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Abstract Extreme learning machine (ELM) has proven to be an efficient and
effective learning paradigm for a wide field. With the method of kernel function
instead of the hidden layer, Kernel-ELM overcame the problem of variation caused
by randomly assigned weights. In this paper, Kernel based optimization is intro-
duced in semi-supervised extreme learning machine (SSELM) and the improve-
ments of performance are evaluated by the experiment. The result shows that
optimized by kernel function, Kernel-SSELM can achieve higher classification
accuracy and robustness. In addition, The Kernel-SSELM is used to train the traffic
congestion evaluation framework in Urban Transportation Assessment and Forecast
System.
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1 Introduction

Primarily, ELM was applied to supervised learning problems in full labeled data.
Gao Huang et al. [1] proposed the semi-supervised framework of ELM to extend
the capacity to deal with unlabeled data. SSELM greatly extend the application of
ELM, for instance, in the field of text classification, information retrieval and fault
evaluation as the collection of labeled data is bound to cost a lot of money and time
while the unlabeled data is easy to collect and its number is large.

Although ELM improves the training efficiency to a high extent, the random
distribution of input layer and the hidden layer parameters cause great variation of
classification accuracy under the circumstance of same training data and model
parameters which significantly influences the stability of ELM [2]. On the other
hand, the number of hidden layer nodes also has a huge impact on the accuracy. In
many studies, the number of hidden layer nodes is set to a large number that is
usually greater than the number of training samples. However, the experiments
show that the more hidden layer nodes is not better. The relationship between
optimal accuracy of different datasets and the number of hidden layer nodes is
complicated.

The approach replacing ELM hidden layer with kernel function make ELM does
not need random hidden layer and input layer because the calculation of hidden
input is carried out by kernel function. Kernel-ELM solves the problem resulted
from random distribution of input layer and hidden layer parameters in ELM and
gain higher relevance to corresponding datasets as well as higher stability [3] with
the sacrifice of training speed.

SSELM and ELM have a unified framework. As a result of randomly generated
feature mapping, stability problem is existed in the SSELM. This paper introduces
the kernel function into the SSELM of Gao Huang et al. [1] and evaluates the
improvements in stability and accuracy of SSELM optimized by kernel function.

The rest of the paper is organized as follows. Section 2 reviews the current
research progress in the field of semi-supervised learning and kernel function at
present in. Section 3 presents the algorithms framework of Kernel-SSELM. The
evaluation experiment of efficiency is conducted in Sect. 4. Section 5 elaborates the
application of Kernel-SSELM in the Traffic congestion evaluation system based on
floating car data. Finally, Sect. 6 draws the conclusion and our future plan.

2 Related Research

Only a few existing research studies ELMs have dealt with the problem of
semi-supervised learning. In the earlier days the manifold regularization framework
was introduced into the ELMs model to leverage unlabeled data extending ELMs
for semi-supervised learning [4, 5]. Li et al. [6] propose a training algorithm that
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assigns the most reliable predicted value to unlabeled sample in the repeated
trainings of ELM for purpose of expanding the labeled sample sets continuously.

The proposed SSELM of Gao Huang et al. [1] takes example by the
state-of-the-art semi-supervised learning framework to optimize the cost equation of
ELM’s processing unlabeled samples. Related to Laplacian support vector machi-
nes (LapSVM) and Laplacian regularized least squares (LapRLS), it is involved
with the manifold assumption and simplifies the problem into the regularized least
square problem.

Ever since the optimization based on kernel function was introduced into the
ELM [2], many researchers have made advances in the practical application of
theories. The significant solved problems are from two aspects. One aspect aims to
choices of specific application’s kernel function and optimization [7, 8]. The other
aspect aims to the information fusion of ELM [9].

3 Kernel-Based SSELM

Gao Huang et al. [1] introduced manifold assumption into ELM, and proposed the
solution of β in SSELM. For a training data set having 1 number of labeled samples
and u number of unlabeled samples, the output weights β of a SSELM is:

β=HT I +C ̃HHT + λLHHT� �− 1
C ̃Y ̃ ð1Þ

The formulate is valid when the number of hidden nodes is more than the
number of labeled samples 1. The Y ̃ is the training target including the first 1 rows
of labeled data equal to Y and the rest equal to 0. λ is user-defined semi-supervised
learning rate. C ̃ is a l + uð Þ× l+ uð Þ diagonal matrix with the first 1 diagonal ele-
ments of cost coefficient and the rest equal to 0. C ̃ can be calculated as:

Ci =
C0

NPi

i=1, . . . , l ð2Þ

where C0 is user-defined cost coefficient, and NPi represents the sample quantity of
the pattern of ith sample. L is Laplacian matrix, which can be calculated as
L=D−W . W = wi, j

� �
is the similarity matrix of all the labeled and unlabeled

samples. D is a diagonal matrix with its diagonal elements Dii = ∑
n

j=1
wij.

Huang et al. [2] suggested using a kernel function if the hidden layer feature
mapping h xð Þ is unknown. The kernel matrix χ for ELM can be written as follows,
where K xi, yið Þ is kernel function:
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χELM =HHT χELMi, j
= h xið Þ ⋅ h yið Þ=K xi, yið Þ ð3Þ

Then the output function of Kernel-SSELM can be written as:

y=FSSELM xð Þ= h xð Þβ=
K x, x1ð Þ

⋮
K x, xnð Þ

2
4

3
5 I +C ̃χELM + λLχELM
� �− 1

C ̃Y ̃ ð4Þ

4 Experiment Result

4.1 Experimental Setup

We evaluated the performance of Kernel-SSELM on various semi-supervised tasks.
All experiments were implemented using Matlab R2013b on a 3.40 GHz machine
with 4 GB of memory.

The experiment was implemented on 4 popular data sets, which have been
widely used for evaluating semi-supervised algorithms. In particular, USPST data
set is the testing set of USPS, which is a classical handwritten digit recognition
data set.

Each data set was randomly divided into 4 equal folds. Each of the folds was
used as the testing set once and the rest were used for training (4-fold cross-
validation). The random generation process was repeated 3 times, so that there were
12 different experiment groups for each data set. For each group, the training set
was split into 3 different folds again as Table 1. In Table 1, L is the labeled data set
for training, U is the unlabeled data set, and V represents the validation set.

4.2 Comparisons with Related Algorithms

In the experiment, we compared the Kernel-SSELM and SSELM with the other
state-of-the-art semi-supervised learning algorithms such as TSVM, LDS, LapRLS,
and LapSVM. The validation set V was used to select the optimal model parameter
for every algorithm. In particular, for Kernel-SSELM and SSELM, the cost coef-
ficient C0 and the semi-supervised rate λ were selected from the exponential

Table 1 Details of the
division of the data sets

Dataset Classes Dims L U V T

G50C 2 50 50 314 50 136
G10N 2 10 50 314 50 136
COIL20 20 1024 40 1000 40 360
USPST 10 256 50 1409 50 498

230 Q. Shen et al.



sequence 10− 6, 10− 5, . . . , 106
� �

. The number of hidden layer nodes of SSELM
was fixed to 1000 for G50C and G10 N, and 2000 for COIL20 and USPST. The
Kernel function of the Kernel-SSELM was radial basis function (RBF), and its
parameter γ was selected in 20, 21, . . . , 210

� �
.

Table 2 shows the error rate (with the standard deviation) of each algorithm.
Kernel-SSELM and SSELM can achieve comparable result with the other 4
algorithms. Particularly, for the multi-class problems on the high dimension data
such as COIL20 and USPST, Kernel-SSELM gave better performances than the
others. Compared with SSELM, Kernel-SSELM yielded higher accuracy and lower
deviation on all dataset. It is obvious to find that the algorithm with kernel function
could build more stable model in classification task.

Table 3 displays the training efficiency of each algorithm on the 4 experiment
datasets. SSELM was the fastest, while Kernel-SSELM was a bit slower but still
stayed on the same level. On the binary-problem dataset, Kernel-SSELM and
SSELM did not show much advantage to LapRLS, and LapSVM. This result in the
they all need to calculate the Laplacian matrix which is a time consuming process

Table 2 Performance comparison between different semi-supervised algorithms

Dataset Subset TSVM LDS LapRLS LapSVM SSELM Kernel-SSELM

G50C U 6.43
(2.11)

5.61
(1.46)

6.23
(1.52)

5.16
(1.45)

5.92
(2.34)

5.41(1.49)

T 6.93
(2.37)

5.83
(2.03)

6.84
(2.41)

5.37
(1.56)

6.16
(2.87)

5.23(1.91)

G10N U 13.91
(3.09)

9.79
(2.05)

9.04
(2.31)

9.27
(2.63)

9.96
(3.65)

9.17(1.86)

T 14.36
(3.68)

9.72
(1.9)

9.48
(2.63)

9.82
(2.03)

10.44
(3.8)

9.83(2.15)

COIL20 U 26.35
(4.63)

14.68
(4.81)

10.22
(4.17)

10.53
(2.47)

11.41
(3.35)

10.62(2.04)

T 25.87
(4.52)

15.09
(3.79)

11.3
(3.3)

11.59
(2.82)

12.05
(3.57)

11.2(2.16)

USPST U 24.98
(4.89)

15.53
(3.35)

15.38
(4.17)

15.93
(3.56)

14.61
(3.89)

13.81(2.47)

T 26.5
(4.69)

16.8
(3.54)

16.81
(3.28)

16.76
(3.98)

14.76
(3.64)

13.43(1.95)

Bold values indicate the best result in the dataset

Table 3 Training time of different semi-supervised algorithms

Dataset TSVM LDS LapRLS LapSVM SSELM Kernel-SSELM

G50C 0.539 0.651 0.083 0.089 0.047 0.053
G10N 0.386 0.427 0.046 0.048 0.032 0.036
COIL20 34.32 39.18 11.98 8.367 1.201 1.634
USPST 188.7 205.3 15.27 13.84 2.932 3.524
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and dominates the computation cost. However, for multi-class problem, the extreme
learning methods showed significant advantage in training efficiency.

In all, from the two tables, we could found that Kernel-SSELM can give higher
accuracy and stability in the cost of a little training speed.

5 Application in Traffic Congestion Evaluation

5.1 Traffic Congestion Evaluation

Urban Transportation Assessment and Forecast System analyzes the traffic con-
gestion of transportation network in a city of southwest China and shows the
evaluation results of the real-time traffic states on the GIS map using different colors
on the foundation of the floating cars’ GPS information (Fig. 1).

Seen from Fig. 2, traffic congestion evaluation system based on floating car data
is the fundamental part of core function. In previous work, traditional method
evaluating the present road congestion through fixed empirical evaluation standard
is easy to implement and consumes a little system resources. But it does have the
following drawbacks: First, the empirical evaluation frameworks do not take full
consideration of the road information and network conditions. Second, it causes a
significant gap between the congestion information on the map and users’
experience.

(b) 

(a)

Fig. 1 Urban transportation assessment and forecast system. a Structure of urban transportation
assessment and forecast system. b Floating car distribution on the map
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To overcome the shortcomings above, machine learning methods are introduced
into the traffic congestion evaluation system. However, many approaches such as
SVM have deficiencies when applied to huge data and semi-supervised task in this
traffic congestion evaluation system.

Applying Kernel-SSELM to traffic congestion evaluation system based on
floating car data, this paper has the following strengths:

1. Though the congestion value of unlabeled data is uncertain, it represents the
different traffic conditions which reflect the distribution information of traffic
data. Kernel-SSELM improves the recognition accuracy of evaluation models
by involving unlabeled data in the training.

2. Extreme learning machine has high training efficiency and is easy to implement.
In the case of large data scales, high training speed ensures that despite traffic
conditions changes it can still renew training for several times to choose a better
model. At the same time, extreme learning machine is able to be modified into
incremental learning easily so that we can make use of the latest information to
update the evaluation network in real time.

3. With the neglecting the number of hidden layer nodes, the optimization of
kernel function improves the stability of SSELM.

The evaluation system optimized by Kernel- SSELM improves the evaluation
accuracy and is more in accord with the evaluation of congestions from local
residents. As for the urban administration, the traffic congestion evaluation system
plays an assistant role in management and supplies solutions for alleviating urban
traffic. As for citizens, they may choose the right way to get around or the optimal
driving route via the precise congestion evaluation.

Fig. 2 Real-time traffic evaluation
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5.2 Congestion Eigenvalue and Congestion Value

Traffic congestion evaluation system takes the road sections as the individual
samples. Be specific, a road section demonstrates a portion of a road in a single
direction. Its traffic congestion evaluation originates from two sources. The first part
of source is the essential information of the road section from the Transportation
Department, including Number of lanes, numbers of lanes of the entrance and exit,
number of traffic lights and road grades. The second part of source is the real-time
speed information of the road section from the floating car data, including average
speed, speed distribution, and average stopping time.

The work of labeling training samples is completed by 5 experts from the
Transportation Department of the city. Through surveillance cameras experts
recorded information and gave evaluation of the traffic congestion at that time.
Congestion evaluation is divided into three grades: Smooth, Average and Con-
gested. The final label is in the grade which receives the most votes in 5 experts.

5.3 Evaluation Experiment

The environment of the experiment is the same as Sect. 4. In the experiment, we
collect the floating car data from June 15th to June 16th 2015, and the quantity is
more than 30,000,000. The data is grouped in interval for 5 min and matched to the
corresponding road section. Finally we collect 13,681 samples. The evaluation of
experts is based on the video from surveillance cameras about 30 typical road
sections in the city. 537 valid samples were finally collected, and the rest 13,144
samples were unlabeled.

For comparison, we tested the SSELM, Kernel-SSELM and the empirical rule in
Table 1. The test set had 100 samples randomly selected from the labeled sample,
and the random generation process was repeated in 10 times. The cost coefficient C0

was fixed to 100 and the semi-supervised rate λ was fixed to 0.001. The kernel
function of Kernel-SSELM is RBF with the parameter γ fixed to 100. The number
of hidden layer nodes of SSELM was set to 5000.

Table 4 shows that the evaluation model trained by Kernel-SSELM had the
highest average accuracy at 86.2 %. In addition, Kernel-SSELM only takes 48.2 s
for training, which keep the high training efficiency of SSELM.

Table 4 The result of
evaluation experiment

Empirical
rule

SSELM Kernel-SSELM

Average
accuracy

68.9 % 82.6 % 86.2 %

Best accuracy 73 % 87.5 % 88 %
Training time – 41.6 48.2

234 Q. Shen et al.



The trained model was used in the Urban Transportation Assessment and
Forecast System. Figure 2 displays the real-time traffic condition. In the map, Green
represents smooth traffic, yellow shows average condition, and red means the road
is congested. Seen from the image taken by surveillance cameras, the traffic eval-
uation accurately reflects the road traffic congestion at that time.

6 Conclusion and Future Work

In this paper, a kernel based optimization is proposed to promote the SSELM.
Experiments show that Kernel-SSELM can achieve higher accuracy and model
stability, because kernel function avoids the problem of setting hidden layer.
Compared with the other state-of-the-art semi-supervised learning algorithms,
Kernel-SSELM shows significant advantages in training efficiency and multi-
classification ability. In the application of traffic congestion evaluation, Kernel-
SSELM was used to train the evaluation model on the large-scale data set. Both the
experiment and the real-time application show the evaluation system can precisely
reflect the traffic condition.

Since the type of kernel function and its parameter also have much influence on
the training model, how to choose an optimized kernel function is still an important
problem in the particular application of Kernel-SSELM. There is a general that
assume a linear combination of a group of base kernels could be the optimal choice.
In the future, we plan to research the multi-kernel framework for promoting the
Kernel-SSELM in the traffic application.
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