
Distributed Weighted Extreme Learning
Machine for Big Imbalanced Data Learning

Zhiqiong Wang, Junchang Xin, Shuo Tian and Ge Yu

Abstract Extreme Learning Machine (ELM) and its variants have been widely used

in many big data learning applications where raw data with imbalanced class dis-

tribution can be easily found. Although there have been several works solving the

machine learning and robust regression problems using MapReduce framework,

they need multi-iterative computations. Therefore, in this paper, we propose a novel

Distributed Weighted Extreme Learning Machine based on MapReduce framework,

named DWELM, which can learn the big imbalanced training data efficiently. Firstly,

after indepth analyzing the properties of centralized Weighted ELM (WELM), it can

be found out that the matrix multiplication operators in WELM are decomposable.

Next, a DWELM based on MapReduce framework can be developed, which can first

calculate the matrix multiplications effectively using two MapReduce Jobs in paral-

lel, and then calculate the corresponding output weight vector with centralized com-

puting. Finally, we conduct extensive experiments on synthetic data to verify the

effectiveness and efficiency of our proposed DWELM in learning big imbalanced

training data with various experimental settings.

Keywords Weighted ELM ⋅ Big imbalanced data ⋅ MapReduce framework ⋅
In-mapper combining

Z. Wang (✉) ⋅ S. Tian

Sino-Dutch Biomedical & Information Engineering School, Northeastern

University, Shenyang, China

e-mail: wangzq@bmie.neu.edu.cn

S. Tian

e-mail: xinjunchang@ise.neu.edu.cn

J. Xin ⋅ G. Yu

College of Information Science & Engineering, Northeastern University,

Shenyang, China

e-mail: dyhswdza@sina.com

G. Yu

e-mail: yuge@ise.neu.edu.cn

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 1,

Proceedings in Adaptation, Learning and Optimization 6,

DOI 10.1007/978-3-319-28397-5_25

319

320 Z. Wang et al.

1 Introduction

With the proliferation of mobile devices, artificial intelligence, web analytics, social

media, internet of things, location based services and other types of emerging tech-

nologies, the amount of data, and the rate at which it’s being accumulated, is rising

exponentially. For examples, Facebook users share 2.5 billion unique pieces of con-

tent, hit the “like” button 2.7 billion times and upload 300 million photos a day. Thus,

the era of big data has arrived [1, 2].

Extreme Learning Machine (ELM) [3–8] has recently attracted increasing atten-

tion from more and more researchers due to the characteristics of excellent general-

ization performance, rapid training speed and little human intervene [9]. ELM and

its variants have been extensively used in many fields, such as text classification,

image recognition, handwritten character recognition, mobile object management

and bioinformatics [10–21].

Recently, as important variants of ELM, some Distributed ELM (DELM)

[22–25] have been proposed to resolve the problem of big data learning, and a cen-

tralized Weighted ELM (WELM) [26] has been proposed to deal with data with

imbalanced class distribution. However, neither DELM nor WELM can cope with

big imbalanced training data efficiently since they only consider one aspect of big

imbalanced data, though raw data with imbalanced class distribution can be found

in many big data learning applications [26]. Therefore, in this paper, a Distributed

Weighted Extreme Learning Machine (DWELM) which combines the advantages

of both DELM and WELM based on distributed MapReduce framework [27–29] is

proposed, to improve the scalability of centralized WELM and make it learn the big

imbalanced data efficiently. The contributions of this paper are as follows.

∙ We prove theoretically that the matrix multiplication operators in centralized

WELM are decomposable.

∙ A novel Distributed Weighted Extreme Learning Machine based on MapReduce

framework (DWELM) is proposed to learn big imbalanced data efficiently.

∙ Last but not least, our extensive experimental studies using synthetic data show

that our proposed DWELM can learn big imbalanced data efficiently, which can

fulfill the requirements of many real-world big data applications.

The rest of the paper is organized as follows. Section 2 briefly reviews the back-

ground for our work. The theoretical foundation and the computational details of

the proposed DWELM are introduced in Sect. 3. The experimental results to show

the effectiveness of the proposed approaches are reported in Sect. 4. Finally, Sect. 5

concludes this paper.

Distributed Weighted Extreme Learning Machine . . . 321

2 Background

2.1 Weighted Extreme Learning Machine

ELM [3, 4] has been originally developed for single hidden-layer feedforward neural

networks (SLFNs) and then extended to the “generalized” SLFNs where the hidden

layer need not be neuron alike [5, 6]. ELM first randomly assigns the input weights

and the hidden layer biases, and then analytically determines the output weights of

SLFNs. It can achieve better generalization performance than other conventional

learning algorithms at an extremely fast learning speed. Besides, ELM is less sensi-

tive to user-specified parameters and can be deployed faster and more conveniently

[7, 8]. Recently, a centralized Weighted ELM (WELM) [26] has been proposed to

deal with data with imbalanced class distribution.

For N arbitrary distinct samples (𝐱j, 𝐭j), where 𝐱j = [xj1, xj2,… , xjn]T ∈ ℝn
and

𝐭j = [tj1, tj2,… , tjm]T ∈ ℝm
, standard SLFNs with L hidden nodes and activation

function g(x) are mathematically modeled as

L∑

i=1
𝛽igi(𝐱j) =

L∑

i=1
𝛽ig(𝐰i ⋅ 𝐱j + bi) = 𝐨j (j = 1, 2,… ,N) (1)

where 𝐰i = [wi1,wi2,… ,win]T is the weight vector connecting the ith hidden node

and the input nodes, 𝛽i = [𝛽i1, 𝛽i2,… , 𝛽im]T is the weight vector connecting the ith
hidden node and the output nodes, bi is the threshold of the ith hidden node, and

𝐨j = [oj1, oj2,… , ojm]T is the jth output of the SLFNs [3].

The standard SLFNs with L hidden nodes and activation function g(x) can approx-

imate these N samples with zero error. It means
∑L

j=1 ||𝐨j − 𝐭j|| = 0 and there exist

𝛽i, 𝐰i and bi such that

L∑

i=1
𝛽ig(𝐰i ⋅ 𝐱j + bi) = 𝐭j (j = 1, 2,… ,N) (2)

The equation above can be expressed compactly as follows:

𝐇𝛽 = 𝐓 (3)

where 𝐇 is called the hidden layer output matrix of the neural network and the ith
column of 𝐇 is the ith hidden node output with respect to inputs 𝐱i, 𝐱2,… , 𝐱N .

To maximize the marginal distance and to minimize the weighted cumulative

error with respect to each sample, we have an optimization problem mathematically

written as

322 Z. Wang et al.

Minimize ∶ 1
2
‖𝛽‖2 + C𝐖 1

2

N∑
i=1

‖‖𝜉i‖‖
2

Subject to ∶ 𝐡(𝐱i)𝛽 = 𝐭Ti − 𝜉

T
i

(4)

where C is the regularization parameter to represent the trade-off between the min-

imization of weighted cumulative error and the maximization of the marginal dis-

tance. 𝜉i, the training error of sample 𝐱i, is caused by the difference of the desired

output 𝐭i and the actual output 𝐡(𝐱i)𝛽. 𝐖 is a N × N diagonal matrix associated with

every training sample 𝐱i, and

Wii = 1∕#(𝐭i) (5)

or

Wii =
{

0.618∕#(𝐭i) if #(𝐭i) > AVG
1∕#(𝐭i) if #(𝐭i) ≤ AVG (6)

where #(𝐭i) is the number of samples belonging to class 𝐭i, and AVG is the average

number of samples per class.

According to Karush-Kuhn-Tucker (KKT) theorem [30], we have the following

solutions for Weighted ELM (WELM):

𝛽 =
(𝐈
𝜆

+𝐇T𝐖𝐇
)−1

𝐇T𝐖𝐓 (7)

when N is large or

𝛽 = 𝐇T
(𝐈
𝜆

+𝐖𝐇𝐇T
)−1

𝐖𝐓 (8)

when N is small.

2.2 MapReduce Framework

MapReduce is a simple and flexible parallel programming model initially proposed

by Google for large scale data processing in a distributed computing environment

[27–29], with one of its open source implementations Hadoop.
1

The typical proce-

dure of a MR job is as follows: First, the input to a MR job starts as the dataset stored

on the underlying distributed file system (e.g. GFS [31] and HDFS [32]), which is

split into a number of files across machines. Next, the MR job is partitioned into

many independent map tasks. Each map task processes a logical split of the input

dataset. The map task reads the data and applies the user-defined map function on

each record, and then buffers the resulting intermediate output. This intermediate

data is sorted and partitioned for reduce phase, and written to the local disk of the

machine executing the corresponding map task. After that, the intermediate data

1
http://hadoop.apache.org/.

http://hadoop.apache.org/

Distributed Weighted Extreme Learning Machine . . . 323

files from the already completed map tasks are fetched by the corresponding reduce

task following the “pull” model (Similarly, the MR job is also partitioned into many

independent reduce tasks). The intermediate data files from all the map tasks are

sorted accordingly. Then, the sorted intermediate data is passed to the reduce task.

The reduce task applies the user-defined reduce function to the intermediate data

and generates the final output data. Finally, the output data from the reduce task is

generally written back to the corresponding distributed file system.

3 Distributed Weighted Extreme Learning Machine

3.1 Preliminaries

In big imbalanced data learning applications, the number of training records is much

larger than the dimensionality of the feature space, that is to say, N ≫ L. According

to N ≫ L, the size of 𝐇T𝐖𝐇 is much smaller than that of 𝐖𝐇𝐇T
. Therefore, it is

a better choice of using Eq. (7) to calculate the output weight vector 𝛽 in WELM.

Similar with ELM
∗

[23], we analyze the properties of centralized WELM, and find

the part that can be processed in parallel, and then transplant it into MapReduce

framework. In this way, we can make WELM extend to the scale of big imbalance

data efficiently. Let 𝐔 = 𝐇T𝐖𝐇, 𝐕 = 𝐇T𝐖𝐓, and we can get,

𝛽 =
(𝐈
𝜆

+ 𝐔
)−1

𝐕 (9)

According to the matrix multiplication operator, we have

𝐔 = 𝐇T𝐖𝐇 =
N∑
k=1

h(𝐱k)TWkkh(𝐱k) (10)

Then, we can further get,

uij =
N∑

k=1
Wkk × g(𝐰i ⋅ 𝐱k + bi) × g(𝐰j ⋅ 𝐱k + bj) (11)

Similarly, according to the matrix multiplication operator, we also have

𝐕 = 𝐇T𝐖𝐓 =
N∑
i=1

h(𝐱k)TWkk𝐭k (12)

Then, we can further get,

324 Z. Wang et al.

vij =
N∑

k=1
Wkk × g(𝐰i ⋅ 𝐱k + bi) × tkj (13)

According to Eq. (11), we know that the item uij in matrix 𝐔 can be expressed by

the summation of Wkk × g(𝐰i ⋅ 𝐱k + bi) × g(𝐰j ⋅ 𝐱k + bj). Here, Wkk is the weight of

training sample (𝐱k, 𝐭k), and hki = g(𝐰i ⋅ 𝐱k + bi) and hkj = g(𝐰j ⋅ 𝐱k + bj) are the ith
and jth elements in the kth row h(𝐱k) of the hidden layer output matrix 𝐇, respec-

tively. Similarly, according to Eq. (13), we know that item vij in matrix 𝐕 can be

expressed by the summation of Wkk × g(𝐰i ⋅ 𝐱k + bi) × tkj. Here, Wkk is the weight of

training sample (𝐱k, 𝐭k), hki = g(𝐰i ⋅ 𝐱k + bi) is the ith element in the kth row h(𝐱k)
of the hidden layer output matrix 𝐇, and tkj is the jth element in the kth row 𝐭k of

matrix 𝐓 which related to (𝐱k, 𝐭k).
The variables involved in equations of matrices 𝐔 and 𝐕 include: Wkk, hki, hkj and

tkj. According to Eqs. (5) and (6), to calculate the corresponding weightWkk related to

training sample (𝐱k, 𝐭k), we must first get the number #(𝐭k) of training samples which

belongs to the same class as 𝐭k. The numbers of training samples in all classes can be

easily calculated in one MR job. At the same time, the remaining three variables hki,
hkj and tkj only have relationship with training sample (𝐱k, 𝐭k) itself, and have nothing

to do with the other training samples, so the calculation of matrices 𝐔 and 𝐕 can be

done in another MR Job.

To sum up, the calculation process of matrices 𝐔 and 𝐕 is decomposable, there-

fore, similar to ELM
∗

[23], we can realize the parallel computation of matrices 𝐔
and 𝐕 by using MapReduce framework, to break through the limitation of single

machine, so as to improve the efficiency of which WELM learns big imbalanced

training data.

3.2 DWELM

The process of DWELM is shown in Algorithm 1. Firstly, we randomly generate L
pairs of hidden node parameters (𝐰i, bi) (Lines 1–2). And then, using a MR Job to

count the number of training samples contained in each class (Line 3). Next, using

another MR Job to calculate matrices 𝐔 and 𝐕 according to the input parameters

and randomly generate parameters (Line 4). Finally, we solve output weight vector

𝛽 according to the Eq. 7 (Line 5).

Algorithm 1 DWELM

for i = 1 to L do
Randomly generate hidden node parameters (𝐰i, bi)

Calculate all #(𝐭k) using Algorithm 2

Calculate 𝐔 = 𝐇T𝐖𝐇, 𝐕 = 𝐇T𝐖𝐓 using Algorithm 3

Calculate the output weight vector 𝛽 = (𝐈∕𝜆 + 𝐔)−1 𝐕

Distributed Weighted Extreme Learning Machine . . . 325

Here are the specific processes of two MR Jobs involved in DWELM:

The process of the 1st MR Job is shown in Algorithm 2. The algorithm includes

two classes, Class Mapper (Lines 1–10) and Class Reducer (Lines 11–16). Class

Mapper contains three methods, Initialize (Lines 2–3), Map (Lines 4–7) and Close

(Line 8–10), while Class Reducer only contains one method, Reduce (Lines 12–16).

In the Initialize method of Mapper, we initialize one array, c, which is used to store

the intermediate summation of training samples contained in each class (Line 3). In

the Map method of Mapper, firstly, we analyze the training sample s, and resolve the

class which sample s belongs to (Lines 5–6). Then, adjust the corresponding value

in the array c (Line 7). In the Close method of Mapper, the intermediate summations

stored in c are emitted by the mapper (Lines 9–10). In the Reduce method of Reducer,

firstly, we initialize a temporary variable sum (Line 13). And then, we combine the

intermediate summations of different mappers which have the same Key, and fur-

thermore, get the final summation of the corresponding element of the Key (Lines

14–15). Finally, we store the results into the distributed file system (Line 16).

Algorithm 2 The 1st MR Job of DWELM

class MAPPER

method INITIALIZE()

c = new ASSOCIATIVEARRAY

method MAP(sid id, sample s)
𝐭 =ParseT(s)
num =Class(𝐭)
c[num] = c[num] + 1

method CLOSE()

for i = 1 to c.Length() do
context.write(cid i, count c[i])

class REDUCER

method REDUCE(cid id, counts [c1, c2,…])
sum = 0
for all count c ∈ [c1, c2,…] do

sum = sum + c
context.write(cid id, count sum)

The process of the 2nd MR Job is shown in Algorithm 3. The algorithm includes

two classes, Class Mapper (Lines 1–21) and Class Reducer (Lines 22–27). Class

Mapper contains three methods, Initialize (Lines 2–4), Map (Lines 5–15) and Close

(Line 16–21), while Class Reducer only contains one method, Reduce (Lines 23–

27). In the Initialize method of Mapper, we initialize two arrays, u and v, which

are used to store the intermediate summations of the elements in matrices 𝐔 and 𝐕
respectively. In the Map method of Mapper, firstly, we initialize a local variable h
(Line 6). Then, we resolve the input training sample s, dividing s into training feature

𝐱 and its corresponding training result 𝐭 (Line 7). Again, according to training result

𝐭 and the result of Algorithm 2, we get the corresponding weight w of s (Line8).

And then calculate the corresponding hidden layer output vector h(𝐱) (Lines 9–10).

Finally, separately calculate local summations of the elements in matrices 𝐔 and 𝐕,

326 Z. Wang et al.

and save the result to local variables u and v (Lines 11–15). In the Close method of

Mapper, the intermediate summations stored in u and v are emitted by the mapper

(Lines 17–21). In the Reduce method of Reducer, firstly, we initialize a temporary

variable uv (Line 24). And then, we combine the intermediate summations which

have the same Key, and furthermore, get the final summation of the corresponding

element of the Key (Lines 25–26). Finally, we store the results into the distributed

file system (Line 27).

Algorithm 3 The 2nd MR Job of DWELM

class MAPPER

method INITIALIZE()

u = new ASSOCIATIVEARRAY

v = new ASSOCIATIVEARRAY

method MAP(sid id, sample s)
h = new ASSOCIATIVEARRAY

(𝐱, 𝐭) =ParseAll(s)
w =Weight(Counts[Class(𝐭)])
for i = 1 to L do

h[i] = g(𝐰i ⋅ 𝐱 + bi)
for i = 1 to L do

for j = 1 to L do
u[i, j] = u[i, j] + w × h[i] × h[j]

for j = 1 to m do
v[i, j] = v[i, j] + w × h[i] × 𝐭[j]

method CLOSE()

for i = 1 to L do
for j = 1 to L do

context.write(triple (
′U′

, i, j), sum u[i, j])
for j = 1 to m do

context.write(triple (
′V ′

, i, j), sum v[i, j])
class REDUCER

method REDUCE(triple p, sum [s1, s2,…])
uv = 0
for all sum s ∈ [s1, s2,…] do

uv = uv + s
context.write(triple p, sum uv)

4 Performance Evaluation

4.1 Experimental Platform

All the experiments are running on a cluster with 9 computers which are connected

in a high speed Gigabit network. Each computer has an Intel Quad Core 2.66 GHZ

CPU, 4 GB memory and CentOS Linux 5.6. One computer is set as the Master node

Distributed Weighted Extreme Learning Machine . . . 327

Table 1 Experimental parameters

Parameter Range and default

Dimensionality (D) 10, 20, 30, 40, 50
Number of hidden nodes (Nh) 100, 150, 200, 250, 300

Number of records (Nr) 3M(1.4G), 4M(1.86G), 5M(2.3G), 6M(2.8G),

7M(3.27G)

Number of classes (Nc) 5, 10, 15, 20, 25

Imbalance ratio (R) 0.3, 0.4, 0.5, 0.6, 0.7

Number of nodes (Nn) 1, 2, 3, 4, 5, 6, 7, 8

and the others are set as the Slave nodes. We use Hadoop version 0.20.2 and configure

it to run up to 4 map tasks or 4 reduce tasks concurrently per node. Therefore, at any

point in time, at most 32 map tasks or 32 reduce tasks can run concurrently in our

cluster.

Because DWELM is MapReduce-based implementation of centralized WELM,

and it does not change any formula in WELM, so it does not have any effect on the

classification accuracy rate. In addition, the other learning algorithms of MapRe-

duce solutions such as SVM needs many iterations to obtain the final results. Our

DWELM only use two MapReduce job to gain the results. So, the performance

of two MapReduce jobs is obviously optimal to several MapReduce computations.

Even though we compare the SVM and DWELM, the results of our DWELM are

better than SVM. Therefore, we only evaluate the training time of DWELM in the

experiments. Table 1 summarizes the parameters used in our experimental evalua-

tion, along with their ranges and default values shown in bold. In each experiment,

we vary a single parameter, while setting the remainders to their default values. The

imbalance ratio which quantitatively measure the imbalance degree of a dataset is

defined as Min(#(𝐭i))∕Max(#(𝐭i)) [26].

4.2 Experimental Results

Firstly, we investigate the influence of the training data dimensionality. As shown in

Fig. 1, with the increase of training data dimensionality, the training time of DWELM

increase slightly. Increase of training data dimensionality leads to the running time

for calculating the corresponding row hk of hidden layer output matrix 𝐇 in Mapper

slightly increases, then leads to the training time of DWELM slightly increases.

Secondly, we investigate the influence of the number of hidden nodes. As shown

in Fig. 2, with the increase of the number of hidden nodes, the training time of

DWELM increases. Increasing of the number of hidden nodes leads to an increase

of the dimensionality of hidden layer output matrix 𝐇, and indirectly leads to the

increase of the dimensionality of the intermediate matrices 𝐔 and 𝐕. This not only

328 Z. Wang et al.

Fig. 1 The influence of D

 100

 200

 300

 400

 500

 600

 10 20 30 40 50

T
im

e
(s

)

Dimensionality

Fig. 2 The influence of Nh

 100

 200

 300

 400

 500

 600

 100 150 200 250 300

T
im

e
(s

)

Number of Hidden Nodes

makes the computation time of the local accumulated sum of 𝐔 and 𝐕 increase, but

also makes the transmission time of intermediate results in MR Job increase. There-

fore, the training time of DWELM increases with the number of hidden nodes.

Again, we investigate the influence of the number of training records. As shown

in Fig. 3, with the increase of the number of records, the training time of DWELM

increases obviously. Increasing of the number of records means that the number that

MR Job needs to deal with increases, leading to the amount of Mapper and Reducer

Fig. 3 The influence of Nr

 100

 200

 300

 400

 500

 600

 300 400 500 600 700

T
im

e
(s

)

Number of Records (× 104)

Distributed Weighted Extreme Learning Machine . . . 329

which need to be launched increase. On the other hand, it increases the number of

corresponding local accumulated sum of 𝐔 and 𝐕 which need to be transmitted,

leading to the transmission time of intermediate results increases. Therefore, the

training time of DWELM increases with the increasing of the number of training

records.

Then, we investigate the influence of the number of classes. As shown in Fig. 4,

along with the increase of the number of classes, the training time of DWELM is

basically stable. The number of classes increases, which only increases the number

of statistical values in the 1st MR Job and the number of input values in the 2nd

MR Job of DWELM, which has limited impact on the overall training time, so the

training time is relatively stable.

Next, we investigate the influence of imbalance ratio. As shown in Fig. 5, with

the increase of imbalance ratio, the training time of DWELM is basically stable.

Increasing of imbalance ratio did not produce any substantial effects on the calcula-

tion process of MR Job, so the training time is relatively stable.

Finally, we discuss the influence of the number of working slave nodes in the

Cluster. As shown in Fig. 6, with the number of slave nodes increasing, the train-

ing time of DWELM decreased significantly. Increasing of number of slave nodes

implies that increasing of the amount of Mapper/Reducers that be launched at the

same time, it also means that the work can be completed in unit time increasing.

Fig. 4 The influence of Nc

 100

 200

 300

 400

 500

 600

 5 10 15 20 25

T
im

e
(s

)

Number of Classes

Fig. 5 The influence of R

 100

 200

 300

 400

 500

 600

 0.3 0.4 0.5 0.6 0.7

T
im

e
(s

)

Imbalance Ratio

330 Z. Wang et al.

Fig. 6 The influence of Nn

 0

 400

 800

 1200

 1600

 2000

 2400

 1 2 3 4 5 6 7 8

T
im

e
(s

)

Number of Slave Nodes

Therefore, in the premise of constant total workload, the training time of DWELM

decreases.

In summary, no matter how the experimental parameters change, DWELM can

always deal with large-scale data (millions of data) effectively and rapidly (several

minutes). At the same time, DWELM has better scalability, through the expansion of

the hardware platform, they can easily handle billions and even hundreds of billion

of the big imbalanced training data, thereby improve the processing efficiency of big

data learning applications significantly.

5 Conclusions

Neither WELM nor DELM can cope with big imbalanced training data efficiently

since they only consider either “big” or “imbalanced” aspect of big imbalanced

training data. In this paper, we combine the advantages of WELM and DELM, and

propose a Distributed Weighted Extreme Learning Machine based on MapReduce

framework (DWELM). Specifically, through analyzing the characters of centralized

WELM, we found that the matrix multiplication operators (i.e. 𝐇T𝐖𝐇 and 𝐇T𝐖𝐓)

in WELM are decomposable. Then, we transform the corresponding matrix multipli-

cation operators into summation forms, which suit MapReduce framework well, and

propose a DWELM which calculates the matrix multiplications using two MapRe-

duce Jobs. Finally, in the Cluster environment, we use synthetic data to do a detailed

validation of the performance of DWELM with various experimental settings. The

experimental results show that DWELM can learn big imbalanced training data

efficiently.

Acknowledgments This research was partially supported by the National Natural Science Foun-

dation of China under Grant Nos. 61402089 and 61472069; the 863 Program under Grant No.

2012AA011004, and the Fundamental Research Funds for the Central Universities under Grant

Nos. N141904001 and N130404014.

Distributed Weighted Extreme Learning Machine . . . 331

References

1. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209 (2014)

2. Chen, J., Chen, Y., Du, X., Li, C., Lu, J., Zhao, S., Zhou, X.: Big data challenge: a data man-

agement perspective. Front. Comput. Sci. 7(2), 157–164 (2013)

3. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications.

Neurocomputing 70(1–3), 489–501 (2006)

4. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental constructive

feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892

(2006)

5. Huang, G.-B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing

70(16–18), 3056–3062 (2007)

6. Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learning

machine. Neurocomputing 71(16–18), 3460–3468 (2008)

7. Huang, G.-B., Ding, X., Zhou, H.: Optimization method based extreme learning machine for

classification. Neurocomputing 74(1–3), 155–163 (2010)

8. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and

multiclass classification. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(2), 513–529

(2012)

9. Huang, G.-B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn.

Cybern. 2(2), 107–122 (2011)

10. Zhang, R., Huang, G.-B., Sundararajan, N., Saratchandran, P.: Multi-category classifica-

tion using an extreme learning machine for microarray gene expression cancer diagnosis.

IEEE/ACM Trans. Comput. Biol. Bioinf. 4(3), 485–495 (2007)

11. Zhu, Q.-Y., Qin, A.K., Suganthan, P.N., Huang, G.-B.: Evolutionary extreme learning machine.

Pattern Recogn. 38(10), 1759–1763 (2005)

12. Wang, G., Zhao, Y., Wang, D.: A protein secondary structure prediction framework based on

the extreme learning machine. Neurocomputing 72(1–3), 262–268 (2008)

13. Zhao, X., Wang, G., Bi, X., Gong, P., Zhao, Y.: XML document classification based on ELM.

Neurocomputing 74(16), 2444–2451 (2011)

14. Sun, Y., Yuan, Y., Wang, G.: An OS-ELM based distributed ensemble classification framework

in P2P networks. Neurocomputing 74(16), 2438–2443 (2011)

15. Wang, B., Wang, G., Li, J., Wang, B.: Update strategy based on region classification using elm

for mobile object index. Soft Comput. 16(9), 1607–1615 (2012)

16. Huang, G.-B., Liang, N.-Y., Rong, H.-J., Saratchandran, P., Sundararajan, N.: On-line sequen-

tial extreme learning machine. In: Proceedings of CI, pp. 232–237 (2005)

17. Liang, N.-Y., Huang, G.-B., Saratchandran, P., Sundararajan, N.: A fast and accurate on-line

sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6),

1411–1423 (2006)

18. Rong, H.-J., Huang, G.-B., Sundararajan, N., Saratchandran, P.: On-line sequential fuzzy

extreme learning machine for function approximation and classification problems. IEEE Trans.

Syst. Man Cybern.: Part B 39(4), 1067–1072 (2009)

19. Wang, X., Shao, Q., Miao, Q., Zhai, J.: Architecture selection for networks trained with extreme

learning machine using localized generalization error model. Neurocomputing 102(1), 3–9

(2013)

20. Zhai, J., Xu, H., Wang, X.: Dynamic ensemble extreme learning machine based on sample

entropy. Soft Comput. 16(9), 1493–1502 (2012)

21. Wang, Z., Yu, G., Kang, Y., Zhao, Y., Qu, Q.: Breast tumor detection in digital mammography

based on extreme learning machine. Neurocomputing 128(3), 175–184 (2014)

22. He, Q., Shang, T., Zhuang, F., Shi, Z.: Parallel extreme learning machine for regression based

on mapreduce. Neurocomputing 102(2), 52–58 (2013)

23. Xin, J., Wang, Z., Chen, C., Ding, L., Wang, G., Zhao, Y.: ELM
∗
: Distributed extreme learning

machine with mapreduce. World Wide Web 17(5), 1189–1204 (2014)

332 Z. Wang et al.

24. Bi, X., Zhao, X., Wang, G., Zhang, P., Wang, C.: Distributed extreme learning machine with

kernels based on mapreduce. Neurocomputing 149(1), 456–463 (2015)

25. Xin, J., Wang, Z., Qu, L., Wang, G.: Elastic extreme learning machine for big data classifica-

tion. Neurocomputing 149(1), 464–471 (2015)

26. Zong, W., Huang, G.-B., Chen, Y.: Weighted extreme learning machine for imbalance learning.

Neurocomputing 101(3), 229–242 (2013)

27. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Proceed-

ings of OSDI, pp. 137–150 (2004)

28. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.

ACM 51(1), 107–113 (2008)

29. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun. ACM 53(1),

72–77 (2010)

30. Fletcher, R.: Practical Methods of Optimization, Volume 2: Constrained Optimization. Wiley,

Hoboken (1981)

31. Ghemawat, S., Gobioff, H., Leung, S.-T.: The google file system. In: Proceedings of SOSP,

pp. 29–43 (2003)

32. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file system. In:

Proceedings of MSST, pp. 1–10 (2010)

	Distributed Weighted Extreme Learning Machine for Big Imbalanced Data Learning
	1 Introduction
	2 Background
	2.1 Weighted Extreme Learning Machine
	2.2 MapReduce Framework

	3 Distributed Weighted Extreme Learning Machine
	3.1 Preliminaries
	3.2 DWELM

	4 Performance Evaluation
	4.1 Experimental Platform
	4.2 Experimental Results

	5 Conclusions
	References

