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Abstract Due to the complexity and extensive application of wireless systems,

channel estimation has been a hot research issue, especially for high speed envi-

ronments. High mobility challenges the speed of channel estimation and model opti-

mization. Unlike conventional estimation implementations, this paper proposes a

new channel estimation method based on extreme learning machine (ELM) algo-

rithm. Simulation results of path loss estimation and channel type estimation show

that the ability of ELM to provide extremely fast learning make it very suitable for

estimating wireless channel for high speed environments. The results also show that

channel estimation based on ELM can produce good generalization performance.

Thus, ELM is an effective tool in channel estimation.
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1 Introduction

High-speed railways (HSR) and highway networks have developed rapidly for nearly

ten years to meet people’s travel needs. This explosive increase of high speed trans-

portation raises higher requirements for wireless communication systems, including

train ground communication (TGC) system [1], communication based train control

(CBTC) system, vehicle ad hoc network (VAN) [2], vehicle to vehicle (V2V) com-

munication, etc.

However, the speed of trains can reach 350 km/h and the speed of vehicles is

up to 120 km/h, which make the users can not enjoy the smooth and high quality

wireless services under low speed environment. In high mobility scenarios, large

Doppler frequency shift, fast fading channel and fast handover issue seriously affect

communication performances [3, 4].

Wireless channel play a key background role in transmission rate and quality

of mobile propagation. Only after channel characteristics in a communication sys-

tem are thoroughly researched, a variety of physical layer technologies are taken

or adapted, such as the best modulation and coding interleaving scheme, equalizer

design, or antenna configuration and subcarrier allocation in MIMO-OFDM system.

Propagation prediction or channel estimation has been extensively studied in three

areas: (1) to provide a theoretical performance bounds with information theory tool

for a new physical technology [5]; (2) to assess various candidate schemes in the

transmission system design [6]; (3) to estimate or predict channel parameters in the

deployment of a new wireless system, and then optimize deployment [7].

Based on theoretical analysis method in modeling, wireless channel model can be

divided into deterministic model, stochastic model, and semi-deterministic model

[8]. Among them, some famous models as COST 207, COST 231, WINNER ii

obtained by field measurements [9, 10] are wildly used in channel estimation. An

appropriate channel model can be selected according to a particular scenario, and

then its specific propagation parameters are set. Channel estimation in mobile prop-

agation usually has two types of technologies to obtain these parameters: blind and

pilot estimation [6, 11]. Pilot estimation is typically achieved by using pilot symbols

strategically placed at frame heads or subcarrier. In blind estimation, channel coeffi-

cients are predicted by using statistical features of received signals. Once a channel is

estimated its time-frequency characteristics, relevant parameters are used to update

the pre-set model. As in any estimation application, wireless channel estimation aims

to quantify the best performance of wireless systems. However, due to the unlimited

number of received signal, it is a challenge to extract optimal channel coefficients.

Feedforward neural networks (FNN) is extensively used to provide models for a

natural or artificial phenomena that are difficult to handle using classical paramet-

ric techniques [12]. Simsir et al. [13] demonstrated that channel estimation based

on neural network ensures better performance than conventional Least Squares (LS)

algorithm without any requirements for channel statistics and noise. In the meantime,

[14] and [15] also proved FNN can be used in channel estimation for various wireless

environments. Unfortunately, the learning speed of FNN has been a major bottleneck
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in many applications, and fast fading channel caused by high mobility makes this

method unsuitable for channel estimation too. Unlike traditional FNN implemen-

tations, a simple learning algorithm called extreme learning machine (ELM) with

good generalization performance [12, 16, 17] can learn thousands of times faster.

In this paper, we propose a channel estimation scheme based on ELM algorithm

for high speed environments. Since researches in wireless channel have concentrate

on large-scale and small-scale models [18], we choose path loss coefficient and

fading classification as estimation objects. Compared with back-propagation (BP)

algorithm, ELM shows its potential in channel estimation, especially for scenarios

with high mobility.

The outline of the paper is as follows: In Sect. 2, ELM learning algorithm is

present briefly. In Sect. 3, path loss estimation of wireless channel using ELM for

high speed environments is proposed, and simulation results are analyzed. Section 4,

fading classification estimation in COST 207 model based on ELM algorithm is pro-

vided. Conclusion is given in Sect. 5.

The performance of channel estimation based on ELM is in comparison with BP

(LevenbergCMarquardt algorithm) which is a popular algorithm of FNN. All of the

simulations are carried out in MATLAB 7.12.0. LevenbergCMarquardt algorithm is

provided by MATLAB package, while ELM algorithm is downloaded from [19].

2 Review of ELM

Traditional FNN solution iteratively adjusts all of its parameters to minimize the

cost function by using gradient-based algorithms. Although BP’s gradients can be

computed efficiently, an inappropriate learning rate might raise several issues, such

as slow convergence, divergence, or stopping at a local minima.

ELM algorithm steps are as follow:

1. Assign a training set ℵ =
{(

𝐱i, 𝐭i
)||| 𝐱i ∈ 𝐑n

, 𝐭i ∈ 𝐑m
, i = 1, 2,… ,N

}
, active

function g(x) and the number of hidden neurons Ñ,

2. Randomly assign input weight vector 𝐰i, i = 1, 2,… , Ñ and bias value bi, i =
1, 2,… , Ñ,

3. Calculate the hidden layer output matrix 𝐇 and its Moore-Penrose generalized

inverse matrix 𝐇†
,

4. Calculate the output weight 𝛽 = 𝐇†𝐓 with the least squares, where

𝐓 =
[
𝐭1, 𝐭2,… , 𝐭N

]T
.

In a word, for a linear system 𝐇𝛽 = 𝐓, ELM algorithm finds a least-squares solution

𝛽 rather than iterative adjustment. Seen from the steps, the learning time of ELM is

mainly spent on calculating 𝐇†
. Therefore, ELM saves a lot of time in most appli-

cations. The performance evaluation in [12, 16] shows that ELM can produce good

generalization performance in most cases and can learn more than hundreds of times

faster than BP.
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3 Large-Scale/Path Loss Channel Estimation

3.1 Large-Scale Channel Model

Large-scale/path loss channel models predict the mean signal strength for an arbi-

trary large transmitter-receiver distance (several hundreds or thousands of meters)

in order to estimate the radio coverage area of a transmitter. Since the estimation

of large-scale channel coefficients use statistical features of received signals, a blind

estimation solution might work.

Both theoretical and measurement-based propagation channel models (such as

free-space model, two-ray model, Okumura model, Hata model and etc.) [20] indi-

cate that average received signal power Pr decreases logarithmically with distance

[18]. Considering shadowing effects component 𝜓 obeys a log-normal distribution,

a statistical path loss model [21] is

PrdBm = PtdBm+KdBm−10𝛾 log10
[

d
d0

]
− 𝜓

= PtdBm+20 log10
𝜆

4𝜋d0
− 10𝛾 log10

[
d
d0

]
− 𝜓

(1)

where Pt is the transmit power, 𝛾 is the path loss exponent indicating the rate at

which path loss increases with distance, reference distance d0 for practical systems

is typically chosen to be 1 m, d is the transmitter-receiver distance, and shadowing

effect exponent𝜓 is a zero-mean Gaussian distributed random variable with standard

deviation 𝜎
𝜓

(also in dBm).

𝛾 is obtained by fitting the minimum mean square error (MMSE) of measurements

FMMSE(𝛾) = min
𝛾

n∑
i=1

[
Mmeasured(di) − Mmodel(di)

]2
(2)

where M = Pt∕Pr, in dBm. And the variance 𝜎
2
𝜓

is given by

𝜎
2
𝜓
= 1

n

n∑
i=1

[
Mmeasured(di) − Mmodel(di)

]2
(3)

3.2 Approximation of Path Loss Exponent

In Eq. (1), path loss exponent 𝛾 and shadowing effect exponent 𝜓 are determined

by carrier frequency and propagation terrain. Typical value of 𝛾 is between 1 and 4.

The smaller 𝛾 is, the less energy loss of wireless signal due to transceiver-receiver

distance is. For example, in HSR environment, 𝛾 is slightly larger than 2 in rural

area (within 250–3200 m) with narrow band communication system while it is near

to 4 in hilly terrain (within 800–2500 m) with broadband system.
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If 𝛾 calculated distance is 1500 m and the vehicle’s velocity is 120 km/h, 𝛾 needs

to be calculated every 45 s; if the velocity is up to 350 km/h, 𝛾 needs to be calculated

every 15.4 s. According to Eqs. (2) and (3), the calculation of 𝛾 requires hundreds

or thousands of receive signal measurements, the introduction of learning algorithm

into 𝛾 estimation might be effective in simplifying the data processing.

We use ELM and BP algorithms to approximate the path loss exponent 𝛾 . Without

loss of generality, we set velocity v = 120 km/h, carrier frequency fc = 2.35GHz,

transmit power Pt = 39.5 dBm and distance d is obtained by means of GPS [22]. A

training set
(
Pr i, 𝛾i

)
and testing set

(
Pr i, 𝛾i

)
with 1000 data, respectively are created

where Pr i is uniformly randomly distributed on the interval (−105,−25) dBm [23].

Shadowing effect exponent 𝜓 has been added to all training samples while testing

data are shadowing-free.

3.3 Simulation Results

The number of hidden neurons of ELM is initially set at 20 and active function is sig-

moidal. Simulation result is shown in Fig. 1. The train accuracy measured in terms of

root mean square error (RMSE) is 0.27734 due to shadowing effect, whereas the test

accuracy is 0.012445. Figure 1 confirms that the estimation results of 𝛾 are accurate,

and there is a visible margin of error only when Pr > −30 dBm.

Average 200 trails of simulation have been conducted for both ELM and BP algo-

rithm, whose results are shown in Table 1. ELM learning algorithm spents 6.6 ms

CPU time on training and 6.8 ms on testing, however, it takes 53.6 s for BP algorithm

on training and 67.1 ms on testing. ELM runs 8000 times faster than BP. In high speed

environment, when a vehicle’s velocity is 120 km/h in cells with radius 1 km, it will

carry out a handover procedure per 60 s; when a train’s velocity is 350 km/h in same

Fig. 1 The estimation of

path loss exponent 𝛾 by ELM

learning algorithm
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Table 1 Performance comparison for learning algoritms in large-scale channel estimation

Algorithms Time (s) Training (s) Testing (s) Hidden

neurons

Training Testing RMS Dev RMS Dev

ELM 0.0066 0.0068 0.2828 0.0219 0.0475 0.0500 20

BP 53.6168 0.0671 0.0745 0.0028 0.0031 0.0012 20

Fig. 2 The generalization

performance of ELM in

estimation of path loss

exponent 𝛾
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cell, handover will occur per 20.6 s. Therefore, BP is too time-consuming to be used

in wireless system with high mobility. Although ELM has a much higher testing

error 0.0475 compared with 0.0028 in BP, this estimation error can be acceptable in

our environments. In addition, assuming that network transmission rate is 1Mbps,

the collection of 1000 test data takes only 1 ms, so that a packet of 125 bytes can

estimate the path loss exponent 𝛾 based on ELM with accuracy rate 95 % within a

time interval of less than 8 ms.

Figure 2 shows the relationship between the generalization performance of ELM

and the number of hidden neurons n for 𝛾 estimation. Every n simulates 50 times.

Obviously, the generalization performance of ELM is stable when n ≥ 12. Thus, the

simulation result in Fig. 1 is reasonable when n is set to 20.

Figure 3a shows the relationship between RMSE of ELM and the number of

train/test data, and Fig. 3b shows the impact of this number on consuming time.

Training RMSE number of train/test data is almost a constant (slightly less than 0.3)

because ELM use Moore-Penrose inverse matrix calculation to solve the problem of

finding the smallest norm least-squares output weight. Unlike training RMSE, test-

ing RMSE decreases with increasing number of test data. The simulation confirms

the conclusion in [12] that ELM has no over-trained phenomenon. Both train and
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Fig. 3 Number of train/test data of ELM in estimation of path loss exponent 𝛾

test consuming time increases with data number, however, the increase of test time

is less than train time. It should also be noted that, even the number of data is up to

104, the time consuming of ELM is still acceptable, which is less than 70 ms.

4 Small-Scale/Fading Estimation

4.1 Small-Scale Channel Model

Small-scale/fading models characterize the rapid fluctuations of the received signal

strength over very short distances (a few wavelengths) or short durations (on the

order of seconds) in order to estimate the influence of multi-path propagation and

the speed of a mobile terminal.

COST 207 model [9] for mobile radio specifies the power delay profiles and

Doppler spread for four typical environments, i.e. rural area (RA), typical urban area

(TU), bad urban area (BU) and hilly terrain (HT). The RA case consists of two dis-

tinct channel models, while the other cases each comprises four channel models.

Thus, COST 207 has a total of 14 channel models: RAx4, RAx6, TUx6, TUx6alt,

TUx12, TUx12alt, BUx6, BUx6alt, BUx12, BUx12alt, HTx6, HTx6alt, HTx12 and

HTx12alt.

Due to radio waves’ reflection and refraction, the propagation between transceiver

and receiver has several paths, hence each channel model has multiple taps. For

example, RAx4 is short for rural area environment with 4 taps, and HTx6alt stands
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Table 2 Performance comparison for learning algorithms in small-scale channel estimation

Algorithms Time (s) Success rate (%) Hidden

neurons

Training Testing Training Testing

ELM 0.0135 0.0085 86.46 72.73 20

BP 53.77 0.0694 90.60 31.08 20

for hilly terrain with 6 alternative taps. Each tap is characterized by a relative delay

(with respect to the first path delay), a relative power and a Doppler spectrum cate-

gory.

ELM and BP algorithms are used to estimate COST 207 channel models CT based

on modulated receive signals PM. In order to facilitate channel estimation, each chan-

nel model is assigned an integer value [24], such as CT = 1 for RAx4, CT = 2 for

RAx6, and etc. We still set v = 120 km/h, fc = 2.35GHz. Transmission rate is 1Mbps

and sampling factor is 4, so that the simulation sampling rate is 4 × 106 samples per

second. PSK modulation and bi-Gaussian Doppler are used in this simulation. A

training set
(
CTi,PMi

)
has 1000 data whereas testing set with 300 data.

4.2 Simulation Results

The hidden neurons of ELM is initially set at 20 and active function is sigmoidal.

Average 50 trails of simulation have been conducted for both ELM and BP algorithm,

whose results are shown in Table 2. Similarly, ELM learns up to hundreds of times

faster than BP. Although BP can reach the learning rate 90.60 %, its testing rate drops

to 31.08 %. On the contrary, ELM learning rate 86.46 % is slightly lower than BP,

but it can achieve average testing rate 72.73 %. This is mainly because Matlab BP

function newff doesn’t support complex data. Modulated receive signals PM must be

turned into real.

5 Conclusion

In this paper, channel estimation based on ELM is proposed for high speed envi-

ronments. In large-scale model, the estimation performance of path loss exponent is

developed, whose experimental results show that ELM run 8000 times fast than BP

learning algorithm and its testing error is acceptable. In small-scale model, fading

classification estimation is provided, which shows ELM is an effective tool to classify

channel type. Compared with BP, ELM still works when the elements in training set

or testing set are complex. Therefore, ELM is an effective tool in channel estimation.
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