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Abstract In this paper, a multi-layer online sequential extreme learning machine

(ML-OSELM) is proposed for image classification. ML-OSELM is an online sequen-

tial version of a recently proposed multi-layer extreme learning machine (ML-ELM)

method for batch learning. Existing ELM-based sequential learning methods, such

as state-of-the-art online sequential extreme learning machine (OS-ELM), were pro-

posed only for single-hidden-layer networks. A distinctive feature of the new method

is that it can sequentially train a multi-hidden-layer ELM network. Auto-encoders are

used to perform layer-by-layer unsupervised sequential learning in ML-OSELM. We

used four image classification datasets in our experiments and ML-OSELM performs

better than the OS-ELM method on all of them.

Keywords Deep learning ⋅ Extreme learning machine ⋅ Feature learning ⋅ Image

classification ⋅ Sequential learning

1 Introduction

Deep learning has attracted much attention in the past decade or so due to its suc-

cesses in various research domains such as pattern recognition, computer vision

and automatic speech recognition [1, 2]. Neural-network-based deep architectures

or deep neural networks, convolutional neural networks, and deep belief networks

are some of the commonly used deep learning architectures. Multiple layers in

deep architectures provide multiple non-linear transformations of the original raw
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input data for better representation learning. Deep networks can capture higher level

abstractions which most single layer networks are unable to achieve. Every layer in

deep networks may learn a different representation of the input by performing feature

or representation learning using efficient unsupervised or semi-supervised learning

algorithms.

Restricted Boltzmann machine (RBM) [3] and auto-encoders (AE) [4] have been

successfully applied for feature learning in deep networks. Examples of RBM-

based deep networks include deep belief networks (DBNs) [3] and deep Boltzmann

machines (DBMs) [5] while examples of auto-encoder-based deep networks are

stacked auto-encoders (SAEs) [4] and stacked denoising auto-encoders (SDAEs) [5].

Multiple RBMs are stacked to create DBN and DBM networks, whereas multiple

AEs are stacked to create SAE and SDAE networks. These methods have outper-

formed support vector machines, single-hidden-layer feed-forward neural networks

and traditional multi-layer neural networks on image classification, automatic speech

recognition, and other tasks. However, the time taken for learning deep networks on

these big dataset applications is generally long. Recently, multi-layer extreme learn-

ing machine (ML-ELM) [6], which is based on extreme learning machine theory [7,

8], has been proposed as a computationally efficient alternative to existing state-of-

the-art deep networks. ML-ELM learns significantly faster than existing deep net-

works, and obtains better or similar generalization performance to DBNs, SAEs,

SDAEs and DBMs. In ML-ELM, extreme learning machine auto-encoders (ELM-

AEs) are used for unsupervised layer-by-layer feature learning in the hidden layers.

The training of ELM-AEs is similar to that of regular ELMs except that the output

in ELM-AEs is the same as the input. The extreme learning machine (ELM) algo-

rithm [7, 8] is becoming popular in large datasets and online learning applications

due to its fast learning speed. ELM provides a single step least square estimation

(LSE) method for training single-hidden-layer feedforward network (SLFN) instead

of using iterative gradient descent methods such as backpropagation.

ML-ELM has been proposed for image classification and pattern recognition

applications, and the dimensions of the corresponding datasets are generally very

high. When constrained with limited memory, both single layer ELM and ML-ELM

are not suitable for big datasets. Therefore, batch learning or learning with complete

datasets in one step becomes challenging. Also, graphical processing units (GPUs),

widely used in scientific computing, generally have limited memory that cannot

accommodate big datasets. To overcome this problem, online sequential extreme

learning machine (OS-ELM) has been proposed for sequential learning from big

data streams [9]. OS-ELM has become one of the standard algorithms for sequential

learning due to its fast learning speed. Sequential or incremental learning algorithms

store the previously learned information and update themselves only with a chunk

of new data [10–13]. Once the chunk of data has been used for training, it may be

discarded. OS-ELM is preferable over batch ELM not only for their reduced com-

putational time on large datasets, but also for their ability to adapt to online learn-

ing applications. Note that OS-ELM is an online sequential version of the original

single-hidden-layer extreme learning machine.
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In this paper, to imbue ML-ELM with the online sequential learning advantages

of OS-ELM, we propose a sequential version of ML-ELM, which we term multi-

layer online sequential extreme learning machine (ML-OSELM). To our knowl-

edge, we are the first to develop an ELM that is both multi-layered and can learn

from data in an online sequential manner. In order to perform layer-by-layer unsu-

pervised sequential learning in ML-OSELM, an online sequential extreme learning

machine auto-encoder (OS-ELM-AE) is also proposed. ML-OSELM resembles deep

networks since it stacks on top of OS-ELM-AE to create a multi-layer neural network.

This paper is organized as follows. Section 2 discusses the preliminaries. Section 3

presents the details of the new multi-layer online sequential learning method. This is

followed by experiments for validating the performance of the proposed framework

in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Preliminaries

2.1 Extreme Learning Machine (ELM) and Online
Sequential ELM (OS-ELM) Methods

Extreme learning machine [7] provides a single step least squares error (LSE) esti-

mate solution for a single-hidden-layer feedforward network (SLFN). With ELM

there is no need to tune the hidden layer of the SLFN as in traditional gradient-based

algorithms. ELM randomly assigns weights and biases in the hidden layer while the

output weights connecting the hidden layer and the output layer are determined using

the LSE method.

Consider a q class training dataset {xi, yi}, i = 1,… ,N and yi ∈ Rq
. xi ∈ Rd

is a

d-dimensional data point. The SLFN output with L hidden nodes is given by

oi = ΣL
j=1𝛽jG(aj, bj, xi), i = 1,… ,N (1)

where aj and bj, j = 1,… ,L are the jth hidden node’s weights and biases respec-

tively, and they are assigned randomly, independent of the training data. 𝛽j ∈ Rq
is

the output weight vector connecting the jth hidden node to the output nodes and G(x)
can be any infinitely differentiable activation function such as the sigmoidal function

or radial basis function in the hidden layer.

The N equations in (1) can be written in a compact form as below.

O = H𝛽 (2)

where H =
⎡
⎢
⎢
⎣

G(a1, b1, x1) … G(aL, bL, x1)
⋮ … ⋮

G(a1, b1, xN) … G(aL, bL, xN)

⎤
⎥
⎥
⎦N×L
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is called the hidden layer output matrix, Hij represents the jth hidden node output

corresponding to the input xi, 𝛽 = [𝛽1, 𝛽2,… , 𝛽L]T and O = [o1, o2,… , oN]T .

In order to find the output weight matrix 𝛽 which minimizes the cost function

‖O − Y‖, a LSE solution of (2) is obtained as below

𝛽 = H†Y = (HTH)−1HTY (3)

where Y = [y1, y2,… , yN]T and H†
is the Moore-Penrose generalized inverse of

matrix H. This closed-form single step LSE solution is referred to as an extreme

learning machine [7].

Online sequential extreme learning machine (OS-ELM) [9] has been proposed

as an incremental version of the batch ELM. OS-ELM achieves better generaliza-

tion performance than the previous algorithms proposed for SLFN and at a much

faster learning speed. It can learn from data one example at a time as well as chunk-

by-chunk (with a fixed or varying chunk size). Only the newly arrived samples are

used at any given time so the examples that have already been used in the learning

procedure can be discarded. The learning in OS-ELM consists of two phases.

Step 1: Initialization

A small portion of training data n0 = {xi, yi}, i = 1,… ,N0 with N0 ∈ N is con-

sidered for initializing the network. The initial output weight matrix is calculated

according to the ELM algorithm by randomly assigning weights aj and bias bj,
j = 1,… ,L as follows

𝛽

(0) = P0HT
0 Y0 (4)

where P0 = (HT
0H0)−1 and H0 is the initial hidden layer output matrix.

It is recommended that the number of initial training samples should be greater

than or equal to the number of hidden neurons. With this setting the generalization

performance of online sequential ELM reaches that of the batch ELM.

Step 2: Sequential Learning

Upon the arrival of a new set of observations nk+1 = {xi, yi}, i = (Σk
l=0Nl) + 1,… ,

Σk+1
l=0Nl, i.e., the (k + 1)th chunk of data, we first compute the partial hidden layer

output matrix Hk+1. Nk+1 is the number of samples in the (k + 1)th chunk. Then by

using the output weight update equation shown below, we calculate the output weight

matrix 𝛽

k+1
with Yk+1 = [y(Σk

l=0Nl)+1,… , yΣk+1
l=0 Nl

]T .

Pk+1 = Pk − PkHT
k+1(I + Hk+1PkHT

k+1)
−1Hk+1Pk (5)

𝛽

(k+1) = 𝛽

(k) + Pk+1HT
k+1(Yk+1 − Hk+1𝛽

(k))

Each time a new chunk of data arrives, the output weight matrix is updated accord-

ing to (5). Note the one-by-one learning can be considered a special case of chunk-

by-chunk learning when the chunk size is set to 1 and the matrices in (5) become

vectors.
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2.2 Multi-layer Extreme Learning Machine (ML-ELM)

In multi-layer neural networks (ML-NN), the hidden layer weights are initialized by

layer-by-layer unsupervised learning and then the whole network is fine-tuned using

backpropagation. ML-NN performs better with layer-by-layer unsupervised learning

as compared to only using backpropagation. However, fine-tuning is avoided in such

deep networks using the recently proposed multi-layer extreme learning machine

(ML-ELM) method.

ML-ELM hidden layer weights are initialized randomly using extreme learning

machine auto-encoders (ELM-AEs). ELM-AE performs layer-by-layer unsupervised

learning. ELM-AE is trained differently from ELM in that the output is set to be

equal to the input, i.e., Y = X in (3) (see Fig. 1), and hidden layer weights and biases

are chosen to be orthogonal to the random weights in ELM. Orthogonalization of

these weights tends to result in better generalization performance. Note that ELM-

AE output weights are obtained analytically unlike RBMs and other auto-encoders,

which require iterative algorithms.

ELM-AE’s main objective is to transform features from input data space to lower

or higher dimensional feature space. Since ELM is a universal approximator [8],

ELM-AE is also a universal approximator.

Once the hidden layer weights are learnt using ELM-AE, the output weights con-

necting the last hidden layer to the output layer of ML-ELM are determined analyt-

ically using (3).

Fig. 1 ELM-AE uses the same architecture as original ELM with the exception that the target

output ‘x’ is the same as input. Here ‘g’ is the activation function, (a, b) represents random weights

and biases, and 𝛽 represents output weights



44 B. Mirza et al.

3 Proposed Method

In this section, we propose an online sequential version of the multi-layer extreme

learning machine, which we term multi-layer online sequential extreme learning

machine (ML-OSELM). In Sect. 3.1, we propose an online sequential extreme learn-

ing machine auto-encoder (OS-ELM-AE) for feature or representation learning from

sequential data streams. In Sect. 3.2, the proposed OS-ELM-AE is used to per-

form layer-by-layer unsupervised sequential learning in multi-layer extreme learn-

ing machines. The deep sequential learning in ML-OSELM is performed by stacking

several OS-ELM-AEs. Note that the network architectures of OS-ELM-AE and ML-

OSELM are identical to ELM-AE (Fig. 1) and ML-ELM (Fig. 2) respectively. In the

following, we will discuss how these architectures are used for sequential learning.

Fig. 2 The weights of each hidden layer in ML-ELM are determined using ELM-AE. (𝛽1)T is

responsible for feature learning at the first hidden layer of ML-ELM
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3.1 Online Sequential Extreme Learning Machine
Auto-Encoder (OS-ELM-AE)

OS-ELM-AE is a special case of OS-ELM where output is the same as the input at

every time step. The hidden layer weights are randomly generated, as in OS-ELM,

but in OS-ELM-AE orthogonal of random weights and biases are used. Learning in

OS-ELM-AE is done in two phases as described below.

Step 1: Initialization

The OS-ELM-AE is initialized with a portion of training data n0 = {xi, yi}, i =
1,… ,N0 with N0 ∈ N. The initial output weights 𝛽

(0)
of OS-ELM-AE is given as

𝛽

(0) = P0HT
0 X0 (6)

where X0 = [x1, x2,… , xN0
]T , P0 = (HT

0H0)−1 and H0 is the hidden layer output

matrix.

Step 2: Sequential Learning

With the arrival of a new chunk of training data, the recursive least square equation

in (5) is used, but with input set equal to output as below

Pk+1 = Pk − PkHT
k+1(I + Hk+1PkHT

k+1)
−1Hk+1Pk

𝛽

(k+1) = 𝛽

(k) + Pk+1HT
k+1(Xk+1 − Hk+1𝛽

(k)) (7)

The output weight 𝛽 in OS-ELM-AE is responsible of learning the transformation

from input space to feature space. Note that (7) is different from (5) since Yk+1 is

replaced with Xk+1.

3.2 Multi-layer Online Sequential Extreme Learning
Machine (ML-OSELM)

The OS-ELM-AE method proposed in the previous subsection is now applied to

layer-by-layer unsupervised sequential learning in a multi-layer online sequential

extreme learning machine. All the hidden layer are initialized using (6) and then

sequentially trained with the arrival of new data using (7). The hidden layer output

matrix corresponding to hidden layer m at time step k is given as

Hm
k = g((𝛽(k)m )THm−1

k )

where g can be any activation function that can be used with ELMs [7, 8] and 𝛽

(k)
m is

the output weight matrix obtained using OS-ELM-AE for layer m at time step k.
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The input or data layer can be considered as the zeroth hidden layer where m = 0.

Assuming a total of p hidden layers in the network, the output weight matrix in ML-

OSELM connecting the last hidden layer to the output layer is obtained as follows,

Step 1: Initialization

𝛽

(0) = P0HT
0 Y0 (8)

where H0 = Hp
0 = g((𝛽(0)p )THp−1

0 ).

Step 2: Sequential Learning

Pk+1 = Pk − PkHT
k+1(I + Hk+1PkHT

k+1)
−1Hk+1Pk

𝛽

(k+1) = 𝛽

(k) + Pk+1HT
k+1(Yk+1 − Hk+1𝛽

(k)) (9)

where Hk+1 = Hp
k+1 = g((𝛽(k+1)p )THp−1

k+1 ).
The training algorithm of ML-OSELM is summarized in Algorithm 1.

Algorithm 1 Multi-layer online sequential extreme learning machine (ML-OSELM)

algorithm

Input: {xi, yi}, xi ∈ Rd
and yi ∈ Rq

, i = 1,… ,N.
Output: 𝛽

(k+1)

Initialization:

Initial data set: no = {xi, yi}, xi ∈ Rd
and yi ∈ Rq

, i = 1,… ,N0 with N0 ∈ N.

for m = 1 → p do % number of hidden layers %

Hm
0 = g((𝛽(0)m )THm−1

0 )
where 𝛽

(0)
m is obtained using (6)

end for

𝛽

(0) = P0HT
0 Y0

where H0 = Hp
0

Sequential Learning:

for k = 0 → K do % number of time steps %

for m = 1 to p do
Hm

k+1 = g((𝛽(k+1)m )THm−1
k+1 )

where 𝛽

(k+1)
m is obtained using (7)

end for

𝛽

(k+1) = 𝛽

(k) + Pk+1HT
k+1(Yk+1 − Hk+1𝛽

(k))
where Hk+1 = Hp

k+1
end for
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4 Experiments

In this section, we use four image classification datasets for the performance evalua-

tion of ML-OSELM. The first dataset is CIFAR10 [14], the second CALTECH [15],

the third Olivetti faces [16] and the last UMIST [17]. CIFAR10 consists of 50,000

training and 10,000 testing samples belonging to 10 different categories. We use a

feature extraction pipeline as described in [18, 19]. The pipeline extracts 6 × 6 pixel

patches from the training set images, performs ZCA whitening of those patches, runs

K-means for 50 rounds, and then normalizes its dictionary to have zero mean and

unit variance. The final feature vector is of dimension G × G × K, where K is the dic-

tionary size and G × G represents the size of the pooling grid. We set K = 400 and

G = 4 in our experiments. We compare the results obtained by multi-layer OS-ELM

with that of single layer OS-ELM and also ML-ELM (batch mode) under identical

settings.

For the CALTECH dataset, we used 5 classes representing faces, butterfly,

crocodile, camera and cell phone. For each class, we set aside one third of the images

(up to 50) for testing and used the rest for training. The pixel values represent gray

scale intensities which are normalized to have zero mean and unit variance. Similar

to [20], we used fixed-size square images in all the categories even though the orig-

inal sizes may vary in different categories. The original images are rescaled so that

the longer side is of length 100, and then we used the inner 64 × 64 portions for our

experiments.

Out of 400 samples in Olivetti faces, we used 300 for training and 100 for testing.

Each sample is a 64 × 64 gray scale image. It represents 40 unique people with 10

images each, all frontal and with a slight tilt of the head.

The UMIST database has 565 total images of 20 different people with 19–36

images per person. 400 samples are used for training while 175 are used for testing.

Each sample is a 112 × 92 gray scale image. The subjects differ in race, gender and

appearances. The dataset covers various angles from left profile to right profile.

We conducted all the experiments on a high performance computer with Xeon-

E7-4870 2.4 GHz processors, 256 GBytes of RAM, and running Matlab 2013b. For

consistency, we used a three-hidden-layer (3000-4000-5000) network structure for

multi-layer ELM in all the datasets. For OS-ELM, the number of hidden neurons is

set to 5000, i.e., the same as the last layer in the multi-layer network. The sizes of

each initialization set and chunk of samples at each time step in sequential learning

are respectively set to 15000 and 500 for CIFAR10, 200 and 50 for CALTECH, 100

and 50 for Olivetti faces, and 150 and 50 for UMIST faces. Sigmoid is used as the

activation function throughout the experiments. The classification accuracy compar-

ison between ML-OSELM and OS-ELM on the four datasets is given in Table 1. The

results represent average accuracy over 20 runs with different initialization, training

and testing sets.

We use the two-sample t-test to see whether the results obtained by ML-OSELM

are statistically significantly better than those obtained by single layer OS-ELM. The

null hypothesis is rejected at 𝛼 = 0.01 for UMIST and CIFAR10 with p values of
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Table 1 Accuracy comparisons between multi-layer OS-ELM (ML-OSELM) and single-layer

OS-ELM

Dataset ML-OSELM OS-ELM

UMIST 98.03 96.51

Olivetti 92.81 90.23

CIFAR10 64.96 64.01

CALTECH 59.22 59.07

Table 2 Accuracy comparisons between multi-layer OS-ELM (ML-OSELM) and batch multi-

layer ML-ELM

Dataset ML-OSELM ML-ELM

UMIST 98.03 98.83
Olivetti 92.81 94.91
CIFAR10 64.96 66.41
CALTECH 59.22 59.57

0.0054 and 1.35E-5 respectively. For Olivetti faces, the null hypothesis is rejected

at 𝛼 = 0.05 with a p value of 0.043. For CALTECH, p value is 0.735 and the null

hypothesis is not rejected.

With these statistical significances test, ML-OSELM is found to be superior to

OS-ELM on the UMIST, CIFAR10, CALTECH datasets.

The aim of sequential learning methods is to achieve a performance similar to that

of batch learning methods when constrained with limited memory. It can be observed

from Table 2 that ML-OSELM results are competitive against those obtained by ML-

ELM (batch mode).

5 Summary and Future Work

We propose the multi-layer online sequential extreme learning machine (ML-

OSELM). Our empirical results show that by using multiple layers, our proposed

ML-OSELM outperforms the state-of-the-art single-layer online sequential ELM.

Further, our ML-OSELM achieves competitive results against a batch multi-layer

ELM that has the advantage of having the full dataset available for training.

As future work, we want to come up with a method to find the optimal num-

ber of hidden layers in ML-OSELM, incorporate concept drift learning into ML-

OSELM, and compare it against the recently proposed concept drift learning method

for single-hidden-layer ELMs [21].
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