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Abstract A representative skyline contains k skyline points that can represent its

full skyline, which is very useful in the multiple criteria decision making problems.

In this paper, we focus on the distance-based representative skyline (k-DRS) query

which can describe the tradeoffs among different dimensions offered by the full sky-

line. Since k-DRS is a NP-hard problem in d-dimensional (d ≥ 3) space, it is impos-

sible to calculate the exact k-DRS in d-dimensional space. By in-depth analyzing the

properties of the k-DRS, we propose a new perspective to solve this problem and a

k distance-based representative skyline algorithm based on US-ELM (DRSELM) is

presented. In DRSELM, first we apply US-ELM to divide the full skyline set into k
clusters. Second, in each cluster, we design a method to select a point as the represen-

tative point. Experimental results show that our DRSELM significantly outperforms

its competitors in terms of both accuracy and efficiency.

Keywords Skyline ⋅ k representative skyline ⋅ k-DRS ⋅ US-ELM

1 Introduction

Given a large dataset, it is impracticable for a user to browse all the points in the

dataset. Hence, obtaining a succinct representative subset of the dataset is crucial. A

well-established approach to representing a dataset is with the skyline operator [1].
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Fig. 1 Example of

distance-based representative

skyline

The skyline consists of the points which are not dominated by any other point. Given

two points p1 and p2, if the values of p1 are as good as or better than those of p2 in any

dimension, and better in at least one dimension. With loss of generality, we assume

that a smaller value indicates a better performance in all dimensions. However, when

the skyline size is large, the full skyline is helpless to the user. Detecting a subset

of the full skyline set with fixed size (such as k points) is necessary. As investigated

in [2], Tao et al. proposed a distance-based representative skyline (k-DRS for short)

which can best describe the tradeoffs among different dimensions offered by the

full skyline. They applied a distance metric to measure the “representativeness” of

the chosen set. Given a subset  with k skyline points from the full skyline set  ,

Er(,) = maxp∈− minp′∈ ∥ p, p′ ∥, where ∥ p, p′ ∥ is the Euclidean distance

between p and p′
. The k-DRS is the set  with the minimum value Er(,). As

illustrated in Fig. 1, given k = 3, the 3-DRS is {p2, p5, p9} with the corresponding

value Er(,) =∥ p5, p7 ∥= 0.134. Obviously, when the full skyline are divided into

k clusters, k-DRS aims to select k skyline points from these k clusters and these k
skyline points should come from different clusters.

In this paper, we deeply analyze the properties of k-DRS query, and solve the

problem using the extreme learning machine (ELM for short) [3–5]. Compared with

support vector machines (SVMs) [6, 7], ELM shows better predicting accuracy than

that of SVMs [4, 8–10]. Moreover, various extensions have been made to the basic

ELMs to make it more efficient and more suitable for special problems. such as ELMs

for online sequential data [10–12], ELMs for distributed environments [13], and

ELMs for semi-labeled data and unlabeled data [14]. As proposed in [14], US-ELM

can be applied to unsupervised data which has more widely applications. Mean-

while, the experiments show that US-ELM gives favorable performance compared

to the state-of-the-art clustering algorithms [15–18]. Therefore, we apply US-ELM

to cluster the full skyline points, and then select the appropriate the skyline points

from every cluster as the k-DRS.

As mentioned in Lemma 4 in [2], k-DRS is NP-hard when the dimensionality

d ≥ 3. Hence, it is impossible to calculate the exact k-DRS in d-dimensional space
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(d ≥ 3). To solve the challenging issue, we attempt to solve k-DRS problem from

another perspective.

The key contributions are summarized as follow. Through in-depth analysis of

k-DRS properties, we propose a k distance-based representative skyline algorithm

based on US-ELM methods (DRSELM for short). The calculation of the k-DRS is

divided into two stages. Step 1: the full skyline set is divided into k clusters by using

the US-ELM algorithm. Step 2: for each cluster, an appropriate skyline point is added

to the k-DRS set. The chosen k skyline points are the k-DRS result. Then we test our

algorithm on a variety of data sets, and comparisons with other related algorithms

[2]. The results show that our algorithm is competitive in terms of both accuracy and

efficiency.

The rest of paper is organized as follows. In Sect. 2, we give a brief overview

of clustering data using US-ELM algorithm. In Sect. 3, we present our k distance-

based representative skyline algorithm based on US-ELM. Experimental results and

related work are given in Sects. 4 and 5, respectively. Section 6 concludes the paper.

2 Preliminaries

In this paper, we process k-DRS query using ELM to cluster the skyline points. Here,

we introduce how to extend ELMs to cluster the data.

2.1 Brief Introduction to ELM

ELM is an algorithm for neural network, and is a single-hidden layer feed forward

network. ELM aims to learn a decision rule or an approximation function based on

a training set with N samples, {X,Y} = {xi, yi}N
i=1, where xi ∈ ℝni and yi ∈ ℝno , ni

and no are the dimensions of input and output, respectively.

As described in Fig. 2, the training of ELMs contains two phases. Step 1: a pair

of parameters {aj, bj} are randomly generated for the jth hidden layer node, where aj
is a ni-dimensional vector and bj is a random value. For an input vector xi, its output

on the jth hidden node can be obtained by the following mapping function (we use

Fig. 2 ELM framework
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the Sigmoid function in this paper).

g(xi, aj, bj) =
1

1 + exp(−(aT
j × xi + bj))

(1)

Hence, the output on the hidden layer nodes can be written as

H =
⎡
⎢
⎢
⎣

g(x1, a1, b1) ... g(x1, aL, bL)
⋮ ⋮

g(xN , a1, b1) ... g(xN , aL, bL)

⎤
⎥
⎥
⎦N×L

(2)

Step 2: On the jth hidden node, an adjustment factor 𝜷 j is generated, where 𝜷 j is

a no-dimensional vector. The output on the output neuron is Y which is the output of

the N samples. Then we can obtain the following equation

H ⋅ 𝜷 = Y (3)

where

𝜷 =
⎡
⎢
⎢
⎣

𝜷1
⋮
𝜷L

⎤
⎥
⎥
⎦L×no

and Y =
⎡
⎢
⎢
⎣

y1
⋮
yN

⎤
⎥
⎥
⎦N×no

(4)

According to Eq. 3, the values of H and Y haven been known, we can compute the

values of 𝜷 by the equation 𝜷 = H†Y where H†
is the Moore-Penrose [19] of H. In

order to avoid over-fitting, they introduced two parameters, ei and C. ei is the error

vector with respect to the ith training sample, and C is a penalty coefficient on the

training errors. Then the following equation is used to generate 𝜷.

min
𝜷∈ℝL×no

LELM = 1
2
∥ 𝜷 ∥ 2 + C

2
∥ Y −H𝜷 ∥ 2

s.t. H𝜷 = Y − e
(5)

where ∥ ⋅ ∥ denotes the Euclidean norm and e = [eT
1 ,… , eT

N] ∈ ℝN×no .

According to the ridge regression or regularized least squares principle, the gra-

dient of LELM with respect to 𝜷 is set to zero. We have

∇LELM = 𝜷 + CHT (Y −H𝜷) = 0 (6)

If H has more rows than columns and is full of column rank, we use Eq. 7 to

evaluate 𝜷. If the number of training samples N is smaller than L, we restrict 𝜷 to
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be a linear combination of the rows of H: 𝜷 = HT
𝜶(𝜶 ∈ ℝN×no ). Then 𝜷 can be

calculated by Eq. 8.

𝜷
∗ = (HTH +

IL

C
)−1HTY (7)

𝜷
∗ = HT

𝜶
∗ = HT (HHT +

IN

C
)−1Y (8)

where IL and IN are the identity matrices of dimensions L and N, respectively.

2.2 Unsupervised ELM

In [14], they extended ELM to process unlabeled data and made ELM a wide appli-

cations. The unsupervised learning is built on the following assumption: (1) all the

unlabeled data Xu is drawn from the same marginal distribution X and (2) if two

points x1 and x2 are close to each other, then the probabilities P(y|x1) and P(y|x2)
should be similar. The manifold regularization framework proposes to minimize the

following cost function:

Lm = 1
2
∑

i,j
wij ∥ P(y|xi) − P(y|xj) ∥2 (9)

where wij is the pair-wise similarity between xi and xj. wij is usually computed using

Gaussian function exp(− ∥ xi − xj ∥2 ∕2𝜎2).
Equation 9 can be simplified in a matrix form

̂Lm = Tr(̂Y
T
L̂Y) (10)

where Tr(⋅) denotes the trace of a matrix,
̂Y is the predictions of Xu, L = D −W is

known as graph Laplacian, and D ia a diagonal matrix with its diagonal elements

Dii =
u∑

j=1
wij.

Hence, in unsupervised setting, the entire data set X = {xi}N
i=1 are unlabeled.

According to Eqs. 5 and 10, the formulation of US-ELM is reduced to

min
𝜷∈ℝL×no

∥ 𝜷 ∥2 +𝜆Tr(𝜷THTLH𝜷) (11)

where 𝜆 is an tradeoff parameter. Usually, Eq. 11 attains its minimum value at 𝜷 = 𝟎.

As suggested in [16], a constraint (H𝜷)TH𝜷 = Ino
is introduced. According to the

conclusion in [14], if L ≤ N, the adjustment factor 𝜷 is given by

𝜷
∗ = [ṽ2, ṽ3,… , ṽno+1] (12)
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where ṽi = vi∕ ∥ Hvi ∥, i = 2,… , no + 1 is the normalized eigenvectors. 𝛾i is the ith
smallest eigenvalues of Eq. 13 and vi is the corresponding eigenvectors.

(IL + 𝜆HTLH)v = 𝛾HTHv (13)

If L > N, Eq. 13 is underdetermined. In this case, the following alternative for-

mulation is given by using the same trick

(IN + 𝜆LHHT )u = 𝛾HHTu (14)

Also, ui is the generalized eigenvectors corresponding the ith smallest eigenvalues

of Eq. 14. Then, the final solution is given by

𝜷
∗ = HT [ũ2, ũ3,… , ũno+1] (15)

where ũi = ũi∕ ∥ HHT ũi ∥, i = 2,… , no + 1 are the normalized eigenvectors.

The US-ELM is described in Algorithm 1.

3 k-DRS Query Processing Based on US-ELM

First, we describe the formal definition of the k-DRS in Sect. 3.1. Then, our proposed

algorithm DRSELM is presented in Sect. 3.2.

Algorithm 1: US-ELM Algorithm [14]

input : The training data: X ∈ ℝN×ni .

output: The label vector of cluster yi corresponding to xi

Step 1: Construct the graph Laplacian L = D −W from X;1
Step 2: For each hidden neuron, generate a pair of random values {ai, bi}; Calculate the2
output matrix H ∈ ℝN×L

;

Step 3:3
if L ≤ N then4

Find the generalized eigenvectors v2,… , vno+1 of Eq. 13. Let 𝜷 = [ṽ2, ṽ3,… , ṽno+1].5

else6
Find the generalized eigenvectors u2,… ,uno+1 of Eq. 14. Let 𝜷 = HT [ũ2, ũ3,… , ũno+1];7

Step 4: Calculate the embedding matrix: E = H𝜷;8
Step 5: Each row of E is treated as a point, and then cluster these N points into K clusters9
using the k-means algorithm. Let yi be the label vector of cluster index for xi.

return Y;10
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3.1 Problem Statement

Given a data set D in the d-dimensional space, and two points pi = ⟨pi[1],… , pi[d]⟩
and pj = ⟨pj[1],… , pj[d]⟩, then pi dominates pj (denoted as pi ≺ pj) if ∀m ∈ [1, d],
pi[m] ≤ pj[m] and ∃n ∈ [1, d], pi[n] < pj[n]. The skyline of D consists of the points

which are not dominated by others, denoted as  = {pi|∄pj ∈ D, pj ≺ pi}. Next, we

give the formal definition of the k-DRS.

Definition 1 (Representation Error) Given the full skyline set and a subset of

with k skyline points, the representation error Er(,) quantifies the representation

quality as the maximum distance between a non-representative skyline point in  −
 and its nearest representative in , which is formally denoted as:

Er(,) = max
p∈−

{min
p′∈

∥ p, p′ ∥} (16)

Definition 2 (Distance-based Representative Skyline) The distance-based represen-

tative skyline (k-DRS) is the set  with the minimum representation error Er(,).

As shown in Fig. 1, the skyline set is = {p1,… , p10}. Given k = 3, and two sub-

sets 1 = {p2, p6, p9} and 2 = {p2, p5, p9}, the representation errors Er(1,) =∥
p4, p6 ∥= 0.141 and Er(2,) =∥ p5, p7 ∥= 0.135. Consequently, 2 is the k-DRS

because its representation error is the minimum.

3.2 DRSELM Algorithm

Reviewing the conclusion in [2], the k-DRS problem is NP-hard in d-dimensional

(d ≥ 3) space. Hence, it is impossible to calculate the exact k-DRS. In this paper, we

answer the k-DRS problem from another perspective.

Since the initial objective of the k-DRS is to avoid selecting k points that appear

in an arbitrarily tiny cluster, we first divide the full skyline points into k clusters

using the US-ELM algorithm (introduced in Sect. 2.2). Specifically, given a data set

D in d-dimensional space, each point pi ∈ D is considered as a d-dimensional vector.

pi[j] denotes the jth dimension value of pi. According to the Algorithm 1, there is

a corresponding output yi with regard to pi. Because the full skyline needs to be

divided into k clusters, each output yi is a k-dimensional vector. Only one dimension

value is 1, and the other dimension values are 0. As shown in Fig. 1, p1, p2, p3 have

the same outputs y1 = y2 = y3 = [1, 0, 0]. p4, p5, p6, p7 have the same outputs y4 =
y5 = y6 = y7 = [0, 1, 0]. p8, p9, p10 have the same outputs y8 = y9 = y10 = [0, 0, 1].

Given a cluster ci = {p1, p2,… , p|ci|
} with |ci| points, the centroid point mi of ci

can be calculated by the formula below:

mi[j] =
∑

p∈ci
p[j]

|ci|
(17)
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As shown in Fig. 1, given the cluster c1 = {p1, p2, p3}, its centroid point m1 is

calculated as: m1[1] =
0.13+0.16+0.20

3
≈ 0.16 and m1[2] =

0.92+0.87+0.82
3

= 0.87. Hence,

p2 is regarded as the centroid point in c1. Similarly, the centroid points of c2 and c3
are m2 = ⟨0.345, 0.4425⟩ and m3 = ⟨0.70, 0.15⟩.

After the clustering, we have the following properties.

Observation 1 Given a point p1 comes from cluster c1, and a point p2 comes
from cluster c2, m1 and m2 are the centroid points of c1 and c2, respectively. Then
∥ p1,m1 ∥<∥ p1,m2 ∥.

We have divided the full skyline into k clusters. The target of the k-DRS wants

to get the minimum representation error Er(,). In order to obtain this goal, all

the points should come from different clusters. Given two clusters ci and cj, we

should select any 2 points 2
from  = ci

⋃
cj, in order to obtain the minimum

value Er(2
,) = max

p∈−2
{ min

p′∈2
∥ p, p′ ∥}. The two points in 2

should come from

ci and cj, respectively.

Theorem 1 Give two clusters c1 and c2, and two sets S1 = {m1,m2} and S2 =
{pm, pn}, m1 and m2 are the centroid points of c1 and c2. pm and pn are any two
points come from c1. Then Er(S1,) < Er(S2,).

Proof Suppose the point in c1 with the largest distance to m1 is p1, and the point in c2
with the largest distance to m2 is p2, then Er(S1,) = max{∥ p1,m1 ∥, ∥ p2,m2 ∥}.

Obviously, a good clustering method can ensure that ∥ m1,m2 ∥> max{∥ p1,m1 ∥, ∥
p2,m2 ∥}. Hence, there must exist a point p′ ∈ c2, the distance between p′

and any

point pm ∈ c1 is larger than Er(S1,). The theorem can be proven.

Lemma 1 Given k clusters c1,… , ck of the full skyline  , in order to obtain the
minimum representation error Er(,), the selected k skyline points should come
from different k clusters.

Proof This lemma can be obtained directly from Theorem 1.

According to Lemma 1, the selected points come from different clusters. As

shown in Fig. 1, the full skyline is divided into 3 clusters. The selected 3 skyline

points should come from different clusters. For each cluster ci, i ∈ [1, 3], we choose

one point.

Next, we introduce how to select a point from a cluster. According to the objec-

tive function Er(,), the selected point pi from ci should have the minimum value

Er(pi, ci) = max
pi∈ci,p′∈ci−{pi}

{∥ pi, p′ ∥}. The details to calculate the k-DRS based on

ELM is described in Algorithm 2.

The calculation in a cluster needs to compute the distances between any two points

in a cluster. Hence, the time cost of calculating an appropriate in a cluster is O(|ci|
2)

where |ci| is the size of the largest cluster.
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Algorithm 2: The DRSELM Algorithm

input : the data set D in d-dimensional space; the parameter k
output: The distance-base representative set k-DRS(D);
Using BNL algorithm [1] to calculate the skyline  of D;1
Using Algorithm 1 to divide the full skyline  into k clusters;2
for each cluster ci do3

From all the points in ci, add the one with the minimum value MaxDis(p, ci) to the4
k-DRS;

return k-DRS;5

4 Experimental Evaluation

In this section, we demonstrate the efficiency and effectiveness of the DRSELM. We

test 3 algorithms: 2d-opt, I-greedy, DRSELM. Specifically, 2d-opt and I-greedy are

the algorithms in [2] for 2-dimensional dataset and d-dimensional (d ≥ 3) dataset,

respectively.

DataSets. We apply the same datasets in [2], a synthetic dataset Island and a real

dataset NBA. Island follows a cluster distribution along the anti-diagonal, which is

shown in Fig. 3. There are 27868 points in the Island, and the skyline of the Island
consists of 110 points. NBA is downloadable at http://www.databasebasketball.com.

It includes 17265 5-dimensional points and skyline of NBA consists of 494 points.

The distance-base representative skyline of Island is shown in Fig. 4 when k
varies. As shown in Fig. 5, our DRSELM shows outstanding performances. Com-

paring with 2d-opt, DRSELM has more efficiency and good accuracy. In Fig. 5a,

Fig. 3 The synthetic dataset Island. a The Island Dataset. b The Skyline of Island

http://www.databasebasketball.com
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Fig. 4 The Distance-based Representative Skyline of Island for Different k. a k = 4. b k = 6.

c k = 8.

with the increase of k, the running time of DRSELM and 2d-opt has little change. In

Fig. 5b, as k grows, the representation error becomes smaller. DRSELM has the same

representation errors with 2d-opt. Since 2d-opt is an exact algorithm, DRSELM has

good accuracy in 2-dimensional datasets.

The experimental results of NBA is shown in Fig. 6. According to Fig. 6a, the

running time of DRSELM is shorter than that of I-greedy. With the increase of k, the

running time of DRSELM is stable, and the running time of I-greedy raises slightly.

Hence, the efficiency of DRSELM is better than that of I-greedy. As illustrated in

Fig. 6b, the representation errors of DRSELM and I-greedy are close. Therefore,

comparing with I-greedy, the accuracy of DRSELM is competitive.

Comparing Fig. 5 with Fig. 6, with the increase of dimensionality, the running

time of DRSELM has a little increment. Based on analysis above, it can be concluded

that our DRSELM can process the k-DRS effectively.
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5 Related Work

The skyline operator was first introduced by Börzönyi et al. [1]. Then many effi-

cient skyline algorithms [20–23] have been proposed. Algorithms BNL and D&C

[1], SFS [20], Bitmap [24] and NN [21] can process skyline query in the datasets

without indexes. BBS [22] calculate the skyline query using R-tree index and ZINC

[23] apply the Z-order index to process the skyline query. When the full skyline set

is large, it is difficult to understand the full skyline. Thus, selecting k representative

points is significant. There are some definitions [2, 25] about the representative sky-

lines. In this paper, we focus on the distance-based representative skyline (k-DRS).

k-DRS is NP-hard when d ≥ 3. By in-depth analysis of the properties of the k-DRS,

first, we use the clustering algorithms to cluster the full skyline set. Second, we cal-

culate the representative point in each cluster. So far, there are some state-of-the-art

clustering algorithms [15–18]. The experimental results show that US-ELM [14] is

competitive in terms of both accuracy and efficiency. Hence, in this paper, we apply

US-ELM to cluster the full skyline set.
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6 Conclusion

As an important variant of skyline, the k representative skyline is a useful tool if the

size of the full skyline is large. In this paper, we focus on the distance-based rep-

resentative skyline (k-DRS). Since k-DRS is a NP-hard problem in d-dimensional

(d ≥ 3) space, we design a 2-step algorithm DRSELM to solve the k-DRS problem

efficiently. Step 1 divides the full skyline set into k clusters using US-ELM algo-

rithm. In step 2, a point in each cluster is selected as the representative skyline point.

The k selected skyline points consist of the k-DRS. Comprehensive experimental

results demonstrate that DRSELM is competitive with the state-of-the-art algorithm

in terms of both accuracy and efficiency.
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