
Parallel Multi-graph Classification Using
Extreme Learning Machine and MapReduce

Jun Pang, Yu Gu, Jia Xu, Xiaowang Kong and Ge Yu

Abstract A multi-graph is represented by a bag of graphs and modelled as a gen-

eralization of a multi-instance. Multi-graph classification is a supervised learning

problem for multi-graph, which has a wide range of applications, such as scientific

publication categorization, bio-pharmaceu-tical activity tests and online product rec-

ommendation. However, existing algorithms are limited to process small datasets due

to high computation complexity of multi-graph classification. Specially, the preci-

sion is not high enough for a large dataset. In this paper, we propose a scalable and

high-precision parallel algorithm to handle the multi-graph classification problem on

massive datasets using MapReduce and extreme learning machine. Extensive exper-

iments on real-world and synthetic graph datasets show that the proposed algorithm

is effective and efficient.

Keywords Multi-graph ⋅ Classification ⋅ Extreme learning machine ⋅MapReduce

J. Pang (✉) ⋅ Y. Gu ⋅ X. Kong ⋅ G. Yu

College of Information Science and Engineering, Northeastern University,

Liaoning 110819, China

e-mail: pangjun@research.neu.edu.cn

Y. Gu

e-mail: guyu@ise.neu.edu.cn

X. Kong

e-mail: kongxiaowang.neu@gmail.com

G. Yu

e-mail: yugu@ise.neu.edu.cn

J. Xu

School of Compute, Electronics and Information, Guangxi University, Guangxi

530004, China

e-mail: xujia@gxu.edu.cn

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 1,

Proceedings in Adaptation, Learning and Optimization 6,

DOI 10.1007/978-3-319-28397-5_7

77



78 J. Pang et al.

1 Introduction

Multi-graph learning is a generalization of multi-instance learning in which instances

are organized as graphs instead of feature vectors. Multi-graph representation main-

tains rich structure information which makes it outperforms other multi-instance

representation. Nowadays, multi-graph learning has many successful application

scenarios. We give two typical examples as follows. (1) Scientific publication cate-

gorization [1]: a paper is represented as a multi-graph, i.e., the abstract of the paper is

modelled as a graph and the abstract of every reference is also modelled as a graph. If

the paper or one of its references is related with the topic, this paper is positive. Oth-

erwise, it is negative. Given training papers with classification labels, we can predict

the unseen papers’ labels. (2) Bio-pharmaceutical activity tests [2]: a molecule has

a lot of forms. If one of its forms resists the disease, the molecule be used to man-

ufacture drugs. Otherwise, it cannot be applied. A specific form of a molecule can

be described as a graph and a multi-graph demotes different forms of the molecule.

Multi-graph learning can predict the molecules’ activities.

Although multi-graph learning has important practical applications, existing

multi-instance learning algorithms can not be directly used to solve this problem.

Because these multi-instance learning algorithms are designed to process tabular

instances which are represented in a common vectorial feature space. To the best

of our knowledge, few work focuses on exploring it. Wu et al. propose the gMGFL
approach, which mines informative feature subgraphs and has higher accuracy than

the extended multi-instance learning algorithms. Nowadays, the quantity of informa-

tion is very large and fast growing. And more and more multi-graphs are modelled

from these increasing information. It is a non-trivial task to mine valued knowl-

edge from so large scale multi-graphs. Specifically, the following challenges need

to be tackled. (1) gMGFL is not suited to deal with large-scale datasets because

gMGFL adopts in-memory frequent subgraph mining and classification algorithms.

(2) To support high-quality exploratory analysis and decision making, the precision

and recall are desired to be improved. Our experimental results show the traditional

parallel Bayes algorithm does not obtain high precisions and recalls on large-scale

multi-graph datasets.

For the first challenge, we adopt popular MapReduce framework to execute large-

scale multi-graph binary classification. MapReduce is a popular parallel program-

ming framework to handle big data owning to its good properties of fault tolerance,

high scalability and low deployment cost [3]. We propose a parallel approach based

on MapReduce, named ME-MGC, to solve multi-graph binary classification problem

on massive multi-graph dataset. For the second challenge, we adapt a parallel ELM

approach to improve the classification performance. Experimental results display

that our approaches obtain higher precisions and recalls on both real and synthetic

datasets than extended approaches adopting NBayes or SVM.

Specifically, the major contributions we have made in this paper are summarized

as follows. (1) We propose a parallel approach based on MapReduce to solve the

massive multi-graph binary classification problem. (2) We adapt extreme learning



Parallel Multi-graph Classification Using Extreme Learning . . . 79

machine (ELM) to process multi-graph classification for improving the performance

of classification. Moreover, we study the variation of the precision with a differ-

ent number of hidden nodes for ELM algorithm. (3) We have conducted extensive

experiments on both real and simulated data sets and the results demonstrate that our

approaches are effective and efficient.

The remainder of this paper is organized as follows. Related works are introduced

in Sect. 2. Problem definition and backgrounds are discussed in Sect. 3. Our approach

is provided in Sect. 4. Experimental results and discussions are presented in Sect. 5.

We conclude the paper in Sect. 6.

2 Related Works

Related works with our study include multi-graph classification, extreme learning

machine based on MapReduce and frequent subgraph mining based on MapReduce.

2.1 Multi-graph Learning

Although multi-graph learning is very valuable in real applications, the researches on

it are still quite limited. Wu et al. [1] propose gMGFL approach to solve multi-graph

classification problem. Inspired by multi-instance learning, gMGFL mines feature

subgraph from overall graph dataset and converts multi-graphs into feature-value

vectors which fit conventional classification models, such as naive Bayes, kNN clas-

sifier, decision tree and support vector machine. Feature subgraphs are top-k frequent

subgraphs with a score function score(g). gMGFL is not suitable to process large-

scale datasets because it is an in-memory algorithm.

2.2 Extreme Learning Machine Based on MapReduce

Extreme learning machine(ELM) is a type of artificial neural network [4, 5]. Parallel

ELM based on MapReduce has attracted attention of many researchers. He et al. [6]

propose a MapReduce version of ELM, named PELM, to implement regression for

large-scale datasets. PELM consists of two MapReduce jobs. Xin et al. [7] design

and implement ELM∗
which combines the previous two MapReduce jobs into one

MapReduce job. Xin et al. [8] propose an incremental algorithm E2LM to process

large-scale updating training datasets. Bi et al. [9] propose a distributed extreme

learning machine with kernels based on MapReduce. Wang et al. [10] design a par-

allel online sequential extreme learning machine based on MapReduce. To the best

of our knowledge, ELM∗
is the-state-of-the-art parallel ELM algorithm processing

large static training datasets. In this paper, we adapt ELM∗
into the scenario of mas-

sive multi-graph classification.



80 J. Pang et al.

2.3 Frequent Subgraphs Mining Based on MapReduce

A typical problem of large-scale frequent subgraphs mining can use two settings: (1)

one single big graph: its target is to mine subgraphs from one single big graph such

that supports of these subgraphs are not smaller than a given support threshold [11,

12]; (2) a large collection of graphs: its target is to mine frequent subgraphs from

a large collection of graphs [13, 14]. In this paper, we consider the second setting.

Hill et al. [13] propose iterative MapReduce-FSG algorithm which is an incremental

approach to mine frequent subgraphs from a large collection of graphs. Lin et al.

[14] design and implement MRFSM approach which contains only three MapReduce

jobs. To the best of our knowledge, MRFSM is the state-of-the-art frequent subgraphs

mining approach for a large collection of graphs. In this paper, MRFSM is leveraged

during the process of frequent subgraphs generation.

3 Preliminaries

In this section, we firstly define related basic concepts. Then, we give a simple

overview of the extreme learning machine.

3.1 Problem Definition

Definition 1 (Labeled multi-graph) A multi-graph is a bag of graphs. A labeled

multi-graph mg is a multi-graph with binary class label l(mg) ∈ {positive, negative}.

If the class label for one graph of multi-graph is positive, the multi-graph has a pos-

itive class label l(mg) = positive. Otherwise, the multi-graph has a negative class

label.

Definition 2 (Feature subgraph representation of multi-graph) Given a multi-graph

set MG = {mg1,mg2,… ,mgn} and k feature subgraphs F = {f1,… , fk}, mgi ∈ MG
is represented as a feature vector v(mgi) of k dimensions. The weight wi of the ith
dimension is 1 if the ith feature subgraph fi ∈ F is a subgraph of one graph for mgi.

Otherwise, wi is set to 0.

Definition 3 (Score function of the frequent subgraphs) The score function of the

frequent subgraphs is used to mine feature subgraphs [1]. The score function, named

score(g), is as follow.

score(g) = 1∕2(s(A)∕A − s(B)∕B + s(C)∕C − s(D)∕D)

Definition 4 (Multi-graph classification) Given a labeled multi-graph dataset, we

aim to construct prediction model from labeled multi-graphs to predict unseen multi-

graphs with maximum precision.



Parallel Multi-graph Classification Using Extreme Learning . . . 81

Definition 5 (Massive multi-graph classification) Massive multi-graph classifica-

tion is a special multi-graph classification with large-scale training dataset and large-

scale test dataset.

Based on gMGFL, we propose a parallel algorithm ME-MGC to solve massive multi-

graph classification problem. Next, we simply introduce ELM.

3.2 Extreme Learning Machine

Huang proposes ELM for single hidden-layer feedforward neural networks (SLFNs)

and then extends it to the “generalized” SLFNs [4, 5, 15–22]. Compared to tra-

ditional feedforward neural networks, ELM has better generalization performance,

faster learning speed and less training error. The training process of ELM approach

is described in Algorithm 1. ELM approach has a wide range of applications, such

as protein secondary structure prediction [23], XML document classification [24],

classification in P2P networks [25] and graph classification [26].

Algorithm 1: training process of ELM
Input : a training set V=(xi, ti)|xi ∈ Rn

, ti ∈ Rm
, i = 1,… ,N, the number of hidden node L

and activation function g(v)

Output: an ELM instance

1 1)randomly generate every input weight wi and bias bi, i = 1,. . . ,L;

2 2)calculate hidden node output matrix H;

3 3)calculate output weight 𝛽 = H†
T, where H†

is the Moore-Penrose generalized inverse of

matrix H, T = [t1,… , tN ]T .

4 ME-MGC Algorithm

In this section, we propose a ME-MGC approach.

4.1 Overview of ME-MGC

In this section, an overview of ME-MGC algorithm based on MapReduce is pro-

vided. Given a multi-graph set MG = {mg1,mg2,… ,mgn} and the graph set G =
{g|g ∈ mgi,mgi ∈ MG} consisting of overall graphs of MG. ME-MGC contains

three steps: (1) mining frequent subgraphs FG of G, (2) mining feature subgraphs

F and (3) constructing the predict model. The first step is implemented based on

MRFSM [14] which has three-round MapReduce jobs: getCFS (i.e. getting candidate



82 J. Pang et al.

Fig. 1 An overview of ME-MGC

frequent subgraphs); sortCFS (i.e. sorting candidate frequent subgraphs); refineFS
(i.e. refining and obtaining frequent subgraphs). Also, the second step needs three-

round MapReduce jobs: calScore1 (i.e. calculating partial scores ps of frequent sub-

graphs produced in the first step); calScore2 (i.e. aggregating partial results output

by calScore1 to get final scores); impTopK (i.e. obtaining top-k subgraphs, namely

feature subgraphs). The last step is completed based on ELM∗
. Figure 1 shows the

overview processing framework of ME-MGC. Next, the aforementioned three steps

of ME-MGC are represented in detail.

4.2 Mining Frequent Subgraphs

In order to mine frequent subgraphs of a large graph dataset, a MapReduce job chain

is implemented consisting of getCFS, sortCFS and refineFS.

4.2.1 Getting Candidate Frequent Subgraphs

GetCFS retrievals candidate frequent subgraphs described as Algorithm 2. In the

map phase, each map task outputs the local frequent subgraphs which are candi-

date subgraphs. In the reduce phase, the upper bounds of frequency of candidate

subgraphs are estimated. A candidate frequent subgraph is eliminated whose upper

bound is less than minimum frequency threshold.

4.2.2 Sorting Candidate Frequent Subgraphs

SortCFS sorts the candidate subgraphs produced by getCFS according to edge size

shown as Algorithm 3. We utilize the sort function of MapReduce to improve the

performance. The size of every candidate subgraph is used as the key for a map

task. Meanwhile, only one reduce task is adopted. The records received by the same

reduce task are then sorted by the sort function of MapReduce. In addition, inclusion

relations of candidate frequent subgraphs are calculated and output by this reduce

task.



Parallel Multi-graph Classification Using Extreme Learning . . . 83

Algorithm 2: getCFS
1 //map task

2 List graphPartition;// store a subset of graphs set

3 estimate f ; //local frequent threshold

4 Map (< Offset, a multi − graph >)
5 add into graphPartition all graphs of this multi-graph;

6 Cleanup ()
7 calculate local frequent subgraphs LFS = {lfs1, lfs2,… , lfsi} for graphPartition with

frequency fre ≥ f ;

8 encode frequent subgraphs EFS = {v(lfs1), v(lfs2),… , v(lfsi)};

9 //v(lfsi) is the code of lfsi
10 emit(< v(lfs), (partitionId, fre) >);

11 //v(lfs) ∈ EFS, partitionId is id of graphPartition, fre is local frequency of v
12 //reduce task

13 Reduce (v, list < partitionId, fre >)
14 calculate the frequency upper bound fub(v) of v;

15 if fub(v) ≥ f then
16 emit(< v, efs >);

17 //efs means the sum of exact frequent for v

4.2.3 Refining and Obtaining Frequent Subgraphs

RefineFS refines the candidate subgraphs and gets the final results. A map task reads

a subset Si of graph data set and sorted candidate subgraphs(SCS). After that, we

calculate the local frequency fi(cg) of candidate subgraph cg ∈ SCS for the subset Si
in the map phase which outputs key-value pair < cg, fi(cg) >. If the local frequencies

of candidate subgraphs have been calculated in the getCFS, they do not need to be

recalculated. After that, exact global frequency of every candidate subgraph is cal-

culated in the reduce tasks. If the global frequency of a subgraph is no less than the

minimum frequency threshold, this subgraph is a desirable frequent subgraph and is

output.

After mining frequent subgraphs of G, we mine feature subgraphs from the

derived frequent subgraphs.

4.3 Mining Feature Subgraphs

Feature subgraphs F = {f1, f2,… , fk} are top-k frequent subgraphs with score func-

tion score(fg), fg ∈ FG. Different from the traditional top-k query problem, the score

calculation does not depend on one record but the overall dataset. So, we mine feature

subgraphs using the following two steps instead of adopting traditional top-k query

techniques. At first, we calculate scores of frequent subgraphs. Then, we answer top-

k query. A MapReduce job chain is designed to complete this. calScore1 gets partial



84 J. Pang et al.

scores, which are aggregated by calScore2 to get scores {score(fg)|fg ∈ FG}. After

that, impTopK answers top-k query to get F. In the following, we discuss the details

of these MapReduce jobs.

Algorithm 3: sortCFS
1 //map task

2 Map (v, efs)
3 emit(< s, (v, efs) >);// s is the edge size of v
4 //reduce task

5 List canSubGraph=empty; //candidate subgraphs in current layer.

6 List Id=empty;//ids of candidate subgraphs in canSubGraph

7 layer=0;

8 currentId=0;

9 Reduce (< s, list(v, efs) >)
10 if layer==0 then
11 layer++;

12 for each element (v, efs) ∈ list(v, efs) do
13 add v into canSubGraph;

14 add currentId into Id;

15 currentId++;

16 emit(< (v, efs),NULL >)//NULL means having no subgraphs;

17 else
18 List subGraph=empty;

19 for each element (v, efs) ∈ list(v, efs) do
20 for each element v′ ∈ canSubGraph do
21 if subgraphIsomorphismTest(v’,v) then
22 add id(v′) into subGraph;

23 emit(< (v, efs), subGraph >);

24 update canSubGraph and Id;

4.3.1 Calculating Partial Scores of Frequent Subgraphs

We define some concepts before we introduce CalScore1.

Definition 6 (Partition) Given a dataset D, a partition pi is a subset of D which

meets the following two conditions: (1) ∪pi = D, where i ≥ 0 and i ≤ m − 1; (2)

pi ∩ pj = ∅, where i∕j ≥ 0, i∕j ≤ m − 1 and i ≠ j.

Definition 7 (Fragment) Given a dataset D and its partition set P = {p0, p1,… ,

pm−1}, a fragment is a partition pair < pi, pj >, pi, pj ∈ P. In total, there are m ∗
(m + 1)∕2 fragments for D and P.



Parallel Multi-graph Classification Using Extreme Learning . . . 85

Fig. 2 overview of calScore1

calScore1 gets the partial results. In map phase, with hash and copy techniques,

the multi-graph dataset MG is divided into a partition set P = {p0, p1,… , pm−1}. If

hash(mgj) = i, mgj ∈ pi(i ≥ 0 and i ≤ m − 1). In reduce phase, overall fragments for

MG and P are produced to calculate the partial scores of subgraphs showed in Fig. 2.

4.3.2 Getting Final Scores

CalScore2 aggregates the results of calScore1 to get the final scores of frequent sub-

graphs. After reading outputs of canScore1, map tasks output< v(fg), partial result >
pairs. Overall partial results of a frequent subgraph are shuffled to the same reduce

task and are aggregated to the final score.

4.3.3 Obtaining Feature Subgraphs

ImpTopK selects as feature subgraphs k frequent subgraphs from FG whose scores

are larger than others. Every map task computes the local top-k frequent subgraphs

in the corresponding input split. A reduce task is launched to aggregate overall local

top-k frequent subgraphs and to calculate the global top-k frequent subgraphs.

4.3.4 Building Prediction Model

After getting feature subgraphs, multi-graphs are preprocessed to vectors accord-

ing to feature subgraph representation of multi − graph. Then, we build prediction

model based on ELM∗
.



86 J. Pang et al.

5 Performance Evaluation

In this section, we compare the precision and recall for ELM and other classification

models, and compare the training time, speedup and scalability for gMGFL and ME-

MGC over both real and synthetic datasets.

DBLP dataset. Every paper pi is regarded as a multi-graph mgi. The abstract of pi
is a graph g ∈ mgi, which is obtained using E-FCM [27]. In addition, each reference

is modelled as a graph. For example, pi has m references. So pi can be represented as

a multi-graph including m + 1 graphs. Domain field of a paper is treated as its class

label. Two domain fields are selected in this paper namely artificial intelligence AI

and computer vision CV. After preprocessing, there are 7661 AI multi-graphs and

1817 CV multi-graphs. We randomly select 1817 AI multi-graphs and using all 1817

CV multi-graphs to test.
1

Synthetic dataset (SYN). Each National Cancer Institute (NCI) data set belongs

to a bio-assay task for anti-cancer activity prediction [28]. If a chemical compound

is active against the corresponding cancer, it is positive. Otherwise, it is negative.

We generate a synthetic multi-graph dataset with a graph data set(with ID 1) [1]. We

randomly select one to four positive graphs and several negative graphs to build a

positive multi-graph. A negative multi-graph is build by randomly selecting a num-

ber of negative graphs. The number of graphs in each multi-graph varies from 1 to

10. In total, we built 500,000 positive and 500,000 negative multi-graphs. The total

number of graphs is 4,997,537.

A 31-node (1 master and 30 slaves) cluster is used to test. Every machine is col-

located with two 3.1 HZ CPUs, 8 GB Memory, 500 GB hard disk, Redhat 4.4.4-13

operation system and Hadoop-1.2.1. 10-fold cross-validation is adopted. Mean pre-

cision and recall are reported in this paper.

5.1 Precision and Recall

In this section, we compare precision and recall over variable real and synthetic

datasets.
2

Figure 3 shows the precision on variable DBLP datasets. Figure 3 displays preci-

sions of gMGFL + ELM is highest among all algorithms. Because the precision of

ELM is higher than NBayes and SVM on the same DBLP dataset.

1
DBLP dataset can be downloaded from http://arnetminer.org/citation.

2gMGFL + NBayes(orSVM, orELM) denotes gMGFL using NBayes, SVM and ELM classification

model, respectively. ME-MGC + PNBayes(ELM) represents ME-MGC using parallel NBayes and

parallel ELM prediction model, respectively. In the case of without causing ambiguity, ME-MGC
represents ME-MGC + ELM.

http://arnetminer.org/citation


Parallel Multi-graph Classification Using Extreme Learning . . . 87

Fig. 3 Precision on variable

DBLP datasets (s = 0.04, k =

20)
gMGFL+NBayes
gMGFL+ELM

80

85

90

95

100

0.4 0.6 0.8 1.0
P

re
ci

si
on

 (
%

)
Variable DBLP dataset

gMGFL+SVM

Fig. 4 Recall on variable

DBLP datasets (s = 0.04, k =

20)

gMGFL+NBayes
gMGFL+ELM

60

70

80

85

90

0.4 0.6 0.8 1.0

R
ec

al
l (

%
)

Variable DBLP dataset

gMGFL+SVM

Figure 4 shows the recalls on variable DBLP datasets. The recalls of gMGFL +
ELM are highest among all algorithms because gMGFL + ELM adopt ELM whose

recall is higher than those algorithms embedded with NBayes and SVM on the same

DBLP dataset.

Figure 5 shows the precisions of different methods on variable SYN datasets.

Figure 6 shows the recalls of different methods on variable SYN datasets. The experi-

mental results on variable synthetic datasets are similar with variable DBLP datasets.

The reasons can also be referred to DBLP datasets.

Fig. 5 Precision on variable

SYN datasets (s = 0.12, k =

15)

60

65

70

75

80

85

90

0.4 0.6 0.8 1.0

P
re

ci
si

on
 (

%
)

Variable SYN dataset

ME-MGC+PNBayes
ME-MGC



88 J. Pang et al.

Fig. 6 Recall on variable

SYN datasets (s = 0.12, k =

15)

60

70

80

85

0.4 0.6 0.8 1.0
R

ec
al

l (
%

)
Variable SYN dataset

ME-MGC+PNBayes
ME-MGC

5.2 Training Time

In this section, we compare the classification model constructing time(training time)

of gMGFL and ME-MGC on variable DBLP and synthetic datasets. gMGFL runs in

stand-alone. ME-MGC runs in 31-node cluster.

Figure 7 exhibits the training time on variable DBLP datasets. gMGFL is faster

than ME-MGC. Because ME-MGC consists of several MapReduce jobs. The launch

of these jobs costs much time. In addition, gMGFL is in-memory algorithm suitable

for small datasets.

Figure 8 exhibits the training time on variable synthetic datasets. gMGFL can not

run on these synthetic datasets successfully.

5.3 Speedup and Scaleup

We evaluate the speedup and scaleup of ME-MGC + PNBayes and ME-MGC +
ELM on synthetic dataset.

Fig. 7 Training time on

variable DBLP datasets (s =

0.04, k = 20)

0

50

100

150

200

250

300

350

400

0.4 0.6 0.8 1.0

T
ra

in
in

g 
T

im
e 

(s
)

Variable DBLP dataset

gMGFL+NBayes
gMGFL+ELM
gMGFL+SVM
ME-MGC+NB(ELM)



Parallel Multi-graph Classification Using Extreme Learning . . . 89

Fig. 8 Training time on

variable SYN datasets (s =

0.12, k = 15)

2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0.4 0.6 0.8 1.0
T

ra
in

in
g 

T
im

e 
(s

)
Variable SYN dataset

ME-MGC+PNBayes
ME-MGC

Fig. 9 Training time for

processing SYN dataset on

m-node cluster (where m =

12, 18, 24 and 30)

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

12 18 24 30

T
ra

in
in

g 
T

im
e 

(s
.)

Number of Nodes(s=0.12,k=15)

ME-MGC+NB
ME-MGC+ELM
Ideal

Fig. 10 Training time for

processing SYN*n datasets

(where n = 0.4, 0.6, 0.8 and

1.0) on a 31-node cluster

 10000

 15000

 20000

 25000

 30000

0.4 0.6 0.8 1

T
ra

in
in

g 
T

im
e 

(s
.)

Scale Factor (s=0.12,k=15)

ME-MGC+NB
ME-MGC+ELM
Ideal

Figure 9 exhibits that both ME-MGC + PNBayes and ME-MGC + ELM have a

good speedup on synthetic dataset. Figure 10 exhibits that both ME-MGC +
PNBayes and ME-MGC + ELM have a good scalability on synthetic dataset.



90 J. Pang et al.

5.4 Performance with Different Hidden Node Number

In this section, we evaluate the precisions and recalls of gMGFL and ME-MGC for

different hidden node number on DBLP and SYN dataset.

Figure 11 shows comparisons of precision and recall for gMGFL with variable

hidden node number on DBLP dataset. Figure 12 shows comparisons of precision

and recall for ME-MGC with a variable number of hidden nodes on SYN dataset.

With the increment of the hidden node number, precision and recall for gMGFL and

ME-MGC are stable.

Fig. 11 Precision and recall

with variable number of

hidden nodes on DBLP

dataset (s = 0.04, k = 20)

precision

50

60

70

80

85

90

95

32 40 48 56

P
re

ci
si

on
/R

ec
al

l (
%

)

Variable hidden node number (gMGFL+ELM)

recall

Fig. 12 Precision and recall

with variable number of

hidden nodes on SYN

dataset (s = 0.12, k = 15)

precision

50

60

70

75

80

85

32 40 48 56

P
re

ci
si

on
/R

ec
al

l (
%

)

Variable hidden node number (ME-MGC)

recall



Parallel Multi-graph Classification Using Extreme Learning . . . 91

6 Conclusions

In this paper, we propose a parallel approach ME-MGC based on MapReduce to

resolve massive multi-graph classification problem. Meanwhile, ELM prediction

model is applied to predict multi-graph data type for improving the algorithm per-

formance. Extensive experimental results on both real and synthetic datasets display

that our algorithm apparently outperforms gMGFL and the extended algorithm with

parallel Bayes because of its high precision and good scalability.

Acknowledgments The work is partially supported by the National Basic Research Program of

China (973 Program) (No. 2012CB316201), the National Natural Science Foundation of China

(No. 61272179, No. 61472071).

References

1. Wu, J., Zhu, X., Zhang, C., et al.: Bag constrained structure pattern mining for multi-graph

classification. TKDE 26(10), 2382–2396 (2014)

2. Wu, J., Pan, S., Zhu, X., et al.: Boosting for multi-graph classification. T. Cybern. 45(3), 430–

443 (2015)

3. MapReduce. http://en.wikipedia.org/wiki/MapReduce

4. Huang, G., Zhu, Q., Siew, C.K.: Extreme learning machine: a new learning scheme of feedfor-

ward neural networks. In: IJCNN, pp. 985–990 (2004)

5. Huang, G., Liang, N., Rong, H., et al.: On-line sequential extreme learning machine. In:

IASTED, pp. 232–237 (2005)

6. He, Q., Shang, T., Zhuang, F., et al.: Parallel extreme learning manchine for regression based

on MapReduce. Neurocomputing 102(2), 52–58 (2013)

7. Xin, J., Wang, Z., Chen, C., et al.: ELM∗
: distributed extreme learning machine with MapRe-

duce. World Wide Web 17(5), 1189–1204 (2014)

8. Xin, J., Wang, Z., Qu, L., et al.: Elastic extreme learning machine for big data classification.

Neurocomputing, 149(Part A), 464–471 (2015)

9. Bi, X., Zhao, X., Wang, G., et al.: Distributed extreme learning machine with kernels based on

MapReduce. Neurocomputing 149, 456–463 (2015)

10. Wang, B., Huang, S., Qiu, J., et al.: Parallel online sequential extreme learning machine based

on MapReduce. Neurocomputing 149, 224–232 (2015)

11. Kuramochi, M., Karypis, G.: Finding frequent patterns in a large sparse graph. In: SDM, pp.

345–356 (2004)

12. Kuramochi, M., Karypis, G.: Grew-a-scalable frequent subgraph discovery algorithm. In:

ICDM, pp. 439–442 (2004)

13. Hill, S., Srichandan, B., Sunderraman, R.: An Iterative mapreduce approach to frequent sub-

graph mining in biological datasets. In: BCB, pp. 661–666 (2012)

14. Lin, W., Xiao, X., Ghinita, G.: Large-scale frequent subgraph mining in MapReduce. In: ICDE,

pp. 844–855 (2014)

15. Huang, G., Zhu, Q., Siew, C.K., et al.: Extreme learning machine: theory and applications.

Neurocomputing 70(1–3), 489–501 (2006)

16. Huang, G., Chen, L.: Enhanced random search based incremental extreme learning machine.

Neurocomputing 71(16–18), 3460–3468 (2008)

17. Huang, G., Ding, X., Zhou, H.: Optimization method based extreme learning machine for clas-

sification. Neurocomputing 74(1–3), 155–163 (2010)

http://en.wikipedia.org/wiki/MapReduce


92 J. Pang et al.

18. Huang, G., Wang, D., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn.

Cybern 2(2), 107–122 (2011)

19. Huang, G., Zhou, H., Ding, X., et al.: Extreme learning machine for regression and multiclass

classification. In: TSMC. Part B Cybern. 42(2), 513–529 (2012)

20. Huang, G., Wang, D.: Advances in extreme learning machines (ELM2011). Neurocomputing

102, 1–2 (2013)

21. Huang, G.: An insight into extreme learning machines: random neurons, random features and

kernels. Cogn. Comput. 6(3), 376–390 (2014)

22. Huang, G., Bai, X., Kasun, L.L.C., et al.: Local receptive fields based extreme learning

machine. In: Comp. Int. Mag. 10(2), 18–29 (2015)

23. Wang, G., Zhao, Y., Wang, D.: A protein secondary structure prediction framework based on

the extreme learning machine. Neurocomputing 72(1–3), 262–268 (2008)

24. Zhao, X., Wang, G., Bin, X., et al.: XML document classification based on ELM. Neurocom-

puting 74(16), 2444–2451 (2011)

25. Sun, Y., Yuan, Y., Wang, G.: An OS-ELM based distributed ensemble classification framework

in P2P networks. Neurocomputing 74(16), 2438–2443 (2011)

26. Wang, Z., Zhao, Y., Wang, G., et al.: On extending extreme learning machine to non-redundant

synergy pattern based graph classification. Neurocomputing 149, 330–339 (2015)

27. Perusich, K., Senior, M.: Using fuzzy connitive maps for knowledge management in a conflict

environment. TSMC. Part C 36(6), 810–821 (2006)

28. Pubchem. http://pubchem.ncbi.nlm.nih.gov

http://pubchem.ncbi.nlm.nih.gov

	Parallel Multi-graph Classification Using Extreme Learning Machine and MapReduce
	1 Introduction
	2 Related Works
	2.1 Multi-graph Learning
	2.2 Extreme Learning Machine Based on MapReduce
	2.3 Frequent Subgraphs Mining Based on MapReduce

	3 Preliminaries
	3.1 Problem Definition
	3.2 Extreme Learning Machine

	4 ME-MGC Algorithm
	4.1 Overview of ME-MGC
	4.2 Mining Frequent Subgraphs
	4.3 Mining Feature Subgraphs

	5 Performance Evaluation
	5.1 Precision and Recall
	5.2 Training Time
	5.3 Speedup and Scaleup
	5.4 Performance with Different Hidden Node Number

	6 Conclusions
	References


