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Abstract Extreme learning machine (ELM) was extended from the generalized sin-

gle hidden layer feedforward networks where the input weights of the hidden layer

nodes can be assigned randomly. It has been widely used for its much faster learning

speed and less manual works. Considering the field of multi-label text classification,

in this paper, we propose an ELM based algorithm combined with L21-norm min-

imization of the output weights matrix called L21-norm Minimization ELM, which

not only fully inherits the merits of ELM but also facilitates group sparsity and

reduces complexity of the learning model. Extensive experiments on several bench-

mark data sets show a more desirable performance compared with other common

multi-label classification algorithms.

Keywords Text categorization ⋅ Multi-label learning ⋅ L21-norm minimization ⋅
Extreme learning machine

1 Introduction

Continued development of the Internet and information technology has spawned a

large number of text data in various forms. How to organize, manage and analyze

such a huge data, and find the user information quickly, accurately and comprehen-

sively is a big challenge. Text automatic classification is an important research point

in the field of information mining. Compared to the traditional single classification

problem, multi-label text classification has more value of research and application.

In multi-label learning, the text data are always in high dimensionality and spar-

sity. e.g. In a large number of feature words, only a few are related to the topic of a
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text and most of the rest are redundant. Therefore, introducing sparsity into machine

learning has become a popular technology, which not only meet the need of practical

problems but also can simplify the learning model. In resent years, extreme learn-

ing machine (ELM) [1–4] has attracted increasing attention and been widely used

for its distinguishing characteristics: (1) fast learning speed, (2) good generalization

performance on classification or regression, (3) less human intervention with ran-

domly setted hidden layer parameters. For these reasons, the theoretical analysis and

various improvement algorithms of ELM are put forward continuously.

In ELM network, the function of the random hidden layer nodes can be seen as

feature mapping. It maps the data from the input feature space to the hidden layer

feature space, which is called ELM feature space in literature [5]. In this ELM fea-

ture space, each instance may still remains the sparsity. Meantime, considering the

characteristics of multi-label learning and the advantages of the classifier ELM, in

this paper, we propose an embedded model for multi-label text classification, which

is derived from a formulation based on ELM with L21-norm minimization of the

output weights matrix. Through the constraint of the L21-norm regularization, the

training model becomes simplified, also we can sufficiently preserve the intrinsic

relation of different nodes in the ELM feature space and select them by joint multi-

ple related labels, where the labels are not always independent to each other. Exper-

imental results on several benchmark data sets verify the efficiency of our proposed

algorithm.

The main contributions of this paper can be summarized below:

∙ According to the characteristics of the multi-label text data we introduce the spar-

sity model.

∙ Applying L21-norm for joint hidden layer nodes selection and avoiding individual

training for each label.

∙ Using ELM for multi-label text classification.

The remainder of this paper is organized as follows. After reviewing the related

works in Sect. 2, we present the algorithm L21-ELM in Sect. 3 and describe the evalu-

ation measures of multi-label learning in Sect. 4. Experimental results are presented

in Sect. 5 and we conclude this paper in Sect. 6.

2 Related Work

2.1 Multi-label Learning

Unlike traditional supervised learning, in multi-label learning each instance may

belong to multiple classes and for a new instance we try to predict its associated

set of labels. This is a generalized case of the prevalent multi-class problems where

in multiple classes each instance has only one class restrictedly.
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Let ∈ ℝd
denote the d-dimensional space of instances, =

{
y1,… , yk

}
denote

the label space with k possible class labels. Given the training data set{
(x1,Y1),… , (xn,Yn)

}
where xi ∈  and Yi ⊆  . the task of multi-label learning

is to learn a multi-label classifier f ∶  → 2k from the training data set. For any

unknown instance x ∈  , the multi-label classifier f (⋅) predicts f (x) ⊆  as the set

of proper labels. Existing multi-label learning algorithms can be divided into two

main categories [6, 7].

Problem transformation methods. The main idea of most problem transforma-

tion methods is to transform the original multi-label learning problem into multiple

single-label learning problems, which usually reconstructs the multi-label data sets

and then existing classification algorithms can be applied directly.

The binary relevance (BR) [8] algorithm is a popular kind of this transformation

method and has been widely used in many practical applications. This algorithm

divides the multi-label classification problem into k independent binary classification

problems, however, the assumption of label independence is too implicit and the label

correlations are ignored. The label powerset (LP) [9] algorithm is another common

transformation method. It considers each unique set of labels in a multi-label training

data as one class in the new transformed data. While the computational complexity

of LP is too big and it may pose class imbalance problem. The basic idea of the

classifier chains (CC) [10] is to chain the transformed binary classifiers one by one,

but the sequence of each classifier is a problem. The ensembles of classifier chains

(ECC) [11] improved the CC algorithm and identify the sequence of each classifier

effectively.

Algorithm adaptation methods. From another perspective, this method improves

conventional algorithms to deal with multi-label data directly. Some representative

algorithms include ML-kNN [12] adapting k-nearest neighbor techniques, which has

the advantage of both lazy learning and Bayesian but ignores label correlations. ML-

DT [13] adapting decision tree techniques, Rank-SVM [14] adapting kernel tech-

niques, etc.

In this paper, the algorithm based on ELM we proposed is designed to deal with

multi-label data directly, therefore, it can be considered as a kind of algorithm adap-

tation method.

2.2 L𝟐𝟏-norm Regularization for Parameter Estimation

In recent years, parameter estimation via sparsity-promoting regularization has be

widely used in machine learning and statistics. Perhaps L1-norm regularization is the

most successful and common method to promote sparsity for the parameter vector

(the lasso approach). Along with the development of multi-task learning, in 2006,

Obozinski et al. [15, 16] proposed to constraint the sum of L2-norms of the blocks of

weights connected with each feature, and then leading to the L21-norm regularized

optimization problem (the group lasso).
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Fig. 1 Illustration of the data matrix A,Y , and the weights matrix X

In this section, we will briefly review the basics of this technique. Usually, the

optimization problem can be described as following:

min
X

∶ loss(X) + 𝜆 ∥ X ∥2,1 (1)

where 𝜆 > 0 is the regularization parameter, X ∈ ℝn×k
is the weights matrix, ∥

X ∥2,1=
∑n

i=1 ∥ X ∥2 and loss(X) is a smooth and convex loss function (such as the

logistic loss, the least square loss and the hinge loss). Take the least squares problem

as an example, the Eq.1 is expressed as:

min
X

∶ 1
2
∥ AX − Y ∥22 +𝜆 ∥ X ∥2,1 (2)

where A ∈ ℝm×n
, Y ∈ ℝm×k

are the data matrices, each row of X forms a feature

group. Figure 1 visualizes this optimization problem.

This optimization problem will be more challenging to solve due to the non-

smoothness and non-differential of the L21-norm regularization. In this paper, we

apply the strategy proposed in literature [17] to solve this problem, which reformu-

lates the non-smooth L21-norm regularized problem to an equivalent smooth convex

optimization problem and can be solved in linear time.

3 L𝟐𝟏-minimization ELM (L𝟐𝟏-ELM)

In this section, we propose L21-ELM algorithm for multi-label learning problem,

which takes the significant advantages of ELM like affording good generalization

performance at extremely fast learning speed, meantime, offers us some additional

characteristics. Firstly, we will review the theories of ELM, then, introduce the algo-

rithm we proposed.
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Fig. 2 Structure of ELM

network

3.1 Extreme Learning Machine

Extreme learning machine [2, 3] was originally proposed for single hidden layer

feedforward neural networks and then extended to the generalized single hidden layer

feedforward networks where the hidden layer need not be neuron alike [1]. Figure 2

shows the structure of ELM network. It contains an input layer, a hidden layer and

an output layer.

In ELM, the hidden layer parameters are chosen randomly, and the output function

can be represented as following (take the case of p hidden layer nodes and one output

layer node as an example):

foutput(x) =
p∑

i=1
𝛽ihi(x) = h(x)𝛽 (3)

where x ∈ ℝn
is the input variable, 𝛽 = (𝛽1, 𝛽2,… , 𝛽p)T is the weights vector between

the hidden layer nodes and the output layer nodes. h(x) =
[
h1(x), h2(x),… , hp(x)

]
is

the output vector of the hidden layer with respect to the input vector x. hi(x) is the

ith activation function, its input weights vector and bias are wi and bi.
Figure 2 shows that h(x) actually maps the input variables from the n-dimension

to the p-dimensional hidden layer space (ELM feature space), thus, it appears to be

a feature mapping function.

The ELM reliably approximates m samples, X = [x1,… , xm], with minimum

error:

min
𝛽

∶∥ H𝛽 − Y ∥22 (4)
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where H is hidden layer output matrix,

H =
⎡
⎢
⎢
⎣

h(x1)
⋮

h(xm)

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

g(w1 ⋅ x1 + b1) ⋯ g(wp ⋅ x1 + bp)
⋮ ⋱ ⋮

g(w1 ⋅ xm + b1) ⋯ g(wp ⋅ xm + bp)

⎤
⎥
⎥
⎦m×p

(5)

and Y = [y1,… , ym]T is the target vector.

The analytical result of this least squares equation is:

̂
𝛽 = H†Y (6)

where H†
is called Moore-Penrose generalized inverse of matrix H.

3.2 L𝟐𝟏-norm Minimization ELM for Multi-label Learning

In this section, we consider adapting the ELM network to solve the multi-label

learning problem. Given the multi-label training data with m samples (xi, yi), where

xi = (xi1, xi2,… , xin)T ∈ ℝn
and yi = (yi1, yi2,… , yik) ∈ ℝk

. As shown in the Fig. 2,

we set the number of output layer nodes k , which equals the number of labels, and

set the number of hidden layer nodes p randomly.

Inspired by ELM, we consider combining the smallest training error of ELM with

the L21-norm minimization of output weights matrix. It is reformulated as following:

min
𝛽

∶∥ H𝛽 − Y ∥22 +𝜆 ∥ 𝛽 ∥2,1 (7)

where ∥ 𝛽 ∥2,1=
∑p

i=1 ∥ 𝛽i ∥2 is the L21-norm of the matrix 𝛽, and 𝛽i =
(𝛽i1, 𝛽i2,… , 𝛽ik), 𝜆 is the regularization parameter.

To solve the nonsmooth optimization problem in Eq. (7), the literature [17] pro-

posed to employ the Nesterov’s optimal method by optimizing its equivalent smooth

convex reformulation. When using a constraint to replace the nonsmooth L21-norm,

the original problem can be equivalent to the L21-ball constrained smooth convex

optimization problem as following:

min
𝛽

∶∥ H𝛽 − Y ∥22 s.t. ∥ 𝛽 ∥2,1≤ z (8)

When applying the Nesterov’s optimal method to solve Eq. (8), one key build-

ing block of this method is Euclidean projection onto the L21-ball. The Euclidean

projection problem is defined as:

𝜋Z(U) = argmin
𝛽∈Z

1
2
∥ 𝛽 − U ∥22 (9)
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where Z =
{
𝛽 ∈ ℝp×k ∣∥ 𝛽 ∥2,1≤ z

}
is the L21-ball and z ≥ 01 is the radius of L21-

ball. To solve the problem in Eq. (9), the Lagrangian variable 𝛼 is introduced for

the inequality constrain ∥ 𝛽 ∥2,1≤ z , then we can lead to the Lagrangian function of

Eq. (9) as:

Ł(𝛽, 𝛼) = 1
2
∥ 𝛽 − U ∥22 +𝛼(∥ 𝛽 ∥2,1 −z) (10)

Let 𝛽
∗

be the primal optimal point, and 𝛼

∗
be the dual optimal point. This two

points must satisfy the condition: ∥ 𝛽

∗ ∥2,1≤ z and 𝛼

∗
≥ 0. Since considering the

strong duality holds of the Slater’s condition, and values of the primal and dual opti-

mal points are equal: 𝛼
∗(∥ 𝛽 ∥2,1 −z) = 0. Therefore, the primal optimal point 𝛽

∗
can

be given by Eq. (11) if the dual optimal point 𝛼
∗

is known.

𝛽

∗
i =

⎧
⎪
⎨
⎪
⎩

(1 − 𝛼

∗

∥ui∥
)ui, 𝛼

∗
> 0, ∥ ui ∥> 𝛼

∗

0, 𝛼

∗
> 0, ∥ ui ∥≤ 𝛼

∗

ui, 𝛼

∗ = 0
(11)

where ui ∈ ℝ1×k
is the ith row of U.

According to Eq. (11), 𝛽
∗

can be computed as long as 𝛼
∗

is solved. Now, the key

step is how to compute the unknown dual optimal point 𝛼
∗
. Liu et al. [17] gives the

theorem : if ∥ U ∥2,1≤ z the value of 𝛼
∗

is zero, otherwise, it can be solved as the

unique root of the following auxiliary function.

𝜔(𝛼) =
p∑

i=1
max(∥ ui ∥ −𝛼, 0) − z (12)

The Eq. (12) can be solved in O(p) flops by the bisection [18], and it costs O(pk)
flops to compute 𝛽

∗
by Eq. (11). Above all, for solving Eq. (7) the time complexity

is O(pk). When testing an unseen instance, we will use a threshold function t(x) to

determine its associated label set. For an actual outputs cj, Y =
{
j ∣ cj > t(x)

}
. An

usual solution is to set t(x) to be zero. In this paper, we adopt the threshold category

used in literature [19].

4 Evaluation Measures

Being different from the traditional single-label learning system, in multi-label learn-

ing an instance usually have one or more labels simultaneously, therefore those clas-

sical evaluation methods would be no longer applied in multi-label learning system.

For this reason, a series of evaluation metrics for multi-label learning are proposed.

In order to compare our algorithm with other commonly used methods, we adopt

five evaluation measures in multi-label learning in this section, including: hamming
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loss, one-error, coverage, ranking loss and average precision [6, 20, 21]. The follow-

ing is a look at these measures based on a test data set S = {(xi,Yi) ∣ 1 ⩽ i ⩽ n} and

a trained model f (⋅, ⋅) or g(⋅).

Hamming loss. This measure evaluates the error rate of all instances on all labels,

e.g. a relevant label of an instance is not predicted or an irrelevant one is predicted.

the smaller the value of hamming loss, the better the performance.

hlossS(g) =
1
n

n∑

i=1

1
m

∣ g(xi)△ Yi ∣ (13)

where △ stands for the symmetric difference between two sets, m is the total number

of labels. It is worth noting that when most of these instances have little correlative

labels, it can also get a small value of hamming loss even if all the labels of an

instance are predicted in error. Therefore, we should integrate it with other measures.

One-error. This measure evaluates the times that the top-ranked label of an instance

is not in its relevant label set. The smaller the value of one − errorS(f ), the better the

performance.

one − errorS(f ) =
1
n

n∑

i=1

[
argmax

y∈y
f (xi, y) ∉ Yi

]
(14)

One-error mainly focuses on the most relevant label being correct or not, and it

don’t pay attention to other labels. Note that, it is equal to ordinary error identically

in single-label classification problems.

Coverage. This measure evaluates the average steps we need to go down the ranked-

label list for the sake of covering all the relevant labels. The smaller the value of

coverage, the better the performance.

coverageS(f ) =
1
n

n∑

i=1
max
𝓁∈Yi

rankf (xi,𝓁) − 1 (15)

where the rankf (⋅, ⋅) is derived from the real-valued function f (⋅, ⋅), and the bigger the

value of f, the smaller the rankf is. The performance is perfect when

coverageS(f ) = 0.

Ranking loss. This measure evaluates the average fraction of the reversely ordered

label pairs. The smaller the value of rlossS(f ), the better the performance.

rlossS(f ) =
1
n

n∑

i=1

1
∣ Yi ∣∣ Yi ∣

∣
{
(y, y)|f (xi, y) ≤ f (xi, y), (y, y) ∈ Yi × Yi

}
∣ (16)
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where Yi and Yi denote the possible and impossible label sets of the instance xi. When

the value is zero, it means that all impossible labels follow possible ones.

Average precision. This measure evaluates the average fraction of relevant labels

ranked above a particular one 𝓁 ∈ Yi. It is typically used in information retrieval

(IR) system to evaluate the document ranking performance query retrieval [22]. The

bigger the value of avgpecS(f ), the better the performance.

avgpecS(f ) =
1
n

n∑

i=1

1
∣ Yi ∣

∑

y∈Yi

∣ Li ∣
rankf (xi, y)

(17)

where Li =
{
y′ ∣ rankf (xi, y′) ≤ rankf (xi, y), y′ ∈ Yi

}
. Note that avgpecS(f ) =1 ranks

perfectly, that means there is no instance xi for which a label not in Yi is ranked above

on a label in Yi.

5 Experimental Results

In this section, L21-ELM is compared with the performance of the original ELM

as well as other common multi-label classification algorithms. The benchmark data

sets we used are all in text areas, including: Enron for email analysis, Reuters for

text categorization, BibTeX for tags of paper and Yahoo for web page categorization.

Table 1 describes the datasets in detail. For Enron and Reuters without pre-separated

training and testing sets, therefore, we decide to select 1,500 instances of them for

Table 1 Data sets

Items Size Train Test Features Classes Average labels

Enron 1702 – – 1001 53 3.38

Reuters 2000 – – 243 7 1.15

BibTeX 7395 4880 2515 1836 159 2.40

Arts 5000 2000 3000 462 26 1.64

Business 5000 2000 3000 438 30 1.59

Computers 5000 2000 3000 681 33 1.51

Education 5000 2000 3000 550 33 1.46

Entertainment 5000 2000 3000 640 21 1.42

Health 5000 2000 3000 612 32 1.66

Recreation 5000 2000 3000 606 22 1.42

Reference 5000 2000 3000 793 33 1.17

Science 5000 2000 3000 743 40 1.45

Social 5000 2000 3000 1047 39 1.28

Society 5000 2000 3000 636 27 1.69
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Table 2 Results on data set Enron

Measure Rank-SVM ML-kNN ECC ELM L21-ELM

HL ↓ 0.071 ± 0.0044 0.051 ± 0.002 0.055 ± 0.002 0.053 ± 0.002 𝟎.𝟎𝟒𝟖 ± 𝟎.𝟎𝟎𝟐
OE ↓ 0.714 ± 0.087 0.299 ± 0.031 𝟎.𝟐𝟐𝟒 ± 𝟎.𝟎𝟑𝟔 0.281 ± 0.036 0.236 ± 0.0276
Co ↓ 31.269 ± 2.233 12.959 ± 0.832 21.079 ± 1.265 17.118 ± 1.176 𝟏𝟐.𝟖𝟎𝟗 ± 𝟎.𝟗𝟎𝟔
RL ↓ 0.338 ± 0.037 0.091 ± 0.008 0.249 ± 0.023 0.121 ± 0.012 𝟎.𝟎𝟖𝟒 ± 𝟎.𝟎𝟎𝟖
AP ↑ 0.312 ± 0.045 0.639 ± 0.018 0.636 ± 0.023 0.649 ± 0.019 𝟎.𝟔𝟖𝟑 ± 𝟎.𝟎𝟏𝟓
Time >100 16.1 61.7 0.6 3.4

Table 3 Results on data set Reuters

Measure Rank-SVM ML-kNN ECC ELM L21-ELM

HL↓ 0.093 ± 0.007 0.049 ± 0.003 0.036 ± 0.003 0.044 ± 0.004 𝟎.𝟎𝟑𝟑 ± 𝟎.𝟎𝟎𝟑
OE↓ 0.205 ± 0.056 0.126 ± 0.013 0.068 ± 0.009 0.091 ± 0.011 𝟎.𝟎𝟔𝟐 ± 𝟎.𝟎𝟏𝟏
Co↓ 0.639 ± 0.163 0.439 ± 0.035 0.350 ± 0.036 0.380 ± 0.034 𝟎.𝟐𝟕𝟔 ± 𝟎.𝟎𝟐𝟗
RL↓ 0.078 ± 0.027 0.045 ± 0.004 0.040 ± 0.006 0.034 ± 0.004 𝟎.𝟎𝟏𝟗 ± 𝟎.𝟎𝟎𝟑
AP↑ 0.867 ± 0.037 0.920 ± 0.007 0.953 ± 0.006 0.940 ± 0.006 𝟎.𝟗𝟔𝟐 ± 𝟎.𝟎𝟎𝟔
Time >100 3.4 2.8 1.8 2.6

Table 4 Results on data set Recreation

Measure Rank-SVM ML-kNN ECC ELM L21-ELM

HL↓ 0.061 0.064 0.070 ± 0.001 0.084 ± 0.001 𝟎.𝟎𝟓𝟖 ± 𝟎.𝟎𝟎𝟏
OE↓ 0.499 0.746 𝟎.𝟒𝟖𝟓 ± 𝟎.𝟎𝟎𝟓 0.577 ± 0.002 0.501 ± 0.023
Co↓ 4.066 5.432 6.365 ± 0.128 6.169 ± 0.060 𝟑.𝟗𝟓𝟓 ± 𝟎.𝟎𝟏𝟐
RL↓ 0.140 0.208 0.364 ± 0.008 0.228 ± 0.003 𝟎.𝟏𝟑𝟔 ± 𝟎.𝟎𝟎𝟏
AP↑ 0.608 0.422 0.569 ± 0.006 0.528 ± 0.002 𝟎.𝟔𝟏𝟏 ± 𝟎.𝟎𝟏𝟒
Time 95 19 34 3.5 15

Table 5 Results on data set BibTeX

Measure ML-kNN ECC ELM L21-ELM

HL↓ 0.014 0.017 ± 0.0001 0.014 ± 0.0001 0.015 ± 0.0002
OE↓ 0.585 𝟎.𝟑𝟕𝟏 ± 𝟎.𝟎𝟎𝟕 0.409 ± 0.005 0.461 ± 0.018
Co↓ 56.218 60.113 ± 0.369 37.266 ± 0.329 𝟐𝟑.𝟎𝟒𝟏 ± 𝟎.𝟒𝟑𝟔
RL↓ 0.217 0.463 ± 0.002 0.128 ± 0.001 𝟎.𝟎𝟖𝟏 ± 𝟎.𝟎𝟎𝟏
AP↑ 0.345 0.486 ± 0.003 0.516 ± 0.003 𝟎.𝟓𝟐𝟖 ± 𝟎.𝟎𝟏𝟓
Time 348 1007 40 94

training randomly and the rest data for testing. We repeat the data partition for thirty

times randomly, and give the “average results” ± “standard deviations”.

Table 2, 3, 4 and 5 shows the comparison results on a single data set. Among

them, the symbol “↓” means the smaller the better, “↑” on the contrary. HL, OE, Co,
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Table 6 Results on data set Yahoo

Measure Rank-SVM ML-kNN ECC ELM L21-ELM

HL↓ 0.046 ± 0.014 0.043 ± 0.014 0.051 ± 0.021 0.050 ± 0.019 𝟎.𝟎𝟒𝟐 ± 𝟎.𝟎𝟏𝟒
OE↓ 0.441 ± 0.118 0.471 ± 0.157 0.383 ± 0.123 0.437 ± 0.134 𝟎.𝟑𝟕𝟗 ± 𝟎.𝟏𝟐𝟓
Co↓ 𝟑.𝟓𝟔𝟒 ± 𝟏.𝟎𝟒𝟑 4.098 ± 1.237 8.563 ± 1.867 6.362 ± 1.207 4.836 ± 1.080
RL↓ 𝟎.𝟎𝟖𝟑 ± 𝟎.𝟎𝟑𝟏 0.102 ± 0.045 0.329 ± 0.080 0.154 ± 0.051 0.111 ± 0.034
AP↑ 0.661 ± 0.089 0.625 ± 0.117 0.621 ± 0.085 0.631 ± 0.104 𝟎.𝟔𝟖𝟓 ± 𝟎.𝟎𝟗𝟓
Time 213 19 45 3 17

RL and AP are the abbreviations of hamming loss, one-error, coverage, ranking loss

and average precision respectively, unit of Time (training) is seconds. The number of

ELM hidden layer nodes is randomly setted but not more than the training samples

and the best results are selected.

Overall, compared with other algorithms,L21-ELM achieves the best performance

in most case. Especially, it shows the absolute advantage on coverage, ranking loss

and average precision in all datasets. On hamming loss it is worse than Rank-SVM

only on BibTeX data set, and performs better on other cases. On one-error, ECC

achieves comparable performance with other approaches. Without consideration of

ECC, L21-ELM outperforms other approaches by the metric of one-error.

Compared with the original ELM approach, L21-ELM achieves obviously better

performance on almost all datasets over all the 5 criteria. This validates the effective-

ness of the L21-norm regularization on the original ELM and eliminating redundant

information.

On the training time, the ELM group has faster training time than other app-

roaches. This validates that L21-ELM could fully inherit the merits of ELM with

extreme learning speed. Compared with original ELM, L21-ELM consumes more

training time, but considering its better performance it is worth.

Note that Yahoo is comprised of 11 independent data sets, including: Arts, Busi-

ness, Computers, Education, Entertainment, Health, Recreation, Reference, Science,

Social and Society. We just give the average results over the 11 data sets. From the

results as Table 6 shows, our approach could also achieve a better performance rela-

tively.

6 Conclusion

In this paper, we propose a L21-norm Minimization ELM algorithm for multi-label

learning problem, which not only inherits the advantage of ELM but also offers

us additional characteristics. Through the constraint of the L21-norm regularization

on the original ELM, the output weights matrix of the hidden layer nodes become

sparse and then leading to the simplification of the learning model. Experimental
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results validate that L21-ELM has highly competition to state-of-the-art multi-label

algorithms (e.g. Rank-SVM, ML-kNN and ECC) especially in training time. Our

approach greatly improves the performance of the original ELM, although it sacri-

fices more time.
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