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Preface

The LASER Summer School, organized by the Chair of Software Engineering at ETH
Zurich, covers the concepts and practice of software engineering. Since its inception in
2004, the LASER Summer School has focused on an important software engineering
topic each year. This volume contains selected lecture notes from the 10th LASER
Summer School on Software Engineering: Software for the Cloud and Big Data, held
during September 8—14, 2013, in Elba, Italy, and the 11th LASER Summer School on
Software Engineering: Leading-Edge Software Engineering, held during September
7-13, 2014, in Elba, Italy.

This book contains contributions by Sebastian Proksch, Veronika Bauer, and Gail C.
Murphy on building a recommendation system; Michael Jackson on behaviors as
design components of cyber-physical systems; Carlo Ghezzi, Giovanni Paolo Gibilisco,
Claudio Menghi, and Marco Miglierina on a control-theoretic approach to self-adaptive
systems; Sebastian Burckhardt on consistency in distributed systems; Sven Amann,
Stefanie Beyer, Katja Kevic, and Harald Gall on software mining studies; and Bertrand
Meyer on a theory of programs.

We would like to thank the lecturers and their co-authors for contributing to this
volume. We are grateful to Claudia Giinthart, Nadia Polikarpova, Julian Tschannen,
and the members of the ETH Chair of Software Engineering for assisting with the
organization of the LASER Summer School. We thank Google, Microsoft, and ETH
Zurich for their financial support.

September 2015 Bertrand Meyer
Martin Nordio
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How to Build a Recommendation System
for Software Engineering

Sebastian Proksch!®) | Veronika Bauer?, and Gail C. Murphy?

! TU Darmstadt, Darmstadt, Germany
proksch@cs.tu-darmstadt.de
2 TU Miinchen, Munich, Germany
bauerv@in.tum.de
3 UBC, Vancouver, Canada
murphy@cs.ubc.ca

Abstract. Software developers must interact with large amounts of dif-
ferent types of information and perform many different activities to build
a software system. To ease the finding of information and hone work-
flows, there has been growing interest in building recommenders that are
intended to help software developers work more effectively. Building an
effective recommender requires a deep understanding of the problem that
is the target of a recommender, analysis of different aspects of the app-
roach taken to perform the recommendations and design and evaluation
of the mechanisms used to present recommendations to a developer. In
this chapter, we outline the different steps that must be taken to develop
an effective recommender system to aid software development.

1 Introduction

Software developers perform many different activities when building a software
system: writing code, testing code, deploying to the cloud, coordinating via email
and meetings, and many more [70]. Each of these activities requires finding and
interacting with different kinds of information, using different tools and deter-
mining and preparing for the next activity to perform. For example, as part of
writing code, a developer may inspect other code repositories to understand pos-
sible solutions, may browse web sites with relevant programming information,
and may ask colleagues for information before programming a possible solution
to the problem at hand and preparing to test the solution. For novice devel-
opers, performing these activities can be overwhelming. For expert developers,
performing these activities near optimally is often impossible.

To ease the performance of activities and help hone workflow, recom-
mender systems for software engineering have been introduced. Recommenders
for software engineering are “software applications that provide information
items estimated to be valuable for a software engineering task in a given con-
text” [97]. Software developers are used to interacting with some recommenders
that are directly related to coding activities. For example, in many integrated

© Springer International Publishing Switzerland 2015
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2 S. Proksch et al.

development environments, such as the Eclipse IDE!, there are recommenders
to overcome such problems as missing import statements in Java code. Recom-
menders for other activities and workflows have also been proposed, including
recommenders for where code should be restructured [29], for which commands
to learn next [76], and for requirements discovery [38], to name just a few. Rec-
ommenders for software engineering have been shown to provide productivity
benefits; for example, the Eclipse Mylyn recommender, which provides individ-
ual recommendations of which source code is associated with a task, has been
shown to improve developer productivity [53].

Given the wide range of activities a software developer performs, there are
many untapped opportunities for improving software development with recom-
menders. In this chapter, we break the process of building a new recommender
down into a series of steps:

— framing the problem (Sect. 2),

— determining the inputs (Sect. 3),

— building the recommender (Sect.4),

— delivering the recommendations (Sect. 5), and
evaluating the utility of the recommender (Sect.6).

We describe each step using an example of a recommender to help a devel-
oper use an API of a library or framework with which they are unfamiliar.
There are many ways in which such a recommender may be built and in how
the recommender provides recommendations to a developer. As one example,
the recommender could watch the code the developer is writing. If the developer
becomes unsure of which type or method in an API of the framework to use,
the developer can ask the recommender for suggestions. Based on the parts of
the framework the developer is using, information collected about how other
developers have used the framework and documentation and tutorial informa-
tion gathered from web pages about the framework, the recommender could
produce a list of suggested parts of the framework to use along with associated
documentation.

Through this chapter, we use the following terminology. We use the terms
toolsmith to refer to the individual or individuals designing and developing a
software engineering recommender. We use the terms user and developer to
refer to the individual making use of a software engineering recommender.

2 Framing the Problem

The first step in building a recommender is to determine what problem the
recommender is intending to solve and to determine the assumption that a rec-
ommender can provide suggestions of value to a developer facing the problem.
We refer to the many activities in this step as framing the problem.

! www.eclipse.org, verified 15/11/14.
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The definition for a software engineering recommender we described in the
introduction provides a basis on which to investigate the problem and solution
targeted by a recommender. Specifically, when considering building a recom-
mender, we must be clear about the task and context to which the recommender
will apply. Additionally, we must consider for what kinds of developers, or target
users, a recommender is intended.

The notion of a task targeted by a recommender refers to the particular goal
of a developer at a given point in time, such as to implement an assigned feature
in source code. Although a developer is always aware of the current task, the
task may not be explicitly represented.

The notion of the context of a recommender refers to the information and
tool environment in which the task is being performed, such as the source code
and other artifacts available and the set of tools that can be used to perform
the task. The context also captures the steps of a developer’s activities for the
given task.

The notion of target users for a recommender helps define when and what
kinds of information a recommender might provide: novices typically have fun-
damentally different information need compared to expert users. Whilst the first
group might find frequent proposals helpful, the latter often has a low tolerance
for interruptions of their work that present already known facts.

Example 1: Task, context, and target users

For the recommender to help a developer use an API introduced in Sect. 1,
the task is to find relevant types from the API to implement a specific piece
of functionality by means of an unfamiliar library or framework.

The context includes the source code on which the developer is working and
web pages, including question and answer sites and open source repositories
that provide examples of use of the parts of the framework of interest. The
context may also include the actions a developer has taken recently in the
development environment, such as recent searches for types or recent changes
to the code.

Our target users are experienced developers using a specific framework
with which they are unfamiliar.

In the absence of a recommender, developers may need to invest signif-
icant effort to manually search web pages and repositories. This may entail
significant interruptions to their workflow, decreasing their productivity [71].

2.1 Understanding Task and Context

Obtaining a detailed understanding of the tasks that a recommender should sup-
port is critical for the success of the recommender. Without a detailed under-
standing, mismatches may occur between the perception of a task and the reality
of a task that render recommendations invalid.

Assessing the Problem: A first activity to undertake is to assess the problem
in terms of its generality, its frequency of occurrence and the impact of not
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addressing the problem adequately. We use the term generality to refer to
the range of kinds of developers and range of different kinds of contexts—or
situations— across which the problem occurs. We use the term frequency to
refer to the number of times the problem occurs in a given context. We use the
term impact to refer to the severity of the problem, measured in such ways as the
perceived productivity gain or loss or the cost of recovering from the problem.

Example 2: Challenges

When using an API, the vocabulary problem [30] occurs frequently: a devel-
oper might correctly assume the presence of a specific functionality. However,
they might not guess the terminology or logical structure that the framework
designers used to capture the respective concepts [40]. As a result, they will
lose a significant amount of time before finding the required information.

Detailing the Problem: After establishing that a task is relevant enough to expend
effort to provide support, we need to understand the task in detail. This involves
understanding the scope of the task, the time at which it appears in different
workflows, and the different contexts that exist when the task manifests. Based
on this information, we need to pin down which aspects of a task we might
support with a recommender. Observational study of developer activities and
workflows is a rich method for obtaining a qualitative and detailed understand-
ing of the task of interest. Furthermore, this study method can reveal useful
information about the context and the preferences of the target user group.
Other study methods can help to complete the picture; for instance, qualitative
and quantitative surveys and interviews can add requirements and clarifications
that may have been hidden during observation. We can distill the pieces of infor-
mation retrieved from the qualitative studies into scenarios and use cases that
allow us to focus clearly on the specific situation we are going to support with
the recommender.

Example 3: Assessing the problem

Observation: During coding, a developer reaches a point at which the devel-
oper is no longer sure which method of a framework’s API to use next.
The developer browses through the API by scrolling through the results
of the code completion offered by the IDE. The developer looks to see if
a more experienced colleagues is available. Last, the developer switches
to the browser and formulates tentative queries to find a solution. Once
a suitable solution has been found, the developer copies the solution into
their IDE and adapts it to their context.

Interview: In a follow-up interview, the developer states that she was expect-
ing a different logical organization of the framework. Furthermore, she
was reluctant to switch to the browser immediately because this inter-
rupts her train of thought. In the end, she realized that she had expected
different vocabulary for the given context.



How to Build a Recommendation System for Software Engineering 5

Table 1. Methods that support framing activities based on [66].

Method Scope Types Sources
AEIOU Find components of Qualitative, Exploratory |[116]
problem domain
Contextual | Understand workflow, Qualitative, Exploratory |[9,46]
inquiry discover invisible work
items

Think aloud | Capture reasoning guiding | Qualitative, Exploratory, | [28]

protocol task execution Evaluative
Observation | Collect sequence of Qualitative, Exploratory | [37,55,108,
interactions 120,121]
Interviews Collect judgement and Qualitative, Exploratory, | [55]
impressions of target Generative,
users Evaluative

Laddering Extract reasoning behind | Qualitative, Exploratory | [36,39,95,99,

claims (e.g., during 114]
interviews)
Literature Understand current Qualitative, Exploratory |[11]
reviews approaches including
benefits and limitations
Concept Integrate multiple sources | Qualitative, Generative | [5,6,87,88,93]
mapping of information
Personas Clearly define target Qualitative, Generative | [17,18,25,33]
user(s)
Scenarios Identify concrete Qualitative, Generative | [15,16,33,103]

situation(s) of interest

Although we have presented these activities as first in a chain of activities
to build a recommender, the activities may be interspersed with activities from
other steps. In particular, choosing the aspects of a task to support partially
involves considering available inputs (detailed in Sect. 3), investigating techni-
cal feasibility (see Sect.4) and considering potential delivery mechanisms (see
Sect. 5).

2.2 Supporting Methods and Techniques

There are many techniques available to help determine and assess the problem.
Table 1 outlines specific methods that can be used for framing. We might need
to begin with an exploratory technique to broadly understand the problem and
the situation in which it occurs. When we need to better understand aspects
of the problem in detail, a qualitative technique may be helpful. A generative
technique helps suggest possible solutions based on how a user works. As we
understand the problem in more detail, we might form hypotheses about the
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Hotspot Recommender

People in your situation regularly used
the following types and methods:

some.other.Type
doSomething() : int
otherCall(String, int) : void

yet.another.One
yet.another.One

Fig. 1. Hotspot recommender

Navigation Recommender

People with a similar navigation history

usually visit the following files:
some.other.Type (93%)
yet.another.One (87%)
package.TypeName (69%)
invent.more.Names (32%)
the.last.One (17%)

Fig. 2. Navigation recommender

problem and potential solutions that an evaluative technique can help assess to
further a toolsmith’s understanding. As a toolsmith frames the problem, he or
she will use multiple of these techniques. To further investigate a technique, the
table indicates sources for further information.

2.3 Framing Results

The activities undertaken to frame the problem enable answer to the following
questions:

— Who will be the user of the recommender?

— What problem is solved by the recommender?
e In which contexts can the recommender be used?
e When does the supported task start and end?

— Which solution is offered by the recommender?

— What is the value proposition of the recommender?

To provide concreteness to the outcome of framing, we answer these questions
for four different aspects of the API usage problem that have been addressed by
recommenders reported in the literature.

All examples assume that a developer works in an IDE and writes source code
that uses a library or framework. The recommenders support common tasks like
navigation in the code base, searching for examples, learning an API, and solving
the task in case the developer is stuck.

Hotspot Recommender: For frameworks, it is often the case that some enti-
ties of the framework are supposed to be used in the context of others. In most
user interface frameworks, for example, it is common to derive a super class
that represents a Pane and to add widgets like Button or TextField to it.
Another example is static methods that are used to access special entities of the
framework.

User: Novice developers that are still unfamiliar with an API.
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Problem: Writing source code in the editor of their IDE, novice developers are
often not aware of classes relevant in their current context. They lose time,
because they have to identify good terms first in order to find them or ask
colleagues for help.

Recommender: The recommender suggests classes and methods that are regularly
used in the current context.

Value: Time is saved when learning a new API. Even developers who know the
API can benefit from convenient suggested access to relevant classes.

A sketch of a possible interface to a recommender that provides this kind
of support is shown in Fig. 1. Working examples have been introduced in prior
work, for example by Bruch et al. [13] and by Kersten [52].

Navigation Recommender: Object-oriented programming modularizes code
into separate classes. Code must represent many different crosscutting concerns;
the modularization can only capture a small number of concerns, leading to
code for a concern being scattered across classes. To understand and change
crosscutting code, developers have to navigate through many classes.

User: Developers working with existing code bases.

Problem: Tt is necessary to visit a number of different classes to understand or
change all affected locations for a change of a crosscutting concern. Search-
ing is not an efficient mechanism to use, because the locations are usually
unknown and difficult to locate through search. As a result, developers spend
significant time browsing the source code and may miss locations of interest.

Recommender: The developer is pointed to other locations in the code base that
are related to the current task.

Value: Developers work more efficiently with lower cognitive overhead and the
likelihood of missing a location is lower.

A sketch of a possible interface to a recommender that provides this kind
of support is shown in Fig. 2. Working examples have been introduced in prior
work, for example by DeLine et al. [22], Singer et al. [106], and Lee and Kang [57].

Snippet Recommender: To use frameworks and libraries efficiently, it is not
uncommon that multiple classes of the framework have to be combined to work
together. These classes have to be instantiated, configured, orchestrated, and
executed as intended by the creators. In orchestrating this interaction, there are
non-obvious pitfalls, such as implicit interaction protocols, necessary checks for
corner cases, or simply incompatible configurations. Developers regularly search
for working example code to understand how a specific API is used correctly.

User: Developers who work with frameworks or libraries.

Problem: Developers who lack experience with a particular API may find the
API difficult to use. Sometimes, a single small piece of code is the difference
between gaining the functionality desired from the framework or not. Find-
ing examples of how to use a framework takes a lot of time and it can be
challenging to find useful examples.
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Snippet Recommender

A

try { Confidence: 93%

ServerSocket server = new ServerSocket(8080);

Socket client = server.accept(); i

Writer out = new PrintWriter(client.getOutpu S@me enclosing context

Reader ist = new InputStreamReader(client| YOU also use ServerSocket.accept()

Reader in = new BufferedReader(isr); Most people use BufferedReader here
} catch(Exception e) {

e.printStackTrace();

try { Confidence: 85%

ServerSocket server = new ServerSocket(8080);
Socket client = server.accept(); v

Fig. 3. Snippet recommender

Recommender: Related code snippets are provided that show how a specific API
is used in released software.

Value: The most common rule in software engineering is monkey see, monkey do.
Seeing how something is done correctly can significantly shorten the time to
learn it.

A sketch of a possible interface to a recommender that provides this kind
of support is shown in Fig. 3. Working examples have been introduced in prior
work, for example by Holmes et al. [44], Nguyen et al. [80], and Sahavechaphan
and Claypool [101].

Documentation Recommender: When learning a new API, the first step is
often to read the documentation, the FAQs, and the tutorials provided by the
creators of a framework. However, the resources are often outdated or do not
exist at all. These resources may also not cover special cases as these cases were
not anticipated by the creators of the framework. Sometimes, the framework
simply does not meet the expectation and behaves differently. As a result, many
developers use Q&A sites, such as StackOverflow? or other platforms, to find
help or discuss their issues.

User: Developers that work with frameworks or libraries.

Problem: User-generated documentation is scattered across the internet, but it
is hard to find for an individual developer. Most of the time the biggest chal-
lenge is finding the best search term to find the best document. Searches can
require significant time and developers are likely to miss relevant information
posted to an arbitrary platform.

Recommender: Related posts from various sources in the internet are aggregated
and presented to the developer. They refer to the same context and discuss
similar problems.

2 stackoverflow.com, verified 18/02/15.
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Documentation Recommender

f A

The following threads on StackOverflow Qstackoverﬂnw d:
seem relevant to your current task: H

97% Is Socket.read(byte) guarante... What to do when ServerSocket throws IOException and

92% What to do when ServerSoc...

86% ServerSocket listenes without...

A Basically | want to create a rock solid server
3 while (keepRunning.get()) {

try {
v Socket clientSocket = serverSocket.accept();

... Spawn a new thread to handle the client ...
} catch (IOException e) {
1 e.printStackTrace();
7/ NOUl WHAT?
¥
+

In the IOException block, what to do? Is the Server socket at fault 5o it need to be|
example walt a few seconds and then

<

Fig. 4. StackOverflow recommender

Value: The time to find related documentation is significantly reduced.

A sketch of a possible interface to a recommender that provides this kind of
support is shown in Fig. 4. Working examples have been introduced in prior work,
for example by Henf} et al. [42], Ponzanelli et al. [90], and Subramanian et al. [110].

3 Determining the Inputs

The toolsmith of a software engineering recommender must determine the inputs
available to make a recommendation. The inputs available are dependent upon the
context in which the intended recommender is to be used. If the recommender is
to be used during programming in an IDE, there may be a number of inputs read-
ily available including the source for the system and documentation for libraries
being used. If the recommender is to suggest discussion threads in a forum, only
information referred to in the forum may be available. When a toolsmith intends
to make use of historical information as part of the possible inputs, the toolsmith
must also determine how much of the historical information may be relevant to the
recommendations. For instance, the past history of a source code file may not be
relevant to a recommender suggesting how to overcome import statement prob-
lems in Java code, whereas the entire history of a forum may be relevant to deter-
mining to which discussions a current discussion pertains.

When designing the recommender, the toolsmith must consider the following
questions:

— What kinds of information will the recommender require? For instance, will
the recommender require source code, requirements, or information about a
developer’s activities?

— For each kind of information required, will the recommender require only the
current state of the information or also historical information? For instance,
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will the recommender require only the current state of a source file or previous
revisions of the source file stored in a source code repository?

— If historical information is required, how far back in the history is the infor-
mation relevant? For instance, are all issues in an issue repository relevant or
only the past few months or years?

— If a desired source of information is not available in all instances, what are
the alternatives? How will the lack of the information affect the quality of the
recommendations?

To give a sense of the range of issues that must be considered by the tool-
smith, we outline the range of types of input data that might be used and the
preparation that might be required on those data types to be usable by the
recommender.

3.1 Kinds of Input Data

There are multiple kinds of input data that could be used to drive a recom-
mender. All input kinds come with advantages and drawbacks. There is no input
class that is generally better than the rest, the toolsmith has to pick or combine
inputs that are suitable for the recommender at hand.

Static Analysis. Input data may be generated by a static analysis of source
code, either from the program on which the developer who will receive recom-
mendations is working or from the large repositories of open source data that
are accessible. The input data gained from static analysis is precise by definition
because it follows the rules of the programming language. However, it can be
challenging to ensure the source code of interest can be processed. For instance,
all dependencies must be resolvable if the source code must be compiled. Addi-
tionally, toolsmiths may need to use a pre-processing or a screening step to
ensure source code considered is of a suitable quality.

In addition to the information taken from the analyzed source code (e.g.,
involved types, invoked methods, etc.), further information about the editing
process can be included as well (e.g., edit location, last change, etc.).

Example 4: Input from static analysis

To generate input for the Hotspot Recommender, a static analysis could
extract all imports for each class to link all references between classes. For a
more precise linking, the references could be extracted on method level, such
that information about which other methods are called from within a specific
method body is available.

User Feedback. A valuable kind of input data is feedback provided by devel-
opers that use the recommender, which may come via implicit feedback that is
generated by transparently tracking interactions or explicit feedback provided
by users. Unfortunately, this kind of input can be difficult to gather both due to
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ensuring appropriate consent is obtained and due to needing to motivate users
to participate in providing feedback.

Tracked user interactions can be interpreted as implicit feedback [51]. For
example, it is often possible to transparently capture all interactions of a devel-
oper while she is using an IDE. To achieve this, all existing tools have to be
instrumented so that using the tools generates interaction events that can be
stored. For example, to identify which features of an IDE are used, you could
add a second listener to every button and menu item that logs every click in the
IDE. Previous research has conducted such experiments [74].

While implicit feedback primarily contains information about the recom-
mender that is used, it also provides feedback about the task at hand. Consider
the case where a tool like the default code completion in Eclipse is instrumented
to capture all interactions. The collected data can be used to analyze how devel-
opers typically use code completion, but it is also possible to use it as input to
build a new recommender system for intelligent call completion [4].

Example 5: Generating navigation traces

Navigation traces could be tracked by monitoring the interaction of a devel-
oper to generate input for the Navigation Recommender. These traces describe
how a developer navigated in the source code. Assuming that developers are
not just randomly navigating all files, the order in which files were visited can
be interpreted as implicit feedback about the relatedness of different files. It
is expected to find patterns in such a data set taken from a large crowd of
developers even though novice developers might visit irrelevant files regularly.

The tracking can happen on different levels: a simple approach could track
the order in which files are opened or visited [106]. A more sophisticated
approach could add more meta-data to those navigation steps to differentiate
more, such as the navigation kind (e.g., the file was opened by browsing the
source code or by explicitly searching for it), timing information (e.g., how
long was the file visited), about the actions in the file (e.g., did the user scroll,
were changes made), and so on.

Examples of explicit feedback are numerical ratings of recommendations, the
reordering of proposals, or adding comments. A more traditional approach would
be to use a questionnaire to learn about opinions and preferences of users. While
the former can usually be incorporated when a recommender system is built, the
later kind of feedback is hard to incorporate as input. However, it can serve as
data for the evaluation of the system so its value should not be underestimated.

Example 6: Rating code snippets

Additional input for the Snippet Recommender could be generated by giving
the developer the option to mark unrelated snippets. These rating can be used
to further improve the data mining techniques or for evaluation purposes.

Whatever feedback is about to be collected —implicit or explicit— it is nec-
essary to think about means of anonymization and to respect the privacy
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of the participants. Many people, especially developers, are very concerned about
this and will not participate otherwise.

Unstructured Input. It is hard to use unstructured input to build a recom-
mender, because at some point it needs to map to structured elements that are
proposed to the developer. However, a plethora of unstructured information is
available in the internet, which makes considering it as input worthwhile. Map-
ping structured and unstructured information works in both directions.

Destructuring: Source code is an example of a very structured form of input.
However, it also contains substantial semantic information for the developer
that is irrelevant for the compiler. Examples of the semantic information are
identifiers in the source code like variable or method names and descriptions
or explanations in comments. Noise can be reduced from this information by
applying text mining techniques like stemming [64], by using automated spell
correction to remove typos, or by identifying characteristic terms with a term
frequency analysis [102].

Domain knowledge in software engineering can help to further improve the
quality of the data. For example, it is common practice to split identifiers at the
humps of the camel case notation [41]. Of course, there are also problems that
cannot be tackled automatically, such as uncommon abbreviations or the simple
fact that comments might be written in different languages.

Example 7: Destructuring of structured information

For the running example, we could tokenize the source code, split identifiers
into words, and identify characteristic terms in comments. This converts a
structured class file into a plain-text document that can be processed by
established information retrieval techniques.

Structuring: Another source of input is the internet with reams of unstructured
documentation and knowledge about software engineering tasks. Traditional
sources are examples in books, tutorials, or lists of frequently asked questions.
These traditional sources are often provided by the originators of the item of
interest, such as a library or language, to demonstrate the use of the item. Newer
examples of unstructured documentation are user-provided content in such form
as blogs, forum posts, wiki pages, bug reports in issue repositories, or question
and answer sites (e.g., StackOverflow).

Often, the unstructured content is labeled with structured elements; this
labelling occurs in bug trackers, references to commit ids, ratings for postings,
amongst others. The unstructured content may also contain semi-structured ele-
ments; that is, parts for which structure is expected but cannot be enforced as
in example code snippets in postings and bug references in commit messages.
If these semi-structured elements are preserved or if hidden structure can be
recovered, they can help in mapping the content back to structured elements.
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Example 8: Structuring of unstructured information

StackOverflow threads could be analyzed to generate input for the Documen-
tation Recommender. For each thread, a vector of characteristic words could
be created. Additionally, a dictionary could be created over all threads that
contains the most characteristic words for StackOverflow discussions. The lat-
ter is used to locally identify characteristic words in a source file. After that,
related threads could be identified.

Another example that extracts information from StackOverflow was given
by Subramanian et al. [110]. They created a tool called Baker that can recover
code snippets from postings, add code elements to make them compile, and
resolve all contained types. This type information is very valuable for the map-
ping of a source file under edit to relevant documentation on StackOverflow.

3.2 Preparing the Input Data

Once the input necessary to build the recommender is determined and an appro-
priate source for this data is identified, the input data has to be collected and
transformed into a format that is processable by a machine.

Collection: A toolchain is necessary that automatically extracts the input data
from the data sources. In addition to providing an import tool that extracts
information from the input source, it is also necessary to think about a data
management strategy. The extracted data need to be systematically stored on
the hard-drive to make it easy to maintain it. This is true for all steps of the
building process and all generated intermediate artifacts.

Clean-Up: Automatically extracted input data is usually very noisy: the data
points can be incomplete, erroneous, or duplicated. The data needs to be cleaned
before it is used in further steps and checked for validity. If a data point is iden-
tified as incorrect, it should be corrected—if possible—or discarded otherwise.
It is important that this filtering is done very carefully and that the amount of
filtered data points is analyzed. If the ratio of filtered data is too big, it might be
necessary to provide a more robust implementation of the data collector instead.

Preprocessing: The collected data is usually not directly processable, because it
is optimized for space efficiency, ease of collection, or for any other reason. A
preprocessing step has to be applied to the raw data to transform it into a format
that is processable by the following steps. Several collected data points might be
aggregated into a single data point or the information might be enriched from
other sources.

4 Building the Recommender

Once the inputs are determined, the toolsmith must choose one or more mech-
anisms for taking the inputs and transforming those inputs into a set of recom-
mendations. This set may be empty, may have just one recommendation or may
have a number of, possibly ranked, recommendations.
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There are a variety of mechanisms that can be used to build a recommender
system. Felfernig and colleagues break the mechanisms into collaborative filter-
ing, content-based filtering and knowledge-based recommendation [50]. In this
chapter, we briefly describe a broader set of mechanisms: static information,
heuristic, data mining and machine learning, and collaborative filtering. We do
not try to provide a comprehensive description of each mechanism category but
instead describe how each mechanism might be applied to provide the example
recommender we have been considering in this chapter. Our intent is to demon-
strate that no one mechanism dominates, but instead the choice of mechanism
must be made in concert with the quality of the recommendations to be produced.

4.1 Static Information

Perhaps the easiest approach to creating a recommender is to build upon the
syntax or the static type system of a programming language. All necessary infor-
mation is taken from the editing environment and the programming language.
Examples of such a system are the Eclipse code completion® or Visual Studios
IntelliSense.* Another example is a syntax recommender that completes language
constructs like loops, conditions, etc.

Naturally, a recommender of this type typically performs well in terms of the
speed of providing recommendations because few computations are necessary
that are not already being performed. On the other hand, recommendations only
reflect syntactically correct and type safe completions. The recommendations are
not sensitive to the task at hand and are not based on any rationale so many
proposals may be meaningless. As a result, a lot of recommendations may be
presented to a developer and the expected precision of the recommendations
is low. A recommender like this might be used by novice developers to explore
available options or by seasoned project members to understand an existing code
base during maintenance tasks.

An example of a more sophisticated approach that leverages type information
is Baker, a tool that resolves types in code snippets from StackOverflow [110]. After
the resolution is done, it is possible to bidirectionally link the example snippets and
the corresponding API documentation. A link to the API is very convenient when
browsing StackOverflow, and a list of usage examples of an API element is helpful
to understand correct usage when reading the API documentation.

Example 9: Static information

A simple approach to build the Navigation Recommender aggregates all types
used in the class currently under edit. The aggregation is presented in a list
to provide an overview of frequently used items and to provide short cuts for
the navigation. A drawback of this simple approach is that it cannot link new
items, which are not yet included in the code. For further improvement, a
ranking could be introduced to the listing by ordering the items according to
the occurrence count.

3 http://www.eclipse.org/jdt/overview.php#JDT _Text, verified 02/14/15.
* http://msdn.microsoft.com/en-us/library /hew1s69b.aspx, verified 02/14/15.
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4.2 Heuristics

A heuristic approach provides solutions for a problem that are based on experi-
ence or intuitions. No perfect proposals are expected from such systems, quality
is usually traded in for execution time, memory consumption, or implementation
effort. Sometimes these approaches are also called “recommendation systems in-
the-small” [49].

There are three ways to come up with such heuristics. The straightforward
approach is to leverage the experience of an expert in that domain. The heuristic
reflects the intuition of the expert about the problem. However, it is also possible
to identify heuristics in a more systematic manner. Data mining techniques can
be applied to an available data set, to identify the heuristic and optimize or
validate it for this dataset. Alternatively, by instrumenting the recommender
tool and logging interaction with it, machine-learning techniques can be used to
learn and refine the heuristic for the recommender on-the-fly.

Using heuristics for a recommender system has several advantages. They
are comparably easy to implement, because they are usually not built with a
sophisticated data mining technique. Therefore, it is not necessary to provide
a complex infrastructure or big datasets as input to create a model for the
recommender. Additionally, proposals can usually be computed very fast because
the computation is only based on local data.

However, there are also some drawbacks. A heuristic does not produce optimal
solutions, the precision and recall of the proposals is usually lower than for
more sophisticated approaches. Additionally, substantial experience is typically
necessary to identify valid and helpful heuristics and even then, it is still possible
that the intuition of the expert is wrong.

There are many examples where heuristics are used to create recommender
systems in software engineering. Suade identifies related groups of program
elements and links them together [96]. Strathcona recommends source code
examples similar to the current coding context, which are matched with sim-
ple heuristics [45]. Quick Fiz Scout ranks quick fix® proposals by the reduction
of compilation errors that a selection results in [78].

Example 10: Heuristic recommender

A trivial heuristic for the documentation recommender example is to use the
current location in the source code to extract a search query for StackOver-
flow. For example, a search query could be generated that just contains the
unqualified names of all implemented interfaces of the current class or the
name of method that encloses the current coding location. The search query
could be passed to StackOverflow and all resulting threads are just listed in
the browsing window of the recommender.

5 QuickFiz is an Eclipse tool that can be triggered to get context sensitive support.
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4.3 Data Mining and Machine Learning

Applying data mining or machine learning techniques to explore large amounts
of data can also create recommender systems. The availability of increasing
amounts of open source software and corresponding artifacts (e.g., bug reports)
makes it more feasible to build recommenders in this way. The goal is to find
re-occurring relationships or to detect patterns in the data that present valuable
information about the inner workings of software.

Data mining and machine learning are rapidly changing areas, the techniques
in these areas most related to recommendation systems in software engineering are:

Pattern detection: Often, the amount of available data makes it necessary to
reduce information before it can be used to create recommendations. Many
techniques exist that solve this by reducing the data to identified patterns,
such as frequent items mining, association rule mining, or clustering. Apply-
ing these techniques is very common in the area of recommendation systems
for software engineering [2,13,57,61,63,65,72,112].

Classification: Often it is necessary to classify new data points and to assign
labels in an automatic way. A simple application of this approach is a junk
detector for a mailbox, but it is also relevant for software engineering. An
example application is the detection of outliers or anomalies [91,117]. It
is also relevant in many recommender systems for the identification of the
proposal that is most similar to a given context.

Information retrieval: and text mining Large amounts of data are available in
the internet. However, most of it is stored in an unstructured form. There
are many approaches that extract or recover knowledge from unstructured
sources [40,43,64,90,102,110].

Online learning: In many cases, the data to be mined is not available when a
recommender is build. Many approaches suffer from this cold start problem®.
Online learning solves this issue with incremental learning [4]. The mining
of increments, instead of complete datasets, also improves scalability.

Feature learning: It is hard to identify relevant features that best describe the
current context. Previous work presented automated approaches that sup-
port this step [10,81].

In the area of recommendation systems in software engineering, these topics
are usually intertwined and are not mutually exclusive. For example, after apply-
ing clustering techniques to build a model from data, classification techniques
are used to find the best cluster in case of a request to the recommender. Another
example is the application of information retrieval techniques to various sources
to extract data. This data is analyzed afterwards with data mining techniques.

If a new recommender is to be built, there is not the one optimal technique
that every recommender should use. The best solution always depends on the
concrete recommendation problem. Exploring and developing possible solutions

6 Also called the ramp-up problem [97).
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is usually an iterative approach that requires the toolsmith to analyze inter-
mediate results and improve the learning stepwise by fine-tuning configuration
options. Usually many configuration options exist and have to be evaluated to
find the best combinations. To give a sense of the ways in which data mining
and machine learning can be used, we cover several techniques that apply to the
recommenders we introduced in Sect. 2.3.

Frequent Itemset Mining. Can be applied to databases of items I =
{i0,%1,...,0n} to detect set of items that frequently occur together. The apri-
ori algorithm is the standard way to detect frequent itemsets [3]. The core idea
of the algorithm is to calculate the support of all items, i.e., their count in the
database. Afterwards, the items are combined to sets of items. A set is discarded
if its support is lower than a defined threshold.

This kind of data-mining has been successfully applied to create recommen-
dation systems for software engineering. Nguyen et al. created the mining tool
GrouMiner that extracts code snippets from a large corpus of example source
code [83]. Li et al. base their inference of violation rules for their tool PR-Miner
on frequent itemsets that are mined from source code [59].

Example 11: Frequent itemset mining

To come up with a snippet recommender, the structural context can be used.
All programming constructs (e.g., loops, conditions, statements, etc.) are
broken down into smaller pieces. Similar to GrouMiner, these pieces are
iteratively combined to identify frequent snippets. If a recommendation is
requested, the structural context of the current edit location is used to find
and rank related snippets. The snippets are then presented to the developer
in an ordered list.

Association Rule Mining. Can be applied to databases of items I =
{i0,11, ..., in} to detect relations between items [2]. The mining algorithm identi-
fies rules for reoccurring item combinations of the form A = B, where A, B C I.
A is called the antecedent or body, B is called the consequent or head. Each rule
also has values for confidence and support. The confidence value denotes how
likely it is to observe B if A is given, the support denotes how likely it is to
observe A. The apriori algorithm first mines frequent item sets in the database
and uses those sets to infer the association rules [3].

Based on a given set of mined rules, proposals are generated by finding
matching rules with unfulfilled implications. For example, assume that a rule
ix — 1y, 1, was learned. Assume further that the recommender is triggered in a
context where 7, can be extracted from the context, but i, or i, are not present.
In such a case, both could be recommended. Instead of creating boolean propos-
als, the recommender could be further refined by calculating a probability for
each proposal by taking confidence and support of affected rules into account.

Association rule mining was successfully applied in the area of recommenda-
tion system in software engineering, for example in [13,61,65,72].



18 S. Proksch et al.

Example 12: Create a hotspot recommender

To create the hotspot recommender based on association rules, the available
input information is restricted to the structural context information of the
current enclosing method of the code that is edited (context ¢;) and all fully-
qualified method names m; that can be observed in that context. It is easy
to bootstrap a database consisting of the items I = {c1,..,¢;,m1,...m;} by
analyzing a source code repository.

The association rules are mined in the database, in which each data point
consists of a single context ¢ and multiple method invocations m;. The same
information is extracted from source code being edited by the developer and
used to calculate proposals, whenever a recommendation is requested.

Clustering. Is usually applied to identify patterns and to group similar items.
Using the same input as for association rules, one could use clustering algorithms
like Canopy [68], K-means [62], or Expectation Maximization [23] to group sim-
ilar items in the data into a cluster. All items in a cluster can be reduced to
a representative value; for example, by averaging over all items in a cluster to
calculate its centroid or by selecting the most representative item that is closest
to the centroid. Huge amounts of input data are reduced to a smaller number
of clusters, this leads to smaller models, better scaling approaches, and removes
noise from the data.

After the input is clustered, a separate strategy is necessary to create pro-
posals. In case of a request to the recommender system, a query is generated
from the context of the developer. The query is then classified according to the
clusters to come up with proposals. You can use the best match or a combination
of the most similar examples to the query and combine them for the recommen-
dation [12]. An alternative is to use probabilistic approaches like naive Bayes to
assign a probability instead of assigning a single class and propose a list.

Clustering was successfully applied in the area of recommendation system in
software engineering, for example in [57,63,112].

Example 13: Clustering

The approach to create a hotspot recommender by means of clustering is
very similar to the previous example. The algorithm uses the same database
I, detects similar items and groups them together in a cluster. In case of a
recommendation request, a list of proposals can be generated from the cluster
that is most similar to the context in which the recommender was triggered.

Event-Stream Mining: Frequent episode discovery can be applied to detect
frequently reoccurring patterns in streams [1,56], these patterns are often called
sequences or episodes. A stream s consists of events eq,es, ..., e,. Approaches
that mine event streams often assume that the events build a Markov chain,
a special case of a hidden Markov model [82]. These chains have the property,
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that the probability of any event e, is only influenced by the previous i events
€n—iyEn—i+1, .-, €n. Restricting the event stream like this is often called a sliding
window approach [31].

To apply these concepts to create recommendation systems for software engi-
neering, the problem at hand either has to have event-based input or needs to
be mapped to an event stream. There are examples were this was successfully
applied. Wasylkowski et al. mapped source code to an event stream and mined
temporal properties [117], this approach could be easily adapted to mining of
navigation traces. Singer et al. mine the navigation histories of developers to
identify related files [106]. Pradel et al. mined event streams taken from execution
traces to capture usage protocols in automata [92]. Gabel et al. created an app-
roach that learns and enforces temporal properties in method call sequences [31].

Example 14: Navigation-event stream

The navigation steps of developer form a stream of navigation events. A nav-
igation recommender could be built by mining this stream to identify reoc-
curring navigation sequences. Whenever recommendations are requested, the
navigation history of a developer is then used to propose likely next navigation
steps to related files.

Text Mining: Prior work has shown that source code is natural and that it
is possible to build a language model that captures the regularities [43]. There-
fore, it is possible to apply established techniques from text mining to extract
knowledge, as already discussed in Sect. 3.1.

Prior work introduced different ways to bridge the gap between unstructured
information and the structured world of source code in which the developer is
supported. Heinemann et al. tokenized source code and included variable names
to better capture the intention of a developer [40]. Ponzanelli et al. identified
important terms in source code [90]. They used these terms for a textual search
on StackOverflow and ranked the results. Subramanian et al. recovered hidden
source code structures from StackOverflow posts [110]. They introduced deduc-
tive linking to resolve missing typing information and bidirectionally link API
documentation and examples on StackOverflow.

Example 15: Text mining

Text mining can be applied to create a documentation recommender. In a first
step, all postings of StackOverflow are analyzed and characteristic terms are
identified for all threads. If a recommendation is requested by a developer, the
current source file is analyzed in a similar fashion: the source file is tokenized
and characteristic terms are extracted for it. Proposals are created by finding
the threads that are most similar to the current development context.



20 S. Proksch et al.

4.4 Collaborative Filtering

With collaborative filtering, a large dataset can be filtered for information [32,
111]. Observing the interactions of multiple users with items of a system gen-
erates the dataset. Examples of these interactions could be “buying a book”,
“reading an article”, or “rating a post”. The interactions can be positive indi-
cators (e.g., a specific interaction was observed), boolean ratings (e.g., like or
dislike), or continuous ratings (e.g., five-star rating).

There are two different approaches to use this data for recommendations.
A user-based approach interprets the interactions as preferences of a user that
describe opinions or personal taste. To generate recommendations for a user,
similar users are identified based on shared preferences. Preferences of these
similar users that are still unknown to the user in question are then proposed
by the system. While this works well, the approach does not scale in practice. A
newer approach is an item-based calculation. An item-to-itern matrix is created
that contains pairwise similarities of all items ,,. The similarity sim(iq,ip) is
calculated based on the ratings of all users that rated both items, usually the
cosine similarity is used for that. Existing ratings of a user u for items similar to
p are used to calculated the expected rating r(u,p), i.e., an item p that is still
unrated by user u. The drawback of this approach is that recommendations are
not only based on a user but also on an item. To come up with the best recom-
mendation, a recommender would need to iterate over all items and calculate
the expected rating.

Collaborative filtering can be applied in different domains by mapping the
concept of users and items accordingly. In the area of software engineering, a user
could be a class definition and items could be method invocation. If a method
invocation m exists in class ¢, it represents an interaction of ¢ with m [69,118].

Example 16: Collaborative navigation recommendations

A recommender for the navigation recommender example could be created
with collaborative filtering: assume that the navigation history between dif-
ferent contexts c is tracked for a developer with tuples of the form (¢trom, Cto)
where each tuple represents one navigation step. The rating of each navigation
step is determined by its usefulness for the developer. This rating could be
decided based on a threshold, such as higher rating is assigned if a developers
stays in the target context long enough, if changes are performed there, or if
the developer does not return to the original context. These tuples are used
to build a large context to contert matrix that contains the similarity of all
contexts. This matrix is used to recommend the next navigation step to a
developer by identifying users with similar navigation preferences.
Developers navigate all the time and they work on very different tasks each
day. Simply aggregating the traces by user mixes up navigation histories for
different tasks and is of little help to identify similar navigations. To make the
navigation traces more precise, they should be generated by coding session or -
if possible - even by task, to make it easier to find similar navigation histories.
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5 Delivering the Recommendations

Even if a recommender can provide perfect recommendations, the recommender
is not helpful unless it is designed to deliver the recommendations such that the
recipient can act upon the information in a timely manner without interrupting
or distracting more important parts of a task. Although there are many ways to
deliver a recommendation, careful design is necessary to meet the constraints of
providing recommendations. Even though a developer might need the informa-
tion, it should be presented at a suitable point in time, at which the developer
is not interrupted (e.g., after a specific time of inactivity or after a save action).

The following examples discusses trade-offs for the delivery of different rec-
ommenders that were introduced in Sect. 2.3.

Example 17: User requirements delivery

Considering the snippet recommender, the recommender might be capable of
auto-completing the proposed source code snippets in the editor. Depending
on the scope of the recommended snippets, user feedback may be required for
the auto-completion, such as selecting or creating missing types. A developer
that is using this recommender may expect an immediate response time and a
clear presentation of available options. The developer may also want to see an
explicit presentation of the differences between available recommendations.

Considering the documentation recommender that proposes related web
pages, the recommendation might happen at a different time, even after the
developer has integrated a recommendation into their code. When presenting
ranked articles from the web, developers may be willing to wait longer for
presentation of the information than for an auto-complete mechanism, as long
as this delay does not block their workflow. Information that is not provided
immediately should be presented in a separate window.

5.1 Delivery Quality Factors

Murphy-Hill and Murphy propose five quality characteristics that must be
considered when delivering recommendations, namely understandability, trans-
parency, assessability, trust, and timing [77]. These quality characteristics follow
the natural flow of activities and decisions a developer using a software engineer-
ing recommender must make. If the flow is smooth between a developer’s actions,
the willingness of developers to rely on the recommender may rise. Frictions in
this workflow risk interrupting the train of thoughts of developers using a rec-
ommender, who, subsequently, will perceive the recommender as a burden to
their work.

Example 18: Delivery quality, user and toolsmith perspectives

In designing the delivery mechanism for our API usage recommender, we must
consider the following questions.
Understandability: What does the recommender suggest?

The API usage recommender will present the user with snippets of
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framework code implementing a specific functionality, suggesting to
include the code at the currently active point in a source code editor.
From a toolsmith perspective, it is necessary to understand the exact
steps of the delivery, e.g., which options are presented to the developer to
select and insert the recommended code.

Transparency: Why is the recommendation provided in this context?
To justify the recommendations, our recommender would present reason-
ing based on which the recommendations were derived, such as: “in similar
contexts, other developers have used the following functions”. The tool-
smith should consider the amount of detail needed by the developer to
comprehend the reasoning behind the recommendation.

Assessability: Is this recommendation relevant to my task?
Our recommender complements the recommendations on the code level
with information from the web, presenting the user with natural language
descriptions of the recognized issues. This “summary” might increase the
speed in which the user can assess the relevance to their current task.

Trust: Will the recommender integrate the proposed change in a good way?
When proposing changes to the code that exceed the scope of a few lines,
the front end needs to provide the user with the possibility to interact with
the insertion process. Possibilities could be guided stepwise execution of
code changes, or a preview mechanisms.

Timing: When is the recommendation most useful?
There are several scenarios that can be supported with the example rec-
ommenders. In one scenario, the recommendation might be useful when
the developer is stuck with their current task. In this case, we could wait
for them to invoke the recommender manually. In another scenario, we
could make the developer aware that there is a better way to solve their
current task as soon as the recommender is sufficiently confident that the
proposed solution is beneficial over what the developer is currently doing.
For each scenario, toolsmiths should consider the exact workflow to find
out natural points for providing the information to the developer.

Toolsmiths aiming for a smooth delivery need a very detailed understanding
of the task, context, and user group they want to support (see Sect.2). If these
have been carefully framed initially, we can fall back on rich sources of informa-
tion when designing the delivery mechanism. It is important to note that, whilst
framing greatly increases the chances to get the user interface right, we still need
to plan for several iterations to validate and improve our delivery mechanism (for
UI evaluation methods see Sect. 6).

When selecting options for delivery, toolsmiths need to make choices in two
important domains: interaction and presentation.

5.2 Interaction

Depending on the nature of the information presented by the recommender,
toolsmiths need to choose between proactive or reactive paradigms to bring the
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results to the attention of the developer [77]. In the former, the recommender
provides the user with results proactively whilst in the latter, the user explicitly
prompts the recommender. Triggers for proactive recommending could be specific
actions executed by the user, such as navigation and browsing patterns, or the
specific current work context. Whilst a proactive interaction ensures that users
do not miss potentially useful recommendations, it risks distracting users when
it does not exactly fit their current needs. Thus, proactive interaction should be
used only when the timing of the recommendation is critical (i.e. the recommen-
dation is only useful right now and not at a later point) and the relevance can
be assessed quickly.

For more extensive information with a longer validity, the user’s attention
can be attracted proactively; however, this should occur in a non-invasive way
that allows the user to defer the reaction to a later point in time.

Example 19: Interaction choices

According to our framing, we want to support developers that are in the
process of implementing a given functionality with an unfamiliar framework.
This task requires them to build a clear mental model of what they are trying
to achieve. Our recommender provides two kinds of information to support
this task: on the one hand, it proposes functions of the framework by means
of code in the style of the snippet or hotspot recommenders. On the other
hand, it provides usage guidance from established websites, as proposed by the
documentation recommender (for details on the recommenders, see Sect. 2.3).

Our recommender could support developers by means of a combination of
proactive and reactive interaction, depending on their preferences and usage
scenarios: we can assume a scenario in which developers will invoke the recom-
mender whenever they do not know how to continue. We can, therefore, choose
a reactive paradigm for the code recommendation, minimizing the interrup-
tions to the user’s workflow. To ease the assessability of the recommendations,
we could proactively display the matching web resources for each recommen-
dation the developers assess. In another scenario, we might provide the code
recommendations proactively, and present additional information only when
the developer prompts for it. In this scenario, the timing for drawing the
developers attention to the recommendations is critical to avoid distraction.

Since both scenarios provide benefit to developers, we could consider offer-
ing both interaction modes and allow users to pick which they consider more
suitable for their current task.

To make a decision for either of the paradigms, toolsmiths need to consider
when information is required and how long it will be valid. These factors weigh
against the cost of interruptions and context switches. In addition, studying the
paradigms with which the developer usually performs similar tasks provides cues
on how to craft a smooth integration into their workflow. The less friction the
developers perceive, the higher they will estimate their productivity [71] and the
value provided to them by the recommender.
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5.3 Presentation

Three questions need to be answered with respect to the quality criteria intro-
duced in the last section.

First, what kind of information must be shown to the user? If the recom-
mendation involves information that is close, in terms of cognitive distance, to
the user’s current task, it might be sufficient to show the user the suggestions
proposed by the recommender, possibly enhanced by pretty printing highlight-
ing key words or concepts. Users need to establish a complex mental model to
understand and assess the recommendations. Therefore, the toolsmith needs
to provide background information and possibly provide additional information
to surface why a recommendation is being made. It is important to consider
the type of information that our recommender delivers. Does it communicate
structure, locations in code, natural language, and key concepts? How many ele-
ments or information chunks does the recommender need to convey? Different
ways exist to visualize software related information, the section depends on these
characteristics (e.g., [24]).

Second, how will we make the information in a recommendation accessible?
Our initial framing of the problem (Sect. 2) could help here in deciding whether to
provide a separate tool or to integrate the recommender into an existing toolchain
and interface. The integration of a recommender into a toolchain has to consider
the interactions that make sense when no recommendations are available or when
supplementary material, such as retrieved from a website, is unavailable due to
being offline or on a slow connection.

Third, how should we capture the user’s attention when recommendations
are available? Many options are available, ranging from visual cues, such as
annotations in editors, to popup windows [77]. Again, the results of framing
may provide us with cues as to which kind of notification might be acceptable
for the given situation.

Example 20: Visualization choices

According to our framing, we want to support developers that are implement-
ing a given functionality. The required framework is unfamiliar to them. We
aim to support them with suitable code propositions as well as background
information on how to solve the given problem within the framework. This
means that they will be focused on working within their IDE. To minimize
the friction of using the recommender, it might be a good option to integrate
the recommendations in their given development environment.

UI Representation Options. The Ul choices are influenced by the nature of
the information, as well as by the chosen representation: One approach is to pig-
gyback our recommendations onto existing Ul concepts. For instance, code rec-
ommenders often hook into already existing auto-complete functionality, which
is usually triggered by keyboard shortcuts, thus integrating seamlessly into a
developer’s workflow. Using known graphical expressions, such as annotations
and icons, is another way to tap into a conceptual vocabulary that is known to
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Fig. 5. A potential API usage recommender - In this example, navigation, snippet, and
documentation recommenders (see Sect.2.3) are integrated into separate windows of
an IDE. We build on the Prompter system that automatically suggests StackOverflow
question and answers that may be relevant to the code being written (two views on
right of screen) [90]. The recommender also shows classes used commonly by developers
as part of using this API, building on ideas presented in Team Tracks for sharing
navigation information, and an example of the API in use (bottom left of the screen),
building on ideas from the Strathcona system for recommending examples [45].

our users. This way of reusing proven concepts has the benefits of being intuitive
to our target group. However, this way of presenting recommendations carries
the significant risk to overload the work environment. Current IDEs feature 500+
keyboard shortcuts” (involving up to four keys) which makes finding a suitable

" Counted from an eclipse cheat-sheet at http://de.scribd.com/doc/60629986/
Eclipse-Keyboard-Shortcuts.
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command very challenging. As a result, we need to study carefully how to inte-
grate and provide the recommendations even in already highly functionality rich
environments.

Another approach is to develop new UI concepts that are tailored to the
recommendations. For instance, in the API usage example, a navigable ontology
of related framework functionality could be presented to users, enabling them
to surf a specific part of the problem space. Or, new visual cues could be intro-
duced to create user awareness of available recommendations with additional
information encoded into the cues. An example of such tailored cues is the petal
visualization for code smells [75]. An advantage of tailored UI concepts is that we
can fit them perfectly to our kind of information. However, they require users to
get acquainted with and learn how to read the visualizations. As a consequence,
we cannot rely on proven strategies; we need to address the burden of validating
the usefulness of the representation ourselves. This can incur a significant effort
in evaluating the front-end iteratively with user studies.

In the following, we assume that the recommender will be integrated into
an IDE®. Whilst this decision removes some presentation options, we still need
to decide on how to present the recommendations to the user. Table 2 presents
methods and techniques that can help when designing the user interface.

Integrating a Recommender in a Given Toolset. When integrating a rec-
ommender into an existing toolset, we need to consider a highly diverse range of
topics starting from consistent interaction paradigms, to competition for screen
real estate. Figure 5 displays a screenshot of such a possible recommender. The
following paragraphs highlight several critical points of integration.

One detail that impacts the smoothness of integration is the adoption of the
established interaction paradigms and conceptual vocabulary. We can reduce
friction of use if we study carefully the characteristics of the host environment
and make sure that we follow its conventions as much as possible. Aspects to
consider include the predominance of reactive over proactive interaction, the
logic of concept names or the conventions behind visual cues in the form of
icons. Consistency in this respect supports users in intuitively understanding
the suggestions of the recommender.

The number of recommendations can exceed the space available to represent
them. In these cases, toolsmiths need ways to structure the content in a meaning-
ful way. In the software engineering code recommender tradition, this situation
is addressed either by delivering a small subsets of the results (such as the top
five proposals [40]) or by presenting the results ranked by confidence [13].

Depending on the flexibility of the host environment, users might expect
configuration options with respect to window arrangements, commands, and
notifications. One important rule is that the user should remain in command.
As a consequence, they should be able to determine which information to see.

8 Following the argument that too many context switches between the use of different
tools can significantly impact the productivity of a developer [73].
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Table 2. Methods that support UI development activities based on [66].

Method Scope Types Sources
Card sorting | Find out how users Quantitative, Qualitative, [8,19,84,86,
would categorize the Exploratory, Generative, 109]
information Observational
Contextual | Determine when, Qualitative, Innovative, [9,46]
inquiry where, and how to Exploratory,
display information Observational
Critical Obtain feedback on Quantitative, Qualitative, [27,100,104,
incident when and how users Exploratory 105,113]
technique get blocked or
supported
Prototyping | Validate technical Qualitative, Generative [47,60,115]

feasibility and
workflow support of

design
Scenarios Determine which Qualitative, Exploratory, [15,16,33,103]
information is Generative, Evaluative

valuable when

Task analysis | Find a natural point to | Qualitative, Exploratory, [20,37,54,55]
provide the Observational
information
Wizard of Oz | Evaluate current UI Quantitative, Qualitative, [14,26,34,89]
choices Generative, Evaluative,
Observational

Furthermore, they must have the option to deactivate every proactive interaction
mechanism the recommender offers.

Whatever innovative or conventional representation we choose, we need to
validate it by collecting feedback from our users in an iterative process.

6 Evaluation

Each recommender consists of two parts, the proposal presentation and the rec-
ommender engine that creates the proposals. The quality of recommendations
produced by different algorithms and in different situations may need to be eval-
uated to determine the overall best algorithm to embed in the recommender.
However, even the best recommender is meaningless if its presentation of the
recommendations is not understandable or the meaning of the proposals are
hard to grasp so the presentation part needs to be evaluated as well. Unfortu-
nately, evaluation is one of the hardest steps in building a useful recommender.
There is no golden approach to achieve a perfect evaluation, it always depends
on the problem and approach. The two main aspects of evaluation, accuracy and
presentation, are intertwined.
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In this section, we provide an overview of considerations in evaluation and
provide references to other works that consider aspects of evaluation in more
detail. The scientific community has a natural interest in creating reproducible,
repeatable results, and reusable datasets. Therefore, this section also includes a
discussion of good practices that every toolsmith should consider if a scientific
publication of an approach is planned.

6.1 Recommender Engine

The evaluation of the underlying recommender engine should allow a compari-
son of different recommender approaches. The goal is to show that one approach
is better than another. All recommender systems might be based on different
models internally, but they are designed to provide the same kind of recommen-
dations in the end. You cannot compare different types of recommenders.

Previous work stressed that it is necessary to use standardized datasets and
common evaluation metrics in evaluations and that significance tests should
support the findings [58]. Different options exist to evaluate a recommender
system and all of them are valid alternatives. However, they present different
advantages and drawbacks and a careful decision is necessary [94].

Evaluation Strategies. There are two ways to conduct an evaluation: empir-
ical user studies and automated experiments. The selection depends on the
aspects of the recommender that should be validated.

User Studies. Test the integrated recommender system with users. Developers
may be observed as they use the recommender and such aspects as task com-
pletion can be measured. The assessment of the recommender may then involve
comparisons of measurements with and without the recommender. User studies
provide a very good insight in the impact of a recommender system on devel-
opers. However, major effort is necessary to conduct such an evaluation. Addi-
tionally, there are different biases: (1) The results are always intertwined with
the presentation. It is not possible to evaluate an approach in separation, you
can only measure the difference between two approaches within the same rec-
ommender type. (2) The results depend on the developers. Running study with
novice developers and repeating it with experts may lead to different results.

It is important to consider both the evaluation environment and the evalua-
tion task for a user studies, because they represent large differences in the setup.
The two most contrary cases of user studies are controlled experiments and field
studies.

A controlled experiment is conducted, if the evaluation should prove a strong
implication. A controlled experiment takes place in an environment, in which
external variables that influence the experiment are controlled or their influence
on the results of the experiment is eliminated [107]. To conduct the experiment,
the participants are grouped and different tasks are assigned to the groups. The
tasks are manually designed and reflect a specific problem that is solved by the
recommender system. Each group solves its task while having access to only one
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specific version of the recommender system. The performance is measured for all
groups and the results of the different groups are analyzed to compare different
approaches. The drawback of this approach is that it is hard to find participants,
most of the time they have to be paid, so funding is necessary.

The focus of a field study is more to show causal effects. It is conducted
in the work environment of the participants and better reflects a real scenario.
The participants work on their day-to-day tasks, so it is necessary to think
about means for a performance assessment, perhaps by observing and assess-
ing them personally. Sometimes it is also possible to track participant behavior
and to automatically assess the behaviors. Often, this kind of evaluation is con-
ducted in collaboration with companies, who provide access to the developers.
The involvement of companies may introduce additional overhead and there
might be limitations to which kinds of results can be reported upon.

There are many nuances of evaluation styles in between controlled exper-
iments and field studies. One example is a case study, which is similar to a
controlled experiment. The main difference is that the environment in which
the participants work is not controlled and that the participants usually work
unsupervised [7]. While this results in more realistic results, it is usually a lot
harder to assess the performance of the participants. A meaningful metric for
the performance needs to be identified to create comparable results.

Example 21: Field study

To evaluate the navigation recommender in a user study, we would conduct a
field study. We instrument both the IDE of the developers and their browsers.
We collect the context in which a user is working and detect visited Stack-
Overflow threads in the browser history. The combination of this information
can be used to automatically evaluate, whether the recommender system is
capable of proposing the visited threads, given the working context.

There is no clear answer which evaluation style to choose. The choice mainly
depends on the question to answer and the available resources.

Automated Experiments. Present an alternative, in which the evaluation does
not involve users. There are two styles in which an experimental evaluation can
be conducted: case-study style and cross-folding style.

In case study style experiments, the toolsmith usually picks several corner
cases and checks the proposed solutions from the tool with the expected outcome
that is known a priori. The test scenarios are explicitly selected and the validation
is correct. However, a high manual overhead is necessary to select the cases and,
therefore, the number of scenarios is usually very limited. The evaluation might
underline the strong scenarios of the approach, if only few scenarios are used and
might miss scenarios in which the approach does not work well.

Example 22: Case-study-style experiments

To evaluate all kinds of recommenders introduced before, the toolsmith could
pick examples from tutorials, books, guidelines, etc. that relate several classes
or link to external documentation. It is also possible to manually craft
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examples; for example, by coming up with a problem and manually selecting
related StackOverflow posts. The automated evaluation then analyzes if the
external information is proposed by the recommender system, when queried
in the specific scenario.

In cross folding style, observed examples are used as ground truth, evaluated
through cross validation, a general technique used to evaluate the quality of a
recommender system. The available dataset is split into n different buckets. One
bucket is used as validation set and the remaining n — 1 buckets as the training
set. This cross folding over the buckets ensures that no data point is used for
training and validation at the same time, which would result in a over-fitting
to the data. It is possible to use all available input for validation by rotating
the validation bucket. Instead of creating the buckets by a random split over all
available data, the toolsmith should ensure that all data extracted from a single
project is assigned to the same bucket to avoid a bias introduced by inner-project
relation (e.g., special coding or naming conventions).

Example 23: Cross-folding-style experiments

An n-fold cross validation could be used to evaluate the hotspot recommender.
The input data is combinations of contexts (i.e., enclosing methods) and con-
tained method calls. By removing some contained method calls, incomplete
observations are created that can be given as queries to the recommender sys-
tem. The removed method calls represent the expected outcome. The accuracy
is determined by comparing the actual proposals and the expectation.

Evaluation Metrics. Regardless of the strategy that is used for the evaluation,
it is necessary to represent the accuracy of an approach in a number that can
be compared between the different approaches. There are a number of standard
evaluation metrics that can be used for this purpose.

Recommender systems in software engineering usually propose either a single
item or a group of items. To evaluate these proposals, they are compared to an
expected outcome, such as a single item or a group of items. The proposals
can be classified into true positives (i.e., relevant proposals), false positives (i.e.,
irrelevant proposals), and false negatives (i.e., missing proposals). If it is possible
to enumerate all items that should not be proposed, then it is also possible to
take true negatives into account (i.e., proposals that are left out correctly). These
numbers are the same for all metrics, which metric to choose depends on the
concrete recommender.

Most of the time evaluations consider input that was collected before so
the categorization is easy (e.g., related files for the navigation recommender).
However, sometimes there is no oracle that can identify true positives or true
negative. Considering our StackOverflow recommender, we do not have a clas-
sification for all existing threads so it is hard to automatically decide about the
relatedness of a given recommendation to the problem at hand without manual
classification. Additionally, automated evaluation techniques have to show that
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their automatic categorization reflects the human intuition. Many evaluations
simply assume that without ever analyzing this assumption.

Precision and Recall are two common metrics used to assess the quality of
recommender systems that propose a set of recommendations. While precision
measures the ratio of correctly proposed items, recall measures the ratio of how
many of the missing items are actually proposed.

#TP #TP
recall =

precision = 4TP 1 4FP 4TP+ #FN

Both numbers can be visualized in a plot as shown in Fig.6a. The optimal
point is (1, 1), which means that all missing and no irrelevant items were pro-
posed. However, real experiments usually show curves as shown. The precision
is initially high, but decreases constantly with an increasing recall. An alterna-
tive visualization is a receiver operating characteristic (ROC) curve as shown in
Fig. 6b. Here, the true positive and false positive rates are plotted. The optimal
point in a ROC curve is (0,1). Here the true positive rate is very high with few
false positives. The closer the curve gets to the imaginary diagonal, the worse
is the prediction quality. The diagonal itself would be the result of a random
guessing approach and represents the worst case possible. Previous work has
already proved that both the precision and recall curve and the ROC curve are
related [21].

While these visualizations are helpful for the toolsmith in the tuning phase,
they cannot be used in experiments, because it is hard to programmatically
decide which plot is better. This is illustrated in Fig.6b: while Algo 1 provides
better values in the left part of the plot, Algo 2 is better in the right part. The
solution is to calculate the area under curve (AUC) for both plots, this creates
a comparable number for both approaches and the better one can be selected.

The same problem exists for precision and recall. Here, calculating the F,
measure combines both values into a single value that is comparable. The para-
meter n controls the weight of both values and can be used to emphasize the
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effect of one value. Usually F is calculated, which represents the geometric mean

of both values. o
precision - recall
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An alternative measure for the quality of the proposals is accuracy. In addi-
tion to the positive proposals, it also takes the negative proposals into account.
Therefore, all items that should not be proposed need to be enumerable.

#TP + #TN
#TP + #FP + #TN + #FN

accuracy =

Recommender system that present a list of ranked proposals to find one
missing item, are usually evaluated with top-k precision. Only the top k proposals
are considered for the evaluation, if the missing item is included, it is considered a
hit, otherwise a miss. The result of the evaluation lists the average top-k precision
over all queries to the recommender system. The question is how many proposals
should be presented to the user? Of course, less is preferable, because it is easier
for the user, but the correct proposals should also be included in the list as many
times as possible. To answer this, different k& values are usually compared in a
plot like the one shown in Fig. 7. The curve make it easy to decide how much an
increase of k pays off in terms of quality. However, picking the right k is always
a trade-off between achieved quality and ease of use.

Example 24: Evaluation metrics

To evaluate the navigation recommender, we could use collected navigation
traces and remove the last step. By feeding the previous steps to the rec-
ommender, the next step is guessed in form of a list of candidate files. The
previously removed step is searched in this list and its position is used to
assess the quality.

The performance of different numbers of presented candidates could be
compared in a top-k precision plot. This visualization is useful to fine-tune
the number of files that should be proposed by the recommender. Usually,
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the top-k precision saturates with an increasing k. The challenge is to select
a reasonably small k£ that is as close to the saturation point as possible.

The easiest way to evaluate the documentation recommender, is to conduct
a user study. It is very time-consuming to automatically evaluate the quality
of proposed StackOverflow threads. However, this can be done after collecting
the data. Every time a developer triggers the recommender, the current work-
ing context and the proposed threads are stored. Afterwards, the relatedness
is manually categorized for all proposals and the precision is calculated.

6.2 Presentation of Recommendations

Apart from the learning algorithm, the presentation of the recommendations
needs to be evaluated as well to ensure that the recommender is useful to devel-
opers. Creating a recommender system is a two-step iterative process of design-
ing the proposal presentation and evaluating its usefulness. Section5 already
presented techniques for designing, the focus of this section is on the evaluation.

The proposal presentation and the underlying recommendation engine are
strongly intertwined in an evaluation. The perceived usefulness of the propos-
als is biased when bad recommendations are made, however, both are usually
developed in parallel and it is impossible to expect good recommendations from
an early version of the recommendation engine. To avoid a bias in these early
stages, different techniques need to be used to evaluate the presentation that
reflect the maturity of the recommender engine.

According to Murphy-Hill et al., the toolsmith should select an evaluation
strategy for the evaluation that has the same level of commitment as the design
approach [77]. We base the ideas in this section on their work and introduce
evaluation strategies for three different stages in the creation process of a rec-
ommender system.

Up-Front UI Evaluation: When building a new recommender system for software
engineering, you should evaluate your idea as soon as possible to validate that the
recommender solves a real problem, provides value for developers, and that the
presentation mechanism actually helps to access and use the recommendations.
This is even necessary in the case when an established presentation concept is
reused, because even though the recommender representation by itself is clear
and clean-cut, it might interfere with other elements in the developer’s work
area or lead to an increased cognitive effort. It is not necessary to provide any
working implementation in order to conduct an up-front evaluation. Instead, we
can use sketches of a mock-up created in the early design stages and a clear
vision of the recommender to explain its value to others.

A heuristic evaluation can be achieved by presenting the mock-up to users
to get early feedback on the idea and the concept. As, in our case, developers
are the target user group, they serve as a panel of experts that evaluate the
usefulness of the new approach compared to established usability practices [85].

An alternative approach is to conduct an cognitive walkthrough as proposed
by Wharton et al. [119]. In a first step, the toolsmiths can exercise this by
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themselves, but eventually users are walked through the interactions step-by-
step. This is useful to validate that the recommender provides value to them
without disturbing their workflow. In addition, walkthroughs make it possible
to detect and remove inconsistent, disturbing, or incomplete concepts early on
and to fine-tune the interaction with the recommender system.

Example 25: Up-front evaluation

The mock-ups that are shown in Sect. 2.3 could be used to discuss the concepts
with developers. By illustrating all possible clicks in the mock-up, they can
also be used in a cognitive walkthrough.

Early Ul Evaluation: In order to evaluate a working tool as soon as possible,
the first part of the recommender that should be implemented is the presen-
tation. There is no need for the recommendation engine to be implemented; it
can be replaced with a fake recommender that simulates the recommendation
process. This can be done by either operating it manually in the background
or by hardcoding specific answers into the fake recommender. This approach is
called “Wizard of Oz” experiment [67].

The advantage of this evaluation approach is that the recommendations are
perfect and, therefore, their quality does not influence the evaluation of the
presentation. However, depending on the way the fake recommendations are
created, either the production of recommendations has a high latency or the
evaluated system supports only a limited number of working cases. In the later
case, the manual effort of providing the examples is also very high.

Example 26: Early evaluation

Conduct a user study in which developers work on a specific task that is
supported by the recommender system. A basic evaluation could use a ques-
tionnaire to formally capture opinions of the developers. More sophisticated
evaluations have been introduced in Table 1. For example, the toolsmith could
interview the participants [55], use think-aloud programming techniques [28],
or establish basic measurements of the performance.

Integrated Evaluation: As soon as both the proposal presentation and the rec-
ommender engine are implemented, the whole system can be evaluated in an
integrated evaluation by conducting a user study.

Example 27: Integrated evaluation

A user study can be conducted to evaluate the example recommenders. The
main challenge is to find a way to measure the performance of the developer.
This could be achieved via measurement of the average duration it takes a
participant to finish a specific task or via calculation of the ratio of tasks that
are correctly implemented by the study participants.
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Evaluating the presentation of a recommender is a very time-consuming task.
Many papers stop at one kind of evaluation and very few involve users. There is
a chance for future evaluation to improve this situation.

6.3 Considerations for Good Scientific Practice

If a publication of the recommender system is intended, the toolsmith should
follow good scientific practices. It is the focus of this section to introduce several
practices that should be considered by the toolsmith.

An extensive evaluation of the approach is mandatory. It is expected that it
shows that the approach generalizes to a large number of scenarios. Therefore,
it is necessary that a diverse set of input scenarios is used and that this set is
representative for the common case [79].

It is necessary not only that the findings are published, but that all necessary
information is provided to allow other researchers to reproduce the results. Many
publications do not meet this requirement [98]. The toolsmith needs to publish
all tools used for the evaluation. Additionally, it is necessary to carefully describe
the environment of the evaluation, especially if standard software is used that
needs to be configured for the concrete use case. The exact configuration options
need to be provided.

In addition to the evaluation tools, a reusable data set should be provided
as well [48]. Both the raw input data and the preprocessed dataset should be
published as artifacts. This is necessary to reproduce the results of the work, but
it also encourages other researchers to solve the same recommendation task with
different approaches. If external data is used (e.g., results from search engines
or posts on Q&A sites), it is advisable to not reference the website directly, but
to publish a local snapshot of the data (e.g., [35]). This snapshot serves as a
stable base for a comparable evaluation, even though that evaluation might be
run years after the original publication.

The published artifacts should support future extensions of the work. It
should be easy for other researchers to try new ideas and to compare their results
with the published work. A detailed description of implementation details helps
other researchers to understand design decisions and supports an adaptation of
the work.

7  Summary

Recommenders can help a developer perform the myriad of activities that must
occur to build and deploy a successful and useful software system. However, it is
far easier to hypothesize potentially useful recommenders than it is to construct
a recommender and show that the recommender actually does provide value to a
developer. In this chapter, we have outlined the questions that must be asked and
the steps taken by a toolsmith to go from an idea of a recommender to focusing work
on building that recommender and showing its value proposition. Through the use
of examples and pointers to the literature, we have shown the variety of choices a
toolsmith must make in the iterative process of recommender development.
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