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Abstract With growth of data sets, the efficiency of Extreme Learning Machine

(ELM) model combined with accustomed hardware implementation such as Field-

programmable gate array (FPGA) became attractive for many real-time learning

tasks. In order to reduce resource occupation in eventual trained model on FPGA,

it is more efficient to store fixed-point data rather than double-floating data in the

on-chip RAMs. This paper conducts the fixed-point evaluation of ELM for classifi-

cation. We converted the ELM algorithm into a fixed-point version by changing the

operation type, approximating the complex function and blocking the large-scale

matrixes, according to the architecture ELM would be implemented on FPGA. The

performance of classification with single bit-width and mixed bit-width were evalu-

ated respectively. Experimental results show that the fixed-point representation used

on ELM does work for some application, while the performance could be better if

we adopt mixed bit-width.

Keywords Extreme Learning Machine (ELM) ⋅ Fixed-point evaluation ⋅
Classification

1 Introduction

Due to advances in technology, the size and dimensionality of data sets used in

machine learning tasks have grown very large and continue to grow by the day. For

this reason, it is important to have efficient computational methods and algorithms

that can be applied on very large data sets, such that it is still possible to complete

the machine learning tasks in reasonable time [8].

Extreme Learning Machine (ELM) is well known for its computational efficiency,

making it well-suited for large data processing. However, it is still worth speeding
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up its implementation in many real-time learning tasks. Hardware implementation is

one of the most popular approaches, and two types of reconfigurable digital hardware

have been adopted, i.e., Field-programmable gate array device (FPGA) and complex

programmable logic device (CPLD) [3]. As rival application-specific integrated cir-

cuit, FPGA can attain performances and logic densities at lower development costs

and privilege computational optimization over area optimization, thus many of previ-

ous works [6] implementing other machine learning algorithms have applied FPGA.

The parameters, such as weights and Bias of hidden nodes, are stored in on-chip

RAM during processing and are swapped out to off-chip memory after processing.

Since it is too expensive to support a large number of floating-point units on chip

and store values using the standard double precision floating-point representations

in on-chip RAMs, most of these works has adopted fixed-point data. Bit-widths with

integral multiple of bytes are convenient to align with other components (such as IP

cores and user interfaces) and easier to design. Recent work [2] found that very low

precision storage is sufficient not just for running trained networks but also for train-

ing them by training the Maxout networks with three distinct storing formats: floating

point, fixed point and dynamic fixed point. However, the efficiency of ELM model

combined with FPGA adopting fixed bit-width is not very clearly.

Motivated by this gap between workloads and state-of-the-art computing plat-

forms, we evaluate fixed-point implementation of ELM for classification. At first,

we present the architecture of FPGA. Then with this in mind, we converted the

ELM algorithm into a fixed-point version by changing the operator type, approxi-

mating the complex function and blocking the large-scale matrixes. Finally, we eval-

uated the performance of classification with single bit-width and mixed bit-width

respectively.

Experiments are performed on a large data setSatImage. Results of the experi-

ments show it does work for some application to use the fixed-point representation

on ELM, however, considering resource occupation, the performance of implemen-

tation adopting single bit-width is not so optimistic, and it could be improved if we

adopt mixed bit-width.

The organization of this paper is as follows. Section 2 introduces the algorithm

of ELM. Section 3 shows the specific procedure of fixed-point conversion for ELM

including changing the operator type, approximating the complex function and

blocking the large-scale matrixes. Section 4 presents our experiment and the results

of simulations adopting single bit-width and mixed bit-width respectively. Finally,

the results are discussed and an overview of the work in progress is given.

2 Extreme Learning Machine (ELM)

ELM was proposed for generalized single-hidden layer feedforward networks where

the hidden layer need not be neuron alike. It offers three main advantages: low

training complexity, the minimization of a convex cost that avoids the presence of



Fixed-Point Evaluation of Extreme Learning Machine for Classification 29

local minima, and notable representation ability. The output function of ELM for

generalized SLFNs is

fL (x) =
L∑

i=1
𝛽ihi (x) = h (x) 𝛽 , (1)

where 𝛽 =
[
𝛽1,… , 𝛽L

]T
, is the output weight vector between the hidden layer of L

nodes to the m1 output nodes, and h(x) = [h1(x),… , hL(x)] is ELM nonlinear fea-

ture mapping, hi(x) is the output of the ith hidden node output. In particular, in real

applications hi(x) can be

hi(x) = G(ai, bi, x), ai ∈ Rd, bi ∈ R . (2)

Basically, ELM trains an SLFN in two main stages: (1) random feature mapping

and (2) linear parameters solving. In the first stage, ELM randomly initializes the

hidden node parameters (a, b) to map the input data into a feature space by nonlinear

piecewise continuous activation function. The most often used activation function is

sigmoid function, the formula is

G (a, b, x) = 1
1 + exp (− (ax + b))

. (3)

In the second stage of ELM learning, the weights connecting the hidden layer and

the output layer, denoted by 𝛽, are solved by minimizing the approximation error in

the squared error sense:

min𝛽∈RL×m‖H𝛽 − T‖2 , (4)

where H is the hidden layer output matrix (randomized matrix):

H =
⎡
⎢
⎢⎣

h
(
x1
)

⋮
h
(
xN

)
⎤
⎥
⎥⎦
=

⎡
⎢
⎢⎣

h1
(
x1
)
⋯ hL

(
x1
)

⋮ ⋮ ⋮
h1

(
xN

)
⋯ hL

(
xN

)
⎤
⎥
⎥⎦
, (5)

and T is the training data target matrix:

T =
⎡
⎢
⎢⎣

tT1
⋮
tTN

⎤
⎥
⎥⎦
=

⎡
⎢
⎢⎣

t11 ⋯ t1m
⋮ ⋮ ⋮
tN1 ⋯ tNm

⎤
⎥
⎥⎦
, (6)

where ‖⋅‖ denotes the Frobenius norm.

The optimal solution to (4) is given by

𝛽∗ = H†T , (7)

where H†
denotes the MoorePenrose generalized inverse of matrix H.
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A positive value C can be added to the diagonal of HTH or HHT
of the Moore-

Penrose generalized inverse H the resultant solution is more stable and tends to have

better generalization performance [4]. Thus

𝛽∗ = (HTH + 1∕C)−1HTT , (8)

where I is an identity matrix of dimension L.

Overall, the ELM algorithm is then:

ELM Algorithm: Given a training set ℵ = {
(
xi, ti

)
|xi ∈ Rn, ti ∈ Rm, i =

1,…, N}, hidden node output function G(a, b, x), and the number of hidden

nodes L,

1. generate random hidden nodes (random hidden node parameters) (ai, bi), i =
1,… ,L.

2. Calculate the hidden layer output matrix H.

3. Calculate the output weight vector 𝛽∗ = (HTH + 1∕C)−1HTT .

3 Fixed-Point Conversion for ELM

Since FPGAs attain performances and logic densities at lower development costs and

the resource consumption can be further reduced with fixed-point data, we attempt

to implement the ELM algorithm for classification on FPGA using fixed-point for-

mat, the overall FPGA architecture of ELM algorithm for classification is shown in

Fig. 1. According to previous works [7], the QR decomposition adopts float-point

format while the multiplication of matrix adopts fixed-point format. In this work, we

simulate the behaviour of FPGA adopting fixed bit-width on Matlab environment.

Figure 2 shows the execution flow.

In the beginning of simulation, we adjust the radix point position shown in Fig. 3

[6] according to the corresponding range of data. For example, since the range of

InputWeight matrix shown in Fig. 2 is approximately [−1, 1], the optimal bit-width

of integer part is 1 and cannot be allowed any further reduction or increment. This

way can make the precision better when considering a fixed-point representation for

real numbers, the integer part of a number mainly influences the representation scope

while the fractional part mainly decides the precision.

In the procedure of fixed-point conversion, we choose Piecewise Linear Approx-

imation of nonlinearity algorithm (PLA) [1] as the method of sigmoid function

approximation, this method uses linear functions and can be implemented on FPGA

easily. PLA has uniform structures like Table 1. For the main operations like matrix

multiplication in ELM, parallel multiply-accumulators are often used on FPGA. The

operands are stored on distributed block RAM, which bit-width is n bits. A 2n bits

partial product can be produced by the n bits multiplier. An accumulator with larger

bit-width can be used to accumulate the partial product, avoiding the precision lost

and not increasing much logic cost at the same time. So, we often chose a bit-width
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Fig. 1 FPGA architecture of ELM algorithm for classification

in the range of n bits to 2n bits for the adder and the accumulator. Only the bit-width

of the final result which needs to store back to on-chip RAM is constrained to n

bits. The partition of the integer part and fractional part for the result depends on

the representation range of the data, which must be studied when converting to the

fixed-point hardware.

Under the implementation assumption above, it is more reasonable that maintain-

ing the precision of a block matrix multiplication instead of converting the partial

product for each element. Assuming that we can chose enough wide bit-width for

the accumulation operation, thus we only need to cut down the bit-width to n bits

for the result of a block multiplication when simulating the fixed-point operations.

From this observation, we converted all matrix operations in ELM to a loop code of

block matrix operations and converted each element of the block result to a fixed-

point format. The size of block matrix is set 64. The flow diagram of computation is

shown in Fig. 4.
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Fig. 2 Execution flow of ELM for classification
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Fig. 3 Fixed-point data

format

Integer 

part: m bits fractional part

radix point

bit-width: n bits

× × × × × × × × ×        × 

sign bit

Table 1 Piecewise linear

approximation algorithm
x y
0 ≤ |x| < 1 y = (|x| + 2) ∕4
1 ≤ |x| < 19∕8 y = (|x| + 5) ∕8
19∕8 ≤ |x| < 5 y = (|x| + 27) ∕32
|x| ≥ 5 y = 1
x < 0 y = 1 − y

Fig. 4 Flow diagram of

block matrix multiplication

Block matrix(64x64)

Final result matrix

×

Block matrix(64x64)

Accumulator+

 temporary variable

4 Experiment and Results

All the simulations are conducted in MATLAB R2009a environment on an ordinary

PC with Intel(R) Core(TM) i3-2120 and 4 GB RAM.

The SatImage dataset with 36 input attributes and 6 class label is chosen as exper-

imental Dataset. It can be downloaded from the official ELM website with pre-scaled

values [6]. 3217 instances are used as training data and the rest 3218 of the instances

are used for testing.



34 Y. Xu et al.

Fig. 5 Classification

accuracy with different C
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ELM

In ELM, the number of output nodes is equal to the number of classes. For the

SatImage data set used in this paper, there are 6 classes and, thus, ELM has 6 output

nodes. The activation function used in ELM in our experiment is sigmoid function.

In the implementation of ELM, it is found that the generalization performance of

ELM is not sensitive to the dimensionality of the feature space (L) and good perfor-

mance can be reached as long as L is large enough. In our simulations, L = 1000 is

set for all tested cases no matter whatever size of the training data sets. And since

training data sets are very large N ≫ L, we apply solutions (11) in Sect. 2 to reduce

computational costs [5].

The hidden node parameters ai and bi are not only independent of the training

data but also of each other. Unlike conventional learning methods which MUST see

the training data before generating the hidden node parameters, ELM could generate

the hidden node parameters before seeing the training data. Thus, a set of random

values are produced to be applied in all of our experiment.

And the value C can affect the performance to a large extent. In our experiment,

we first trained the ELM classification problem with different C in float-point algo-

rithm. And the Fig. 5 shows the classification accuracy with different value C. It

can be seen that the accuracy with C being set 50 is much better than other chosen

value. And in order to make C expressed in fixed-point algorithm more accurate, we

ignored the possibility that the absolute value of C can be set too large. So, in the

following experiment, we applied the fixed value with C = 50.

4.1 Single Bit-Width

The Fig. 6 shows the classification accuracy applying different fixed bit-width. It

can be seen that the accuracies with the bit-width set 16 bits, 24 bits and 32 bits

are all bad, however the performance in the bit-width of 16 bits is better than 24
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Fig. 6 Prediction accuracy

with different bit-widths
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bits, it means that the representation domain constraint throws away the redundant

and useless information of the high-dimensional input data. The performance in the

bit-widths of 48 bits and 64 bits indicate that fixed-point representation used on

ELM does work for some application. In order to balance classification accuracy

and resource occupation in the eventual trained model, we can only choose 48 bits

as the optimal bit-width on FPGAs if we adopt single bit-width. It is obvious that

the result is not optimistic.

To solve this problem, we analyzed the result of each operation and tracked the

source where error comes from. In this subsection, we computed the Forbenius

Norms (FN)

‖A − B‖F =

√√√√
n∑

i=1

n∑

j=1

|||aij − bij
|||
2

(9)

of error matrixes which can weigh the degree of error, the error matrixes are sub-

traction between float-point and fixed-point data from the output generated by each

execution stage shown in Fig. 2, the result of computation is presented in Fig. 7. It

can be seen that the error mainly begins with the operation of large scale matrix mul-

tiplication generating DATA4.mat and is propagated in latter operations. Because of

the linear nature of the operations and the dynamic range compression of the sig-

moid generating DATA7.mat, quantization errors tend to propagate sub-linearly and

not cause numerical instability [9].
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Fig. 7 FN with different bit-widths

Fig. 8 Prediction accuracy

with different mixed

bit-widths at DATA4.mat
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4.2 Mixed Bit-Widths

In order to improve the performance, we re-trained the ELM by adopting mixed bit-

widths which can change bit-width at a special point. The prediction accuracy of

training with mixed bit-widths applied at the point computing DATA4.mat is shown

in Fig. 8, it can be seen that we can also get attractive result even we adopt mixed
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Fig. 9 FN with mixed

bit-widths 16&48
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bit-widths which can decrease the occupation of memory resource. According to the

FN of the optimal mixed bit-widths (16&48) shown in Fig. 9, the propagated error

produced by bit-width of 16 bits can be improved through changing the bit-width

into 48 bits and would not affect the performance.

5 Conclusion

This research has tackled the fixed-point evaluation of ELM for classification. We

conduct the conversion of fixed-point for ELM and then make simulations on Matlab.

Experimental results show that the resource occupation of implementation adopting

single bit-width is too large, and the performance could be improved if we adopt

mixed bit-width. Our results can act as a guide to inform the design choices on bit-

widths when implementing ELM in FPGA documenting clearly the trade-off in accu-

racy. However, the use of mixed bit-width makes the computing resource rise, we

need to conduct the further evaluation of resource occupation and then implement

the ELM for classification on FPGA with the parameter discussed in this work.
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