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Abstract In this paper, a promoted adaptive input-shaping (AIS) with extreme
learning machine (ELM) is presented to get zero residual vibration (ZRV) of
severely time-varying flexible systems. Firstly, the ZRV condition and the tradi-
tional adaptive input-shaper is reviewed, together with its disadvantages of insuf-
ficient adaptability caused by giant amount of data and low-accuracy calculation
caused by noise. After that, online sequential-ELM (OS-ELM) algorithm is intro-
duced to identify the impulse response sequences of the flexible system, its fitting
impulse response sequences are gotten to update the shaper parameters with fixed
length and less noise; therefore, the above-mentioned problems of traditional AIS
could be significantly avoided; that is to say, AIS’s adaptability and
identification-accuracy could be improved apparently, which means better perfor-
mance to suppress the residual vibration of the flexible system. Finally, the veri-
fication experiments of presented AIS are implemented on a two-links flexible
manipulator, which is a classical flexible system with severely time-varying
dynamics; the results proves the effectiveness of the presented AIS method for the
vibration control of severely time-varying flexible systems.

Keywords Vibration control ⋅ Adaptive input shaping ⋅ Extreme learning
machine ⋅ Flexible system

1 Introduction

The solutions to reduce the residual vibration of flexible systems could be roughly
divided into passive approaches and proactive approaches. The former include
adding damping materials and modifying the design of mechanics [1], and the latter
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include feedback control and feedforward control. Among them, the input-shaping,
because of its low costs and low difficulty, has gotten a lot of attention and become
the hotspot in the field [2].

Input-shaping puts a bandstop filter before the flexible systems, banning the
modal frequencies of the flexible systems; thus, the vibration of flexible systems
wouldn’t be activated. However, the original input-shaper is robust less, which
makes input-shaping could hardly get good performance in applications. To
improve its robustness, robust input-shaper are developed. Robust input-shaper
could get better performance [3, 4], but it’s in expense of additional shaping
impulses [5], which means it sacrifices some response velocity. Consequently,
adaptive-input-shaping (AIS) got more attention [6], adapting its impulse ampli-
tudes and each impulse lag times to the changing system dynamic properties.
Early AIS adapts its coefficients of input-shaper by empirical transfer function
estimate (ETFE), which gets the modals by doing Fourier transform of I/O data
from the flexible system, called indirect-AIS [2, 7]. It brings heavy burden of
computation, and no high accuracy of the flexible system dynamics. Thus,
direct-AIS was presented, adapting its coefficients of input-shaper by the algorithms
such as recursive least square (RLS) [8], algebraic identification (AI) [9], and neural
network (NN) [10]. Direct-AIS calculates the impulse response sequences of the
flexible system using I/O data directly, and the corresponding updated parameters in
input-shaper could be obtained.

Because of little computation and easy operation, RLS algorithm got a lot of
application in direct-AIS [8, 11, 12]; however, it could hardly achieve
high-accuracy identification of severely time-varying flexible system because of the
insufficient adaptability and noise effect. To get high-accuracy identification in
adaptive control, a lot of approaches are presented, including fuzzy adaptive control
[13], NN adaptive control [14, 15], and so on. However, the traditional NN algo-
rithms have giant computation quantity, which causes their high demand on control
systems. Extreme learning machine (ELM) algorithm, as a newly presented neural
network algorithm in 2004 [16], could achieve much less computation but keep the
advantages of high-accuracy [17]. After that, ELM algorithm attracts much atten-
tion, and many ELM based algorithms are promoted, including online sequential
ELM (OS-ELM) [18], incremental ELM (I-ELM) [19], and so on. However, to the
best knowledge of authors, it is still a blank in how to achieve real-time identifi-
cation of online sequences for flexible system using the ELM algorithm.

To achieve satisfactory performance of zero residual vibration (ZRV) for
severely time-varying flexible systems, the promoted AIS with OS-ELM is pro-
posed in this paper. To improve the adaptability and identification accuracy of AIS,
the OS-ELM algorithm is introduced, identifying the impulse response sequences of
the flexible system. The effect of noise would be suppressed obviously in ELM’s
fitting impulse response sequences, which means the accuracy of calculation would
be improved. Furthermore, with the fixed length of identificated impulse response
sequences, the adaptability of the recursive calculation could be strengthened.
Finally, to prove the correctness of the presented AIS method, verification exper-
iments are conducted on a two-link flexible manipulator, which is belonging to a
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classical severely time-varying system. Compared with the traditional AIS, the
adaptability of the proposed method is obviously improved; thus, it could satisfy the
demand of real-time vibration suppression of severely time-varying flexible
systems.

This paper is organized as follows. In Sect. 2, there is a review of ZRV of
flexible systems and the design of traditional direct-adaptive input-shaper. Subse-
quently, the promoted AIS based on OS-ELM identification is presented. In Sect. 3,
there are verification experiments, in which a two-link flexible manipulator is
introduced as a classical severely time-varying flexible system, the results of the
experiments prove the expectant improvement of AIS with ELM on adaptation
ability and high-accuracy identification of the input-shaper coefficients corre-
sponding to the flexible system. Finally, conclusions are summarized in Sect. 4.

2 AIS Based on ELM Identification for Flexible System

2.1 Review of ZRV Condition and Traditional AIS

A flexible system could be commonly presented by its flexible segment G and
overall motion segment P, as Fig. 1 shows. The shaped input sequences u could get
corresponding vibration output sequences y assuming that the impulse response
sequences of G is g. The coefficients of input-shaper are h= fh0, h1, h2, . . . , hQgT ,
where the number of impulse should satisfy Q+1≥ 2M +1, M is the number of
modals that need to be reduced. The delay time of two impulse in input-shaper is
Δx = nxts, x=1, 2, . . . ,Q, and nx belong to positive integer. The total transfer
segment from unshaped input i to vibration output y is f = h * g.

According to the ZRV condition [11], the recursive calculation from flexible
system’s input u and output y to the values of coefficients in input-shaper h could
be as

eN = sTN
ω
x

� �
N
+ψT

NAb ð1Þ

Fig. 1 Structure of traditional AIS with a flexible system
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ψN = ½yN yN − 1 . . . yN −K �T ð8Þ

νN = ½uNuN − 1 . . . uN −K �T ð9Þ

and T ∈R K +1½ �×K is an orthogonal complement of b to ensure the sum of
input-shaper coefficients equal 1, A∈R K +1½ �× Q+1½ � containing 0 and 1 is used to
assign the delay time of every two impulses in input-shaper and its corresponding
sample time ts in the system. ω and x are two intermediate vectors in calculation.

ZRV algorithm of Eqs. (1)–(4) is to calculate the corresponding values of input
shaper by making the error’s quadratic sum minimum. However, the traditional AIS
would calculate the least-square solution of I/O data from time zero to time N. Thus,
with the increase of N in long-running and the larger total amount of I/O data, the
problem of insufficient adaptability is produced. Furthermore, the least-square
solution of all the I/O data from time zero to time N would bring another problem of
noise-caused low-accuracy calculation.

y ̂= y+ d ð10Þ

where d is the noise with zero mean value and variance E d2ð Þ= σ2. So the error
prediction in terms of h and f is given as

e ̂=Hy ̂+Fu ð11Þ

where H and F is the matrix form of h and f. Thus, the noise-perturbed quadratic
cost with the length N data is
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J ̂= e ̂Te ̂= hTY
T̂
NYN̂h+2hTY

T̂
NUNf + f TUT

NUNf ð12Þ

where Y ̂N = YN +DN . Then, the noise-perturbed cost’s expectation is

E J ̂
� �

= J + hTE DT
NDN

� �
h=H + σ2N hj jj j2 ð13Þ

Equation (13) shows the effects of noise to ZRV calculation. With the recursive
algorithm running, the value of N would become bigger and bigger, and so does the
σ2N hj jj j2 in Eq. (13). However, the goal of ZRV is to get minimum value of EðJ Þ̂.
Consequently, the hj jj j2 in Eq. (13) has to be less and less. When the parameters of
input-shaper h are all equal, hj jj j2 get minimum. Consequently, noise accumulation
will make the coefficients of input-shaper closer and closer, which could cause the
deterioration of vibration suppression’s performance.

From the mathematical analysis, it could be known that traditional AIS faces the
problems of low-accuracy calculation caused by insufficient adaptability and noise.
This means that it could hardly get good performance of vibration suppression
towards severely time-varying flexible system.

2.2 AIS with ELM Identification

To solve the problems that traditional AIS faces, an OS-ELM algorithm is intro-
duced to achieve real-time identification of the flexible system, as shown in Fig. 2.
Transport the flexible system’s input sequences u and vibration output y to the
OS-ELM, the OS-ELM would fitting the flexible segment G in real-time recursive
calculation. After every time of training, given the OS-ELM network a unit
impulse, the fitting impulse response sequences g of the flexible system could be
gotten. Then the coefficients of input-shaper are calculated using g. With the
adaptation of ELM algorithm, the coefficients of input-shaper will adjust in
real-time. There will be the basic introduction of OS-ELM that applicated in AIS
thereafter.

For a classical single hidden layer feedforward neural network, its number of
input nodes, hidden layer nodes, and output nodes is D, L, and M. Given N groups
of I/O data uj, yj

� 	
. There is

Hβ= T ð14Þ

where H =
h1 u1ð Þ . . . hL u1ð Þ
. . . . . . . . .

h1 uNð Þ . . . hL uNð Þ

2
4

3
5
N × L

, ui =
ui
. . .

ui+D− 1

2
4

3
5
D×1

, hi xð Þ=Gi ai ⋅ ui + bð Þ
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is the mapping function, β=
β1
. . .
βL

2
4

3
5
L×m

is the matrix of output weight,

T =
y1 . . . yM
. . . . . . . . .
yN . . . yN +M − 1

2
4

3
5
N ×M

is the matrix consist of output data. To align the

time of input and output, the number of input nodes and output nodes are set equal,
that is to say, D = L.

In ELM, the mapping function hi xð Þ=Gi ai ⋅ u+ bð Þ is given by oneself, and its
input weights and input biases are randomly generalized, the neural network could
fitting any function by different β. Thus, the T matrix is known. The H matrix is also
known after the mapping function, input weights, input biases generalized and input
data substituted. Consequently, calculate the matrix β now is obvious.

β=H + T = HTH
� �− 1

HTT ð15Þ

With the online training using historical I/O data, the output weight matrix β is
calculated in real-time. And the neural network could simulate the goal function
G(u), and get fitting output from given input u ̃

G u ̃ð Þ=H u ̃ð Þβ ð16Þ

To make ELM solve the real-time identification from online sequences,
OS-ELM is promoted [19], reforming the calculation in (15) into recursive calcu-
lation. Given historical matrix H0 and T0, there is

β0 = HT
0H0

� �− 1
HT

0 T0 ð17Þ

After new I/O data coming, the new added matrix H1 and T1 is generalized. So
the new equality is

Fig. 2 Structure of AIS introduced OS-ELM
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β1 =
H0

H1

� �T H0

H1

� � !− 1
H0

H1

� �T T0
T1

� �
ð18Þ

Given K1 =
H0

H1

� �T H0

H1

� �
, and which could be derived is

K1 =K0 +HT
1H1 ð19Þ

On the other hand, the
H0

H1

� �T T0
T1

� �
in Eq. (18) satisfy

H0

H1

� �T T0
T1

� �
=HT

0 T0 +HT
1 T1 =K1β0 −HT

1H1β0 +HT
1 T1 ð20Þ

Given K − 1 =P; thus, the recursive calculation of OS-ELM in AIS could be
described as follows.

When the N +1 I/O data come, there are

PN +1 =PN −PNHT
N +1 I +HN +1PNHT

N +1

� �− 1
HN +1PN ð21Þ

βN +1 = βN +PN +1HT
N +1 TN +1 −HN +1βNð Þ ð22Þ

Then make N =N +1, and prepare for the next step of recursive calculation. The
initial matrix H0 and T0 are calculated according to the first I/O data, and the initial
matrix β0 and P0 are given approximately. The OS-ELM algorithm would fit the
flexible system in online training, and the I/O sequences would update when there is
new data coming. To reduce the computation quantity, the online training could be
executed in bigger interval time. That is to say, the updation could be executed until
uN + a and yN + a come, where a belongs to a given positive integer.

After the addition of OS-ELM, the variance of noise σ2 in g could be smaller
than before [17], so the error quantic in Eq. (13) could be reduced. Secondly, the
length of fitting impulse response sequences is fixed, which means the N in Eq. (13)
won’t become bigger and bigger when in long-running. Consequently, the adapt-
ability and calculation accuracy would be obviously improved.

3 Experiment on a Two-Link Flexible Manipulator

3.1 Experimental Setup

To prove the effectiveness of promoted AIS, test experiments will be executed on a
lab-scale two-link flexible manipulator, as Fig. 3 show. The materiel of two links is
aluminum with modulus of elasticity 69 GPa. Specific information of the two links
and tip mass are listed in Table 1. The two joints’ actuator is DC brushless motors,
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and their specific information is listed in Table 2. The two joints’ angles θ1 and θ2
are measured by incremental encoders. The angle θ1 of link 1 is presented in the
intersection angle with a given datum, and angle θ2 of link 2 is presented in the
intersection angle with the extended line from link 1, as shown in Fig. 4. Both θ1
and θ2 are positive when clockwise and negative when counterclockwise. Two
strain gauges are placed close to the back end of the links, measuring the bending of

Fig. 3 Two-link flexible
manipulator

Table 1 Specification of two-links and tip mass

Length (mm) Width (mm) Thickness (mm) Weight (g)

Link 1 300 20 2 65
Link 2 200 15 1.5 16
Tip mass – – – 8

Table 2 Specification of two motors, strain gauges and amplifier circuits

Manufacture Model numbers Weight (g)

Motor 1 FAULHABER 2232024CSD 239
Motor 2 MOTEC DBM 22.33.03.52.01 94
Strain gauges DJET BF350-3AA –

Amplifier circuits DJET RC-A3N 3

Fig. 4 Representation of two angles
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two joints. The original signals from strain gauges would be amplified and filtered
by a circuit, the specific information of strain gauges and amplifying circuits are
listed in Table 2. Thus, link deflection and residual vibration could be evaluated
using the signals from amplifying circuits.

To achieve the high angle accuracy together with rapid response, PID feedback
controllers of joint angles are used in rotation control. The servo-control loop and
adaptive input shaper’s algorithm are achieved by a DSP 2812 control circuit, it
could control the two motors and transport the result of experiment to PC in
real-time. The structure of experiment manipulator is shown as Fig. 5. It should be
noted that the presentation θ in Fig. 5 stands for both angles. Specific information of
the two DC brushless motors and their servo-control loops is given in Table 3.

The coefficients of the input shapers are chosen as shown in Table 4, under the
sampling time 10-ms-ts. The initial values of the RN is set at

R0 =
107 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 107

2
4

3
5
½K +Q+1�× ½K +Q+1�

ð23Þ

Fig. 5 Experimental settlement of two-link flexible manipulator with AIS

Table 3 Servo-control loop parameters of two joints

Joint Nominal
voltage (V)

Reduction
ratio

Torque constant
(mNm/A)

Peak
current (A)

P gain D gain I gain

1 24 246 31.4 1.5 72 8 148
2 3.6 162.7 6.68 0.85 43 1.5 21.5

Table 4 Set values of input shaper

Duration time
(K)

Nonzero coefficient number
(Q + 1)

Delay time
Δx

Initial value cn of input
shaper

Values 60 ts 5 15 ts 1 ̸ Q+1ð Þ
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There are two AIS methods tested in the experiment. Traditional AIS and the
presented AIS with ELM. The number of nodes in ELM is 25, and its numbers of
input-nodes and output-nodes are both 200. The mapping function used in ELM is
sigmoid function, the values of input-weight and input-bias are given randomly.

3.2 Experimental Results

Firstly, the command track of the two joints’ angles in the experiment as shown in
Figs. 6a and 7a. One motion period’s duration is 8 s. In each period, the two joints
will rotate a predetermined angle in rest-to-rest and stop for a moment, after that
they will rotate back to the original angle in the same method. In the first four
periods, the rotation angles of two joints in each period are decreased from the last
period, because it could make the dynamics of flexible system varying severely in
different periods. However, in the second four-periods, the rotation angles will
repeat the first four-periods, so that the dynamics of the flexible system will repeat
similar variation in two four-periods. Consequently, there are totally 8 periods in
the verification experiments. Besides, to show the effects of input shaping and give
initialization time of AIS, there is no input shaping of two joints in the first period.
Different input shaping will be started from the second period, including traditional
AIS, and the presented AIS with ELM.

The vibration could be linearly represented by the outputs of strain gauges;
consequently, the curve of the strain gauges’ output could reflect the strain’s variety
of the flexible system in linearity. Joint 1’s output contrast from strain gauges with
two different methods is shown in Fig. 6b, and joint 2’s output contrast is shown in
Fig. 7b. All the unit of these curves are V.

To give clear contrast of the two different AIS approaches, the arbitrarily chosen
period from 18 to 26 s is magnified. Correspondingly, the maximum
residual-vibration and the mean square error of residual-vibration are given in
Table 5.

From Table 5, it could be seen that the proposed method of AIS with ELM
achieve better performance in vibration suppression. To analyze the source of better
performance, the corresponding filter coefficients of adaptive input-shaper are
shown in Figs. 8 and 9. It could be seen from Fig. 8 that the filter coefficients tend to
close and could hardly achieve real-time adjustment using traditional AIS. After the
addition of ELM, the filter coefficients of AIS with ELM are significantly different
from traditional AIS, and similar change of coefficients could be observed from 4 to
34 s and 36 to 66 s, corresponding to the same angle tracks in these times. This
means that the AIS with ELM could adjust to the time-varying dynamics of the
flexible system; thus, it could achieve better performance in vibration suppression.
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Fig. 6 a Angle track of joint 1. b Joint 1’s result of vibration suppression with two AIS methods
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Fig. 7 a Angle track of joint 2. b Joint 2’s result of vibration suppression with two AIS methods
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Fig. 8 Filter coefficients in traditional AIS

Table 5 Results contrast of the vibration with two AIS methods

Maximum
deflection (V)

Maximum residual
vibration (V)

Mean square
error (V)

(a) Contrast of joint 1 with two AIS methods
Traditional
AIS

0.6716 0.4502 0.1089

AIS with
ELM

0.6331 0.1830 0.0689

(b) Contrast of joint 2 with two AIS methods
Traditional
AIS

0.2802 0.1840 0.0405

AIS with
ELM

0.2620 0.0711 0.0216
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4 Conclusions

In this paper, a promoted approach of AIS with ELM identification is proposed. To
improve the adaptability and calculation accuracy of traditional AIS. Firstly, using
the characteristic that ELM could fitting any non-linear function, the impulse
response sequences of flexible system is being fitted, with better suppression of
noise. Thus, the noise-caused low accuracy in calculation could be reduced sig-
nificantly. Secondly, with the fixed length of the fitting impulse response sequences,
the adaptivity of AIS could be improved obviously, as well as better calculation
accuracy. After that, verification experiments are executed on a two-link flexible
manipulator. The results of the verification experiment certified the promotion of
AIS with ELM in calculation accuracy and its performance of residual vibration
reduction.

Fig. 9 Filter coefficients in AIS with ELM
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