial function fails : F → ⊥ ∪ {0 . . . E.len} such
that
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– Crashed processes take no steps after they crash: If fails(p) �= ⊥ for some p,
then pid(E.act(j)) �= p for all j > fails(p).

– E is complete: either E.len = ∞, or for all actions a that are enabled in
post(E), fails(pid(a)) �= ⊥.

– E is fair for correct processes: it does not neglect any spontaneous actions a
except if fails(pid(a)) �= ⊥, and it does not neglect any messages m except if
fails(dst(m)) �= ⊥.

2.5 Asynchronous Consensus Under Silent Crash Failures
is Impossible

We now show the famous impossibility result for asynchronous consensus pro-
tocols under just 1 silent crash failure, following the same proof structure as in
Fischer, Lynch and Paterson [7]. Their proof assumes a limited form of protocol
where for each process, there is exactly one receive action per message, exactly
one spontaneous action, and the actions do not have conditions. We first prove
the theorem under the same limitation, and then show how to generalize it to
the more general protocols defined above.

Definition 13. A simple consensus protocol is a consensus protocol

(Pst,Msg,Act, ini, ori, dst, pid, cnd, rcv, snd, upd, pref, dec)

such that the only actions are:

Act = {receive(p,m) | p ∈ Pid,m ∈ Msg} ∪ {run(p) | p ∈ Pid},

and such that:

rcv(receive(p,m)) = m rcv(run(p)) = ⊥ pid(receive(p,m)) = pid(run(p)) = p

and where the actions have no guard:

cnd(receive(p,m)) = cnd(run(p)) = Pst.

Theorem 1. Let Φ be a simple consensus protocol and let Pid contain at least
two processes. Then, Φ is not correct in the presence of silent crash failures:
in particular, its labeled transition system LΦ = (CnfΦ, IniΦ,ActΦ,→Φ) has a
complete F -fair execution that violates either validity, agreement, stability, or
termination, and where |F | = 1.

Proof. Assume to the contrary that all F -fair executions with |F | ≤ 1 satisfy
validity, agreement, stability, and termination. We then prove (using a sequence
of lemmas) that a contradiction results.

The key to the proof is the idea of examining the valence of system configu-
ration, meaning how many different decisions are possible when starting in that
configuration. For a system configuration c ∈ CnfΦ, we define V (c) ⊆ CnfΦ to
be the set of decisions reachable from c:

V (c) = {dec(c′.P (p)) | c′ reachable from c and p ∈ Pid} \ {⊥}



98 S. Burckhardt

Since we assume that the protocol is correct, in particular, terminating, we
know that |V (c)| ≥ 1 for all reachable configurations c. We call a configuration
bivalent if |V (c)| = 2, univalent if |V (c)| = 1, 0-valent if V (c) = {0}, and
1-valent if V (c) = {1}.

Lemma 2. Φ has a bivalent initial configuration.

Proof. Assume not; then all configurations are univalent. For b ∈ {0, 1}, let cb

be the initial configuration where all processes have preference b. Because the
protocol satisfies termination and validity, it must be true for both choices of
b ∈ {0, 1} that b ∈ V (cb), and thus that cb is b-valent. Let us call two initial
configurations c, c′ adjacent if they differ only in the initial value of a single
process, i.e. iff c.P (p) = c′.P (p) for all but one p ∈ Pid. Since c0 must be
connected to c1 by a chain of adjacent configurations, there must exist adjacent
initial configurations c, c′ such that c is 0-valent and c′ is 1-valent. Let p be the
process on which c, c′ differ. Now, run a {p}-fair scheduler that schedules actions
fairly, except that p takes no steps at all. Since p takes no steps, the initial state
of p cannot influence the outcome, thus we can run the same schedule with the
same outcome on both c and c′, contradicting the assumption that c is 0-valent
and c′ is 1-valent.

Lemma 3. Let c be a bivalent configuration, and let a be an action that is
enabled in c. Then there exists an action sequence w ∈ Act∗ such that Exec(c, w ·
a).post is a bivalent configuration.

Proof. For the given c and a, let C(c, a) ⊆ Cnf be the set of configurations
that are reachable from c without performing the action a. Note that a must
be enabled in all configurations in C(c, a), since it is either a receive operation
(which stays enabled until it is performed, no matter what other actions are
performed meanwhile), or a run operation (which is always enabled). Let D(c, a)
be the set of configurations reachable from a configuration in C(c, a) by perform-
ing a. If D(c, a) contains a bivalent configuration, we are done. Otherwise, we
assume D(c, a) contains only univalent configurations and proceed to provide a
contradiction.

First, let’s find two configurations c0, c1 in C(c, a) such that c0
a′
−→ c1 for

some a′ �= a, and such that the respective a-successors d0 = post(c0, a) and
d1 = post(c1, a) (which are both in D(c, a) and are thus both univalent) have
different valence.

– Consider post(c, a). Since it is in D(c, a), it must be univalent, say b-valent.
– Since c is bivalent, it must be possible to reach a (1 − b)-valent configuration

c′ from c. Let c′′ be the last configuration on this path that is still in C(c, a).
Then, x = post(c′′, a) must be (1 − b)-valent as well: either c′′ = c′, in which
case x is a successor of the (1−b)-valent configuration c′ and thus also (1−b)-
valent, or c′′ �= c′, in which case x is a univalent conf (because it is in D(c, a))
from which a (1 − b)-valent configuration (c’) can be reached, thus x is also
(1 − b)-valent.
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– Since we have a path from c to c′′ entirely within C(c, a), and where post(c, a)
has different valence than post(c′′, a), there must exist c0, c1 as claimed.

Now, distinguish cases.

1. If pid(a′) �= pid(a), then a and a′ are independent actions, thus d0 =
post(c0, a) = post(c1, a) = d1 which is impossible because di are both 1-valent
with different valence.

2. If pid(a′) = pid(a) = p for some p ∈ Pid, then run some {p}-fair schedule,
starting in c0, in which p takes no steps, until some decision is reached in a
configuration x = post(c0, s) for some schedule s ∈ Act∗ containing no actions
by p. Now:
– The schedule s and the action a are independent, thus y0 := post(c0, s·a) =

post(c0, a · s). Therefore, y0 is reachable from both x = post(c0, s) and
d0 = post(c0, a). Because x and d0 are both univalent, this implies that
they have the same valence.

– Also, the schedule s and the schedule a′ · a are independent, thus y1 :=
post(c0, s · a′ · a) = post(c0, a′ · a · s). Therefore, y1 is reachable from both
x = post(c0, s) and d1 = post(c0, a′ ·a), which are both univalent, implying
that x and d1 have the same valence.

– The previous two points together imply that d0 and d1 have the same
valence which is a contradiction. ��

Using the two lemmas, we will now construct an infinite, fair execution con-
sisting entirely of bivalent configurations, which contradicts the correctness of
the protocol.

– We start with some bivalent initial configuration, whose existence is guaran-
teed by Lemma 2.

– We pick the most senior enabled action a (as defined in Definition 10).
– We execute the action sequence w ∈ Act∗ (whose existence is guaranteed by

Lemma 3), then the action a, and end up in another bivalent configuration.
– Continue with step 2.5.

This construction yields an infinite execution; it is fair because we pick the most
senior enabled action in step 2.5 and then execute it after a few more other steps
w, which means that there is no neglect (as explained in the proof of Lemma 1). ��

Finally, we can lift the restriction and allow general protocols as defined in
Definition 5.

Corollary 1. Let Φ be a consensus protocol and let Pid contain at least two
processes. Then, Φ is not correct in the presence of silent crash failures: If
|F | > 1, then LΦ contains a complete F -fair execution that violates either valid-
ity, agreement, stability, or termination.

Proof (Sketch only). The idea is to construct a simple consensus protocol P that
simulates P , and whose F -fair executions correspond to F -fair executions of P .
Thus, P can not be correct, otherwise we could use it to build a correct simple
consensus protocol which we know does not exist.
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The messages are the same (Msg = Msg). The local state Pst stores (1) the
process state Pst, (2) an “inbox”, i.e. a multiset representing messages that are
available, and (3) a step counter recording how many times this process has taken
a step, and (4) a data structure recording the timestamps (i.e. step counts) for
messages in Msg and spontaneous actions in Act, used to calculate the seniority
of actions as defined in Definition 10. On receive(p,m), the received message is
simply added to the inbox. On run(p), we look for the most senior action, and
execute it.

The key requirement is that for every fair execution E of P we find a cor-
responding fair execution E of P . Consider a message m: if it does not get
neglected in E, it must be received, meaning that it reaches the inbox; and
because run(dst(m)) does not get neglected in E, it executes infinitely many
times. Because the scheduler that is simulated by run is fair, as shown by
Lemma 1, the simulated execution is fair as well. ��

Ways Around Impossibility. Impossibility results are often called negative
results, but in fact, they usually help us to discover new ways in which to change
our approach or our definitions, in order to succeed. There are many ways to
work around the impossibility result we just proved:

– The result applies only to asynchronous systems. We can solve consensus in
synchronous systems, e.g. if we have some bounds on message delays.

– The result assumes that crashes are silent. We can solve consensus if we have
failure detectors (for an extensive list of various consensus algorithms, see [5]).

– The result assumes an adversarial scheduler: this means that our proof con-
structs an extremely contrived schedule to prove nontermination.

The last item is perhaps the most interesting. In the next section, we show
an asynchronous protocol for consensus that can be tuned to terminate quite
efficiently in practice.

2.6 The PAXOS Protocol

We now have a closer look at the PAXOS protocol for asynchronous consensus
by Leslie Lamport [11]. It is a standard mechanism to provide fault tolerance
in distributed systems, and variations of the classic protocol are used in many
practical systems, e.g. in the Chubby lock service [4] or in Zookeeper [9].

The basic idea is to perform a leader-based consensus: a leader p performs a
voting round (whose goal is to reach consensus on a bit) by sending a proposal
for a consensus value to all participants, and if p gets a majority to agree with
the proposal, p informs all participant about the winning value. Voting rounds
can fail for various reasons, but a leader can always start a new round, which
can still succeed (i.e. the protocol never gets stuck with no chance of success).

The trick is to (1) design the protocol to satisfy agreement, validity, and
stability even if there are many competing leaders, and (2) make it unlikely
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types
| Round = (N0 × Pid) using lexicographic order
| Vote = (Round × {0, 1}) using lexicographic order

process state
| state : {N, Q, P} initially N (leader)
| inbox : P(Msg) initially ∅ (leader)
| lasttried : N0 initially 0 (leader)
| quorum : P(Pida) initially ∅ (leader)
| lastpromise : Round initially (0, pid) (acceptor)
| lastvote : Vote initially ((0, pid), bpid) for bpid ∈ {0, 1} (acceptor)
| decision : {⊥, 0, 1} initially ⊥ (learner)

messages
| Inquiry(n : N, p : Pidl, q : Pida) //sent from leader p to acceptor q
| LastVote(n : N, p : Pidl, q : Pida, v : Vote) //sent from acceptor q to leader p
| Proposal(n : N, p : Pidl, q : Pida, b : {0, 1}) //sent from leader p to acceptor q
| Vote(n : N, p : Pidl, q : Pida, b : {0, 1}) //sent from acceptor q to leader p
| Winner(p : Pidl, q : Pidr, b : {0, 1}) //sent from leader p to learner q

Fig. 2. Types, states and messages for the basic PAXOS consensus protocol.

(using ad-hoc heuristics) that there are many competing leaders at a time, thus
termination is likely in practice.

There are three roles of participants (leaders, acceptors, learners) which we
represent by three different process subsets Pidl,Pida,Pidr of Pid. Leaders con-
duct the organizational part of a voting round (solicit, collect, and analyze
votes); acceptors perform the actual voting; and learners are informed about
the successful outcome, if any. It is perfectly acceptable (and common in prac-
tice) for a process to play multiple roles. If everybody plays every role we have
Pidl = Pida = Pidr = Pid. The number of acceptors must be finite (|Pida| < ∞)
so that they can form majorities.

Some key ideas include:

– Voting rounds are identified by a unique round identifier. This identifier is a
tuple (n, p) consisting of a sequence number n and the process identifier p of
the leader for this round. There is just one leader for each round, but different
rounds can be initiated by different leaders, possibly concurrently.

– Each round has two and a half phases. In the first phase, the leader sends
an inquiry message to all acceptors. The acceptors respond with a special
message containing the last vote they cast (in a previous round), or a pseudo-
vote containing their initial preference (if they have not cast any votes in a
real round yet).

– When the leader has received a last-vote message from a quorum (i.e. at least
half) of acceptors, it starts the second phase. In this phase, it proposes a
consensus value and asks the quorum to vote for it.

– If the leader receives votes from all members of the quorum, it informs all
learners about the successful outcome.
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action answer(n : N, p : Pidl, q : Pida, v : Vote) at q (acceptor)
| receives Inquiry(n, p, q)
| condition (lastpromise < (n, p)) ∧ (lastvote = v)
| sends LastVote(n, p, q, v)
| updates lastpromise ← (n, p)

action accept(n : N, p : Pidl, q : Pida, b : {0, 1}) at q (acceptor)
| receives Proposal(n, p, b)
| condition lastpromise = (n, p)
| sends Vote(n, p, q, b)
| updates lastvote ← ((n, p), b)

action learn(q : Pidr, b : {0, 1}) at q (learner)
| receives Winner(p, q, b)
| updates decision ← b

Fig. 3. The acceptor actions and the one learner actions for the basic PAXOS consensus
protocol.

action inquire(n : N, p : Pidl) at p (leader)
| condition (state = N) ∧ (n = lasttried+ 1)
| sends ∑

q∈Pida
Inquiry(n, p, q)

| updates state ← Q; lasttried ← n

action propose(n : N, p : Pidl, b : {0, 1}, Q : P(Pida), lv : Q → Vote) at p (leader)
| condition inbox ≥ ∑

q∈Q LastVote(n, p, q, lv(q))

| condition (state = Q) ∧ (lasttried = n) ∧ (|Q| > |Pida|/2)
| condition max{lv(q) | q ∈ Q} = ( , b)
| sends ∑

q∈Q Proposal(n, p, q, b)

| updates state ← P ; quorum ← Q; inbox ← ∅
action announce(n : N, p : Pidl, b : {0, 1}, Q : P(Pida)) at p (leader)
| condition inbox ≥ ∑

q∈Q Vote(n, p, q, b)

| condition (state = P ) ∧ (lasttried = n) ∧ (quorum = Q)
| sends ∑

q∈Pidr
Winner(p, q, b)

| updates state ← N ; inbox ← ∅
action receive(m : Msg) at dst(m) (leader)
| receives m
| updates inbox ← inbox+ m

action abandon(n : N, p : Pidl) at p (leader)
| condition (lasttried = n) ∧ (state ∈ {P, V })
| updates state ← N ; inbox ← ∅

Fig. 4. The leader actions for the basic PAXOS consensus protocol.

We show the definitions of local states (for each role) and of message formats
in Fig. 2. The actions are shown in Figs. 3 and 4.

The following properties of the protocol are key to ensure consensus even
under concurrent voting rounds:
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– Rounds are totally ordered (lexicographically based on the order, then the
process id). Participants are no longer allowed to participate in a lower round
once they are participating in a higher round.

– When transitioning from the first phase (gather last vote messages) to the
second phase (send out proposal messages), the leader chooses the consensus
value belonging to the highest vote among all the last-vote messages. This
ensures that if a prior round was actually successful (i.e. it garnered a majority
of votes), the new round uses the same bit value.

The following lemma formalized these intuititons, and constitutes the core
of the correctness proof.

Lemma 4 (Competing Leaders). If E is an execution and

announce(n, p, b,Q) ∈ trc(E) and propose(n′, p′, b′, Q′, lv) ∈ trc(E),

and (n, p) < (n′, p′), then b = b′.

Proof. By contradiction. Assume the lemma is not true, then there exist E,
p, n, b, Q, p′, n′, b′, Q′, lv falsifying the condition, and without loss of gen-
erality we can assume (n′, p′) are chosen minimal among all such. To perform
propose(n′, p′, b′, Q′, lv), the leader p′ received several LastVote messages; Let
((n′′, p′′), b′) = maxq∈Q lv(q) be the maximal vote received. Distinguish cases:

– (n′′, p′′) < (n, p) this is impossible: because Q and Q′ must intersect, there
exists q ∈ Q∩Q′. Since q must have voted for the round (n, p) before answering
in the round (n′, p′) (otherwise it would not have voted), the LastVote message
sent from q to p′ must contain a vote whose round is no lower than (n, p) (note
that the lastvote variable is always monotonically increasing).

– (n′′, p′′) = (n, p) in that case, b′ = b because all votes for the same round have
the same bit value. Contradiction.

– (n′′, p′′) > (n, p). Because p is at least 1, so is p′′, thus ((n′′, p′′), b′) is a vote
for a non-zero round, so there must exist some propose(n′′, p′′, b′, , ) in the
execution. Because we chose (n′, p′) minimal among all such violating the
lemma, this implies that b = b′. Contradiction.

The following lemma shows that no matter how many crashes occur, how
many messages are lost, or how many leaders are competing, safety is always
guaranteed.

Theorem 2. All executions of PAXOS satisfy agreement, validity, and stability.

Proof. Validity is easy because all votes can be tracked back to some initial
vote, which is the preference of some processor. Stability and agreement follow
because if we had two announce(n, p, b,Q) and announce(n′, p′, b′, Q′) with b �= b′,
and suppose that (n, p) < (n′, p′) without loss of generality, then there must also
be a propose(n′, p′, b′, Q′, lv ′), which contradicts Lemma 4.
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Of course, termination is not possible for arbitrary fair schedules in the pres-
ence of failures because of Theorem 1. However, the following property holds: suc-
cess always remains possible as long as there remains some non-crashed leader,
some non-crashed learner, and at least �|Pida/2|� non-crashed acceptors. The
reason is that:

– A leader cannot get stuck in any state: if it is waiting for something (such
as the receipt of some message), and that something is not happening (for
example, due to a crash), the leader can perform the spontaneous action
abandon to return to a neutral state, from which it can start a new, higher
round.

– If a leader p starts a new round (n, p) that is larger than any previous
rounds, and if no other leaders are starting even higher rounds, and if at
least �|Pida/2|� acceptors remain, and if there are no more crashes, then the
round succeeds.

The PAXOS algorithm shown, and the correctness proof, are both based on
the original paper by Lamport [11]. Since then, there have been many more
papers on the subject, and many alternative (e.g. disk-based) and optimized
(e.g. for solving continuous consecutive consensus problems) versions of PAXOS
exist.

3 Strong Consistency and CAP

In this section we examine how to understand the consistency of shared data. We
explore the cost of strong consistency (in terms of reliability or performance). We
develop abstractions that help system implementors to articulate the consistency
guarantees they are providing to programmers.

3.1 Objects and Operations

We assume that the shared data is organized as a collection of named objects
Obj. As in the last section, we assume a set of processes Pid. The sets of
objects and processes may be infinite, to model their dynamic creation. Processes
interact with the shared data by performing operations on objects. Each object
x ∈ Obj has a type τ = type(x) ∈ Type, whose type signature (Opτ ,Valτ )
determines the set of supported operations Opτ and the set of their return values
Valτ . We assume that a special value ⊥ ∈ Valτ belongs to all sets Valτ and is
used for operations that return no value.

Example 1. An integer register intreg can be defined as follows: Valintreg =
Z ∪ {⊥}, and Opintreg = {rd} ∪ {wr(a) | a ∈ Z}
Example 2. A counter object ctr can be defined as follows: Valctr = Z∪{⊥},
and Opctr = {rd, inc}.
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Sequential Semantics. The type of an object, as defined above, does not
actually describe the semantics of the operation, only their syntax. We formally
specify the sequential semantics of a data type τ by a function

Sτ : Opτ × Op∗
τ → Valτ ,

which, given an operation and sequence of prior operations, specifies the expected
return value. For a register, read operations return the value of the last preceding
write, or zero if there is no prior write. For a counter, read operations return the
number of preceding increments. Thus, for any sequence of operations ξ:

Sintreg(rd, ξ) = a, if wr(0) ξ = ξ1 wr(a) ξ2 and
ξ2does not contain wr operations;

Sctr(rd, ξ) = (the number of inc operations in ξ);

Our definition of the sequential semantics uses sequences of prior operations
(representing all earlier updates), rather than the current state of an object,
to define the behavior of reads. This choice is useful: for many implementa-
tions, there are multiple versions of the state, and these versions are often best
understood as the result of using various update sequences (such as logs), sub-
sequences, or segments.

Moreover, for objects such as the integer register, only the last update mat-
ters, since it overwrites completely all information in the object. For the counter,
however, all updates matter. Similarly, if considering objects that have multiple
fields and support partial updates, e.g. updates that modify individual fields, it
is not enough to look at the last update to determine the current state of the
object.

In general, operations may both read and modify the state. Operations that
return no value are called update-only operations. Similarly, we call an operation
o of a type τ read-only if it has no side effect, i.e. if for all o′ ∈ Opτ and u, v ∈ Op∗

τ ,
we have Sτ (o′, u · o · v) = Sτ (o′, u · v).

What is an Object? There is often some ambiguity to the question of what
we should consider to be an object. For example, consider a cloud table storage
API that provides tables that store records (consisting of several fields that have
values) indexed by keys. Then:

– We can consider each record to be an object, named by the combination of the
table name and the key, and supporting operations for reading and writing
fields or removing the object.

– We can consider the whole table to be an object, named by the table name.
Operations specify the key (and the field, if accessing individual fields).

– We can consider each field to be an object, named by the combination of the
table name, the key, and the field name. This approach seems most consistent
with the types shown above (integer registers, counters).

– We can consider the entire storage to be a single object, and have operations
to target a specific (table, key, field) combination.
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We propose the following definition, or perhaps we should say guideline:

– An object is the largest unit of data that can be written atomically without
using transactions.

– A transactional domain is the largest unit of data that can be written atomi-
cally by using transactions.

Traditional databases follow a philosophy without objects (nothing can be
written outside of a transaction) and large transactional domains (the entire
database), which requires strong transaction support. Cloud storage and web
programming rely more commonly on moderately to large sized objects, and
transactional domains that do not contain all data (transaction support is typ-
ically nonexistent, or at best limited). The reason is that the latter approach
is easier to guarantee as a scalable service. Unfortunately, it is also harder to
program.

3.2 Strong Consistency

Intuitively, programmers expect operations on shared data to be linearizable.
Informally, this means that when they call into some API to read or write a
shared value, they expect a behavior that is consistent with (i.e. observationally
undistinguishable from):

– a single copy of the shared data being maintained somewhere.
– the read or write operations being applied to that copy somewhere in between

the call and the return.

Unfortunately, guaranteeing these conditions can be a performance and relia-
bility problem, if communication between processes is expensive and/or unavail-
able. Many systems thus relax the consistency. A good test to see whether a
system is indeed linearizable (in fact, sequentially consistent) is shown in Fig. 5.
On an linearizable or sequentially consistent system, when running programs
A and B (one time each), there is at most one winner. Why? Informally, it
is because under sequential consistency, all operations are organized into some
global sequence. In this case, it means that the two writes must happen in some
order — we don’t know which one, but the system will decide on one or the
other, which implies that either A or B (or both) do not win:

– If the system decides that A’s write to x happens before B’s write to y, then
it must also happen before B’s read from x, thus the value read must be 1, so
B does not win.

– If the system decides that B’s write to y happens before A’s write to x, then
it must also happen before A’s read from y, thus the value read must be 1, so
A does not win.

This reasoning seems still a bit informal - talking about ‘happens before’
without a solid foundation can get quite confusing. In order to give a more rig-
orous reasoning, we first need a precise definition of what sequential consistency
and linearizability mean.
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Program (A)

| x.wr(1); //a1

| if (y.rd = 0) //a2

| | print “A wins”;

Program (B)

| y.wr(1); //b1
| if (x.rd = 0) //b2
| | print “B wins”;

Fig. 5. The Dekker Litmus test, using two integer registers x, y (which are initially 0).
If we run these two concurrently on a sequentially consistent or linearizable system,
there is at most one winner.

Abstract Executions. To specify consistency models, we use abstract execu-
tions. The basic idea is very simple:

1. A consistency model is formalized as a set of abstract executions, which
are mathematical structures (visualized using graphs) consisting of opera-
tion events (vertices) and relations (edges), subject to conditions. Abstract
executions capture “the essence” of an execution (that is, what operations
occurred, and how those operations are related), without including low-level
details (such as exactly what messages were sent when and where).

2. We describe what it means for a concrete execution of a system to correspond
to an abstract execution.

3. We say that a system is correct if all of its concrete executions correspond
to some abstract execution of the consistency model.

The advantage of this approach is that we can separately (1) determine
whether programs are correct for a given consistency model, without needing
to know details about the system architecture, and (2) determine whether a sys-
tem correctly implements some consistency model, without knowing anything
about the program that is running on it. Consistency models can be thought of
as a contract between the programmer and the system implementor.

For sequential consistency, we define abstract executions in two steps. First,
we define operation graphs.

Definition 14. An operation graph is a tuple (Evt, pid, obj, op, rval, po) where

– Evt is a set of events.
– pid : Evt → Pid describes the process on which the event happened.
– po ⊆ Evt×Evt is a partial order (called process order) that describes the order

in which events happened on each process. We require that po is a union of
total orders for each process, that is, there exist for each p ∈ Pid a total order
pop ⊆ (pid−1(p) × pid−1(p)) such that po is their union: po =

⋃
p∈Pid pop.

– obj, op, rval are event attributes (i.e. functions Evt) describing the details of
the operation: each event e ∈ Evt represents an operation op(e) ∈ Optype(obj(e))
on an object obj(e) ∈ Obj, which returns the value rval(e) ∈ Valtype(obj(e)).

Operation graphs capture the relevant interactions between the system and
the client program. However, they do not explain the underlying reasons. Look-
ing just at the operation graph, it can be difficult to determine the order in
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which the system processed operations. Abstract executions contain this addi-
tional information: in the case of sequential consistency, a total order over all
operations:

Definition 15. Define the set ASC of sequentially consistent abstract executions
to consist of all tuples
(Evt, pid, obj, op, rval, po, to), where

– (Evt, . . . , po) is an operation graph.
– to ⊆ Evt × Evt is a total order.
– to is consistent with process order: po ⊆ to.
– The return value of each operation matches the sequential specification Sτ (as

defined in Sect. 3.1), applied to the sequence of to-prior operations:

∀e ∈ Evt : rval(e) = Stype(obj(e))(op(e), (to−1(e) ∩ obj−1(obj(e))).sort(to))

In pictures, we usually draw abstract executions by (1) creating a vertex for
each event, and aligning events into columns corresponding to process identifiers,
and (2) adding arrows to represent to ordering edges.

We can now define sequential consistency; note that we purposefully omit
a precise definition of what a concrete execution is, but simply assume that
it contains operation events that can be meaningfully related to the abstract
execution.

Definition 16. A concrete execution of some system is sequentially consistent
if there exists an abstract sequentially consistent execution, with corresponding
operation events, process order, and attributes.

Dekker Explanation. We can now explain why under sequential consistency,
there can never be two winners in the Dekker litmus test (Fig. 5). Suppose there
were two winners. This would mean that in the corresponding abstract execu-
tion, there are four events {a1, a2, b1, b2} (meaning that pid(a1) = pid(a2) = a,
pid(b1) = pid(b2) = b, obj(a1) = obj(b2) = x, obj(b1) = obj(a2) = y,
op(a1) = op(b1) = wr(1), op(a2) = op(b2) = rd, rval(a2) = rval(b2) = 0, and
po = {(a1, a2), (b1, b2)}).

Now we can argue that there is no way to construct to without creating a
cycle and thus a contradiction:

– Because rval(a2) = 0, it cannot be the case that b1
to−→ a2 (because that would

imply a return value of 1). Therefore, because to is a total order, a2
to−→ b1.

– Because rval(b2) = 0, it cannot be the case that a1
to−→ b2 (because that would

imply a return value of 1). Therefore, because to is a total order, b2
to−→ a1.

– Because po ⊆ to, a1
to−→ a2 and b1

to−→ b2.

Linearizability. Sometimes, systems use a slightly stronger consistency model
than sequential consistency, called linearizability. The difference is that for lin-
earizability, we additionally require that the order to must not contradict the
order of operation calls and operation returns in the concrete execution.
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Definition 17. A concrete execution of some system is linearizable if there
exists a corresponding abstract sequentially consistent execution, such that for
any two operations e, e′ ∈ Evt in the abstract execution satisfying e

to−→ e′, it is
not the case that return(e′) < call(e) in the concrete execution.

Note that any linearizable concrete execution is also sequentially consistent.
The converse is not true in general; we will show an example in the next section.

There is an alternative popular interpretation of linearizability that roughly
goes as follows: The abstract execution must be consistent with a placement
of commit events of operations, which are placed somewhere in between call
and return. The two definitions are equivalent: (1) if the order matches commit
events, then it cannot violate the condition above, and (2) if the condition above
is not violated, we can find a commit event placement.

3.3 CAP Theorem

The CAP theorem explores tradeoffs between Consistency, Availability, and
Partition tolerance, and concludes that, while it is possible to provide any two
of these properties, it is impossible to provide all three. It was conjectured by
Brewer [1] and proved by Gilbert and Lynch [8]. Our proof here follows the
same simple reasoning as the one by Gilbert and Lynch, but we use sequential
consistency instead of linearizability.

We use the following meaning of the three terms. Consistency means sequen-
tial consistency as defined above. Availability means that all operations on
objects eventually complete. Partition Tolerance means that the system keeps
operating even if the network becomes permanently partitioned, i.e. if there exists
a subset of isolated processes Iso ⊆ Pid such that the processes in Iso and the
processes in Pid \ Iso cannot communicate in any way.

Theorem 3 (CAP). No system with at least two processes can provide sequen-
tial consistency, availability, and partition tolerance.

Proof. Assume such a system exists. Consider two processes a, b ∈ Pid and a
permanent network partition Iso = {a} that isolates process a. We run three
independent experiments, called A, B, and AB. In experiment A, process a runs
the program (A) shown in Fig. 5, while process b does nothing. In experiment B,
process b runs the program (B) shown in Fig. 5, while process a does nothing.
In experiment AB, both processes run the respective program. Then:

– In experiment A, availability and partition tolerance imply that the code
executes to completion. Consistency means that process a prints “A wins”
(because there is only one process accessing the data, the semantics is equiv-
alent to standard sequential semantics).

– There is no way for process a to distinguish between experiments A and AB,
thus it must print “A wins” in experiment AB as well.

– For the symmetric reason, process b must print “B wins” in experiment AB.
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– Thus, in experiment AB, both “A wins” and “B wins” are printed, which is
not sequentially consistent. Contradiction.

Although the theorem above is narrowly stated, the proof reveals a somewhat
wider impact:

– The proof reveals the performance impact of strong consistency: it shows that
the partitions have to talk to each other before completing the execution of
the program. Thus, if communication is expensive (for example, if two data
centers have to talk to each other across a far distance), clients are forced to
wait.

– Simply knowing about the partition is not helpful. Even if the processes have
perfect information about the existence of a network partition, the above
reasoning holds. This is different from the situation with consensus in asyn-
chronous systems with crash failures, where the impossibility of distinguishing
between failure and slow response is key, and a perfect failure detector can
make consensus possible.

C+A is Possible. Consistency and Availability can be easily guaranteed. A
whole range of solutions are possible:

– (Single Copy). The simplest idea is to just pick one process to store the data,
then forward all read and write operations to that process. In the absence of
partitions, we can always reach this process from everywhere.

– (Primary Replication). In this case, we allow all processes to store a copy of
the data, and to also read data locally. However, (1) all writes must be first
performed on a designated replica, the primary replica, before applying them
to a secondary replica, and (2) all writes must be applied to the secondary
replicas in the same order that they were applied to the primary replica.
Primary replication can greatly enhance the latency and the throughput of
read operations, but write operations remain slow.

C+P is Possible. We can guarantee consistency and partition tolerance by
simply stalling the execution of write requests if the primary copy cannot be
reached.

A+P is Possible. It is trivial to guarantee availability and partition tolerance
without consistency, for example, by giving each process its own isolated copy
of the data. However, this is hardly meaningful.

C’+A+P’ is Possible. The most useful approximation to CAP is to use a
weaker form of consistency (eventual consistency) in conjunction with a weaker
from of partition tolerance (resilience against temporary network partitions).
Informally, it means that the shared data remains available for reading and
writing even in the presence of network partitions. When the network partition
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heals, processes reconcile conflicting updates that happened during the network
partition, and converge to a common state. Understanding specifications and
implementations of eventual consistency is the main topic for the remainder of
this course.

4 Eventual Consistency Models and Mechanisms

Weakening the consistency guarantees can improve performance and availability,
but it can also create problems for unaware programmers. Understanding exactly
what can go wrong, and how to write programs that are resilient, remains an
important challenge. One of the key difficulties is that there are many subtle
variations of consistency models, and myriads of architectures and optimizations
that all have slightly different effects. We study this problem by approaching it
from two sides:

– In Sect. 4.1, we show how to generalize sequentially consistent abstract exe-
cutions to eventually consistent abstract executions, and show how to express
various guarantees (causality, consistent prefix, read my writes, monotonic
reads) and combinations of guarantees.

– In Sect. 4.2, we take a closer look at a few selected architectures that imple-
ment some form of consistency, and show how to specify their behavior using
abstract executions.

4.1 Eventual Consistency Models

The following simple definition of quiescent consistency is often used to describe
eventually consistent systems:

if clients stop issuing update requests, then the replicas will eventually
reach a consistent state.

However, quiescent consistency is very weak. For example, it (1) does not
specify what happens if clients never stop issuing updates, which is common
in reactive systems such as services, and (2) does not in any way restrict the
intermediate values. Few programs will work correctly under quiescent consis-
tency, and most architectures provide much stronger guarantees. Thus, we need
a better way to define eventual consistency models.

To devise a better model for eventual consistency, we start by deconstructing
our definition of sequential consistency (Definition 15). In that definition, we use
a total order to to figure out what value an operation e on some object x = obj(e)
should return:

∀e ∈ Evt : rval(e) = Stype(x)(op(e), (to−1(e) ∩ obj−1(x)).sort(to)) (1)

The key observation is that the total order to is playing two independent
roles:
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1. It is used to determine what prior operations are visible to e. In (1), this is
the part to−1(e), which returns the set of all operations e′ such that e′ to−→ e.

2. It is used to arbitrate between conflicting operations. In (1), this is the part
sort(to): it ensures that everyone is using the same order to sort conflicting
operations (e.g. multiple writes to the same location).

Definition 18. Given a type τ , we say two operations o1, o2 ∈ Opτ are write-
conflicting if there exists an operation o ∈ Opτ and operation sequences u,w ∈
Op∗

τ such that Sτ (o, u · o1 · o2 ·w) �= Sτ (o, u · o2 · o1 ·w). Given an operation graph
(Evt, . . . , obj, op, . . . ), we say that two events e1, e2 ∈ Evt are write-conflicting
(written as wconflict(e1, e2)) if (1) obj(e1) = obj(e2), and (2) op(e1) and op(e2)
are write-conflicting.

We now define eventually consistent abstract executions, similar to
(Definition 15), but using two separate relations; a visibility relation is used
to determine what operations are visible, and an arbitration order is used to
determine how to order conflicting operations.

Definition 19. Define the set AEC of eventually consistent abstract
executions to consist of all tuples (Evt, pid, obj, op, rval, po, vis, ar), where

1. (Evt, . . . , po) is an operation graph.
2. The visibility relation vis ⊆ Evt × Evt is an acyclic, irreflexive relation.
3. Operations become eventually visible: for all e ∈ Evt, e

vis−→ e′ for almost all
e′ ∈ Evt (i.e. all but finitely many).

4. The arbitration order ar ⊆ Evt × Evt is a partial order.
5. The arbitration order orders all conflicting operations that are visible to

another operation: for all e1, e2, e ∈ Evt:

((e1
vis−→ e) ∧ (e2

vis−→ e) ∧ wconflict(e1, e2)) ⇒ ((e1
ar−→ e2) ∨ (e2

ar−→ e1))

6. There are no causal cycles: po ∪ vis is acyclic.
7. The return value of each operation matches the sequential specification Sτ

applied to visible operations in arbitration order:

∀e ∈ Evt : rval(e) = Stype(obj(e))(op(e), (vis
−1(e) ∩ obj−1(obj(e))).sort(ar))

Note how the return value is determined in condition 7: first, it determines
the set of visible events on the same object vis−1(e) ∩ obj−1(obj(e)), then it
sorts this set into a sequence using ar, and then applies the sequential semantics.
Although the sorting is not quite deterministic (since ar is not necessarily a total
order), the value of the whole expression is deterministic because condition 5
ensures that ar determines at least the order of write-conflicting operations.

For an abstract eventually consistent execution A, we define the happens-
before order hbA, sometimes also called the causal order, to be the partial order
hbA = (A.po ∪ A.vis)+ (note that we rely on the acyclicity guaranteed by con-
dition 6). The happens-before order tracks potential causal dependency chains:
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if two operations are issued by the same process (a
po−→ b), or if the first operation

is visible to the second (a vis−→ b), the second may causally depend on the first.
How do these concepts map into practical implementations? Consider a typ-

ical implementation where each process maintains a replica of the shared state.
Updates performed on a replica are broadcast to other replicas in some way.
Visibility and arbitration are often determined in one of the following ways:

– Arbitration is typically determined either by (1) some timestamp, or (2) the
order in which updates are processed on some primary replica.

– Visibility is typically determined by two factors, (1) the timing of when a
process learns about an update (a process learns about a local update imme-
diately, and about a remote update when it receives a message), and (2) the
time at which a process chooses to make that update visible to subsequent
queries (which could be as soon as it learns about it, or delayed, for example
until an update is confirmed by the primary replica).

Eventual consistency is much stronger than quiescent consistency, but still
quite weak. Most of the time, systems guarantee additional properties. In par-
ticular, the following guarantees are common. We start with a table giving the
formal definition, and explain them below. These guarantees are not mutually
exclusive; quite to the contrary, most systems provide a combination.

Guarantee Condition

Sequential consistency| vis = ar

Read my writes po ⊆ vis

Consistent prefix ar is total, and ∀e : ∃e′ : vis−1(e) = ar−1(e′)

Monotonic reads (vis; po) ⊆ vis

Causal visibility hb ⊆ vis

Causal arbitration hb ⊆ ar

Sequential Consistency. We already defined this in the last section. Formally,
sequential consistency means that arbitration and visibility are one and the
same.

Read My Writes. If the same process performs two operations, it may expect
that the first operation is visible to the second. For example, if we increment
and then read a counter on the same process, read-my-writes guarantees that
the read does not return zero.

Consistent Prefix. Sometimes it is acceptable to read a stale value, as long as
that value appears as a past value of some timeline of values that everyone
agrees on. Consistent prefix means just that: (1) a timeline is maintained
(ar is a total order), and (2) the visible updates for any event e match some
prefix of ar.
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Monotonic Reads. One may except that once an update has become visible to
an operation on some process, it should remain visible to all future operations
on the same process.

Causal Visibility. If an operation has a causal chain to another operation, we
may expect the second operation to see the first. Causal Visibility implies
monotonic-reads and read-my-writes.

Causal Arbitration. If an operation has a causal chain to another operation,
we may expect that the second one is ordered after the first in arbitration
order.

We now illustrate these guarantees on a couple of examples.

Score Example. First, let us look at a sports example (following Doug Terry’s
baseball example [13]). Consider a match in which a home team and a visi-
tors team score points, and the respective scores are stored in integer registers
{h, v} ⊆ Obj. Furthermore, assume that we are using a system where ar is a
total order based on timestamps that reflect the real time at which operations
are performed. Now, consider an abstract execution in which there are seven
write events and two read events, ordered by ar as follows (note that we are not
assuming that they are all issued by the same process):

h.wr(1)
v.wr(1)
h.wr(2)
h.wr(3)
v.wr(2)
h.wr(4)
h.wr(5)
print (v.rd() + “-” + h.rd())

How do the various guarantees impact what possible scores could be printed
at the end? Here is a table listing all the possibilities:

Sequential Consistency 2-5

Eventual Consistency 0-0, 0-1, 0-2, 0-3, 0-4, 0-5,

1-0, 1-1, 1-2, 1-3, 1-4, 1-5,

2-0, 2-1, 2-2, 2-3, 2-4, 2-5

Consistent Prefix 0-0, 0-1, 1-1, 1-2, 1-3, 2-3, 2-4, 2-5

What if a process prints the score twice? By default, each read can print
any of the options above. However, if the system guarantees monotonic reads
or causal visibility, the second read can only report scores that are higher than
they were in the first read.
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Causality Example. Not all systems guarantee causal arbitration or causal
visibility. This can lead to odd behaviors. For example, consider a chat applica-
tion where participants {Alice,Bob,Carol} ⊆ Pid append to a list (the “wall”),
or read the list. Alice asks a question, and Bob sees it and answers it. Finally,
Carol looks at the chat and sees Bob’s answer. But what about Alice’s question?

Alice Bob Carol

e1: wall.append(“Anyone?”) e2: print wall.rd e4: print wall.rd

e3: wall.append(“Bob here.”)

Since Bob saw Alice’s question, we know e1
vis−→ e2, and since Carol saw Bob’s

answer, we know e3
vis−→ e4. However:

– If the system does not guarantee causal visibility, then it is possible that
e1 � vis−→ e4. Thus, Carol does not see Alice’s question, even though she saw
Bob’s answer. However, if the system does guarantee causal visibility, then
e1

vis−→ e2
po−→ e3

vis−→ e4 implies e1
hb−→ e4 which implies e1

vis−→ e4.
– If the system does not guarantee causal arbitration, then it is possible that

Carol sees both appends ({e1, e3} ⊆ vis−1(e4)), but that they appear in the
wrong order (e3

ar−→ e1). However, if the system does guarantee causal arbi-
tration, then e1

vis−→ e2
po−→ e3

vis−→ e4 implies e1
hb−→ e4 which implies e1

ar−→ e4.

Causal visibility is easily violated in systems that do not use primary repli-
cation, but broadcast updates directly. However, even in such systems, causal
visibility guarantees are possible and sensible, as shown in the COPS paper and
algorithm, titled “Don’t settle for eventual” [12].

Causal arbitration can easily be violated if arbitration is based on physical
timestamps (i.e. timestamps provided by physical clocks on the various devices),
and if those clocks exhibit skew. Often, systems use logical clocks (such as
Lamport clocks) which are by construction consistent with the happens-before
relation, thus avoiding this problem.

4.2 Eventual Consistency Mechanisms

We now discuss four protocols Φa, Φb, Φc, Φt that provide various levels of con-
sistency, as shown in the table below:

Eventually Consistent Protocol Φt. First, we look at the protocol with the
weakest guarantees, which is quite simple (Fig. 6). Each process keeps a set known
of known updates. When performing an update, this update is added to the local
set, and also broadcast to all other processes; when they receive the update,
they add it to their set. All updates are timestamped, using Lamport’s scheme
based on logical clocks [10]. When computing the return value of an operation,
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Primary
replication

Direct
broadcast

Φa Φb Φc Φt

Sequential consistency � — — —

Read my writes � — � �
Consistent prefix � � — —

Monotonic reads � � � �
Causal visibility � � � —

Causal arbitration � � � �
Available under partitions — � � �

types
| Update = N0 × Pid × Obj × Op ordered lexicographically

process state
| known : P(Update) // initially ∅
| clock : N0 // initially 0

messages
| Inform(u : Update, q : Pid) //sent from u.second to q

|
action perform(p : Pid, n : N0, x : Obj, o : Op, r : Val) at p
condition (n = clock) ∧ (r = Stype(x)(o, opsx(known).sort))
sends

⋃
q∈Pid Inform((n, p, x, o), q)

updates known ← known ∪ {(n, p, x, o)}; clock ← clock+ 1;

|
action learn(u : Update, q : Pid) at q
receives Inform(u, q)
updates known ← known ∪ {u}; clock ← max{clock, (u.first+ 1)};

Fig. 6. Eventually consistent protocol Φt based on direct broadcast and Lamport
timestamps.

the updates are sorted according to timestamps, and filtered according to the
object they target (we define the function opsx to filter updates from a sequence
that target object x), then fed into the function S which tells us what value to
return.

It is easy to show that this protocol is eventually consistent; to construct a
corresponding abstract execution, we simply use one event per perform action.
For the arbitration order, we use the lexicographic order over timestamps. For
the visibility order, we say that e is visible to e′ if the update tuple for e is in
the known set when e′ is performed.

Without further optimizations, this protocol is not practical since it consumes
too much space. However, it is easy to see that for most data types, we can reduce
the known set. For example, when working with registers, it is enough to keep
only the latest update for each object, without altering the semantics. This is
known as Thomas’ rule [14].
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types
| Update = Pidsec × Obj × Op × N0

process state
| busy : (⊥ ∪ Update) initially ⊥ (secondary)
| localcount : N0 initially 0 (secondary)
| confirmed : Update∗ initially ε (secondary)

messages
| Update(u : Update) //sent from secondary u.first to primary p
| Inform(u : Update, q′ : Pidsec) //sent from primary p to secondary q′

action read(q : Pidsec, x : Obj, o : Op, r : Val) at q (secondary)
| condition (busy = ⊥) ∧ (o is a read-only operation)
| condition r = Stype(x)(o, opsx(confirmed))

action update(q : Pidsec, x : Obj, o : Op, l : N0) at q (secondary)
| condition (busy = ⊥) ∧ (o is a update-only operation) ∧ (l = localcount)
| sends Update(q, x, o, l)
| updates busy ← (q, x, o, l); localcount ← localcount+ 1;

action perform(u : Update) at p (primary)
| receives Update(u)
| sends ⋃

q′∈Pid Inform(u, q′)

action learn(u : Update, q′ : Pidsec) at q′ (secondary)
| receives in-order Inform(u)
| updates confirmed ← confirmed · u
| updates if busy = uthenbusy ← ⊥

Fig. 7. Sequentially consistent protocol Φa based on primary replication, supporting
local reads on secondaries, for some primary process p ∈ Pid and secondary processes
Pidsec ⊆ Pid.

Sequentially Consistent Protocol Φa. Figure 7 shows a protocol based
on primary replication. Operations are performed at the secondary replicas,
with identifiers Pidsec ⊆ Pid. Each secondary replica stores a sequence confirmed
of updates it received from the primary replica, using in-order delivery. Read-
only operations are performed locally on secondary replicas, by consulting the
updates stored in confirmed. Other operations issued on secondary replicas
are broken down into beginoperation and endoperation. beginoperation sends the
update to the primary. Nothing else can happen on the secondary, until this
same update is confirmed by the primary.

Executions are sequentially consistent. To obtain an abstract execution,
define the events to be the actions read and perform, and define → to be the
total order that we obtain by (1) taking the total order in which the perform
events appear in the execution, and (2) inserting read into this chain anywhere
after the last update confirmed before the local read, and before the next update
confirmed after the local read.
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types
| Update = Pidsec × Obj × Op × N0

process state
| localcount : N0 initially 0 (secondary)
| confirmed : Update∗ initially ε (secondary)

messages
| Update(u : Update) //sent from secondary u.first to primary p
| Inform(u : Update, q′ : Pidsec) //sent from primary p to secondary q′

action read(q : Pidsec, x : Obj, o : Op, r : Val) at q (secondary)
| condition (o is a read-only operation)
| condition r = Stype(x)(o, opsx(confirmed))

action update(q : Pidsec, x : Obj, o : Op, l : N0) at q (secondary)
| condition (o is a update-only operation) ∧ (l = localcount)
| sends Update(q, x, o, l)
| updates localcount ← localcount+ 1

action perform(u : Update) at p (primary)
| receives in-order Update(u)
| sends ⋃

q′∈Pid Inform(u, q′)

action learn(u : Update, q′ : Pidsec) at q′ (secondary)
| receives in-order Inform(u)
| updates confirmed ← confirmed · u

Fig. 8. Consistent prefix protocol Φb based on primary replication, for some primary
process p ∈ Pid and secondary processes Pidsec ⊆ Pid.

Note that Φa is not linearizable, even though it is sequentially consistent.
The reason is that it is possible that a read operation o1 is logically ordered
before a write operation o2 by the order → (i.e. the read does not see the write),
but that the completion of the write operation endoperation(q, , o2 ) appears
before the beginning (=ending) of the read operation read(q, , o1, ) in the exe-
cution, thus contradicting the definition of linearizability.

Consistent Prefix Protocol Φb. Figure 8 shows another protocol based on
primary replication. This time around, the protocol supports availability even
in the presence of network partitions: both reads and writes are satisfied locally
(assuming that all operations are either read-only or update-only operations).
The protocol is similar to Φa, but update operations do not block, but allow the
client to continue immediately. Update notifications are sent to the primary using
in-order delivery, and broadcast back. They are received in-order and appended
to the confirmed sequence.

The protocol is eventually consistent: we construct the arbitration order the
same way as for Φa. For the visibility order, we define vis−1(o) to be ar−1(u)
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types
| Update = Pidsec × Obj × Op × N0

process state
| localcount : N0 initially 0 (secondary)
| pending : Update∗ initially ε (secondary)
| confirmed : Update∗ initially ε (secondary)

messages
| Update(u : Update) //sent from secondary u.first to primary p
| Inform(u : Update, q′ : Pidsec) //sent from primary p to secondary q′

|
action read(q : Pidsec, x : Obj, o : Op, r : Val) at q (secondary)
| condition (o is a read-only operation)
| condition r = Stype(x)(o, opsx(confirmed) · opsx(pending))

|
action update(q : Pidsec, x : Obj, o : Op, l : N0) at q (secondary)
| condition (o is a update-only operation) ∧ (l = localcount)
| sends Update(q, x, o, l)
| updates localcount ← localcount+ 1; pending ← pending · (q, x, u, l)

|
action perform(u : Update) at p (primary)
| receives in-order Update(u)
| sends ⋃

q′∈Pid Inform(u, q′)

|
action learn(u : Update, q′ : Pidsec) at q′ (secondary)
| receives in-order Inform(u)
| updates confirmed ← confirmed · u; if q = q′ then pending ← pending.remove(u)

Fig. 9. Read-my-writes protocol Φc based on primary replication, for some primary
process p ∈ Pid and secondary processes Pidsec ⊆ Pid.

where u is the last operation in confirmed at the time o is performed. Thus, the
protocol satisfies consistent prefix.

Read-My-Writes Protocol Φc. Figure 9 shows yet another protocol based on
primary replication. This time, we want to support read-my-writes, so we locally
store a sequence pending of operations that have been sent to the primary, but
not confirmed yet. When performing reads or writes locally, we use not only the
updates in confirmed, but also append the updates in pending.
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Abstract. The mining of software archives has enabled new ways for
increasing the productivity in software development: Analyzing soft-
ware quality, mining project evolution, investigating change patterns
and evolution trends, mining models for development processes, devel-
oping methods of integrating mined data from various historical sources,
or analyzing natural language artifacts in software repositories, are
examples of research topics. Software repositories include various data,
ranging from source control systems, issue tracking systems, artifact
repositories such as requirements, design and architectural documenta-
tion, to archived communication between project members. Practitioners
and researchers have recognized the potential of mining these sources to
support the maintenance of software, to improve their design or archi-
tecture, and to empirically validate development techniques or processes.
We revisited software mining studies that were published in recent years
in the top venues of software engineering, such as ICSE, ESEC/FSE, and
MSR. In analyzing these software mining studies, we highlight different
viewpoints: pursued goals, state-of-the-art approaches, mined artifacts,
and study replicability. To analyze the mining artifacts, we (lexically)
analyzed research papers of more than a decade. In terms of replicability
we looked at existing work in the field in mining approaches, tools, and
platforms. We address issues of replicability and reproducibility to shed
light onto challenges for large-scale mining studies that would enable a
stronger conclusion stability.

1 Motivation

Software archives, such as source control systems, defect tracking systems, or
archived communication among project members, are used to help managing
the progress of software projects. Since about a decade, the software engineering
community exploits the potential benefit of mining this information to support
the evolution of software systems, improve software design and reuse, and empiri-
cally validate novel ideas and techniques. Research has now proceeded to uncover
the ways in which mining these archives can help to understand software devel-
opment, to support predictions about software properties, and to plan software
projects. Researchers regularly exchange their results and present novel tools at
c© Springer International Publishing Switzerland 2015
B. Meyer and M. Nordio (Eds.): LASER 2013-2014, LNCS 8987, pp. 121–158, 2015.
DOI: 10.1007/978-3-319-28406-4 5
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conferences and symposia, such as MSR1, MSA 2010,2 ASDS 2013,3 or MSR
Vision 2020.4

Mining software archives (MSA) is one kind of software analytics that deals
with investigating repositories that are used during software development to
store all kinds of information about the software. Examples are version control
systems, issue trackers, task management, project management, software forges
(such as BitBucket or GitHub), Q&A sites (such as StackOverflow), or commu-
nication archives (such as emails, instant messages, or social-media data).

MSA has evolved from applying data mining to all kinds of data about a
software system to a discipline of data-driven analysis that today is known as
software analytics [69]. Software analytics is more than just data mining software
versions. It is about obtaining insights into the actual development and evolution
of software systems. These insights shall enable the observer to take actions in
terms of changing practices, tooling, or infrastructures to improve productivity
of software developers.

One example for such insights into evolutionary aspects of software is defect
prediction, i.e. discovering code components (modules, classes, methods, etc.)
that are likely defect-prone. Actions following from that can be redesign, refac-
toring, or even reengineering. Another example are so-called recommender sys-
tems that provide help for code completion, suggest good code examples, or
support understanding code. Other examples are software effort prediction [112]
or test-code impact analysis [127].

The major conference for researchers to publish their latest mining results
is the Working Conference on Mining Software Repositories (MSR).5 Analyzing
the proceedings of past MSR conferences confirmed previous analyses [16] and
revealed that the mined artifacts have become manifold.

In the first editions of the MSR conference, about ten years ago, only
data from CVS repositories was investigated, whereas today researchers mine
data from a broad range of resources, such as Git repositories, Q&A sites,
blogs, emails, tutorials, and Twitter. The prominence of version repositories
has declined over the years, but augments towards “social” artifacts, focusing
more on the individual developer.

Kagdi et al. [49] surveyed the field and provide a good overview of the areas
of MSR that cover dimensions of information sources, representation (type and
granularity, as well as context), purpose of studies, methodology, and evalua-
tion. Besides a comprehensive discussion of approaches and their classification,
it is remarkable that in 2007 (looking back for about a decade) only few threats
to (internal and external) validity were discussed in MSR studies. We argue
that, with the manifold techniques and mined artifacts, the dimensions of repro-
ducibility and replicability have not been addressed adequately. This opens new
avenues for systematic mining studies.

1 http://msrconf.org.
2 http://www.ifi.uzh.ch/seal/events/msa2010.html.
3 http://www.ifi.uzh.ch/seal/events/ASDS-2013.html.
4 http://msrcanada.org/msrvision2020/.
5 http://MSRconf.org.

http://msrconf.org
http://www.ifi.uzh.ch/seal/events/msa2010.html
http://www.ifi.uzh.ch/seal/events/ASDS-2013.html
http://msrcanada.org/msrvision2020/
http://MSRconf.org
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In this chapter, we address the question of systematic mining studies by
looking at two aspects in particular: reproducibility and replicability. A special
focus will be given to the latter with investigating approaches, techniques, and
platforms published at the major conferences in the field in the recent past—in
particular ICSE, ESEC/FSE, and MSR—that claim to deal with this challenge
to some extent. We look into what makes a good mining study, then describe
techniques for mining, and further study replicability and systematic mining
studies. We also take a look onto how these challenges are taken up in recent
fields, such as green mining, sentiment analysis, and studies covering human
aspects.

2 Mining Studies

This section introduces two approaches where to place the field of mining soft-
ware repositories into data analytics and data science. This is followed by an
overview what characterizes a mining study. The main focus is on the setup for
the study, the process, and the interpretation of the results. Then, we discuss the
threats of mining software repositories, in particular for bug prediction on biased
datasets, sample size, stable rankings, and time variance. Approaches, languages
and tools that support researchers in mining software repositories, for instance,
to share data, to improve reproducibility and to avoid redundant preprocessing
of data are presented. Finally, we discuss the reproducibility of mining studies.

2.1 Meta-Studies on Mining Software Repositories

Mining software repositories evolved a lot in the last decade and the question
about the relation of MSR to data science and software analytics needs to be
addressed.

Mining Software Repositories and Data Science. Mockus [74] discussed in his
keynote at the MSR conference in 2014 the relationship between mining software
repositories, operational data, and data science. Mining software repositories
focuses on extracting knowledge from software data. Both use operational data,
so he concludes that mining software repositories actually is data science.

Mining software repositories and data science have similar goals, namely to
identify laws by extracting knowledge from data. The data used for data science
is often experimental data, such as temperatures of sensors. Accordingly, for
mining software repositories mainly software data is analyzed.

Operational data are digital traces which are not primarily created for analy-
sis, such as logs of mobile phones that are not created to be measured, but may
be used for data science. However, the use of operational data brings along multi-
ple challenges, such as missing data or even wrong data. Therefore, the challenge
is to identify data laws to segment information, impute missing information and
correct the data. Traditional data may be taken into account to fill the gaps of
operational data. Tools that create operational data are, for instance, version
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control systems, such as SVN or git, as well as issue-trackers, such as BugZilla
or JIRA. Mockus argues that it is worth to research on operational data because
there is so much data that also map the human activities to the digital domain.
Furthermore, data is treacherous [74] and may have multiple contexts, missing
data, and faked data.

The aims for mining software repositories and data science are similar:
approaches or tools to engineer operational data with a software system to ensure
integrity of results, to get more effectively results, and simplify the building of
software systems to analyze operational data in order to increase the quality
of the data. Therefore, operational data are common in both, data science and
mining software repositories. The conclusion is that mining software repositories
is indeed data science.

Software Analytics. Menzies and Zimmermann [69] describe the changing goals
of software analytics over time, as well as the different methods of data analytics,
and the principles to perform a good study. They point out that the main goal is
to give ‘relevant advice’ to the audience. Who should benefit from the outcome of
the analysis? Analytics for testers and developers may require different tools and
techniques than analytics for managers or even researchers. The claims of data
analytics are to share information, or more concrete, to share models, insights,
data, and methods. The main goal about 40 years ago was to find ‘the model of
software engineering.’ By the time, this goal has changed, since one model cannot
fit all software projects. So the focus shifted to find methods of a particular
system that may be transferred to other systems. The most important factors
for data analysis are the choice of the right usage patterns for the data, as well
as the user itself who should profit from this analysis. The right choice of tools,
for instance to visualize data or draw conclusions automatically from data might
influence the data analysis positively. However, tools, algorithms, as well as a
suitable hardware for analysis are not the key components.

The Seven Principles for Software Analytics. By Menzies and Zimmermann give
advice on how to perform data analytics. To apply data analysis effectively, the
users’ goals and needs must be well known and understood. If possible, early
and continuous feedback of the users should be considered. The system built for
data analysis should be able to repeat the analysis several times. The possibility
of growing datasets should be taken into account. If the approaches did not
work out it is often helpful to be open-minded for other directions. Evaluation
of the data plays a very important role. One of the main evaluation principles
is to repeat the analysis various times with different percentage of the data and
see if the results change. Furthermore, preprocessing of data is often required
and should not be neglected. The last principle guides to use a wide range of
technologies. Tools that are constantly updated with the implementation of new
methods make this easier.

The analysis of data has widespread goals and different focus. Therefore,
Menzies and Zimmermann differentiate between several kinds of analytics. First,
they distinguish internal and external analytics. For internal analytics the access
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to data is easier than for external analytics that requires more effort, since the
data typically has to be anonymized to keep privacy. Second, they distinguish
the quantitative and the qualitative method. The former is applied automatically
by using several data mining tools and statistics; the latter is mainly applied by
investigating the data manually. Lastly, they point out the necessity to distin-
guish exploratory and deployment analytics. In exploratory analytics, the goals
often are not clear and the research might not result in prominent findings. How-
ever, if results are found and the goals are clear, it is possible to use deployment
analytics to build tools and systems to use the findings.

2.2 What is a Mining Study?

Let us explain a mining study first by looking at a recent experiment in the field
of defect prediction [28]: We train models to predict defect-prone source files of
the next release of a software system. For that we use product, process, and orga-
nizational measures and then apply machine-learning techniques to training the
models. The result is a model (basically a set of coefficients for a function or set
of functions) that fits the data best. This model can then be used for predicting
the defect-prone modules of the next release. Typical models are regressions or
decision trees; however a huge variety of machine learners can be used for such
an experiment.

While the setup and the process of such a mining study might be clear, it
is less clear what the essential ingredients of a good study are. We might view
that it is all about the data; it is of course data-driven, but at the same time
it is as much about the research hypothesis and the underlying assumptions of
the experiment: Typically, the starting point is a research question that tries to
relate (or correlate) some property X (e.g. code churn) with another property
Y (e.g. defects), to check whether there exists a statistically significant correla-
tion. Other setups might investigate how some property Z (e.g. code ownership)
has developed over time, by looking at the version history of a software sys-
tem. Phenomenons, such as code ownership or networks of developers, often are
related to quality aspects of the software system, such as defect proneness, code
irregularity, or complexity.

A mining study typically starts with a research hypothesis, then prepares
the data to be investigated, analyzes the data, and continues to interpreting the
results. The granularity of studies can vary quite a bit, ranging from factors
influencing some particular property (such as buggy commits) to comprehensive
quality measures (such as proper design or architecture).

With any such mining study, it is important to check whether the process
of analysis, mining, and interpretation can be reproduced or replicated. Repro-
ducibility means that the study description provides all the data, tooling, and
configuration settings to validate the experiment. Replicability means that the
study can be performed with different data sets and projects to gain a broader
conclusion. Basic criteria for studies are:

Stability: The algorithms and tools run stable without crashing.
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Reliability: The same results can be achieved with same data over and over
again.

Efficiency: The results can be produced in reasonable amount of time given the
volume of the data.

Auxiliary tasks to be supported: Added value of the data can be provided,
for example in the form of models or higher-level abstractions.

Essential for all mining studies is the data preparation and data cleansing,
which includes analyzing spurious values in the data and eliminating outliers
that would impact or even distort the results. Data filtering is the primary key
for a successful study; it deals with selecting subsets of data based on defined
selection criteria (dependent on the research question to be investigated). Data
binning is one such technique that tries to reduce the effects of minor observation
errors by using intervals. Original values that fall in a given interval, a bin, are
used as representative for a central value. For example, this is done in defect
prediction, where files (or classes etc.) are put into bins to represent defect prone
or non-defect prone files.

More details on proper design of mining studies can be found, for example, in
the Cross Industry Standard Process for Data Mining (CRISP-DM) documen-
tation [105].

2.3 Threats to the Validity in Mining Software Repositories

Next, we discuss some threats of mining studies. In particular, we discuss four
approaches to address threats in bug prediction concerning stable rankings of
estimation methods, sample size and bias in datasets, and time variance. Any of
these can result in distorted or even questionable predictions.

Stable Rankings for Different Effort-Estimation Models. Menzies et al. [68]
investigated 158 software effort estimation methods concerning their stability
across different evaluation cirteria on various datasets and randomly selected
features of COCOMO. The goal was to find a ranking among the estimation
methods, since previously conducted studies suffered from ‘conclusion instabil-
ity’ [107]. They use the COSEEKMO effort-estimation workbench that combines
preprocessors to prune rows or columns, learners, such as local calibration, model
trees, and standard linear regression, as well as different nearest-neighbor algo-
rithms. Menzies et al. evaluated the performance of the methods by applying
the model to a training set and then to a test set, as well as by collecting per-
formance statistics using AR (Absolute Residual), MRE (Magnitude of Relative
Error), or MER (Magnitude of Error Relative to the estimate), and counting
the number of times a method loses with the Mann-Withney U test. They found
that Local Calibration (LC), COCOMIN + LC, COCOMIN + LOCOMO + LC,
and LOCOMO + LC perform better than all the other combination of methods
and conclude that the combination of nearest neighbors with other methods is
quite powerful.
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Sample Size vs. Bias in Defect Prediction. Rahman et al. [95] performed a study
how bias and size influence the results of mining studies on defect prediction.
They sampled a dataset of high quality to several small ‘biased and polluted
sub-datasets,’ to see if there is an effect on the bias of the defect prediction.
They considered five kinds of bias for defect prediction: experience of the defect-
fixer, severity of the defect, proximity to the next release deadline, the time
to fix a bug, and the cardinality in size of the commits for each defect. Meta-
models are used to evaluate if there are differences between the types of bias
and their effect on the results. They found, that the type of bias does not have
a significant influence on the prediction results. Furthermore, they investigated
how bias, pollution, and size effect the prediction results. Size is at least as
important as bias and pollution. Considering the performance metrics AUC and
F50 it is even significantly more important.

Bias in Bug-Fix Datasets. Bird et al. [8] investigated how biased datasets influ-
ence the performance of bug prediction techniques. A biased dataset is a dataset
where links between the code repository and the bugs tracker are missing. In
their study they considered the severity of the bugs, as well as the experience of
the developer who fixed the bug. They found that severe bugs are most likely
fixed by experienced users, since there exist often links between the bug-fix and
the issue-tracker. Bird et al. tested their hypotheses on BugCache, a bug pre-
diction tool for biased datasets. By sampling the dataset, they found that if
BugCache is trained on a certain level of severity, it performs well for this
severity, but badly for other severities. The usage of a model, considering biased
data and trained for trained for all kind of bugs, is reflected in the performance
of the bug-prediction model.

Time Variance and Variability in Defect Prediction. Ekanayake et al. [18] inves-
tigated the problem of variability in the accuracy of a bug prediction-model over
time. They looked into four large open source projects and empirically identified
various project features that influence the defect-prediction quality. In partic-
ular, they observed that a change in the number of authors of a file and the
number of defects fixed by these authors influence the prediction quality. As a
major conclusion their experiments showed that there exist periods of stability
and variability of prediction quality. As a result, one should use approaches such
as the one proposed to assess the model’s accuracy in advance. These findings
have a major consequence in that prediction quality is highly dependent on the
time interval one selects for training the data to then make predictions. The
accuracy of the predictions, therefore, can range from poor to high just depend-
ing on the selected time slices. Still, it remains open how to pick time intervals
that represent stable (versus variable) phases in the software development.

2.4 Approaches, Languages, and Platforms for Mining

There are many possibilities how to support the mining of software reposito-
ries. Here, we introduce approaches, languages, and platforms that support, for
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instance, data sharing, the examination of mining software repositories from dif-
ferent aspects, and the use of domain-specific languages (DSLs). Extracting and
preprocessing data from software archives is time intensive and, therefore, need
to be assisted by tools. For that, several platforms and tools have been developed
that we briefly introduce in this section.

SeCold, TA-RE, iSPARQL, and EvoONT address this problem by provid-
ing the possibility of data sharing and making the replication of studies easier.
SeCold, implemented by Keivanloo et al. [52,53], is “an open and collaborative
platform for sharing software datasets.” It provides research data online, to avoid
that researchers preprocess the same data several times. The data is collected
from issue trackers, such as BugZilla, Issuezilla, or JIRA, as well as from ver-
sion control systems, such as SVN, CVS, or Git. This data then is merged to
an abstract representation that mirrors the main concepts of these approaches.
SeCold can also be used to find code duplicates as well as source-code-license
violations. Studies and experiments in data mining are often not replicable due
to the lack of shared knowledge about how the data is extracted. The results
also depend highly on the selected parameters and heuristics. The goal of TA-
RE is to address this issue. The corpus of TA-RE consists of the extracted data
of software repositories and of an exchange language to share additional data
that influences the results of the studies, but is not contained in the data itself,
such as heuristics or parameter settings. The data may be further used to bench-
mark experiments. Kiefer et al. [56] extended SPARQL to iSPARQL and added
the possibility to query for similar software entities, such as classes or methods.
Furthermore, they developed EvoONT, based on the Web Ontology Language
(OWL) that includes software, releases and bug-related data. It is possible to
extend EvoOnt and integrate existing tools. With the combination of iSPARQL
and EvoONT it is possible to mine software repositories that are represented in
OWL. This combination supports the visualization and counting of code changes
between versions, the localization of bad code smells or orphan methods, and
the recommending of refactorings, as well as the computation of design metrics,
such as size and complexity.

Mining software repositories includes a variety of aspects, concerning the
evolution, the granularity of data, and meta-data of the projects, such as devel-
opment process or team information. Yamashita et al. developed E-CUBE, an
analysis tool for mining software repositories [125]. E-CUBE addresses platform
evolution, target evolution, and scale evolution. They use FODA (Feature Ori-
ented Domain Analysis) to create a DSL for E-CUBE. To target platform evolu-
tion, abstract types for bug repositories or code repositories are defined, instead
of using a concrete repository. To address target evolution E-CUBE structures
the data in a way so that it may be observed on several levels of granularity,
such as file-level or method-level. The DSL provides the functionality to link
projects to deal with the massive amount of data and the time for analysis.
Spacco et al. [111] used software-repository mining to find better ways to teach
and learn programming. They proposed the tool Marmoset. Marmoset collects
snapshots of code, that are committed on saving operations. These fine grained
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code changes are collected in a database with a data schema that allows one to
apply lots of queries to get information about fine-grained code evolution [111].
CVSgrab [120] provides the possibility to visualize the evolution of large software
projects. It uses evolution similarity metrics to group files with similar evolution
patterns. CVSgrab may be used to get information about the evolution of the
team and development process, as well as for the localization of development
issues.

In [45] Huang et al. describe their approach to use Alloy (a language and
tool for relational models) to build a family of DSLs, similar to SQL, to address
the various applications of mining software repositories. For this, they applied
FODA (feature oriented domain analysis) to get the feature model of MSR. The
feature model is then transformed to a logical formula using Alloy, which is used
to derive automatically the language elements of the DSL.

In [122] Würsch et al. developed a pyramid of ontologies for software evo-
lution analysis named SE-ON,6 in particular to support mining studies. These
ontologies model the domains of software versions, issues, developers, and the
like. As such, they constitute a common vocabulary for tools to work on and
exchange mining results. For software evolution analysis, Ghezzi and Gall devised
a framework and platform for software analysis as a service, named SOFAS
[26,27]. This approach enables systematic and reproducible software evolution
analyses that exploit semantic descriptions of software, bugs, and versions using
ontologies, semantic web services, and a RESTful architecture. This constitutes
a major milestone for reproducibility in software mining studies [25]. The back-
bone for software analysis services is based on the pyramid of software evolution
ontologies named SE-ON [122] and, for example, is used for developer support
in Hawkshaw [123,124].

3 Revisiting a Decade of Software Mining Studies

Reasons to mine software repositories are manifold. Work related to mining
software repositories spans from feature location, to better understanding devel-
opment processes, to improve power consumption of software. We present a
comprehensive overview of existing works in the field. In particular, we present
a systematic literature review of research topics and methods applied from the
past two years, followed by a lexical analysis of the research papers from eleven
years of the Mining Software Repositories conference.

3.1 Why Researchers Mine Software Repositories

Over the past years, many research fields adopted MSR approaches as a new
means to achieve their respective goals or to improve existing approaches. We
reviewed the MSR research published at MSR 2014, ICSE 2014, ICSE 2013, and
FSE 2013, to better understand what problems can be tackled through mining

6 http://www.se-on.org/.

http://www.se-on.org/
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Fig. 1. Goals for mining software repositories
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software repositories and to gain an insight on the datasets used in the field.
Figure 1 summarizes the goals that the reviewed work pursues. We identified
three high-level goals: productivity goals, quality-assurance goals, and manage-
ment goals. All three goal categories subsume concrete software engineering tasks
that researchers try to support by developing targeted approaches and tools. In
addition, the reviewed research includes exploratory studies to understand differ-
ent aspects of software projects better, and meta-studies that aim at improving
MSR methodologies.

Productivity Goals. Much past research aims at tools helping developers write
better code faster, thus, pursuing the ultimate goal to make developers more pro-
ductive. A category of such tools commonly referred to as Recommender Systems
for Software Engineering [99] received much attention over the last decade. These
recommender approaches typically mine code repositories [10,40,44,83], version-
control systems [75], or even more fine-grained sequences of code changes to iden-
tify usage patterns [55,80]. Other productivity-enhancing approaches identify
code locations that are likely to be affected by change requests from interaction-
and version-control histories [129].

Another line of research focuses on the documentation of software systems.
This research ranges from exploring the common forms of documentation [116],
to enriching existing documentation with information about common pitfalls
from bug trackers [51], examples from StackOverflow [115], or usage patterns
from large code bases [81], to the automated creation of feature models for
better software understanding [15,104].

In the light of the ever increasing amounts of data, e.g., due to the num-
ber and size of publicly available projects or additional data sources, such as
Q&A-sites, it becomes even more difficult to find a specific piece of information.
Lemos et al. [62] automatically expand code-search queries to increase the prob-
ability of finding the desired code snippets in the presence of potential vocabu-
lary mismatch, i.e., when query and code use alternative terminology. Ponzanelli
et al. [90] automatically look up relevant StackOverflow threads based on the
developer’s current coding context. Both approaches aim at faster knowledge
accessibility and less need for context switching.

Exploratory work in the field includes the investigation of how developers
use GitHub’s pull requests to better understand change-management processes
[33,97]. Other work focuses on the adoption of language features over time
[17,98]. In the long run, such work will discover which kind of support developers
need in learning and migrating to new language features. To improve widely used
question-and-answer sites like StackOverflow, researchers investigated techniques
to identify frequently asked questions [4] and reasons why questions remain unan-
swered [101].

Quality-Assurance Goals. Much research is dedicated to support developers in
ensuring functional correctness of code, enhancing maintainability of code, and
optimizing code. There are many different goals and approaches, which we dis-
cuss subsequently.
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Bug detection is one of the most prominent areas in MSR. The goals are
to detect previously unknown bugs [12,22,81], localize reported bugs in source
code [34,82], and identify potential fixes for bugs [38]. Johnson et al. investigated
on shortcomings of current bug-detection tools that keep developers from using
them in practice [48]. They found that developers are dissatisfied by the addi-
tional effort required to use such tools and by the number of false positives they
produce. They collected possible improvements to address the usability aspect.

Many evaluations of bug-detection approaches use FindBugs7 as a test ora-
cle. Therefore, researchers applied FindBugs to large sets of projects, to create
benchmark datasets [72,102]. Other evaluations of bug detection approaches use
issue trackers as oracles to test whether actually reported bugs would have been
found by the respective approach. However, Chen et al. [14] identified a sys-
tematic bias in this evaluation technique, due to bugs reported only much later
than introduced. Rahman et al. [94] compare static bug finders and statistical
prediction methods to identify and discuss synergy potentials between these two
fields.

Code clone detection and origin analysis are considered as further quality-
assurance goals. Both identify code locations that are similar in terms of their
structure or semantics. Mondal et al. [75] identify source code locations that are
likely to require changes, based on their similarity to recently changed locations.
Kevic et al. [55] identify locations that a bug report or change request most likely
impacts, based on the impact of previous reports. Steidl et al. [113] present a
framework for incremental origin analysis that scales even for very large code
bases to make such approaches feasible in practice. Different oracles have been
proposed to evaluate code clone detection approaches [59,76].

Tulsian et al. apply MSR methods to facilitate model checking in practical
application [117]. Though model checking has improved significantly, it remains
challenging to select the right checker for a given program and property. They
prove that statistical evidence for correlations between checkers and program-
property pairs can be mined. To the best of our knowledge, this is the first work
to combine model checking and MSR.

Another rising new area of MSR research aims at the optimization of program
power consumption on code level. Hindle [42] named this area Green Mining.
Pinto et al. [88] explored which power-consumption-related questions matter
to software developers. Other pioneering work investigates on frameworks for
further research [43] and on evaluation benchmarks [130].

McIntosh et al. [67] inspected modern (lightweight) code-reviews in OSS
projects. They find that reviews positively influence software quality, if review
coverage is high and reviewers are involved in the development process. Beller
et al. [6] find that the changes triggered from review processes are surprisingly
similar between OSS and industrial projects. They analyze what kind of changes
are triggered from reviews and what triggers them.

Management Goals. Some research from the MSR community tackles manage-
ment related goals. As management is a cross-cutting concern, some of these

7 http://findbugs.sourceforge.net/.

http://findbugs.sourceforge.net/
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goals are also related to aspects such as the triaging of bug reports or quality
assurance in general.

Bug triaging encompasses tasks such as finding report duplicates [2,57,60,
61], automatic identification of non-reproducible bug reports [19], or predicting
blocking bugs [119] and bugs that are eventually fixed [128]. Closely related
research automatically infers bug-management processes from issue trackers [35],
this exploratory work could help to detect differences between the intended and
the actual process and identify potential for improvement.

Moreover, MSR techniques are used to estimate the effort (in terms of
resources) required to realize an incoming change request based on historical
change requests [100,132]. Other work investigates on how such effort models
can be transferred between companies [71].

A different, quality-assurance-related management goal is the allocation of
hardware resources for testing. Especially large industry projects face the prob-
lem that execution of all their regression tests takes too long for timely feedback.
Therefore, Anderson et al. [3] and Shi et al. [108] propose approaches to rank
tests according to their likelihood of identifying the next bugs.

Another closely related area is defect prediction. Its goal is to predict code
modules (e.g. files, classes, or methods) that are likely to contain a bug, in order
to optimize quality assurance efforts. While some defect-prediction research still
explores new algorithms [47], most current effort is concerned with building cross-
project defect-prediction models [24,79,131]. Lewis et al. [63] investigated the
impact of defect-prediction tools on practitioners. They found that the predictors
are rarely used, since, like the bug-prediction tools discussed above, they are to
imprecise and investigating on their findings is much effort. Furthermore, the
tools miss to present rationales for their findings to the users. In research on
defect prediction, bug trackers are often used as oracles to evaluate the prediction
quality. Herzig et al. analyze how misclassified bugs in such trackers impact
evaluation results [41].

Recently, considering human factors becomes more and more important in
software engineering research. The goal is to gain insight on the feelings of
developers or other stakeholders involved in software development [37,77]. Such
approaches are often referred to as Sentiment Analysis. Recent work has analyzed
sentiments involved in discussions [89] and commit messages [36] on GitHub
projects. Chen et al. [13] mine customers’ opinions about software changes from
reviews in mobile-app marketplaces.

Exploratory research aims at understanding how software and processes
evolve over time, given changes in requirements, technologies, staff, and such.
Past research has, for example, investigated feature churn on the basis of large
source-code repositories [5,87] and changes of dependencies between modules
in large software systems [9]. Other work focuses specifically on correlations
between database-schema and code changes [93]. Brunet et al. [11] investigated
whether developers discuss design on GitHub, in commits messages, issues com-
ments, or pull requests.
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More exploratory work looked on reasons for project success and down-
fall [1,64]. Yamashita et al. [126] researched what makes developers contribute
to OSS projects, while Matragkas et al. [66] explored indicators for a healthy OS
community. Other research looked at how developers contribute to OSS projects
on GitHub [86,106] and how they collaborate [118].

Meta Studies. A significant part of MSR research is to support the community
itself and to bring it forward in terms of replicability and reproducibility [92].
Researchers have created large datasets of GitHub project (meta) data [32,121]
and version histories [23] together with platforms to access them, as a basis for
future research. Others investigated on scalable infrastructure and algorithms to
perform analyses and searches on todays huge datasets [21,58].

To mitigate risks to the validity of evaluations, Kalliamvakou et al. [50]
discuss common pitfalls and respective counter-measures of studies based on
GitHub data. Linares-Vasquez et al. [65] looked at datasets from Google Play
and discuss bias introduced by reusable app-modules. Merten et al. [70] discuss
strategies to efficiently separate code from unstructured text in large datasets.

3.2 Characteristics of the Data Sources Used

MSR research has long passed the point of mining only software repositories.
Alongside traditional sources, such as code repositories and version-control sys-
tems, many other knowledge bases, such as issue trackers, Q&A sites, and devel-
opers itself, are the target of mining approaches. Researchers collect data from a
multitude of companies and projects, from the very small to the very large. They
creat datasets of various sizes and with regard to different criteria. Many of these
datasets are tailored to answer specific research questions, others to reproduce
previous results, and others again to enable reproducibility and comparability
of future work.

In the majority, researchers evaluate their approaches using one or multiple
software projects as exemplary subjects. Depending on the respective approach,
they retrieve different types of data from these projects, e.g., sources of test and
production code, execution traces, change histories, bug reports, developer or
user discussions, and even energy-consumption traces. The data sources from
which this data can be retrieved and the effort required to do so varies greatly.

This section first gives an overview of which data sources have been exploited
and how and why they were selected. Second, it presents some filtering strategies
applied to extract data from these sources and the properties of the resulting
datasets. Last, it discusses the limitations of these datasets and the experiments
performed on them as well as the issue of reusability of those datasets.

Data Sources. Datasets have a huge impact on the validity of MSR experiments.
Oftentimes, datasets qualify for the generalizability of the findings. Thus, to
reduce the threats on external validity, researchers constitute big datasets that
include diverse data [78]. The datasets’ diversity can stem, for example, from
small and large change sets or from a lot of different developers.
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To create big datasets, researchers often mine the source-code repositories of
large OSS projects, because this data is publicly accessible and contains many
data points. Popular examples of such projects are Eclipse [19,24,60,61,119,128],
Firefox [19,128,130], and the Linux kernel [34,70,87]. However, all data points
in such datasets originate from the same project and might not be representative
for other projects.

To increase the diversity within datasets, researchers mine different projects
from meta-repositories, such as Apache Projects [12,14,77], the Eclipse Market-
place [121], the Gentoo Repository [9], or Google Play [51,57]. Many of these
contain more diverse projects, ranging over multiple sizes and maturity levels.
Since all projects in meta-repositories are accessible in the same way, the effort
to extend datasets is manageable. However, diversity may still be limited, since
projects in such repositories often either belong to the same domain or are devel-
oped by the same organization. This issue was discussed by Nagappan et al. [78]
who presented an approach to select diverse sets of projects for evaluations, in
order to increase external validity. Proksch et al. [92] further discussed how to
use this idea for a standardized platform of evaluation datasets.

Recently, the emergence of mega-repositories, such as SourceForge [62,98,
131], GitHub [32,121], or Google Code [131], helped researchers more easily
access large quantities of projects. Mega-repositories contain a huge variety of
projects, targeting all kinds of platforms. However, researchers showed that the
variety of projects in such repositories can bias datasets. Kalliamvakou et al. [50]
show, for example, that the majority of the projects on GitHub are personal and
inactive; that GitHub is also used for free storage and as a Web hosting service;
and that almost 40 % of all pull requests do not appear as merged, even though
they were.

In addition, researchers have investigated on closed-source, commercial prod-
ucts [19,22,63,82,96,132]. Some research could show similarities, other differ-
ences between commercial and OS software. A general problem with evaluations
on commercial products is the availability of the datasets, which is mostly limited
by legal restrictions. Therefore, such evaluations are typically not reproducible.

Besides repositories, benchmark datasets, like the Nasa PROMISE repos-
itory,8 are valuable data sources. These are specialized datasets that contain
precomputed metadata used in the evaluations of respective tools. In contrast
to the non-standardized way of retrieving data from repositories, benchmark
datasets enable the comparability of results.

To further investigate on software projects, MSR was complemented with
the mining of issue trackers, such as JIRA [19,77] or BugZilla [19,24,34], Q&A
sites, such as StackOverflow [4,88,90], as well as email discussions [37,114], dis-
cussion threads [11,89], documentation sites [1,116], code reviews [6,67], change
requests [129], and customer reviews [13]. To fully exploit these as data sources,
the linking between issues and source code changes became a research target in
its own right [113,129].

8 http://openscience.us/repo/.

http://openscience.us/repo/
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A further data source constitutes observational studies, which capture, for
instance, interaction traces of developers within the source code [55] or inter-
actions with specific tools [63]. The effort to obtain such datasets is especially
high, since it requires the contribution of large numbers of developers and the
legal and privacy matters are particularly present.

Data Sampling. Much of the reviewed work does not specify why one data source
was selected over the other. Mostly, the selection seems guided by the specific
requirements of the respective approach. The generalizability of the results is
pursued by increasing the datasets’ size. Large project sets (up to 140 k projects)
are often sampled from mega-repositories, e.g., in [11,13,77,86,98], while smaller
sets (1–50 projects) are also collected manually, e.g., in [19,24,38,57,61,119]. The
number of projects is limited by the manual effort and time required to include
further projects.

The primary filtering criteria is the availability of required (amounts of) data
about the projects and the format this data is available in. For example, Erfani
Joorabchi et al. [19] filter for projects that use either BugZilla or JIRA as their
issue trackers, because the prototype implementation of their approach supports
these two platforms; Kechagia et al. [51] select clients of the BugSense SDK, as
crash reports are available for these projects; Brunet et al. [11] select projects
with more than 50 discussion threads on GitHub, as they want to detect design
discussions; Aggarwal et al. [1] select popular projects from GitHub that have
documentation, as they want to investigate on relations between popularity and
documentation.

Some work considers the diversity of their sample, with respect to dimensions
such as the programming languages [3,131], the project domain [13,24,46,63],
project size [13,46,63], project maturity (age, size, quality measures) [41,46],
and open-source vs. industrial software [116].

After the selection of a project set follows the extraction of data from those
projects, e.g., by analyzing source code [59], change history [80,87], discus-
sions [77,88], or bug reports [2,57]. In this process, again, different sampling
strategies are applied. For example, researchers often limit datasets to datapoints
with certain properties, like closed bug reports [2,14,41,57,61,128], answered
questions [4] or discussions with certain keywords [88], code entities with online
documentation [51], or issue reports with links to code changes [67,129]. Work
that uses historical data, like change history or discussions, often limits the con-
sidered time period [3,13,77,128,129].

A special case in data sampling is the interaction with developers. For sur-
veys, the most common strategy is to just take all received answers [59,90,113,
118]. Researchers also include validation questions, to filter participants, espe-
cially when calling out to the general public. The driving factor seems the need
for a sufficiently large number of participants.

Reusability. When looking at the availability of datasets, we found that only 27
publications (about 29 %) make the respective datasets available for reuse. We
counted only those papers that provided an explicit link or instructions on how
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to obtain the dataset. Another 2 publications (about 2 %) name legal issues in
the context of industry cooperations as the reason for not publishing the dataset.

Only 10 publications (less than 11 %) actually reuse a dataset from previous
studies. Unfortunately, it is difficult to understand why this is the case, as we
did not encounter any work that discusses problems or shortcomings of available
datasets as the reason for coming up with a new one. Future work should identify
reasons for this low reuse rate, e.g. insufficiencies of the datasets, and respective
mitigation strategies.

The remaining 58 % of the work does not mention availability at all. This
shows that reusability is not generally considered by the community.

3.3 A History of Artifacts in Mining Research

The artifact selection has a great impact on the replicability and reliability of an
experiment’s result. To better understand which factors influence the selection of
artifacts within previous experiments, we investigated the proceedings of the past
MSR conferences. Specifically, we conducted a lexical analysis on all accepted
papers of the past eleven MSR conferences to answer the following questions:

Q1: At which point in time were particular artifacts more popular? How do
technical developments influence MSR research?

Q2: Which artifacts will be used most likely in future?

Procedure. In our effort investigating these questions, we created for each past
MSR conference a list including the most popular terms of each paper. To elicit
each year’s list of most popular terms, we first collected the proceedings of
the past eleven years. To establish our dataset, we only considered full- and
short-papers, disregarding other paper types, such as papers related to mining
challenges. Parsing the remaining 297 papers into strings,9 enabled to analyze
the content of each paper. First, we eliminated the text, which follows the last
occurrence of the term “references”. Then, we split these strings into tokens,
according to the whitespaces in the text. To improve the accuracy of our analy-
sis, we performed well-known text-preprocessing steps, which included stop word
removal and stemming. Specifically, we removed stop words included in an Eng-
lish stop word list of the Journal of Machine Learning Research.10 For stemming
the tokens, we used the Porter stemming algorithm [91], which strips suffixes
from terms. To find the most popular terms within each paper, we counted the
occurrences of each remaining token, producing a set of the top-ten terms per
paper. Finally, we combined for each year the top-ten lists of each paper to a
map, which includes pairs of terms associated to the count of appearance in a
top-ten list.

9 We used the java PDF library Apache PDFBox, https://pdfbox.apache.org/.
10 http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.

stop.

https://pdfbox.apache.org/
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
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Q1: At which point in time were particular artifacts more popular? How do tech-
nical developments influence MSR research? Overall, we identified 15 distinct
sources of artifacts which are used for mining. These resources include cvs, git,
mercurial, github, svn, jazz, bug, commit, patch, message, stackoverflow, email,
twitter, blog, and tutorial. There are resources which are closely related to the
source code, such as source code repositories. In contrast, other resources are more
generic, not targeting particularly towards software engineering. To examine the
appearance and popularity of the different kinds of artifacts, we plotted the arti-
facts’ popularity metric along a timeline, see Fig. 2. The diagram depicts in the
upper part technologies for versioning source code, while the remaining artifacts
and sources for artifacts are represented in the lower part of the diagram.

When looking at the popularity of different version control systems over
the years, the data indicates that in first experiments of the MSR conference
cvs was used predominantly. Then, in 2009, several version control systems,
were mentioned a lot in papers: jazz, svn, and git. However, from 2009 onwards
version control systems were not as prominent as before. Our dataset indicates
that terms like github and mercurial gained popularity.

Various terms related to communication channels started to appear more
frequently from 2009 onwards. While terms like email and message started to
be mentioned already in 2006, another category of artifact sources, namely social
media, started to appear predominantly in 2011. From 2011 a conglomerate of
various artifacts from different sources were included in MSR experiments.

Our data indicates that more and more diverse artifacts are considered in a
mining study. The consideration of more and diverse artifacts highlights differ-
ent aspects within the programming tasks of developers. It potentially converges
more and more to the actual environment in which a developer works. However,
the introduction of new artifact sources reduces the reproducibility and replica-
bility as each experimenter then selects a particular combination of artifacts to
be mined out of the set of available artifacts.

Q2: Which artifacts will be used most likely in future? To make a qualified guess
which artifacts will become even more prominent in future, we analyzed which
subtopics of MSR are currently emerging and would potentially involve new
artifacts. Hence, we filtered our dataset for terms which appeared for the first
time at most three years ago. The terms revealed by our filtering scheme can be
categorized into three major topics:

– Green Mining, indicated through terms, such as energy, consumption, green,
power, watt, and energy-greedy

– Mobile Software Engineering, indicated through terms, such as mobile,
chrome, and browser

– Human Aspects in Software Engineering/ Social Mining, indicated
through terms, such as emotion, behavior, twitter, and stackoverflow

Interestingly, the term nonisolated appears as well in this filtered list, further
indicating that the examination of several integrated artifacts bears further
potential.
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Fig. 2. Popularity of artifacts and artifact-sources in MSR since 2004.

These three research areas uncover artifacts which could potentially become
more prominent. As example, related to green mining, artifacts about CPU, I/O,
and memory traces are particularly interesting. Advanced technologies, which
necessarily require energy-aware applications, such as the Google Glass, might
unravel even further artifacts. Considering mobile software engineering, uncov-
ers that, for example, data gathered through Web IDEs could become relevant
for further experiments. To better understand human behavior within the soft-
ware development process, a variety of data sources can be mined. Data sources
to better understand developers capture either data about the developer itself,
as example through psycho-physiological measurements in particular situation
while coding, or capture data about social interactions of developers. Devices,
such as eye trackers, electrodermal activity, electrocardiodiagrams, or electroen-
cephalograms, allow detailed insights about individual behaviors during a pro-
gramming task. Communication threads in emails or messages were part of early
experiments in the MSR community. However, in recent years the range of these
artifacts has increased. Recent experiments mine Twitter feeds, so it is conceiv-
able that social networks, such as Facebook, will eventually become a mining
artifact for software engineering as well.

3.4 Discussion

We performed a survey of the MSR research published at MSR 2014, ICSE 2014,
ICSE 2013, and FSE 2013 and performed a lexical analysis on the proceedings
of the last decade (2004–2014)of the MSR proceedings. Comparing the used
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approaches and artifacts supports our hypothesis that MSR research questions
change over time. We hypothesize that there is a constant development of ongo-
ing research, driven by two main factors: First, MSR research solves software
engineering problems and respective tools emerge and spread. Second, new and
evolving tools present new features, which pose new possibilities and challenges
to MSR research.

We observed that today’s artifacts hold more and more data about indi-
viduals in software engineering processes. Researchers have shown that modern
mining techniques are able to extract valuable information from such data. This
enables more personalized investigation approaches and tools in the future. How-
ever, it also gives rise to new problems, such as the major privacy concerns that
come with the mining of data from social media.

The survey shows that MSR research already came a long way towards rep-
resentativity of evaluation datasets and generalizability of respective results.
However, more work is required to further increase the diversity and to improve
reusability of evaluation datasets which can increase the comparability of results.

4 Replication of Mining Studies

The replication of studies in mining software repositories is essential to compare
different mining techniques and their results across many projects. The study
of Ghezzi and Gall [25,27] reported that the replication of these studies is still
at a rather early stage. However, the replication of mining studies is just as
fundamental as the studies themselves.

Very few studies can be reproduced because of the lack of availability of
the tools or the data used [30] for the study: The tools used in the studies are
accessible only for approximately 20 % of all the studies and for another 20 %
they are only partially accessible. Even when publicly available, they are difficult
to set up and use. As a matter of fact, they are mostly prototypes (or a collection
of scripts) and work only under rather specific operating systems and settings.

Data can be divided into raw and processed data. Raw data can be directly
retrieved from publicly available sources such as version control systems, issue
trackers, plain source code, mailing lists, etc. Preprocessed data, which is what is
actually used to perform the mining, is the result of the retrieval and processing
of raw data. While raw data is usually widely available (at least in the case of
OSS projects), processed data is not.

Different approaches have been proposed to address this problem. But these
efforts are mainly aimed at creating large, internet accessible, data repositories,
such as PROMISE [103]. Some of these internet repositories offer a query-able
static collection of data for specific projects fetched from single [73] or multi-
ple sources [84,85]; other online repositories allow the user to interactively run
specific analyses on her own projects of interest [29,31].
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Large static software data repositories such as PROMISE11, Krugle12, or
Open Hub (formerly known as Ohloh)13, provide third party applications with a
common body of knowledge to build analyses upon. They could also be useful to
provide benchmark data to test and compare similar tools/analysis that use such
data. However, they do not target the replication of analyses and are based on
static data of a multitude of software projects. The interactive features of these
online repositories limit the user to only the pre-defined analyses the platform
offers by design. Replicability is thus still limited to very few and specific cases.
While these online repositories are certainly a step into the right direction, a
more systematic approach to replicability is required [25].

4.1 Platform Support for Mining Studies

Platforms to support mining studies have been developed, although their number
is still very low, given that the effort to spend on providing a mature platform
is pretty high and that scientifically such an achievement is hardly rewarding.

SOFAS (Software Analysis as a Service) is a platform developed at the Univer-
sity of Zurich that enables a systematic and replicable analysis of software projects
by providing extensible and composable analysis workflows [26]. These analysis
workflows can be applied repeatedly and in the same manner on a multitude of
software projects, facilitating the replication and scaling of mining studies.

Using SOFAS, Ghezzi et al. investigated the mining studies of the MSR con-
ference from 2004 to 2011 [27] and found that from 88 studies published in
the MSR proceedings in that time frame, they could fully replicate 25 empiri-
cal studies using their platform. Additional 27 studies could be replicated to a
large extent. The remainder of 36 studies could not be replicated due to lack of
tool support or automation of the models or that were proposed in the studies.
A platform such as SOFAS that focuses on analyses services up to the level of
statistical analysis can support (and automate) close to 60 % of the published
studies. This shows that there is a high potential for such platforms to support
the automation and replication of mining studies.

Dyer et al. developed Boa [16], which is a mining tool for large code reposi-
tories, which translates queries formulated in a domain specific language into
parallelized code that runs on a Hadoop cluster. It is one of the few tools
that address a systematic extraction of data from code repositories. For that,
it offers a domain-specific language and infrastructure that supports the test-
ing of hypotheses and the re-running of mining experiments. It can be used to
mine repository metadata as well as source code across thousands of software
projects. Formulating queries in the Boa DSL enable to look for the existence of
particular code fragments (e.g., assert statements or specific class names), but
not to perform more elaborate investigations, such as complexity computations,
code clone or code smell detection or other more complex structural analyses.

11 www.promisedata.org.
12 www.krugle.org.
13 www.openhub.net.

www.promisedata.org
www.krugle.org
www.openhub.net
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However, it is certainly a major contribution to the field of replicating software
mining studies as it provides a web-based interface to its infrastructure and a
DSL as query language.

Kenyon developed by Bevan et al. [7] is a platform designed to facilitate the
fact extraction from code archives and configuration management systems. Its
features enable a multi-project analysis of repositories by providing a common
set of importers from various kinds of archives. As such it can be seen as one of
the early platforms to deal with the peculiarities of different archiving systems
in version control, issue tracking, or configuration management. It is mainly a
toolbox to build one’s analyses on top, but by itself does not provide specific
mining features. It can be seen as a middleware between the specifics of software
archives and the applications that actually perform the mining parts.

4.2 Replication of Software-Mining Studies

The importance of replication has long been recognized in other fields, such as
statistics, field research, or psychology. We highlight the following quote about
replication taken from [39]:

“Replication is the key to the support of any worthwhile theory. Repli-
cation involves the process of repeating a study using the same meth-
ods, different subjects, and different experimenters. It can also involve
applying the theory to new situations in an attempt to determine the
generalizability to different age groups, locations, races, or cultures.
[..]
Replication, therefore, is important for a number of reasons, including
(1) assurance that results are valid and reliable; (2) determination of gen-
eralizability or the role of extraneous variables; (3) application of results
to real world situations; and (4) inspiration of new research combining
previous findings from related studies” [39]

According to [109], replication can be divided in two main categories: exact
and conceptual replication. Exact replication is when the procedures of the exper-
iment are followed as closely as possible. Conceptual replication is when the
experimental procedure is not followed strictly, but the same research questions
or hypotheses are evaluated, e.g. different tools or algorithms are used or some
of the variables are changed.

In [25], a mining study was considered replicable whenever it could be repli-
cated, either conceptually or exactly, using mining and analysis services available
in the mining platform SOFAS. Table 1 describes how many of the analyzed stud-
ies published in the MSR conference 2004–2011 could be replicated and to which
extent.

As a result, 52 out of the analyzed 88 mining studies (i.e. 59 %) could be
fully or at least partially replicated with mining services offered by SOFAS. The
replication of these studies typically requires basic services such as import from
various version control or issue tracking systems; it further requires composite
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Table 1. Replicability of MSR studies from 2004–2011; source: [25]

Study category Number of
studies (%)

Replicable Partially
replicable

Not
replicable

Version history mining 8 (9 %) 4 0 4

History mining 17 (20 %) 0 8 9

Change analysis 13 (15 %) 5 6 2

Social networks and people 19 (22 %) 6 5 8

Defect analysis 19 (22 %) 8 6 5

Bug prediction 8 (9 %) 2 2 4

88 (100 %) 25 (30 %) 27 (32 %) 32 (38 %)

services such as change coupling analysis or linking issues to fixes in the code,
all of which can be supported by a platform such as SOFAS. The details of how
each study category can be replicated are given in the paper [25].

In terms of case studies that have been investigated in the MSR conferences,
a study by Gonzalez-Barahona et al. [30] reported the following most often ana-
lyzed projects until 2010: PostgreSQL (18), ArgoUML (16), Eclipse (15), Apache
Web Server (10), Gnome and Linux (7). The study shows that there are rather
few studies that have been frequently analyzed, but it also shows that some of
them could be used as reference projects for further replication studies.

4.3 Performance of Prediction Studies

With any mining study, its performance is essential. For that, we briefly look
into some of their performance aspects, in particular for prediction studies.

Time Variance. It depends on the time interval chosen for training whether a
(defect) prediction study has better or worse performance. Studies such as [18]
investigate time variance dependencies by taking different time intervals (such
as 1 or 2 months etc.) and computing the prediction model.

Calibration of Learners. It also depends on the calibration of the (machine)
learners used and the coefficients computed for coming up with a highly accurate
prediction. This means that data preparation (data cleansing, binning, filtering,
etc.) in combination with the proper configuration of learners is essential for
reproducible and replicable studies. Keung et al. analyze aspects of learner cal-
ibration for selecting the best effort predictor in software effort estimation [54].

Data Preparation. Data distribution analysis, outlier elimination, and binning
(failure-prone, non failure prone) are essential. As for binning there are quasi
standards in the MSR community that are widespread and accepted, for example,
failure-proneness classification is based on the median of failure distributions;
this however is a model that could be more fine-tuned to the data and less
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binary. Learning about the data (including its visualization) are key practices in
data mining (see CRISP-DM [105]) and need to be part of any mining study.

Benchmarking. Results of a mining study are typically not benchmarked, but at
most compared to some “baseline technique”. This however has a bias in terms of
what is considered such a baseline technique and whether this is representative
for the kind of data, the research question, and the case studies to compare
with. As there is lots of data sources available (such as PROMISE, or the MSR
Mining Challenge datasets), unfortunately, there is no benchmark data (results
of mining studies) out there. This asks for an intensive investigation, as being
performed, for example in our most recent SNF project named “Whiteboard.”

4.4 Replicating Mining Studies with SOFAS

For replicating a mining study one has to take the dataset of the experiment,
prepare the data according to the published data preparation mechanisms (e.g.,
distribution analysis, filtering outliers, binning, etc.) and then start with the
same dataset the modeling; one would typically use functions for importing
data, preprocessing it, and delivering models to start with for data mining and
machine learning. The latter would be outside a mining platform, but be embed-
ded features of machine learning software. As such, the machine learning parts
are outside a platform, such as SOFAS, but the platform would provide interfaces
to the machine learner.

Fully replicable with SOFAS means that the published study can fully be
computed inside the platform including the presentation of the results. 25 out
of 84 studies (i.e. 30 %) in our set were fully replicable.

Partially replicable means that platforms such as SOFAS would provide all
functionality until it gets to the machine learning or statistics parts. In the
replication study, 27 out of 84 (i.e. 32 %) fell in that category.

This left 32 out of 84 (i.e. 38 %) in the residual of non-replicable studies.
Summing up the fully and partly replicable studies this amounts to 52 out of 88
(i.e. 59 %) of all the published studies by then. This clearly shows the potential
for such platforms as they can be considered major contributors to the replicating
software mining studies.

Given a mining platform such as SOFAS, the replication of an already pub-
lished study is just one aspect. A further substantial benefit is that the original
study can be extended rather easily in at least two ways:

– Extending a study by adding more software systems to the dataset
– Extending a study by refining or adding research questions to the analysis

Given the goals of replication (assuring that results are valid and reliable;
determining the generalizability of extraneous variables; applying results to other
(real-world) situations; and inspiring new research (questions) combining previ-
ous findings) the two dimensions of extensibility are essential for the field of
mining studies. We need more studies of the same kind to assure our findings
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are the same and that they generalize beyond the typical small body of systems
(a handful to a dozen).

Next, we look into one particular replication study that extended an original
software mining studies by adding more systems to be analyzed and by extending
its research question.

4.5 Replicating the Study on “Do Time of Day and Developer
Experience Affect Commit Bugginess?”

The original study, performed by Eyolfson et al. [20], investigates the correlation
between the bugginess of a commit and a series of factors: the time of day of the
commit, the day of week of the commit, the experience and commit frequency
of the committer. Such a mining study is based on the history of a project
extracted from its version control system combined with data from issue tracking.
The authors consider as a bug-introducing commit any commit for which there
exists another commit explicitly fixing the former at a later point in time. To
identify them, the authors first detect all the bug fixing commits using a standard
heuristic used in the MSR field: finding the ones that have specific keywords
(e.g. “fix”, “fixed”, etc.) in their commit message. Buggy commits are commits
that changed files that were involved in such fixes.

In their investigation, the Eyolfson et al. studied the two projects, the Linux
kernel and PostgreSQL, and discovered four major results: (1) about a quarter
of the commits in a project history introduce bugs; (2) the time of the day
does actually influence the introduction of bugs, as late night commits (between
midnight and 4 AM) are significantly buggier and morning commits (between
7 AM and noon) are less buggy; (3) regularly committing developers (daily-
committers) and more experienced committers introduce fewer bugs; and (4) the
influence of the day of the week on the commit bugginess is project-dependent.

In the replication study of this paper published in [25], Ghezzi et al. verified
these four findings by fully replicating the original study. Moreover, they also
tested if the findings also hold for three additional OSS projects: Apache HTTP,
Subversion, and VLC. They extended the original study by adding more software
systems as subjects to the study. And they also extended the study by refining
and adding more research questions. The goal of the replication study was to
show the potential of a systematic mining platform such as SOFAS to draw
broader (in number of systems investigated) and deeper (in number of questions
addressed) conclusions with little additional effort.

To replicate this study, the following steps had to be performed:

1. Extracting the full version history of the project: This can be accomplished
by using a version history extractor.

2. Identifying the bug-introducing and bug-fixing commits (i.e. revisions) from
the version history. This can be accomplished by a bug-revision linker, which
would find the bug-fixing commits. To accomplish that, the replication study
encoded the bug-fixing identification algorithm for Git and Mercurial and
provided those in their SOFAS platform. Actually, the heuristics was adapted
to support a larger vocabulary (fixes, fixed, bug(s) in addition to fix).
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3. Extracting the commit frequency and experience of the all the developers who
introduced bugs (calculated from the bug introducing date). This is achieved
by querying the data extracted in the first step with specific (SPARQL)
queries, as SOFAS works with RDF and ontologies (for data representation)
and SPARQL (for querying).

4. Aggregating the buggy commits by time of the day, day of the week, devel-
opers experience, and commit frequency. This is also achieved with SPARQL
queries.

5. Interpreting the results. SOFAS simply supports the extraction and combi-
nation of analyses and data. The conclusions still have to be drawn manually
by the users of such analyses, depending on their specific needs.

The replication study analyzed the projects in the time frame of July 1–10,
2012. The results were lined up with respect to the original study:

Percentage of Buggy Commits: The replication study confirmed the results of
the original study for both Linux and PostgreSQL. Some slightly different val-
ues were explained by the different heuristics used to detect bug fixes and the
different analysis date (the projects were analyzed a year later than the orig-
inal study). Moreover, all the other analyzed projects exhibited similar values
(22–28%), as shown in Table 2. These results even indicate a trend worth inves-
tigating in more detail and with a larger body of projects.

Table 2. Commit characteristics of the analyzed projects - source: [25]

Commits Bug-introducing commits Bug-fixing commits

Linux 268’820 68’010 (25 %) 68’450

PostgreSQL 38’978 9’354 (24 %) 8’410

Apache Http Server 30’701 8’596 (28 %) 7’802

Subversion 47’724 12’408 (26 %) 10’605

VLC 47’355 10’418 (22 %) 10’608

Influence of Time of the Day on Commit Bugginess: The replication study con-
firmed the results of the original study for both original projects Linux and
PostgreSQL. Moreover, the analysis of the additional projects substantiates the
finding of late night commits (midnight until 4 AM) versus morning and after-
noon commits. However, the replication study showed that these ‘windows’ of
below average bugginess greatly vary across projects. Furthermore, the individ-
ual commit bugginess of projects follows different patterns which do not allow
any further generalization on the influence of the time of the day on the commit
bugginess.
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Influence of Developer on Commit Bugginess: The replication study confirms
the original results that bugginess decreases with greater author experience for
all the projects analyzed. In all projects, a drop in commit bugginess is evident as
the time a developer has spent on a project increases. In four of the projects such
drops happen between 32 and 40 months of experience, while for the remaining
one, PostgreSQL, such a drop takes place at 104 months of experience.

Influence of Day of the Week on Commit Bugginess: The replication study
confirms also that the day of week can have some influence on the commit
bugginess. However, the added projects and their commit bugginess present quite
different patterns. Apache HTTP server and Subversion tend to have two commit
bugginess ‘phases’: a higher than average one from Tuesday to Friday and a lower
than average from Saturday to Monday. The bug introduction in VLC is almost
the opposite, as it is lower in the middle of the week (Wednesday to Friday).
The analysis of these additional projects shows that the finding of the original
project that commits on different days of week have about the same bugginess is
not generalizable. Moreover, it also shows that the results of a previous study by
Sliwersky et al. [110], which showed that Friday was the day with the most buggy
commits (based on the analysis of Mozilla and Eclipse), cannot be generalized.

4.6 A Plea for Conclusion Stability

Given the need for replication to achieve mining goals and the potential support
of analysis platforms, we need to scale and extend studies, and come up with
benchmarks based on a multitude of projects analyzed. To advance the field of
software mining studies and enable better conclusion stability across studies, at
least two things have to be provided:

Infrastructures and Mining Platforms. Analysts should be able to run software
mining studies on a large corpus of software systems with only little effort. It
is essential to guide them through the process of designing and carrying out
empirically sound studies based on good patterns for software data analysis
and point them to potential pitfalls based on anti-patterns. Replicability of the
studies is key and should be fostered by an adequately formal description of
data, data-processing, study design, and study results.

Benchmarking. Software forges store vast amounts of artifacts and data related
to the software process. This information can potentially serve as a baseline to
assess whether a given software system follows a “healthy” evolution path or
whether its underlying development process needs adjustment.

5 Conclusion and Outlook

Mining software repositories is a research area that gained a lot of attention over
the last decade. In particular with the open and free access to software archives,
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such as version control systems, issue trackers, or various other kinds of data
about a software project, mining version history has shown great potential for
advancing the state-of-the-art in software engineering. Many studies have been
published so far, with quite varying benefit to the field. It is, therefore, important
to take a fresh look onto the field and discuss the goals, approaches, artifacts,
and replicability of these mining studies.

We revisited a decade of software mining studies and highlighted mining
goals, study replicability, and trends in mined artifacts. Since the artifacts used
for mining software repositories are highly diverse, we visualized changes in arti-
facts, and thereby indicated some future trends. We also discussed how the
replicability of studies is influenced by the evolution of the artifacts.

Our systematic literature review of the research topics and methods en vogue
in the last two years showed that the main goals to mine software repositories
are mostly productivity goals, such as the identification of change impacts, as
well as making the development more effective. Other goals are to support qual-
ity assurance, for instance by finding and predicting bugs, or the detection of
code clones and the calculation of test effort. Management-relevant goals, such
as the estimation of change effort, the understanding of human factors, or the
understanding of processes, are pursued as well, but by a much smaller number
of studies.

Additionally, after investigating the reusability of studies, we found that still
very few studies are replicable due to the lack of replication information including
data and tools. Only 40 % of the studies provided their datasets for reuse, for
only about 20 % of the studies the tools are available. Only 2 % of the studies
mentioned that data could not be provided due to legal issues. However, if data
is available and accessible (e.g. in OSS repositories), mining platforms such as
SOFAS or the like can replicate a substantial amount of studies (currently up to
60 %) by providing automation support for the analysis and mining.

Software data repositories, such as PROMISE, Krugle, or Open Hub provide
the possibility to apply analyses of the data they already preprocessed. However,
this does not solve the problem of replicability. Mining platforms do address
this problem by supporting the systematic and repeatable analysis of software
projects. Still, for conclusion stability, many more systems have to be analyzed
and studies have to be replicated on a large scale to enable deep conclusions and
benchmarking of systems.

To analyze the mining trends, we investigated 297 papers of the past eleven
years of the MSR conference lexically to analyze the artifacts used for min-
ing. We found that the popularity of different version control systems changed
quite substantially over the years. For the first experiments merely CVS was
used. In 2009, the mining of the version control systems Jazz, SVN and git was
predominant. From 2009 onwards also GitHub and Mercurial are used for min-
ing. Emails and messages are investigated since 2006 and social media gained
popularity since 2011.

We investigated the terms that appeared the first time in the last three years
to make an educated guess which artifacts will get more popular in the near
future. We identified three main topics that could gain popularity in future:
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green mining, mobile software engineering, as well as human aspects in software
engineering and social mining. Artifacts for green mining could be, for instance,
CPU or I/O traces. Artifacts for mobile software engineering may include data
from Web IDEs and for human aspects, for instance, psycho-physiological mea-
surements may be conducted, using eye trackers while coding.

As software-project data continues to grow fast, the plethora of mining stud-
ies will grow along with the potential to gain more and better insights into
aspects of (more) productive software development. However, a clear focus will
have to be on conclusion stability of these studies, provided by systematic exper-
iments and studies combined with their proper replicability.
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“Computer science” (informatics) is really program science since a computer, by itself
too general a machine to be of practical interest, yields useful machines through pro-
grams that people write for it. While the theoretical study of programs fills volumes,
few people realize that a handful of concepts from elementary set theory suffice to
establish a clear and practical basis.

Among the results:

• To describe a specification or a program, it suffices to define one relation and one set.
• To describe the concepts of programming, concurrent as well as sequential, three

elementary operations on sets and relations suffice: union, composition and
restriction.

• These techniques suffice to derive the axioms of classic papers on the “laws of
programming” as straightforward consequences.

• To define both program correctness and refinement, the ordinary subset operator
“�” suffices.

Paragraphs labeled “Intuition” relate the concepts to the experience of readers
having done some programming. Readers with knowledge of previous views of the-
oretical informatics will find comparisons in “Comment” paragraphs. Section 5 pro-
vides more discussion.

1 Programs

A program is a simple mathematical object: a constrained relation over a set of states.

Definition: Program, specification, precondition, postcondition.

Notation: A ↔ B is the set of binary relations between A and B, that is, P (A × B). The domain
of a relation r is written r and its range �r.

Intuition: A program starts from a certain state and produces one of a set of possible
states satisfying properties represented by post. Pre tells us which states are acceptable
as initial states.
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In the general case, more than one resulting state can meet the expectation
expressed by post. Correspondingly, post is a relation rather than just a function.

The definition covers continuously running programs, such as those embedded in
devices, since they are just repetitions of individual state transformations. Particular
choices for S and for acceptable post and Pre determine particular styles of pro-
gramming, such as the following.

Definition: Deterministic, functional, imperative, object-oriented, object, procedural.

Notation: For a relation r in A ↔ B and subsets X and Y of A and B respectively, r (X) denotes
the image of X, and r −1 (Y) the reverse image of Y, by r. The relation is a “function” (short for
“possibly partial function”) if r ({x}), for any element x of A, has at most one element. If it
always has one, r is “total”. A → B is the subset of A ↔ B containing total functions only. An
integer interval is written m. .n. Section 4.2 will present a more elaborate structure for S in
which the above characterizations apply to the “store” part.
Sp, Prep and postp are the state set, precondition and postcondition of a program p. In addition,
discussions of an indexed set of programs pi will use Si, Prei and posti for the i-th program.

The principal concepts of programming, studied in the rest of this presentation, are
independent of such choices of style and of the properties of S.

Definition: Feasibility.

Intuition: Prep tells us when we may apply the program, and postp what kind of result
it must then give us. A program/specification is safe for us to use if it meets its
obligation whenever we meet ours. Feasibility expresses this property: for any input
state satisfying Prep, at least one output state satisfies postp.

Comment: It would be possible in principle, and would makes theoretical discussions
easier, to avoid the introduction of feasibility as a separate condition: define the concept
of program by post only, and just define Pre as post; then every program is feasible.
Such a model, however, does not adequately reflect the practice of programming. Often
we get a general relation (such as Result2 ≅ input), clearly defined but not realizable for
every possible input state; we must find an input domain (such as input ≥ 0) on which it
is possible to satisfy the postcondition. Hence the need for “program” as the general
concept and “feasible program” as a desirable special case.

Definition: Program equality.
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Notation: For a relation r and subsets X and Y of its source and target sets, r / X and r \ Y are
r restricted to domain X (meaning r \ (X × S)) and corestricted to codomain Y (meaning
r \ (S × Y)). Two straightforward properties (restriction and corestriction theorems) are that
r=X�X and rnY � Y .

Intuition: The results of a program only matter when it is applied to input states
satisfying the precondition. Equality as defined is, strictly speaking, only an equiva-
lence relation, but it coincides with ordinary equality (same precondition, same post-
condition) on feasible programs and makes refinement — introduced next — an order
relation rather than just a preorder.

Comment: While it is customary to distinguish between programs and specifications,
all definitions of the purported difference are vague, for example that a specification
describes the “what” and a program the “how”. The reason for the vagueness is that the
difference does not exist. It is impossible to assign a given artifact solely to one of the
two categories. An assignment instruction is implementation to the application pro-
grammer and specification to the compiler writer. (See also Sect. 3.) Any useful notion
has to be relative: artifact 1 “specifies” artifact 2.

Definition: Refines, specifies, abstracts.

Notation: r�
X
r’ X means (r /X) � r’; in other words, whenever r maps an element of X to a

result, r’ maps it to the same result. The same conventions applies to other operators on
relations, as in r¼

X
r’. Note the names (extension, weakening, strengthening) associated with the

three conditions of the definition.

Intuition: A refinement of p gives more detail than p, but still satisfies all properties of
p relevant to users of p. So it must cover all of p’s states, accept all the input states
p accepts and, for these states, only yield results that p could also yield. It may have
more states, a more tolerant precondition, and yield only some of the results that
p could yield (reduce non-determinism).

Comment: In practice we might want a refined program to work on a different set of
states. In that case S1 would map to a subset of S2, rather than being that subset (P1).
Generalizing the notion of refinement in this spirit is possible, but does not seem worth
the trouble.

Theorem: Refinement Theorem.
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Proof: Since � is an order relation, reflexivity, antisymmetry and transitivity hold for
the program’s state set and precondition parts. For the postcondition part, reflexivity is
trivial; antisymmetry follows from P3 since post1 �

Pre1
post2 and post2 �

Pre2
post1 imply

that post1 and post2 coincide on Pre1 (identical to Pre2 because of P2), which is what
we need for the definition of program equality; for transitivity, if Y � X then
r3 �

Y
r2 �

X
r1 and imply r3 �

X
r1.

Notation: The refinement theorem justifies writing “p2 refines p1” as p2 � p1. This is
an example of a general convention: extending to programs an operator § on relations,
so that p2 § p1 means post2 § post1, with a suitable condition on the preconditions.
More examples appear below.

Definition: Implementation.

Intuition: Not every refinement of a specification is feasible. For example the infea-
sible program having the empty relation as its postcondition and S as its precondition
refines every specification over S. Hence the importance of finding feasible refinements,
also known as implementations. This concept still does not provide a distinction
between programs and specifications.

Theorem: Implementation Theorem.

Intuition: The statement — if a specification has a feasible refinement, it is itself
feasible — seems obvious in light of the words it uses, but in fact requires a proof.

Proof: Let p be the specification and i the implementation; we must prove that
Prep � postp. Weakening tells us that Prep � prei, and feasibility of i that Prei � posti.

Hence property A: Prep � posti. Strengthening tells us that posti �
Prep

postp, hence

property B: posti \Prep � postp. From A and B we deduce that Prep � postp.

2 Operations on Specifications and Programs

The fundamental operations of elementary set theory yield fundamental operations on
specifications and programs:

• Union gives choice (intersection, for its part, does not have a directly useful
application).

• Restriction gives conditionals.
• Composition of relations gives sequence (“compound” or “block” in programming

languages).

162 B. Meyer



• Composition combined with union for symmetry gives concurrency (parallelism).
• Composition of a relation with itself a variable number of times (power) gives

loops.

The following definitions cover all these programming constructs and some others.
Only the first three (those of Sect. 2.1) refer directly to the basic concepts defined so
far; all the rest follow as combinations of these three.

2.1 Basic Constructs

Definition: Choice, Composition, Restriction.

Notation: In the “postcondition” column, the semicolon “;” denotes composition of functions or
relations, in the order of application, so that (r; s) (X) is s (r (X)). (Mathematical texts often use
s o r for r; s.) “Dijkstra” means the notation of [3].

Comment: The first two operators transpose well-known mathematical operations,
union in the first case and composition in the second, to programs. They consequently
retain their symbols, “[” and “;”. No confusion results since it is always clear whether
the operands are sets (including relations) or programs.

Comment: In the definition of program composition, it might seem sufficient to use
post1 ; post2 for the postcondition (rather than (post1 \ Pre2) ; post2); but that approach is
incorrect because post1 could pass on to post2 some elements that do not satisfy Pre2. An
example (with S a set of integers) is p1 = <{[1, 1], [1, 2]}, {1}> and p2 = <{[1, 1], [2, 2]},
{1}>; then post1 ; post2 is {[1, 1], [1, 2]}, but results from applying post2 to 2, not part of
its precondition. At first sight the precondition Pre1 \ post1

−1 (Pre2) appears to guard
against this risk, but it does not: this precondition guarantees that p1 yields at least one
element satisfying Pre2, but does not stop p1 from also yielding other results that do not
satisfy Pre2. (Underlying this discussion is a mathematical property of the image
operator: r (r−1 (C)) � C, a superset property only, not an equality.) We will see that
invariant preservation (Sect. 2.7) also requires the corestriction to Pre2. (Instead of
corestriction we may use restriction: (post1 \ Pre2); post2 is equal to post1; (post2 /Pre2).)
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Notation: For a known set of states S, <post, Pre> is the program of postcondition post and
precondition Pre.

Theorem:

Proof: The definition of feasibility is Prep � postp. For choice, we note that for rela-

tions r1 and r2 r1 [ r2 ¼ r1 [ r2; for composition, that r1; r2 ¼ r1 \ ðr�1
1 ðr2ÞÞ (for r1 ; r2

to be applicable to an element x, r1 must be applicable to x and yield from x at least one
element to which r2 is applicable); for restriction, that r=C ¼ r \C.

Theorems: Properties of the basic operators directly reflect those of their mathematical
counterparts. Choice, like union of sets, is commutative; composition of programs, like
composition of relations, is not. Choice and composition are associative, so we may
apply them without parentheses to any number of operands, as in p1; p2; …; pn. In
addition:

(Choice, however, does not distribute over composition.) The proofs are straight-
forward but must cover both postcondition and precondition.

The following programs are of interest, all of them feasible, the first two total: Skip,
the identity over S, with postcondition λx: S | {x} (always applicable, changes nothing);
Havoc, with postcondition S × S (always applicable, but we may not assume anything
about the result); and Halt, defined as <∅,∅> (empty relation as postcondition and, for
feasibility, empty set as precondition).

Notation: generalized lambda notation serves to define relations in A ↔ B, using either λx: A |
Y where Y is a subset of B (as here for Skip), or λx1: A; x2: B | p (x1, x2) where p is a two-variable
predicate. A program/specification is total if its precondition is S.
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Theorems:

Comment (Varieties of Non-determinism): p1 does not generally refine p1 [ p2 because
of the precondition Pre1 [ Pre2. “Internal choice”, which has the same postcondition as
choice but the precondition Pre1 \ Pre2, satisfies refinement but not distributivity from
composition, P11. (Consider q = <{[0, 1], [0, 2]}, {0}>, p1 = <{[1, 0]}, {1}>, p2 = <
{[2, 0]}, {2}>: under internal choice the precondition is empty for the left side of P11
and {1} for the right side).

Another terminology is that choice is “angelic” and internal choice can be “de-
monic”. The theory of programs has a demonic sister, obtained by choosing internal
choice for all the operator definitions that rely on choice. The discussion will point out
places where the difference matters.

Notation: “[” for choice is a new example (after “�” for refinement) of extending set
operators to programs. The following application of this idea is also useful:

(There is no need for a restriction notation p /C since we already have C: p.) The first
of the following properties shows that corestriction can be defined from restriction and
composition.

Theorems:
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The restriction and corestriction theorems apply to programs: C : p�C and

pnC�C.

Notation: In the same spirit, the range and domain notations apply to programs: p is a
synonym for Prep; and (more importantly) �p is a synonym for postp (p), the set of
values that p can actually yield.

Properties P20 and P21 extend to all well-behaved operators in the following sense.

Definition: Refinement safety.

Counter-Examples: Intersection of programs, defined as intersecting both postcondi-
tions and preconditions, is not refinement-safe: with a set of integers for S, {0} for all
preconditions, and postconditions {[0, 0], [0, 1]} for p1 and p2, {[0,0]} for q1 and
{[0,1]} for q2, the conditions of the definition are met, but q1 \ q2, with an empty
postcondition, does not refine p1 \ p2, which is just p1. Another counter-example is
program difference (set difference of postconditions, intersection of preconditions). The
theory of programs, however, eschews such operators:

Theorem:

In a corresponding sense, the program properties “functional” and “object-oriented”
are refinement-safe (but not their contraries, “imperative” and “procedural”).

2.2 Atomic Concurrency

Composition, while associative, is not commutative: when we combine existing pro-
grams or specifications, it forces us to decide in which order we want them to perform.
If you find this obligation irksome, you need concurrency. Concurrent combination (in
its “atomic” form) is sequential composition made symmetric through association with
its quintessentially commutative colleague, choice.

Definition: Concurrency.
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Theorems: Concurrency is commutative, associative and refinement-safe. In addition:

Concurrency generally does not refine composition, but in one particular case it does.

Definition: Commuting programs.

Example and Counter-Example: If S is the set of functions PERSON → Z, recording
people’s bank account balances, consider an infinite set of programs, defined for any
person p and any integer n: the postcondition of depositp,n expresses that the output
differs from the input only by having the balance of p increased by n, and similarly for
withdrawp,n. All these programs commute with each other. They do not commute,
however, with the program resetp setting p’s balance to zero.

Theorem:

(Not just refinement, but equality. Immediate generalization to more than two
programs.)

Intuition: Commuting programs are a boon for concurrent computation, since they
open up many possible realizations for “computing” program results (finding values
satisfying postp) on actual “computers” (the physical devices that ensure postcondi-
tions). Assume for example a large number of deposit and withdraw operations with
various clients and amounts. If the specification is that at the end of the trading day the
balance of each should be correct (initial, plus accumulated deposits, minus accumu-
lated withdrawals), any assignment of the operations among any number of computers
in any order is suitable. In such cases concurrency is an optimization mechanism.

Comment: Commuting is not refinement-safe: with {0, 1} as preconditions, the pro-
grams of postconditions {[0, 0], [1, 1]} (i.e. Skip) and {[0, 0], [1, 0]} both refine
p = {[0, 0], [1, 0], [1, 1]}, which commutes with itself, but do not commute since
composing them in both orders respectively gives 1 and 0 for 1. Abstraction (the
inverse of refinement) also does not preserve commuting: Skip and p do not commute
even though Skip commutes with itself and refines both. On the other hand:
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Theorem:

2.3 Non-atomic Concurrency

The atomic concurrency operator has a fixed level of granularity, defined by its
operands: if they are themselves complex programs built out of simpler components, it
will not interleave these components. For example let on be “switch on the light”, off
“switch it off” and p “say whether the light is on”. Assuming that in the initial state the
light is on, (on; off) || p will always say no, regardless of which of the operands of “||”
goes first, since (on; off) is equal to Skip.

The practice of concurrency often calls for finer-grain control on concurrency. Here
you might want p to execute at the beginning, in the middle (between on and off), or at
the end. Such flexibility causes much of the difficulty of concurrent programming, since
it opens up the possibility of “data races” (inconsistent orderings of operations, in some
executions only); but a general theory of programming must provide a model for it,
given here by a ternary operator.

Notation: the only new symbol is the comma, used at a place where the semicolon of com-
position could also appear. The reuse of “||” is only for convenience: the “Notation” entry
describes a new three-operand operator. Its “Definition” entry relies on the previously defined
atomic concurrency operator “||”. No confusion arises since the non-atomic operator only occurs
in conjunction with the comma.

Comment: We do need a specific operator, because proposing a distributive-style law
involving standard composition “;” would raise inconsistencies. For example, (on; off) ||
p cannot give any other result than Skip || p; if you want to allow interleaving, you
should specify a finer level of granularity, as in (on, off) || p. In the first case the atomic
unit of concurrency on the left side is (on; off); in the second case there are two atomic
units, on and off.

Non-atomic concurrency is associative on its first two operands p1 and p2, so you
may use commas to separate any number of program operands of non-atomic con-
currency. (Reduced to one operand, as in (p1) || q, atomic and non-atomic “||” coincide,
as they should for consistency.) You may also put q first, writing q || (p1, p2). In other
words, the notation lets you use a comma, to specify a finer granularity of interleaving,
where you might otherwise use a semicolon.
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Theorems:

Proof of P41: The left side is (p1; p2; q) [ (p1; q; p2), which from P39 (itself a direct
consequence of the definition) is a subset of the right side; similarly for P42. Both of
these properties appear in [8] as fundamental axioms of concurrency, but here they are
simple theorems.

It is straightforward to symmetrize the non-atomic concurrency notation to (p1, p2) ||
(q1, q2), yielding the generalized law of exchange from [8]: (p1 || q1); (p2 || q2) � (p1, p2)
|| (q1, q2).

2.4 Conditionals

Definition: Conditionals.

Notation: C’, for a subset C of S, is its complement: S — C. The usual programming notation is
“not C ” (see Sect. 2.5 below). The guarded conditional is in fact not new since if p1 [] p2 end
was introduced in Sect. 2.1 as a synonym for p1 [ p2, but it highlights the important case of p1
and p1 being restrictions.

Theorems: The guarded conditional is commutative; the corresponding property for
if-then else is that (if C then p1 else p2 end) = (if C’ then p2 else p1 end). Both
operators are associative; as a consequence they can be applied to more than two
operands (if-then-else uses elseif for the second to next-to-last branches, as in if C1

then p1 elseif C2 then p2 else p3 end), and to just one: for the guarded conditional, if C:
p end is the same as C: p; for if-then-else, by convention, if C then p end is an
abbreviation for if C then p else Skip end.

Theorems: Both forms are distributive over choice and concurrency, but not over
composition. The guarded conditional is commutative, but not if-then-else. In addition
(direct consequences of earlier theorems, particularly P19 and P21):
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Proof: For P48, see P8 and P9. As seen next, “\” in these rules can also be written
“and”.

2.5 Conditions

Two special conditions are useful for building programs. True is another name for S,
and False another name for the empty set. They should not be confused with the
similarly named constants of propositional calculus: True and False are, like all con-
ditions, sets (subsets of S). In fact the theory of programs relies on set theory rather than
directly on logic, although it is easy to define boolean-like operators on conditions:
and and or as other names for “\” and “[”, not as another name for complement (in
P50 we may write C’ as not C), implies or “⇒” as other names for “�”, and so on.
Here, in addition to P19, are some properties involving operations on conditionals.

Theorems:

Proof: For P54, note that the postcondition of p \ False is postp \ (S × False), that is,
an empty relation (since False is the empty set).
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2.6 Loop

Definition: Repetition constructs.

Notation: in the second definition of the while loop, it does not matter how we parenthesize the
“\”; see P27. Since composition is associative, the inductive expression for fixed repetition can
also be written (pi; p).

Intuition: loop p end is the program that performs like p repeated some finite (but
unknown) number of times. Cyclic programs, such as those on embedded devices,
follow this pattern. The rest of the present discussion concentrates on the from a until
C loop b end loop, which starts like a then performs like b, the loop’s “body”, as many
times as needed (possibly zero) until reaching a state satisfying C. In slightly different
terms: for the loop to yield a result from a given input state x, that result must be the
first element of C reached by successive executions of b after a. All the previous states
are not in C, so they are in C’, meaning that what we are iterating is not the whole b but
just C’: b.

From distributivity follows another expression of the loop:

Theorem: Loop Lemma.

Notation reminder: �p, a subset of postp, is the set of values that p can produce.

Intuition: qi represents a restricted version of the loop, which yields a result (satisfying
C) after exactly i iterations. The loop is the union of all such partial versions of it.

Comment: Unlike previous constructs, the loop does not automatically get feasibility
from the feasibility of its operands: it is possible for a, b and all qi to be feasible, while
l is not. (A trivial example is from Skip until False loop Skip end.) A loop is feasible if
and only if for every suitable state s there exists an integer i (typically not the same for
different s) such that a; (C’: b) i ({s}) contains an element in C; in other words, that qi
({s}) is not empty.
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The feasibility condition for loops relies on the notion of invariant.

2.7 Invariants

Definition: Invariant.

Intuition: An invariant is called that way because if it holds before application of p it
will hold afterwards. More precisely, for the initial condition we need not the whole of
I but just p\ I, since results of p only matter when it starts from the precondition. The
following two theorems ensue directly from the definition.

Theorems:

Comment: Properties involving intersection are usually not as strong as those
involving union, because r (I \ J) is only a subset of r (I) \ r (J), rather than equal to it
as with “[”; but P61 has both operators on an equal footing.

Theorem: Invariant Refinement Theorem.

Comment: In practice, the precondition often stays the same under refinement, but in
the general case p2 might have a broader precondition; there is no guarantee that the
original invariant will hold for the new states, hence the restriction to Pre1.

Definition: Invariant-preserving operator.

Example: Program composition is invariant-preserving.

Proof: Assume I is an invariant of both p1 and p2. The definition of program com-
position (Sect. 2.1) gives (post1 \ Pre2); post2 as the postcondition of q = (p1 ; p2). From
26 and properties of image ((r1; r2) (A) = r2 (r1 (A))) and restriction ((C: r) (A) = r (C \
A)), it follows that postqðq\ IÞ ¼ post2ðPre2 \Res1Þ where Res1 ¼ post1ðq\ IÞ. Since
I is an invariant of p1, Res1 � I; since it is also an invariant of p2, then, post2 (Pre2 \
Res1) � I.
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Comment: The discussion after the definition of program composition in Sect. 2.1
noted that taking just post1; post2 as postcondition for p1; p2 would not yield a feasible
result: we need the corestriction to Pre2. This property is also essential for invariant
preservation: without it we would be applying post2 not to Pre2 \ Res1 but just to Res1,
on which post2 does not preserve the invariant.

This result about composition is only a particular case of the following general
property.

Theorem: General Invariant Theorem.

Proof: The result for all the basic operators (choice, sequence, restriction) follows
from the set-theoretical properties of relational image, including the following in
addition to those used in the preceding proof: r (C [ D) = r (C) [ r (D); r (C \
D) � r (C) \ r (D); r (C) \ D � r (C). The subsequent operators (concurrency,
conditional) are defined from the basic ones and retain their invariant preservation.

Every element of the infinite unions that define loops is made out of basic operators
and, by induction, is invariant-preserving. Since union maintains this property, the
loops themselves possess it. They benefit, however, from a more specific form of the
notion of invariant.

Definition: Loop invariant.

The Invariant Refinement Theorem, P62, implies that a “loop invariant” is an
“invariant”, in the general sense, of the part of the loop that comes after initialization
(a). The following theorem yields a stronger form of the relationship between the two
concepts.

Theorem: Loop Correctness Theorem.

Intuition: The theorem characterizes the fundamental property of loops [5, 11]: the
goal of a loop is to obtain on exit (�l) a combination of the exit condition (C) and a
judiciously chosen invariant (I, a weakening of the desired result).

Proof: Since I is an invariant of C’: b, it is an invariant of (C’: b) i for any integer i;
since I is also a subset of �a, it follows that qi � I for every i, with qi as defined in the
Loop Lemma, P58. Then, from the second part of the Loop Lemma, �l� I. In addition,
the corestriction theorem tells us that qi �C as well, again for every i; this property
extends to �l.
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Comment: Despite its fundamental role, the Loop Correctness Theorem does not fully
cover the theory of loops because it says nothing about feasibility. It states that loop
results — elements of �l — possess interesting properties, but not that such elements
exist for every legal input state. In fact, a loop yielding no results at all (an empty �l)
would satisfy the theorem. In the traditional terminology of theoretical informatics, the
theorem is a “partial correctness” result, useful only if we can also guarantee “ter-
mination”. The complementary theorem follows.

Theorem: Loop Feasibility Theorem.

Notation: a “well-founded” (or “Noetherian”) relation is one that admits no infinite chain.

Proof: Assume b[C is a loop invariant and C’: postb is well-founded. For any element
s of a, define S0 as a ({s}) and Si+1 as (C’: postb) (Si). Both Si and qi are subsets of a;
(C’: b) i; what distinguishes qi is that its elements are also in C. Assume that these two
subsets are disjoint for all i. Induction shows that Si is not empty: since a is feasible, S0 is
not empty; and if Si is not empty, the invariant property tells us that Si � b[C; with Si
disjoint from qi this really means Si �ðb[C0Þ which implies, b being feasible, that Si+1,
the image of Si by C’: postb, is not empty. But then elements of successive non-empty
sets in the infinite sequence Si are related by C’: postb, an impossibility since the relation
is well-founded. As a consequence, the disjointness assumption (Si \ qi = ∅ for all i)
cannot hold. So for every s there exists an i such that applying a; (C’: b) i— the program
iterating the loop i times — to s yields an element of C. That element is in qi and hence
in �l, showing that the loop is feasible.

Comment: While the theorem gives a general condition for loop feasibility, it is often
not practical to check directly that C’: postb, the loop body, is well-founded. A standard
technique is to map states to a simpler domain on which it is easier to check that the
counterpart of postb is well-founded, according to the following definition.

Definition: Loop variant.

(Strictly speaking, v only needs to be total on ð [ qiÞ [ ðC0 \ ð [ qiÞÞ.) The existence
of a variant shows that postb itself is well-founded, fulfilling the second condition of the
Loop Feasibility Theorem. The most frequent choice for V is the set of natural integers.
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3 Contracted Programs

There is, as noted, no difference of principle between specifications and programs. In
practice we are used to different connotations for these terms. Since the distinction is so
commonly accepted, let us see if we can find a justification serious enough to earn it a
place in the theory of programs.

We already saw that the first attempt, stating that specifications are abstract and
programs concrete, does not make the cut, since “level of abstraction” is a relative
notion (the example was an assignment instruction, abstract for some and concrete for
others). A seemingly more promising intuition is that programs are executable while
specifications are purely descriptive. But that is also not right, even if we ignore the
case frequently made for “executable specification” formalisms and stick to more
traditional forms of the concepts. “Executable” cannot mean “directly appropriate for
execution on a computer”, since in that case the notion would depend on hardware
details. It has to mean “expressible in a programming language’. A staple example is
that Result2 ≅ input is a specification whereas a particular square root computation,
using for example Newton’s algorithm, is a program. But such examples also fail, since
there are many programming languages today in which you can just write
Result2 = input and let the compiler figure out the implementation.

Just like the distinction between abstract and concrete is relative, the distinction
between descriptive and executable shifts with the evolution of language and compiler
technology. To find a true difference, we must look elsewhere.

The relevant criterion is correctness. As captured by the notion of feasibility, a
specification can be inconsistent (if it tells you that the result must be zero and also that
it can be one) or consistent; but it makes no sense to ask whether it is correct. Correct
with respect to what? Probably with respect to the customers’ desires, or to their actual
needs, but these would have to be written down as another, higher-level specification,
only pushing the problem further. We do know, however, what it means for a program
to be correct: it performs according to a stated specification. Correctness is a relative
notion.

Indeed what truly distinguishes a program from a specification, in the common
usage of these terms, is neither the level of abstraction nor the possibility of execution,
but the existence of two programs/specifications in the sense of the present theory, such
that one of them is a refinement (as also defined above) of the other. The following
notation reflects this analysis.

Definition: Contracted program, specification part, contract, implementation part,
correctness.
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Reminder: An implementation of p is a feasible refinement of p. The refinement
theorem, P5, indicates that p is feasible as well. The definition of refinement indicates
that the precondition of b is a superset of Pre and its postcondition a subset of post.
(The name b stands for “body”.)

Intuition and Comment: The notion of contracted program simply introduces a pro-
gramming notation for the concept of refinement. Since a program is useless without a
precise understanding of what it is supposed to do, program authors should only
produce contracted programs. Regrettably, this practice is not yet universal.

The above definition provides a final clarification of what programs in the usual
sense of the term (contracted programs in the present theory) really are: a program is
a proof obligation. Writing require Pre do b ensure post end is a way to state that
b must refine p, and requires the author, before clicking “Compile”, let alone clicking
“Run”, to click “Verify”.

Theorem:

Comment: In this case, since we keep the implementation and go to a new specifi-
cation, we can only strengthen the precondition and weaken the postcondition.

The following concepts are defined for given Pre, post and b.

Definitions: Weakest precondition, strongest postcondition.

Intuition: postb — post is a set difference between two relations, giving us the set of
pairs that belong to the first but not to the second. Its domain, postb��post, is the set of
states for which b produces at least one result that post could never produce. Sub-
tracting this domain from b, the domain of b, gives us the set of states on which b is
guaranteed to agree with post.

The following property justifies the terms “strongest” and “weakest”.

Theorem:

Proof: Let p be <post, Pre>. Since b is a refinement of p, postb �
Pre

post by the defi-

nition of refinement, yielding the first property of the theorem. By refinement, Pre� b;
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the just mentioned property postb �
Pre

post implies that postb��post is disjoint from Pre,

so Pre� b��postb��post, giving us the second property.

As a corollary, we get a compact definition of program correctness.

Theorems:

Theorems:

(and so on). As an example of why P74 is not an equality, consider postconditions
{[0, 1], [0, 2]} for b, {[0, 1]} for p and {[0, 2]} for q, all with precondition {0}. Then
both b wp p and b wp q are empty (since b — p has postcondition {[0, 2]} and b —
q has {[0, 1]}), but b wp (p [ q) is {0}. This property is related to the comment (after
P25) that in the angelic theory p1 does not generally refine p1 [ p2.

Definition: Generalizing refinement to contracted programs.

Comment: It is possible to generalize the definition further by having different spec-
ification parts.

Definition and theorem: Most Abstract Implementation.

Intuition: The most abstract implementation is the specification used as its own
implementation.
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4 States and Environments

The exact nature of S, the state set, varies considerably between application domains
and the formalisms supporting programming (programming languages as defined next
in Sect. 5). Some properties, however, are common to most variants.

4.1 Mappings

The state tracks the evolution, during the computation, of certain elements of infor-
mation relevant to the results. As a consequence, a state almost always includes (as its
essential components) one or more mappings between these elements and their current
values. “Mapping” is a general term roughly equivalent to “function”; in programming,
since the memories of both humans and computers are finite, these functions will also
be finite. S, then, includes components of the form for appropriate
sets of names and values.

Notation: is the set of possibly partial functions, and the set of finite
functions, from A to B. Inclusions are: and

.

4.2 Environment and Store

It is common for the state to have two clearly identified components: the environment
and the store, also known as the static and dynamic parts. In a simple variant, with a set
Var (for “variables”) of names and a set Type representing the types of possible values,
the environment is of the form and the store of the form

. This division reflects the typical process of executing programs on a
computer:

• A first step known as compilation creates the environment.
• The actual computation, known as execution, takes place in the second step, which

builds and transforms the store, constrained by environment built in the first step.

One of the advantages of this approach is that it requires programmers to define
types for every variable, making it possible to detect mistakes (such as applying a
boolean operation to integer variables) in the first step; in that case the second step does
not take place until the programmer has corrected the mistake. Such a process limits the
risk of erroneous computation. Another advantage is that it is not necessary to repeat
the first step once it has succeeded: subsequent executions of the same program,
applied to different input states, can use the result of the compilation.
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Definitions: Declaration, instruction.

Intuition: It is good practice to separate the two kinds of operation; declarations set up
the environment; instructions, working in a defined environment, change only the store.

Comment: The characterization of programming styles (functional, object-oriented) in
Sect. 1 properly applies to the store component of the state. So do the definitions of
Skip and Halt (Sect. 2.1) if we wish to treat these operations as instructions.

4.3 Notational Principles: Cartesian Product Considered Harmful

The preceding discussion has stopped short of specifying S as the cartesian product
E ×M where E is the environment andM (for “memory”) the store. It does not even use
the common programming-like “record” notation (environment: E; store: M) (mathe-
matically denoting a function in , where Tag is the set of names to the left
of the colons and U the union of the sets to their right, with the constraint that the
function’s values for the i-th tag are in the i-th set). The two models are isomorphic and
either one would be suitable for a purely mathematical discussion, but for modeling
software concepts they are too constraining.

The reason is that the theory of programs, like the development of programs, calls
for more incremental notations, allowing us to extend and adapt existing models. Both
cartesian product and the record notation are closed: if you have defined a concept such
as “state” through a particular set of components, such as the environment and the
store, and later want to add a component, you must rework all previously defined
operations (functions or relations) on states. An example of such an operation is a
declaration, defined as λ e, m | [d (e), m] where d is an function on the environment (for
example, if e is or includes a mapping in , d yields a new version of the
mapping, extended with a new pair such as [n, INTEGER]). If you add a third com-
ponent to the concept of state, this definition, which yields a pair rather than a triple, no
longer makes sense.

Cartesian product is not the only culprit: definition by alternation is just as bad. It is

common to use definitions of the form L¼D JjK, specifying that an element of L is
disjointly either an element of J or an element of K. (Again there is a simple mathe-
matical model, applicable even if J and K are not disjoint: the notation describes pairs
in {1, 2} × (J [ K) such that the second element is in J for 1 and in K for 2, with
generalization to any number of alternatives.) This notation suffers from the same
drawback: adding an alternate breaks all previous derivations.
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In programming, the “object-oriented” method of programming, with its concept of
“inheritance”, is an effective remedy to these problems. Solutions are also necessary on
the theoretical side.

This article does not introduce the details of the appropriate notation but it is useful
to see the principal convention, used as the replacement for cartesian product. When a
set needs to be defined with a number of components, we give each a name, as in

This mathematical notation simply asserts the existence of two total functions,
environment in S → E and store in S → M. Projections are written (for a state s) s.
environment and s.store. A function on composite objects defined from functions on
their components is of the form

denoting a function in S → S, with the important rule that the function leaves
unchanged any component not named, here store; the example is just a notation for the
function that for any state of components e and m yields the state of components
d (e) and m. At first sight, these notations are equivalent to the cartesian product and
record forms, but there is a practical difference: you can include as many “component”
and “on” definitions as you like, even for the same target set S, in an incremental
fashion. In many cases, the existing specification can remain unchanged; in particular,
existing function definitions using on do not name the new components, and indeed in
general they do not need to change them, so you can just rely on the rule that anything
not named is unchanged.

Such definitions are cumulative: mathematically, the resulting specification is the
cartesian product of all the on … component declarations. (This convention assumes
that the network of declarations involves no recursion; it can be extended through
fixpoint techniques to support recursive definitions.) A similar convention applies to
sets defined by alternation.

In both cases, a simple notation supports “lifting” an operation on a component into
an operation on the whole. For example if d is an operation on the environment it is
convenient to treat it also as an operation on the state, which as in the above on …
component example leaves all other components unchanged.

This article will not need further details of these techniques, but it is important to
know of their existence, since they are useful for the practical development of speci-
fications and programs.
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4.4 Kinds of State

While the precondition is a set of states, the postcondition in the general case is a
relation over two states, initial and final; a common term is “two-state assertion”. For
example, we may want to specify that the initial state contains a positive number
(precondition, a set) and the final state its approximate square root (postcondition, a
relation between input and output).

Some postconditions, for example “the output is positive”, do not involve the initial
state:

Definition: Markovian, one-state.

Notation: x r y, for a relation r, expresses that [x, y] 2 r (the relation connects the two elements).
The equality in the definition is equivalence (equality between two boolean properties).

Intuition: A Markovian postcondition characterizes only the final state, regardless of
the input.

Comment: A useful program produces different results for different inputs, and so is
generally not Markovian if considered as a whole. But postconditions are often
expressed as intersections (conjunctions) of properties, some of which can be
Markovian; for example the result’s square is close to the input and the result is
non-negative. The Markovian property can also characterize intermediate steps in the
program. This observation extends to the following state properties.

Definition: Trivial, irrelevant, relevant.

Intuition: If a state is trivial, a transition to any other state will fulfill the postcondition.
If it is irrelevant, it plays no role in whether the next state satisfies the postcondition.

Theorem:

Proof: We may assume a non-empty Pre. (⇒) Assume the specification is feasible. If a
state s in Pre is irrelevant and not trivial, s post s1 holds for no s1. Feasibility implies
Pre� post, meaning there is an s1 such that s post s1, yielding a contradiction. (⇐)
Assume every state s in Pre is either trivial or relevant. If it is trivial, it is in post. If it is
relevant, then there exist s1 and s2 so that either s post s1 or s post s2, so it is also in
post.

Theory of Programs 181



5 Languages and Programming

“Programming” is the act of writing correct programs according to the preceding
definitions. Such a program has two parts: the contract represents the goal of the
program, as advertised to its users; the implementation represents the operations that
will run on the computer. The definition ensures that the implementation matches the
contract.

5.1 Programming Languages

If the contract is given, in the form of Pre and post, programming consists of solving
require Pre do b ensure post end, viewed as an equation of which b is the unknown.

The Most Abstract Implementation, as defined above, yields a trivial solution, often
non-deterministic, to the equation: postb = post /Pre, Preb = Pre. The reason why that
solution is generally of little use, and programming an interesting endeavor, is the
practical difference between contract and implementation. For b we seek a relation
postb that a material computer can process (not necessarily directly, but through the
services of tools such as “compilers”). For the specification, since the goal is to
describe the problem, we can rely on a broader set of mathematical mechanisms.

In both cases we need a repertoire of mathematical tools to build programs and
specifications.

Definition: Programming language, specification language.

Intuition: A programming language is a set of possible programs. Any useful pro-
gramming language is infinite, but it is derived from a few basic postconditions and
preconditions, and a few operators to combine them. Many of these basic elements,
introduced in the earlier sections of this presentation, can be used by programming
languages regardless of the application domain:

• Havoc, Skip and Halt as base programs, with True and False (S and ∅) as base
preconditions.

• The program construction operators of Sect. 2, including the three basic ones
(choice, composition and restriction) and those derived from them (concurrency,
conditionals, loops).

Beyond these universal elements, a language will offer specific mechanisms for the
intended application domain, beginning with a suitable set S of states and a suitable set
of operations over S.
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Since specification and implementation are often considered separate activities, it is
frequent to find separate specification and programming languages. A better approach
is to use a single language; this approach is in fact required if we want to produce
correct programs (contracted programs), which include both a contract and an
implementation. (As noted after the definition of refinement, it is possible to define a
variant of the theory in which the state set changes under refinement, but at the price of
much added complexity.) Many contemporary approaches to producing reliable soft-
ware are hampered by this failure to understand the fundamental unity of the pro-
gramming process: in spite of the obvious differences in levels of abstraction, the
problems and solutions, for which this presentation offers a mathematical framework,
are the same. (Reference [13] discusses the seamlessness of the development process in
a software-engineering rather than mathematical context, and [14] develops its appli-
cation to software requirements.)

Absent such a single framework, not only is it hard to produce correct software;
even expressing what it means for the program to be correct is a challenge, since the
implementation and specification belong to different worlds (such as an ordinary
programming language and some specification framework). One must define a map-
ping between these two worlds, an approach that introduces complexity and introduces
its own correctness issues.

With a single S and a single specification and programming language, the language
description will identify, among the language’s mechanism, the subset suitable for
implementation. Then the requirement on program authors is simply to produce a final
version require Pre do b ensure post end of the program in which the implementation
part b only relies on that subset. Establishing correctness means establishing:

• Refinement: b � <post, Pre>.
• Feasibility: Pre� post (or alternatively, thanks to the implementation theorem P5,

Preb � postb if the preceding condition holds).

One can express these properties convincingly, and prove them, since all three
components, post, Pre and b, are part of the same mathematical framework, even if the
last one restricts itself to a subset of that framework’s mechanisms.

5.2 Approaches to Programming

The most common approach to programming today ignores the Pre and post elements
of the definition, concentrating only on building implementations b from a program-
ming language with the hope that in some informal sense they will match the corre-
sponding user needs. We may call this the “hacking approach”; it has little to commend
itself if correctness is part of the objectives.

At the other extreme, a “refinement approach” [1, 15, 17] has made its mark in
informatics research and led to such development methods as B. If we set out to
implement a given contract, the Most Abstract Implementation theorem P75 tells us
that we may use the contract itself — specifically, <post, Pre> — as its own first
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implementation. Refinement as a software development method starts with this first
version and repeatedly takes advantage of theorems to choose a “refinement” in the
sense of the formal definition, P2 and P3, of the previous implementation until reaching
an implementation that belongs to the implementation part of the language.

This approach is elegant but faces some obstacles:

• Hindsight: we seldom know the entire specification in advance. This uncertainty is
not necessarily a mark of incompetent software engineering: the very process of
implementation suggests new elements of specification — “esprit de l’escalier” as
discussed in [13].

• Extendibility: even if the specification is initially clear, it usually changes as a
project progresses and after initial deliveries. If a change affects a property that was
used in an early step of the refinement process, it becomes necessary to redo much
of the work. (Invariants, which play an important role in refinement methods, can
help control this change process [2].)

• Reusability: A top-down refinement process does not easily take into account
implementations previously produced for variants or subsets of the problem. It is
desirable for a development process to accommodate a bottom-up component,
supporting reuse.

The ideal process should combine the best elements of the “hacking” and “re-
finement” approaches, retaining the practicality of the first and the rigor of the second.
It is not the goal of the present discussion to present such a process, but a general
definition helps set the stage.

Definition: Programming.

The starting point for any step in the process may indifferently be:

• A contract element, for which we have to devise a satisfactory implementation
(top-down).

• Existing implementation elements (bottom-up). Ideally these elements already have
full contracts. In practice, they often have no contracts, or incomplete ones; part of
the process then involves uncovering the precise intent of the components and
writing the contracts.

This approach seems to yield the necessary flexibility while accommodating the
need for rigor and proofs. It yields a useful view of programs.

Slogan: Program.
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6 Discussion

This article applies to programming the standard method on which science and engi-
neering rely to solve practical problems in any application domain:

• Develop a mathematical model resulting in equations (in the present case, the
feasibility equation Pre� post and the program equation require Pre do b ensure
post end, where b is the unknown).

• Solve the equation.
• Build the solution in the application domain.

The main argument for the model developed in the preceding sections is the
simplicity of its premises: the mathematical baggage is elementary set theory, learned
in high school around the age of 15; the construction relies on just three mechanisms
from that theory: union, composition and restriction. The approach seems to have the
potential to cover all the relevant concepts of programming, although the present article
takes only a first dig.

6.1 Axioms or Theorems?

In theoretical informatics the habit has often been different: devising axiomatic theo-
ries. The most developed example is the admirable work of Hoare and colleagues
[7, 8]. A notable property of these efforts is that they postulate their laws; then “of
course, the mathematician should also design a model of the language, to check
completeness and consistency of the laws, to provide a framework for the specifications
of programs, and for proofs of correctness” [7]. The justification for this method —
postulate your ideal laws, the model will follow — is that it has, in Russell’s words
cited in [9], “the advantages of theft over honest toil”.

However good the wisecrack, this is not how normal mathematics works. Unless
your last name is Euclid or Peano, or your first name Alfred or Bertrand (and even in
this last case, only if you have a hereditary peerage), few people will pay attention to
axioms you assert on them as if walking down from Mount Sinai. Imagine a world
where every mathematical concept were defined axiomatically; in trigonometry, sine
and cosine would be postulated as functions satisfying certain properties — the sum of
their squares is 1, the derivative of the former is the latter, and so on; and similarly for
every important notion. People would quickly tire of having to make incessant leaps of
faith.

We expect instead, when presented with new results, to see them derived, in the
form of definitions and theorems, from what we already know. True, it is often a mark
of elegance, for the presenter of a theory and of the laws that it satisfies, to prove that it
is the simplest possible construction satisfying these laws; but it is a mark of politeness
to perform this feat only as a bonus step, coming after an explanation relying only on
material already familiar to the reader.

Stretching Russell’s aphorism, we may note that even if Balzac’s observation (“The
secret of great fortunes without apparent cause is a forgotten crime”) may explain the
origin of some hereditary peerages, just as axioms explain the foundations of
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mathematics, in practice most hereditary peers find it less bothersome to obtain the
objects of their daily desires through “honest toil”, or at least honest means, than by
stealing.

These observations do not rule out occasional reliance on the axiomatic method in
the introduction of theories. Aphorisms aside, however, it is hard to justify asserting
properties as postulates when they can be proved as theorems. When a manageable
mathematical derivation from known concepts exists, it should be the first choice.

As the presentation of the theory of programs has attempted to show, such exactly
is the situation with programming. Programs are just relations over sets. An informal
and non-exhaustive review of the axioms of classic articles such as [7] and its extension
to concurrency [8] (not considering properties specific to individual calculi), as well as
[6, 10], suggests that most of the properties they introduce can be derived, often
straightforwardly, from the framework of this article; many indeed appear above as
theorems.

Many authors seem to have a suspicion, conscious or not, of the set-theoretical basis
of programming; but most — an important exception is Hehner with his “predicative
programming” [6]— resist the obvious solution of explicitly building the theory on that
basis. They prefer to throw in axioms, even if these axioms mimic the elementary
properties of set operators. A dizzying example is the seminal “Laws of Programming”
article [7] (together with the more recent [8]), whose authors axiomatically introduce
operators with names such as “[” for non-deterministic choice and “�” for refinement.
They never suggest that these could actually be the standard mathematical operators
bearing the same names; but they cover several pages of Communications of the ACM
with such fascinating “axioms” as P [ (Q [ R) = (P [ Q) [ R. One wonders whether the
thought ever arose that if it associates like union, commutes like union, distributes like
union, and typographically uses the exact symbol of union, perhaps it is union.

6.2 Keeping Simple Things Simple

Because informatics already struggles to describe inherently complex phenomena, we
should not introduce complexity of our own making. Programming theory does not
always keep the complexity of the descriptions commensurate with the complexity of
the described. Another seminal paper of great elegance [10] introduces the “natural
semantics” of the if-then-else conditional thus:

q j � ðE2 ) aÞ
q j � ðif True then E2 else E3 endÞ ) a

Z

with a similar rule for the False case. In words: if in the environment ρ the expression
E2 evaluates to α, then in ρ the expression if True then E2 else E3 end also does. The
companion rule tells us that if E3 evaluates to β the expression with False instead of
True evaluates to β.

In reality, if-then-else is a very simple concept. It expresses that one may solve a
problem by partitioning the domain into two parts and using a different solution in
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each. Euler would undoubtedly have explained it to his 15-year-old princess pupil [4]
by a little illustration:

and she would have understood on the spot. (A pedagogical presentation of the theory
of programs’ concepts should indeed use Euler-Venn diagrams throughout, although
this article has shunned them under the presumption that its putative audience does not
need pictures.)

Instead, the above “natural” semantics refers to advanced concepts of mathematical
logic and notions such as the “environment” (ρ), which are a distraction from the idea
of a conditional instruction. These observations do not put into question the value of
[10] and other classic semantic articles, which were conceived as research advances,
not tutorials. But they highlight the benefit, as a domain gets understood better, of
seeking simplicity and trimming down the set of prerequisite concepts to the
indispensable.

6.3 De-emphasizing the Program Text

One source of complication in theories of programming is reverence for the program
text.

Almost every discussion of programming — where “almost” is just to be on the
safe side — starts by defining a programming language. (Denotational or operational
semantics often starts with two languages, one to express programs and the other to
express their meanings.)

This attitude seems to be a leftover from the early days when parsing was the
difficult problem. Programmers and theorists were awe-struck when Backus, Bauer,
Hopper and others showed that instead of coding with zeros and ones it was possible to
use a human-readable notation and have it translated automatically. The program text
became the alpha and omega of programming. But it is only an artifact. A computer is a
mathematical machine for computing pairs in relations. All the rest is decoration.

Programming is no more about programs than electricity is about plugs.
Parsing is the original computer science problem and even though it has long lost

its theoretical difficulty it remains our unconscious template for all others. Semantic
specification, for example, often looks like a smarter kind of parsing, also starting from
program texts and deriving its properties — just more interesting properties. Denota-
tional semantics, in particular, defines “meaning functions” operating on program texts.
Electrical engineers, if they worked that way, would start from plugs, dutifully noting
how different Swiss, French and Italian plugs are from each other. In reality, of course,
what counts is the electrical current — the same in all three countries, with their
interconnected networks — and specifically the relevant equations.

In programming too a more productive approach — the application to semantics of
the idea of unparsing, the reverse of parsing — is to start from an analysis of what we
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need mathematically: what kinds of postconditions and preconditions give rise to useful
specifications and realistic implementations. From this analysis we construct pro-
gramming notations, not the other way around. For example we do not start from
if-then-else as a given construct of interest, but identify the union of two relations as a
relevant concept. We consequently derive suitable notations to express it, each adapted
to different mathematical situations: if the relations’ domains are provably disjoint, if
C then p else q end; otherwise, the guarded conditional if C: p [] D: q end.

Far from lessening the value of the traditional objects of interest in informatics,
such as programs and programming languages, this reversal of perspective makes them
even more interesting, turning them from arbitrary products of taste and circumstance
into rationally justified modes of expression for useful mathematical concepts.

6.4 The Basic Duality

The presentation of the theory has highlighted a characteristic property of program-
ming: the natural need for two distinct methods to assess what a program can do and
whether it will actually get to do it. This separation is hardly a revelation: in theoretical
discussions of programming it recurs under many guises, such as partial correctness
versus termination, safety versus liveness, loop invariants versus loop variants. The
present discussion provides more evidence of its inevitability. Note the two loop
theorems (Loop Correctness, P64, and Loop Feasibility, P65) and the separate defi-
nitions of “program” and “feasible program”. Even the attempt to define “correct
programs” in a single formula, P68, requires two operands reflecting the two sides of
the question. In [3] Dijkstra also attempted to cover loops through a single rule, but in
practice one must still separately use an invariant and a variant. Partly blessing, partly
curse, the duality seems to be an inescapable part of informatics, reflecting some
built-in limits of human reason.

7 Perspectives

The thesis of this article is that it is possible to found all of programming on a small set
of concepts from elementary set theory. The discussion has shown the basic applica-
tions, but is only a start. (Also note that the theorems have not been mechanically
checked.) Future tasks include:

• Reconstructing entire programming languages on that basis.
• Using the theory to build a “Formal Language Innovation Platform” (FLIP) for

experimenting with programming language mechanisms.
• Developing it towards specific approaches to programming, particularly

object-oriented.
• Assessing whether the approach can produce effective program verification tools.
• Assessing whether it can help teach programming, including at the elementary level.
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