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Extreme Learning Machine for Multi-class
Sentiment Classification of Tweets

Zhaoxia Wang and Yogesh Parth

Abstract The increasing popularity of social media in recent years has created new

opportunities to study and evaluate public opinions and sentiments for use in mar-

keting and social behavioural studies. However, binary classification into positive

and negative sentiments may not reveal too much information about a product or

service. This research paper explores the multi-class sentiment classification using

machine learning methods. Three machine learning methods are investigated in this

paper to examine their respective performance in multi-class sentiment classifica-

tion of tweets. Experimental results show that Extreme Learning Machine (ELM)

achieves better performance than other machine learning methods.

Keywords Extreme learning machine ⋅ Machine learning ⋅ Multi-class classifica-

tion ⋅ Sentiment analysis ⋅ Social media ⋅ Tweets

1 Introduction

In recent years, the increasing popularity of social media, including the use of tweets,

has created new opportunities to study and evaluate public opinions and sentiments

for use in marketing and social behavioural studies.

Sentiment analysis, or opinion mining, can be defined as a computational study of

consumer opinions, sentiments and emotions, particularly towards specific products

or services [1]. Sentiment classification can be thought of as a pattern-recognition
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2 Z. Wang and Y. Parth

and classification task analysing unstructured data for purposes towards improving

product or service quality [2].

Sentiment classification can be broadly categorized into two main groups:

machine learning-based and non-machine learning-based methods [3, 4]. In gen-

eral, machine learning-based methods can achieve better classification results com-

pared to non-learning based method (such as simple lexicon-based method), and are

widely used [4]. Extreme Learning Machine (ELM) is one of the more recent and

popular machine learning-based methods [5]. It is a kind of feedforward networks,

which considers multi-hidden-layer of networks as a white box and trained layer-by-

layer [6]. In general, ELM tends to perform better compared to other gradient-based

learning algorithms [5]. It has been successfully implemented in many real-world

applications [7–11].

Other machine learning methods like Support Vector Machine (SVM), Naïve

Bayes (NB) and Maximum Entropy have also been used in classification appli-

cations [12–16]. Most of these machine learning methods are applied to binary-

classification problems and their performance in handling multi-class sentiment clas-

sification has not been well researched.

In this paper, we investigate the performances of different machine learning meth-

ods such as ELM, Multi-Class SVM, and Multinomial Naïve Bayes in multi-class

sentiment classification. The rest of the paper is organized as follows. Section 2

reviews the relevant work of the machine learning methods in classification prob-

lems. This is followed by the implementation of these methods in sentiment analysis

of tweets in Sect. 3. Performance of different machine learning-based methods is

evaluated with case studies in Sect. 4. Section 5 concludes this paper with recom-

mendations for future studies.

2 Relevant Work of Machine Learning Methods

The machine-learning methods reviewed herein include Multinomial Naïve Bayes,

Multi-Class support vector machine and ELM.

Naïve Bayes classifier is a probabilistic classifier based on the Bayes theorem

[17, 18]. Relaxing the conditional independence assumption for each of the features

in binary classification, the Multinomial Naïve Bayes classifier can be used to deal

with multi classifications [19]. Given a set of objects, each of which belonging to

a known class and having a known vector of variables, the algorithm attempts to

construct a rule which will assign future objects to a class, while being given only

the vectors of variables describing the future objects. Let xi be the feature vector in

multinomial model for the ith document Di. Let ni =
∑

t xit be the total number of

words in Di, where xit is the t th element of xi, and let P(wt|C) be the probability of

words wt occurring in class C. Then, by Naïve Bayes assumption of independence,

the document likelihood P(Di|C) can be written as:
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P(Di|C) =
ni!

|v|∏

t=1
xit!

|v|∏

t=1
P(wt|C)xit (1)

The probability, P(wt|C), of each word in a given the document class, C, can be

written as,

̂P(wt|C = k) =

N∑

i=1
xitzik

|v|∑

s=1

N∑

i=1
xiszik

(2)

where N is the total number of documents with the condition, zik equals to 1 when

Di contain class C = k, otherwise equals 0.

Each P(wi|c) term in Multinomial Naïve Bayes is assumed to a multinomial dis-

tribution. Multinomial distribution works well for data which can easily be turned

into counts, and in this case, word counts in the text.

SVM is a non-probabilistic classifier that constructs a hyperplane in a high-

dimensional space through the classification training process [4, 20]. The decision

function can be defined as follows:

f (x) = sign(
∑

i
𝛼iK(xvi , x) + b) (3)

where 𝛼i is Lagrange multiplier determined during SVM training. The parameter b
representing the shift of the hyperplane is determined during SVM training with the

K(xvi , x) as the kernel function [21].

ELM which was initially proposed by Huang [22] is different from BP and SVM

which consider multi-layer of networks as a black box. It is also different from

Deep Learning which requires intensive tuning in hidden layers and hidden neu-

rons, ELM theories show that hidden neurons do not need tuning because its hidden

nodes parameters (ci, ai) are randomly assigned [23]. For N arbitrary distinct sam-

ples (xk, tk) ∈ Rn × Rm
, the single ELM classifier with ̃N hidden nodes becomes a

linear system as,

̃N∑

i=1
𝛽iG(xk; ci; ai) = tk, k = 1,… ,N. (4)

where ci ∈ Rn
and ai ∈ Rare the learning parameters of hidden nodes and randomly

assigned weight 𝛽i connecting the ith hidden node to the output node, xk are the train-

ing examples, tk is the target output for k = 1,… ,N, and G(xk; ci; ai) is the output of

the ith hidden node with respect to the input xk. The output weights can be described

in matrix form as,

𝛽 = ⌊𝛽T1 ...𝛽
T
̃N⌋

T
mx ̃N (5)
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Equation (4) can be rewritten as:

H𝛽 = T (6)

where H(c1,… , c
̃N , a1,… , a

̃N , x1,… , xN) =

⎡
⎢
⎢
⎣

G(x1; c1, a1) ⋯ G(x1; c ̃N , a ̃N)
⋮ ⋱ ⋮

G(xN ; c1, a1) ⋯ G(xN ; c ̃N , a ̃N)

⎤
⎥
⎥
⎦Nx ̃N

(7)

T = ⌊tT1 ...t
T
N⌋

T
mxN (8)

The output weights 𝛽 can be determined by finding the least-square solution as,

̂

𝛽 = H†T (9)

where H†
is the Moore-Penrose generalized inverse [24] of the hidden layer output

matrix H.

An ELM classifier (single) implements multi-class classification problem using a

network architecture of multi-output nodes equal to the number of pattern classes n.

The network output can be written as y = (y1, y2,… , yn)T . For each training example

say x, the target output t is coded into n bits: (t1,… , tn)T . For a pattern of class i, only

the target output ti is “1” and the rest is “−1”.

3 Proposed Implementation of ELM and Other Machine
Learning Methods for Sentiment Classifications

The task of applying machine learning methods for classification requires several

steps.

Pre-processing of unstructured tweet data is the first step in implementing machine

learning methods for sentiment classification. The collected data have to undergo

cleaning, tokenization [25], and stemming [26] to convert them into structured text

data. Cleaning involves the removal of url links, usernames (“@username”), punctu-

ations, whitespaces, hashtags etc. The structured texts are then tokenized with labels

to create a word features list. Using chi-square (𝜒
2
N) distribution, the word features

are assigned an intermediate score. The scores are subsequently updated to find col-

location and bigrams. After pre-processing, the top n features in the list with the best

bigrams and collocations are extracted to train the machine learning classifier. The

latest advanced enhancement methods [4] have been used to obtain the best possible

results for SVM and Naïve Bayes classifier in this paper.

In the case of ELM, the optimized parameters have been chosen to minimize the

root mean square error (RMSE). Tables 1 and 2 show the list of parameter sets for
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a particular type of data which are optimized using the ridge regression and linear

regression respectively. The selected parameter sets which produce the least RMSE

(shown in bold) are used to train the classifier. The number of iterations for training

and testing the classifier is limited to a maximum of 20.

Algorithm 1 shows the pseudo code for minimizing the RMSE, which is coded in

hyper-parameter optimization library in python “Hyperopt” [27]. The optimization

is performed over the given parameters or search space such as hidden node, alpha,

ridge alpha, and radial basis function (RBF) width. The Tree-structured Parzen Esti-

mator (TPE) [28], is used for optimization over the given conditions for training an

ELM classifier.

Algorithm 1 Minimize Root Mean Square Error

1: procedure REQUIRE(numpy, hyperopt, sklearn, elm)

2: input ← training file
3: iteration_max ← 20
4: test_run:

5: test(params, ridge)
6: test(params, ridge):
7: hidden_n, alpha, rbf_width, activation_func = params
8: layer ← RandomLayer(params)
9: ridge ← Ridge(ridge_alpha)

10: elm = pipeline([layer, ridge])
11: elm.train
12: p ← elm.predict
13: rmse = sqrt(mse(test, p))
14: return rmse
15: parameters:
16: hidden_n ← ploguniform(a,b)
17: alpha ← uniform(a’,b’)
18: rbf_width ← loguniform(c,d)
19: ridge_alpha ← uniform(c’,d’)
20: activation_func ← choice(tanh,sine, ...,gaussian)
21: main():
22: best ← min(test_run, parameters, algo=tpe, iteration_max).
23: print [rmse],[params],[ridge_alpha]

24: print best

4 Performance Evaluation with Discussion

4.1 Data Collection and Preparation

The datasets used in this study are tweets data obtained from two different sources.

In case 1, the data are downloaded from the “twitter-sentiment-analyzer” (https://

github.com/ravikiranj/twitter-sentiment-analyzer/tree/master/data), which contai-

ned 1.6 million pre-classified tweets reported previously [4]. We downloaded ds_5k,

ds_10k, ds_20k, ds_40k, which consisted of 5k, 10k, 20k, and 40k of pre-classified

https://github.com/ravikiranj/twitter-sentiment-analyzer/tree/master/data
https://github.com/ravikiranj/twitter-sentiment-analyzer/tree/master/data
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tweets respectively. However, this set of data only contains binary sentiment tweets

i.e. positive and negative tweets, so we extracted neutral tweets data from our tweet

data collections which were collected by using twitter wrapper API (application pro-

gram interface), and appended to the downloaded tweet datasets.

In case 2, the data were collected through twitter API by using the keyword

“MRT” (Mass Rapid Transit) over the region of Singapore. Location-constraining

geo codes were used to ensure that the tweets were collected within the region in

and around Singapore. We performed this data collection with the aim to investigate

the public attitudes towards Singapore public transportation services. The collected

tweets were annotated manually with the help of field experts in order to obtain

ground-truth data to be used in machine-learning-based methods.

In both cases 1 and 2, the training dataset contains 75 % of the data, while the test

set consists of the remaining 25 %.

4.2 Performance Evaluation

We trained each classifier, namely Multinomial Naïve Bayes, Multi-class SVM, and

ELM using the training set and tested its accuracy using the test sets. The perfor-

mance metric is measured by the accuracy of classification. This defines how close

the performance is to the idle or benchmark value. For binary classification prob-

lems, this is calculated using the formula:

Accuracy = (Tp + Tn)∕(Tp + Tn + Fp + Fn) (10)

where Tp is the number of correctly identified positives, Fp is the number of incor-

rectly identified positives while, Tn is the number of correctly identified negatives

and Fn the number of incorrectly identified negatives.

For multi-classification problems, accuracy is calculated as:

Accuracy = Nc∕Nt (11)

where Nc is the number of correctly identified samples, Nt is the number of total

samples.

4.3 Case Studies

4.3.1 Case Study 1

In this case study, we used tweets data downloaded from the web and extracted from

our tweet collections. Table 3 shows the comparison of the classification accuracy

among the different machine learning methods.
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Table 3 Comparison of machine-learning algorithms for classifying the downloaded tweets

data-sets

Datasets Number Number ELM (%) Multi-class Multinomial

of class of feature SVM (%) NB (%)

ds_5k 3 1000 83.50 83.07 71.07

ds_10k 3 4000 68.53 68.18 43.44

ds_20k 3 2000 91.12 84.73 78.92

ds_40k 3 8000 78.73 77.49 74.67

tweets* 3 2000 99.27 93.71 92.98

Table 4 Comparison of machine-learning algorithms for classifying the MRT tweets data-sets

Datasets Number Number ELM (%) Multi-class Multinomial

of class of feature SVM (%) NB (%)

MRT DATA 3 700 89.09 83.64 76.36

The accuracy in ELM ranges from 68 to 99 % but is higher the that of Multi-

class SVM and Multinomial Naïve Bayes for all the datasets. ELM is significantly

better than Multinomial Naïve Bayes and marginally better than Multi-class SVM. In

general, ELM outperforms the others in larger datasets. This indicates the efficiency

of the ELM for multi-class classification.

4.3.2 Case Study 2

Tweets collected and extracted using the twitter API, having search queries related

to MRT services over the region of Singapore. The accuracy of the different classi-

fiers is compared and shown in Table 4. ELM achieves an accuracy of nearly 90 %,

outperforming SVM (84 %) and Multinomial Naïve Bayes (76 %).

5 Conclusions and Future Work

In this paper, we have investigated the performance of different machine learning

classifiers, including ELM, Multi-Class SVM, and Multinomial Naïve Bayes for

multi-class sentiment analysis. The experimental results show that ELM achieves

better performance than other machine learning methods for multi-class sentiment

classification of tweet data.

As the performance of machine learning methods is dependent on how the fea-

tures are selected, the machine-learning based multi-class sentiment classifiers may

be improved if enhanced feature selection can be incorporated. Further studies on

ELM with sophisticated feature selection techniques are currently being explored.
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Abstract With the development of technology and the widespread use of machine

learning, more and more models need to be trained to mine useful knowledge from

large scale data. It has become a challenging problem to train multiple models accu-

rately and efficiently so as to make full use of limited computing resources. As one

of ELM variants, online sequential extreme learning machine (OS-ELM) provides

a method to learn from incremental data. MapReduce, which provides a simple,

scalable and fault-tolerant framework, can be utilized for large scale learning. In

this paper, we propose an efficient batch parallel online sequential extreme learning

machine (BPOS-ELM) algorithm for the training of multiple models. BPOS-ELM

estimates the Map execution time and Reduce execution time with historical statis-

tics and generates execution plan. BPOS-ELM launches one MapReduce job to train

multiple OS-ELM models according to the generated execution plan. BPOS-ELM is

evaluated with real and synthetic data. The accuracy of BPOS-ELM is at the same
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1 Introduction

With the development of technology and the widespread use of machine learning,

more and more models need to be trained to mine useful knowledge from large scale

data. It has become a challenging problem to train multiple models accurately and

efficiently so as to make full use of limited computing resources. For example, in a

machine learning organization where high performance computing cluster is a lim-

ited resource, researchers must schedule the jobs on the cluster legitimately to make

full use of the cluster. For another example, resizable cloud hosting services such as

Amazon Elastic Compute Cloud (EC2) [1], which become more and more popular,

make it possible to rent large amount of virtual machines by the hour at lower costs

than operating a data center year-round. It is important for users to schedule multiple

jobs running on this kind of environment as the rented virtual machines are charged

by the used time.

Extreme learning machine (ELM) was proposed based on single-hidden layer

feed-forward neural networks (SLFNs) [7], and it has been verified to have high

learning speed as well as high accuracy [5]. It has also been proved that ELM has

universal approximation capability and classification capability [6]. As one of ELM

variants, online sequential extreme learning machine (OS-ELM) [8] supports incre-

mental learning.

MapReduce [3] is a well-known framework which supports large scale data

processing and analyzing on a large cluster of commodity machines. Recent research

has studied on parallelizing ELM [4, 11, 12], however the strategies are not suitable

to parallelize OS-ELM. POS-ELM [10] supports training one single OS-ELM model

in parallel with MapReduce, but it does not support training multiple OS-ELM mod-

els efficiently.

In this paper, we propose an efficient batch parallel online sequential extreme

learning machine (BPOS-ELM) algorithm for the training of multiple OS-ELM

models on MapReduce. BPOS-ELM first estimates the execution time of Map and

Reduce tasks of each OS-ELM based on historical statistics. Then it generates a Map

execution plan and a Reduce execution plan with greedy strategy based on the estima-

tions. After that, BPOS-ELM launches a MapReduce job to train multiple OS-ELM

models. At the same time, BPOS-ELM collects execution information of selected

Map tasks and Reduce tasks, and merges them to historical statistics to improve the

accuracy of time estimation. The algorithm is evaluated with real and synthetic data.

The accuracy is at the same level as those of OS-ELM and POS-ELM. The speedup

reaches 10 on a cluster with maximum 32 cores.

The remainder of this paper is organized as follows. Section 2 describes the batch

parallel online sequential learning machine algorithm in detail. An extensive exper-

imental evaluation of BPOS-ELM is presented in Sect. 3. A brief conclusion is pre-

sented in Sect. 4.
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2 BPOS-ELM

As shown in Fig. 1, BPOS-ELM (1) assigns each model with a unique ID which is

used to specify it from the other training models. Then (2) the Map execution time

and Reduce execution time are estimated according to historical statistics described

with parameters shown in Table 1. After that, (3) A job execution plan is generated

according to the estimations. Finally, (4) the generated execution plan is executed to

train the models and (5) the actual execution information of selected tasks is collected

for future time estimation. The details of execution time estimation, execution plan

generation and job execution are described in Sects. 2.1–2.3, respectively.

2.1 Execution Time Estimation

Map execution time is estimated with Inverse Distance Weighted (IDW) [9] inter-

polation method. First, each parameter of job execution information is mapped to

one dimension at a multi-dimensional space, so the historical statistics are mapped

to a set of points in the space. Then k nearest neighbour points of the point to be

estimated in the space are selected and used to estimate Map execution time. After

that, Inverse Distance Weighted (IDW) [9] interpolation method shown as Formula

(1) is used to estimate Map execution time.

Fig. 1 Execution framework of BPOS-ELM

Table 1 Notations used in

BPOS-ELM
Parameter Description

B Block size

N Number of training data

D Number of attributes in training data set

M Number of training models

̃N Number of hidden layer nodes

C Number of classifications
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(1)

where wi(𝐱) =
1

d(𝐱,𝐱i)p
is a simple IDW weighting function, as defined by Shepard

[9], 𝐱 denotes the parameter vector of point to be predict, 𝐱𝐢 is the selected k near-

est neighbour points, d is a given distance from the point 𝐱𝐢 to point 𝐱 and p is a

positive real number, called the power parameter. Euclidean distance is used to mea-

sure the distance between two points. According to the the complexity analysis of

POS-ELM reduce phase algorithm in [10], the Reduce execution time is estimated

by Formula (2).

tred ≈
N
B
(𝛼1B3 + 𝛼2B2

̃N + 𝛼3B ̃N2 + 𝛼4B ̃NC + 𝛼5(B2 + BC + ̃N2 + ̃NC))

= N(𝛼1B2 + 𝛼2B ̃N + 𝛼3 ̃N2 + 𝛼4 ̃NC + 𝛼5(B + C +
̃N2

B
+

̃NC
B

)) (2)

where 𝛼n(1 ≤ n ≤ 5) are the factors that need to be determined using historical sta-

tistics. Then, the Reduce execution time estimation transforms to a multi-parameter

regression problem. In this paper, OS-ELM is used as the regression model to solve

the problem.

2.2 Execution Plan Generation

2.2.1 Map Execution Plan Generation

The execution plan generation algorithm of Map phase is shown in Algorithm 1. It

first calculates the predictable average execution time of Map tasks (lines 1–3). The

models whose estimated Map execution time is less than average time are treated as

unit executions during the execution plan generation (lines 5–6). The models whose

estimated Map execution time is more than average time are split to multiple unit

executions (lines 7–11). After generating the list of unit executions, heuristic algo-

rithm GeneratePlan is executed to generate Map execution plan.

The GeneratePlan algorithm is shown in Algorithm 2, which is used in both Map

execution plan generation and Reduce execution plan generation. When the num-

ber of unit executions in the list is less than that of tasks, each of the unit execution

is assigned to each task (lines 1–3). Otherwise, greedy strategy is used to gener-

ate execution plan. Unassigned is initialized and used to count the number of unas-

signed unit executions in the list (line 5). First, the list of unit executions is sorted by
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Algorithm 1: Map execution plan generation

Input: models [ ] : array of OS-ELM models.

MapNum : the maximum number of Map tasks in the cluster.

Result: MapPlan < List < ID, start, end >>[ ]: the Map execution plan.

1 for m = 1 to sizeof(models) do
2 TimeSum = TimeSum + model[i].EstimatedMapTime;

3 AvgTime =
TimeSum
MapNum

;

4 for m= 1 to sizeof(models) do
5 if models[m].EstimatedMapTime ≤ AvgTime * 𝛼 then
6 list.add(< models[m].id, 0, models[m].InputSize,

models[m].EstimatedMapTime >);

7 else
8 splits =

models[m].EstimatedMapTime
AvgTime

;

9 splitsize =
models[m].InputSize

splits
;

10 for i = 1 to splits do
11 list.add(< models[m].id, i ∗ splitsize, (i + 1) ∗ splitsize,

models[m].EstimatedMapTime
splits

>);

12 MapPlan = GeneratePlan(list.toArray(), MapNum , AvgTime );

estimated execution time in descending order (line 6). Then the sorted list is scanned

and the unit executions in it are added to the execution plan (lines 7–16). The assigned

unit executions are skipped (lines 8–9) and the loop is broken when Count exceeds

the number of tasks (lines 10–11). After that, the unassigned unit execution which

has the longest execution time is added to execution plan (line 12) and the algorithm

scans the remaining list to find the suitable unit execution and add it to execution plan

recursively (lines 14–15). Finally, the algorithm scans the list of unit executions again

and adds the unassigned unit execution to the expected shortest task (lines 17–20).

2.2.2 Reduce Execution Plan Generation

The execution plan generation algorithm of Reduce phase is shown in Algorithm 3.

The algorithm first calculates the expected average execution time of Reduce tasks

(lines 1–3). Then it scans the OS-ELM models and adds them to the list of unit

executions (lines 4–5). As the calculations of POS-ELM algorithm in Reduce phase

is indivisible, each Reduce task is treated as a unit execution. Since start and end
are not used in Reduce execution plan generation, they are set to 0 to be compatible

with GeneratePlan algorithm. After that, GeneratePlan introduced in Map execution

plan generation is executed to generate Reduce execution plan (line 6). At last, the

algorithm scans the execution plan and assigns the OS-ELM models in the plan with
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Algorithm 2: GeneratePlan()

Input: Tasks < ID, start, end, time > [ ] : array of quadruples, in which each quadruple

represents task information of OS-ELM model.

TaskNum : the maximum number of tasks that the cluster can hold.

AvgTime : the expected average execution time for each task.

Result: Plan < List < ID, start, end >>[ ] : the execution plan.

1 if sizeof(Tasks) ≤ TaskNum then
2 for m = 1 to sizeof(Tasks) do
3 Plan[m].add( < Tasks[m].id, Tasks[m].start, Tasks[m].end >);

4 else
5 Unassigned = Size = sizeof(Tasks);
6 SortByTimeInDescendingOrder(Tasks);
7 for i =1 to Size do
8 if used[i] == true then
9 continue;

10 if Count ≥ TaskNum then
11 break;

12 addToPlan(Count, i)
13 Start = i+1;

14 for Start ≤ Size do
15 Start = FindAndAdd(Start);
16 Count = Count+1;

17 for i= 1 to Size do
18 if Unassigned >0 && used[i]==false then
19 insertIndex = findMinTimeIndex(Time);

20 AddToMapPlan(insertIndex, i);

21 FindMinTimeIndex(Time)
22 for i=1 to Size do
23 if Time[i] < MinTime then
24 MinTime =Time[i];
25 MinIndex = i;

26 return MinIndex;

27 FindAndAdd(Start)
28 for j=Start to Size do
29 if used[j]==false && Tasks[j].time+Time[Count] ≤ AvgTime ∗ 𝛼 then
30 addToMapPlan(Count, j);
31 return j;

32 return j;
33 AddToPlan(P_I, T_I)
34 used[T_I]=true;

35 Time[P_I]=Time[P_I]+Tasks[T_I].time
36 Plan[P_I].add(< Tasks[T_I].id, Tasks[T_I].start, Tasks[T_I].end >)

37 Unassigned =Unassigned-1;
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Algorithm 3: Reduce execution plan generation

Input: models [ ] : array of OS-ELM models.

ReduceNum : the maximum number of Reduce tasks in the cluster.

Result: ReducePlan < List < ID, start, end >>[ ]: the Reduce execution plan.

1 for m = 1 to sizeof(models) do
2 TimeSum = TimeSum+model[i].EstimatedReduceTime;

3 AvgTime =
TimeSum

ReduceNum
;

4 for m = 1 to sizeof(models) do
5 list.add(< models[m].id, 0, 0, models[m].EstimatedReduceTime >);

6 ReducePlan = GeneratePlan(list.toArray(), ReduceNum, AvgTime );

7 for i = 1 to sizeof(ReducePlan) do
8 for j = 1 to sizeof (ReducePlan[i]) do
9 Index = FindByID(models, ReducePlan [i][j].ID);

10 models [Index].ReduceKey = i ;

11 FindByID(list, ID)
12 for i = 1 to sizeof(list) do
13 if list[i].ID == ID then
14 return i;

correct ReduceKeys (lines 7–10). The ReduceKeys are used to mark which Reduce

task that intermediate results should pass to.

2.3 Job Execution

Figure 2 shows the execution procedure of BPOS-ELM. Each Map task is responsi-

ble for calculating𝐇 for one OS-ELM model, part of one OS-ELM model or multiple

OS-ELM models according to the Map execution plan generated. Each Reduce task

Fig. 2 Job execution of BPOS-ELM
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Algorithm 4: BPOS-ELM map()

Input: (Key, Value): Key is the OS-ELM model ID, Value is a sample pair (xi, ti) ∈ (Xk,Tk)
where 0 ≤ i ≤∣ (Xk,Tk) ∣ for the model.

Result: m : OS-ELM model ID;

k : blockID;

ReduceKeym : Key that marks which Reduce task trains the model;

𝐇m,k : Output weight;

𝐓m,k : Observation value vector;

1 m = Key;

2 add to blockm;

3 countm + +;

4 if count ≥ BLOCKm then
5 𝐇m,k=calcH(blockm);

6 𝐓m,k=calcT(blockm);

7 output((m,km,ReduceKeym), (𝐇m,k,𝐓m,k));
8 countm = 0;

9 km++;

Algorithm 5: BPOS-ELM reduce()

Input: Set of (key, value): key is a combination of OS-ELM model ID m, blockID k and

ReduceKey. value is a vector pair (Hkb, Tkb);

Result: 𝛽m: output weight vector (corresponding to 𝛽m,k).
1 m = getm(key);
2 𝐇m,k+1 = getH(value);
3 𝐓m,k+1 = getT(value);
4 𝐏m,k+1 = 𝐏m,k − 𝐏m,k𝐇T

m,k+1(𝐈 +𝐇m,k+1𝐏m,k𝐇T
m,k+1)

−1𝐇m,k+1𝐏m,k;

5 𝛽m,k+1 = 𝛽m,k + 𝐏m,k+1𝐇T
m,k+1(𝐓m,k+1 −𝐇m,k+1𝛽m,k);

is responsible for calculating 𝜷 for one OS-ELM model or multiple OS-ELM models

according to the Reduce execution plan.

The pseudo codes of Map procedure are shown in Algorithm 4. Firs it collects

BLOCKm training instances into a buffer blockm (lines 1–3). After BLOCKm training

instances are collected (line 4), matrix 𝐇m,k is calculated (line 5) and 𝐓m,k is also

generated (line 6). After that, a key-value pair is generated as output (line 7). key
is composed with OS-ELM model ID m, block ID k and ReduceKeym while value
includes 𝐇m,k and 𝐓m,k. Finally, the counter is cleared (line 8) and the block ID k is

increased by one (line 9).

The pseudo codes of Reduce procedure are shown in Algorithm 5. The output

results of Map phase which have the same ReduceKey are partitioned to the same

Reducer and then sorted by m and k. The OS-ELM model ID m is first resolved (line

1). Then 𝐇m,k and 𝐓m,k included in value are resolved (lines 2–3). Finally, the 𝐏m,k
and 𝛽m,k are updated according to the formulas (lines 4–5).
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3 Experimental Evaluation

3.1 Experimental Setup

In this section, POS-ELM indicates parallel online sequential learning machine algo-

rithm in [10] that trains each OS-ELM model one by one. BPOS-ELM is compared

with POS-ELM and OS-ELM algorithms. All the three algorithms are implemented

in Java 1.6. Universal java matrix package (UJMP) [2] with version 0.2.5 is used for

matrix storage and processing. The activation function of OS-ELM, POS-ELM and

BPOS-ELM algorithm is g(x) = 1
1+e−x

. The number of hidden layer node is set to

128 in accuracy evaluation and it is set to 64 in training speed evaluation and scala-

bility evaluation.

Hadoop-0.20.2-cdh3u3 is used as our evaluation platform. The Hadoop cluster is

deployed on 9 commodity PCs in a high speed Gigabit network, with one PC as the

Master node and the others as the Slave nodes. Each PC has an Intel Quad Core 2.66

GHZ CPU, 4 GB memory and CentOS Linux 5.6 operating system. Each PC is set

to hold maximum 4 Map or Reduce tasks running in parallel and the cluster is set

to hold maximum 32 tasks running in parallel. Each task is configured with 1024M

java heap. Other parameters are using the default values of Hadoop.

BPOS-ELM algorithm is evaluated with real data and synthetic data. The real

data sets (MNIST,
1

DNA (see footnote 1) and KDDCup99
2
) are mainly used to

evaluate training accuracy and testing accuracy. Some attributes of KDDCup99 data

set are symbolic-valued attributes which cannot be directly used for BPOS-ELM,

POS-ELM or OS-ELM, so we preprocess the data set by mapping symbolic-valued

attributes to numeric-valued attributes with the method in [11]. For testing data,

we use the KDDcup99 (corrected) evaluation data set by excluding those attack

instances which do not belong to the set of attack types in the training data set. The

specifications of real data are shown in Table 2.

The synthetic data sets are used for training speed evaluation and scalability evalu-

ation, which are generated by extending based on Flower.
3

The volume and attributes

of training data are extended by duplicating the original data in a round-robin way.

In one training model group, there are 11 OS-ELM models training with synthetic

data sets with N varies from 20 × 104 to 210 × 104. The parameters used in scalabil-

ity evaluation are summarized in Table 3. In the experiments, all the parameters use

default values unless otherwise specified.

1
Downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

2
Downloaded from http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

3
Downloaded from http://www.datatang.com/data/13152.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://www.datatang.com/data/13152
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Table 2 Specifications of real data

Data set #attributes #class #training #testing Size of test

data data data (KB)

MNIST 780 10 60000 10000 176001.138

DNA 180 3 2000 1186 1126.301

KDDCup99 41 2 4898431 292300 708197.916

Table 3 Specifications of synthetic data and running parameters for scalability evaluation

Parameter Value range Default value

#training data 10k, 20k, 40k, 80k, 160k,320k, 640k, 640k

1280k, 2560k, 5120k, 10240k

#attributes 64, 128, 256, 512 64

#cores 1, 2, 4, 8, 16, 32 32

#data per block 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 64

#neurons 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 64

#classifications 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 2

#model groups 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 6

3.2 Evaluation Results

3.2.1 Accuracy Evaluation

Table 4 shows the results of accuracy evaluations with real data. It can be found that

the training accuracy and testing accuracy of BPOS-ELM algorithm are at the same

level with those of POS-ELM and OS-ELM. The reason for this is that BPOS-ELM

algorithm does not change the computation sequence of matrices calculation of OS-

ELM.

3.2.2 Training Speed Evaluation

Table 5 shows the results of training speed evaluation with real data and synthetic

data. As shown in Table 5, the training speed of BPOS-ELM is faster than the training

speed of POS-ELM and OS-ELM. For the models training with real data sets, the

training speed of BPOS-ELM is only a little faster than that of POS-ELM. The reason

for this is that most of the cores are idle in Reduce phase of BPOS-ELM since the

number of the training models is less than that of cores and the Reduce tasks are

indivisible. For the models training with synthetic data sets, the training speed of

BPOS-ELM is much faster than that of POS-ELM and OS-ELM. This is because the

cores of the cluster are fully utilized in the Reduce phase of BPOS-ELM algorithm.
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Table 4 Accuracy evaluation with real data

Data set Algorithm Training Testing

accuracy accuracy

MNIST OS-ELM 0.824 0.831

POS-ELM 0.823 0.830

BPOS-ELM 0.825 0.831

DNA OS-ELM 0.845 0.779

POS-ELM 0.846 0.781

BPOS-ELM 0.844 0.780

KDDCup99 OS-ELM 0.992 0.856

POS-ELM 0.991 0.856

BPOS-ELM 0.992 0.855

Table 5 Execution time evaluation with real data and synthetic data

Data set Algorithm Training time (s)

Real data OS-ELM 1146

POS-ELM 1025

BPOS-ELM 1021

Synthetic data OS-ELM 20701

POS-ELM 10651

BPOS-ELM 2130

This result also shows that BPOS-ELM trains large scale multiple OS-ELM models

efficiently.

3.2.3 Scalability Evaluation

Figure 3a shows the scalability (speedup) of BPOS-ELM compared with that of

POS-ELM. The speedup of BPOS-ELM reaches 10 when the number of cores

increases to 32. It means that BPOS-ELM has good scalability. It benefits from accu-

rate estimations of Map and Reduce execution time and the execution plan which is

suitable for parallel processing. It can also be found that the speedup of BPOS-ELM

reaches 10 whereas the speedup of POS-ELM only reaches 1.96. The reason is that

BPOS-ELM calculates 𝜷m,k for different models in parallel instead of calculating

them sequentially.

There are several reasons for the changing trend of speedup decreases as the

number of cores increases. First, since the Reduce tasks cannot be further split into

smaller ones, the execution time of the OS-ELM model which has the longest Reduce

execution time does not decrease as the number of cores increases. In this case, the

MapReduce job has to wait for the completion of the slowest task. Second, the cost of
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scheduling tasks among multiple cores increases as the number of cores increases.

Third, the memory and the number of I/Os become bottlenecks as the number of

cores increases since all the Map tasks and Reduce tasks running on a physical

machine share the same memory and disks.

Figure 3b shows the training time of BPOS-ELM compared with that of POS-

ELM. The training time of BPOS-ELM is a little longer than that of POS-ELM on

one core due to the overhead derived from task scheduling. However, as the number

of cores increases, the training time drops significantly and becomes much shorter

than that of POS-ELM. It means that BPOS-ELM is more efficient than POS-ELM

for training multiple models for the reason that BPOS-ELM trains multiple models

in parallel in Reduce phase.

Figure 3c shows the training time of BPOS-ELM with different number of model

groups compared with that of POS-ELM and OS-ELM. As shown in Fig. 3c, the

training time increases much more slowly than that of POS-ELM and OS-ELM. The

reason for this is that BPOS-ELM trains multiple OS-ELM models in parallel in

both Map phase and Reduce phase whereas POS-ELM only parallelizes the training

in Map phase and OS-ELM does not parallelize the training. It means that BPOS-

ELM utilizes computing resources efficiently.
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4 Conclusions

In this paper, a batch parallel online sequential extreme learning machine (BPOS-

ELM) algorithm has been proposed for large scale batch learning. It estimates the

execution time of Map and Reduce tasks with historical statistics, and generates a

Map execution plan and a Reduce execution plan with greedy strategy based on the

estimation. It launches a MapReduce job to train multiple OS-ELM models. The

algorithm also collects information of selected tasks in the job and merges it to his-

torical statistics to help to improve the estimation accuracy. BPOS-ELM algorithm is

evaluated with real and synthetic data. The experimental results show that the accu-

racy of BPOS-ELM is at the same level as those of POS-ELM and OS-ELM. The

speedup of BPOS-ELM reaches 10 on a cluster with maximum 32 cores. Compared

with OS-ELM and POS-ELM, BPOS-ELM trains multiple OS-ELM models more

efficiently.
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Fixed-Point Evaluation of Extreme Learning
Machine for Classification

Yingnan Xu, Jingfei Jiang, Juping Jiang, Zhiqiang Liu and Jinwei Xu

Abstract With growth of data sets, the efficiency of Extreme Learning Machine

(ELM) model combined with accustomed hardware implementation such as Field-

programmable gate array (FPGA) became attractive for many real-time learning

tasks. In order to reduce resource occupation in eventual trained model on FPGA,

it is more efficient to store fixed-point data rather than double-floating data in the

on-chip RAMs. This paper conducts the fixed-point evaluation of ELM for classifi-

cation. We converted the ELM algorithm into a fixed-point version by changing the

operation type, approximating the complex function and blocking the large-scale

matrixes, according to the architecture ELM would be implemented on FPGA. The

performance of classification with single bit-width and mixed bit-width were evalu-

ated respectively. Experimental results show that the fixed-point representation used

on ELM does work for some application, while the performance could be better if

we adopt mixed bit-width.

Keywords Extreme Learning Machine (ELM) ⋅ Fixed-point evaluation ⋅
Classification

1 Introduction

Due to advances in technology, the size and dimensionality of data sets used in

machine learning tasks have grown very large and continue to grow by the day. For

this reason, it is important to have efficient computational methods and algorithms

that can be applied on very large data sets, such that it is still possible to complete

the machine learning tasks in reasonable time [8].

Extreme Learning Machine (ELM) is well known for its computational efficiency,

making it well-suited for large data processing. However, it is still worth speeding
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up its implementation in many real-time learning tasks. Hardware implementation is

one of the most popular approaches, and two types of reconfigurable digital hardware

have been adopted, i.e., Field-programmable gate array device (FPGA) and complex

programmable logic device (CPLD) [3]. As rival application-specific integrated cir-

cuit, FPGA can attain performances and logic densities at lower development costs

and privilege computational optimization over area optimization, thus many of previ-

ous works [6] implementing other machine learning algorithms have applied FPGA.

The parameters, such as weights and Bias of hidden nodes, are stored in on-chip

RAM during processing and are swapped out to off-chip memory after processing.

Since it is too expensive to support a large number of floating-point units on chip

and store values using the standard double precision floating-point representations

in on-chip RAMs, most of these works has adopted fixed-point data. Bit-widths with

integral multiple of bytes are convenient to align with other components (such as IP

cores and user interfaces) and easier to design. Recent work [2] found that very low

precision storage is sufficient not just for running trained networks but also for train-

ing them by training the Maxout networks with three distinct storing formats: floating

point, fixed point and dynamic fixed point. However, the efficiency of ELM model

combined with FPGA adopting fixed bit-width is not very clearly.

Motivated by this gap between workloads and state-of-the-art computing plat-

forms, we evaluate fixed-point implementation of ELM for classification. At first,

we present the architecture of FPGA. Then with this in mind, we converted the

ELM algorithm into a fixed-point version by changing the operator type, approxi-

mating the complex function and blocking the large-scale matrixes. Finally, we eval-

uated the performance of classification with single bit-width and mixed bit-width

respectively.

Experiments are performed on a large data setSatImage. Results of the experi-

ments show it does work for some application to use the fixed-point representation

on ELM, however, considering resource occupation, the performance of implemen-

tation adopting single bit-width is not so optimistic, and it could be improved if we

adopt mixed bit-width.

The organization of this paper is as follows. Section 2 introduces the algorithm

of ELM. Section 3 shows the specific procedure of fixed-point conversion for ELM

including changing the operator type, approximating the complex function and

blocking the large-scale matrixes. Section 4 presents our experiment and the results

of simulations adopting single bit-width and mixed bit-width respectively. Finally,

the results are discussed and an overview of the work in progress is given.

2 Extreme Learning Machine (ELM)

ELM was proposed for generalized single-hidden layer feedforward networks where

the hidden layer need not be neuron alike. It offers three main advantages: low

training complexity, the minimization of a convex cost that avoids the presence of
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local minima, and notable representation ability. The output function of ELM for

generalized SLFNs is

fL (x) =
L∑

i=1
𝛽ihi (x) = h (x) 𝛽 , (1)

where 𝛽 =
[
𝛽1,… , 𝛽L

]T
, is the output weight vector between the hidden layer of L

nodes to the m1 output nodes, and h(x) = [h1(x),… , hL(x)] is ELM nonlinear fea-

ture mapping, hi(x) is the output of the ith hidden node output. In particular, in real

applications hi(x) can be

hi(x) = G(ai, bi, x), ai ∈ Rd
, bi ∈ R . (2)

Basically, ELM trains an SLFN in two main stages: (1) random feature mapping

and (2) linear parameters solving. In the first stage, ELM randomly initializes the

hidden node parameters (a, b) to map the input data into a feature space by nonlinear

piecewise continuous activation function. The most often used activation function is

sigmoid function, the formula is

G (a, b, x) = 1
1 + exp (− (ax + b))

. (3)

In the second stage of ELM learning, the weights connecting the hidden layer and

the output layer, denoted by 𝛽, are solved by minimizing the approximation error in

the squared error sense:

min
𝛽∈RL×m‖H𝛽 − T‖2 , (4)

where H is the hidden layer output matrix (randomized matrix):

H =
⎡
⎢
⎢
⎣

h
(
x1
)

⋮
h
(
xN

)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

h1
(
x1
)
⋯ hL

(
x1
)

⋮ ⋮ ⋮
h1

(
xN

)
⋯ hL

(
xN

)

⎤
⎥
⎥
⎦

, (5)

and T is the training data target matrix:

T =
⎡
⎢
⎢
⎣

tT1
⋮
tTN

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

t11 ⋯ t1m
⋮ ⋮ ⋮
tN1 ⋯ tNm

⎤
⎥
⎥
⎦

, (6)

where ‖⋅‖ denotes the Frobenius norm.

The optimal solution to (4) is given by

𝛽

∗ = H†T , (7)

where H†
denotes the MoorePenrose generalized inverse of matrix H.
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A positive value C can be added to the diagonal of HTH or HHT
of the Moore-

Penrose generalized inverse H the resultant solution is more stable and tends to have

better generalization performance [4]. Thus

𝛽

∗ = (HTH + 1∕C)−1HTT , (8)

where I is an identity matrix of dimension L.

Overall, the ELM algorithm is then:

ELM Algorithm: Given a training set ℵ = {
(
xi, ti

)
|xi ∈ Rn

, ti ∈ Rm
, i =

1,…, N}, hidden node output function G(a, b, x), and the number of hidden

nodes L,

1. generate random hidden nodes (random hidden node parameters) (ai, bi), i =
1,… ,L.

2. Calculate the hidden layer output matrix H.

3. Calculate the output weight vector 𝛽
∗ = (HTH + 1∕C)−1HTT .

3 Fixed-Point Conversion for ELM

Since FPGAs attain performances and logic densities at lower development costs and

the resource consumption can be further reduced with fixed-point data, we attempt

to implement the ELM algorithm for classification on FPGA using fixed-point for-

mat, the overall FPGA architecture of ELM algorithm for classification is shown in

Fig. 1. According to previous works [7], the QR decomposition adopts float-point

format while the multiplication of matrix adopts fixed-point format. In this work, we

simulate the behaviour of FPGA adopting fixed bit-width on Matlab environment.

Figure 2 shows the execution flow.

In the beginning of simulation, we adjust the radix point position shown in Fig. 3

[6] according to the corresponding range of data. For example, since the range of

InputWeight matrix shown in Fig. 2 is approximately [−1, 1], the optimal bit-width

of integer part is 1 and cannot be allowed any further reduction or increment. This

way can make the precision better when considering a fixed-point representation for

real numbers, the integer part of a number mainly influences the representation scope

while the fractional part mainly decides the precision.

In the procedure of fixed-point conversion, we choose Piecewise Linear Approx-

imation of nonlinearity algorithm (PLA) [1] as the method of sigmoid function

approximation, this method uses linear functions and can be implemented on FPGA

easily. PLA has uniform structures like Table 1. For the main operations like matrix

multiplication in ELM, parallel multiply-accumulators are often used on FPGA. The

operands are stored on distributed block RAM, which bit-width is n bits. A 2n bits

partial product can be produced by the n bits multiplier. An accumulator with larger

bit-width can be used to accumulate the partial product, avoiding the precision lost

and not increasing much logic cost at the same time. So, we often chose a bit-width
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Fig. 1 FPGA architecture of ELM algorithm for classification

in the range of n bits to 2n bits for the adder and the accumulator. Only the bit-width

of the final result which needs to store back to on-chip RAM is constrained to n

bits. The partition of the integer part and fractional part for the result depends on

the representation range of the data, which must be studied when converting to the

fixed-point hardware.

Under the implementation assumption above, it is more reasonable that maintain-

ing the precision of a block matrix multiplication instead of converting the partial

product for each element. Assuming that we can chose enough wide bit-width for

the accumulation operation, thus we only need to cut down the bit-width to n bits

for the result of a block multiplication when simulating the fixed-point operations.

From this observation, we converted all matrix operations in ELM to a loop code of

block matrix operations and converted each element of the block result to a fixed-

point format. The size of block matrix is set 64. The flow diagram of computation is

shown in Fig. 4.
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Fig. 3 Fixed-point data

format
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Table 1 Piecewise linear

approximation algorithm
x y
0 ≤ |x| < 1 y = (|x| + 2) ∕4
1 ≤ |x| < 19∕8 y = (|x| + 5) ∕8
19∕8 ≤ |x| < 5 y = (|x| + 27) ∕32
|x| ≥ 5 y = 1
x < 0 y = 1 − y

Fig. 4 Flow diagram of

block matrix multiplication

Block matrix(64x64)

Final result matrix

×

Block matrix(64x64)

Accumulator+

 temporary variable

4 Experiment and Results

All the simulations are conducted in MATLAB R2009a environment on an ordinary

PC with Intel(R) Core(TM) i3-2120 and 4 GB RAM.

The SatImage dataset with 36 input attributes and 6 class label is chosen as exper-

imental Dataset. It can be downloaded from the official ELM website with pre-scaled

values [6]. 3217 instances are used as training data and the rest 3218 of the instances

are used for testing.
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Fig. 5 Classification
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ELM

In ELM, the number of output nodes is equal to the number of classes. For the

SatImage data set used in this paper, there are 6 classes and, thus, ELM has 6 output

nodes. The activation function used in ELM in our experiment is sigmoid function.

In the implementation of ELM, it is found that the generalization performance of

ELM is not sensitive to the dimensionality of the feature space (L) and good perfor-

mance can be reached as long as L is large enough. In our simulations, L = 1000 is

set for all tested cases no matter whatever size of the training data sets. And since

training data sets are very large N ≫ L, we apply solutions (11) in Sect. 2 to reduce

computational costs [5].

The hidden node parameters ai and bi are not only independent of the training

data but also of each other. Unlike conventional learning methods which MUST see

the training data before generating the hidden node parameters, ELM could generate

the hidden node parameters before seeing the training data. Thus, a set of random

values are produced to be applied in all of our experiment.

And the value C can affect the performance to a large extent. In our experiment,

we first trained the ELM classification problem with different C in float-point algo-

rithm. And the Fig. 5 shows the classification accuracy with different value C. It

can be seen that the accuracy with C being set 50 is much better than other chosen

value. And in order to make C expressed in fixed-point algorithm more accurate, we

ignored the possibility that the absolute value of C can be set too large. So, in the

following experiment, we applied the fixed value with C = 50.

4.1 Single Bit-Width

The Fig. 6 shows the classification accuracy applying different fixed bit-width. It

can be seen that the accuracies with the bit-width set 16 bits, 24 bits and 32 bits

are all bad, however the performance in the bit-width of 16 bits is better than 24
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Fig. 6 Prediction accuracy

with different bit-widths
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bits, it means that the representation domain constraint throws away the redundant

and useless information of the high-dimensional input data. The performance in the

bit-widths of 48 bits and 64 bits indicate that fixed-point representation used on

ELM does work for some application. In order to balance classification accuracy

and resource occupation in the eventual trained model, we can only choose 48 bits

as the optimal bit-width on FPGAs if we adopt single bit-width. It is obvious that

the result is not optimistic.

To solve this problem, we analyzed the result of each operation and tracked the

source where error comes from. In this subsection, we computed the Forbenius

Norms (FN)

‖A − B‖F =

√
√
√
√

n∑

i=1

n∑

j=1

|
|
|
aij − bij

|
|
|

2
(9)

of error matrixes which can weigh the degree of error, the error matrixes are sub-

traction between float-point and fixed-point data from the output generated by each

execution stage shown in Fig. 2, the result of computation is presented in Fig. 7. It

can be seen that the error mainly begins with the operation of large scale matrix mul-

tiplication generating DATA4.mat and is propagated in latter operations. Because of

the linear nature of the operations and the dynamic range compression of the sig-

moid generating DATA7.mat, quantization errors tend to propagate sub-linearly and

not cause numerical instability [9].
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Fig. 8 Prediction accuracy

with different mixed

bit-widths at DATA4.mat
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4.2 Mixed Bit-Widths

In order to improve the performance, we re-trained the ELM by adopting mixed bit-

widths which can change bit-width at a special point. The prediction accuracy of

training with mixed bit-widths applied at the point computing DATA4.mat is shown

in Fig. 8, it can be seen that we can also get attractive result even we adopt mixed
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Fig. 9 FN with mixed

bit-widths 16&48
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bit-widths which can decrease the occupation of memory resource. According to the

FN of the optimal mixed bit-widths (16&48) shown in Fig. 9, the propagated error

produced by bit-width of 16 bits can be improved through changing the bit-width

into 48 bits and would not affect the performance.

5 Conclusion

This research has tackled the fixed-point evaluation of ELM for classification. We

conduct the conversion of fixed-point for ELM and then make simulations on Matlab.

Experimental results show that the resource occupation of implementation adopting

single bit-width is too large, and the performance could be improved if we adopt

mixed bit-width. Our results can act as a guide to inform the design choices on bit-

widths when implementing ELM in FPGA documenting clearly the trade-off in accu-

racy. However, the use of mixed bit-width makes the computing resource rise, we

need to conduct the further evaluation of resource occupation and then implement

the ELM for classification on FPGA with the parameter discussed in this work.
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Multi-layer Online Sequential Extreme
Learning Machine for Image Classification

Bilal Mirza, Stanley Kok and Fei Dong

Abstract In this paper, a multi-layer online sequential extreme learning machine

(ML-OSELM) is proposed for image classification. ML-OSELM is an online sequen-

tial version of a recently proposed multi-layer extreme learning machine (ML-ELM)

method for batch learning. Existing ELM-based sequential learning methods, such

as state-of-the-art online sequential extreme learning machine (OS-ELM), were pro-

posed only for single-hidden-layer networks. A distinctive feature of the new method

is that it can sequentially train a multi-hidden-layer ELM network. Auto-encoders are

used to perform layer-by-layer unsupervised sequential learning in ML-OSELM. We

used four image classification datasets in our experiments and ML-OSELM performs

better than the OS-ELM method on all of them.

Keywords Deep learning ⋅ Extreme learning machine ⋅ Feature learning ⋅ Image

classification ⋅ Sequential learning

1 Introduction

Deep learning has attracted much attention in the past decade or so due to its suc-

cesses in various research domains such as pattern recognition, computer vision

and automatic speech recognition [1, 2]. Neural-network-based deep architectures

or deep neural networks, convolutional neural networks, and deep belief networks

are some of the commonly used deep learning architectures. Multiple layers in

deep architectures provide multiple non-linear transformations of the original raw
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input data for better representation learning. Deep networks can capture higher level

abstractions which most single layer networks are unable to achieve. Every layer in

deep networks may learn a different representation of the input by performing feature

or representation learning using efficient unsupervised or semi-supervised learning

algorithms.

Restricted Boltzmann machine (RBM) [3] and auto-encoders (AE) [4] have been

successfully applied for feature learning in deep networks. Examples of RBM-

based deep networks include deep belief networks (DBNs) [3] and deep Boltzmann

machines (DBMs) [5] while examples of auto-encoder-based deep networks are

stacked auto-encoders (SAEs) [4] and stacked denoising auto-encoders (SDAEs) [5].

Multiple RBMs are stacked to create DBN and DBM networks, whereas multiple

AEs are stacked to create SAE and SDAE networks. These methods have outper-

formed support vector machines, single-hidden-layer feed-forward neural networks

and traditional multi-layer neural networks on image classification, automatic speech

recognition, and other tasks. However, the time taken for learning deep networks on

these big dataset applications is generally long. Recently, multi-layer extreme learn-

ing machine (ML-ELM) [6], which is based on extreme learning machine theory [7,

8], has been proposed as a computationally efficient alternative to existing state-of-

the-art deep networks. ML-ELM learns significantly faster than existing deep net-

works, and obtains better or similar generalization performance to DBNs, SAEs,

SDAEs and DBMs. In ML-ELM, extreme learning machine auto-encoders (ELM-

AEs) are used for unsupervised layer-by-layer feature learning in the hidden layers.

The training of ELM-AEs is similar to that of regular ELMs except that the output

in ELM-AEs is the same as the input. The extreme learning machine (ELM) algo-

rithm [7, 8] is becoming popular in large datasets and online learning applications

due to its fast learning speed. ELM provides a single step least square estimation

(LSE) method for training single-hidden-layer feedforward network (SLFN) instead

of using iterative gradient descent methods such as backpropagation.

ML-ELM has been proposed for image classification and pattern recognition

applications, and the dimensions of the corresponding datasets are generally very

high. When constrained with limited memory, both single layer ELM and ML-ELM

are not suitable for big datasets. Therefore, batch learning or learning with complete

datasets in one step becomes challenging. Also, graphical processing units (GPUs),

widely used in scientific computing, generally have limited memory that cannot

accommodate big datasets. To overcome this problem, online sequential extreme

learning machine (OS-ELM) has been proposed for sequential learning from big

data streams [9]. OS-ELM has become one of the standard algorithms for sequential

learning due to its fast learning speed. Sequential or incremental learning algorithms

store the previously learned information and update themselves only with a chunk

of new data [10–13]. Once the chunk of data has been used for training, it may be

discarded. OS-ELM is preferable over batch ELM not only for their reduced com-

putational time on large datasets, but also for their ability to adapt to online learn-

ing applications. Note that OS-ELM is an online sequential version of the original

single-hidden-layer extreme learning machine.
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In this paper, to imbue ML-ELM with the online sequential learning advantages

of OS-ELM, we propose a sequential version of ML-ELM, which we term multi-

layer online sequential extreme learning machine (ML-OSELM). To our knowl-

edge, we are the first to develop an ELM that is both multi-layered and can learn

from data in an online sequential manner. In order to perform layer-by-layer unsu-

pervised sequential learning in ML-OSELM, an online sequential extreme learning

machine auto-encoder (OS-ELM-AE) is also proposed. ML-OSELM resembles deep

networks since it stacks on top of OS-ELM-AE to create a multi-layer neural network.

This paper is organized as follows. Section 2 discusses the preliminaries. Section 3

presents the details of the new multi-layer online sequential learning method. This is

followed by experiments for validating the performance of the proposed framework

in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Preliminaries

2.1 Extreme Learning Machine (ELM) and Online
Sequential ELM (OS-ELM) Methods

Extreme learning machine [7] provides a single step least squares error (LSE) esti-

mate solution for a single-hidden-layer feedforward network (SLFN). With ELM

there is no need to tune the hidden layer of the SLFN as in traditional gradient-based

algorithms. ELM randomly assigns weights and biases in the hidden layer while the

output weights connecting the hidden layer and the output layer are determined using

the LSE method.

Consider a q class training dataset {xi, yi}, i = 1,… ,N and yi ∈ Rq
. xi ∈ Rd

is a

d-dimensional data point. The SLFN output with L hidden nodes is given by

oi = ΣL
j=1𝛽jG(aj, bj, xi), i = 1,… ,N (1)

where aj and bj, j = 1,… ,L are the jth hidden node’s weights and biases respec-

tively, and they are assigned randomly, independent of the training data. 𝛽j ∈ Rq
is

the output weight vector connecting the jth hidden node to the output nodes and G(x)
can be any infinitely differentiable activation function such as the sigmoidal function

or radial basis function in the hidden layer.

The N equations in (1) can be written in a compact form as below.

O = H𝛽 (2)

where H =
⎡
⎢
⎢
⎣

G(a1, b1, x1) … G(aL, bL, x1)
⋮ … ⋮

G(a1, b1, xN) … G(aL, bL, xN)

⎤
⎥
⎥
⎦N×L
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is called the hidden layer output matrix, Hij represents the jth hidden node output

corresponding to the input xi, 𝛽 = [𝛽1, 𝛽2,… , 𝛽L]T and O = [o1, o2,… , oN]T .

In order to find the output weight matrix 𝛽 which minimizes the cost function

‖O − Y‖, a LSE solution of (2) is obtained as below

𝛽 = H†Y = (HTH)−1HTY (3)

where Y = [y1, y2,… , yN]T and H†
is the Moore-Penrose generalized inverse of

matrix H. This closed-form single step LSE solution is referred to as an extreme

learning machine [7].

Online sequential extreme learning machine (OS-ELM) [9] has been proposed

as an incremental version of the batch ELM. OS-ELM achieves better generaliza-

tion performance than the previous algorithms proposed for SLFN and at a much

faster learning speed. It can learn from data one example at a time as well as chunk-

by-chunk (with a fixed or varying chunk size). Only the newly arrived samples are

used at any given time so the examples that have already been used in the learning

procedure can be discarded. The learning in OS-ELM consists of two phases.

Step 1: Initialization

A small portion of training data n0 = {xi, yi}, i = 1,… ,N0 with N0 ∈ N is con-

sidered for initializing the network. The initial output weight matrix is calculated

according to the ELM algorithm by randomly assigning weights aj and bias bj,
j = 1,… ,L as follows

𝛽

(0) = P0HT
0 Y0 (4)

where P0 = (HT
0H0)−1 and H0 is the initial hidden layer output matrix.

It is recommended that the number of initial training samples should be greater

than or equal to the number of hidden neurons. With this setting the generalization

performance of online sequential ELM reaches that of the batch ELM.

Step 2: Sequential Learning

Upon the arrival of a new set of observations nk+1 = {xi, yi}, i = (Σk
l=0Nl) + 1,… ,

Σk+1
l=0Nl, i.e., the (k + 1)th chunk of data, we first compute the partial hidden layer

output matrix Hk+1. Nk+1 is the number of samples in the (k + 1)th chunk. Then by

using the output weight update equation shown below, we calculate the output weight

matrix 𝛽

k+1
with Yk+1 = [y(Σk

l=0Nl)+1,… , yΣk+1
l=0 Nl

]T .

Pk+1 = Pk − PkHT
k+1(I + Hk+1PkHT

k+1)
−1Hk+1Pk (5)

𝛽

(k+1) = 𝛽

(k) + Pk+1HT
k+1(Yk+1 − Hk+1𝛽

(k))

Each time a new chunk of data arrives, the output weight matrix is updated accord-

ing to (5). Note the one-by-one learning can be considered a special case of chunk-

by-chunk learning when the chunk size is set to 1 and the matrices in (5) become

vectors.
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2.2 Multi-layer Extreme Learning Machine (ML-ELM)

In multi-layer neural networks (ML-NN), the hidden layer weights are initialized by

layer-by-layer unsupervised learning and then the whole network is fine-tuned using

backpropagation. ML-NN performs better with layer-by-layer unsupervised learning

as compared to only using backpropagation. However, fine-tuning is avoided in such

deep networks using the recently proposed multi-layer extreme learning machine

(ML-ELM) method.

ML-ELM hidden layer weights are initialized randomly using extreme learning

machine auto-encoders (ELM-AEs). ELM-AE performs layer-by-layer unsupervised

learning. ELM-AE is trained differently from ELM in that the output is set to be

equal to the input, i.e., Y = X in (3) (see Fig. 1), and hidden layer weights and biases

are chosen to be orthogonal to the random weights in ELM. Orthogonalization of

these weights tends to result in better generalization performance. Note that ELM-

AE output weights are obtained analytically unlike RBMs and other auto-encoders,

which require iterative algorithms.

ELM-AE’s main objective is to transform features from input data space to lower

or higher dimensional feature space. Since ELM is a universal approximator [8],

ELM-AE is also a universal approximator.

Once the hidden layer weights are learnt using ELM-AE, the output weights con-

necting the last hidden layer to the output layer of ML-ELM are determined analyt-

ically using (3).

Fig. 1 ELM-AE uses the same architecture as original ELM with the exception that the target

output ‘x’ is the same as input. Here ‘g’ is the activation function, (a, b) represents random weights

and biases, and 𝛽 represents output weights
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3 Proposed Method

In this section, we propose an online sequential version of the multi-layer extreme

learning machine, which we term multi-layer online sequential extreme learning

machine (ML-OSELM). In Sect. 3.1, we propose an online sequential extreme learn-

ing machine auto-encoder (OS-ELM-AE) for feature or representation learning from

sequential data streams. In Sect. 3.2, the proposed OS-ELM-AE is used to per-

form layer-by-layer unsupervised sequential learning in multi-layer extreme learn-

ing machines. The deep sequential learning in ML-OSELM is performed by stacking

several OS-ELM-AEs. Note that the network architectures of OS-ELM-AE and ML-

OSELM are identical to ELM-AE (Fig. 1) and ML-ELM (Fig. 2) respectively. In the

following, we will discuss how these architectures are used for sequential learning.

Fig. 2 The weights of each hidden layer in ML-ELM are determined using ELM-AE. (𝛽1)T is

responsible for feature learning at the first hidden layer of ML-ELM
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3.1 Online Sequential Extreme Learning Machine
Auto-Encoder (OS-ELM-AE)

OS-ELM-AE is a special case of OS-ELM where output is the same as the input at

every time step. The hidden layer weights are randomly generated, as in OS-ELM,

but in OS-ELM-AE orthogonal of random weights and biases are used. Learning in

OS-ELM-AE is done in two phases as described below.

Step 1: Initialization

The OS-ELM-AE is initialized with a portion of training data n0 = {xi, yi}, i =
1,… ,N0 with N0 ∈ N. The initial output weights 𝛽

(0)
of OS-ELM-AE is given as

𝛽

(0) = P0HT
0 X0 (6)

where X0 = [x1, x2,… , xN0
]T , P0 = (HT

0H0)−1 and H0 is the hidden layer output

matrix.

Step 2: Sequential Learning

With the arrival of a new chunk of training data, the recursive least square equation

in (5) is used, but with input set equal to output as below

Pk+1 = Pk − PkHT
k+1(I + Hk+1PkHT

k+1)
−1Hk+1Pk

𝛽

(k+1) = 𝛽

(k) + Pk+1HT
k+1(Xk+1 − Hk+1𝛽

(k)) (7)

The output weight 𝛽 in OS-ELM-AE is responsible of learning the transformation

from input space to feature space. Note that (7) is different from (5) since Yk+1 is

replaced with Xk+1.

3.2 Multi-layer Online Sequential Extreme Learning
Machine (ML-OSELM)

The OS-ELM-AE method proposed in the previous subsection is now applied to

layer-by-layer unsupervised sequential learning in a multi-layer online sequential

extreme learning machine. All the hidden layer are initialized using (6) and then

sequentially trained with the arrival of new data using (7). The hidden layer output

matrix corresponding to hidden layer m at time step k is given as

Hm
k = g((𝛽(k)m )THm−1

k )

where g can be any activation function that can be used with ELMs [7, 8] and 𝛽

(k)
m is

the output weight matrix obtained using OS-ELM-AE for layer m at time step k.
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The input or data layer can be considered as the zeroth hidden layer where m = 0.

Assuming a total of p hidden layers in the network, the output weight matrix in ML-

OSELM connecting the last hidden layer to the output layer is obtained as follows,

Step 1: Initialization

𝛽

(0) = P0HT
0 Y0 (8)

where H0 = Hp
0 = g((𝛽(0)p )THp−1

0 ).

Step 2: Sequential Learning

Pk+1 = Pk − PkHT
k+1(I + Hk+1PkHT

k+1)
−1Hk+1Pk

𝛽

(k+1) = 𝛽

(k) + Pk+1HT
k+1(Yk+1 − Hk+1𝛽

(k)) (9)

where Hk+1 = Hp
k+1 = g((𝛽(k+1)p )THp−1

k+1 ).
The training algorithm of ML-OSELM is summarized in Algorithm 1.

Algorithm 1 Multi-layer online sequential extreme learning machine (ML-OSELM)

algorithm

Input: {xi, yi}, xi ∈ Rd
and yi ∈ Rq

, i = 1,… ,N.
Output: 𝛽

(k+1)

Initialization:

Initial data set: no = {xi, yi}, xi ∈ Rd
and yi ∈ Rq

, i = 1,… ,N0 with N0 ∈ N.

for m = 1 → p do % number of hidden layers %

Hm
0 = g((𝛽(0)m )THm−1

0 )
where 𝛽

(0)
m is obtained using (6)

end for

𝛽

(0) = P0HT
0 Y0

where H0 = Hp
0

Sequential Learning:

for k = 0 → K do % number of time steps %

for m = 1 to p do
Hm

k+1 = g((𝛽(k+1)m )THm−1
k+1 )

where 𝛽

(k+1)
m is obtained using (7)

end for

𝛽

(k+1) = 𝛽

(k) + Pk+1HT
k+1(Yk+1 − Hk+1𝛽

(k))
where Hk+1 = Hp

k+1
end for
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4 Experiments

In this section, we use four image classification datasets for the performance evalua-

tion of ML-OSELM. The first dataset is CIFAR10 [14], the second CALTECH [15],

the third Olivetti faces [16] and the last UMIST [17]. CIFAR10 consists of 50,000

training and 10,000 testing samples belonging to 10 different categories. We use a

feature extraction pipeline as described in [18, 19]. The pipeline extracts 6 × 6 pixel

patches from the training set images, performs ZCA whitening of those patches, runs

K-means for 50 rounds, and then normalizes its dictionary to have zero mean and

unit variance. The final feature vector is of dimension G × G × K, where K is the dic-

tionary size and G × G represents the size of the pooling grid. We set K = 400 and

G = 4 in our experiments. We compare the results obtained by multi-layer OS-ELM

with that of single layer OS-ELM and also ML-ELM (batch mode) under identical

settings.

For the CALTECH dataset, we used 5 classes representing faces, butterfly,

crocodile, camera and cell phone. For each class, we set aside one third of the images

(up to 50) for testing and used the rest for training. The pixel values represent gray

scale intensities which are normalized to have zero mean and unit variance. Similar

to [20], we used fixed-size square images in all the categories even though the orig-

inal sizes may vary in different categories. The original images are rescaled so that

the longer side is of length 100, and then we used the inner 64 × 64 portions for our

experiments.

Out of 400 samples in Olivetti faces, we used 300 for training and 100 for testing.

Each sample is a 64 × 64 gray scale image. It represents 40 unique people with 10

images each, all frontal and with a slight tilt of the head.

The UMIST database has 565 total images of 20 different people with 19–36

images per person. 400 samples are used for training while 175 are used for testing.

Each sample is a 112 × 92 gray scale image. The subjects differ in race, gender and

appearances. The dataset covers various angles from left profile to right profile.

We conducted all the experiments on a high performance computer with Xeon-

E7-4870 2.4 GHz processors, 256 GBytes of RAM, and running Matlab 2013b. For

consistency, we used a three-hidden-layer (3000-4000-5000) network structure for

multi-layer ELM in all the datasets. For OS-ELM, the number of hidden neurons is

set to 5000, i.e., the same as the last layer in the multi-layer network. The sizes of

each initialization set and chunk of samples at each time step in sequential learning

are respectively set to 15000 and 500 for CIFAR10, 200 and 50 for CALTECH, 100

and 50 for Olivetti faces, and 150 and 50 for UMIST faces. Sigmoid is used as the

activation function throughout the experiments. The classification accuracy compar-

ison between ML-OSELM and OS-ELM on the four datasets is given in Table 1. The

results represent average accuracy over 20 runs with different initialization, training

and testing sets.

We use the two-sample t-test to see whether the results obtained by ML-OSELM

are statistically significantly better than those obtained by single layer OS-ELM. The

null hypothesis is rejected at 𝛼 = 0.01 for UMIST and CIFAR10 with p values of
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Table 1 Accuracy comparisons between multi-layer OS-ELM (ML-OSELM) and single-layer

OS-ELM

Dataset ML-OSELM OS-ELM

UMIST 98.03 96.51

Olivetti 92.81 90.23

CIFAR10 64.96 64.01

CALTECH 59.22 59.07

Table 2 Accuracy comparisons between multi-layer OS-ELM (ML-OSELM) and batch multi-

layer ML-ELM

Dataset ML-OSELM ML-ELM

UMIST 98.03 98.83
Olivetti 92.81 94.91
CIFAR10 64.96 66.41
CALTECH 59.22 59.57

0.0054 and 1.35E-5 respectively. For Olivetti faces, the null hypothesis is rejected

at 𝛼 = 0.05 with a p value of 0.043. For CALTECH, p value is 0.735 and the null

hypothesis is not rejected.

With these statistical significances test, ML-OSELM is found to be superior to

OS-ELM on the UMIST, CIFAR10, CALTECH datasets.

The aim of sequential learning methods is to achieve a performance similar to that

of batch learning methods when constrained with limited memory. It can be observed

from Table 2 that ML-OSELM results are competitive against those obtained by ML-

ELM (batch mode).

5 Summary and Future Work

We propose the multi-layer online sequential extreme learning machine (ML-

OSELM). Our empirical results show that by using multiple layers, our proposed

ML-OSELM outperforms the state-of-the-art single-layer online sequential ELM.

Further, our ML-OSELM achieves competitive results against a batch multi-layer

ELM that has the advantage of having the full dataset available for training.

As future work, we want to come up with a method to find the optimal num-

ber of hidden layers in ML-OSELM, incorporate concept drift learning into ML-

OSELM, and compare it against the recently proposed concept drift learning method

for single-hidden-layer ELMs [21].
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ELM Meets Urban Computing: Ensemble
Urban Data for Smart City Application

Ningyu Zhang, Huajun Chen, Xi Chen and Jiaoyan Chen

Abstract In recent years, big data analysis has been applied to the design and devel-

opment of smart cities, which creates opportunities as well as challenges. It is nec-

essary to retrieve a large amount of social media data and physical sensor data for

this purpose. However, different cities have different infrastructures and populations,

resulting in the sparsity of some types of data, such as social media data. In this

paper, we propose ELM based method for smart cities and apply it to optimal retail

store placement owing to its importance in the success of a business. Traditional

approaches to the problem have considered demographics, revenue, and aggregated

human flow statistics from nearby or remote areas; however, the acquisition of rele-

vant data is usually expensive. The rapid growth of location-based social networks

in recent years has led to the availability of fine-grained data describing the mobil-

ity of users and popularity of places. However, circumstances vary from one city to

another. Furthermore, the number of sensors may not be sufficient to cover all the rel-

evant areas of a particular city. In such cases, it would be useful to transfer knowledge

to small cities. We study the predictive power of various machine-learning features

with regard to the popularity of retail stores in a city by using datasets collected from

open data sources in several big cities. In addition, we adopt a ELM based method

to transfer knowledge to small cities. The results of experiments involving cities in

China confirm the effectiveness of the proposed framework.

Keywords Urban computing ⋅ Optimal retail location ⋅ Smart city ⋅ Extreme

learning machine
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1 Introduction

Urban computing, which aims to tackle urban problems by using city-generated data

(e.g., traffic flow, human mobility, and geographical data), connects urban sensing,

data management, data analytics, and service provision into a recurrent process to

continuously and unobtrusively improve the quality of life, city operation systems,

and the environment. For instance, the geographical placement of a retail store or

new business has been of prime importance since the establishment of the first urban

settlements in ancient times, and it assumes the same importance from the viewpoint

of modern trading and commercial ecosystems in today’s cities. A new coffee shop

that is set up in a street corner may thrive with hundreds of customers, but it may

close in a matter of months if it is set up a few hundred meters down the road. Nev-

ertheless, infrastructure statistics are not sufficient for evaluating investment values.

For example, the noise and pollution associated with train/bus systems can lower the

value of a coffee shop.

In contrast, from the perspective of urban computing, more dynamic and

information-rich data can be accumulated with the development of mobile, internet,

and sensor technologies. For example, people may post comments and ratings for

places of interest (POIs; e.g., schools, restaurants, and shopping centers) via mobile

apps after consumption. Moreover, mobility data such as smart card transactions and

taxi GPS traces consist of both trajectories and consumption records of residents’

daily commutes. If properly analyzed, these data (e.g., user reviews and location

traces) can serve as a rich source of intelligence for determining optimal retail store

placement.

Indeed, these retail-related dynamic data generated by users could better reflect

values of placement than urban infrastructure statistics. In general, if people have

good opinions of a store, the demand for this store as well as its investment value

will be high. The challenge is how to uncover people’s opinions of a store. In fact,

the opinions of users can be mined from (1) online user reviews and (2) offline

urban regional data. Specifically, online reviews (e.g., Dianping ratings) contain

explicit opinions regarding places surrounding a store. For example, the quality of

a neighborhood can be partially approximated by the ratings of business venues,

such as overall rating, service rating, and environment rating. On the other hand,

offline urban regional data near a store not only encode the static statistics of urban

infrastructure but also reflect residents’ implicit opinions of the neighborhood. All

these indications provided by dynamic user-generated data reveal important facets

of a store that are of great concern to customers and convey the implicit user opin-

ions of a neighborhood. Therefore, we consider and mine both the explicit opinions

from user reviews and the implicit opinions from urban regional data to enhance the

evaluation of optimal retail store placement.

However, different cities have different infrastructures and populations, resulting

in the sparsity of some types of data for smart cities. For example, it is relatively easy

to obtain heterogeneous data such as online user reviews in a metropolis because of

its large population and infrastructure. However, small towns have small populations,
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and hence, relatively low social media activity. Therefore, it is difficult to assess

optimal retail store placement on the basis of such data from small cities. On the

other hand, large cities have been extensively modeled for numerous applications

through big data analysis. In this paper, we propose ELM based method to transfer

knowledge between smart cities and apply it to optimal retail store placement.

Specifically, transfer learning aims to extract common knowledge across domains

such that a model trained on one domain can be adapted effectively to other domains.

In reality, different cities are equivalent to different domains, and online and offline

data can be regarded as two different views. Given a set of candidate areas in a city for

opening a store, our aim is to identify the best ones in terms of their potential to attract

a large number of users (i.e., to become popular). We formulate this problem as a

rank problem, where, by extracting a set of features, we seek to exploit them to assess

the retail quality of a geographic area. More specifically, we adopt ELM with domain

adaptation to train a classifier for predictions on the target domain [7]. Based on the

framework, a particular solution is proposed to learn the classifier simultaneously.

The major contributions of this paper are as follows:

(1) We propose a ELM based method for urban computing between smart cities. We

apply this method to optimal retail store placement in order to transfer knowledge

from large cities to small ones to improve accuracy.

(2) We study the factors affecting results in order to select the candidates. We ana-

lyze the changes in different cities, and we formulate rules to select candidates.

(3) We evaluate our approach using various data sources from the Web, including

traffic data, bus data, user comments in China, in order to verify the effectiveness

of the proposed framework.

2 Related Work

2.1 Urban Computing

The dynamics of a city (e.g., human mobility and the number of changes in a POI

category) may indicate trends in the city’s economy. For instance, the number of

movie theaters in Beijing kept increasing from 2008 to 2012 [6, 8]. This could mean

that an increasing number of Beijing’s residents preferred to watch movies in movie

theaters. In contrast, some categories of POIs may vanish in a city, signifying a down-

turn in business. Likewise, human mobility could indicate the unemployment rate in

some major cities and therefore facilitate the prediction of stock market trends [5].

Thus, human mobility combined with POIs can help determine the placement of

some businesses.
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With respect to previous work in the general area, in this paper, we examine how

the problem can be framed through Domain Adaption Transfer ELM. The richness

of information provided by the above-mentioned services in big cities could enable

us to study the retail quality of an area in a fine-grained manner: various types of

geographic, semantic, and mobility information can not only complement traditional

techniques but also form the basis for a new generation of business analytics driven

by online data.

2.2 ELM

Given N samples [x1, x2,… , xN] and their corresponding target[y1, y2,… , yN], where

xi = [xi1, xi2, xi3, xin]T ∈ Rn
and yi = [yi1, yi2, yi3, yim]T ∈ Rm

. The output of the hid-

den layer is denoted as h(xi) ∈ R1×L
, where L is the number of hidden nodes and

h(.) is the activation function. The output weights between the hidden layer and the

output layer being learned is denoted as 𝛽 ∈ RL×m
, where m is the number of output

nodes.

Regularized ELM aims to solve the output weights by minimizing the squared loss

summation of prediction errors and the norm of the output weights for over-fitting

control, which results in the following formulation

⎧
⎪
⎨
⎪
⎩

min
𝛽

LELM = 1
2
||𝛽||2 + C ⋅

1
2
⋅

N∑

i=1
𝜉

2
i

s.t. h(xi)𝛽 = yi − 𝜉i, i = 1,… ,N

(1)

There are two cases when solving 𝛽, i.e. if the number N of training patterns is

larger than L, the gradient equation is over-determined, and the closed form solution

can be obtained as

𝛽

∗ = (HTH +
IL

c
)−1HTT (2)

If the number N of training patterns is smaller than L, an under-determined least

square problem would be handled. In this case, the solution of (2) can be obtained as

𝛽

∗ = HT (HHT +
IN

c
)−1T (3)

Therefore, in classifier training of ELM, the output weights can be computed by

using (3) or (4) which depends on the number of training instances and the number

of hidden nodes.
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3 Overview

3.1 Preliminaries

Definition 1 (City Block): We divide a city into blocks, assuming that placement

in a block g is uniform; each block has several data samples and only one label that

denotes whether it contains only one store (if not, we will try to use a store with more

data as a label).

Definition 2 (Social View): Information aggregation index svi obtained by the analy-

ses of online user review data of smart cities.

Definition 3 (Physical View): Information aggregation index pvi obtained through

offline urban region data from various physical sensors and satellite data from smart

cities.

3.2 Framework

As shown in Fig. 1, our framework consists of two major components: feature extrac-

tion of the source and target cities, and domain adaptation transfer ELM, which

involves the analysis of optimal retail store placement in other cities. We retrieved

massive amounts of online user review data from big cities. Through proper feature

learning from social and physical views, we fed these data into our framework. Then,

through domain adaptation transfer ELM, we transferred knowledge to other cities

with sparse online user review data.

Problem statement: Formally, by considering the existence of a candidate set

of areas L in which a commercial enterprise is interested in placing its business,

we wish to identify the optimal area l ∈ L such that a newly opened store in l will

potentially attract the largest number of visitors. An area l is derived from block gi.

Fig. 1 Domain adaptation transfer ELM framework
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We compute a score yi for every candidate area l: the top-ranked area in terms of this

score will be the optimal area for placing the new store. Our main assumption in the

formulation of this task is that the Dianping score empirically observed by users can

be used as a proxy for the relative popularity of a place.

Suppose that we are given a group of source cities Us1,Us2,… ,Usn and a target

city Ut. Each source city has a set of blocks Usi = {Ds}, each block has labeled

source-domain data Ds = {(s(i), p(j)
, y(k))}, and the target city has labeled target-

domain data Dt = {(s(m)
, p(n)

, y(p))}, m ≪ i and n ≈ j, consisting of two views, where

si and pi are column vectors of the ith instance from the social and physical views,

respectively, and yi is its class label, yi ∈ {0, 1, 2,… , k} (k = 3 in this paper). The

different class label (0, 1, 2, 3) corresponds to the store’s score. The source and target

domain data follow different distributions.

Our goal is to assign appropriate class labels to the instances in the target domain.

We adopt domain adaptation transfer ELM to train a classifier for predictions on the

target domain. Eventually, we generate a final score yi for a region g.

4 Approach

4.1 Model Social View

Prosperity and users’ opinions of a neighborhood are two important factors deter-

mining property investment value. Recent studies have shown that a strong regional

economy usually indicates high demand [4]. Thus, we decided to mine online user

reviews collected from dianping.com.

Overall Satisfaction: For each block g, we access the overall satisfaction of users

over the neighborhood ri. Since the overall rating of a business venue p represents

the satisfaction of users, we extract the average of the overall ratings of all business

venues located in ri as a numeric score of overall satisfaction. Formally, we have

f OS
i =

∑
p∶p,q∈P&p∈ri

OverallRatingp

{p ∶ p ∈ P&p ∈ ri}
. (4)

Service Quality: Similarly, we compute the average service rating of business

venues in ri and express the service quality of the neighborhood as

f SQ
i =

∑
p∶p,q∈P&p∈ri

ServiceRatingp

{p ∶ p ∈ P&p ∈ ri}
. (5)

Environment Class: The environment class of business venues could reflect

whether the neighborhood is high-class. Therefore, we extract the average environ-

ment rating as
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f EC
i =

∑
p∶p,q∈P&p∈ri

EnvironmentRatingp

{p ∶ p ∈ P&p ∈ ri}
. (6)

Consumption Cost: The average cost of consumption behaviors in business

venues can partially reflect the income and neighborhood class. We calculate the

average consumption cost of business venues of a targeted neighborhood as a feature:

f CC
i =

∑
p∶p,q∈P&p∈ri

AverageCostp
{p ∶ p ∈ P&p ∈ ri}

. (7)

Dianping Comments. We extend the existing word-embedding learning algo-

rithm and develop five-layer neural networks for learning. Assuming that there are K

labels, we modify the dimension of the top layer in the C&W model [1] as K, and add

a softmax layer on the top layer. The softmax layer is suitable for this scenario because

its outputs are interpreted as conditional probabilities. Unlike the C&W model, our

model does not generate any corrupted n-gram. Let f g(t), where K denotes the num-

ber of polarity labels, be the gold K-dimensional multinomial distribution of input t

and
∑

k f g
k (t) = 1. The cross-entropy error of the softmax layer is given by

lossh(t) = −
∑

k=0,1
f g
k (t) ⋅ log(f h

k (t)), (8)

where f g(t) is the gold event distribution and f h(t) is the predicted event distribution.

4.2 Model Physical View

Recent studies have reported that different types of transit systems have different

impacts on a region owing to the differences in fares, frequencies, speeds, and scopes

of service. Economic information of a region can also reflect its pulse.

Bus-Related Features: Most moderate-income residents choose buses, which are

cheaper and travel at acceptable speeds, instead of taxies, which are expensive and

travel at faster speeds. Let BT denote the set of all bus trajectories of a city, p is a

pickup bus stop and d is a drop-off bus stop.

Bus Arriving, Departing, and Transition Volume: We extract the arriving, depart-

ing, and transition volumes of buses from smart card transactions. Formally,

FBAV
i = |< p, d >∈ BT ∶ p ∉ ri&d ∈ ri| (9)

FBLV
i = |< p, d >∈ BT ∶ p ∈ ri&d ∉ ri| (10)

FBTV
i = |< p, d >∈ BT ∶ p ∈ ri&d ∈ ri|. (11)
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Real Estate Features: Recent studies report that real estate prices reflect the pur-

chasing power and economic index of this region. Formally, we have

FRE
i =

∑
p∶p,q∈P&p∈ri

RealEstatep

{p ∶ p ∈ P&p ∈ ri}
. (12)

Traffic Index Features: Increased travel velocity and reduced traffic conges-

tion should be reflected by values. We investigate the traffic index from nitrafficin-

dex.com, which gives us as value to evaluate local traffic conditions in each block.

Formally, we have

FRE
i =

∑
p∶p,q∈P&p∈ri

TrafficIndexp

{p ∶ p ∈ P&p ∈ ri}
. (13)

Competitiveness Features: We devise a feature to factor in the competitiveness

of the surrounding area. Given the type of the place under prediction 𝛾l (e.g., Coffee

Shop for Starbucks), we measure the proportion of neighboring places of the same

type 𝛾l with respect to the total number of nearby places. Then, we rank areas in

reverse order, assuming that the least competitive area is the most promising one:

̂Xl(r) = −
N
𝛾l(l, r)

N(l, r)
. (14)

Quality by Jensen Features: To consider spatial interactions between different

place categories, we exploit the metrics defined by Jensen et al. [3]. To this end, we

use the inter-category coefficients described to weight the desirability of the places

observed in the area around the object, i.e., the greater the number of the places in

the area that attract the object, the better is the quality of the location. More formally,

we define the quality of location for a venue of type 𝛾l as

̂Xl(r) =
∑

𝛾p∈𝛤
log(𝜒

𝛾p−>𝛾l
) × (N

𝛾p(l,r) − N
𝛾p(l,r)), (15)

POIs: The category of POIs and their density in a region indicate land use as well

as patterns in the region, thereby contributing to optimal placement. A POI category

may even have a direct causal relation to it. Let ♯(i, c) denote the number of POIs of

category c ∈ C located in gi, and let ♯(i) be the total number of POIs of all categories

located in gi. The entropy is defined as

f POI
i = −

∑

c∈C

♯(i, c)
♯(i)

× log ♯(i, c)
♯(i)

. (16)
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4.3 Domain Adaptation Transfer ELM

Suppose that the source domain and target domain are represented DS and DT . In

this paper, we assume that all the samples in the source domain are labeled data. The

proposed method aims to learn a classifier 𝛽S using a number of labeled instances

from the source domain, and set the few labeled data from the target domain as an

appropriate regularizer for adapting to the source domain as shown in Fig. 2, which

can be formulated as

min
𝛽S ,𝜉

i
S ,𝜉

i
T

1
2
||𝛽||2 + CS

1
2

NS∑

i=1
(𝜉i

S)
2 + CT

1
2

NT∑

j=1
(𝜉j

T )
2

(17)

s.t.

{
Hi

S𝛽S = ti
S − 𝜉

i
S, i = 1,… ,NS

Hj
T𝛽T = tj

T − 𝜉

j
T , j = 1,… ,NT

We can find that the very few labeled guide samples from target domain can assist

the learning of 𝛽S and realize the knowledge transfer between source domain and tar-

get domain by introducing the third term as regularization with the second constraint,

which makes the feature mapping of the guide samples from target domain approx-

imate the labels with the output weights 𝛽S learned by the training data from the

source domain.

In fact, according to [7] the optimization (18) can be reformulated an equivalent

unconstrained optimization problem in a matrix form by substituting the constraints

into the objective function as

min
𝛽S

L(𝛽S) =
1
2
||𝛽||2 + CS

1
2

NS∑

i=1
||tS − HS𝛽S||

2 + CT
1
2

NT∑

j=1
||tT − HT𝛽T ||

2
(18)

Fig. 2 The proposed retail store classification model
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By setting the gradient of L with respect to 𝛽S as zero, Then, we can easily solve

the 𝛽S.

For the case that the number of training samples NSis smaller than L (NS < L),
we can obtain the output weights as:

𝛽S = HT
S (CB−1A − D)−1(CB−1tT − tS)+

HT
T [B

−1tT − B−1A(CB−1A − D)−1(CB−1)tT − tS)] (19)

For the case that the number of training samples NS is larger than L(NS > L),

𝛽S = (I + CSHT
S tS + CTHT

T tT )−1(CSHT
S tS + CTHT

T tT ) (20)

For recognition of the numerous unlabeled data in target domain, we calculate the

final output using the following

ŷk
Tp = Hk

Tp ⋅ 𝛽S, k = 1,… ,NTp (21)

In terms of the above discussion, the algorithm is summarized as

Algorithm 1 Domain adaption transfer ELM algorithm

Input:
The source dataset Ds = {(s(i), p(j)

, y(k))}
The target dataset Dt = {(s(m)

, p(n)
, y(p))}

trade-off parameters CS and CT .

Output: The output weights 𝛽S; The predicted output yTp of unlabeled data in target domain.

1. Initialize the ELM network of L hidden neurons with random input weights W and hidden bias B.

2. Calculate the output matrix HS and HT of hidden layer with source and target domains as HS =
h(W ⋅ XS + B) and HT = h(W ⋅ XT + B).
3. Compute the output weights 𝛽S using (21)(22). s 4. Calculate the predicted output yTp using (23).

5 Experiments

5.1 Datasets

We extract features from smart card transactions in five cities. Each bus trip has an

associated card id, time, expense, balance, route name, and pick-up and drop-off stop

information (names, longitudes, and latitudes). In addition, we crawl the traffic index

from nitrafficindex.com, which is open to the public. Furthermore, we crawl online

business reviews from www.dianping.com, which is a site for reviewing business

establishments in China. Each review includes the shop ID, name, address, latitude,

www.dianping.com
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longitude, consumption cost, star rating, poi category, city, environment, service,

overall ratings, and comments. Finally, we crawl the estate data from www.soufun.

com, which is the largest real-estate online system in China.

5.2 Evaluation Metrics

To verify the effectiveness of our method, we compared our method with the follow-

ing algorithms: (1) MART, (2) RankBoost, (3) TrAdaBoost [2]

Normalized Discounted Cumulative Gain. The discounted cumulative gain

(DCG@N) is given by

DCG[n] =
⎧
⎪
⎨
⎪
⎩

rel1 if n = 1

DCG[n − 1] +
reln

log2n
if n >= 2

Precision and Recall. Because we use a four-level rating system ( 3 > 2 > 1 > 0)

instead of binary rating, we treat the rating 3 as a high value and ratings less than 2 as

low values. Given a top-N block list EN sorted in descending order of the prediction

values, the precision and recall are defined as Precision@N =
EN

⋂
E
>=2

N
and Recall@N

==
EN

⋂
E
>=2

E
>=2

, where E
>=2 are blocks whose ratings are greater than or equal to 2.

5.3 Model Evaluation

We use data for a single city as the baseline for our experiments. The dataset contains

data from five cities in China. Each city’s block that has a retail store is annotated

with a score of {0, 1, 2, 3} based on the dianping.com score empirically observed by

users. Each city is considered as a domain, and each domain contains hundreds of

blocks. Each block is represented as a vector of features. We randomly select one

of the five domains as the target domain, and all the domains serve as the source

domains. Therefore, we can formulate four multi-source classification problems.

Figure 3 shows the NDCG, precision, and recall of the social view, physical view,

both views, and Domain Adaption Transfer ELM for Starbucks in Beijing. In all

cases, we observe the performance of Domain Adaption Transfer ELM outperformed

the other methods with single cites. For cites of Beijing, Shanghai and Shenzhen our

method mostly outperformed the others.

In Table 1, we present the results obtained for the NDCG@10 metric for all fea-

tures across the three chains. In all cases, we observe a significant improvement with

respect to the baseline.

www.soufun.com
www.soufun.com
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Fig. 3 NDCG, precision, and recall of @N for Starbucks in Beijing

Table 1 The best average NDCG@10 results of baseline and Domain Adaption Transfer ELM

Cities Starbucks TrueKungFu YongheKing

MART (Single City)
Beijing 0.743 0.643 0.725

Shanghai 0.712 0.689 0.712

Hangzhou 0.576 0.611 0.691

Guangzhou 0.783 0.691 0.721

Shenzhen 0.781 0.711 0.722

RankBoost (Single City)
Beijing 0.752 0.678 0.712

Shanghai 0.725 0.667 0.783

Hangzhou 0.723 0.575 0.724

Guangzhou 0.812 0.782 0.812

Shenzhen 0.724 0.784 0.712

TrAdaBoost
Beijing 0.772 0.678 0.732

Shanghai 0.755 0.667 0.753

Hangzhou 0.743 0.575 0.734

Guangzhou 0.712 0.782 0.712

Shenzhen 0.754 0.774 0.752

Domain Adaption Transfer ELM
Beijing 0.781 0.721 0.756
Shanghai 0.735 0.760 0.801
Hangzhou 0.744 0.710 0.731

Guangzhou 0.798 0.805 0.823
Shenzhen 0.781 0.784 0.722
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6 Conclusions

In this paper, from the perspective of a smart city, we analyzed retail store place-

ment using four datasets observed in cities in general. Using the proposed Domain

Adaption Transfer ELM method, we transferred knowledge from some cities to other

cities with sparse data. In addition, we tested our approach for five cities in China.

The results showed that our approach is applicable to different city environments.

In the future, we plan to apply our approach to other cities. Moreover, the sparsity

of labeled data for machine learning remains a problem. To overcome this problem,

it is necessary to use Domain Adaption Transfer ELM to train sparse labeled data

with abundant labeled data.
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1 Introduction

As large amounts of data are available in industrial processes, data-driven based
fault detection methods have gained great attentions. In the past decades, many
data-driven based methods have been proposed including principal component
analysis (PCA) and partial least squares (PLS) [1]. In order to capture nonlinear
feature existing in real industrial processes, many nonlinear extensions of the tra-
ditional PCA have been developed [2, 3].

Extreme learning machine (ELM) is a special type of single layer feedforward
neural networks (SFLNs) without an iterative calculation process. By mapping the
observation data from input space to a high-dimensional feature space via nonlinear
activation function, ELM can be seen as a nonlinear method [4]. In the nonlinear
mapping process of ELM, however, the number of the hidden layer nodes is usually
empirically chosen according to the learning tasks. In order to avoid the application
of time-consuming methods to identify the number of the hidden layer nodes,
kernel versions of the ELM have been recently proposed [5, 6], which are expected
to achieve better generalization performance than basic ELM.

To overcome the disadvantage of ELM based algorithms that cannot make use of
unlabeled data, semi-supervised ELM versions have been proposed [7–9]. In order
to explore the underlying structure of the data under the case where no labeled data
are available, Huang et al. [10] discussed unsupervised ELM (UELM) by intro-
ducing the manifold regularization framework. However, UELM only focuses on
the detailed local structure information and ignores the global structure information
in a dataset which is very important for data mining and feature extraction.

In this paper, we develop a novel nonlinear fault detection method based on local
and global unsupervised kernel extreme leaning machine and support vector data
description (LGUKELM-SVDD). The optimization objective of the LGUKELM
method is constructed to preserve both the local and global structure information of
input data simultaneously. With the application of kernel trick, the challenging
problem of selecting the number of hidden layer nodes is avoided. After the data
features are extracted from LGUKELM model, support vector data description
(SVDD) is used to build a monitoring index for. Simulation results obtained on the
continuous stirred tank reactor (CSTR) system illustrate the effectiveness of the
proposed fault detection method.

The remaining sections are organized as follows. A brief review of regularized
ELM and standard UELM is provided in Sect. 2. The proposed LGUKELM method
is detailed presented in Sect. 3. Section 4 introduces the LGUKELM-SVDD based
fault detection strategy. The simulation study using the CSTR system is discussed
in Sect. 5. Finally, we offer conclusions in Sect. 6.
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2 Regularized ELM and Unsupervised ELM

2.1 Regularized ELM

Given a training dataset with N samples, fX,Yg= fxi, yigNi=1, where xi ∈Rn×1 is a
n-dimensional data point and yi ∈Rno ×1 is a binary vector, and the number of
hidden nodes L. Standard SLFNs are modeled as

Hβ=O ð1Þ

where O= ½o1, o2, . . . , oN �T ∈RN × no is the output matrix of SLFNs and
β= ½β1, β2, . . . , βL�T ∈RL× no is the output weight matrix. H is the random feature
mapping matrix:

H=
hðx1Þ
⋮

hðxNÞ

24 35=
Gðw1 ⋅ x1 + b1Þ . . . GðwL ⋅ x1 + bLÞ

⋮ . . . ⋮
Gðw1 ⋅ xN + b1Þ . . . GðwL ⋅ xN + bLÞ

24 35
N × L

ð2Þ

Due to the fact that the smaller the norm of output weights are, the better
generalization performance the network tends to have [11], so the trained network
of regularized ELM [12] not only aims to reach the smallest training error
O−Yk k2, but also aims to reach the smallest output weights norm. Therefore, the

optimization model of regularized ELM can be formulated as

min
β∈RL× no

1
2

βk k2 + C
2
∑
N

i=1
eik k2

s.t. hðxiÞβ= yTi − eTi , i=1, 2, . . . ,N
ð3Þ

where ei ∈Rno ×1 is the error vector with respect to the ith training sample and C is a
penalty coefficient on the training errors.

2.2 Unsupervised ELM

To enforce the assumption used in unsupervised ELM (UELM): if two points xi and
xj are close to each other, then the conditional probabilities PðyjxiÞ and PðyjxjÞ
should be similar as well [10], the following cost function is minimized:

Jm =min
1
2
∑
i, j
wij PðyjxiÞ−PðyjxjÞ

�� ��2 ð4Þ

where wij is a weight parameter that represents the local information structure in the
unlabeled training data.
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After the weight matrix W = ½wij� is calculated, Eq. (4) is simplified into a matrix
form approximately.

Jm̂ =min TrðYT̂
LY ̂Þ ð5Þ

where Y ̂ is the prediction matrix with respect to X. L = D − W is the Laplacian
matrix and D is a diagonal matrix with its diagonal element Dii = ∑N

j=1 wij.
By modifying the regularized ELM objective function in Eq. (3), the opti-

mization model of UELM is formulated as

min
β∈RL× no

1
2

βk k2 + λ
2
TrðFTLFÞ

s.t. f i = hðxiÞβ, i=1, 2, . . . ,N
ð6Þ

where F is the output matrix of the network with its ith row equal to f i, and λ is the
tradeoff parameter.

3 Local and Global Unsupervised Kernel ELM

Minimizing the optimization of UELM can pledge that if xi and xj are neighboring
data points, then the corresponding outputs of the network fi and fj are also
neighboring. However, due to lack of the constraint for the faraway points, UELM
may project the distant input data points in a small region in output space. In this
section, LGUKELM is developed by integrating the global structure analysis into
the objective function of the standard UELM method. Furthermore, kernel trick is
used to overcome the tough problem of selecting the number of hidden layer nodes.

Given the scaled dataset X∈Rn×N , the global structure analysis is imposed on
UELM to find an output weight matrix β∈RL× no, so that the mean square of the
Euclidean distance between all pairs of the network output points is maximized:

JG =max
1
N

∑
N

i=1
ðf i − f Þ2 ð7Þ

where f = ð1 N̸Þ∑N
i f i, i=1, 2, . . . ,N.

We substitute f i =hðxiÞβ into the objective function (7) and rewrite it as:

JGðβÞ=max
1
N

∑
N

i=1
hðxiÞβ− 1

N
∑
N

i=1
hðxiÞβ

� �2

=max
1
N

∑
N

i=1
βT hðxiÞ− 1

N
∑
N

i=1
hðxiÞ

� �T

hðxiÞ− 1
N

∑
N

i=1
hðxiÞ

� �
β

ð8Þ
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On the assumption ∑N
i=1 hðxiÞ=0, Eq. (8) is reduced to

JGðβÞ=max
1
N
βT ∑

N

i=1
hðxiÞThðxiÞ

� �
β=max

1
N
βTHTHβ ð9Þ

The optimization of standard UELM in Eq. (6) can be reformulated as follows by
substituting the constraint into the objective function

JLðβÞ=min βk k2 + λ TrðβTHTLHβÞ=min TrðβTðIL + λHTLHÞβÞ ð10Þ

where IL ∈RL× L is an identity matrix.
The optimization objective JLGðβÞ of the LGUKELM is to minimize the JLðβÞ

and to maximize the JGðβÞ simultaneously.

JLGðβÞ= minJLðβÞ
maxJGðβÞ =

min TrðβTðIL + λHTLHÞβÞ
max 1

N β
THTHβ

=min
βTðIL + λHTLHÞβ

1
N β

THTHβ
ð11Þ

When N < L, we restrict β to be a linear combination of the rows of H [12]:

β=HTA ð12Þ

where A∈RN × no is defined as the loading matrix in this paper.
Substituting Eq. (12) into Eq. (11), we can obtain

JLGðαÞ=min
ATHðIL + λHTLHÞHTA

1
N A

THHTHHTA
=min

ATðHHT + λHHTLHHTÞA
AT 1

NHHTHHTA
ð13Þ

The minimization problem in Eq. (13) can be converted to the following gen-
eralized eigenvalue problem.

ðHHT + λHHTLHHTÞαj = γj
1
N
HHTHHTαj ð14Þ

where αj, j=1, 2, . . . , no is the jth eigenvector corresponding to the jth eigenvalue γj.
Multiplying both side of Eq. (14) by ðHHTÞ− 1, we get

ðIN + λLHHTÞαj = γj
1
N
HHTαj ð15Þ

where IN ∈RN ×N is an identity matrix.
With the introduction of the kernel function kðxi, xjÞ= ⟨hðxiÞ,hðxjÞ⟩, kernel

matrix of LGUKELM is defined as K =HHT , where Ki, j = kðxi, xjÞ,
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i, j =1, 2, . . . ,N. The kernel function is selected as Gaussian kernel:

kðxi, xjÞ= expð− xi − xj
�� ��2 σ̸Þ.

Then Eq. (15) can be expressed as

ðIN + λLKÞαj = γj
1
N
Kαj ð16Þ

After resolving the generalized eigenvalue problem in Eq. (16), the final solution
to the output weights β is given by

β* =HTA=HT ½α ̃2,α ̃3, . . . ,α ̃no +1� ð17Þ

where α ̃i =αi ̸ Kαik k, i=2, 3, . . . , no +1 and A= ½α2̃,α ̃3, . . . ,α ̃no +1�.
The lower-dimensional representation of the input dataset X is calculated as

T =Hβ* =HHTA=KA. ð18Þ

For a test data point xt, its corresponding projection vector tt is calculated as

tt = hðxtÞβ* = hðxtÞHTA= ktA ð19Þ

where kt ∈R1×N is kernel vector and kt, i = kðxt, xiÞ, i=1, 2, . . . ,N.
In order to ensure ∑N

i=1 hðxiÞ=0, kernel matrix K should be mean centered
using Eq. (20) before solving Eqs. (16) and (18) and test kernel vector kt should
also be mean centered using Eq. (21) before calculating tt.

eK =K − IKK −KIK + IKKIK ð20Þ

ekt = kt − ItK − ktIK + ItKIK ð21Þ

where IK is the N × N matrix whose elements are all equal to 1/N, and
It =1 N̸½1, . . . , 1�∈R1×N .

4 The LGUKELM-SVDD Based Fault Detection

4.1 Support Vector Data Description

In this paper, support vector data description (SVDD) [13, 14] is employed to
monitor the output data of the LGUKELM for fault detection. For the output dataset
T = ½t1, t2, . . . , tN � of the LGUKELM model. The dual form of the SVDD opti-
mization problem can be obtained as
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max ∑
N

i=1
βikðti, tiÞ− ∑

N

i=1
∑
N

j=1
βiβjkðti, tjÞ

s.t. 0≤ βi ≤Cs, ∑
N

i=1
βi =1

ð22Þ

where βi is the Lagrange multiplier, Cs gives the trade-off between the volume of
the hypersphere and the number of errors, kðti, tjÞ= ⟨Φðti),Φðtj)⟩ is used as
Gaussian kernel function. Solving the above optimization problem, we can get the
centre of the hypersphere b.

To judge whether a test point xt is a fault sample, the distance D from tt to the
centre of the hypersphere is calculated as a monitoring index:

D= ΦðttÞ− bk k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðtt, ttÞ− 2 ∑

N

i=1
βikðtt, tiÞ+ ∑

N

i=1
∑
N

j=1
βiβjkðti, tjÞ

s
ð23Þ

The confidence limit Dlimit of the monitoring index D is determined as the
distance from the centre of the hypersphere b to any support vector on the
boundary.

4.2 Fault Detection Strategy Based on LGUKELM-SVDD

The detailed fault detection procedure of LGUKELM-SVDD based method can be
summarized as follows.

• The off-line modelling stage

1. Construct the weight matrix W using scaled normal operating dataset X, and
then calculate the diagonal matrix D and the Laplacian matrix L.

2. After computing the kernel matrix K, carry out mean centering operation in
Eq. (20) to get centered kernel matrix eK.

3. Solve the generalized eigenvalue problem by replacing K with eK in Eq. (16)
to obtain the loading matrix A.

4. Calculate the output matrix Taccording to Eq. (18) by replacing K with K ̃
and compute the confidence limit Dlimit using SVDD.

• The on-line detection stag

1. After obtaining the scaled new observed data xt, compute the test kernel
vector kt and mean center it according to Eq. (21).
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2. Calculate the projection vector tt based on Eq. (19) by replacing kt with ekt
and obtain the monitoring index D according to Eq. (23).

3. Compare the monitoring index D of xt with its confidence limit Dlimit to
detect fault.

5 Simulation Study

We apply the LGUKELM-SVDD, KPCA and standard UELM based method to
detect faults in CSTR system [15]. SVDD is also applied to construct monitoring
index after obtaining the output data of the standard UELM, and the fault detection
method is referred to as UELM-SVDD. 900 observations are produced in normal
operation condition to build statistical models. The simulated seven kinds of fault
pattern are shown in Table 1. For each kind of fault pattern, fault dataset with 900
samples are simulated and the fault is introduced at the 201th sample.

For the KPCA, the number of principal components that describes at least 90 %
of the variance in dataset is selected and kernel function is chosen as Gaussian
kernel. For the UELM-SVDD, the number of hidden layer nodes L is chosen as
1000 and Sigmoid function is selected as activation function. For a fair comparison,
the same kernel functiona used in KPCA and the same dimension of output space
(no = 10) used in UELM-SVDD are chosen in the LGUKELM-SVDD. A fault is
considered to be detected if 5 continuous samples exceed confidence limit.

The fault detection results for fault F6 are plotted in Figs. 1, 2 and 3. As is shown
in Fig. 1, the T2 statistic off KPCA detects the fault at the 381th sample and its SPE
statistic detects the faut at the 266th sample. The fault detection rate of T2 and SPE
statistic are 83.89 and 87.91 % respectively. In the monitoring chart of the
UELM-SVDD, the fault is detected at the 218th sample with the fault detection rate
of 94.09 %. However, the D statistic of UELM-SVDD brings some fales alarming
samples under normal operation condition, which deteriorates the fault detection
performance. With the application of the LGUKELM-SVDD based method, the
D statistic exceeds its threshold from the 204th sample and the fault detection rate is
97.55 %. From the detection results under fault F6, we can see that the proposed

Table 1 Fault pattern for
CSTR sustem

Fault Description

F1 The activation energy ramps up
F2 The heat transfer coefficient ramps down
F3 The reactor temperature measurement has a bias
F4 Step change in feed flow rate
F5 The feed concentration ramps up
F6 The feed temperature ramps up
F7 The coolant feed temperature ramps up
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Fig. 1 KPCA monitoring charts for fault F6
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Fig. 3 LGUKELM-SVDD
monitoring chart for fault F6
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LGUKELM-SVDD based monitoring method can detect fault F6 faster and more
effective than KPCA based and UELM-SVDD based monitoring methods.

The fault detection performance of the three methods for all seven kinds of fault
pattern is compared in Table 2. For the step-change faults F3 and F4, all the three
methods are seen to achieve 100 % fault detection rates. However, for the chal-
lenging ramp fault (F1, F2 and F5 to F8) detection problem, our proposed
LGUKELM-SVDD method achieves much higher fault detection rates than both
KPCA and UELM-SVDD, which confirms the superior monitoring performance of
LGUKELM-SVDD.

6 Conclusions

In this paper, we present a novel nonlinear process monitoring method based on
LGUKELM-SVDD. LGUKELM model is developed by integrating the global
structure analysis into the local optimization of the standard UELM menthod and
utilizing the kernel trick to avert the tough problem of determining the number of
hadden layer nodes. After the local and global structure feature information is
extracted, SVDD is applied to derive monitoring index. The simulation results
obtained on CSTR demonstrate that the proposed LGUKELM-SVDD method
outperforms both KPCA method and UELM-SVDD method significantly in terms
of fault detection performance.
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Parallel Multi-graph Classification Using
Extreme Learning Machine and MapReduce

Jun Pang, Yu Gu, Jia Xu, Xiaowang Kong and Ge Yu

Abstract A multi-graph is represented by a bag of graphs and modelled as a gen-

eralization of a multi-instance. Multi-graph classification is a supervised learning

problem for multi-graph, which has a wide range of applications, such as scientific

publication categorization, bio-pharmaceu-tical activity tests and online product rec-

ommendation. However, existing algorithms are limited to process small datasets due

to high computation complexity of multi-graph classification. Specially, the preci-

sion is not high enough for a large dataset. In this paper, we propose a scalable and

high-precision parallel algorithm to handle the multi-graph classification problem on

massive datasets using MapReduce and extreme learning machine. Extensive exper-

iments on real-world and synthetic graph datasets show that the proposed algorithm

is effective and efficient.
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1 Introduction

Multi-graph learning is a generalization of multi-instance learning in which instances

are organized as graphs instead of feature vectors. Multi-graph representation main-

tains rich structure information which makes it outperforms other multi-instance

representation. Nowadays, multi-graph learning has many successful application

scenarios. We give two typical examples as follows. (1) Scientific publication cate-

gorization [1]: a paper is represented as a multi-graph, i.e., the abstract of the paper is

modelled as a graph and the abstract of every reference is also modelled as a graph. If

the paper or one of its references is related with the topic, this paper is positive. Oth-

erwise, it is negative. Given training papers with classification labels, we can predict

the unseen papers’ labels. (2) Bio-pharmaceutical activity tests [2]: a molecule has

a lot of forms. If one of its forms resists the disease, the molecule be used to man-

ufacture drugs. Otherwise, it cannot be applied. A specific form of a molecule can

be described as a graph and a multi-graph demotes different forms of the molecule.

Multi-graph learning can predict the molecules’ activities.

Although multi-graph learning has important practical applications, existing

multi-instance learning algorithms can not be directly used to solve this problem.

Because these multi-instance learning algorithms are designed to process tabular

instances which are represented in a common vectorial feature space. To the best

of our knowledge, few work focuses on exploring it. Wu et al. propose the gMGFL
approach, which mines informative feature subgraphs and has higher accuracy than

the extended multi-instance learning algorithms. Nowadays, the quantity of informa-

tion is very large and fast growing. And more and more multi-graphs are modelled

from these increasing information. It is a non-trivial task to mine valued knowl-

edge from so large scale multi-graphs. Specifically, the following challenges need

to be tackled. (1) gMGFL is not suited to deal with large-scale datasets because

gMGFL adopts in-memory frequent subgraph mining and classification algorithms.

(2) To support high-quality exploratory analysis and decision making, the precision

and recall are desired to be improved. Our experimental results show the traditional

parallel Bayes algorithm does not obtain high precisions and recalls on large-scale

multi-graph datasets.

For the first challenge, we adopt popular MapReduce framework to execute large-

scale multi-graph binary classification. MapReduce is a popular parallel program-

ming framework to handle big data owning to its good properties of fault tolerance,

high scalability and low deployment cost [3]. We propose a parallel approach based

on MapReduce, named ME-MGC, to solve multi-graph binary classification problem

on massive multi-graph dataset. For the second challenge, we adapt a parallel ELM

approach to improve the classification performance. Experimental results display

that our approaches obtain higher precisions and recalls on both real and synthetic

datasets than extended approaches adopting NBayes or SVM.

Specifically, the major contributions we have made in this paper are summarized

as follows. (1) We propose a parallel approach based on MapReduce to solve the

massive multi-graph binary classification problem. (2) We adapt extreme learning
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machine (ELM) to process multi-graph classification for improving the performance

of classification. Moreover, we study the variation of the precision with a differ-

ent number of hidden nodes for ELM algorithm. (3) We have conducted extensive

experiments on both real and simulated data sets and the results demonstrate that our

approaches are effective and efficient.

The remainder of this paper is organized as follows. Related works are introduced

in Sect. 2. Problem definition and backgrounds are discussed in Sect. 3. Our approach

is provided in Sect. 4. Experimental results and discussions are presented in Sect. 5.

We conclude the paper in Sect. 6.

2 Related Works

Related works with our study include multi-graph classification, extreme learning

machine based on MapReduce and frequent subgraph mining based on MapReduce.

2.1 Multi-graph Learning

Although multi-graph learning is very valuable in real applications, the researches on

it are still quite limited. Wu et al. [1] propose gMGFL approach to solve multi-graph

classification problem. Inspired by multi-instance learning, gMGFL mines feature

subgraph from overall graph dataset and converts multi-graphs into feature-value

vectors which fit conventional classification models, such as naive Bayes, kNN clas-

sifier, decision tree and support vector machine. Feature subgraphs are top-k frequent

subgraphs with a score function score(g). gMGFL is not suitable to process large-

scale datasets because it is an in-memory algorithm.

2.2 Extreme Learning Machine Based on MapReduce

Extreme learning machine(ELM) is a type of artificial neural network [4, 5]. Parallel

ELM based on MapReduce has attracted attention of many researchers. He et al. [6]

propose a MapReduce version of ELM, named PELM, to implement regression for

large-scale datasets. PELM consists of two MapReduce jobs. Xin et al. [7] design

and implement ELM∗
which combines the previous two MapReduce jobs into one

MapReduce job. Xin et al. [8] propose an incremental algorithm E2LM to process

large-scale updating training datasets. Bi et al. [9] propose a distributed extreme

learning machine with kernels based on MapReduce. Wang et al. [10] design a par-

allel online sequential extreme learning machine based on MapReduce. To the best

of our knowledge, ELM∗
is the-state-of-the-art parallel ELM algorithm processing

large static training datasets. In this paper, we adapt ELM∗
into the scenario of mas-

sive multi-graph classification.
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2.3 Frequent Subgraphs Mining Based on MapReduce

A typical problem of large-scale frequent subgraphs mining can use two settings: (1)

one single big graph: its target is to mine subgraphs from one single big graph such

that supports of these subgraphs are not smaller than a given support threshold [11,

12]; (2) a large collection of graphs: its target is to mine frequent subgraphs from

a large collection of graphs [13, 14]. In this paper, we consider the second setting.

Hill et al. [13] propose iterative MapReduce-FSG algorithm which is an incremental

approach to mine frequent subgraphs from a large collection of graphs. Lin et al.

[14] design and implement MRFSM approach which contains only three MapReduce

jobs. To the best of our knowledge, MRFSM is the state-of-the-art frequent subgraphs

mining approach for a large collection of graphs. In this paper, MRFSM is leveraged

during the process of frequent subgraphs generation.

3 Preliminaries

In this section, we firstly define related basic concepts. Then, we give a simple

overview of the extreme learning machine.

3.1 Problem Definition

Definition 1 (Labeled multi-graph) A multi-graph is a bag of graphs. A labeled

multi-graph mg is a multi-graph with binary class label l(mg) ∈ {positive, negative}.

If the class label for one graph of multi-graph is positive, the multi-graph has a pos-

itive class label l(mg) = positive. Otherwise, the multi-graph has a negative class

label.

Definition 2 (Feature subgraph representation of multi-graph) Given a multi-graph

set MG = {mg1,mg2,… ,mgn} and k feature subgraphs F = {f1,… , fk}, mgi ∈ MG
is represented as a feature vector v(mgi) of k dimensions. The weight wi of the ith
dimension is 1 if the ith feature subgraph fi ∈ F is a subgraph of one graph for mgi.

Otherwise, wi is set to 0.

Definition 3 (Score function of the frequent subgraphs) The score function of the

frequent subgraphs is used to mine feature subgraphs [1]. The score function, named

score(g), is as follow.

score(g) = 1∕2(s(A)∕A − s(B)∕B + s(C)∕C − s(D)∕D)

Definition 4 (Multi-graph classification) Given a labeled multi-graph dataset, we

aim to construct prediction model from labeled multi-graphs to predict unseen multi-

graphs with maximum precision.
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Definition 5 (Massive multi-graph classification) Massive multi-graph classifica-

tion is a special multi-graph classification with large-scale training dataset and large-

scale test dataset.

Based on gMGFL, we propose a parallel algorithm ME-MGC to solve massive multi-

graph classification problem. Next, we simply introduce ELM.

3.2 Extreme Learning Machine

Huang proposes ELM for single hidden-layer feedforward neural networks (SLFNs)

and then extends it to the “generalized” SLFNs [4, 5, 15–22]. Compared to tra-

ditional feedforward neural networks, ELM has better generalization performance,

faster learning speed and less training error. The training process of ELM approach

is described in Algorithm 1. ELM approach has a wide range of applications, such

as protein secondary structure prediction [23], XML document classification [24],

classification in P2P networks [25] and graph classification [26].

Algorithm 1: training process of ELM
Input : a training set V=(xi, ti)|xi ∈ Rn

, ti ∈ Rm
, i = 1,… ,N, the number of hidden node L

and activation function g(v)

Output: an ELM instance

1 1)randomly generate every input weight wi and bias bi, i = 1,. . . ,L;

2 2)calculate hidden node output matrix H;

3 3)calculate output weight 𝛽 = H†
T, where H†

is the Moore-Penrose generalized inverse of

matrix H, T = [t1,… , tN ]T .

4 ME-MGC Algorithm

In this section, we propose a ME-MGC approach.

4.1 Overview of ME-MGC

In this section, an overview of ME-MGC algorithm based on MapReduce is pro-

vided. Given a multi-graph set MG = {mg1,mg2,… ,mgn} and the graph set G =
{g|g ∈ mgi,mgi ∈ MG} consisting of overall graphs of MG. ME-MGC contains

three steps: (1) mining frequent subgraphs FG of G, (2) mining feature subgraphs

F and (3) constructing the predict model. The first step is implemented based on

MRFSM [14] which has three-round MapReduce jobs: getCFS (i.e. getting candidate
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Fig. 1 An overview of ME-MGC

frequent subgraphs); sortCFS (i.e. sorting candidate frequent subgraphs); refineFS
(i.e. refining and obtaining frequent subgraphs). Also, the second step needs three-

round MapReduce jobs: calScore1 (i.e. calculating partial scores ps of frequent sub-

graphs produced in the first step); calScore2 (i.e. aggregating partial results output

by calScore1 to get final scores); impTopK (i.e. obtaining top-k subgraphs, namely

feature subgraphs). The last step is completed based on ELM∗
. Figure 1 shows the

overview processing framework of ME-MGC. Next, the aforementioned three steps

of ME-MGC are represented in detail.

4.2 Mining Frequent Subgraphs

In order to mine frequent subgraphs of a large graph dataset, a MapReduce job chain

is implemented consisting of getCFS, sortCFS and refineFS.

4.2.1 Getting Candidate Frequent Subgraphs

GetCFS retrievals candidate frequent subgraphs described as Algorithm 2. In the

map phase, each map task outputs the local frequent subgraphs which are candi-

date subgraphs. In the reduce phase, the upper bounds of frequency of candidate

subgraphs are estimated. A candidate frequent subgraph is eliminated whose upper

bound is less than minimum frequency threshold.

4.2.2 Sorting Candidate Frequent Subgraphs

SortCFS sorts the candidate subgraphs produced by getCFS according to edge size

shown as Algorithm 3. We utilize the sort function of MapReduce to improve the

performance. The size of every candidate subgraph is used as the key for a map

task. Meanwhile, only one reduce task is adopted. The records received by the same

reduce task are then sorted by the sort function of MapReduce. In addition, inclusion

relations of candidate frequent subgraphs are calculated and output by this reduce

task.
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Algorithm 2: getCFS
1 //map task

2 List graphPartition;// store a subset of graphs set

3 estimate f ; //local frequent threshold

4 Map (< Offset, a multi − graph >)
5 add into graphPartition all graphs of this multi-graph;

6 Cleanup ()
7 calculate local frequent subgraphs LFS = {lfs1, lfs2,… , lfsi} for graphPartition with

frequency fre ≥ f ;

8 encode frequent subgraphs EFS = {v(lfs1), v(lfs2),… , v(lfsi)};

9 //v(lfsi) is the code of lfsi
10 emit(< v(lfs), (partitionId, fre) >);

11 //v(lfs) ∈ EFS, partitionId is id of graphPartition, fre is local frequency of v
12 //reduce task

13 Reduce (v, list < partitionId, fre >)
14 calculate the frequency upper bound fub(v) of v;

15 if fub(v) ≥ f then
16 emit(< v, efs >);

17 //efs means the sum of exact frequent for v

4.2.3 Refining and Obtaining Frequent Subgraphs

RefineFS refines the candidate subgraphs and gets the final results. A map task reads

a subset Si of graph data set and sorted candidate subgraphs(SCS). After that, we

calculate the local frequency fi(cg) of candidate subgraph cg ∈ SCS for the subset Si
in the map phase which outputs key-value pair < cg, fi(cg) >. If the local frequencies

of candidate subgraphs have been calculated in the getCFS, they do not need to be

recalculated. After that, exact global frequency of every candidate subgraph is cal-

culated in the reduce tasks. If the global frequency of a subgraph is no less than the

minimum frequency threshold, this subgraph is a desirable frequent subgraph and is

output.

After mining frequent subgraphs of G, we mine feature subgraphs from the

derived frequent subgraphs.

4.3 Mining Feature Subgraphs

Feature subgraphs F = {f1, f2,… , fk} are top-k frequent subgraphs with score func-

tion score(fg), fg ∈ FG. Different from the traditional top-k query problem, the score

calculation does not depend on one record but the overall dataset. So, we mine feature

subgraphs using the following two steps instead of adopting traditional top-k query

techniques. At first, we calculate scores of frequent subgraphs. Then, we answer top-

k query. A MapReduce job chain is designed to complete this. calScore1 gets partial
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scores, which are aggregated by calScore2 to get scores {score(fg)|fg ∈ FG}. After

that, impTopK answers top-k query to get F. In the following, we discuss the details

of these MapReduce jobs.

Algorithm 3: sortCFS
1 //map task

2 Map (v, efs)
3 emit(< s, (v, efs) >);// s is the edge size of v
4 //reduce task

5 List canSubGraph=empty; //candidate subgraphs in current layer.

6 List Id=empty;//ids of candidate subgraphs in canSubGraph

7 layer=0;

8 currentId=0;

9 Reduce (< s, list(v, efs) >)
10 if layer==0 then
11 layer++;

12 for each element (v, efs) ∈ list(v, efs) do
13 add v into canSubGraph;

14 add currentId into Id;

15 currentId++;

16 emit(< (v, efs),NULL >)//NULL means having no subgraphs;

17 else
18 List subGraph=empty;

19 for each element (v, efs) ∈ list(v, efs) do
20 for each element v′ ∈ canSubGraph do
21 if subgraphIsomorphismTest(v’,v) then
22 add id(v′) into subGraph;

23 emit(< (v, efs), subGraph >);

24 update canSubGraph and Id;

4.3.1 Calculating Partial Scores of Frequent Subgraphs

We define some concepts before we introduce CalScore1.

Definition 6 (Partition) Given a dataset D, a partition pi is a subset of D which

meets the following two conditions: (1) ∪pi = D, where i ≥ 0 and i ≤ m − 1; (2)

pi ∩ pj = ∅, where i∕j ≥ 0, i∕j ≤ m − 1 and i ≠ j.

Definition 7 (Fragment) Given a dataset D and its partition set P = {p0, p1,… ,

pm−1}, a fragment is a partition pair < pi, pj >, pi, pj ∈ P. In total, there are m ∗
(m + 1)∕2 fragments for D and P.
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Fig. 2 overview of calScore1

calScore1 gets the partial results. In map phase, with hash and copy techniques,

the multi-graph dataset MG is divided into a partition set P = {p0, p1,… , pm−1}. If

hash(mgj) = i, mgj ∈ pi(i ≥ 0 and i ≤ m − 1). In reduce phase, overall fragments for

MG and P are produced to calculate the partial scores of subgraphs showed in Fig. 2.

4.3.2 Getting Final Scores

CalScore2 aggregates the results of calScore1 to get the final scores of frequent sub-

graphs. After reading outputs of canScore1, map tasks output< v(fg), partial result >
pairs. Overall partial results of a frequent subgraph are shuffled to the same reduce

task and are aggregated to the final score.

4.3.3 Obtaining Feature Subgraphs

ImpTopK selects as feature subgraphs k frequent subgraphs from FG whose scores

are larger than others. Every map task computes the local top-k frequent subgraphs

in the corresponding input split. A reduce task is launched to aggregate overall local

top-k frequent subgraphs and to calculate the global top-k frequent subgraphs.

4.3.4 Building Prediction Model

After getting feature subgraphs, multi-graphs are preprocessed to vectors accord-

ing to feature subgraph representation of multi − graph. Then, we build prediction

model based on ELM∗
.
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5 Performance Evaluation

In this section, we compare the precision and recall for ELM and other classification

models, and compare the training time, speedup and scalability for gMGFL and ME-

MGC over both real and synthetic datasets.

DBLP dataset. Every paper pi is regarded as a multi-graph mgi. The abstract of pi
is a graph g ∈ mgi, which is obtained using E-FCM [27]. In addition, each reference

is modelled as a graph. For example, pi has m references. So pi can be represented as

a multi-graph including m + 1 graphs. Domain field of a paper is treated as its class

label. Two domain fields are selected in this paper namely artificial intelligence AI

and computer vision CV. After preprocessing, there are 7661 AI multi-graphs and

1817 CV multi-graphs. We randomly select 1817 AI multi-graphs and using all 1817

CV multi-graphs to test.
1

Synthetic dataset (SYN). Each National Cancer Institute (NCI) data set belongs

to a bio-assay task for anti-cancer activity prediction [28]. If a chemical compound

is active against the corresponding cancer, it is positive. Otherwise, it is negative.

We generate a synthetic multi-graph dataset with a graph data set(with ID 1) [1]. We

randomly select one to four positive graphs and several negative graphs to build a

positive multi-graph. A negative multi-graph is build by randomly selecting a num-

ber of negative graphs. The number of graphs in each multi-graph varies from 1 to

10. In total, we built 500,000 positive and 500,000 negative multi-graphs. The total

number of graphs is 4,997,537.

A 31-node (1 master and 30 slaves) cluster is used to test. Every machine is col-

located with two 3.1 HZ CPUs, 8 GB Memory, 500 GB hard disk, Redhat 4.4.4-13

operation system and Hadoop-1.2.1. 10-fold cross-validation is adopted. Mean pre-

cision and recall are reported in this paper.

5.1 Precision and Recall

In this section, we compare precision and recall over variable real and synthetic

datasets.
2

Figure 3 shows the precision on variable DBLP datasets. Figure 3 displays preci-

sions of gMGFL + ELM is highest among all algorithms. Because the precision of

ELM is higher than NBayes and SVM on the same DBLP dataset.

1
DBLP dataset can be downloaded from http://arnetminer.org/citation.

2gMGFL + NBayes(orSVM, orELM) denotes gMGFL using NBayes, SVM and ELM classification

model, respectively. ME-MGC + PNBayes(ELM) represents ME-MGC using parallel NBayes and

parallel ELM prediction model, respectively. In the case of without causing ambiguity, ME-MGC
represents ME-MGC + ELM.

http://arnetminer.org/citation
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Fig. 3 Precision on variable
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Fig. 4 Recall on variable

DBLP datasets (s = 0.04, k =
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Figure 4 shows the recalls on variable DBLP datasets. The recalls of gMGFL +
ELM are highest among all algorithms because gMGFL + ELM adopt ELM whose

recall is higher than those algorithms embedded with NBayes and SVM on the same

DBLP dataset.

Figure 5 shows the precisions of different methods on variable SYN datasets.

Figure 6 shows the recalls of different methods on variable SYN datasets. The experi-

mental results on variable synthetic datasets are similar with variable DBLP datasets.

The reasons can also be referred to DBLP datasets.

Fig. 5 Precision on variable

SYN datasets (s = 0.12, k =

15)
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Fig. 6 Recall on variable

SYN datasets (s = 0.12, k =

15)
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5.2 Training Time

In this section, we compare the classification model constructing time(training time)

of gMGFL and ME-MGC on variable DBLP and synthetic datasets. gMGFL runs in

stand-alone. ME-MGC runs in 31-node cluster.

Figure 7 exhibits the training time on variable DBLP datasets. gMGFL is faster

than ME-MGC. Because ME-MGC consists of several MapReduce jobs. The launch

of these jobs costs much time. In addition, gMGFL is in-memory algorithm suitable

for small datasets.

Figure 8 exhibits the training time on variable synthetic datasets. gMGFL can not

run on these synthetic datasets successfully.

5.3 Speedup and Scaleup

We evaluate the speedup and scaleup of ME-MGC + PNBayes and ME-MGC +
ELM on synthetic dataset.

Fig. 7 Training time on

variable DBLP datasets (s =

0.04, k = 20)
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Fig. 8 Training time on

variable SYN datasets (s =

0.12, k = 15)
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Fig. 9 Training time for

processing SYN dataset on

m-node cluster (where m =

12, 18, 24 and 30)
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Fig. 10 Training time for

processing SYN*n datasets

(where n = 0.4, 0.6, 0.8 and

1.0) on a 31-node cluster
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Figure 9 exhibits that both ME-MGC + PNBayes and ME-MGC + ELM have a

good speedup on synthetic dataset. Figure 10 exhibits that both ME-MGC +
PNBayes and ME-MGC + ELM have a good scalability on synthetic dataset.



90 J. Pang et al.

5.4 Performance with Different Hidden Node Number

In this section, we evaluate the precisions and recalls of gMGFL and ME-MGC for

different hidden node number on DBLP and SYN dataset.

Figure 11 shows comparisons of precision and recall for gMGFL with variable

hidden node number on DBLP dataset. Figure 12 shows comparisons of precision

and recall for ME-MGC with a variable number of hidden nodes on SYN dataset.

With the increment of the hidden node number, precision and recall for gMGFL and

ME-MGC are stable.

Fig. 11 Precision and recall

with variable number of

hidden nodes on DBLP

dataset (s = 0.04, k = 20)
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Fig. 12 Precision and recall

with variable number of

hidden nodes on SYN

dataset (s = 0.12, k = 15)
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6 Conclusions

In this paper, we propose a parallel approach ME-MGC based on MapReduce to

resolve massive multi-graph classification problem. Meanwhile, ELM prediction

model is applied to predict multi-graph data type for improving the algorithm per-

formance. Extensive experimental results on both real and synthetic datasets display

that our algorithm apparently outperforms gMGFL and the extended algorithm with

parallel Bayes because of its high precision and good scalability.
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Extreme Learning Machine for Large-Scale
Graph Classification Based on MapReduce

Zhanghui Wang, Yuhai Zhao and Guoren Wang

Abstract Discriminative subgraph mining from a large collection of graph objects

is a crucial problem for graph classification. Extreme Learning Machine (ELM) is

a simple and efficient Single-hidden Layer Feedforward neural Networks (SLFNs)

algorithm with extremely fast learning capacity. In this paper, we propose a discrim-

inative subgraph mining approach based on ELM-Filter strategy within the scal-

able MapReduce computing model. We randomly partition the collection of graphs

among worker nodes, and each worker applies a fast pattern evolutionary method to

mine a set of discriminative subgraphs with the help of ELM-Filter strategy in its

partition. And, the set of discriminative subgraphs must produce higher ELM train-

ing accuracy. The union of all such discriminative subgraphs is the mining result for

the input large-scale graphs. Extensive experimental results on both real and syn-

thetic datasets show that our method obviously outperforms the other approaches in

terms of both classification accuracy and runtime efficiency.

Keywords Discriminative subgraph pattern ⋅ MapReduce ⋅ Extreme Learning

Machine ⋅ Graph classification

1 Introduction

The graph classification framework being widely used is first to select a set of sub-

graph features from graph databases, and then to build a generic classification model

using the set of subgraph features selected. Discriminative subgraphs that are fre-

quent in one class labeled graph set but infrequent in the other class labeled graph

sets are more suitable for classification requirement.
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Several main memory-based approaches [1, 2] have been proposed to mine dis-

criminative subgraphs in small-scale graph databases, but they are both time and

memory costly when applied to process large-scale graph databases. Cloud comput-

ing and the widespread MapReduce framework can be used to solve the scalability

and computationally-intensive problems.

With a large amount of mined discriminative graph patterns, how to effectively

build a graph classification model with these graph pattern features becomes the key

problem. Previous work [1, 2] generally adopt Library Support Vector Machines

(LIBSVM) [3] as the classification model. Although LIBSVM can get good classifi-

cation accuracy, it faces the problems of slow learning speed and trivial human inter-

vene in general. Extreme Learning Machine (ELM) is a simple and efficient Single-

hidden Layer Feedforward neural Networks (SLFNs) algorithm with extremely fast

learning capacity [4–9]. Furthermore, ELM for classification is less sensitive to user

specified parameters and can be implemented easily [10].

In this paper, we employ the HaLoop MapReduce framework and evolutionary

computation techniques based on ELM-Filter to find discriminative subgraphs effi-

ciently and propose a large-scale discriminative subgraph mining algorithm with

MapReduce, named MRGC.
1

The rest of the paper is organized as follows. We briefly review the related work in

Sect. 2. Section 3 describes the discriminative subgraph mining problem and intro-

duces the MapReduce framework and ELM algorithm. In Sect. 4, we describe the

discriminative subgraph mining approach based on evolutionary computation and

ELM-Filter strategy. In Sect. 5, we evaluate our experiment results. Finally, we make

a conclusion in Sect. 6.

2 Related Work

Discriminative graph pattern mining aims to mine the patterns that occur with dis-

proportionate frequency in some classes versus others. Various efficient algorithms

have been developed, such as LEAP [1], LTS [2].

Due to the computation and I/O intensive characteristic of graph pattern ming in

large-sale graph database, more and more efforts are geared towards solving it with

parallel techniques. MapReduce [11, 12] has emerged as a popular alternative for

large-scale parallel data analysis and Hadoop is an open-source implementation of

MapReduce. Evolutionary computation [13, 14] are usually used to obtain global

solutions that can be used for discriminative subgraph pattern mining.

Extreme learning machine (ELM) has been originally developed based on single-

hidden layer feed-forward neural networks(SLFNs) with the weights in hidden nodes

randomly assigned and the output weights decided by the MoorePenorose pseudoin-

verse. It has been shown that ELM has an extremely high learning speed and a good

1MapReduce Graph Classifcation.
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generalization performance [4–9]. In this paper, we integrate MapReduce with evo-

lutionary computation based on ELM-Filter to mine discriminative subgraph pat-

terns efficiently.

3 Preliminaries and Problem Definition

In this section, we first provides a brief MapReduce and ElM primer, and then

Sect. 3.3 describe the concept of discriminative subgraph and formalizes the problem

statement.

3.1 MapReduce

MapReduce which is a distributed framework for processing large-scale data con-

tains three phases: map, shuffle, and reduce. With the MapReduce framework, users

can implement a map function and a reduce function to process their applications.

We only focus on the design of the map and reduce functions, as the shuffle phase is

automatically handled by the MapReduce infrastructure. Figure 1 shows our MapRe-

duce framework for discriminative subgraph mining based on ELM-Filter. First, the

master node assign the map and the reduce tasks to each worker. Then, discrimi-

native subgraphs was searched based on evolutionary computation and ELM-Filter

strategy. At last, the discriminative subgraph results was aggregated in each worker.
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Fig. 1 The framework of MapReduce for discriminative subgraph mining based on ELM-Filter
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3.2 Extreme Learning Machine

In this section, we present a brief overview of Extreme Learning Machine (ELM).

ELM is a generalized Single Hidden-layer Feedforward Network. In ELM, the

hidden-layer node parameters is mathematically calculated instead of being itera-

tively tuned, providing good generalization performance at thousands of times faster

speed than traditional popular learning algorithms for feedforward neural networks.

Given N arbitrary samples (𝐱i, 𝐭i) ∈ 𝐑n×m
and activation function g(x), standard

SLFNs are modeled mathematically as

L∑

i=1
𝛽igi(𝐱j) =

L∑

i=1
𝛽i g(𝐰i ⋅ 𝐱j + bi) = 𝐨j, j = 1,… ,N (1)

where L is the number of hidden layer nodes, 𝐰i = [wi1,wi2,… ,win]T is the input

weight vector, 𝛽i = [𝛽i1, 𝛽i2,… , 𝛽im]T is the output weight vector, bi is the bias of ith
hidden node, and 𝐨j is the output of the jth node.

To approximate these samples with zero errors means that
∑L

j=1 ||𝐨j − 𝐭j|| = 0 [5],

where exist 𝛽i, 𝐰i and bi satisfying that

L∑

i=1
𝛽i g(𝐰i𝐱j + bi) = 𝐭j, j = 1,… , n (2)

which can be rewritten in terms as

𝐇𝛽 = 𝐓 (3)

where 𝐓 =
[
𝐭T1 ,… , 𝐭TL

]T
m×L, 𝛽 = [𝛽T1 ,… , 𝛽

T
L ]

T
m×L and

𝐇 =
⎡
⎢
⎢
⎣

h(𝐱1)
⋮

h(𝐱N)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

g(𝐰1 ⋅ 𝐱1 + b1) ⋯ g(𝐰L ⋅ 𝐱1 + bL)
⋮ ⋯ ⋮

g(𝐰1 ⋅ 𝐱N + b1) ⋯ g(𝐰L ⋅ 𝐱N + bL)

⎤
⎥
⎥
⎦n×L

(4)

𝐇 is the ELM feature space to map the n-dimensional input data space into l-
dimensional hidden nodes space. The ELM Algorithm [5] is described as

Algorithm 1.

In ELM, the parameters of hidden layer nodes, namely 𝐰i and bi, is chosen ran-

domly without acknowledging the training data sets. The output weight 𝛽 is then cal-

culated with matrix computation formula 𝛽 = 𝐇†𝐓, where 𝐇†
is the Moore-Penrose

Inverse of 𝐇. In the binary classification case, ELM only uses a single-output node,

and the class label closer to the output value of ELM is chosen as the predicted class

label of the input data.
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Algorithm 1: ELM

1 for i = 1 to n do
2 randomly assign input weight 𝐰i;

3 randomly assign bias bi;
4 calculate 𝐇;

5 calculate 𝛽 = 𝐇†𝐓;

3.3 Discriminative Subgraph

An undirected graph can be modeled as G = (V ,E,L) where V is a set of vertices

and E is a set of edges connecting the vertices. As in Fig. 2, the set of positive graphs

in  denoted as +
and the set of negative graphs denoted as −

.

Definition 1 (Frequency) Given a graph database = {G1,G2,… ,Gn} and a graph

pattern G,  = + ∪−
, the supporting graph set of G is G = {Gi | G ⊆ Gi,Gi ∈

}. The support of G in  is |G|, denoted as sup(G,), the support of G in +

and −
denoted as sup(G,+) and sup(G,−), respectively; the frequency of G

is |G|∕||, denoted as freq(G,), meanwhile, the frequency of G in +
and −

denoted as freq(G,+) and freq(G,−), respectively.

Definition 2 (Discriminative Subgraph) Discriminative subgraph G is a subgraph

pattern that occur with disproportionate frequency in one class versus others. The

discriminate power score d(G) can be calculated by a given discrimination function.

Problem Statement: Let  = {G1,G2,… ,Gn} be a graph database that consists of

graph Gi, for 1 ≤ i ≤ ||. Large-scale discriminative subgraph mining problem is to

find a set of subgraph patterns with which are more discriminative and can be built

for graph classifiers.

Fig. 2 A graph database 
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4 Discriminative Subgraph Mining Based
on ELM-Filter with MapReduce

In this section, we present the solution for large-scale discriminative subgraph min-

ing based on ELM-Filter with MapReduce.

MapFunction: In the map step, each worker node Mi(i = 1,… ,m) reads a subset i
of , and identifies a set of discriminative subgraphs i after pattern reproduction

iterations based on ELM-Filter to represent the set of positive graphs ini that stored

in Mi. Then, for each discriminative subgraph G ∈ i, Mi outputs a key-value pair

where the key is G and the value indicates the corresponding discrimination score

di(G).

Reduce Function: With the key and value list obtained from the shuffle phase, Mi
inspects the list of values with key G and computes the sum discrimination scores.

Then, Mi outputs a key-value pair with key G and value equal to the sum of discrim-

ination scores.

4.1 Pattern Evolutionary Computation

In the map step, we randomly divide graph database  into m disjoint subsets

i(i = 1,… ,m) and sent i to worker node Mi. The first goal of our work is to

find a set of discriminative subgraphs in each worker node Mi(i = 1,… ,m), each

positive graph in i that stored in Mi must have at least one representative subgraph

for classification. We achieve this goal in each worker node by exploring candidate

subgraph patterns in a process resembling biological evolution (evolutionary com-

mutation) which consist of two evolutionary mechanisms such as reproduction, and

selection. Evolutionary computation begins with a set of sample points in the search

space and gradually biases to the regions of high quality fitness [13, 14].

We use a discrimination score definition as the fitness function in Eq. (5) for

MapReduce.

di(G) = sup(G,+
i ) − sup(G,−

i ) (5)

The discrimination score in Eq. (5) is used to measure the fitness of subgraph

patterns in each worker node Mi, the bigger the score is, the more discriminative

subgraph pattern is.

4.2 Pattern Reproduction

All the representative subgraph candidates should have a probability of being selected

for subgraph pattern reproduction to generate a larger subgraph. During each itera-

tion, we give a proportional threshold 𝛼 (0 < 𝛼 ≤ 1) to randomly select a subset of

the representative subgraph candidates for reproduction.
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The probability is always between 0 and 1. This reproduction strategy is com-

monly used in evolutionary algorithms [13]. The intuition here is that candidate

subgraph patterns with higher discriminative scores are more likely be extended to

larger subgraph patterns with high scores.

4.3 Pattern Selection

With the new representative subgraph candidates generated from subgraph pattern

reproduction step in Mi, the goal of subgraph pattern selection is to find a subset of

discriminative subgraph patterns among which each positive graph in i can have at

least one representative pattern for graph classification. We should select a subset of

representative subgraphs i = {g1, g2,… , gk} to cover the set of positive graphs in

i. i and the value k should simultaneously satisfy Eqs. (6) and (7). So, the values

k can not be the same for different workers.

ci(g1,i) ∪ ci(g2,i) ∪⋯ ∪ ci(gk,i) = +
i (6)

We use a heuristic algorithm to select i from the set of representative sub-

graph candidates. First, the representative subgraph candidates should be sorted in

descending order of their discrimination scores, and we choose some highest scores

subgraph patterns which satisfy Eq. (6) as the select result i. Apparently, when we

choose the top-k highest scores subgraph patterns, Eq. (7) is satisfied.

max{{di(g1,i) + di(g2,i) +⋯ + di(gk,i)}∕k} (7)

4.4 Patterns for ELM-Filter

For the positive graph set +
i that stored in Mi and a subset of selected representa-

tive subgraphs i = {g1, g2,… , gk}. we can use the ELM algorithm to evaluate the

training accuracy of the selected representative subgraphs i. A high training accu-

racy of the selected representative subgraphs i indicate that i is viable and having

high precision of prediction. We use 0.9 for the ELM training accuracy threshold in

this paper. Otherwise we should reselect a new subset of discriminative subgraphs

j which satisfy the high training accuracy for the positive graph set +
i .

With subgraph pattern evolutionary operations and the ELM-Filter strategy, we

could quickly identify a set of locally optimal discriminative subgraph results i
based on evolutionary computation and ELM-Filter to cover the set of positive

graphs in i that stored in Mi. Then, Map function showed in algorithm 2 output the

key-value pairs that the key is a subgraph pattern and the value is the correspond-

ing discrimination score. Next, the key and value list got from the shuffle phase, Mi
inspects the list of values with the key and computes the sum discrimination scores.
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Algorithm 2: Map Function

Input: Graph dataset i, 𝜃 and 𝛼

Output: Representative subgraph set and corresponding discrimination scores

1 𝜃: maximum number of iterations;

2 𝛼: reproduction threshold;

3 Worker node Mi(i = 1,⋯ ,m) reads a subset i of ;

4  = All the candidate subgraph patterns in i and corresponding discrimination scores;

5 for j = 1 to 𝜃 do
6 randomly select a subgraphs pattern g in the pattern candidate set ;

7 extend pattern g to g′ with one more edge attached to g;

8 insert g′ to the pattern candidate set ;

9 calculate the discrimination score of g′ and insert it to ;

10 select i from  which should satisfy Eq. (6) and Eq. (7);

11 if i satisfy the ELM-Filter strategy then
12 output i and corresponding discrimination scores;

13 else
14 reselect a new ′

i that satisfy the ELM-Filter strategy;

15 output ′
i and corresponding discrimination scores

At last, Mi outputs a key-value pair with key equal to the subgraph pattern and the

value equal to the sum of discrimination scores.

 =
m∑

i=1
i (8)

We introduce an algorithm named MRGC for discriminative subgraph mining

with MapReduce, and MRGC consists of two main steps. The fist step is the map step

showed in algorithm 2. Through three pattern operation strategies, the map function

outputs the representative subgraphs and their corresponding discrimination scores

efficiently. The next reduce step showed in algorithm 3 aggregates the key-values

pairs from the shuffle step, meanwhile, outputs the resultswhich defined in Eq. (8).

Algorithm 3: Reduce Function

Input: Representative subgraphs set i and corresponding discrimination scores

Output: Union of the representative subgraphs set 

1 aggregate the key-value pairs;

2 output ;
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5 Experimental Evaluation

In this section, we first evaluate the efficiency of MRGC with ELM-Filter and with-

out ELM-Filter on the synthetic dataset and next evaluate experimentally MRGC

against two competitors on both synthetic and real-world graph datasets. And, then

study the performance of ELM for classification compared with SVM based on the

mined graph patterns.

5.1 Experimental Setup

We set up a cluster of 11 commodity PCs in a high speed Gigabit network, with one

PC as the Master node, the others as the worker nodes. Each PC has an Intel Quad

Core 2.66GHZ CPU, 4GB memory and GentOS Linux 5.6. We use HaLoop (a mod-

ified Hadoop 0.20.201) to run MRGC and the default configuration of Hadoop, i.e.,

dfs.replication = 3 and fs.block.size = 64MB. The MRGC algorithms were imple-

mented in C++ using STL and the SVM and ELM for classification algorithms are

carried out in MATLAB 2010.

As competitors, we consider two main memory-based discriminative subgraph

mining algorithms LEAP [1] and LTS [2], and we adapt the two competitors namely

MRLEAP and MRLTS to run on MapReduce, respectively. The parameter 𝜎 = 0.1
in the MRLEAP. The parameters 𝜃 = 1000, m = 10 and 𝛼 = 0.3 are default values.

5.2 Data Description

(1) Synthetic: We use a synthetic graph data generator
2

to generate 100000 undi-

rected, labeled and connected graphs, and randomly select half of the graphs to be

positive graphs.

(2) NCI: The NCI cancer screen data sets are widely used for graph classification

evaluation [1, 15]. We download ten NCI data sets from the PubChem database.
3

Table 1 lists the summary of the ten data sets. We randomly select a negative data set

with the same size as the positive one (e.g., 2047 poistive and 2074 negative graphs in

NCI 1). As a result, we obtain ten balanced data sets, which comprise 56000 graphs

in total. We combine them to construct a new NCI-A dataset (balanced dataset).

Meanwhile, we also use all the graphs from the ten data sets (400000 graphs) to

construct a new NCI-B dataset (unbalanced dataset) in our experiment.

2
http://www.cais.ntu.edu.sg/~jamescheng/graphgen1.0.zip.

3
http://pubchem.ncbi.nlm.nih.gov/.

http://www.cais.ntu.edu.sg/~jamescheng/graphgen1.0.zip
http://pubchem.ncbi.nlm.nih.gov/
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Table 1 Summary of the NCI data sets

Bioassay ID Tumor description Actives Inactives

NCI 1 Lung cancer 2047 38410
NCI 33 Melanoma 1642 38456
NCI 41 Prostate cancer 1568 25967
NCI 47 Nervous sys. tumor 2018 38350
NCI 81 Colon cancer 2401 38236
NCI 83 Breast cancer 2287 25510
NCI 109 Ovarian tumor 2072 38551
NCI 123 Leukemia 3123 36741
NCI 145 Renal cancer 1948 38157
NCI 167 Yeast anticancer 8894 53622

5.3 Efficiency of MRGC

In this subsection, we study the efficiency of MRGC on the synthetic dataset with

respect to the parameter: 𝛼 (reproduction threshold) and 𝜃 (maximum number of

iterations).

Figure 3 shows the running times vs the two parameters. From the result, we can

discover that when the reproduction threshold 𝛼 increases, the running times of the

two methods increase and they have no large difference cost time. In addition, we

also observe that the bigger the maximum number of iterations 𝜃 is, the more time

will be cost.

The phenomena above demonstrate that the most time susceptible operation is the

subgraph pattern reproduction in evolutionary computation, which is the same as the

traditional subgraph pattern mining algorithms. The more subgraphs are explored,

the more time will be cost. Also, the bigger number iterations, the more subgraph

evolutionary operations to be need.
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5.4 Comparison with Other Methods

We compare MRGC with two other representative discriminative subgraph mining

methods: MRLEAP and MRLTS that modified to the MapReduce framework. We

randomly select half of each dataset to be the corresponding training graph set, and

the remainder half of graphs to be the testing graph set. We run the three algorithms

on both synthetic and real-world datasets and show the efficiency and effectiveness

in Fig. 4, Tables 2, 3 and 4.

Figure 4 shows that MRGC clearly outperforms MRLEAP and MRLTS in terms

of all the datasets. The three methods all decrease their time cost when the worker

nodes increase, and MRLEAP need more worker nodes to complete the mining task

and have the worst performance in the three methods.
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Table 2 Average training and testing time between ELM and SVM

Classifier Average training time(s) Average testing time(s)

ELM 0.128 0.032
SVM 9.425 0.943
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Table 3 Average SVM testing accuracy between MRLEAP, MRLTS and MRGC

Graph datasets MRLEAP+SVM MRLTS+SVM MRGC+SVM

Synthetic 0.624 0.724 0.754
NCI-A 0.736 0.758 0.784
NCI-B 0.686 0.695 0.725
Average 0.682 0.726 0.754

Table 4 Average ELM testing accuracy between MRLEAP, MRLTS and MRGC

Graph datasets MRLEAP+ELM MRLTS+ELM MRGC+ELM

Synthetic 0.654 0.746 0.778
NCI-A 0.767 0.783 0.812
NCI-B 0.703 0.722 0.785
Average 0.708 0.75 0.792

We use the Support Vector Machine (SVM)
4

[3] with RBF kernel using default

parameters values and Extreme Learning Machine (ELM) [5] wiht 1000 hidden

nodes based on SGVM to build the classifiers. The training time, testing time are

the average values of the 3 datasets. Table 2 shows that ELM needs much less train-

ing time and testing time compared to SVM.

As is shown in Tables 3 and 4, MRGC outperforms MRLEAP and MRLTS based

on SVM and ELM. On average, MRGC achieves normalized accuracy of 0.042 and

0.084 higher than MRLTS and MRLEAP respectively in Table 4. And the results in

Table 3 are the same obvious. Compared Table 4 to Table 3, the prediction accuracy

of MRGC+ELM is usually obviously better than MRGC+SVM in all the datasets.

From the aspect of average normalized classification accuracy, the contrast results

intuitively demonstrate the quality of representative discriminative subgraphs mined

by the three methods.

6 Conclusion

In this paper, we propose the problem for large-scale graph classification based on

evolutionary computation and ELM-Filter strategy with MapReduce. We propose

a fast pattern evolutionary method to mine discriminative subgraphs efficiently and

explore candidate subgraph pattern space in a biological evolution way. Through

graph pattern operations and ELM-Filter strategy, the method could obtain a set of

discriminative subgraphs efficiently. Experiments on both real and synthetic datasets

show that our method obviously outperforms the other approaches in terms of clas-

sification accuracy and runtime efficiency.

4
http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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The Distance-Based Representative Skyline
Calculation Using Unsupervised Extreme
Learning Machines

Mei Bai, Junchang Xin, Guoren Wang and Xite Wang

Abstract A representative skyline contains k skyline points that can represent its

full skyline, which is very useful in the multiple criteria decision making problems.

In this paper, we focus on the distance-based representative skyline (k-DRS) query

which can describe the tradeoffs among different dimensions offered by the full sky-

line. Since k-DRS is a NP-hard problem in d-dimensional (d ≥ 3) space, it is impos-

sible to calculate the exact k-DRS in d-dimensional space. By in-depth analyzing the

properties of the k-DRS, we propose a new perspective to solve this problem and a

k distance-based representative skyline algorithm based on US-ELM (DRSELM) is

presented. In DRSELM, first we apply US-ELM to divide the full skyline set into k
clusters. Second, in each cluster, we design a method to select a point as the represen-

tative point. Experimental results show that our DRSELM significantly outperforms

its competitors in terms of both accuracy and efficiency.

Keywords Skyline ⋅ k representative skyline ⋅ k-DRS ⋅ US-ELM

1 Introduction

Given a large dataset, it is impracticable for a user to browse all the points in the

dataset. Hence, obtaining a succinct representative subset of the dataset is crucial. A

well-established approach to representing a dataset is with the skyline operator [1].
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Fig. 1 Example of

distance-based representative

skyline

The skyline consists of the points which are not dominated by any other point. Given

two points p1 and p2, if the values of p1 are as good as or better than those of p2 in any

dimension, and better in at least one dimension. With loss of generality, we assume

that a smaller value indicates a better performance in all dimensions. However, when

the skyline size is large, the full skyline is helpless to the user. Detecting a subset

of the full skyline set with fixed size (such as k points) is necessary. As investigated

in [2], Tao et al. proposed a distance-based representative skyline (k-DRS for short)

which can best describe the tradeoffs among different dimensions offered by the

full skyline. They applied a distance metric to measure the “representativeness” of

the chosen set. Given a subset  with k skyline points from the full skyline set  ,

Er(,) = maxp∈− minp′∈ ∥ p, p′ ∥, where ∥ p, p′ ∥ is the Euclidean distance

between p and p′
. The k-DRS is the set  with the minimum value Er(,). As

illustrated in Fig. 1, given k = 3, the 3-DRS is {p2, p5, p9} with the corresponding

value Er(,) =∥ p5, p7 ∥= 0.134. Obviously, when the full skyline are divided into

k clusters, k-DRS aims to select k skyline points from these k clusters and these k
skyline points should come from different clusters.

In this paper, we deeply analyze the properties of k-DRS query, and solve the

problem using the extreme learning machine (ELM for short) [3–5]. Compared with

support vector machines (SVMs) [6, 7], ELM shows better predicting accuracy than

that of SVMs [4, 8–10]. Moreover, various extensions have been made to the basic

ELMs to make it more efficient and more suitable for special problems. such as ELMs

for online sequential data [10–12], ELMs for distributed environments [13], and

ELMs for semi-labeled data and unlabeled data [14]. As proposed in [14], US-ELM

can be applied to unsupervised data which has more widely applications. Mean-

while, the experiments show that US-ELM gives favorable performance compared

to the state-of-the-art clustering algorithms [15–18]. Therefore, we apply US-ELM

to cluster the full skyline points, and then select the appropriate the skyline points

from every cluster as the k-DRS.

As mentioned in Lemma 4 in [2], k-DRS is NP-hard when the dimensionality

d ≥ 3. Hence, it is impossible to calculate the exact k-DRS in d-dimensional space
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(d ≥ 3). To solve the challenging issue, we attempt to solve k-DRS problem from

another perspective.

The key contributions are summarized as follow. Through in-depth analysis of

k-DRS properties, we propose a k distance-based representative skyline algorithm

based on US-ELM methods (DRSELM for short). The calculation of the k-DRS is

divided into two stages. Step 1: the full skyline set is divided into k clusters by using

the US-ELM algorithm. Step 2: for each cluster, an appropriate skyline point is added

to the k-DRS set. The chosen k skyline points are the k-DRS result. Then we test our

algorithm on a variety of data sets, and comparisons with other related algorithms

[2]. The results show that our algorithm is competitive in terms of both accuracy and

efficiency.

The rest of paper is organized as follows. In Sect. 2, we give a brief overview

of clustering data using US-ELM algorithm. In Sect. 3, we present our k distance-

based representative skyline algorithm based on US-ELM. Experimental results and

related work are given in Sects. 4 and 5, respectively. Section 6 concludes the paper.

2 Preliminaries

In this paper, we process k-DRS query using ELM to cluster the skyline points. Here,

we introduce how to extend ELMs to cluster the data.

2.1 Brief Introduction to ELM

ELM is an algorithm for neural network, and is a single-hidden layer feed forward

network. ELM aims to learn a decision rule or an approximation function based on

a training set with N samples, {X,Y} = {xi, yi}N
i=1, where xi ∈ ℝni and yi ∈ ℝno , ni

and no are the dimensions of input and output, respectively.

As described in Fig. 2, the training of ELMs contains two phases. Step 1: a pair

of parameters {aj, bj} are randomly generated for the jth hidden layer node, where aj
is a ni-dimensional vector and bj is a random value. For an input vector xi, its output

on the jth hidden node can be obtained by the following mapping function (we use

Fig. 2 ELM framework
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the Sigmoid function in this paper).

g(xi, aj, bj) =
1

1 + exp(−(aT
j × xi + bj))

(1)

Hence, the output on the hidden layer nodes can be written as

H =
⎡
⎢
⎢
⎣

g(x1, a1, b1) ... g(x1, aL, bL)
⋮ ⋮

g(xN , a1, b1) ... g(xN , aL, bL)

⎤
⎥
⎥
⎦N×L

(2)

Step 2: On the jth hidden node, an adjustment factor 𝜷 j is generated, where 𝜷 j is

a no-dimensional vector. The output on the output neuron is Y which is the output of

the N samples. Then we can obtain the following equation

H ⋅ 𝜷 = Y (3)

where

𝜷 =
⎡
⎢
⎢
⎣

𝜷1
⋮
𝜷L

⎤
⎥
⎥
⎦L×no

and Y =
⎡
⎢
⎢
⎣

y1
⋮
yN

⎤
⎥
⎥
⎦N×no

(4)

According to Eq. 3, the values of H and Y haven been known, we can compute the

values of 𝜷 by the equation 𝜷 = H†Y where H†
is the Moore-Penrose [19] of H. In

order to avoid over-fitting, they introduced two parameters, ei and C. ei is the error

vector with respect to the ith training sample, and C is a penalty coefficient on the

training errors. Then the following equation is used to generate 𝜷.

min
𝜷∈ℝL×no

LELM = 1
2
∥ 𝜷 ∥ 2 + C

2
∥ Y −H𝜷 ∥ 2

s.t. H𝜷 = Y − e
(5)

where ∥ ⋅ ∥ denotes the Euclidean norm and e = [eT
1 ,… , eT

N] ∈ ℝN×no .

According to the ridge regression or regularized least squares principle, the gra-

dient of LELM with respect to 𝜷 is set to zero. We have

∇LELM = 𝜷 + CHT (Y −H𝜷) = 0 (6)

If H has more rows than columns and is full of column rank, we use Eq. 7 to

evaluate 𝜷. If the number of training samples N is smaller than L, we restrict 𝜷 to
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be a linear combination of the rows of H: 𝜷 = HT𝜶(𝜶 ∈ ℝN×no ). Then 𝜷 can be

calculated by Eq. 8.

𝜷∗ = (HTH +
IL

C
)−1HTY (7)

𝜷∗ = HT𝜶∗ = HT (HHT +
IN

C
)−1Y (8)

where IL and IN are the identity matrices of dimensions L and N, respectively.

2.2 Unsupervised ELM

In [14], they extended ELM to process unlabeled data and made ELM a wide appli-

cations. The unsupervised learning is built on the following assumption: (1) all the

unlabeled data Xu is drawn from the same marginal distribution X and (2) if two

points x1 and x2 are close to each other, then the probabilities P(y|x1) and P(y|x2)
should be similar. The manifold regularization framework proposes to minimize the

following cost function:

Lm = 1
2
∑

i,j
wij ∥ P(y|xi) − P(y|xj) ∥2 (9)

where wij is the pair-wise similarity between xi and xj. wij is usually computed using

Gaussian function exp(− ∥ xi − xj ∥2 ∕2𝜎2).
Equation 9 can be simplified in a matrix form

̂Lm = Tr(̂Y
T
L̂Y) (10)

where Tr(⋅) denotes the trace of a matrix, ̂Y is the predictions of Xu, L = D −W is

known as graph Laplacian, and D ia a diagonal matrix with its diagonal elements

Dii =
u∑

j=1
wij.

Hence, in unsupervised setting, the entire data set X = {xi}N
i=1 are unlabeled.

According to Eqs. 5 and 10, the formulation of US-ELM is reduced to

min
𝜷∈ℝL×no

∥ 𝜷 ∥2 +𝜆Tr(𝜷THTLH𝜷) (11)

where 𝜆 is an tradeoff parameter. Usually, Eq. 11 attains its minimum value at 𝜷 = 𝟎.

As suggested in [16], a constraint (H𝜷)TH𝜷 = Ino
is introduced. According to the

conclusion in [14], if L ≤ N, the adjustment factor 𝜷 is given by

𝜷∗ = [ṽ2, ṽ3,… , ṽno+1] (12)
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where ṽi = vi∕ ∥ Hvi ∥, i = 2,… , no + 1 is the normalized eigenvectors. 𝛾i is the ith
smallest eigenvalues of Eq. 13 and vi is the corresponding eigenvectors.

(IL + 𝜆HTLH)v = 𝛾HTHv (13)

If L > N, Eq. 13 is underdetermined. In this case, the following alternative for-

mulation is given by using the same trick

(IN + 𝜆LHHT )u = 𝛾HHTu (14)

Also, ui is the generalized eigenvectors corresponding the ith smallest eigenvalues

of Eq. 14. Then, the final solution is given by

𝜷∗ = HT [ũ2, ũ3,… , ũno+1] (15)

where ũi = ũi∕ ∥ HHT ũi ∥, i = 2,… , no + 1 are the normalized eigenvectors.

The US-ELM is described in Algorithm 1.

3 k-DRS Query Processing Based on US-ELM

First, we describe the formal definition of the k-DRS in Sect. 3.1. Then, our proposed

algorithm DRSELM is presented in Sect. 3.2.

Algorithm 1: US-ELM Algorithm [14]

input : The training data: X ∈ ℝN×ni .

output: The label vector of cluster yi corresponding to xi

Step 1: Construct the graph Laplacian L = D −W from X;1
Step 2: For each hidden neuron, generate a pair of random values {ai, bi}; Calculate the2
output matrix H ∈ ℝN×L

;

Step 3:3
if L ≤ N then4

Find the generalized eigenvectors v2,… , vno+1 of Eq. 13. Let 𝜷 = [ṽ2, ṽ3,… , ṽno+1].5

else6
Find the generalized eigenvectors u2,… ,uno+1 of Eq. 14. Let 𝜷 = HT [ũ2, ũ3,… , ũno+1];7

Step 4: Calculate the embedding matrix: E = H𝜷;8
Step 5: Each row of E is treated as a point, and then cluster these N points into K clusters9
using the k-means algorithm. Let yi be the label vector of cluster index for xi.

return Y;10
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3.1 Problem Statement

Given a data set D in the d-dimensional space, and two points pi = ⟨pi[1],… , pi[d]⟩
and pj = ⟨pj[1],… , pj[d]⟩, then pi dominates pj (denoted as pi ≺ pj) if ∀m ∈ [1, d],
pi[m] ≤ pj[m] and ∃n ∈ [1, d], pi[n] < pj[n]. The skyline of D consists of the points

which are not dominated by others, denoted as  = {pi|∄pj ∈ D, pj ≺ pi}. Next, we

give the formal definition of the k-DRS.

Definition 1 (Representation Error) Given the full skyline set and a subset of

with k skyline points, the representation error Er(,) quantifies the representation

quality as the maximum distance between a non-representative skyline point in  −
 and its nearest representative in , which is formally denoted as:

Er(,) = max
p∈−

{min
p′∈

∥ p, p′ ∥} (16)

Definition 2 (Distance-based Representative Skyline) The distance-based represen-

tative skyline (k-DRS) is the set  with the minimum representation error Er(,).

As shown in Fig. 1, the skyline set is = {p1,… , p10}. Given k = 3, and two sub-

sets 1 = {p2, p6, p9} and 2 = {p2, p5, p9}, the representation errors Er(1,) =∥
p4, p6 ∥= 0.141 and Er(2,) =∥ p5, p7 ∥= 0.135. Consequently, 2 is the k-DRS

because its representation error is the minimum.

3.2 DRSELM Algorithm

Reviewing the conclusion in [2], the k-DRS problem is NP-hard in d-dimensional

(d ≥ 3) space. Hence, it is impossible to calculate the exact k-DRS. In this paper, we

answer the k-DRS problem from another perspective.

Since the initial objective of the k-DRS is to avoid selecting k points that appear

in an arbitrarily tiny cluster, we first divide the full skyline points into k clusters

using the US-ELM algorithm (introduced in Sect. 2.2). Specifically, given a data set

D in d-dimensional space, each point pi ∈ D is considered as a d-dimensional vector.

pi[j] denotes the jth dimension value of pi. According to the Algorithm 1, there is

a corresponding output yi with regard to pi. Because the full skyline needs to be

divided into k clusters, each output yi is a k-dimensional vector. Only one dimension

value is 1, and the other dimension values are 0. As shown in Fig. 1, p1, p2, p3 have

the same outputs y1 = y2 = y3 = [1, 0, 0]. p4, p5, p6, p7 have the same outputs y4 =
y5 = y6 = y7 = [0, 1, 0]. p8, p9, p10 have the same outputs y8 = y9 = y10 = [0, 0, 1].

Given a cluster ci = {p1, p2,… , p|ci|
} with |ci| points, the centroid point mi of ci

can be calculated by the formula below:

mi[j] =
∑

p∈ci
p[j]

|ci|
(17)
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As shown in Fig. 1, given the cluster c1 = {p1, p2, p3}, its centroid point m1 is

calculated as: m1[1] =
0.13+0.16+0.20

3
≈ 0.16 and m1[2] =

0.92+0.87+0.82
3

= 0.87. Hence,

p2 is regarded as the centroid point in c1. Similarly, the centroid points of c2 and c3
are m2 = ⟨0.345, 0.4425⟩ and m3 = ⟨0.70, 0.15⟩.

After the clustering, we have the following properties.

Observation 1 Given a point p1 comes from cluster c1, and a point p2 comes
from cluster c2, m1 and m2 are the centroid points of c1 and c2, respectively. Then
∥ p1,m1 ∥<∥ p1,m2 ∥.

We have divided the full skyline into k clusters. The target of the k-DRS wants

to get the minimum representation error Er(,). In order to obtain this goal, all

the points should come from different clusters. Given two clusters ci and cj, we

should select any 2 points 2
from  = ci

⋃
cj, in order to obtain the minimum

value Er(2
,) = max

p∈−2
{ min

p′∈2
∥ p, p′ ∥}. The two points in 2

should come from

ci and cj, respectively.

Theorem 1 Give two clusters c1 and c2, and two sets S1 = {m1,m2} and S2 =
{pm, pn}, m1 and m2 are the centroid points of c1 and c2. pm and pn are any two
points come from c1. Then Er(S1,) < Er(S2,).

Proof Suppose the point in c1 with the largest distance to m1 is p1, and the point in c2
with the largest distance to m2 is p2, then Er(S1,) = max{∥ p1,m1 ∥, ∥ p2,m2 ∥}.

Obviously, a good clustering method can ensure that ∥ m1,m2 ∥> max{∥ p1,m1 ∥, ∥
p2,m2 ∥}. Hence, there must exist a point p′ ∈ c2, the distance between p′

and any

point pm ∈ c1 is larger than Er(S1,). The theorem can be proven.

Lemma 1 Given k clusters c1,… , ck of the full skyline  , in order to obtain the
minimum representation error Er(,), the selected k skyline points should come
from different k clusters.

Proof This lemma can be obtained directly from Theorem 1.

According to Lemma 1, the selected points come from different clusters. As

shown in Fig. 1, the full skyline is divided into 3 clusters. The selected 3 skyline

points should come from different clusters. For each cluster ci, i ∈ [1, 3], we choose

one point.

Next, we introduce how to select a point from a cluster. According to the objec-

tive function Er(,), the selected point pi from ci should have the minimum value

Er(pi, ci) = max
pi∈ci,p′∈ci−{pi}

{∥ pi, p′ ∥}. The details to calculate the k-DRS based on

ELM is described in Algorithm 2.

The calculation in a cluster needs to compute the distances between any two points

in a cluster. Hence, the time cost of calculating an appropriate in a cluster is O(|ci|
2)

where |ci| is the size of the largest cluster.
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Algorithm 2: The DRSELM Algorithm

input : the data set D in d-dimensional space; the parameter k
output: The distance-base representative set k-DRS(D);
Using BNL algorithm [1] to calculate the skyline  of D;1
Using Algorithm 1 to divide the full skyline  into k clusters;2
for each cluster ci do3

From all the points in ci, add the one with the minimum value MaxDis(p, ci) to the4
k-DRS;

return k-DRS;5

4 Experimental Evaluation

In this section, we demonstrate the efficiency and effectiveness of the DRSELM. We

test 3 algorithms: 2d-opt, I-greedy, DRSELM. Specifically, 2d-opt and I-greedy are

the algorithms in [2] for 2-dimensional dataset and d-dimensional (d ≥ 3) dataset,

respectively.

DataSets. We apply the same datasets in [2], a synthetic dataset Island and a real

dataset NBA. Island follows a cluster distribution along the anti-diagonal, which is

shown in Fig. 3. There are 27868 points in the Island, and the skyline of the Island
consists of 110 points. NBA is downloadable at http://www.databasebasketball.com.

It includes 17265 5-dimensional points and skyline of NBA consists of 494 points.

The distance-base representative skyline of Island is shown in Fig. 4 when k
varies. As shown in Fig. 5, our DRSELM shows outstanding performances. Com-

paring with 2d-opt, DRSELM has more efficiency and good accuracy. In Fig. 5a,

Fig. 3 The synthetic dataset Island. a The Island Dataset. b The Skyline of Island

http://www.databasebasketball.com
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Fig. 4 The Distance-based Representative Skyline of Island for Different k. a k = 4. b k = 6.

c k = 8.

with the increase of k, the running time of DRSELM and 2d-opt has little change. In

Fig. 5b, as k grows, the representation error becomes smaller. DRSELM has the same

representation errors with 2d-opt. Since 2d-opt is an exact algorithm, DRSELM has

good accuracy in 2-dimensional datasets.

The experimental results of NBA is shown in Fig. 6. According to Fig. 6a, the

running time of DRSELM is shorter than that of I-greedy. With the increase of k, the

running time of DRSELM is stable, and the running time of I-greedy raises slightly.

Hence, the efficiency of DRSELM is better than that of I-greedy. As illustrated in

Fig. 6b, the representation errors of DRSELM and I-greedy are close. Therefore,

comparing with I-greedy, the accuracy of DRSELM is competitive.

Comparing Fig. 5 with Fig. 6, with the increase of dimensionality, the running

time of DRSELM has a little increment. Based on analysis above, it can be concluded

that our DRSELM can process the k-DRS effectively.
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5 Related Work

The skyline operator was first introduced by Börzönyi et al. [1]. Then many effi-

cient skyline algorithms [20–23] have been proposed. Algorithms BNL and D&C

[1], SFS [20], Bitmap [24] and NN [21] can process skyline query in the datasets

without indexes. BBS [22] calculate the skyline query using R-tree index and ZINC

[23] apply the Z-order index to process the skyline query. When the full skyline set

is large, it is difficult to understand the full skyline. Thus, selecting k representative

points is significant. There are some definitions [2, 25] about the representative sky-

lines. In this paper, we focus on the distance-based representative skyline (k-DRS).

k-DRS is NP-hard when d ≥ 3. By in-depth analysis of the properties of the k-DRS,

first, we use the clustering algorithms to cluster the full skyline set. Second, we cal-

culate the representative point in each cluster. So far, there are some state-of-the-art

clustering algorithms [15–18]. The experimental results show that US-ELM [14] is

competitive in terms of both accuracy and efficiency. Hence, in this paper, we apply

US-ELM to cluster the full skyline set.
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6 Conclusion

As an important variant of skyline, the k representative skyline is a useful tool if the

size of the full skyline is large. In this paper, we focus on the distance-based rep-

resentative skyline (k-DRS). Since k-DRS is a NP-hard problem in d-dimensional

(d ≥ 3) space, we design a 2-step algorithm DRSELM to solve the k-DRS problem

efficiently. Step 1 divides the full skyline set into k clusters using US-ELM algo-

rithm. In step 2, a point in each cluster is selected as the representative skyline point.

The k selected skyline points consist of the k-DRS. Comprehensive experimental

results demonstrate that DRSELM is competitive with the state-of-the-art algorithm

in terms of both accuracy and efficiency.
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Multi-label Text Categorization
Using L𝟐𝟏-norm Minimization Extreme
Learning Machine

Mingchu Jiang, Na Li and Zhisong Pan

Abstract Extreme learning machine (ELM) was extended from the generalized sin-

gle hidden layer feedforward networks where the input weights of the hidden layer

nodes can be assigned randomly. It has been widely used for its much faster learning

speed and less manual works. Considering the field of multi-label text classification,

in this paper, we propose an ELM based algorithm combined with L21-norm min-

imization of the output weights matrix called L21-norm Minimization ELM, which

not only fully inherits the merits of ELM but also facilitates group sparsity and

reduces complexity of the learning model. Extensive experiments on several bench-

mark data sets show a more desirable performance compared with other common

multi-label classification algorithms.

Keywords Text categorization ⋅ Multi-label learning ⋅ L21-norm minimization ⋅
Extreme learning machine

1 Introduction

Continued development of the Internet and information technology has spawned a

large number of text data in various forms. How to organize, manage and analyze

such a huge data, and find the user information quickly, accurately and comprehen-

sively is a big challenge. Text automatic classification is an important research point

in the field of information mining. Compared to the traditional single classification

problem, multi-label text classification has more value of research and application.

In multi-label learning, the text data are always in high dimensionality and spar-

sity. e.g. In a large number of feature words, only a few are related to the topic of a
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text and most of the rest are redundant. Therefore, introducing sparsity into machine

learning has become a popular technology, which not only meet the need of practical

problems but also can simplify the learning model. In resent years, extreme learn-

ing machine (ELM) [1–4] has attracted increasing attention and been widely used

for its distinguishing characteristics: (1) fast learning speed, (2) good generalization

performance on classification or regression, (3) less human intervention with ran-

domly setted hidden layer parameters. For these reasons, the theoretical analysis and

various improvement algorithms of ELM are put forward continuously.

In ELM network, the function of the random hidden layer nodes can be seen as

feature mapping. It maps the data from the input feature space to the hidden layer

feature space, which is called ELM feature space in literature [5]. In this ELM fea-

ture space, each instance may still remains the sparsity. Meantime, considering the

characteristics of multi-label learning and the advantages of the classifier ELM, in

this paper, we propose an embedded model for multi-label text classification, which

is derived from a formulation based on ELM with L21-norm minimization of the

output weights matrix. Through the constraint of the L21-norm regularization, the

training model becomes simplified, also we can sufficiently preserve the intrinsic

relation of different nodes in the ELM feature space and select them by joint multi-

ple related labels, where the labels are not always independent to each other. Exper-

imental results on several benchmark data sets verify the efficiency of our proposed

algorithm.

The main contributions of this paper can be summarized below:

∙ According to the characteristics of the multi-label text data we introduce the spar-

sity model.

∙ Applying L21-norm for joint hidden layer nodes selection and avoiding individual

training for each label.

∙ Using ELM for multi-label text classification.

The remainder of this paper is organized as follows. After reviewing the related

works in Sect. 2, we present the algorithm L21-ELM in Sect. 3 and describe the evalu-

ation measures of multi-label learning in Sect. 4. Experimental results are presented

in Sect. 5 and we conclude this paper in Sect. 6.

2 Related Work

2.1 Multi-label Learning

Unlike traditional supervised learning, in multi-label learning each instance may

belong to multiple classes and for a new instance we try to predict its associated

set of labels. This is a generalized case of the prevalent multi-class problems where

in multiple classes each instance has only one class restrictedly.
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Let ∈ ℝd
denote the d-dimensional space of instances, =

{
y1,… , yk

}
denote

the label space with k possible class labels. Given the training data set{
(x1,Y1),… , (xn,Yn)

}
where xi ∈  and Yi ⊆  . the task of multi-label learning

is to learn a multi-label classifier f ∶  → 2k from the training data set. For any

unknown instance x ∈  , the multi-label classifier f (⋅) predicts f (x) ⊆  as the set

of proper labels. Existing multi-label learning algorithms can be divided into two

main categories [6, 7].

Problem transformation methods. The main idea of most problem transforma-

tion methods is to transform the original multi-label learning problem into multiple

single-label learning problems, which usually reconstructs the multi-label data sets

and then existing classification algorithms can be applied directly.

The binary relevance (BR) [8] algorithm is a popular kind of this transformation

method and has been widely used in many practical applications. This algorithm

divides the multi-label classification problem into k independent binary classification

problems, however, the assumption of label independence is too implicit and the label

correlations are ignored. The label powerset (LP) [9] algorithm is another common

transformation method. It considers each unique set of labels in a multi-label training

data as one class in the new transformed data. While the computational complexity

of LP is too big and it may pose class imbalance problem. The basic idea of the

classifier chains (CC) [10] is to chain the transformed binary classifiers one by one,

but the sequence of each classifier is a problem. The ensembles of classifier chains

(ECC) [11] improved the CC algorithm and identify the sequence of each classifier

effectively.

Algorithm adaptation methods. From another perspective, this method improves

conventional algorithms to deal with multi-label data directly. Some representative

algorithms include ML-kNN [12] adapting k-nearest neighbor techniques, which has

the advantage of both lazy learning and Bayesian but ignores label correlations. ML-

DT [13] adapting decision tree techniques, Rank-SVM [14] adapting kernel tech-

niques, etc.

In this paper, the algorithm based on ELM we proposed is designed to deal with

multi-label data directly, therefore, it can be considered as a kind of algorithm adap-

tation method.

2.2 L𝟐𝟏-norm Regularization for Parameter Estimation

In recent years, parameter estimation via sparsity-promoting regularization has be

widely used in machine learning and statistics. Perhaps L1-norm regularization is the

most successful and common method to promote sparsity for the parameter vector

(the lasso approach). Along with the development of multi-task learning, in 2006,

Obozinski et al. [15, 16] proposed to constraint the sum of L2-norms of the blocks of

weights connected with each feature, and then leading to the L21-norm regularized

optimization problem (the group lasso).
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Fig. 1 Illustration of the data matrix A,Y , and the weights matrix X

In this section, we will briefly review the basics of this technique. Usually, the

optimization problem can be described as following:

min
X

∶ loss(X) + 𝜆 ∥ X ∥2,1 (1)

where 𝜆 > 0 is the regularization parameter, X ∈ ℝn×k
is the weights matrix, ∥

X ∥2,1=
∑n

i=1 ∥ X ∥2 and loss(X) is a smooth and convex loss function (such as the

logistic loss, the least square loss and the hinge loss). Take the least squares problem

as an example, the Eq.1 is expressed as:

min
X

∶ 1
2
∥ AX − Y ∥22 +𝜆 ∥ X ∥2,1 (2)

where A ∈ ℝm×n
, Y ∈ ℝm×k

are the data matrices, each row of X forms a feature

group. Figure 1 visualizes this optimization problem.

This optimization problem will be more challenging to solve due to the non-

smoothness and non-differential of the L21-norm regularization. In this paper, we

apply the strategy proposed in literature [17] to solve this problem, which reformu-

lates the non-smooth L21-norm regularized problem to an equivalent smooth convex

optimization problem and can be solved in linear time.

3 L𝟐𝟏-minimization ELM (L𝟐𝟏-ELM)

In this section, we propose L21-ELM algorithm for multi-label learning problem,

which takes the significant advantages of ELM like affording good generalization

performance at extremely fast learning speed, meantime, offers us some additional

characteristics. Firstly, we will review the theories of ELM, then, introduce the algo-

rithm we proposed.
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Fig. 2 Structure of ELM

network

3.1 Extreme Learning Machine

Extreme learning machine [2, 3] was originally proposed for single hidden layer

feedforward neural networks and then extended to the generalized single hidden layer

feedforward networks where the hidden layer need not be neuron alike [1]. Figure 2

shows the structure of ELM network. It contains an input layer, a hidden layer and

an output layer.

In ELM, the hidden layer parameters are chosen randomly, and the output function

can be represented as following (take the case of p hidden layer nodes and one output

layer node as an example):

foutput(x) =
p∑

i=1
𝛽ihi(x) = h(x)𝛽 (3)

where x ∈ ℝn
is the input variable, 𝛽 = (𝛽1, 𝛽2,… , 𝛽p)T is the weights vector between

the hidden layer nodes and the output layer nodes. h(x) =
[
h1(x), h2(x),… , hp(x)

]
is

the output vector of the hidden layer with respect to the input vector x. hi(x) is the

ith activation function, its input weights vector and bias are wi and bi.
Figure 2 shows that h(x) actually maps the input variables from the n-dimension

to the p-dimensional hidden layer space (ELM feature space), thus, it appears to be

a feature mapping function.

The ELM reliably approximates m samples, X = [x1,… , xm], with minimum

error:

min
𝛽

∶∥ H𝛽 − Y ∥22 (4)
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where H is hidden layer output matrix,

H =
⎡
⎢
⎢
⎣

h(x1)
⋮

h(xm)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

g(w1 ⋅ x1 + b1) ⋯ g(wp ⋅ x1 + bp)
⋮ ⋱ ⋮

g(w1 ⋅ xm + b1) ⋯ g(wp ⋅ xm + bp)

⎤
⎥
⎥
⎦m×p

(5)

and Y = [y1,… , ym]T is the target vector.

The analytical result of this least squares equation is:

̂

𝛽 = H†Y (6)

where H†
is called Moore-Penrose generalized inverse of matrix H.

3.2 L𝟐𝟏-norm Minimization ELM for Multi-label Learning

In this section, we consider adapting the ELM network to solve the multi-label

learning problem. Given the multi-label training data with m samples (xi, yi), where

xi = (xi1, xi2,… , xin)T ∈ ℝn
and yi = (yi1, yi2,… , yik) ∈ ℝk

. As shown in the Fig. 2,

we set the number of output layer nodes k , which equals the number of labels, and

set the number of hidden layer nodes p randomly.

Inspired by ELM, we consider combining the smallest training error of ELM with

the L21-norm minimization of output weights matrix. It is reformulated as following:

min
𝛽

∶∥ H𝛽 − Y ∥22 +𝜆 ∥ 𝛽 ∥2,1 (7)

where ∥ 𝛽 ∥2,1=
∑p

i=1 ∥ 𝛽i ∥2 is the L21-norm of the matrix 𝛽, and 𝛽i =
(𝛽i1, 𝛽i2,… , 𝛽ik), 𝜆 is the regularization parameter.

To solve the nonsmooth optimization problem in Eq. (7), the literature [17] pro-

posed to employ the Nesterov’s optimal method by optimizing its equivalent smooth

convex reformulation. When using a constraint to replace the nonsmooth L21-norm,

the original problem can be equivalent to the L21-ball constrained smooth convex

optimization problem as following:

min
𝛽

∶∥ H𝛽 − Y ∥22 s.t. ∥ 𝛽 ∥2,1≤ z (8)

When applying the Nesterov’s optimal method to solve Eq. (8), one key build-

ing block of this method is Euclidean projection onto the L21-ball. The Euclidean

projection problem is defined as:

𝜋Z(U) = argmin
𝛽∈Z

1
2
∥ 𝛽 − U ∥22 (9)
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where Z =
{
𝛽 ∈ ℝp×k ∣∥ 𝛽 ∥2,1≤ z

}
is the L21-ball and z ≥ 01 is the radius of L21-

ball. To solve the problem in Eq. (9), the Lagrangian variable 𝛼 is introduced for

the inequality constrain ∥ 𝛽 ∥2,1≤ z , then we can lead to the Lagrangian function of

Eq. (9) as:

Ł(𝛽, 𝛼) = 1
2
∥ 𝛽 − U ∥22 +𝛼(∥ 𝛽 ∥2,1 −z) (10)

Let 𝛽
∗

be the primal optimal point, and 𝛼

∗
be the dual optimal point. This two

points must satisfy the condition: ∥ 𝛽

∗ ∥2,1≤ z and 𝛼

∗ ≥ 0. Since considering the

strong duality holds of the Slater’s condition, and values of the primal and dual opti-

mal points are equal: 𝛼
∗(∥ 𝛽 ∥2,1 −z) = 0. Therefore, the primal optimal point 𝛽

∗
can

be given by Eq. (11) if the dual optimal point 𝛼
∗

is known.

𝛽

∗
i =

⎧
⎪
⎨
⎪
⎩

(1 − 𝛼

∗

∥ui∥
)ui, 𝛼

∗
> 0, ∥ ui ∥> 𝛼

∗

0, 𝛼

∗
> 0, ∥ ui ∥≤ 𝛼

∗

ui, 𝛼

∗ = 0
(11)

where ui ∈ ℝ1×k
is the ith row of U.

According to Eq. (11), 𝛽
∗

can be computed as long as 𝛼
∗

is solved. Now, the key

step is how to compute the unknown dual optimal point 𝛼
∗
. Liu et al. [17] gives the

theorem : if ∥ U ∥2,1≤ z the value of 𝛼
∗

is zero, otherwise, it can be solved as the

unique root of the following auxiliary function.

𝜔(𝛼) =
p∑

i=1
max(∥ ui ∥ −𝛼, 0) − z (12)

The Eq. (12) can be solved in O(p) flops by the bisection [18], and it costs O(pk)
flops to compute 𝛽

∗
by Eq. (11). Above all, for solving Eq. (7) the time complexity

is O(pk). When testing an unseen instance, we will use a threshold function t(x) to

determine its associated label set. For an actual outputs cj, Y =
{
j ∣ cj > t(x)

}
. An

usual solution is to set t(x) to be zero. In this paper, we adopt the threshold category

used in literature [19].

4 Evaluation Measures

Being different from the traditional single-label learning system, in multi-label learn-

ing an instance usually have one or more labels simultaneously, therefore those clas-

sical evaluation methods would be no longer applied in multi-label learning system.

For this reason, a series of evaluation metrics for multi-label learning are proposed.

In order to compare our algorithm with other commonly used methods, we adopt

five evaluation measures in multi-label learning in this section, including: hamming
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loss, one-error, coverage, ranking loss and average precision [6, 20, 21]. The follow-

ing is a look at these measures based on a test data set S = {(xi,Yi) ∣ 1 ⩽ i ⩽ n} and

a trained model f (⋅, ⋅) or g(⋅).

Hamming loss. This measure evaluates the error rate of all instances on all labels,

e.g. a relevant label of an instance is not predicted or an irrelevant one is predicted.

the smaller the value of hamming loss, the better the performance.

hlossS(g) =
1
n

n∑

i=1

1
m

∣ g(xi)△ Yi ∣ (13)

where △ stands for the symmetric difference between two sets, m is the total number

of labels. It is worth noting that when most of these instances have little correlative

labels, it can also get a small value of hamming loss even if all the labels of an

instance are predicted in error. Therefore, we should integrate it with other measures.

One-error. This measure evaluates the times that the top-ranked label of an instance

is not in its relevant label set. The smaller the value of one − errorS(f ), the better the

performance.

one − errorS(f ) =
1
n

n∑

i=1

[

argmax
y∈y

f (xi, y) ∉ Yi

]

(14)

One-error mainly focuses on the most relevant label being correct or not, and it

don’t pay attention to other labels. Note that, it is equal to ordinary error identically

in single-label classification problems.

Coverage. This measure evaluates the average steps we need to go down the ranked-

label list for the sake of covering all the relevant labels. The smaller the value of

coverage, the better the performance.

coverageS(f ) =
1
n

n∑

i=1
max
𝓁∈Yi

rankf (xi,𝓁) − 1 (15)

where the rankf (⋅, ⋅) is derived from the real-valued function f (⋅, ⋅), and the bigger the

value of f, the smaller the rankf is. The performance is perfect when

coverageS(f ) = 0.

Ranking loss. This measure evaluates the average fraction of the reversely ordered

label pairs. The smaller the value of rlossS(f ), the better the performance.

rlossS(f ) =
1
n

n∑

i=1

1
∣ Yi ∣∣ Yi ∣

∣
{
(y, y)|f (xi, y) ≤ f (xi, y), (y, y) ∈ Yi × Yi

}
∣ (16)
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where Yi and Yi denote the possible and impossible label sets of the instance xi. When

the value is zero, it means that all impossible labels follow possible ones.

Average precision. This measure evaluates the average fraction of relevant labels

ranked above a particular one 𝓁 ∈ Yi. It is typically used in information retrieval

(IR) system to evaluate the document ranking performance query retrieval [22]. The

bigger the value of avgpecS(f ), the better the performance.

avgpecS(f ) =
1
n

n∑

i=1

1
∣ Yi ∣

∑

y∈Yi

∣ Li ∣
rankf (xi, y)

(17)

where Li =
{
y′ ∣ rankf (xi, y′) ≤ rankf (xi, y), y′ ∈ Yi

}
. Note that avgpecS(f ) =1 ranks

perfectly, that means there is no instance xi for which a label not in Yi is ranked above

on a label in Yi.

5 Experimental Results

In this section, L21-ELM is compared with the performance of the original ELM

as well as other common multi-label classification algorithms. The benchmark data

sets we used are all in text areas, including: Enron for email analysis, Reuters for

text categorization, BibTeX for tags of paper and Yahoo for web page categorization.

Table 1 describes the datasets in detail. For Enron and Reuters without pre-separated

training and testing sets, therefore, we decide to select 1,500 instances of them for

Table 1 Data sets

Items Size Train Test Features Classes Average labels

Enron 1702 – – 1001 53 3.38

Reuters 2000 – – 243 7 1.15

BibTeX 7395 4880 2515 1836 159 2.40

Arts 5000 2000 3000 462 26 1.64

Business 5000 2000 3000 438 30 1.59

Computers 5000 2000 3000 681 33 1.51

Education 5000 2000 3000 550 33 1.46

Entertainment 5000 2000 3000 640 21 1.42

Health 5000 2000 3000 612 32 1.66

Recreation 5000 2000 3000 606 22 1.42

Reference 5000 2000 3000 793 33 1.17

Science 5000 2000 3000 743 40 1.45

Social 5000 2000 3000 1047 39 1.28

Society 5000 2000 3000 636 27 1.69
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Table 2 Results on data set Enron

Measure Rank-SVM ML-kNN ECC ELM L21-ELM

HL ↓ 0.071 ± 0.0044 0.051 ± 0.002 0.055 ± 0.002 0.053 ± 0.002 𝟎.𝟎𝟒𝟖 ± 𝟎.𝟎𝟎𝟐
OE ↓ 0.714 ± 0.087 0.299 ± 0.031 𝟎.𝟐𝟐𝟒 ± 𝟎.𝟎𝟑𝟔 0.281 ± 0.036 0.236 ± 0.0276
Co ↓ 31.269 ± 2.233 12.959 ± 0.832 21.079 ± 1.265 17.118 ± 1.176 𝟏𝟐.𝟖𝟎𝟗 ± 𝟎.𝟗𝟎𝟔
RL ↓ 0.338 ± 0.037 0.091 ± 0.008 0.249 ± 0.023 0.121 ± 0.012 𝟎.𝟎𝟖𝟒 ± 𝟎.𝟎𝟎𝟖
AP ↑ 0.312 ± 0.045 0.639 ± 0.018 0.636 ± 0.023 0.649 ± 0.019 𝟎.𝟔𝟖𝟑 ± 𝟎.𝟎𝟏𝟓
Time >100 16.1 61.7 0.6 3.4

Table 3 Results on data set Reuters

Measure Rank-SVM ML-kNN ECC ELM L21-ELM

HL↓ 0.093 ± 0.007 0.049 ± 0.003 0.036 ± 0.003 0.044 ± 0.004 𝟎.𝟎𝟑𝟑 ± 𝟎.𝟎𝟎𝟑
OE↓ 0.205 ± 0.056 0.126 ± 0.013 0.068 ± 0.009 0.091 ± 0.011 𝟎.𝟎𝟔𝟐 ± 𝟎.𝟎𝟏𝟏
Co↓ 0.639 ± 0.163 0.439 ± 0.035 0.350 ± 0.036 0.380 ± 0.034 𝟎.𝟐𝟕𝟔 ± 𝟎.𝟎𝟐𝟗
RL↓ 0.078 ± 0.027 0.045 ± 0.004 0.040 ± 0.006 0.034 ± 0.004 𝟎.𝟎𝟏𝟗 ± 𝟎.𝟎𝟎𝟑
AP↑ 0.867 ± 0.037 0.920 ± 0.007 0.953 ± 0.006 0.940 ± 0.006 𝟎.𝟗𝟔𝟐 ± 𝟎.𝟎𝟎𝟔
Time >100 3.4 2.8 1.8 2.6

Table 4 Results on data set Recreation

Measure Rank-SVM ML-kNN ECC ELM L21-ELM

HL↓ 0.061 0.064 0.070 ± 0.001 0.084 ± 0.001 𝟎.𝟎𝟓𝟖 ± 𝟎.𝟎𝟎𝟏
OE↓ 0.499 0.746 𝟎.𝟒𝟖𝟓 ± 𝟎.𝟎𝟎𝟓 0.577 ± 0.002 0.501 ± 0.023
Co↓ 4.066 5.432 6.365 ± 0.128 6.169 ± 0.060 𝟑.𝟗𝟓𝟓 ± 𝟎.𝟎𝟏𝟐
RL↓ 0.140 0.208 0.364 ± 0.008 0.228 ± 0.003 𝟎.𝟏𝟑𝟔 ± 𝟎.𝟎𝟎𝟏
AP↑ 0.608 0.422 0.569 ± 0.006 0.528 ± 0.002 𝟎.𝟔𝟏𝟏 ± 𝟎.𝟎𝟏𝟒
Time 95 19 34 3.5 15

Table 5 Results on data set BibTeX

Measure ML-kNN ECC ELM L21-ELM

HL↓ 0.014 0.017 ± 0.0001 0.014 ± 0.0001 0.015 ± 0.0002
OE↓ 0.585 𝟎.𝟑𝟕𝟏 ± 𝟎.𝟎𝟎𝟕 0.409 ± 0.005 0.461 ± 0.018
Co↓ 56.218 60.113 ± 0.369 37.266 ± 0.329 𝟐𝟑.𝟎𝟒𝟏 ± 𝟎.𝟒𝟑𝟔
RL↓ 0.217 0.463 ± 0.002 0.128 ± 0.001 𝟎.𝟎𝟖𝟏 ± 𝟎.𝟎𝟎𝟏
AP↑ 0.345 0.486 ± 0.003 0.516 ± 0.003 𝟎.𝟓𝟐𝟖 ± 𝟎.𝟎𝟏𝟓
Time 348 1007 40 94

training randomly and the rest data for testing. We repeat the data partition for thirty

times randomly, and give the “average results” ± “standard deviations”.

Table 2, 3, 4 and 5 shows the comparison results on a single data set. Among

them, the symbol “↓” means the smaller the better, “↑” on the contrary. HL, OE, Co,
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Table 6 Results on data set Yahoo

Measure Rank-SVM ML-kNN ECC ELM L21-ELM

HL↓ 0.046 ± 0.014 0.043 ± 0.014 0.051 ± 0.021 0.050 ± 0.019 𝟎.𝟎𝟒𝟐 ± 𝟎.𝟎𝟏𝟒
OE↓ 0.441 ± 0.118 0.471 ± 0.157 0.383 ± 0.123 0.437 ± 0.134 𝟎.𝟑𝟕𝟗 ± 𝟎.𝟏𝟐𝟓
Co↓ 𝟑.𝟓𝟔𝟒 ± 𝟏.𝟎𝟒𝟑 4.098 ± 1.237 8.563 ± 1.867 6.362 ± 1.207 4.836 ± 1.080
RL↓ 𝟎.𝟎𝟖𝟑 ± 𝟎.𝟎𝟑𝟏 0.102 ± 0.045 0.329 ± 0.080 0.154 ± 0.051 0.111 ± 0.034
AP↑ 0.661 ± 0.089 0.625 ± 0.117 0.621 ± 0.085 0.631 ± 0.104 𝟎.𝟔𝟖𝟓 ± 𝟎.𝟎𝟗𝟓
Time 213 19 45 3 17

RL and AP are the abbreviations of hamming loss, one-error, coverage, ranking loss

and average precision respectively, unit of Time (training) is seconds. The number of

ELM hidden layer nodes is randomly setted but not more than the training samples

and the best results are selected.

Overall, compared with other algorithms,L21-ELM achieves the best performance

in most case. Especially, it shows the absolute advantage on coverage, ranking loss

and average precision in all datasets. On hamming loss it is worse than Rank-SVM

only on BibTeX data set, and performs better on other cases. On one-error, ECC

achieves comparable performance with other approaches. Without consideration of

ECC, L21-ELM outperforms other approaches by the metric of one-error.

Compared with the original ELM approach, L21-ELM achieves obviously better

performance on almost all datasets over all the 5 criteria. This validates the effective-

ness of the L21-norm regularization on the original ELM and eliminating redundant

information.

On the training time, the ELM group has faster training time than other app-

roaches. This validates that L21-ELM could fully inherit the merits of ELM with

extreme learning speed. Compared with original ELM, L21-ELM consumes more

training time, but considering its better performance it is worth.

Note that Yahoo is comprised of 11 independent data sets, including: Arts, Busi-

ness, Computers, Education, Entertainment, Health, Recreation, Reference, Science,

Social and Society. We just give the average results over the 11 data sets. From the

results as Table 6 shows, our approach could also achieve a better performance rela-

tively.

6 Conclusion

In this paper, we propose a L21-norm Minimization ELM algorithm for multi-label

learning problem, which not only inherits the advantage of ELM but also offers

us additional characteristics. Through the constraint of the L21-norm regularization

on the original ELM, the output weights matrix of the hidden layer nodes become

sparse and then leading to the simplification of the learning model. Experimental
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results validate that L21-ELM has highly competition to state-of-the-art multi-label

algorithms (e.g. Rank-SVM, ML-kNN and ECC) especially in training time. Our

approach greatly improves the performance of the original ELM, although it sacri-

fices more time.
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Cluster-Based Outlier Detection Using
Unsupervised Extreme Learning Machines

Xite Wang, Derong Shen, Mei Bai, Tiezheng Nie, Yue Kou and Ge Yu

Abstract Outlier detection is an important data mining task, whose target is to find

the abnormal or atypical objects from a given data set. The techniques for detecting

outliers have a lot of applications, such as credit card fraud detection, environment

monitoring, etc. In this paper, we proposed a new definition of outlier, called cluster-

based outlier. Comparing with the existing definitions, the cluster-based outlier is

more suitable for the complicated data sets that consist of many clusters with differ-

ent densities. To detect cluster-based outliers, we first split the given data set into a

number of clusters using unsupervised extreme learning machines. Then, we further

design a pruning method technique to efficiently compute outliers in each cluster. at

last, the effectiveness and efficiency of the proposed approaches are verified through

plenty of simulation experiments.

Keywords Outlier detection ⋅ Cluster-based ⋅ Unsupervised extreme learning

machines

1 Introduction

Outlier detection is an important issue of data mining, and it has been widely studied

by many scholars for years. According to the description in [1], “an outlier is an

observation in a data set which appears to be inconsistent with the remainder of that

set of data”. The techniques for mining outliers can be applied to many fields, such

as credit card fraud detection, network intrusion detection, environment monitoring,

and so on.

There exist two primary missions in the outlier detection. First, we need to define

what data are considered as outliers in a given set. Second, an efficient method to

compute these outliers needs to be designed. The outlier problem is first studied
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Fig. 1 Example of outliers
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by the statistics community [2, 3]. They assume that the given data set follows a

distribution, and an object is considered as an outlier if it shows distinct deviation

from this distribution. However, it is almost an impossible task to find an appropri-

ate distribution for high dimensional data. To overcome the drawback above, some

model-free approaches are proposed by the data management community. Exam-

ples include distance-based outliers [4–6] and the density-based outlier [7]. Unfor-

tunately, although these definitions do not need any assumption on the data set, some

shortcomings still exist in them. Therefore, in this paper, we propose a new definition,

the Cluster-Based (CB) outlier. The following example discusses the weaknesses of

the existing model-free approaches and the motivation of our work.

As Fig. 1 shows, there are a denser cluster C1 and a sparse cluster C2 in a 2-

dimensional data set. Intuitively, points p1 and p2 are the outliers because they show

obvious differences from the other points. However, in the definitions of the distance-

based outliers, a point p is marked as an outlier depending on the distances from p
to its k-nearest neighbors. Then, most of the points in the sparse cluster C2 are more

likely to be outliers, whereas the real outlier p1 will be missed. In fact, we must

consider the localization of outliers. In other words, to determine whether a point p
in a cluster C is an outlier, we should only consider the points in C, since the points in

the same cluster usually have similar characters. Therefore, in Fig. 1, p1 from C1 and

p2 from C2 can be selected correctly. The density-based outlier [7] also considers the

localization of outliers. For each point p, they use the Local Outlier Factor (LOF)

to measure the degree of being an outlier. To compute the LOF of p, we need to

find the set of its k-nearest neighbors nnk(p) and all the k-nearest neighbors of each

point in nnk(p). The expensive computational cost limits the practicability of the

density-based outlier. Therefore, we propose the CB outlier to conquer the above

deficiencies. The formal definition will be described in Sect. 3.1.

To detect CB-outliers in a given set, the data need to be clustered first. In this

paper, we employ the Unsupervised Extreme Learning Machine (UELM) [8] for

clustering. The Extreme Learning Machine (ELM) is a novel technique proposed by

Huang et al. [9–11] for pattern classification, which shows better predicting accu-

racy than the traditional Support Vector Machines (SVMs) [12–15]. Thus far, the

ELM techniques have attracted the attention of many scholars and various exten-

sions of ELM have been proposed [16]. UELM [8] is designed for dealing with the

unlabeled data, and it can efficiently handle clustering tasks. The authors show that
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UELM provides favorable performance compared with the state-of-the art clustering

algorithms [17–20].

This paper focuses on the problem of CB-outlier detection using UELM. The

main contributions are summarized as follows. We propose the definition of CB out-

lier, which shows remarkable advantages than the existing definitions in complicated

data sets (i.e., the data set consists of many clusters with different densities). We

propose an efficient algorithm to detect CB outliers. The algorithm adopts a pruning

strategy to improve the searching speed of k-nearest neighbors (kNNs). At last, we

design a series of experiments to testify the effectiveness of the approaches proposed

in this paper.

The rest of paper is organized as follows. Section 2 gives brief overviews of ELM

and UELM. Section 3 formally defines the CB outlier and gives the method to detect

CB-outliers. Section 4 analyzes the experimental results. Section 5 gives the related

work of outlier detection. Section 6 concludes the paper.

2 Preliminaries

2.1 Brief Introduction to ELM

The target of ELM is to train a single layer feedforward network from a training

set with N samples, {X,Y} = {xi, yi}Ni=1. Here xi ∈ ℝd
, and yi is a M-dimensional

binary vector where only one entry is “1” to represent the class that xi belongs to.

The training process of ELM includes two stages. In the first stage, we build the

hidden layer with L nodes using a number of mapping neurons. In details, for the

jth hidden layer node, a d-dimensional vector aj and a parameter bj are randomly

generated. Then, for each input vector xi, the relevant output value on the jth hidden

layer node can be acquired using an activation function such as the Sigmoid function

below.

g(xi, aj, bj) =
1

1 + exp(−(aTj × xi + bj))
(1)

Then, the matrix outputted by the hidden layer is

H =
⎡
⎢
⎢
⎣

g(x1, a1, b1) ... g(x1, aL, bL)
⋮ ⋮

g(xN , a1, b1) ... g(xN , aL, bL)

⎤
⎥
⎥
⎦N×L

(2)

In the second stage, a M-dimensional vector 𝜷 j is the output weight that connects

the jth hidden layer with the output node. The output matrix Y is acquired by Eq. 3.

H ⋅ 𝜷 = Y (3)
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where

𝜷 =
⎡
⎢
⎢
⎣

𝜷1
⋮
𝜷L

⎤
⎥
⎥
⎦L×M

and Y =
⎡
⎢
⎢
⎣

y1
⋮
yN

⎤
⎥
⎥
⎦N×M

(4)

We have known the matrixes H and Y. the target of ELM is to solve the output

weights 𝜷 by minimizing the square losses of the prediction errors, leading to the

following equation.

min
𝜷∈ℝL×M

LELM = 1
2
∥ 𝜷 ∥ 2 + C

2
∥ Y −H𝜷 ∥ 2

s.t. H𝜷 = Y − e
(5)

where ∥ ⋅ ∥ denotes the Euclidean norm, e = Y −H𝜷 = [eT1 ,… , eTN] ∈ ℝN×M
is the

error vector with respect to the training samples and C is a penalty coefficient on

the training errors. The first term in the objective function is a regularization term

against over-fitting.

If N ≥ L, which means H has more rows than columns and it is full of column

rank, Eq. 6 is the solution for Eq. 5.

𝜷∗ = (HTH +
IL
C
)−1HTY (6)

If N < L, a restriction that 𝜷 is a linear combination of the rows of H: 𝜷 =
HT𝜶(𝜶 ∈ ℝN×M) is considered. Then 𝜷 can be calculated by Eq. 7.

𝜷∗ = HT𝜶∗ = HT (HHT +
IN
C
)−1Y (7)

where IL and IN are the identity matrices of dimensions L and N, respectively.

2.2 Unsupervised ELM

Huang et al. [8] proposed UELM to process unsupervised data set, which shows

good performance in clustering tasks. The unsupervised learning is based on the

following assumption: if two points x1 and x2 are close to each other, their conditional

probabilities P(y|x1) and P(y|x2) should be similar. To enforce this assumption on

the data, we acquire the following equation:

Lm = 1
2
∑

i,j
wij ∥ P(y|xi) − P(y|xj) ∥2 (8)
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Algorithm 1: UELM Algorithm [8]

input : The training data: X ∈ ℝN×d
.

output: The label vector of cluster yi corresponding to xi
a) Construct the graph Laplacian L of X;1
b) Generate a pair of random values {ai, bi} for each hidden neuron, and calculate the output2
matrix H ∈ ℝN×L

;

c)3
if L ≤ N then4

Find the generalized eigenvectors v2,… , vM+1 of Eq. 11. Let 𝜷 = [ṽ2, ṽ3,… , ṽM+1].5

else6
Find the generalized eigenvectors u2,… ,uM+1 of Eq. 13. Let 𝜷 = HT [ũ2, ũ3,… , ũM+1];7

d) Calculate the embedding matrix: E = H𝜷;8
e) Treat each row of E as a point, and cluster the N points into K clusters using the k-means9
algorithm. Let Y be the label vector of cluster index for all the points.

return Y;10

where wij is the pair-wise similarity between xi and xj, which can be calculated by

Gaussian function exp(− ∥ xi − xj ∥2 ∕2𝜎2).
Since it is difficult to calculate the conditional probabilities, the following Eq. 9

can approximate Eq. 8.

̂Lm = Tr(̂Y
T
L̂Y) (9)

where Tr(⋅) denotes the trace of a matrix, ̂Y is the predictions of the unlabeled dataset,

L = D −W is known as graph Laplacian, andD ia a diagonal matrix with its diagonal

elements Dii =
u∑

j=1
wij.

In the unsupervised learning, the data set X = {xi}Ni=1 is unlabeled. Substituting

Eq. 9 to Eq. 5, the objective function of UELM is acquired.

min
𝜷∈ℝL×M

∥ 𝜷 ∥2 +𝜆Tr(𝜷THTLH𝜷) (10)

where 𝜆 is a tradeoff parameter. In most cases, Eq. 10 reaches its minimum value at

𝜷 = 𝟎. In [18], Belkin et al. introduced an additional constraint (H𝜷)TH𝜷 = IM . On

the base of the conclusion in [8], if L ≤ N, we can obtain the following equation.

(IL + 𝜆HTLH)v = 𝛾HTHv (11)

Let 𝛾i be the ith smallest eigenvalues of Eq. 11 and vi be the corresponding eigen-

vectors. Then the solution of the output weights 𝜷 is given by

𝜷∗ = [ṽ2, ṽ3,… , ṽM+1] (12)

where ṽi = vi∕ ∥ Hvi ∥, i = 2,… ,M + 1 is the normalized eigenvectors.
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If L > N, Eq. 11 is underdetermined. We obtain the alternative formulation below.

(IN + 𝜆LHHT )u = 𝛾HHTu (13)

Again, let ui be the generalized eigenvectors corresponding the ith smallest eigen-

values of Eq. 13. Then, the final solution is

𝜷∗ = HT [ũ2, ũ3,… , ũM+1] (14)

where ũi = ũi∕ ∥ HHT ũi ∥, i = 2,… ,M + 1 are the normalized eigenvectors. Algo-

rithm 1 shows the process of UELM.

3 CB Outlier Detection Using UELM

In this section, we first give the formal definition of the CB outlier. Then, we design

an efficient algorithm to compute CB outliers from a given data set.

3.1 Defining CB Outliers

For a given data set P in a d-dimensional space, a point p is denoted by p =<
p[1], p[2],… , p[d] >. The distance between two points p1 and p2 is dis(p1, p2) =√

∑d
i=1 (p1[i] − p2[i])2. Suppose that there are m clusters C1,C2,… ,Cm in P out-

putted by UELM. For each cluster Ci, the centroid point Ci.centr can be computed

by the following equation.

Ci.centr[i] =

∑

p∈Ci

p[i]

|Ci|
(15)

Intuitively, in a cluster C, most of the normal points are closely around the cen-

troid point of C. In contrast, an abnormal point p (i.e., outlier) is usually far from

the centroid point and the number of points close to p is quite small. Based on this

observation, the weight of point is defined as follows.

Definition 1 (Weight of a point) Given an integer k, for a point p in cluster C, we

use nnk(p) to denote the set of the k-nearest neighbors of p in C. Then, the weight of

p is

w(p) =
dis(p,C.centr) × k
∑

q∈nnk(p)
dis(q,C.centr)

(16)
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Definition 2 (Result set of CB outlier detection) For a data setP, given two integers k
and n, let RCB be a subset of Pwith n points. If ∀p ∈ RCB, there is no point q ∈ P∖RCB
that w(q) > w(p), RCB is the result set of CB outlier detection.

For example in Fig. 1, in cluster C2, the centroid point is marked in red. For k = 2,

the k-nearest neighbors of p2 are p4, p5. Because p2 is an abnormal point and it is far

from the centroid point, dis(C2.centr, p2) is much larger than dis(C2.centr, p4) and

dis(C2.centr, p5). Hence, the weight of p2 is large. In contrast, for a normal point p3
deep in the cluster, the distances from C2.centr to its k-nearest neighbors are similar

to dis(C2.centr, p3). The weight of p3 is close to 1. Therefore, p2 is more likely to be

considered as a CB outlier.

3.2 The Algorithm for Detecting CB Outliers

According to Definitions 1 and 2, to determine whether a point p in a cluster C is

an outlier, we need to search the k-nearest neighbors (kNNs) of p in C. In order to

accelerate the kNN searching, we design an efficient method to prune the searching

space.

For a cluster C, suppose that the points in C have been sorted according to the

distances to the centroid point in ascending order. For a point p in C, we scan the

points to search to its kNNs. Let nntempk (p) be the set of k points that are the near-

est to p from the scanned points, and kdistemp(p) be the maximum value of the dis-

tances from the points in nntempk (p) to p. Then, the pruning method is described as

follows.

Theorem 1 For a point q in front of p, if dis(q,C.centr) < dis(p,C.centr)−
kdistemp(p), the points in front of q and q itself cannot be the kNNs of p.

Proof For a point q′ in front of q, because the points in C have been sorted,

dis(q′,C.centr) < dis(q,C.centr). Then, according to the triangle inequality, the dis-

tance from q′ to p: dis(q′, p) > dis(p,C.centr) − dis(q′,C.centr) > dis(p,C.centr) −
dis(q,C.centr) > dis(p,C.centr) − (dis(p,C.centr) − kdistemp(p)) = kdistemp(p).
Clearly, there exist k points closer to p than q′, thus q′ cannot be the kNN of p.

Similarly, for a point q at the back of p, if dis(q,C.centr) > dis(p,C.centr) +
kdistemp(p), the points at the back of q and q itself cannot be the kNNs of p.

For example, Fig. 2 shows a portion of points in a cluster C. First, we sort the

points according to the distances to the centroid point, and obtain a point sequence

p9, p7, p5, p3, p1, p, p2, p4, p6, p8. For point p, we search its kNNs from p to both

sides (k = 2). After p1, p2, p3 are visited, p1 and p3 are the current top-k nearest

neighbors for p, thus kdistemp(p) = dis(p, p1). When we visit p4, dis(p4,C.centr) >
dis(p,C.centr) + kdistemp(p). Hence, the points behind p4 in the sequence (i.e.,

p4, p6, p8) cannot be the kNNs of p. Similarly, when p5 is visited, we do not need

to further scan the points before p5 in the sequence because dis(p5,C.centr) <
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Fig. 2 Example of kNN
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dis(p,C.centr) − kdistemp(p). Therefore, the kNN searching stops, the exact kNNs

of p are p1 and p3.

4 Experimental Evaluation

In this section, we evaluate the performance of the proposed algorithm for CB out-

lier detection using a PC with an Intel Core i7-2600 @3.4 GHz CPU, 8 GB main

memory and 1 TB hard disk. A synthetic data set is used for the experiments. In

details, given the data size N, we generate N/1000 − 1 clusters, and randomly assign

each of them a center point and a radius. In average, each cluster has 1000 points

following Gaussian distribution. At last, the remaining 1000 points are scattered

into the space. We implement the proposed method to detect CB outliers (CBOD)

described in Sect. 3.2 using JAVA programming language. A naive method (naive)

is also implemented as a comparing algorithm, where we simply search each point’s

kNNs and compute its weight. In the experiments, we mainly concern the runtime to

represent the computational efficiency, and the Point Accessing Times (PAT) to indi-

cate the disk IO cost. The parameters’ default values and their variations are showed

in Table 1.

As Fig. 3a shows, CBOD is much more efficient than the naive method because

of the pruning strategy proposed in this paper. With the increase of k, we need to

keep tracking more neighbors for a point, so the runtime of the naive method and the

Table 1 Parameter Settings Parameter Default Range of variation

k 20 15–35

n 30 20–40

Data size |P|
(×106)

1 0.5–2.5

Dimensionality d 3 3–15
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Fig. 3 The effect of parameter k. a Time cost versus k. b Point accessing times versus k

CBOD becomes larger. Figure 3b shows the effect of k on the PATs. For the naive

method, each point needs to visit all the other points in the cluster to find its kNNs.

Hence, PATs are large. In contrast, for CBOD, a point does not have to visit all the

other points (Theorem 1). Therefore, the PATs are much smaller.

Figure 4 describes the effect of n. As n increases, more outliers are reported. Thus,

the runtime of the naive method and the CBOD becomes larger. The effect on the

PATs is showed in Fig. 4b, whose trend is similar to that in Fig. 3b. Note that the

PATs of CBOD increase slightly with n, whereas the PATs of the naive method keep

unchanged.

In Fig. 5, with the increase of the dimensionality, a number of operations (e.g.

computing the distance of two points) become more time-consuming. Hence, the

time cost of the two methods becomes larger. But, the variation of the dimensionality

does not affect the PATs. The affect of the data size is described in Fig. 6. Clearly,

with the increase of the data size, we need to scan more points to find the outliers.

Therefore, both of the runtime and the PATs are liner to the data size.
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5 Related Work

Outlier detection is an important task in the area of data management, whose target

is to find the abnormal objects in a given data set. The statistics community [2, 3]

proposed the model-based outliers. The data set are assumed to follow a distribution.

An outlier is the object that shows obvious deviation from the assumed distribution.

Later, the data management community pointed out that building a reasonable distri-

bution is almost an impossible task for high-dimensional data set. To overcome this

weakness, they proposed several model-free approaches [21], including distance-

based outliers [4–6], density-based outliers [7] and etc.

A number of studies focus on developing efficient methods to detect outliers.

Knorr and Ng [4] proposes the well-known Nested-Loop (NL) algorithm to compute

distance-based outliers. Bay et al. [22] proposed an improved nested loop approach,

called ORCA. The approach efficiently prunes the searching space by randomizing

the data set before outlier detection. Angiulli et al. [23] proposed DOLPHIN, which

can reduce the disk IO cost through maintaining a small subset of the input data in

main memory. Several researchers adopt the spatial indexes to further improve the
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computing efficiency. Examples include R-tree [24], M-tree [25], grids. However,

the performance of these methods are quite sensitive to the dimensionality.

6 Conclusion

In this paper, we study on the outlier detection problem and proposed a new definition

of outlier, called cluster-based outlier, which shows significant advantages than the

existing definitions for complicated data sets. To detect cluster-based outliers, we

first use unsupervised extreme learning machines to cluster the data in the given set.

Then, we design a pruning method to reduce the kNN searching space. Finally, we

evaluate the performance of the proposed approaches through a series of simulation

experiments. The experimental results show that our method can effectively reduce

the runtime and the disk IO cost for CB outlier detection.
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Segmentation of the Left Ventricle
in Cardiac MRI Using an ELM Model

Yang Luo, Benqiang Yang, Lisheng Xu, Liling Hao, Jun Liu,
Yang Yao and Frans van de Vosse

Abstract In this paper, an automatic left ventricle (LV) segmentation method
based on an Extreme Learning Machine (ELM) is presented. Firstly, according to
background and foreground, all sample pixels of Magnetic Resonance Imaging
(MRI) images are divided into two types, and then 23-dimensional features of each
pixel are extracted to generate a feature matrix. Secondly, the feature matrix is input
into the ELM to train the ELM. Finally, the LV is segmented by the trained ELM.
Experimental results show that the mean speed of LV segmentation based on the
ELM is about 25 times faster than that of the level set, about 7 times faster than that
of the SVM. The mean values of mad and maxd of image segmentation based on
the ELM is about 80 and 83.1 % of that of the level set and the SVM, respectively.
The mean value of dice of image segmentation based on the ELM is about 8 and
2 % higher than that of the level set and the SVM, respectively. The standard
deviation of the proposed method is the lowest among all three methods. The results
prove that the proposed method is efficient and satisfactory for the LV
segmentation.
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1 Introduction

Cardiovascular disease is one of the main reasons of death over the past decades in
the world. Cardiac magnetic resonance imaging (MRI) has proven to be a versatile
and noninvasive imaging modality. Some techniques are used for the diagnoses of
heart diseases. The MRI of the left ventricle (LV) is very important for the
assessment of stroke volume, ejection fraction, and myocardial mass, as well as
regional function parameters such as wall motion and wall thickening [1]. To
perform a quantitative analysis of a LV, doctors need an accurate segmentation of
the LV which can provide the anatomical and functional information of a heart, so it
can be widely applied in clinical diagnoses [2, 3]. The segmentation of cardiac MRI
images is one of the most critical prerequisites for quantitative study of the LV.

So far, in clinical practice, the segmentation of the LV is almost completed
manually. This workload, however, is too heavy and time-consuming, subjective
and irreproducible. Therefore, it is attractive to develop accurate and automatic
segmentation algorithms for clinical applications.

This paper is organized as follows. Section 2 briefly reviews the related works on
the segmentation of LV. In Sect. 3, this paper introduces the basic theory of ELM.
In Sect. 4, the image segmentation methods are introduced in detail. The experi-
mental results of the segmentation of LV based on the ELM are presented in
Sect. 5. In Sect. 6, the conclusions are offered.

2 Related Works

In recent years, many methods have been proposed for LV segmentation. They can
be classified into two types: deformable models and image-based methods.
A complete review of recent literature is given in [3].

Deformable models include snakes [4–6], level set [7, 8], and their variants
[9–11]. Deforming curves are derived iteratively in accordance with the mini-
mization of an energy function which is composed of a data-driven term. A random
active contour scheme for automatic image segmentation was proposed in [12].

Image-based approaches include thresholding [13], pixel-based classification
[14–16], region-based and edge-based approaches. Otsu approaches [17] were
employed by Lu [18] and Huang [19] in LV segmentation of cardiac MRI. How-
ever, the Otsu approach, which is based on the histogram of objects in the image,
could be biased from the optimal threshold [20]. Dynamic programming
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(DP) approach is used to find boundaries of the LV in MRI images [21, 22].
However, due to the complex boundaries of the myocardium [23], the performance
of the DP approach sometimes is poor in boundary extraction.

3 A Brief Introduction to the Extreme Learning Machine

The extreme learning machine (ELM) is a learning algorithm, whose speed can be
thousands of times faster than traditional feedforward network learning algorithms,
and which has better generalization performance [24].

Given N arbitrary different samples ðXi, tiÞ, where Xi = ½xi1, xi2, . . . , xin�T ∈Rn,
and ti = ½ti1, ti2, . . . , tim�T ∈Rm, standard SLFNs with M hidden nodes and activation
function gðxÞ are modeled as

∑
M

i=1
βigiðxjÞ= ∑

M

i=1
βigðwi ⋅ xj +biÞ=oj j=1, . . . ,Nð Þ ð1Þ

where M is the number of the hidden layer nodes,wi = ½wi1,wi2, . . . ,win�T is the
input weight vector, βi = ½βi1, βi2, . . . , βim�T is the output weight vector, and bi is the
threshold of the ith hidden node. wi ⋅ xj is the inner product of wi and xj [24].

If only the activation function is infinitely differentiable, the input weights and
hidden layer biases can be randomly generated [24]. All the parameters of SLFNs
need to be adjusted; training an SLFN is simply equivalent to finding a least squares
solution bβ of the linear system Hβ=T:

Hðw1, . . . , wM , b1, . . . , bMÞbβ−T
��� ���=min Hðw1, . . . , wN ̃, b1, . . . , bN ̃Þβ−T

�� ��.
ð2Þ

If the number M of the hidden nodes equals the number N of distinct training
samples, matrix H is square and invertible, and SLFNs can approximate these
training samples with zero error. However, in most cases the number of hidden
nodes is much less than the number of distinct training samples, M≪N, H is a
non-square matrix and there may not exist wi, bi, βi such that Hβ=Twhere

H w1, . . . , wM , b1, . . . , bM , x1, . . . , xNð Þ=
g w1 ⋅ x1 + b1ð Þ ⋯ g wM ⋅ x1 + bMð Þ

⋮ ⋯ ⋮
g w1 ⋅ xN + b1ð Þ ⋯ g wM ⋅ xN + bMð Þ

24 35
N ×M

, ð3Þ

β=
βT1
⋮
βTM

24 35
M ×m

and T=
tT1
⋮
tTN

24 35
N ×m

ð4Þ
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bβ=H†T, ð5Þ

where H† is the Moore–Penrose generalized inverse of matrix H. The ELM
algorithm [24] can be described as follows [25].

Algorithm: ELM
1: for i = 1 to M do
2: randomly assign input weight wi

3: randomly assign bias bi
4: calculate H

5: calculate bβ=H†T

4 Methods

The whole algorithm of this image segmentation includes pre-processing tech-
niques, training ELM, classification and post-processing as shown in Fig. 1.

4.1 Pre-processing Training Data and Training ELM

The pre-processing procedure of training data consists of the following steps:

1. Three typical images in cardiac MRI were selected as sample images.
2. All the pixels were selected from the LV of the ground truth, which were labeled

as 1. The region of the LV was extended, and then all the pixels were selected
from the extended region, which were labeled as 0 [26].

3. In addition to gray level value, gray mean value and gray median, representative
features related to gray level co-occurrence matrix(GLCM) [27] such as energy,
contrast, correlation entropy and inverse from 4 directions via a 5 × 5 window
were used to represent a pixel, amounting to 23-dimentional features. Feature
vectors of all pixels of an image were concentrated to generate a feature matrix.

4. Pre-processing procedure of each image includes steps 2–4, three feature
matrices were merged into a feature matrix at last, whose values are normalized
to [0, 1].

The training ELM is to find optimal parameters. The ELM kernel used in the
pro-posed algorithm is Sigmoid function and the number of hidden nodes is 100,
which are selected through multiple trials and means the optimal performance.
Owing to the randomness of the input weights and hidden layer biases, in order to
find the optimal input weights and hidden layer biases to gain optimal segmentation
performance, therefore, the segmentations of images were performed over and over.

150 Y. Luo et al.



4.2 Pre-processing Testing Data

The pre-processing procedure of testing data consists of the following steps:

1. A fitting threshold of the image was found using the Otsu method, and then the
original image was converted into a binary image.

2. Little objects in the binary image were removed, whose areas are less than 300
pixels. The contours of the remaining objects were depicted.

Select two types of pixels from the LV of the 

ground truth and the extended region respectively

Extract 23-dimentional features and generate a

feature matrix

Train ELM and save optimal parameters 

Classify testing pixels into two classes using the 

trained ELM

Depict LV contour and smoothing

Begin

Input 3 sample images

Locate the contour of the segmented LV, select all 

pixels in the contour as the testing pixels 

End

Extract 23-dimentional features and generate a

feature matrix

Pre-processing

training data

Training ELM

Pre-processing

testing data

Classification

Post-processing

Fig. 1 Workflow of the proposed segmentation algorithm
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3. Due to the shape of LV approximating a circle, the roundness of each remaining
object was calculated, and then the object which owned the biggest roundness is
the LV, the LV was located approximately.

4. Usually, the errors of the contour of the LV aren’t satisfactory, therefore,
the morphological methods were used to process the contour, and as a result, the
processed LV con tour included almost all the pixels of the LV regarded as the
testing pixels set.

5. By the same methods (introduced in Sect. 4.1) 23-dimentional features of each
pixel of the testing pixels set were extracted to generate a feature matrix.

4.3 Classification and Post-processing

All pixels were classified into two classes by using the trained ELM, namely one
class belongs to the LV and the other one belongs to the non-LV. The LV contour
was depicted and smoothed using the open-close operation in mathematical mor-
phology, the segmentation results are shown in Fig. 2.

5 Results

5.1 Evaluation Measures

In this paper, a convenient tool for researchers is adopted to test and compare the
segmentation results of the proposed method; the level set method and the SVM
method easily and objectively. From the point of view of accuracy, several mea-
sures are used in our experiments, including mean absolute deviation (MAD),
maximum absolute deviation (MAXD) and Dice Similarity Coefficient (DSC).

Fig. 2 ELM segmentation results of images (a–d). Green and red contours are obtained with
manual and automatic segmentation, respectively
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5.2 Performance

In this section, the performance of LV segmentation based on an ELM is studied
through evaluating its efficiency and effectiveness. The algorithms are coded in
MATLAB. All experiments are conducted on a 3.2-GHz PC with 4G memory
running window 7. Real datasets are used in the experiments. The dataset includes a
total of 1000 images whose sizes are 216 × 256 or 256 × 216.

Figures 2, 3 and 4 illustrate the segmentation results of the proposed method, the
level set method and the SVM method of images (a), (b), (c), (d), respectively. The
segmented LVs are delineated by red pixels. Green contours are obtained by
manual segmentation. Many experiments were conducted on image segmentation
based on the ELM. Among these experiments, the optimal performance is obtained,
when the number of hidden layer nodes equals 100, and activate function is Sig-
moid function.

Table 1 lists mad, maxd, dice, and time of our proposed method, the level set
method and the SVM method about 24 images, respectively. From Table 1, it can
be seen that the mean mad of proposed method is about 0.64 pixels, its standard
deviation is about 0.18 pixels, the mean maxd of the proposed method is about 2.25
pixels, its standard deviation is about 0.71 pixels and the mean dice of the proposed

Fig. 3 Level set segmentation results of images (a–d). Green and red contours are obtained with
manual and automatic segmentation, respectively

Fig. 4 SVM segmentation results of images (a–d). Green and red contours are obtained with
manual and automatic segmentation, respectively
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method can reach up to 92 %, its standard deviation is about 2.67 %. The mean
computation time of the proposed method is 0.36 s.The proposed method runs
about 25 times faster than the level set method, about 7 times faster than the SVM
method. The dice of image segmentation based on the ELM is about 8 and 2 %
higher than that of the image segmentation based on the level set and the SVM,
respectively. The standard deviation of our proposed method is the lowest in all
three methods.

In order to further evaluate the performance of the proposed method, the local
distributions of segmentation errors and the similarity between the segmentation
and the ground truth have been illustrated in Fig. 5, respectively. The boxplots
indicate the median, lower and upper quartiles of mad, maxd, dice of the above

Table 1 Segmentation accuracy and speed on the ELM, the level set, the SVM

Id Mad Maxd Dice (%) Time
#1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3

1 0.50 0.66 0.80 1.41 2.00 2.24 95 88 91 0.73 9.30 3.67
2 0.50 0.51 0.70 1.41 2.00 2.00 95 89 91 0.73 8.41 2.42
3 0.99 0.57 0.60 3.16 2.24 2.24 87 88 92 0.19 7.94 2.11
4 0.63 0.98 0.77 2.00 2.83 3.00 91 83 89 0.16 8.72 1.64
5 0.65 0.97 0.65 2.24 2.83 2.00 92 82 92 0.27 7.89 2.17
6 0.62 0.85 0.64 2.00 2.24 1.41 92 84 92 0.25 8.14 2.14
7 0.35 0.65 0.53 1.41 2.00 1.41 96 91 95 0.28 8.53 3.23
8 0.24 0.67 0.77 1.41 2.24 2.00 96 85 88 0.31 8.56 1.76
9 0.54 1.41 0.77 2.00 3.00 3.00 92 81 88 0.25 9.30 1.70
10 0.47 0.49 0.32 2.83 1.41 1.00 95 90 97 0.33 9.11 3.01
11 0.53 0.62 0.44 1.41 2.00 1.41 92 85 93 0.31 9.33 1.78
12 0.67 0.63 0.75 3.61 3.61 4.00 90 84 89 0.31 8.85 1.86
13 0.70 1.12 0.96 2.00 8.54 4.12 93 84 90 0.41 8.88 3.15
14 0.58 0.48 1.14 2.00 1.41 7.00 93 89 85 0.34 9.63 2.36
15 0.74 0.77 0.83 2.24 2.24 2.00 92 87 91 0.39 8.75 3.17
16 0.52 0.77 0.53 2.00 2.24 2.00 95 87 94 0.44 8.33 3.24
17 0.89 0.63 0.74 3.00 2.00 2.24 90 89 91 0.42 9.41 2.81
18 0.95 0.49 0.54 3.00 1.41 3.00 88 89 93 0.44 8.81 2.61
19 0.80 1.30 1.08 2.83 4.00 3.16 91 79 87 0.45 9.22 2.59
20 0.66 0.79 0.89 2.24 2.24 2.83 93 86 90 0.48 8.63 2.93
21 0.71 0.91 0.75 2.24 2.24 2.24 92 84 91 0.56 8.89 2.90
22 0.50 0.61 0.49 1.41 1.00 1.41 94 88 94 0.58 8.97 2.67
23 0.80 0.78 1.34 2.24 2.24 3.00 86 79 77 0.56 9.11 1.73
24 0.81 1.41 1.35 4.00 5.39 5.39 89 74 82 0.53 9.42 2.45
Mean 0.64 0.80 0.77 2.25 2.64 2.67 92 85 90 0.36 8.84 2.50
Std 0.18 0.27 0.26 0.71 1.53 1.34 2.67 4.05 4
#1 denotes the ELM method, #2 denotes the level set method, #3 denotes the SVM method
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three methods directly. It can be seen from Fig. 5 that the proposed method out-
performs the other two methods since it obtains the higher dice and the lower mad
and maxd than the other two methods.

6 Conclusions

This paper describes a new automatic LV segmentation method based on an ELM
in cardiac MRI images in short-axis MRI view. This method takes into account the
intensity inhomogeneity which often occurs in the left ventricular cavity and may
cause many difficulties in image segmentation. Some images processing methods
such as the morphological dilatation and the open-close operation in mathematical
morphology have been used in the procedures of segmenting MRI images. Firstly,
in accordance with background and foreground all the sample pixels were divided
into two classes and then 23-dimensional features of each pixel were extracted to
generate a feature matrix. Secondly, an ELM was trained using the feature matrix.
Finally, the LV image was segmented using the trained ELM. Experimental results
show that the mean speed of LV segmentation based on the ELM is about 25 times

Fig. 5 Box plots of mad (a), maxd (b), and dice (c) between the ELM method, the level set
method and the SVM method
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faster than that of the level set method, about 7 times faster than that of the SVM
method, and in terms of the mad metric, maxd metric and dice metric, the image
segmentation based on the proposed method is slightly better than those of the level
set method and the SVM method. The results of this study prove that the proposed
method is efficient and satisfactory for segmentation of LV.
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Channel Estimation Based on Extreme
Learning Machine for High Speed
Environments

Fang Dong, Junbiao Liu, Liang He, Xiaohui Hu and Hong Liu

Abstract Due to the complexity and extensive application of wireless systems,

channel estimation has been a hot research issue, especially for high speed envi-

ronments. High mobility challenges the speed of channel estimation and model opti-

mization. Unlike conventional estimation implementations, this paper proposes a

new channel estimation method based on extreme learning machine (ELM) algo-

rithm. Simulation results of path loss estimation and channel type estimation show

that the ability of ELM to provide extremely fast learning make it very suitable for

estimating wireless channel for high speed environments. The results also show that

channel estimation based on ELM can produce good generalization performance.

Thus, ELM is an effective tool in channel estimation.
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1 Introduction

High-speed railways (HSR) and highway networks have developed rapidly for nearly

ten years to meet people’s travel needs. This explosive increase of high speed trans-

portation raises higher requirements for wireless communication systems, including

train ground communication (TGC) system [1], communication based train control

(CBTC) system, vehicle ad hoc network (VAN) [2], vehicle to vehicle (V2V) com-

munication, etc.

However, the speed of trains can reach 350 km/h and the speed of vehicles is

up to 120 km/h, which make the users can not enjoy the smooth and high quality

wireless services under low speed environment. In high mobility scenarios, large

Doppler frequency shift, fast fading channel and fast handover issue seriously affect

communication performances [3, 4].

Wireless channel play a key background role in transmission rate and quality

of mobile propagation. Only after channel characteristics in a communication sys-

tem are thoroughly researched, a variety of physical layer technologies are taken

or adapted, such as the best modulation and coding interleaving scheme, equalizer

design, or antenna configuration and subcarrier allocation in MIMO-OFDM system.

Propagation prediction or channel estimation has been extensively studied in three

areas: (1) to provide a theoretical performance bounds with information theory tool

for a new physical technology [5]; (2) to assess various candidate schemes in the

transmission system design [6]; (3) to estimate or predict channel parameters in the

deployment of a new wireless system, and then optimize deployment [7].

Based on theoretical analysis method in modeling, wireless channel model can be

divided into deterministic model, stochastic model, and semi-deterministic model

[8]. Among them, some famous models as COST 207, COST 231, WINNER ii

obtained by field measurements [9, 10] are wildly used in channel estimation. An

appropriate channel model can be selected according to a particular scenario, and

then its specific propagation parameters are set. Channel estimation in mobile prop-

agation usually has two types of technologies to obtain these parameters: blind and

pilot estimation [6, 11]. Pilot estimation is typically achieved by using pilot symbols

strategically placed at frame heads or subcarrier. In blind estimation, channel coeffi-

cients are predicted by using statistical features of received signals. Once a channel is

estimated its time-frequency characteristics, relevant parameters are used to update

the pre-set model. As in any estimation application, wireless channel estimation aims

to quantify the best performance of wireless systems. However, due to the unlimited

number of received signal, it is a challenge to extract optimal channel coefficients.

Feedforward neural networks (FNN) is extensively used to provide models for a

natural or artificial phenomena that are difficult to handle using classical paramet-

ric techniques [12]. Simsir et al. [13] demonstrated that channel estimation based

on neural network ensures better performance than conventional Least Squares (LS)

algorithm without any requirements for channel statistics and noise. In the meantime,

[14] and [15] also proved FNN can be used in channel estimation for various wireless

environments. Unfortunately, the learning speed of FNN has been a major bottleneck
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in many applications, and fast fading channel caused by high mobility makes this

method unsuitable for channel estimation too. Unlike traditional FNN implemen-

tations, a simple learning algorithm called extreme learning machine (ELM) with

good generalization performance [12, 16, 17] can learn thousands of times faster.

In this paper, we propose a channel estimation scheme based on ELM algorithm

for high speed environments. Since researches in wireless channel have concentrate

on large-scale and small-scale models [18], we choose path loss coefficient and

fading classification as estimation objects. Compared with back-propagation (BP)

algorithm, ELM shows its potential in channel estimation, especially for scenarios

with high mobility.

The outline of the paper is as follows: In Sect. 2, ELM learning algorithm is

present briefly. In Sect. 3, path loss estimation of wireless channel using ELM for

high speed environments is proposed, and simulation results are analyzed. Section 4,

fading classification estimation in COST 207 model based on ELM algorithm is pro-

vided. Conclusion is given in Sect. 5.

The performance of channel estimation based on ELM is in comparison with BP

(LevenbergCMarquardt algorithm) which is a popular algorithm of FNN. All of the

simulations are carried out in MATLAB 7.12.0. LevenbergCMarquardt algorithm is

provided by MATLAB package, while ELM algorithm is downloaded from [19].

2 Review of ELM

Traditional FNN solution iteratively adjusts all of its parameters to minimize the

cost function by using gradient-based algorithms. Although BP’s gradients can be

computed efficiently, an inappropriate learning rate might raise several issues, such

as slow convergence, divergence, or stopping at a local minima.

ELM algorithm steps are as follow:

1. Assign a training set ℵ =
{(

𝐱i, 𝐭i
)|
|
|
𝐱i ∈ 𝐑n

, 𝐭i ∈ 𝐑m
, i = 1, 2,… ,N

}
, active

function g(x) and the number of hidden neurons ̃N,

2. Randomly assign input weight vector 𝐰i, i = 1, 2,… ,

̃N and bias value bi, i =
1, 2,… ,

̃N,

3. Calculate the hidden layer output matrix 𝐇 and its Moore-Penrose generalized

inverse matrix 𝐇†
,

4. Calculate the output weight ̂

𝛽 = 𝐇†𝐓 with the least squares, where

𝐓 =
[
𝐭1, 𝐭2,… , 𝐭N

]T
.

In a word, for a linear system 𝐇𝛽 = 𝐓, ELM algorithm finds a least-squares solution

̂

𝛽 rather than iterative adjustment. Seen from the steps, the learning time of ELM is

mainly spent on calculating 𝐇†
. Therefore, ELM saves a lot of time in most appli-

cations. The performance evaluation in [12, 16] shows that ELM can produce good

generalization performance in most cases and can learn more than hundreds of times

faster than BP.
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3 Large-Scale/Path Loss Channel Estimation

3.1 Large-Scale Channel Model

Large-scale/path loss channel models predict the mean signal strength for an arbi-

trary large transmitter-receiver distance (several hundreds or thousands of meters)

in order to estimate the radio coverage area of a transmitter. Since the estimation

of large-scale channel coefficients use statistical features of received signals, a blind

estimation solution might work.

Both theoretical and measurement-based propagation channel models (such as

free-space model, two-ray model, Okumura model, Hata model and etc.) [20] indi-

cate that average received signal power Pr decreases logarithmically with distance

[18]. Considering shadowing effects component 𝜓 obeys a log-normal distribution,

a statistical path loss model [21] is

PrdBm = PtdBm+KdBm−10𝛾 log10
[

d
d0

]
− 𝜓

= PtdBm+20 log10
𝜆

4𝜋d0
− 10𝛾 log10

[
d
d0

]
− 𝜓

(1)

where Pt is the transmit power, 𝛾 is the path loss exponent indicating the rate at

which path loss increases with distance, reference distance d0 for practical systems

is typically chosen to be 1 m, d is the transmitter-receiver distance, and shadowing

effect exponent𝜓 is a zero-mean Gaussian distributed random variable with standard

deviation 𝜎

𝜓

(also in dBm).

𝛾 is obtained by fitting the minimum mean square error (MMSE) of measurements

FMMSE(𝛾) = min
𝛾

n∑

i=1

[
Mmeasured(di) − Mmodel(di)

]2
(2)

where M = Pt∕Pr, in dBm. And the variance 𝜎

2
𝜓

is given by

𝜎

2
𝜓

= 1
n

n∑

i=1

[
Mmeasured(di) − Mmodel(di)

]2
(3)

3.2 Approximation of Path Loss Exponent

In Eq. (1), path loss exponent 𝛾 and shadowing effect exponent 𝜓 are determined

by carrier frequency and propagation terrain. Typical value of 𝛾 is between 1 and 4.

The smaller 𝛾 is, the less energy loss of wireless signal due to transceiver-receiver

distance is. For example, in HSR environment, 𝛾 is slightly larger than 2 in rural

area (within 250–3200 m) with narrow band communication system while it is near

to 4 in hilly terrain (within 800–2500 m) with broadband system.
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If 𝛾 calculated distance is 1500 m and the vehicle’s velocity is 120 km/h, 𝛾 needs

to be calculated every 45 s; if the velocity is up to 350 km/h, 𝛾 needs to be calculated

every 15.4 s. According to Eqs. (2) and (3), the calculation of 𝛾 requires hundreds

or thousands of receive signal measurements, the introduction of learning algorithm

into 𝛾 estimation might be effective in simplifying the data processing.

We use ELM and BP algorithms to approximate the path loss exponent 𝛾 . Without

loss of generality, we set velocity v = 120 km/h, carrier frequency fc = 2.35GHz,

transmit power Pt = 39.5 dBm and distance d is obtained by means of GPS [22]. A

training set
(
Pr i, 𝛾i

)
and testing set

(
Pr i, 𝛾i

)
with 1000 data, respectively are created

where Pr i is uniformly randomly distributed on the interval (−105,−25) dBm [23].

Shadowing effect exponent 𝜓 has been added to all training samples while testing

data are shadowing-free.

3.3 Simulation Results

The number of hidden neurons of ELM is initially set at 20 and active function is sig-

moidal. Simulation result is shown in Fig. 1. The train accuracy measured in terms of

root mean square error (RMSE) is 0.27734 due to shadowing effect, whereas the test

accuracy is 0.012445. Figure 1 confirms that the estimation results of 𝛾 are accurate,

and there is a visible margin of error only when Pr > −30 dBm.

Average 200 trails of simulation have been conducted for both ELM and BP algo-

rithm, whose results are shown in Table 1. ELM learning algorithm spents 6.6 ms

CPU time on training and 6.8 ms on testing, however, it takes 53.6 s for BP algorithm

on training and 67.1 ms on testing. ELM runs 8000 times faster than BP. In high speed

environment, when a vehicle’s velocity is 120 km/h in cells with radius 1 km, it will

carry out a handover procedure per 60 s; when a train’s velocity is 350 km/h in same

Fig. 1 The estimation of

path loss exponent 𝛾 by ELM

learning algorithm
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Table 1 Performance comparison for learning algoritms in large-scale channel estimation

Algorithms Time (s) Training (s) Testing (s) Hidden

neurons

Training Testing RMS Dev RMS Dev

ELM 0.0066 0.0068 0.2828 0.0219 0.0475 0.0500 20

BP 53.6168 0.0671 0.0745 0.0028 0.0031 0.0012 20

Fig. 2 The generalization

performance of ELM in

estimation of path loss

exponent 𝛾
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cell, handover will occur per 20.6 s. Therefore, BP is too time-consuming to be used

in wireless system with high mobility. Although ELM has a much higher testing

error 0.0475 compared with 0.0028 in BP, this estimation error can be acceptable in

our environments. In addition, assuming that network transmission rate is 1Mbps,

the collection of 1000 test data takes only 1 ms, so that a packet of 125 bytes can

estimate the path loss exponent 𝛾 based on ELM with accuracy rate 95 % within a

time interval of less than 8 ms.

Figure 2 shows the relationship between the generalization performance of ELM

and the number of hidden neurons n for 𝛾 estimation. Every n simulates 50 times.

Obviously, the generalization performance of ELM is stable when n ≥ 12. Thus, the

simulation result in Fig. 1 is reasonable when n is set to 20.

Figure 3a shows the relationship between RMSE of ELM and the number of

train/test data, and Fig. 3b shows the impact of this number on consuming time.

Training RMSE number of train/test data is almost a constant (slightly less than 0.3)

because ELM use Moore-Penrose inverse matrix calculation to solve the problem of

finding the smallest norm least-squares output weight. Unlike training RMSE, test-

ing RMSE decreases with increasing number of test data. The simulation confirms

the conclusion in [12] that ELM has no over-trained phenomenon. Both train and
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Fig. 3 Number of train/test data of ELM in estimation of path loss exponent 𝛾

test consuming time increases with data number, however, the increase of test time

is less than train time. It should also be noted that, even the number of data is up to

104, the time consuming of ELM is still acceptable, which is less than 70 ms.

4 Small-Scale/Fading Estimation

4.1 Small-Scale Channel Model

Small-scale/fading models characterize the rapid fluctuations of the received signal

strength over very short distances (a few wavelengths) or short durations (on the

order of seconds) in order to estimate the influence of multi-path propagation and

the speed of a mobile terminal.

COST 207 model [9] for mobile radio specifies the power delay profiles and

Doppler spread for four typical environments, i.e. rural area (RA), typical urban area

(TU), bad urban area (BU) and hilly terrain (HT). The RA case consists of two dis-

tinct channel models, while the other cases each comprises four channel models.

Thus, COST 207 has a total of 14 channel models: RAx4, RAx6, TUx6, TUx6alt,

TUx12, TUx12alt, BUx6, BUx6alt, BUx12, BUx12alt, HTx6, HTx6alt, HTx12 and

HTx12alt.

Due to radio waves’ reflection and refraction, the propagation between transceiver

and receiver has several paths, hence each channel model has multiple taps. For

example, RAx4 is short for rural area environment with 4 taps, and HTx6alt stands
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Table 2 Performance comparison for learning algorithms in small-scale channel estimation

Algorithms Time (s) Success rate (%) Hidden

neurons

Training Testing Training Testing

ELM 0.0135 0.0085 86.46 72.73 20

BP 53.77 0.0694 90.60 31.08 20

for hilly terrain with 6 alternative taps. Each tap is characterized by a relative delay

(with respect to the first path delay), a relative power and a Doppler spectrum cate-

gory.

ELM and BP algorithms are used to estimate COST 207 channel models CT based

on modulated receive signals PM. In order to facilitate channel estimation, each chan-

nel model is assigned an integer value [24], such as CT = 1 for RAx4, CT = 2 for

RAx6, and etc. We still set v = 120 km/h, fc = 2.35GHz. Transmission rate is 1Mbps

and sampling factor is 4, so that the simulation sampling rate is 4 × 106 samples per

second. PSK modulation and bi-Gaussian Doppler are used in this simulation. A

training set
(
CTi,PMi

)
has 1000 data whereas testing set with 300 data.

4.2 Simulation Results

The hidden neurons of ELM is initially set at 20 and active function is sigmoidal.

Average 50 trails of simulation have been conducted for both ELM and BP algorithm,

whose results are shown in Table 2. Similarly, ELM learns up to hundreds of times

faster than BP. Although BP can reach the learning rate 90.60 %, its testing rate drops

to 31.08 %. On the contrary, ELM learning rate 86.46 % is slightly lower than BP,

but it can achieve average testing rate 72.73 %. This is mainly because Matlab BP

function newff doesn’t support complex data. Modulated receive signals PM must be

turned into real.

5 Conclusion

In this paper, channel estimation based on ELM is proposed for high speed envi-

ronments. In large-scale model, the estimation performance of path loss exponent is

developed, whose experimental results show that ELM run 8000 times fast than BP

learning algorithm and its testing error is acceptable. In small-scale model, fading

classification estimation is provided, which shows ELM is an effective tool to classify

channel type. Compared with BP, ELM still works when the elements in training set

or testing set are complex. Therefore, ELM is an effective tool in channel estimation.
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MIMOModeling Based on Extreme
Learning Machine

Junbiao Liu, Fang Dong, Jiuwen Cao and Xinyu Jin

Abstract With multiple antennas’ transmission, multiple-input multiple-output

(MIMO) technique is able to utilize the space diversity to obtain high spectrum effi-

ciency. In this study, we propose a single hidden layer feedforward network trained

with extreme learning machine (ELM) to estimate channel performances in MIMO

system. Bit error rate (BER) and signal-to-noise ratio (SNR) performance of back-

propagation (BP) algorithm are also compared with our proposed neural network.

The simulation results show that ELM has got much better time efficiency than BP

in MIMO modeling. Furthermore, MIMO modeling based on ELM doesn’t need to

send pilot, which reduce the waste of spectrum resources.

Keywords Multiple-input multiple-output ⋅ Channel modeling ⋅ Extreme learning

machine ⋅ Bit error rate ⋅ Signal-to-noise ratio

1 Introduction

The ever-expanding mobile networks are expected to deliver a wide variety of high

data-rate services, such as multimedia interactive games, web browsing, broad-

band video, media content downloading. In order to raise transmission rate, it is
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imperative to improve the utilization of wireless resources, especially spectrum

resources.

A key physical layer technology named multiple-input multiple-output (MIMO)

is a viable option to meet the demands of mobile networks. It has been adopted in

several wireless protocols, including WLAN (802.11 series) [1], WiMAX (802.16

series) [2], LTE or LTE-Advanced [3], and continues to be used in future standards

like 5G [4, 5]. MIMO techniques provide multiplexing and diversity gains by using

multiple antennas at both transmitter and receiver ends in a communication system

[6, 7]. With the potential spatial gains, MIMO greatly improve capacity of wireless

channel, and the increase is proportional to the number of antennas.

A large number of studies have reported on incorporating physical propagation

characteristic in MIMO systems. In recent years, there has been increasing interest

in using neural network to model MIMO channel [8–10] and estimate MIMO para-

meters [11, 12]. As a useful tool, neural network is able to predict an output when

it recognizes a given input pattern. Thus, it can act as a reliable estimator in model-

ing MIMO channel without any pilot symbol bits required by other schemes. Such

blind estimation would preserve bandwith and increase spectral efficiency. Sarma

and Mitra [8, 9] define a complex time-delay fully recurrent neural network block and

use it in MIMO channel estimation, which saves processing time than other stochas-

tic estimation. [10] proposes a channel estimation technique based on neural network

for space-time coded MIMOCOFDM systems. [11] models MIMO channels using

artificial neural network with multi-layer perception (MLP), and it shows better per-

formance than conventional MLP. In [12], neural network acts as a pre-processing

block to the estimator, whose effect is measured by bit error rate (BER). Belkacem

et al. [13] designed a neural network equalization for frequency selective nonlinear

MIMO channels. However, all of these works focus mainly on the training-learning

aspect of neural network and its capacity to deal with MIMO channel estimation,

without consideration on time-varying characteristics of wireless channels. Most of

these works don’t evaluate the learning time and testing time of their schemes. They

only concern about BER performance. Even in the algorithm [8] that claims to save

processing time, the learning time of neural network is above 40s. Therefore, these

MIMO channels modelled by neural network are not practical in time-varying case.

Contrary to neural network with slow learning speed, extreme learning machine

(ELM) can learn very fast in most cases [14, 15]. The primary reason why neural

network spend a lot of time learning is that all the parameters of neural network

are iteratively adjusted base on gradient to make the learning algorithm converge in

the optimal values. However, ELM approaches the best values by matrix operation

rather than iteration procedure, which saves processing time.

This paper aims to provide the performance of MIMO modeling based on ELM

learning and compare the simulation results with a popular neural network like

back-propagation (BP) algorithm. We evaluate the possibility of using ELM in a

MIMO environment with 2 transmitting antennas and 1 receiving antenna (2Tx1Rx).

The performance comparison has been conducted in two MIMO channel problem:

(1) estimating channel BER according to signal-to-noise ratio (SNR) at receiver end;
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(2) estimating receiver’s SNR according to BER at transmitter end. In both data sets,

ELM seems to be a reliable tool in MIMO modeling.

The rest of the paper is organized as follows. Section 2 briefly introduces ELM

algorithm. Section 3 describes our system model. Section 4 presents the BER esti-

mation based on ELM at the MIMO receiver. Section 5 evaluates the performance

of SNR estimation at the MIMO transmitter and discusses the optimization of para-

meters in ELM processing. Finally, Sect. 6 concludes the paper.

2 ELM Algorithms

ELM is a least-square (LS) learning algorithm developed for single hidden layer

feedforward networks (SLFNs). It is tuning-free so that its learning speed is much

faster than traditional gradient-based neural network algorithms. By calculating the

Moore−Penrose generalized inverse of the hidden layer output matrix, ELM tends

to reach the small norm of network output weights.

If we have a train data set ℵ =
{(

𝐱i, 𝐭i
)|
|
|
𝐱i ∈ 𝐑n

, 𝐭i ∈ 𝐑m
, i = 1, 2,… ,N

}
, the

basic procedure of ELM algorithm is as follows:

Step 1: for N arbitrary training data set ℵ, set active function g(x) and the number

of hidden neurons ̃N.

Step 2: randomly assigns input weight vector𝐰i, i = 1, 2,… ,

̃N and bias value bi, i =
1, 2,… ,

̃N.

Step 3: calculate the hidden layer output matrix 𝐇 and its Moore − Penrose gener-

alized inverse matrix 𝐇†
.

Step 4: calculate the output weight ̂

𝛽 = 𝐇†𝐓 , where 𝐓 =
[
𝐭1, 𝐭2,… , 𝐭N

]T
is the tar-

get output matrix.

Obviously, the network output weights can be analytically determined by solving

a linear system. Thus, The training procedure of ELM can avoid time-consuming

learning iterations to achieve a good generalization performance.

3 System Description

The baseband-equivalent communication model for MIMO system [16] is depicted

in Fig. 1, including transmitter and receiver structure.

In our system, the transmitter equipped with nT = 2 antennas and the receiver

is equipped with nR = 1 antenna. Transmitter adopts BPSK data modulation. The

output of the BPSK modulator generates unit power signals, i.e., signal power is 1

mw. MIMO uses OSTBC encoder to obtain potential spatial gains. The uncorrelated

data stream is transmitted over Rayleigh channel. The received signal sample y1(n)
of the receive antenna at time n is given by
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Fig. 1 MIMO model with transmitter and receiver structure

y1 (n) =
2∑

t=1
h1,t (n) dT(n) + v1 (n) (1)

where dT is the output of transmitter, h1,t (n) is the channel impulse response from tth
transmitting antenna to the 1th receiving antenna for t = 1, 2, and v1 (n) is AWGN

samples of variance N0∕2 [17].

Before reaching 1th receiving antenna, the transmitted signals are affected by the

propagation channel which can be modulated by an nR × nT propagation matrix 𝐇.

In our case, the system input-output relationship can be expressed

[
y1 (n)

]
= 𝐇 ×

[
d1 (n)
d2 (n)

]

+ 𝐕 (2)

where 𝐇 =
[
h1,1 (n), h1,2 (n)

]
and 𝐕 = v1 (n).

4 BER Estimation at Receiver

In wireless network, error occurs inevitably during data transmission due to various

reasons, such as non-ideal transmission media, noise and outside interference. BER

is an important factor indicating the accuracy of data transmission within a specific

interval. As a basic measure of performance, BER usually shows its dependence

on SNR. To obtain this characteristic, a sufficient number of BER values should be

measured for various SNR at receiver end. Since terminals in wireless network are

always in mobile state, the availability of an accurate and time efficient method of

BER measurements is particular important [18]. We simulate BER estimation based

on ELM to assess the accuracy and time efficiency of this scheme.
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Table 1 The performance comparisons of BER estimation with ELM and BP

Algorithms Time (s) Training (s) Testing (s) Hidden

neurons

Training Testing RMS Dev RMS Dev

ELM 0.0034 0.0019 0.0111 1.0514e-17 0.0104 1.2266e-17 10

BP 42.8400 0.0659 1.2003e-4 8.2158e-20 1.1592e-4 2.7386e-20 10

4.1 BER Estimation Based on ELM

In this section, BER estimation of ELM is compared with BP algorithm. All exper-

iments are carried in MATLAB 7.12.0 environment running an ordinary PC with

2.4GHz CPU and 2GB RAM. A training set
(
BERi, SNRi

)
and testing set

(
BERi, SNRi

)
have 1000 data, respectively, with SNRi uniformly randomly distrib-

uted on the interval (−10, 10). In Fig. 1 MIMO system, each frame in simulation

consists of 100 bits, and the number of train packets and test packets are 1. If the

data rate is 1 Mbps, it only takes 0.1 ms to obtain test data.

There are 10 hidden nodes for both ELM algorithm and BP algorithm. The acti-

vation function used in ELM is set as sigmoid. Average results of 50 trails of simula-

tions are observed in Table 1. The enhancement of time efficiency is apparent. ELM

spends 3.4 ms CPU time obtaining training error rate slightly above 0.01, whereas

BP spends 42.84 s to reach training error rate 0.0001. Although ELM training error

rate and testing error rate are much larger than BP, the learning speed of ELM runs

12600 times faster than BP and the testing time of BP is 35 times longer than ELM.

Figure 2 shows the actual BER and the estimation value of ELM algorithm. The

test fitting curve are well constant with the actual data when SNR is less than 4dB.

Since the number of error bits is an integer, train data sets are divided into separate

segments or discrete points when SNR is large than 4dB, so that the ELM estimation

result is not idealistic. However, because of the decrease in the number of errors, the

standard deviation of training and testing BER estimation in both algorithms are

below 1 × 10−16.

4.2 Optimization of Parameters in ELM

There are three main parameters that affect the BER estimation performance based

on ELM, i.e., the number of train packets, the number of test packet and the number

of hidden neurons. We simulate the effect of them on the training root mean square

error (RMSE) and the testing RMSE, and visualize the results in Fig. 3. The curves

are obtained by 1-D interpolation function interp1 with method pchip.

The training RMS is determined by the number of train packets, and decreases

with the increase of the latter. For example, when the number of train packets changes

from 1 to 5, the training RMS halves to 0.0155. When the number of train packets
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Fig. 3 Training RMSE and testing RMSE using ELM (sigmoid) with respect to the number of

train packets, the number of test packet and the number of hidden neurons in BER estimation

increases to 20, the training RMS again halves to 0.0073. Similarly, the testing RMS

is determined by the number of test packets. The more train and test packets are used,

the higher the accuracy of estimation is. However, this led to the increase of time to

form train data and test data too, so there is a tradeoff between accuracy and time

efficiency.

When the number of hidden neurons is less than 10, it can also affect both the

training and testing RMS. Especially when less than 5 hidden neurons are randomly
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generated, the BER performance takes a sharp deterioration. In contrast, the gener-

alization performance of ELM is very stable when more than 10 hidden nodes exist.

5 SNR Estimation at Transmitter

SNR estimation of received signal plays an important role in a wireless system,

because it can effectively adjust transmission scheme and relevant parameters. For

instance, In addition to spectrum sensing capability required by cognitive radio (CR)

at transmitter, SNR estimation of the primary signals is crucial to CR in order to

adapt the transmitter’s coverage area dynamically using underlay techniques [19].

The SNR estimation is mostly taken in the frequency domain using the known pream-

ble or pilot in packets. We simulate SNR estimation based on ELM without any pilot.

5.1 SNR Estimation Based on ELM

The performance of ELM and BP are compared on the SNR estimation. The data

sets of train and test consists of 1000 elements. The distribution of these data sets

are unknown to both algorithms, and they are randomly generated before each trail

of simulation. Each frame has 100 bits. The number of train packets is 30 while the

number of test packets is 50. The performances of 50 trails of simulations are shown

in Table 2. From this table, the advantage of ELM on time efficiency is quite obvious,

but both algorithms can’t ignore their RMSE.

The approximated function of ELM and the actual SNR data are shown in Fig. 4.

Compared with BER estimation, SNR estimation obtain a worse generalization per-

formance, especially when BER is smaller than 10−3. Similar to BER estimation,

the number of error bits is an integer so that it is difficult to estimate SNR value

accurately by a small BER. Therefore, the RMSE of SNR estimation is above 0.8 in

ELM and 0.6 in BP.

Table 2 The performance comparisons of BER estimation with ELM and BP

Algorithms Time (s) Training (s) Testing (s) Hidden

neurons

Training Testing RMS Dev RMS Dev

ELM 0.0037 0.0025 0.8771 1.1214e-16 0.8807 4.4859e-16 10

BP 29.0121 0.0633 0.6790 2.2429e-16 0.6962 5.6074e-16 10
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Fig. 5 Training RMSE and testing RMSE using ELM (sigmoid) with respect to the number of

train packets, the number of test packet and the number of hidden neurons in SNR estimation

5.2 Optimization of Parameters in ELM

The impact of three parameters on SNR estimation performance is depicted in

Fig. 5. We simulate the effect of them on generalization performance and use interp1
function to complete interpolation. Too few train packets will lead to a large train

error, and then reduce the accuracy of the SNR estimation result. But the reverse
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relationship is not established, i.e., the number of test packets only affect the test-

ing RMSE. The RMSE performance is still very stable when the number of hidden

neurons is larger than 10.

6 Conclusion

In this paper, the performance of MIMO modeling based on ELM learning algo-

rithm is provided, and compared with BP algorithm. The simulation results show

that ELM is a time efficient algorithm in BER estimation at receiver and SNR esti-

mation at transmitter. ELM needs less than ten millisecond to obtain a relative accu-

rate predicted value without sending pilot, which makes it a reliable tool in MIMO

modeling.
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Graph Classification Based on Sparse Graph
Feature Selection and Extreme Learning
Machine

Yajun Yu, Zhisong Pan and Guyu Hu

Abstract Identification and classification of graph data is a hot research issue in

pattern recognition. The conventional methods of graph classification usually con-

vert the graph data to vector representation which ignore the sparsity of graph data.

In this paper, we propose a new graph classification algorithm called graph classi-

fication based on sparse graph feature selection and extreme learning machine. The

key of our method is using lasso to select sparse feature because of the sparsity

of the corresponding feature space of the graph data, and extreme learning machine

(ELM) is introduced to the following classification task due to its good performance.

Extensive experimental results on a series of benchmark graph datasets validate the

effectiveness of the proposed methods.

Keywords Graph kernel ⋅Graph classification ⋅ Extreme learning machine ⋅ Lasso

1 Introduction

Most existing machine learning algorithms such as support vector machine (SVM)

are only apply to deal with data with vector representation. But in many practical

applications such as bioinformatics, drug discovery, web data mining and social net-

works involves the study of relationships between structured objects [1], which can

not be represented in vector forms. In recent years, the research about structured

data has become a hot research issue in machine learning and data mining. Graphs

are usually employed to represent the structured objects, and the nodes of graphs

represent objects while edges indicate the relationships between objects. To analyse

graph data, the most important thing is the similarity measurement of two graphs.

Kernel method is a good way to study graph data and kernel function can be used to

measure the similarity between two graphs.

Y. Yu (✉) ⋅ Z. Pan ⋅ G. Hu

College of Command Information System, PLA University of Science

and Technology, Nanjing 210007, China

e-mail: 492675818@qq.com

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 1,

Proceedings in Adaptation, Learning and Optimization 6,

DOI 10.1007/978-3-319-28397-5_15

179



180 Y. Yu et al.

The general method of graph classification is using graph kernel method to map

the graph data into higher dimensional vector described features space and com-

puting the kernel function K consisting of each similarity of two graphs, then the

original graph dataset can be classified by SVM [2]. However, on the one hand, this

method neglects the sparsity of the graph data. Intuitively, because of the structure of

the graph changes, a specific structure contained in a graph doesn’t exists in others,

and with the number of nodes and edges of the graph increases, the sparsity of the

graph data will be more evident. So in this paper, we will show the sparsity of the

graph feature space through experiment, and utilize lasso to select sparse feature.

On the other hand, SVM is suitable to solve small-scale samples, with the increase

of the sample, the storage and computation of the matrix will cost a lot of memory

and computing time. Since ELM has better identification accuracy and faster speed,

we use ELM to classify the graph dataset.

The main contributions of this paper include:

∙ Using Weisfeiler-Lehman graph kernel feature mapping method [3] to test the

sparsity of graph feature;

∙ Proposing graph feature selection via lasso;

∙ Using ELM to classify graph.

The rest of this paper is organized as follows. In Sect. 2, we introduce the concepts

of graph kernel. And we introduce the idea of lasso for sparse graph feature selec-

tion, and verify the sparsity of the graph data feature space in Sect. 3. In Sect. 4, we

describe the extreme learning machine. And we propose graph classification based

on sparse graph feature selection and ELM in Sect. 5. Experimental results are pre-

sented in Sect. 6, and finally, we conclude this paper in Sect. 7.

2 Graph Kernel

We define a graph G as a four tuple (V ,E, lv, le). Here, V is the set of vertices, V =
{v1, v2,… , vn}; E is the set of undirected edges, E = {e1, e2,… , em}; lv(le) ∶ V ,E →
𝛴 is a function mapping from nodes or edges in the graph to an alphabet 𝛴.

Kernel method has been applied widely in the analysis of vector data. Informally,

a kernel is a function of two objects that quantifies their similarity. Define the kernel

function between two graphs called graph kernel. Given a feature mapping 𝜑, the

graph in the original space can be mapped to the high-dimensional and even infinite

dimensional vector space through it, and formula (1) is workable.

K(G1,G2) = ⟨𝜑(G1), 𝜑(G2)⟩ (1)

The similarity between two graphs can be measured by the kernel. In recent years,

several different graph kernels were proposed. They can be categorized into three

classes: (1) Graph kernels based on walks and paths, such as shortest-path kernels

[4], Joint kernels [5] and kernels based on label pairs [6]; (2) Graph kernels based on
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limited-size subgraphs, such as cyclic pattern kernels [7]; (3) Graph kernels based

on subtree patterns such as graph kernels based on tree patterns [8] and fast subtree

kernels [9].

This paper uses the Weisfeiler-Lehman subtree kernel. The key idea of the kernel

is [3]: Let 𝛴0 be the set of original node labels of G and G′
. Assume all 𝛴i are

pairwise disjoint. Assume that every 𝛴i = {𝜎i1,… , 𝜎i|𝛴i|
} is ordered. Define a map

ci ∶ {G,G′ } × 𝛴i → N, so that ci(G, 𝜎ij) is the number of occurrences of the letter

𝜎ij in the graph G. The Weisfeiler-Lehman subtree kernel on two graphs G and G′

with h iterations is defined as:

k(h)WLsubtree(G,G
′) = ⟨𝜙(h)

WLsubtree(G), 𝜙
(h)
WLsubtree(G

′)⟩ (2)

where𝜙
(h)
WLsubtree(G) = (c0(G, 𝜎01),… , c0(G, 𝜎0|𝛴0|

),… , ch(G, 𝜎h1),… , ch(G, 𝜎h|𝛴h|
)),

and𝜙
(h)
WLsubtree(G

′) = (c0(G′
, 𝜎01),… , c0(G′

, 𝜎0|𝛴0|
),… , ch(G′

,𝜎h1),… , ch(G′
, 𝜎h|𝛴h|

)).
See Fig. 1, 1–5 for an illustration of one iteration of the Weisfeiler-Lehman subtree

kernel.

Fig. 1 Illustration of one iteration of the Weisfeiler-Lehman subtree kernel
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3 Graph Feature Selection Based on Lasso

Intuitively, if two graphs are not isomorphic, then the set of node labels between

them obtained by Weisfeiler-Lehman test of graph isomorphism algorithm [3] is

different, and it will result in a large part of a corresponding feature vector of the

graph data are 0. All corresponding feature vectors of graph data form a feature

matrix. Figure 2 shows the sparsity of graph datasets. We use the graph datasets used

in the literature 3. They are MUTAG, NCI1, NCI109, ENZYMES and DD. We use

the Weisfeiler-Lehman graph kernel feature mapping method to get a feature matrix,

and then calculate the number of zero element accounted for the proportion of all

elements of each feature matrix. It can be seen from Fig. 2 that when h = 4, the

sparse rate of these five graph data sets nearly come close to 99 %. It means only a

small number of features contribute to its classification, the representation of features

are sparse.

Because of the sparsity of graph data, when classifying graph data we should

select key features of the graph data, so that we can get common features of the

graph data that most able to distinguish graph data. And it can not only speed up the

whole learning process, but also improve the distinction accuracy rate.

In order to find sparse representation of features, we utilize lasso to select features.

It minimizes the residual sum of squares subject to the sum of absolute value of the

coefficients being less than a constant, it shrinks some coefficients and sets others

to 0, and then achieve the purpose of feature selection [10]. Suppose the dataset

processed by Weisfeiler-Lehman subtree graph kernel are (xi, yi), i = 1, 2, 3… ,N,

Here, xi = (xi1, xi2,… , xip) are input variables, and yi are responses. Assume that the

xij are standardized, and �̂� = (�̂�0, �̂�1,… �̂�p)T , then the lasso estimate �̂� is defined by

�̂� = argmin{
N∑

i=1
(yi −

∑

j
𝜔jxij)2} subject to

∑

j
|𝛽j| ≤ t (3)

Fig. 2 Sparse rate of each
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where t ≥ 0 is a turning parameter, it controls the degree of sparsity. Appropriate

parameter t will cause shrinkage of the solutions towards 0, and some coefficients

may be exactly to 0. Then the solution to this problem causes many elements in x
will be set to zero. Formula (3) is difficult to solve since it’s a nonsmooth convex

problem. This problem can be solved by many existing software packages, such as

SLEP [11].

4 Extreme Learning Machine

ELM is a fast training algorithm for single hidden feedforward layer neural network

(SLFN), it can randomly chooses the input weights and analytically determines the

output weights of SLFNs [12]. So, the network parameters can be determined with-

out any iteration step, and the adjustment time of the network parameters is greatly

reduced. Compared with the traditional artificial neural networks, this method has

not only the advantages of fast learning speed, but also good generalization per-

formance. Figure 3 shows the structure of ELM network. The ELM network has

received wide attention in recent years.

Consider N arbitrary distinct samples (xi, ti), where xi = (xi1, xi2,… , xin)T ∈ ℝn

and ti = (ti1, ti2,… , tim) ∈ ℝm
, an ELM with L hidden nodes and an activation

function g(x) is mathematically modeled as:

L∑

i=1
𝛽ig(wi ⋅ xk + bi) = ok, k = 1,… ,N (4)

where wi = (wi1,wi2,… ,win)T is the weight vector connecting the ith hidden neuron

and the input neurons, 𝛽i = (𝛽i1, 𝛽i2,… , 𝛽im)T is the weight vector connecting the ith

Fig. 3 The structure of

ELM. It contains three

layers: input layer, hidden

layer and output layer, where

the hidden layer includes L

hidden neurons, and the L is

much less than N in general,

the output of the output layer

is a m dimensional vector
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hidden neuron and the output neurons, bi is the threshold of the ith hidden neuron

and ok = (𝛽k1, 𝛽k2,… , 𝛽km)T is the output vector of the SLFN. wi ⋅ xk denotes the

inner product of wi and xk. The ELM with L hidden nodes and activation function

g(x) reliably approximates N samples with minimum error:

L∑

i=1
𝛽ig(wi ⋅ xk + bi) = tk, k = 1,… ,N (5)

The above N equations can be written compactly as:

H𝛽 = T (6)

where

H =
⎡
⎢
⎢
⎣

g(w1 ⋅ x1 + b1) ⋯ g(wL ⋅ x1 + bL)
⋮ ⋱ ⋮

g(w1 ⋅ xN + b1) ⋯ g(wL ⋅ xN + bL)

⎤
⎥
⎥
⎦N ×m

(7)

𝛽 =
⎡
⎢
⎢
⎣

𝛽

T
1
⋮
𝛽

T
L

⎤
⎥
⎥
⎦L×m

and T =
⎡
⎢
⎢
⎣

tT1
⋮
tTN

⎤
⎥
⎥
⎦N ×m

(8)

where H is called the hidden layer output matrix of the neural network. If the number

of neurons in the hidden layer is equal to the number of samples, then H is square

and invertible. Otherwise, the system of equations needs to be solved by numerical

methods, concretely by solving

min
𝛽

‖H𝛽 − T‖ (9)

The result that minimizes the norm of this least squares equation is

̂

𝛽 = H†T (10)

where H†
is called Moore-Penrose generalized inverse [13].

5 Proposed Graph Classification Algorithm

Assume we have graph dataset (Gi)Ni=1, after the Weisfeiler-Lehman subtree kernel

mapping, we can get a kernel matrix K = (k(Gi,Gj))N×N . Then we use lasso to select

sparse features that key to classification. After that, these selected features are used

to train and test an ELM classifier. Figure 4 shows the approximate process of graph

classification based on sparse graph feature selection and extreme learning machine

(GC-LASSO-ELM).
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Fig. 4 The approximate

process of GC-LASSO-ELM

As we can see in Fig. 4, our method has three parts: Weisfeiler-Lehman subtree

kernel mapping, sparse feature selection and classification using ELM. We get the

optimal parameters through experiments, and parameters gained based on the train-

ing set. The detailed procedure of GC-LASSO-ELM is listed in Algorithm 1.

Algorithm 1 GC-LASSO-ELM Algorithm

Require:
A graph dataset of N graphs G = {G1,G2,… ,GN}.

Ensure:
The label of graphs.

1. Compute Kernel matrix K = (kij)Ni,j=1 using Weisfeiler-Lehman subtree graph kernel

k(h)WLsubtree(G,G
′) = ⟨𝜙(h)

WLsubtree(G), 𝜙
(h)
WLsubtree(G

′)⟩.

2. Use lasso to select sparse features, and represent graph data with these new features.

3. Classify graph data processed through 1 and 2 based on ELM.

6 Experimental Results

6.1 Datasets

In this section, we validate our method on the following datasets: MUTAG [14],

PTC_MM, PTC_FM, PTC_MR and PTC_FR. MUTAG is the dataset of muta-

ble molecules, it contains 188 chemical compounds, and it can be divided into

two classes according to whether they are mutagenic or not, where 125 of them

are positive and 63 are negative. The PTC [15] is the datasets of carcinogenic

molecules. It contain 417 chemical compounds, and has four types dataset: Male
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Table 1 Graph data sets

MUTAG PTC_MM PTC_FM PTC_MR PTC_FR

Number of positive 125(66.5%) 66(37.7%) 77(42.4%) 62(35.6%) 61(32.6%)

Number of negative 63(33.5%) 109(62.3%) 109(58.6%) 112(64.4%) 126(67.4%)

Total number 188 175 186 174 187

Average node 17.93 25.05 25.25 25.56 26.08

Mouse(PTC_MM), Female Mouse(PTC_FM), Male Rat(PTC_MR) and Female Rat

[] (PTC_FR). Each molecule is assigned one of the eight labels: EE, IS, E, CE, SE, P,

NE, N according to its carcinogenicity. EE, IS and E denote negative, CE, SE and P

denote positive, and NE and N is considered as can not discriminant, so not involved

in classification. Table 1 gives the detail information of the five graph datasets used

in this paper.

6.2 Experiments Settings

In our method, we use the Weisfeiler-Lehman subtree kernel proposed by Nino Sher-

vashidze because of its significant computer speed on large graph datasets, and we

choose h = 5 in the Weisfeiler-Lehman subtree kernel. For lasso, the parameter 𝜆

is a tunable parameter that controls the degree of the sparsity. For ELM, the para-

meter involves the number of hidden neurons. We select the optimal 𝜆 and the num-

ber of hidden neurons through contrast experiment, parameters is set as follows:

𝜆 = [0.3, 0.5, 0.7, 0.9], the number of hidden neurons between 1 and 100. Figures 5,

6, 7, 8 and 9 show the classify accuracy of different 𝜆 and the number of hidden

neurons on five graph datasets.

Fig. 5 Classification

accuracy at varying 𝜆 and
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MUTAG
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Fig. 6 Classification

accuracy at varying 𝜆 and

number of neurons on

PTC_MR

0
20

40
60

80
100

0.2
0.4

0.6
0.8

1
0.55

0.6

0.65

0.7

0.75

0.8

the number of hidden neurons

λ

T
es

t A
cc

ur
ac

y

Fig. 7 Classification

accuracy at varying 𝜆 and

number of neurons on

PTC_FM
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Fig. 8 Classification

accuracy at varying 𝜆 and

number of neurons on

PTC_FR
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As we can see in Fig. 5, we choose 𝜆 = 0.9 and 30 neurons when apply our

method on MUTAG because of its higher accuracy. Figures 6, 7, 8 and 9 are test on

PTC datasets, we choose 𝜆 = 0.9 and 40 neurons when apply our method on PTC,

because it has higher accuracy on all the four type datasets.
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Fig. 9 Classification

accuracy at varying 𝜆 and

number of neurons on

PTC_MM
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6.3 Evaluation of Classification Performance

After choose the optimal 𝜆 and the number of neurons, we use these choosing para-

meters to perform 10-fold cross-validation using 9 folds for training and 1 for testing

on every datasets and repeat each experiment 10 times. We compare our method

with Graph Kernel based Dimensionality Reduction(GK-DR) [2] which using PCA

for dimensionality reduction and SVM for classification, and with Graph Classi-

fication using lasso for feature selection and SVM for classification (GC-LASSO-

SVM) on five datasets. See Table 2, it lists the average classification accuracy on

each dataset. It shows that in all of these five datasets, the classification accuracy

of GC-LASSO-SVM and GC-LASSO-ELM which use lasso to select graph fea-

ture is better then GK-DR which use PCA to select graph feature. And it shows that

with the optimal parameter, the classification accuracy of GC-LASSO-ELM is bet-

ter than GC-LASSO-SVM. More notable is that the classification accuracy on PTC

datasets of graph classification using SVM directly after graph kernel mapping are:

61.0%(PTC_MM), 61.0%(PTC_FM), 62.8%(PTC_MR), 66.7%(PTC_MM) [5].

Figure 10 shows the classification accuracies of GK-DR, GC-LASSO-SVM and

GC-LASSO-ELM on MUTAG dataset. It can be seen in the figure that GC-LASSO-

ELM has high classification accuracy than GK-DR and GK-LASSO. Figures 11,

12, 13 and 14 show the classification accuracies of GK-DR,GC-LASSO-SVM and

Table 2 Mean classification accuracy

GK-DR (%) GC-LASSO-SVM (%) GC-LASSO-ELM (%)

MUTAG 83.41 84.48 85.62
PTC_MM 62.28 65.03 67.67
PTC_FM 61.42 62.37 69.4
PTC_MR 64.28 64.05 72.80
PTC_FR 67.28 68.52 71.01
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Fig. 10 Average

classification accuracy on

MUTAG
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Fig. 11 Average accuracy

on PTC_MM
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Fig. 12 Average accuracy

on PTC_FM
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Fig. 13 Average accuracy

on PTC_MR

1 2 3 4 5 6 7 8 9 10
55

60

65

70

75

80

data sets

A
cc

ur
ac

y 
(%

)

PTC_MR

GK−DR
GC−LASSO−SVM
GC−LASSO−ELM

Fig. 14 Average accuracy

on PTC_FR
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GC-LASSO-ELM on PTC datasets. It’s obviously that the classification accuracy of

GC-LASSO-ELM is much better then GK-DR and GC-LASSO-SVM.

7 Conclusion

In this paper, an efficient graph classification method is proposed. We utilize lasso for

graph feature selection, and ELM for classification. Experimental results on MUTAG

and PTC show that when use lasso to select graph feature, the classification accu-

racy is better then use PCA, and both of them are better then the method of graph

classification using SVM directly after graph kernel mapping which have not select
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graph feature. It’s much better when we use ELM for classification then we use SVM.

In the future work, we will use different kernel to study graph and compare there

accuracy on ELM.
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Time Series Prediction Based on Online
Sequential Improved Error Minimized
Extreme Learning Machine

Jiao Xue, Zeshen Liu, Yong Gong and Zhisong Pan

Abstract Nowadays, time series prediction is a hot issue in machine learning, how-

ever, how to predict time series fast and accurately remains extremely challenge-

able. In this paper, we proposed an Improved Error Minimized Extreme Learning

Machine (IEM-ELM) algorithm which has better accuracy and prediction on change

in direction (POCID) compared with Error Minimized Extreme Learning Machine

(EM-ELM) for stock price prediction, meanwhile we implement the Online Sequen-

tial algorithm based on IEM-ELM (OSIEM-ELM) which fully inherits the merits

of IEM-ELM. The performance of IEM-ELM and OSIEM-ELM are evaluated and

compared with EM-ELM and OSEM-ELM respectively, and the experiments are

carried out on three stock datasets, experimental results show that IEM-ELM and

OSIEM-ELM produces better POCID performance than EM-ELM and OSEM-ELM

at fast learning speed.

Keywords Extreme learning machine (ELM) ⋅ Error minimized extreme learning

machine (EM-ELM) ⋅ Online sequential learning algorithm ⋅ Time series

prediction ⋅ Stock price prediction

1 Introduction

A lots of methods have been applied in time sires prediction nowadays, namely poly-

nomial method, radial basis function (RBF) [1, 2], support vector machine (SVM)

[3–5], neural networks [6–9] and so on. However, all the existing methods and its

variants for time sires prediction have some drawbacks for non-linear time series or
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complex data structure, such as over fit, low generalization and time consuming, etc.

For example, the applications of BP neural network will easily lead to over fit or

local optimum while SVM or neural network is time consuming.

Affected by many external factors, such as social, political, highly interrelated

economic, stock time series is non-linear and vary complex and it is very difficult

to be predicted accurately with conventional learning algorithms mentioned above.

ELM [10, 11] has been discussed thoroughly due to its fast learning speed and

good generalization recent years, and many variants of ELM have been proposed

[12–16]. Huang et al. proposed EM-ELM algorithm in [16] and proved that EM-

ELM had better performance on both regression and classification than ELM, incre-

mental extreme learning machine (I-ELM) and resource allocation network (RAN).

However, when we applied it on stock time series prediction, although EM-ELM can

still obtain good root mean square error (RMSE) and good mean absolute percentage

(MAPE), but get poor POCID which is a vary important index for stock prediction.

Thus, in this paper, we proposed the improved EM-ELM algorithm which called

IEM-ELM and proved its better performance of POCID against the comparative

algorithm. At the same time, we implement the online version of IEM-ELM algo-

rithm, named OSIEM-ELM (Online Sequential Improved Error Minimized Extreme

Learning Machine) and proved its validity in the experiments.

The main contributions of this paper include:

∙ Proposing an Improved Error Minimized Extreme Learning Machine (IEM-ELM)

algorithm.

∙ Implementing the online version of IEM-ELM algorithm, named OSIEM-ELM

(Online Sequential Improved Error Minimized Extreme Learning Machine).

∙ Using IEM-ELM and OSIEM-ELM to predict stock price and verifying its better

performance of POCID against EM-ELM and OSEM-ELM.

The remainder of this paper is organized as follows. After reviewing the EM-ELM

algorithm in Sect. 2, in Sect. 3 we describe the algorithm IEM-ELM and introduces

its online algorithm in Sect. 4. In Sect. 5, we evaluate out methods on some stock

time series datasets and we conclude this paper in the end.

2 Review of Error Minimized Extreme Learning Machine
(EM-ELM)

This section we will briefly review the essential parts of EM-ELM proposed by

Huang et al. [16].

EM-ELM was proposed to overcome the drawback of ELM [10, 11] which

determined the network architectures randomly. With growing hidden nodes and

incrementally updating output weights, EM-ELM could not only choose the opti-

mal number of hidden nodes but also reduces the computation complexity by only
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updating the output weights incrementally whenever the network architecture is

changed when ELM recalculates the output weights based on the entire new hid-

den layer output matrix.

The algorithm of EM-ELM is represented as follows:

EM-ELM Algorithm: Given N training data (xi, ti) where i = 1,… ,N, the maxi-

mum number of hidden nodes Lmax, and the expected learning accuracy 𝜀, the EM-

ELM algorithm can be shown in two phases.

Phase 1-Initialization Phase:

(1) Initialize the networks with L0 hidden nodes and randomly generated parameters

(ai, bi)
L0
i=1, here L0 is a small positive integer given by users.

(2) Calculate the output matrix H1 of the hidden layer

H1 =
⎡
⎢
⎢
⎣

G(a1, b1,X1) ⋯ G(aL, bL,X1)
⋮ ⋱ ⋮

G(a1, b1,XN) ⋯ G(aL, bL,XN)

⎤
⎥
⎥
⎦N×L0

(1)

(3) Calculate the corresponding output error E(H1) =∥ H1H
†
1T − T ∥.

Phase 2-Hidden layer nodes Growing Phase:

Let k = 0. While Lk < Lmax and E(Hk) > 𝜀:

(1) k = k + 1.

(2) Randomly add 𝛾Lk−1 hidden nodes to the existing networks. The total number of

hidden layer nodes becomes Lk = Lk−1 + 𝛾Lk−1 and the corresponding hidden layer

output matrix Hk+1 = [Hk, 𝛾Hk], where

𝛾Hk =
⎡
⎢
⎢
⎣

G(aLk−1 + 1, bLk−1 + 1,X1) ⋯ G(aLk , bLk ,X1)
⋮ ⋱ ⋮

G(aLk−1 + 1, bLk−1 + 1,XN) ⋯ G(aLk , bLk ,XN)

⎤
⎥
⎥
⎦N×𝛾Lk−1

(2)

(3) The output weights 𝛽 are recursively updated as

Dk = ((I − HkH
†
k )𝛾Hk)†

Uk = H†
k (I − 𝛾HT

k Dk)

𝛽k+1 = H†
k+1T =

[
Uk
Dk

]

T . (3)

End While.
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3 Improved Error Minimized Extreme Learning Machine

We proposed the Improved Error Minimized Extreme Learning Machine (IEM-

ELM) algorithm used for stock time series prediction in this section.

The caring about RMSE and POCID makes stock time series prediction differ-

ent from original time series prediction which only concern for RMSE of an algo-

rithm. POCID plays an important role in stock prediction, as it directly related to

the interests of people. In the EM-ELM algorithm, the ending condition of the Hid-

den Layer Nodes Growing Phase is the output error E(Hk) < 𝜀 before the number

of hidden nodes Lk ups to Lmax. It gives no consideration to POCID, meanwhile,

the number of new hidden nodes to be added every time is indeterminate. Com-

paring with EM-ELM, we add the ending condition P(Hk) < 𝜉 in the Hidden Layer

Nodes Growing Phase of the IEM-ELM algorithm and determine the number of new

hidden nodes to be added according to the subtraction of P(Hk) and 𝜉, that is the

absolute of 0.5 (P(Hk) − 𝜉). At the same time, considering when 𝜀 is too small and

Lmax is very large, it will never happen that the output error E(Hk) ended with 𝜀, that’s

means the circulation will end with Lk equals Lmax which is we don’t expected. So

we add an additional ending condition in the Hidden Layer Nodes Growing Phase

which is ∣ E(Hk−1) − E(Hk) ∣ approximately equals 0 and do the same processing

with POCID.

The whole algorithm of IEM-ELM is given as follows:

IEM-ELMAlgorithm: Given a set of training data (xi, ti)Ni=1, the maximum number

of hidden nodes Lmax, and the expected learning accuracy 𝜀 and the expected POCID

𝜉, the IEM-ELM algorithm can be shown in two phases.

Phase 1-Initialization Phase:

(1) Initialize the networks with L0 hidden nodes and randomly generated parameters

(ai, bi)
L0
i=1, here L0 is a small positive integer given by users.

(2) Calculate output matrix H1 of the hidden layer

H1 =
⎡
⎢
⎢
⎣

G(a1, b1,X1) ⋯ G(aL, bL,X1)
⋮ ⋱ ⋮

G(a1, b1,XN) ⋯ G(aL, bL,XN)

⎤
⎥
⎥
⎦N×L0

(4)

(3) Calculate the corresponding output error E(H1) =∥ H1H
†
1T − T ∥.

Phase 2-Hidden Layer Nodes Growing Phase: Let k = 0.

While Lk < Lmax and E(Hk) > 𝜀 and P(Hk) < 𝜉:

(1) k = k + 1.

(2) Add | 0.5(P(Hk) − 𝜉)| hidden nodes to the existing networks. The total number of

hidden nodes becomes Lk = Lk−1+| 0.5(P(Hk) − 𝜉)| and the corresponding hidden

layer output matrix Hk+1 = [Hk, 𝛿Hk], where



Time Series Prediction Based on Online Sequential … 197

𝛿Hk =
⎡
⎢
⎢
⎣

G(aLk−1 + 1, bLk−1 + 1,X1) ⋯ G(aLk , bLk ,X1)
⋮ ⋱ ⋮

G(aLk−1 + 1, bLk−1 + 1,XN) ⋯ G(aLk , bLk ,XN)

⎤
⎥
⎥
⎦N×|0.5(P(Hk)−𝜉)|

(5)

(3) The output weights 𝛽 are recursively updated as

Dk = ((I − HkH
†
k )𝛿Hk)†

Uk = H†
k (I − 𝛿HT

k Dk)

𝛽k+1 = H†
k+1T =

[
Uk
Dk

]

T . (6)

(4) if (∣ E(Hk−1) − E(Hk) ∣< 1e−5 && ∣ P(Hk−1) − P(Hk) ∣< 1e−5) break;

End While.

4 Online Sequential Improved Error Minimized Extreme
Learning Machine (OSIEM-ELM)

The IEM-ELM algorithm assuming that all the training data is available for training

makes it improper for stock prediction as stock data can only arrived sequentially.

So we implement the online sequential learning algorithm of IEM-ELM which been

called OSIEM-ELM. OSIEM-ELM consists of two parts, namely IEM-ELM training

part and online sequential learning part. The IEM-ELM training part is the same as

the IEM-ELM algorithm, refers to Sect. 3. The online sequential learning part also

consists of two phase which is the boosting phase and the sequential learning phase

just as OS-ELM algorithm [17, 18].

Now, the OSIEM-ELM algorithm is presented as follows:

Proposed OSIEM-ELM Algorithm: Given the activation function g, the sequen-

tially arrived training data ℵ = {(xi, ti)xi ∈ Rn
, ti ∈ Rm

, i = 1,…}.

Part (1) IEM-ELM Training Part:

Given the maximum number of hidden nodes Lmax, and the expected learning accu-

racy 𝜀 and the expected POCID 𝜉, the all available training data (xi, ti)
Nnow
i=1 at now.

Phase 1-Initialization Phase:

(1) Initialize the SLFN with a small group of randomly generated hidden nodes

(ai, bi)
L0
i=1 where L0 is a small positive integer given by users.

(2) Calculate the hidden layer output matrix H1

H1 =
⎡
⎢
⎢
⎣

G(a1, b1,X1) ⋯ G(aL, bL,X1)
⋮ ⋱ ⋮

G(a1, b1,XN) ⋯ G(aL, bL,XN)

⎤
⎥
⎥
⎦N×L0

(7)
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(3) Calculate the corresponding output error E(H1) =∥ H1H
†
1T − T ∥.

Phase 2-Recursively Growing Phase: Let k = 0.

While Lk < Lmax and E(Hk) > 𝜀 and P(Hk) < 𝜉:

(1) k = k + 1.

(2) Add | 0.5(P(Hk) − 𝜉)| hidden nodes to the existing SLFN. The total number of

hidden nodes becomes Lk = Lk−1+| 0.5(P(Hk) − 𝜉)| and the corresponding hidden

layer output matrix Hk+1 = [Hk, 𝛿Hk], where

𝛿Hk =
⎡
⎢
⎢
⎣

G(aLk−1 + 1, bLk−1 + 1,X1) ⋯ G(aLk , bLk ,X1)
⋮ ⋱ ⋮

G(aLk−1 + 1, bLk−1 + 1,XN) ⋯ G(aLk , bLk ,XN)

⎤
⎥
⎥
⎦N×|0.5(P(Hk)−𝜉)|

(8)

(3) The output weights 𝛽 are updated in a fast recursive way as

Dk = ((I − HkH
†
k )𝛿Hk)†

Uk = H†
k (I − 𝛿HT

k Dk)

𝛽k+1 = H†
k+1T =

[
Uk
Dk

]

T . (9)

(4) if (∣ E(Hk−1) − E(Hk) ∣< 1e−5 && ∣ P(Hk−1) − P(Hk) ∣< 1e−5) break;

(5) End While.

(6) set the final number of hidden nodes L = Lk.

Part (2) Online Sequential Learning Part:

Phase 1-Boosting Phase: Initialize the learning using a small chunk of initial training

data ℵ0 = (xi, ti)
N0
i=1 from the given training set ℵ = (xi, ti)xi ∈ Rn

, ti ∈ Rm
,

i = 1,… ,N0 ≥ L.

(1) Assign arbitrary input weight ai and bias bi or center ui and impact factor ci, i =
1,… ,L.

(2) Calculate the initial hidden layer output matrix H0

H0 =
⎡
⎢
⎢
⎣

g(a1, b1,X1) ⋯ g(aL, bL,X1)
⋮ ⋱ ⋮

g(a1, b1,XN0
) ⋯ g(aL, bL,XN0

)

⎤
⎥
⎥
⎦N0×L

(10)

(3) Estimate the initial output weight 𝛽
0 = Q0HT

0 T0, where Q0 = (HT
0H0)−1 and T0 =

[t1,… , tN0
]T .

(4) Set k = 0.
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Phase 2-Sequential Learning Phase: For each further coming observations ℵk+1 =

(xi, ti)
∑k=1

j=0 Nj

i=(
∑k

j=0 Nj)+1
where Nk+1 denotes the number of observations in the (k +1)th

chunk.

(1) Calculate the hidden layer output matrixHk+1 for the (k+1)th chunk of dataℵk+1.

Here Hk+1 is

Hk+1 =
⎡
⎢
⎢
⎢
⎣

g(a1, b1,X(
∑k

j=0 Nj)+1
) ⋯ g(aL, bL,X(

∑k
j=0 Nj)+1

)
⋮ ⋱ ⋮

g(a1, b1,X∑k+1
j=0 Nj

) ⋯ g(aL, bL,X∑k+1
j=0 Nj

)

⎤
⎥
⎥
⎥
⎦N0×L

(11)

(2) Set Tk+1 = [T(∑k
j=0 Nj)+1)

,… ,T∑k+1
j=0 Nj

]T .

(3) Calculate the output weight 𝛽
k+1

Qk+1 = Qk − QkHT
k+1(I + Hk+1QkHT

k+1)
−1Hk+1Qk (12)

𝛽

k+1 = 𝛽

k + Qk+1HT
k+1(Tk+1 − Hk+1𝛽

k) (13)

(4) Set k = k + 1. Go to phase 2.

Remark If N0 = N and Nnow = N, then OSIEM-ELM becomes IEM-ELM. Thus,

batch IEM-ELM can be considered as a special case of OSIEM-ELM when all the

training data are present in one learning iteration.

5 Experiments

In this section, we will investigate the performances of the proposed algorithms IEM-

ELM and OSIEM-ELM in three stock time series prediction applications by com-

paring them with EM-ELM and OSEM-ELM respectively. We first introduce the

datasets and environment settings of the experiments. After that, we give the evalu-

ation indexes and the results of the experiments. Finally, the evaluations are done.

5.1 Datasets Description

Due to the differences of the stock market in China and America, we select one

American stock time series datasets and two Chinese stock time series datasets in

order to show the effectiveness of IEM-ELM and OSIEM-ELM. The details of these

three stock datasets are shown in Table 1. Four attributes of the stock have been

selected in the experiment, they are open price, highest price, lowest price and close
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Table 1 Details of the stock datasets used in the experiments

Stock names Begin time End time Training

data

Testing data Country

Dow Jones Industrial

Average

1996-01-01 2014-12-31 4061 716 America

Shanghai Composite

Index

2007-01-01 2014-12-31 1652 291 China

Shenzhen Composite

Index

2007-01-01 2014-12-31 1652 291 China

price. Open price, highest price and lowest price are selected as the inputs of the

network and close price is selected as the output of the network.

5.2 Experiment Settings

All the experiments are been conducted in Matlab R2013a running on a desktop PC

with 3.10 GHZ CPU. The sigmoid function g(x) = 1∕(1 + exp(−x)) is selected as the

activation function for all the algorithms. The hidden nodes are setted as follows. For

EM-ELM, the initial hidden nodes L0 is setted as 5 in the initialization phase, in the

recursively growing phase, the minimum error 𝜀 is setted as 0.005 and the algorithm

increases the hidden noses one by one. In the implementation of IEM-ELM, the

initial hidden nodes L0 is also given as 5, minimum RMSE error 𝜀 and POCID 𝜉 are

given as 0.005 and 75. The new hidden nodes to be added is | 0.5(P(Hk) − 𝜉)|. For

OSEM-ELM and OSIEM-ELM, L is setted the same way as EM-ELM and IEM-

ELM respectively. The number of the initial training set is (L + 150) in all the two

algorithms, and add 100 samples each time in the sequential learning phase.

In the comparisons of EM-ELM and IEM-ELM, time windows is setted from 1

to 10. When time windows is 2 which means the open price, highest price, lowest

price of today and the close price of the prior 2 days before today is used as the input

vector of a sample, the close price of today is used as the target of a sample. In the

comparisons of OSEM-ELM and OSIEM-ELM, time windows is setted as 3.

5.3 Evaluation Indexes

Five metrics have been used in the experiments to measure the performance of IEM-

ELM and OSIEM-ELM: RMSE (Root Mean Square Error), MAPE (Mean Absolute

Percentage Error), POCID (Prediction on Change In Direction), training times and

testing times. Now we will give the definitions of RMSE, MAPE and POCID.
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RMSE is defined as follows:

RMSE =

√
√
√
√ 1

N

N∑

i=1
(targeti − outputi)2 (14)

RMSE reflects the differences between the actual outputs and the expected outputs

on the whole testing samples, the smaller of RMSE the better.

MAPE is defined as follows:

MAPE = 1
N

N∑

i=1
∣
targeti − outputi

outputi
∣ (15)

MAPE is the percentage of the output error, the smaller of MAPE the better.

POCID is defined as follows:

POCID = 100
∑L

i=1 Dt

N
(16)

Dt =
{

1, if (targett − targett−1)(outputt − outputt − 1) > 0
0, otherwise (17)

POCID is the percentage of the stock time series directions predicted correctly

by the algorithm, the bigger of POCID the better.

5.4 Results and Evaluations

Tables 2, 3 and 4 show the comparison results of EM-ELM and IEM-ELM and

Figs. 1, 2 and 3 display the outputs of EM-ELM and IEM-ELM when time windows

is 3.

As we can see from Tables 2, 3 and 4, the RMSE, MAPE and POCID of IEM-

ELM are better than EM-ELM in almost all the datasets no matter what the time

windows is. Meanwhile, IEM-ELM has faster training speed than EM-ELM on Dow

Jones Industrial Average, and Shanghai Composite Index with all the time windows.

At the same time IEM-ELM has the same or better testing speed with EM-ELM on

average. Figures 1, 2 and 3 show that the outputs of IEM-ELM are more closer with

the raw data than EM-ELM. So We can tell that the proposed IEM-ELM has better

POCID and RMSE than EM-ELM on stock time series at faster speed.
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Fig. 1 Outputs of EM-ELM and IEM-ELM on Dow Jones Industrial Average dataset
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Fig. 2 Outputs of EM-ELM and IEM-ELM on Shanghai Composite Index dataset

From Tables 2, 3 and 4, we can also observed that when the time windows is setted

as 3, the algorithms can get better results on almost all the datasets.

Table 5 shows the comparison results of OSEM-ELM and OSIEM-ELM on the

three datasets and the outputs of OSEM-ELM and OSIEM-ELM are shown in

Figs. 4, 5 and 6. We can see that the proposed algorithm OSIEM-ELM has better



206 J. Xue et al.

0 50 100 150 200 250 300
900

1000

1100

1200

1300

1400

1500

1600

samples

cl
os

e 
pr

ic
e

Raw Data
Output of EM−ELM
Output of IEM−ELM

Fig. 3 Outputs of EM-ELM and IEM-ELM on Shenzhen Composite Index dataset
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Fig. 4 Outputs of OSEM-ELM and OSIEM-ELM on Dow Jones Industrial Average dataset
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Table 5 Comparison of OSEM-ELM and OSIEM-ELM

DataSets Algorithms RMSE MAPE POCID Training times

(seconds)

Dow Jones Industrial Average OSEM-ELM 0.0040 0.0179 81.1453 0.0468
OSIEM-ELM 0.0016 0.0061 84.3575 0.0499

Shanghai Composite Index OSEM-ELM 0.0065 0.0280 68.7113 0.0328
OSIEM-ELM 0.0048 0.0197 73.3162 0.0343

Shenzhen Composite Index OSEM-ELM 0.0053 0.0054 79.9485 0.0413

OSIEM-ELM 0.0054 0.0054 82.1306 0.0211
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Fig. 5 Outputs of OSEM-ELM and OSIEM-ELM on Shanghai Composite Index dataset

POCID performance on all the datasets and has litter RMSE, MAPE, training times

and testing times on two datasets than OSEM-ELM. Thus, we can conclude that

OSIEM-ELM not only improved POCID of the stock time series but also is more

accurate and faster than OSEM-ELM.

6 Conclusion

Stock price prediction is concerned by more and more people nowadays. In this

paper, we proposed the Improved Error Minimized Extreme Learning Machine (EM-

ELM) and its online sequential algorithm OSIEM-ELM for stock time series predic-

tion. Two experiments on four stock time series datasets have been done to prove
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Fig. 6 Outputs of OSEM-ELM and OSIEM-ELM on Shenzhen Composite Index dataset

the better performance of IEM-ELM and OSIEM-ELM than EM-ELM and OSEM-

ELM respectively. The results of the experiments showed that the proposed algo-

rithms IEM-ELM and OSIEM-ELM can not only predict the stock tendency more

exactly but also can predict the stock price more accurately.

However, only one-day prediction of the stock closing price is done in this paper,

which will not offer enough information for the decision makers, so multi-steps pre-

diction of stock price will be done in the future work.
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Adaptive Input Shaping for Flexible
Systems Using an Extreme Learning
Machine Algorithm Identification

Jun Hu and Zhongyi Chu

Abstract In this paper, a promoted adaptive input-shaping (AIS) with extreme
learning machine (ELM) is presented to get zero residual vibration (ZRV) of
severely time-varying flexible systems. Firstly, the ZRV condition and the tradi-
tional adaptive input-shaper is reviewed, together with its disadvantages of insuf-
ficient adaptability caused by giant amount of data and low-accuracy calculation
caused by noise. After that, online sequential-ELM (OS-ELM) algorithm is intro-
duced to identify the impulse response sequences of the flexible system, its fitting
impulse response sequences are gotten to update the shaper parameters with fixed
length and less noise; therefore, the above-mentioned problems of traditional AIS
could be significantly avoided; that is to say, AIS’s adaptability and
identification-accuracy could be improved apparently, which means better perfor-
mance to suppress the residual vibration of the flexible system. Finally, the veri-
fication experiments of presented AIS are implemented on a two-links flexible
manipulator, which is a classical flexible system with severely time-varying
dynamics; the results proves the effectiveness of the presented AIS method for the
vibration control of severely time-varying flexible systems.

Keywords Vibration control ⋅ Adaptive input shaping ⋅ Extreme learning
machine ⋅ Flexible system

1 Introduction

The solutions to reduce the residual vibration of flexible systems could be roughly
divided into passive approaches and proactive approaches. The former include
adding damping materials and modifying the design of mechanics [1], and the latter
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include feedback control and feedforward control. Among them, the input-shaping,
because of its low costs and low difficulty, has gotten a lot of attention and become
the hotspot in the field [2].

Input-shaping puts a bandstop filter before the flexible systems, banning the
modal frequencies of the flexible systems; thus, the vibration of flexible systems
wouldn’t be activated. However, the original input-shaper is robust less, which
makes input-shaping could hardly get good performance in applications. To
improve its robustness, robust input-shaper are developed. Robust input-shaper
could get better performance [3, 4], but it’s in expense of additional shaping
impulses [5], which means it sacrifices some response velocity. Consequently,
adaptive-input-shaping (AIS) got more attention [6], adapting its impulse ampli-
tudes and each impulse lag times to the changing system dynamic properties.
Early AIS adapts its coefficients of input-shaper by empirical transfer function
estimate (ETFE), which gets the modals by doing Fourier transform of I/O data
from the flexible system, called indirect-AIS [2, 7]. It brings heavy burden of
computation, and no high accuracy of the flexible system dynamics. Thus,
direct-AIS was presented, adapting its coefficients of input-shaper by the algorithms
such as recursive least square (RLS) [8], algebraic identification (AI) [9], and neural
network (NN) [10]. Direct-AIS calculates the impulse response sequences of the
flexible system using I/O data directly, and the corresponding updated parameters in
input-shaper could be obtained.

Because of little computation and easy operation, RLS algorithm got a lot of
application in direct-AIS [8, 11, 12]; however, it could hardly achieve
high-accuracy identification of severely time-varying flexible system because of the
insufficient adaptability and noise effect. To get high-accuracy identification in
adaptive control, a lot of approaches are presented, including fuzzy adaptive control
[13], NN adaptive control [14, 15], and so on. However, the traditional NN algo-
rithms have giant computation quantity, which causes their high demand on control
systems. Extreme learning machine (ELM) algorithm, as a newly presented neural
network algorithm in 2004 [16], could achieve much less computation but keep the
advantages of high-accuracy [17]. After that, ELM algorithm attracts much atten-
tion, and many ELM based algorithms are promoted, including online sequential
ELM (OS-ELM) [18], incremental ELM (I-ELM) [19], and so on. However, to the
best knowledge of authors, it is still a blank in how to achieve real-time identifi-
cation of online sequences for flexible system using the ELM algorithm.

To achieve satisfactory performance of zero residual vibration (ZRV) for
severely time-varying flexible systems, the promoted AIS with OS-ELM is pro-
posed in this paper. To improve the adaptability and identification accuracy of AIS,
the OS-ELM algorithm is introduced, identifying the impulse response sequences of
the flexible system. The effect of noise would be suppressed obviously in ELM’s
fitting impulse response sequences, which means the accuracy of calculation would
be improved. Furthermore, with the fixed length of identificated impulse response
sequences, the adaptability of the recursive calculation could be strengthened.
Finally, to prove the correctness of the presented AIS method, verification exper-
iments are conducted on a two-link flexible manipulator, which is belonging to a
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classical severely time-varying system. Compared with the traditional AIS, the
adaptability of the proposed method is obviously improved; thus, it could satisfy the
demand of real-time vibration suppression of severely time-varying flexible
systems.

This paper is organized as follows. In Sect. 2, there is a review of ZRV of
flexible systems and the design of traditional direct-adaptive input-shaper. Subse-
quently, the promoted AIS based on OS-ELM identification is presented. In Sect. 3,
there are verification experiments, in which a two-link flexible manipulator is
introduced as a classical severely time-varying flexible system, the results of the
experiments prove the expectant improvement of AIS with ELM on adaptation
ability and high-accuracy identification of the input-shaper coefficients corre-
sponding to the flexible system. Finally, conclusions are summarized in Sect. 4.

2 AIS Based on ELM Identification for Flexible System

2.1 Review of ZRV Condition and Traditional AIS

A flexible system could be commonly presented by its flexible segment G and
overall motion segment P, as Fig. 1 shows. The shaped input sequences u could get
corresponding vibration output sequences y assuming that the impulse response
sequences of G is g. The coefficients of input-shaper are h= fh0, h1, h2, . . . , hQgT ,
where the number of impulse should satisfy Q+1≥ 2M +1, M is the number of
modals that need to be reduced. The delay time of two impulse in input-shaper is
Δx = nxts, x=1, 2, . . . ,Q, and nx belong to positive integer. The total transfer
segment from unshaped input i to vibration output y is f = h * g.

According to the ZRV condition [11], the recursive calculation from flexible
system’s input u and output y to the values of coefficients in input-shaper h could
be as

eN = sTN
ω
x

� �
N
+ψT

NAb ð1Þ

Fig. 1 Structure of traditional AIS with a flexible system
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dN = −
1

1+ sTNRNsN

� �
RNsN ð2Þ

ω
x

� �
N +1

=
ω
x

� �
N
+ dNeN ð3Þ

RN +1 = I + dNsTN
� �

RN ð4Þ

h= Tω+ b ð5Þ

b=
1

Q+1

1
. . .
1

2
4

3
5

Q+1½ �×1

ð6Þ

sN = TTATψN
νN

� �
ð7Þ

ψN = ½yN yN − 1 . . . yN −K �T ð8Þ

νN = ½uNuN − 1 . . . uN −K �T ð9Þ

and T ∈R K +1½ �×K is an orthogonal complement of b to ensure the sum of
input-shaper coefficients equal 1, A∈R K +1½ �× Q+1½ � containing 0 and 1 is used to
assign the delay time of every two impulses in input-shaper and its corresponding
sample time ts in the system. ω and x are two intermediate vectors in calculation.

ZRV algorithm of Eqs. (1)–(4) is to calculate the corresponding values of input
shaper by making the error’s quadratic sum minimum. However, the traditional AIS
would calculate the least-square solution of I/O data from time zero to time N. Thus,
with the increase of N in long-running and the larger total amount of I/O data, the
problem of insufficient adaptability is produced. Furthermore, the least-square
solution of all the I/O data from time zero to time N would bring another problem of
noise-caused low-accuracy calculation.

y ̂= y+ d ð10Þ

where d is the noise with zero mean value and variance E d2ð Þ= σ2. So the error
prediction in terms of h and f is given as

e ̂=Hy ̂+Fu ð11Þ

where H and F is the matrix form of h and f. Thus, the noise-perturbed quadratic
cost with the length N data is
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J ̂= e ̂Te ̂= hTY
T̂
NYN̂h+2hTY

T̂
NUNf + f TUT

NUNf ð12Þ

where Y ̂N = YN +DN . Then, the noise-perturbed cost’s expectation is

E J ̂
� �

= J + hTE DT
NDN

� �
h=H + σ2N hj jj j2 ð13Þ

Equation (13) shows the effects of noise to ZRV calculation. With the recursive
algorithm running, the value of N would become bigger and bigger, and so does the
σ2N hj jj j2 in Eq. (13). However, the goal of ZRV is to get minimum value of EðJ Þ̂.
Consequently, the hj jj j2 in Eq. (13) has to be less and less. When the parameters of
input-shaper h are all equal, hj jj j2 get minimum. Consequently, noise accumulation
will make the coefficients of input-shaper closer and closer, which could cause the
deterioration of vibration suppression’s performance.

From the mathematical analysis, it could be known that traditional AIS faces the
problems of low-accuracy calculation caused by insufficient adaptability and noise.
This means that it could hardly get good performance of vibration suppression
towards severely time-varying flexible system.

2.2 AIS with ELM Identification

To solve the problems that traditional AIS faces, an OS-ELM algorithm is intro-
duced to achieve real-time identification of the flexible system, as shown in Fig. 2.
Transport the flexible system’s input sequences u and vibration output y to the
OS-ELM, the OS-ELM would fitting the flexible segment G in real-time recursive
calculation. After every time of training, given the OS-ELM network a unit
impulse, the fitting impulse response sequences g of the flexible system could be
gotten. Then the coefficients of input-shaper are calculated using g. With the
adaptation of ELM algorithm, the coefficients of input-shaper will adjust in
real-time. There will be the basic introduction of OS-ELM that applicated in AIS
thereafter.

For a classical single hidden layer feedforward neural network, its number of
input nodes, hidden layer nodes, and output nodes is D, L, and M. Given N groups
of I/O data uj, yj

� 	
. There is

Hβ= T ð14Þ

where H =
h1 u1ð Þ . . . hL u1ð Þ
. . . . . . . . .

h1 uNð Þ . . . hL uNð Þ

2
4

3
5
N × L

, ui =
ui
. . .

ui+D− 1

2
4

3
5
D×1

, hi xð Þ=Gi ai ⋅ ui + bð Þ
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is the mapping function, β=
β1
. . .
βL

2
4

3
5
L×m

is the matrix of output weight,

T =
y1 . . . yM
. . . . . . . . .
yN . . . yN +M − 1

2
4

3
5
N ×M

is the matrix consist of output data. To align the

time of input and output, the number of input nodes and output nodes are set equal,
that is to say, D = L.

In ELM, the mapping function hi xð Þ=Gi ai ⋅ u+ bð Þ is given by oneself, and its
input weights and input biases are randomly generalized, the neural network could
fitting any function by different β. Thus, the T matrix is known. The H matrix is also
known after the mapping function, input weights, input biases generalized and input
data substituted. Consequently, calculate the matrix β now is obvious.

β=H + T = HTH
� �− 1

HTT ð15Þ

With the online training using historical I/O data, the output weight matrix β is
calculated in real-time. And the neural network could simulate the goal function
G(u), and get fitting output from given input u ̃

G u ̃ð Þ=H u ̃ð Þβ ð16Þ

To make ELM solve the real-time identification from online sequences,
OS-ELM is promoted [19], reforming the calculation in (15) into recursive calcu-
lation. Given historical matrix H0 and T0, there is

β0 = HT
0H0

� �− 1
HT

0 T0 ð17Þ

After new I/O data coming, the new added matrix H1 and T1 is generalized. So
the new equality is

Fig. 2 Structure of AIS introduced OS-ELM
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β1 =
H0

H1

� �T H0

H1

� � !− 1
H0

H1

� �T T0
T1

� �
ð18Þ

Given K1 =
H0

H1

� �T H0

H1

� �
, and which could be derived is

K1 =K0 +HT
1H1 ð19Þ

On the other hand, the
H0

H1

� �T T0
T1

� �
in Eq. (18) satisfy

H0

H1

� �T T0
T1

� �
=HT

0 T0 +HT
1 T1 =K1β0 −HT

1H1β0 +HT
1 T1 ð20Þ

Given K − 1 =P; thus, the recursive calculation of OS-ELM in AIS could be
described as follows.

When the N +1 I/O data come, there are

PN +1 =PN −PNHT
N +1 I +HN +1PNHT

N +1

� �− 1
HN +1PN ð21Þ

βN +1 = βN +PN +1HT
N +1 TN +1 −HN +1βNð Þ ð22Þ

Then make N =N +1, and prepare for the next step of recursive calculation. The
initial matrix H0 and T0 are calculated according to the first I/O data, and the initial
matrix β0 and P0 are given approximately. The OS-ELM algorithm would fit the
flexible system in online training, and the I/O sequences would update when there is
new data coming. To reduce the computation quantity, the online training could be
executed in bigger interval time. That is to say, the updation could be executed until
uN + a and yN + a come, where a belongs to a given positive integer.

After the addition of OS-ELM, the variance of noise σ2 in g could be smaller
than before [17], so the error quantic in Eq. (13) could be reduced. Secondly, the
length of fitting impulse response sequences is fixed, which means the N in Eq. (13)
won’t become bigger and bigger when in long-running. Consequently, the adapt-
ability and calculation accuracy would be obviously improved.

3 Experiment on a Two-Link Flexible Manipulator

3.1 Experimental Setup

To prove the effectiveness of promoted AIS, test experiments will be executed on a
lab-scale two-link flexible manipulator, as Fig. 3 show. The materiel of two links is
aluminum with modulus of elasticity 69 GPa. Specific information of the two links
and tip mass are listed in Table 1. The two joints’ actuator is DC brushless motors,
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and their specific information is listed in Table 2. The two joints’ angles θ1 and θ2
are measured by incremental encoders. The angle θ1 of link 1 is presented in the
intersection angle with a given datum, and angle θ2 of link 2 is presented in the
intersection angle with the extended line from link 1, as shown in Fig. 4. Both θ1
and θ2 are positive when clockwise and negative when counterclockwise. Two
strain gauges are placed close to the back end of the links, measuring the bending of

Fig. 3 Two-link flexible
manipulator

Table 1 Specification of two-links and tip mass

Length (mm) Width (mm) Thickness (mm) Weight (g)

Link 1 300 20 2 65
Link 2 200 15 1.5 16
Tip mass – – – 8

Table 2 Specification of two motors, strain gauges and amplifier circuits

Manufacture Model numbers Weight (g)

Motor 1 FAULHABER 2232024CSD 239
Motor 2 MOTEC DBM 22.33.03.52.01 94
Strain gauges DJET BF350-3AA –

Amplifier circuits DJET RC-A3N 3

Fig. 4 Representation of two angles
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two joints. The original signals from strain gauges would be amplified and filtered
by a circuit, the specific information of strain gauges and amplifying circuits are
listed in Table 2. Thus, link deflection and residual vibration could be evaluated
using the signals from amplifying circuits.

To achieve the high angle accuracy together with rapid response, PID feedback
controllers of joint angles are used in rotation control. The servo-control loop and
adaptive input shaper’s algorithm are achieved by a DSP 2812 control circuit, it
could control the two motors and transport the result of experiment to PC in
real-time. The structure of experiment manipulator is shown as Fig. 5. It should be
noted that the presentation θ in Fig. 5 stands for both angles. Specific information of
the two DC brushless motors and their servo-control loops is given in Table 3.

The coefficients of the input shapers are chosen as shown in Table 4, under the
sampling time 10-ms-ts. The initial values of the RN is set at

R0 =
107 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 107

2
4

3
5
½K +Q+1�× ½K +Q+1�

ð23Þ

Fig. 5 Experimental settlement of two-link flexible manipulator with AIS

Table 3 Servo-control loop parameters of two joints

Joint Nominal
voltage (V)

Reduction
ratio

Torque constant
(mNm/A)

Peak
current (A)

P gain D gain I gain

1 24 246 31.4 1.5 72 8 148
2 3.6 162.7 6.68 0.85 43 1.5 21.5

Table 4 Set values of input shaper

Duration time
(K)

Nonzero coefficient number
(Q + 1)

Delay time
Δx

Initial value cn of input
shaper

Values 60 ts 5 15 ts 1 ̸ Q+1ð Þ

Adaptive Input Shaping for Flexible Systems Using an Extreme … 219



There are two AIS methods tested in the experiment. Traditional AIS and the
presented AIS with ELM. The number of nodes in ELM is 25, and its numbers of
input-nodes and output-nodes are both 200. The mapping function used in ELM is
sigmoid function, the values of input-weight and input-bias are given randomly.

3.2 Experimental Results

Firstly, the command track of the two joints’ angles in the experiment as shown in
Figs. 6a and 7a. One motion period’s duration is 8 s. In each period, the two joints
will rotate a predetermined angle in rest-to-rest and stop for a moment, after that
they will rotate back to the original angle in the same method. In the first four
periods, the rotation angles of two joints in each period are decreased from the last
period, because it could make the dynamics of flexible system varying severely in
different periods. However, in the second four-periods, the rotation angles will
repeat the first four-periods, so that the dynamics of the flexible system will repeat
similar variation in two four-periods. Consequently, there are totally 8 periods in
the verification experiments. Besides, to show the effects of input shaping and give
initialization time of AIS, there is no input shaping of two joints in the first period.
Different input shaping will be started from the second period, including traditional
AIS, and the presented AIS with ELM.

The vibration could be linearly represented by the outputs of strain gauges;
consequently, the curve of the strain gauges’ output could reflect the strain’s variety
of the flexible system in linearity. Joint 1’s output contrast from strain gauges with
two different methods is shown in Fig. 6b, and joint 2’s output contrast is shown in
Fig. 7b. All the unit of these curves are V.

To give clear contrast of the two different AIS approaches, the arbitrarily chosen
period from 18 to 26 s is magnified. Correspondingly, the maximum
residual-vibration and the mean square error of residual-vibration are given in
Table 5.

From Table 5, it could be seen that the proposed method of AIS with ELM
achieve better performance in vibration suppression. To analyze the source of better
performance, the corresponding filter coefficients of adaptive input-shaper are
shown in Figs. 8 and 9. It could be seen from Fig. 8 that the filter coefficients tend to
close and could hardly achieve real-time adjustment using traditional AIS. After the
addition of ELM, the filter coefficients of AIS with ELM are significantly different
from traditional AIS, and similar change of coefficients could be observed from 4 to
34 s and 36 to 66 s, corresponding to the same angle tracks in these times. This
means that the AIS with ELM could adjust to the time-varying dynamics of the
flexible system; thus, it could achieve better performance in vibration suppression.
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Fig. 6 a Angle track of joint 1. b Joint 1’s result of vibration suppression with two AIS methods

Adaptive Input Shaping for Flexible Systems Using an Extreme … 221



Fig. 7 a Angle track of joint 2. b Joint 2’s result of vibration suppression with two AIS methods
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Fig. 8 Filter coefficients in traditional AIS

Table 5 Results contrast of the vibration with two AIS methods

Maximum
deflection (V)

Maximum residual
vibration (V)

Mean square
error (V)

(a) Contrast of joint 1 with two AIS methods
Traditional
AIS

0.6716 0.4502 0.1089

AIS with
ELM

0.6331 0.1830 0.0689

(b) Contrast of joint 2 with two AIS methods
Traditional
AIS

0.2802 0.1840 0.0405

AIS with
ELM

0.2620 0.0711 0.0216
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4 Conclusions

In this paper, a promoted approach of AIS with ELM identification is proposed. To
improve the adaptability and calculation accuracy of traditional AIS. Firstly, using
the characteristic that ELM could fitting any non-linear function, the impulse
response sequences of flexible system is being fitted, with better suppression of
noise. Thus, the noise-caused low accuracy in calculation could be reduced sig-
nificantly. Secondly, with the fixed length of the fitting impulse response sequences,
the adaptivity of AIS could be improved obviously, as well as better calculation
accuracy. After that, verification experiments are executed on a two-link flexible
manipulator. The results of the verification experiment certified the promotion of
AIS with ELM in calculation accuracy and its performance of residual vibration
reduction.

Fig. 9 Filter coefficients in AIS with ELM
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Kernel Based Semi-supervised Extreme
Learning Machine and the Application
in Traffic Congestion Evaluation

Qing Shen, Xiaojuan Ban, Chong Guo and Cong Wang

Abstract Extreme learning machine (ELM) has proven to be an efficient and
effective learning paradigm for a wide field. With the method of kernel function
instead of the hidden layer, Kernel-ELM overcame the problem of variation caused
by randomly assigned weights. In this paper, Kernel based optimization is intro-
duced in semi-supervised extreme learning machine (SSELM) and the improve-
ments of performance are evaluated by the experiment. The result shows that
optimized by kernel function, Kernel-SSELM can achieve higher classification
accuracy and robustness. In addition, The Kernel-SSELM is used to train the traffic
congestion evaluation framework in Urban Transportation Assessment and Forecast
System.
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1 Introduction

Primarily, ELM was applied to supervised learning problems in full labeled data.
Gao Huang et al. [1] proposed the semi-supervised framework of ELM to extend
the capacity to deal with unlabeled data. SSELM greatly extend the application of
ELM, for instance, in the field of text classification, information retrieval and fault
evaluation as the collection of labeled data is bound to cost a lot of money and time
while the unlabeled data is easy to collect and its number is large.

Although ELM improves the training efficiency to a high extent, the random
distribution of input layer and the hidden layer parameters cause great variation of
classification accuracy under the circumstance of same training data and model
parameters which significantly influences the stability of ELM [2]. On the other
hand, the number of hidden layer nodes also has a huge impact on the accuracy. In
many studies, the number of hidden layer nodes is set to a large number that is
usually greater than the number of training samples. However, the experiments
show that the more hidden layer nodes is not better. The relationship between
optimal accuracy of different datasets and the number of hidden layer nodes is
complicated.

The approach replacing ELM hidden layer with kernel function make ELM does
not need random hidden layer and input layer because the calculation of hidden
input is carried out by kernel function. Kernel-ELM solves the problem resulted
from random distribution of input layer and hidden layer parameters in ELM and
gain higher relevance to corresponding datasets as well as higher stability [3] with
the sacrifice of training speed.

SSELM and ELM have a unified framework. As a result of randomly generated
feature mapping, stability problem is existed in the SSELM. This paper introduces
the kernel function into the SSELM of Gao Huang et al. [1] and evaluates the
improvements in stability and accuracy of SSELM optimized by kernel function.

The rest of the paper is organized as follows. Section 2 reviews the current
research progress in the field of semi-supervised learning and kernel function at
present in. Section 3 presents the algorithms framework of Kernel-SSELM. The
evaluation experiment of efficiency is conducted in Sect. 4. Section 5 elaborates the
application of Kernel-SSELM in the Traffic congestion evaluation system based on
floating car data. Finally, Sect. 6 draws the conclusion and our future plan.

2 Related Research

Only a few existing research studies ELMs have dealt with the problem of
semi-supervised learning. In the earlier days the manifold regularization framework
was introduced into the ELMs model to leverage unlabeled data extending ELMs
for semi-supervised learning [4, 5]. Li et al. [6] propose a training algorithm that
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assigns the most reliable predicted value to unlabeled sample in the repeated
trainings of ELM for purpose of expanding the labeled sample sets continuously.

The proposed SSELM of Gao Huang et al. [1] takes example by the
state-of-the-art semi-supervised learning framework to optimize the cost equation of
ELM’s processing unlabeled samples. Related to Laplacian support vector machi-
nes (LapSVM) and Laplacian regularized least squares (LapRLS), it is involved
with the manifold assumption and simplifies the problem into the regularized least
square problem.

Ever since the optimization based on kernel function was introduced into the
ELM [2], many researchers have made advances in the practical application of
theories. The significant solved problems are from two aspects. One aspect aims to
choices of specific application’s kernel function and optimization [7, 8]. The other
aspect aims to the information fusion of ELM [9].

3 Kernel-Based SSELM

Gao Huang et al. [1] introduced manifold assumption into ELM, and proposed the
solution of β in SSELM. For a training data set having 1 number of labeled samples
and u number of unlabeled samples, the output weights β of a SSELM is:

β=HT I +C ̃HHT + λLHHT� �− 1
C ̃Y ̃ ð1Þ

The formulate is valid when the number of hidden nodes is more than the
number of labeled samples 1. The Y ̃ is the training target including the first 1 rows
of labeled data equal to Y and the rest equal to 0. λ is user-defined semi-supervised
learning rate. C ̃ is a l + uð Þ× l+ uð Þ diagonal matrix with the first 1 diagonal ele-
ments of cost coefficient and the rest equal to 0. C ̃ can be calculated as:

Ci =
C0

NPi

i=1, . . . , l ð2Þ

where C0 is user-defined cost coefficient, and NPi represents the sample quantity of
the pattern of ith sample. L is Laplacian matrix, which can be calculated as
L=D−W . W = wi, j

� �
is the similarity matrix of all the labeled and unlabeled

samples. D is a diagonal matrix with its diagonal elements Dii = ∑
n

j=1
wij.

Huang et al. [2] suggested using a kernel function if the hidden layer feature
mapping h xð Þ is unknown. The kernel matrix χ for ELM can be written as follows,
where K xi, yið Þ is kernel function:
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χELM =HHT χELMi, j
= h xið Þ ⋅ h yið Þ=K xi, yið Þ ð3Þ

Then the output function of Kernel-SSELM can be written as:

y=FSSELM xð Þ= h xð Þβ=
K x, x1ð Þ

⋮
K x, xnð Þ

24 35 I +C ̃χELM + λLχELM
� �− 1

C ̃Y ̃ ð4Þ

4 Experiment Result

4.1 Experimental Setup

We evaluated the performance of Kernel-SSELM on various semi-supervised tasks.
All experiments were implemented using Matlab R2013b on a 3.40 GHz machine
with 4 GB of memory.

The experiment was implemented on 4 popular data sets, which have been
widely used for evaluating semi-supervised algorithms. In particular, USPST data
set is the testing set of USPS, which is a classical handwritten digit recognition
data set.

Each data set was randomly divided into 4 equal folds. Each of the folds was
used as the testing set once and the rest were used for training (4-fold cross-
validation). The random generation process was repeated 3 times, so that there were
12 different experiment groups for each data set. For each group, the training set
was split into 3 different folds again as Table 1. In Table 1, L is the labeled data set
for training, U is the unlabeled data set, and V represents the validation set.

4.2 Comparisons with Related Algorithms

In the experiment, we compared the Kernel-SSELM and SSELM with the other
state-of-the-art semi-supervised learning algorithms such as TSVM, LDS, LapRLS,
and LapSVM. The validation set V was used to select the optimal model parameter
for every algorithm. In particular, for Kernel-SSELM and SSELM, the cost coef-
ficient C0 and the semi-supervised rate λ were selected from the exponential

Table 1 Details of the
division of the data sets

Dataset Classes Dims L U V T

G50C 2 50 50 314 50 136
G10N 2 10 50 314 50 136
COIL20 20 1024 40 1000 40 360
USPST 10 256 50 1409 50 498
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sequence 10− 6, 10− 5, . . . , 106
� �

. The number of hidden layer nodes of SSELM
was fixed to 1000 for G50C and G10 N, and 2000 for COIL20 and USPST. The
Kernel function of the Kernel-SSELM was radial basis function (RBF), and its
parameter γ was selected in 20, 21, . . . , 210

� �
.

Table 2 shows the error rate (with the standard deviation) of each algorithm.
Kernel-SSELM and SSELM can achieve comparable result with the other 4
algorithms. Particularly, for the multi-class problems on the high dimension data
such as COIL20 and USPST, Kernel-SSELM gave better performances than the
others. Compared with SSELM, Kernel-SSELM yielded higher accuracy and lower
deviation on all dataset. It is obvious to find that the algorithm with kernel function
could build more stable model in classification task.

Table 3 displays the training efficiency of each algorithm on the 4 experiment
datasets. SSELM was the fastest, while Kernel-SSELM was a bit slower but still
stayed on the same level. On the binary-problem dataset, Kernel-SSELM and
SSELM did not show much advantage to LapRLS, and LapSVM. This result in the
they all need to calculate the Laplacian matrix which is a time consuming process

Table 2 Performance comparison between different semi-supervised algorithms

Dataset Subset TSVM LDS LapRLS LapSVM SSELM Kernel-SSELM

G50C U 6.43
(2.11)

5.61
(1.46)

6.23
(1.52)

5.16
(1.45)

5.92
(2.34)

5.41(1.49)

T 6.93
(2.37)

5.83
(2.03)

6.84
(2.41)

5.37
(1.56)

6.16
(2.87)

5.23(1.91)

G10N U 13.91
(3.09)

9.79
(2.05)

9.04
(2.31)

9.27
(2.63)

9.96
(3.65)

9.17(1.86)

T 14.36
(3.68)

9.72
(1.9)

9.48
(2.63)

9.82
(2.03)

10.44
(3.8)

9.83(2.15)

COIL20 U 26.35
(4.63)

14.68
(4.81)

10.22
(4.17)

10.53
(2.47)

11.41
(3.35)

10.62(2.04)

T 25.87
(4.52)

15.09
(3.79)

11.3
(3.3)

11.59
(2.82)

12.05
(3.57)

11.2(2.16)

USPST U 24.98
(4.89)

15.53
(3.35)

15.38
(4.17)

15.93
(3.56)

14.61
(3.89)

13.81(2.47)

T 26.5
(4.69)

16.8
(3.54)

16.81
(3.28)

16.76
(3.98)

14.76
(3.64)

13.43(1.95)

Bold values indicate the best result in the dataset

Table 3 Training time of different semi-supervised algorithms

Dataset TSVM LDS LapRLS LapSVM SSELM Kernel-SSELM

G50C 0.539 0.651 0.083 0.089 0.047 0.053
G10N 0.386 0.427 0.046 0.048 0.032 0.036
COIL20 34.32 39.18 11.98 8.367 1.201 1.634
USPST 188.7 205.3 15.27 13.84 2.932 3.524
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and dominates the computation cost. However, for multi-class problem, the extreme
learning methods showed significant advantage in training efficiency.

In all, from the two tables, we could found that Kernel-SSELM can give higher
accuracy and stability in the cost of a little training speed.

5 Application in Traffic Congestion Evaluation

5.1 Traffic Congestion Evaluation

Urban Transportation Assessment and Forecast System analyzes the traffic con-
gestion of transportation network in a city of southwest China and shows the
evaluation results of the real-time traffic states on the GIS map using different colors
on the foundation of the floating cars’ GPS information (Fig. 1).

Seen from Fig. 2, traffic congestion evaluation system based on floating car data
is the fundamental part of core function. In previous work, traditional method
evaluating the present road congestion through fixed empirical evaluation standard
is easy to implement and consumes a little system resources. But it does have the
following drawbacks: First, the empirical evaluation frameworks do not take full
consideration of the road information and network conditions. Second, it causes a
significant gap between the congestion information on the map and users’
experience.

(b) 

(a)

Fig. 1 Urban transportation assessment and forecast system. a Structure of urban transportation
assessment and forecast system. b Floating car distribution on the map
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To overcome the shortcomings above, machine learning methods are introduced
into the traffic congestion evaluation system. However, many approaches such as
SVM have deficiencies when applied to huge data and semi-supervised task in this
traffic congestion evaluation system.

Applying Kernel-SSELM to traffic congestion evaluation system based on
floating car data, this paper has the following strengths:

1. Though the congestion value of unlabeled data is uncertain, it represents the
different traffic conditions which reflect the distribution information of traffic
data. Kernel-SSELM improves the recognition accuracy of evaluation models
by involving unlabeled data in the training.

2. Extreme learning machine has high training efficiency and is easy to implement.
In the case of large data scales, high training speed ensures that despite traffic
conditions changes it can still renew training for several times to choose a better
model. At the same time, extreme learning machine is able to be modified into
incremental learning easily so that we can make use of the latest information to
update the evaluation network in real time.

3. With the neglecting the number of hidden layer nodes, the optimization of
kernel function improves the stability of SSELM.

The evaluation system optimized by Kernel- SSELM improves the evaluation
accuracy and is more in accord with the evaluation of congestions from local
residents. As for the urban administration, the traffic congestion evaluation system
plays an assistant role in management and supplies solutions for alleviating urban
traffic. As for citizens, they may choose the right way to get around or the optimal
driving route via the precise congestion evaluation.

Fig. 2 Real-time traffic evaluation
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5.2 Congestion Eigenvalue and Congestion Value

Traffic congestion evaluation system takes the road sections as the individual
samples. Be specific, a road section demonstrates a portion of a road in a single
direction. Its traffic congestion evaluation originates from two sources. The first part
of source is the essential information of the road section from the Transportation
Department, including Number of lanes, numbers of lanes of the entrance and exit,
number of traffic lights and road grades. The second part of source is the real-time
speed information of the road section from the floating car data, including average
speed, speed distribution, and average stopping time.

The work of labeling training samples is completed by 5 experts from the
Transportation Department of the city. Through surveillance cameras experts
recorded information and gave evaluation of the traffic congestion at that time.
Congestion evaluation is divided into three grades: Smooth, Average and Con-
gested. The final label is in the grade which receives the most votes in 5 experts.

5.3 Evaluation Experiment

The environment of the experiment is the same as Sect. 4. In the experiment, we
collect the floating car data from June 15th to June 16th 2015, and the quantity is
more than 30,000,000. The data is grouped in interval for 5 min and matched to the
corresponding road section. Finally we collect 13,681 samples. The evaluation of
experts is based on the video from surveillance cameras about 30 typical road
sections in the city. 537 valid samples were finally collected, and the rest 13,144
samples were unlabeled.

For comparison, we tested the SSELM, Kernel-SSELM and the empirical rule in
Table 1. The test set had 100 samples randomly selected from the labeled sample,
and the random generation process was repeated in 10 times. The cost coefficient C0

was fixed to 100 and the semi-supervised rate λ was fixed to 0.001. The kernel
function of Kernel-SSELM is RBF with the parameter γ fixed to 100. The number
of hidden layer nodes of SSELM was set to 5000.

Table 4 shows that the evaluation model trained by Kernel-SSELM had the
highest average accuracy at 86.2 %. In addition, Kernel-SSELM only takes 48.2 s
for training, which keep the high training efficiency of SSELM.

Table 4 The result of
evaluation experiment

Empirical
rule

SSELM Kernel-SSELM

Average
accuracy

68.9 % 82.6 % 86.2 %

Best accuracy 73 % 87.5 % 88 %
Training time – 41.6 48.2
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The trained model was used in the Urban Transportation Assessment and
Forecast System. Figure 2 displays the real-time traffic condition. In the map, Green
represents smooth traffic, yellow shows average condition, and red means the road
is congested. Seen from the image taken by surveillance cameras, the traffic eval-
uation accurately reflects the road traffic congestion at that time.

6 Conclusion and Future Work

In this paper, a kernel based optimization is proposed to promote the SSELM.
Experiments show that Kernel-SSELM can achieve higher accuracy and model
stability, because kernel function avoids the problem of setting hidden layer.
Compared with the other state-of-the-art semi-supervised learning algorithms,
Kernel-SSELM shows significant advantages in training efficiency and multi-
classification ability. In the application of traffic congestion evaluation, Kernel-
SSELM was used to train the evaluation model on the large-scale data set. Both the
experiment and the real-time application show the evaluation system can precisely
reflect the traffic condition.

Since the type of kernel function and its parameter also have much influence on
the training model, how to choose an optimized kernel function is still an important
problem in the particular application of Kernel-SSELM. There is a general that
assume a linear combination of a group of base kernels could be the optimal choice.
In the future, we plan to research the multi-kernel framework for promoting the
Kernel-SSELM in the traffic application.
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Improvement of ELM Algorithm
for Multi-object Identification in Gesture
Interaction

Liang Diao, Liguo Shuai, Huiling Chen and Weihang Zhu

Abstract ELM algorithm has been widely applied in gesture recognition. When
the dataset is multi-objective, however, using classical ELM algorithm directly may
produce a big recognition error. To address this problem, an improved ELM
recognition algorithm is proposed. The presented ELM algorithm is characterized
as building separated ELM network for each gesture instead of constructing a
unified ELM network for all gestures. A simplified and optimized feature is pro-
posed. Comparison experiment between the classical ELM algorithm and the
optimized ELM algorithm aiming to four classical gestures are conducted. The
result shows that the training accuracy of the improved algorithm is about 5.25
times of the classical algorithm, and the right recognition ability of the improved
algorithm is more than 1.8 times than the classical algorithm. The training time of
the optimized algorithm is less than that of the classical algorithm.

Keywords Gesture recognition ⋅ Multi-objects ⋅ Simplified-gesture features ⋅
Distributed network

1 Introduction

In human-computer interaction (HCI) fields, Gesture recognition has gained more
and more attention from the world. At present, it is commonly used two types of
approaches in gesture recognition: data glove-based recognition and vision-based
recognition [1]. (1) The first manner data glove-based recognition, employing data
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glove, installs acceleration sensor and geomagnetic sensor, to calculate the gesture
from the fingers’ position. Having strong adaptability, this manner can recognize not
only statistic gesture but the dynamic gesture. However, because of high-cost, it has
not been widely used [2]. (2) The second manner, vision-based recognition, involves
the use of one or more cameras to collect gesture picture, from which gesture
characteristics would be extracted through image processing techniques, then pattern
recognition would be used to perform gesture classifications. The second manner,
with no restriction of data glove, is low-cost, and makes the HCI of higher efficiency
and more convenient. A complete recognition based on camera involves three steps
[1, 3]. The first step is collecting gesture pictures with camera, the second one is
detecting and tracking hand feature and the third one is recognition of hand feature.
Recently, the former two steps have become full-fledged, while the recognition is
various due to different algorithms selected such as Hidden Markov Models
(HMMs), Dynamic Time Warping (DTW), Template Matching (TM), (Support
Vector Machine) SVR, Artificial Neural Networks (ANN), etc. These model
recognition algorithms mentioned above, HMM and DTW are available for dynamic
gesture recognition, especially in the action recognition with time span [4–6]. TM is a
simple gesture recognition algorithm used in the early stage, but because of its rigid
matching process, the recognition may failed if the matching templates are twisted or
beyond a certain limit [7, 8]. SVM is also a popular static gesture recognition
algorithm, for having good real-time performance, however, it is not suitable for
processing large sample data [9]. In contrast, the AAN has inherent advantages in
dealing with large sample data. Extreme Learning Machine (ELM) is a kind of AAN
with ability of extremely fast learning, which has raised a great concern in the field of
HCI after it was first proposed in 2004. Then a large number of pattern recognition
algorithms based on ELM are developed by researchers all around the world [10].
Many improvements focused on network structure and hidden nodes number has
been proposed. Among these algorithms, a land cover classifier, Proposed by Chen
et al. [11], trains multiple ELM networks parallelly, which not only expands the
selectable range of the hidden nodes number but improves the recognition accuracy.
Arif introduced an Online Sequential ExtremeMachine Learning to recognize human
action [12], which has the capability to handle both additive and RBF nodes in a
unified framework and can learn the training data chunk-by-chunk. For the purpose
of avoiding big error caused by the multi-objective recognition, in this paper, an
effective feature tracking algorithm is developed, and multiple ELM networks are
trained respectively for each kinds of hand gesture, in order to decrease the training
error and recognition error.

2 Methodology

ELM algorithm is a kind of feed-forward neural network algorithm with
single-hidden layer [13]. Once the number of input layer nodes, hidden layer nodes
and output layer nodes are determined, the connection weights between hidden
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layer nodes and output nodes would be calculated by least square method imme-
diately. Therefore ELM algorithm has strong ability to cut training time. But when
the training sample is relatively complex and the number of hidden layer nodes is
too small, the model trained by ELM may produce large training error. The value of
training error is related to the number of hidden nodes and the training sample
complexity, where the sample complexity depends on the sample size [14] and the
differences of samples [15]. The smaller number of hidden nodes and the more
complexity of sample will lead to a bigger recognition error. But the sample size is
mainly determined by the objective conditions. The factors such as uneven lighting
and different shooting angle of gestures will lead to large number of variations in
one type of gesture image, which is the reason why the gesture sample size is
general extremely large. In order to reduce recognition error and reduce training
time when the training objects are multi-gestures, a method for feature optimization
has been proposed in this paper. Multi-ELM models are trained with these matrices
parallelly, each of which can recognize one type of gesture. As hand gesture is
recognized with this improved algorithm, optimized characteristic vectors should be
extracted first, the number of these vectors is same as the type of gestures, then the
optimized vectors would be inputted into multi-models to get the recognition errors,
finally when the minimum is under the permissible error, the test gesture would be
recognized by the model whose recognition error is the minimum.

2.1 Model Training

The topology structure of improved algorithm is shown in Fig. 1. Multi-models are
trained parallely with Xi. The output nodes number of each model is 1. And each

Fig. 1 The topology of the proposed model
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model is independent with other models. The training process can be divided into 4
steps.

1. Firstly, the ideal output (Oi) should be set for each feature optimized matrix (Xi).
As the output node number is 1, Oi is a column vector shown in Eq. (1). Only
two values can be found in Oi, one is 0 and another is 1, where 1 is the ideal
output of the identified gesture while 0 is the output of other gestures.

Oi = o1 o2 . . . oN½ �T ði=1, 2, 3, . . . , pÞ ð1Þ

2. Secondly, the threshold (Bi) of the hidden node and the weight matrix (W1i) that
connect the hidden nodes and the input nodes should be initialized for each
models. In Eqs. (2) and (3), w1 and b is decimal numbers assigned between 0
and 1 in random. The row number of weight matrix is same as feature extraction
number (D), and the column number is same as hidden nodes number (L).

W1i = w1j1 w1j2 . . . w1jL½ � ði=1, 2, 3, . . . , p; j=1, 2, . . . , DÞ ð2Þ

Bi =

b1 b2 . . . bL
b1 b2 . . . bL
⋮ ⋮ ⋮ ⋮
b1 b2 . . . bL

2664
3775
N*L

ði=1, 2, 3, . . . , pÞ ð3Þ

3. Thirdly, calculating Hpi by Eq. (4), where g is the inactivate value, which
should be activated with activation function, where the most common one is
sigmoid, whose equation is shown in (5). Hi is the activation matrix, in which G
is the activation value with g. From (4) (5) (6), there is p Hi obtained.

Hpi = gj1 gj2 . . . gjL½ �=Xi*W1i +Bi

ði=1, 2, 3, . . . , p; j=1, 2, . . . , NÞ ð4Þ

Gij =
1

1+ expð− gijÞ ði=1, 2, 3, . . . , N; j=1, 2, 3, . . . , LÞ ð5Þ

Hi = Gj1 Gj2 . . . GjL½ � ði=1, 2, 3, . . . , p; j=1, 2, . . . , NÞ ð6Þ

4. Finally, calculating the generalized inverse matrix (H + − 1
i ) for each Hi, where

H +
i is obtained by Eq. (7). Then substituting H + − 1

i and Oi into Eq. (8) finally
gain weight matrix (W2i) that connect the hidden nodes and the input nodes,
where W2i is a dimensional vector same as Oi. Once W2i of each model is
obtained, the whole training process of improved model is over.

H +
i =HT

i Hiði=1, 2, 3, . . . , pÞ ð7Þ

W2i =H + − 1
i OT

i ði=1, 2, 3, . . . , pÞ ð8Þ
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W2i = w21 w22 . . . w2L½ �Tði=1, 2, 3, . . . , pÞ ð9Þ

For the purpose of evaluating the quality of training model, we use error Eq. (10)
to calculate training error and recognition error, where E means the output of the
recognized object. When the recognized object is training matrix, J is the training
error. When the recognized object is gesture that is not contained in training matrix
is recognition error.

J = ðE−OÞ*ðE−OÞT�� ��
2 ð10Þ

3 Experiments

In this part, we planned to employ the classical algorithm and improved algorithm
respectively to train 4 typical hand gestures of FIVE, STONE, OK, and VICTORY.
Then the data of these two kinds of models, including training error, recognition
error, training time and recognition time, are calculated and compared respectively,
which are derived by simulation implemented in MATLAB. There are 100 avail-
able images collected at natural state for each gesture type. Thus, there are 400
gesture images in all. When selecting the samples, hand should be completely
relaxed, put in the focus area of camera and parallel to desk.

3.1 Training Error

1. For the classical model, using classical ELM algorithm to train the classic
characteristic matrix, the ideal output array of each gesture is shown in Table 1.
After model training, calculating the outputs of these 400 y!. According to the
outputs, the train error is obtained with Eq. (10). In this experiment,
L = 200–500 is set, the training error would be added up as the model is
repetitively trained for each L, Finally the average training error is calculated

Table 1 Ideal outputs of
classical model

No. 1 2 3 4

FIVE 1 0 0 0
OK 0 1 0 0
STONE 0 0 1 0
VICTORY 0 0 0 1
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after the model is trained 10 times, by which the curve of error and hidden nodes
number is derived in Fig. 2a. In the figure, as hidden nodes number increase, the
training error decreases gradually. When L = 360, the train error is 0.0046, and
then the training error gradually converge to 0.

2. For the improved model, according to the characteristic extraction (Ci), opti-
mized characteristic matrix is extracted and t1 = t2 = 25 are set, when the value
of feature extraction is D = 50, and four groups of optimized characteristic

matrix (Xi = x1i�! x2i�! . . . x400i��!� �T ði=1, 2, 3, 4Þ) are obtained. Then the
independent ELM models are trained with above 4 Xi, each model is corre-
sponding to 50 input nodes and one output node. After the development of
networks, these 4 Xi are substituted into each model respectively to calculate
output matrix, then we obtain training error with output matrix and substitute it
into formula (10). We define the sum error of these 4 models as the training error
of improved structure. In the experiment, L = 20–200 is set and model is
repeatedly trained for 10 times at each hidden node. Average training error is
calculated, and the curve of training error is shown in Fig. 2b. In the figure,
When L = 120, the error is 0.024, and then gradually converge to 0.

3.2 Recognition Error

To further test the recognition effect of classical and improved models. We chose 80
test images that do not belong to the training samples, and each one type of gesture
has 20 test images.

Fig. 2 Training error. a Training error of classical model. b Training error of improved model
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1. For the classical model, calculating the outputs with the 80 test inputs, then we
will get the recognition error by Eq. (10). And when L = 360, the training error
is nearly 0, which is verified in experiment (Sect. 3.1).
Therefore L = 380–500 is set to calculate the whole recognition error of these 80
test inputs. Average training error is calculated, as the model is repeatedly
trained for 10 times at each hidden node.

2. For the improved model. The optimized feature vector should be extracted
according to Ci. Then we will obtain 4 groups optimized inputs, each group has
80 optimized feature vectors. Calculating the outputs with these optimized
inputs, then we will get the recognition error by Eq. (10). And when L = 130,
the training error is nearly 0. Therefore L = 380–500 is set to calculate the
whole recognition error of these 360 optimized inputs. Average training error is
calculated, as the improved model is repeatedly trained for 10 times at each
hidden node. Finally, the test error curves of classical and improved models are
shown in Fig. 3.
As shown in Fig. 3, the recognition errors of classical structure decrease pro-
gressively as the hidden nodes increase. When the L = 500, the recognition error
is at its minimum of 0.7386, while the recognition error of the improved model
is only 0.2628 with the decreasing rate of 1.81. When L = 385, the recognition
error of classical model is at its maximum of 33.9, while the recognition error of
improved model is only 0.2227, which is far lower than the classical one. As
shown in the curves, the recognition error of improved model has been already
coverage, while the classical one is decreasing progressively, and the former one
is always less than the latter one with the same hidden nodes number.

Fig. 3 Recognition error
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3.3 The Training and Recognition Time

In the improved model, the input node and output node have been simplified, while
due to the model has multi-ELM pattern, the training time would be affected. To
exam the discrimination of training efficiency between the improved and classical
models, on the condition of the same recognition error level, the experiment is
designed to calculate the training time on both models with the former training
samples. According to the pre-experiment, when L = 750–850, the average
recognition error of the classical one is 0.3201, which is basically similar with the
average error (0.3155) of improved one as its L = 200–300. Therefore the exper-
iment would be conducted in above range of L. The computer is configured with
Intel® Core™ i3-T6600 CPU @ 2.2 GHz; RAM 3.0 GB, and 32 bit Windows
Operation System.

3.3.1 Training Time

For the classical model, L = 750–850 is set, the curve of classical training time is
shown in Fig. 4a. For the improved model, the training time is the sum of the time
to training these 4 models. The curve of improved training time is shown in Fig. 4b,
as its L = 200–300.

In Fig. 4, the training time of the both algorithms increase gradually, as the
hidden nodes number increases. It indicates that the training time of the improved
one is much less than the classical one. When the L of classical model is 847, the
training time is at its maximum of 2.053 s. However, the training time of the
improved model is at its peak value of 0.391 s, when the L = 297, which is 4.25
times less than the classical training time.

Fig. 4 Training time. a Training time of classical model. b Training time of improved model
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3.3.2 Recognition Time

The process of improved model, compared with the classical one, is more complex,
because the optimized input should be extracted in advance and the inputs should
be taken into multi-networks. To exam the recognition speed of improved model,
the experiment of recognition time is conducted with the former 80 test inputs.

1. For the classical model, L = 750–850 is set, calculating the average recognition
time of the test inputs, then the curve of classical training time is shown in
Fig. 5a.

2. For the improved model, the recognition time is from the feature optimizing to
the calculation of the recognition error. The curve of improved training time is
shown in Fig. 5b, as its L = 200–300.

The average recognition time of the improved model is 1.7762e-004 s, compared
with the average recognition time of classical model which is 1e-004 s, increases
slightly. Although the recognition speed of the improved model reduces slightly, it
will not affect the efficiency of HCI, and the recognition time of the improved
model is much less than the hand response time, which is about 200 ms [16].

3.4 Effect of Optimized Feature Extraction Number

In these experiments above, D = 50, while the recognition error may be affected by
the feature extraction number. Therefore, L = 200 is limited, D changes from 20 to
200 on the condition of t1 = t2 to calculate the recognition error of the 80 test
inputs. Then the recognition curve (D = 20–200; L = 200) is shown in Fig. 6. The
recognition error firstly decreases to the minimum (0.088), when D = 112, then

Fig. 5 Recognition time. a Recognition time of classical model. b Recognition time of improved
model
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increase to 0.2269 whose D = 200. The reason why the error increases after
D = 112 may be caused by less L. Therefore further experiment is conducted,
where D = 200 and L = 1000–1100. The curve of the error is shown in Fig. 7.

In Fig. 6, the recognition error is oscillating slightly. While the minimum value
is 0.1014 at L = 1064, which is still bigger than the value at D = 112 and L = 800.
This experiment verified that the valid features are almost extracted as D = 112.
When D > 112, the redundant pixels may lead to big error. Therefore D should be
selected in order to avoid introducing unnecessary noise.

Fig. 6 Recognition error
(D = 20–200; L = 800)

Fig. 7 Recognition error
(D = 200; L = 1000–1100)
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4 Conclusions

In this paper, it is proposed an improved feature-extraction algorithm and proposed
a constructing distributed-network for each kind of processed gesture features on
the basis of ELM. Experiments of training error, recognition error, training time and
recognition time are conducted in our study. Results show that the training error of
the improved algorithm can converge to 0 faster. The recognition error of the
improved model is 1.81 times less than the classical ELM on the condition of 500
hidden nodes. And when these two kinds of model have the same recognition error,
the training time of the improved one has decreased more than 4.25 times. Although
the recognition time of the improved algorithm is more than the classical one, the
increments are so small that it can be neglected.

The improved algorithm also has some shortcomings, when the training samples
are extremely complicated, the recognition time may further increase for high
accuracy. Therefore, as our future works, we aim to balance the relation of the
efficiency and accuracy. In addition, the improved algorithm is not only suitable for
gesture recognition applications, but also for face recognition fields, as the features
of human face are relatively stable. Some features, in one particular face, extracted
by improved algorithm are typical to all other faces, which may make the face
recognition more efficiency and accuracy. Thus in the future, we will also set about
to do the research of our improve algorithm in face recognition applications.
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SVM and ELM: Who Wins? Object
Recognition with Deep Convolutional
Features from ImageNet

Lei Zhang, David Zhang and Fengchun Tian

Abstract Deep learning with a convolutional neural network (CNN) has been
proved to be very effective in feature extraction and representation of images. For
image classification problems, this work aim at finding which classifier is more
competitive based on high-level deep features of images. In this paper, we have
discussed the nearest neighbor, support vector machines and extreme learning
machines for image classification under deep convolutional activation feature
representation. Specifically, we adopt the benchmark object recognition dataset
from multiple sources with domain bias for evaluating different classifiers. The deep
features of the object dataset are obtained by a well-trained CNN with five con-
volutional layers and three fully-connected layers on the challenging ImageNet.
Experiments demonstrate that the ELMs outperform SVMs in cross-domain
recognition tasks. In particular, state-of-the-art results are obtained by kernel ELM
which outperforms SVMs with about 4 % of the average accuracy. The Features and
MATLAB codes in this paper are available in http://www.escience.cn/people/lei/
index.html.
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1 Introduction

Recently, deep learning as the hottest learning technique has been widely explored
in machine learning, computer vision, natural language processing and data mining.
In the early, convolutional neural network (CNN), as the most important deep net in
deep learning, has been applied to document recognition and face recognition [1, 2].
Moreover, some deep learning algorithms with multi-layer fully connected net-
works (e.g. multi-layer perceptrons, MLP) for auto-encoder have been proposed, for
examples, stacked auto encoders (SAE) [3], deep belief networks (DBN) [4] and
deep Boltzmann machines (DBM) [5]. However, in large-scale learning problems,
e.g. image classification in computer vision, CNNs with convolutioanl layers,
pooling layers and fully-connected layers are widely investigated for its strong deep
feature representation ability and state-of-the-art performance in challenged big
datasets like ImageNet, Pascal VOC, etc. In the latest progress of deep learning,
researchers have broken the new record in face verification by using CNNs with
different structures [6–9]. The latest verification accuracy on LFW data is 99.7 % by
Face++ team. Besides the faces, CNN has also achieved very competitive results
on ImageNet for image classification and Pascal VOC data [10–17]. From these
works, CNNs have been proved to be highly effective for deep feature represen-
tation with large-scale parameters. The main advantages of deep learning can be
shown in three facets. (1) Feature representation. CNN integrates feature extraction
(raw pixels) and model learning together, without using any other advanced
low-level feature descriptors. (2) Large-scale learning. With the adjustable network
structures, big data in millions can be learned by a CNN at one time. (3) Parameter
learning. Due to the scalable network structures, millions of parameters can be
trained. Therefore, CNN based deep method can be state-of-the-art parameter
learning technique.

In this paper, we would like to discuss about the deep feature representation
capability of CNN by using traditional classification method with high-level deep
features of images, and find which classifier is the best under the deep representation.
Therefore, we mainly exploit the nearest neighbor (NN) [18], support vector
machine (SVM) [19], least-square support vector machine (LSSVM) [20], extreme
learning machine (ELM) [21] and kernel extreme learning machine (KELM) [22].
These classifiers are well-known in many different applications. Specially, ELM was
initially proposed for generalized single-hidden-layer feed-forward neural networks
and overcome the local minima, learning rate, stopping criteria and learning epochs
that exist in gradient-based methods such as back-propagation (BP) algorithm. In
recent years, ELMs are widely used due to some significant advantages such as
learning speed, ease of implementation and minimal human intervention. The
potential for large scale learning and artificial intelligence is preserved. The main
steps of ELM include the random projection of hidden layer with random input
weights and analytically determined solution by using Moore-Penrose generalized
inverse. With similar impact with SVM, it has been proved to be efficient and
effective for regression and classification tasks [23, 24]. The latest work about the
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principles and brain-alike learning of ELM has been presented [25]. Many
improvement and new applications of ELMs have been proposed by researchers.
The newest work about ELM for deep auto-encoder, local receptive fields for deep
learning, transfer learning, and semi-supervised learning have also been proposed
[26–30]. With the Mercer condition applied, a kernel ELM (KELM) that computes a
kernel matrix of hidden layers has also been proposed [22]. A salient feature of
KELM is that the random input weights and bias can be avoided.

In this paper, we will present a study of NN, SVM, LSSVM, ELM and KELM
for object recognition on the deep convolutional activation features trained by CNN
on ImageNet, and have an insight of which one is the best for classification on deep
representation.

The rest of this paper is organized as follows. Section 2 presents a method
review of support vector machines and extreme learning machines. Section 3 shows
the training and testing protocol of CNN for deep representation of images. Sec-
tion 4 presents the experiments and results. Finally, Sect. 5 concludes this paper.

2 Overview of SVMs and ELMs

2.1 Support Vector Machine (SVM)

In this section, the principle of SVM for classification problems is briefly reviewed.
More details can be referred to [19].

Given a training set of N data points xi, yif gNi=1, where the label yi ∈ − 1, 1f g,
i=1, . . . ,N. According to the structural risk minimization principle, SVM aims at
solving the following risk bound minimization problem with inequality constraint.

min
w, ξi

1
2

wk k2 +C ⋅ ∑
N

i=1
ξi,

s.t. ξi ≥ 0, yi wTφ xið Þ+ b
� �

≥ 1− ξi

ð1Þ

where φ ⋅ð Þ is a linear/nonlinear mapping function, w and b are the parameters of
classifier hyper-plane.

Generally, for optimization, the original problem (1) of SVM can be transformed
into its dual formulation with equality constraint by using Lagrange multiplier
method. One can construct the Lagrange function,

L w, b, ξi; αi, λið Þ= 1
2

wk k2 +C ⋅ ∑
N

i=1
ξi − ∑

N

i=1
αi yi wTφ xið Þ+ b

� �
− 1+ ξi

� �
− ∑

N

i=1
λiξi

ð2Þ
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where αi ≥ 0 and λi ≥ 0 are Lagrange multipliers. The solution can be given by the
saddle point of Lagrange function (2) by solving

max
αi , λi

min
w, b, ξi

L w, b, ξi; αi, λið Þ ð3Þ

By calculating the partial derivatives of Lagrange function (2) with respect to w, b
and ξi, one can obtain

∂L w, b, ξi; αi, λið Þ
∂w =0 → w= ∑

N

i=1
αiyiφ xið Þ

∂L w, b, ξi; αi, λið Þ
∂b =0 → ∑

N

i=1
αiyi =0

∂L w, b, ξi; αi, λið Þ
∂ξi

=0 → 0≤ αi ≤C

8>>>>><>>>>>:
ð4Þ

Then one can rewrite (3) as

max
α

∑
i
αi −

1
2
∑
i, j
yiyjαiαjφ xið ÞTφ xj

� �
s.t. ∑

N

i=1
αiyi =0, 0≤ αi ≤C

ð5Þ

By solving α of the dual problem (5) with a quadratic programming, the goal of
SVM is to construct the following decision function (classifier),

f xð Þ= sgn ∑
M

i=1
αiyiκ xi, xð Þ+ b

� �
ð6Þ

where κ ⋅ð Þ is a kernel function. κ xi, xð Þ=φ xið ÞTφ xð Þ= xTi x for linear SVM and
κ xi, xð Þ=exp − xi − x2 σ̸2ð Þ for RBF-SVM.

2.2 Least Square Support Vector Machine (LSSVM)

LSSVM is an improved and simplified version of SVM. The details can be referred
to [20]. We briefly introduce the basic principle of LSSVM for classification
problems. By introducing the square error and equality constraint, LSSVM can be
formulated as

min
w, ξi

1
2

wk k2 +C ⋅
1
2
∑
N

i=1
ξ2i ,

s.t. yi wTφ xið Þ+ b
� �

=1− ξi, i=1, . . . ,N

ð7Þ
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The Lagrange function of (7) can be defined as

L w, b, ξi; αið Þ= 1
2

wk k2 +C ⋅
1
2
∑
N

i=1
ξ2i − ∑

N

i=1
αi yi wTφ xið Þ+ b

� �
− 1+ ξi

� � ð8Þ

where αi is the Lagrange multiplier.
The optimality conditions can be obtained by computing the partial derivatives

of (8) with respect to the four variables as

∂L w, b, ξi; αið Þ
∂w =0 → w= ∑

N

i=1
αiyiφ xið Þ

∂L w, b, ξi; αið Þ
∂b =0 → ∑

N

i=1
αiyi =0

∂L w, b, ξi; αið Þ
∂ξi

=0 → αi =Cξi
∂L w, b, ξi; αið Þ

∂αi
=0 → yi wTφ xið Þ+ b½ �− 1+ ξi =0

8>>>>>>>><>>>>>>>>:
ð9Þ

The equation group (9) can be written in linear equation as

I 0 0 −ZT

0 0 0 −YT

0 0 CI − I
Z Y I 0

2664
3775

w
b
ξ
α

26664
37775=

0
0
0

1⃗

266664
377775 ð10Þ

where Z= φ x1ð Þy1, . . . ,φ xNð ÞyN½ �T, Y= y1, . . . , yN½ �T, 1⃗= 1, . . . , 1½ �T, ξ=
ξ1, . . . , ξN½ �T, α= α1, . . . , αN½ �T. The solution of α and b can also be given by

0 −YT

Y ZZT +C − 1I

� 	
b
α

" #
=

0

1⃗

" #
ð11Þ

Let Ω=ZZT, with the Mercer condition, there is

Ωk, l = ykylφ xkð ÞTφ xlð Þ= ykylκ xk, xlð Þ, k, l=1, . . . ,N ð12Þ

By substituting (12) into (11), the solution can be obtained by solving a linear
equation instead of a quadratic programming problem in SVM. The final decision
function of LSSVM is the same as SVM shown as (6).
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2.3 Extreme Learning Machine (ELM)

ELM aims to solve the output weights of a single layer feed-forward neural network
(SLFN) by minimizing the squared loss of predicted errors and the norm of the
output weights in both classification and regression problems. We briefly introduce
the principle of ELM for classification problems. Given a dataset X= x1, x2, . . . ,½
xN �∈ℜd ×N of N samples with label T= t1, t2, . . . , tN½ �∈ℜc×N , where d is the
dimension of sample and c is the number of classes. Note that if xi i=1, . . . ,Nð Þ
belongs to the k-th class, the k-th position of ti i=1, . . . ,Nð Þ is set as 1, and −1
otherwise. The hidden layer output matrix H with L hidden neurons can be com-
puted as

H=
h wT

1x1 + b1
� �

h wT
2x1 + b2

� �
. . . h wT

Lx1 + bL
� �

⋮ ⋮ ⋮ ⋮
h wT

1xN + b1
� �

h wT
2xN + b2

� �
. . . h wT

LxN + bL
� �

24 35 ð13Þ

where h ⋅ð Þ is the activation function of hidden layer, W= w1, . . . ,wL½ �∈ℜd × L

and B= b1, . . . , bL½ �T ∈ℜL are randomly generated input weights and bias between
the input layer and hidden layer. With such a hidden layer output matrix H, ELM
can be formulated as follows

min
β∈ℜL× c

1
2

βk k2 +C ⋅
1
2
∑
N

i=1
ξik k2

s.t. h xið Þβ= tTi − ξTi , i=1, . . . ,N ⇔ Hβ=TT − ξT
ð14Þ

where β∈ℜL× c denotes the output weights between hidden layer and output layer,
ξ= ξ1, . . . , ξN½ � denotes the prediction error matrix with respect to the training data,
and C is a penalty constant on the training errors.

The closed form solution β of (14) can be easily solved. First, if the number N of
training patterns is larger than L, the gradient equation is over-determined, and the
closed form solution of (14) can be obtained as

β* =H+T= HTH+
IL× L

C

� �− 1

HTT ð15Þ

where IL× L denotes the identity matrix with size of L, and H+ is the
Moore-Penrose generalized inverse of H.

If the number N of training patterns is smaller than L, an under-determined least
square problem would be handled. In this case, the solution of (14) can be obtained
as
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β* =H+T=HT HHT +
IN ×N

C

� �− 1

T ð16Þ

where IN ×N denotes the identity matrix.
Then the predicted output of a new observation z can be computed as

y= h zð Þβ* = h zð Þ ⋅ HTH+ IL×L
C

� �− 1
HTT, if N ≥ L

h zð Þ ⋅HT HHT + IN ×N
C

� �− 1
T, if N < L

(
ð17Þ

2.4 Kernelized Extreme Learning Machine (KELM)

One can also apply Mercer condition to ELM and thus a KELM is formulated.
The KELM can be described as follows. Let Ω=HHT ∈ℜN ×N , where

Ωi, j = h xið Þh xj
� �T = κ xi, xj

� �
and κ ⋅ð Þ is the kernel function. With the expression of

solution β (16), the predicted output of a new observation z can be computed as

y= h zð Þβ*

= h zð Þ ⋅HT HHT +
IN ×N

C

� �− 1

T

=

κ z, x1ð Þ
⋮

κ z, x1ð Þ

264
375
T

Ω+
IN ×N

C

� �− 1

T

ð18Þ

Note that due to the kernel matrix of training data is Ω∈ℜN ×N , therefore, the
number L of hidden neurons is not explicit and the decision function of KELM can
be expressed uniquely in (18).

3 Training and Testing Protocol

3.1 CNN Training on ImageNet

In this paper, we aim at proposing a comparative investigation on SVMs and ELMs
for classification based on deep convolutional features. Therefore, we adopt the
deep convolutional activated features (DeCAF) from [17] for experiments. The
structures of CNN for training on the ImageNet with 1000 categories are the same
as the proposed CNN in [10]. The basic structure of the adopted is illustrated in
Fig. 1, which includes 5 convolutional layers and 3 fully-connected layers. Further
details of the CNN training architecture and features can be referred to [10, 17].
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3.2 CNN Testing

The well-trained network parameters shown in Fig. 1 are used for deep represen-
tation of the 4DA (domain adaptation) dataset [31, 32]. The CNN outputs of the
6-th (f6) and 7-th (f7) fully-connected layers are used as inputs of SVMs and ELMs
for classification, respectively. The 4DA dataset includes four domains such as
Caltech 256 (C), Amazon (A), Webcam (W) and Dslr (D) sampled from different
sources, in which 10 object classes are selected. As can be seen from Fig. 1, the
dimension of features from f6 and f7 is 4096. The detail of 4DA dataset with deep
features is summarized in Table 1.

3.3 Classification

The 4DA dataset is commonly used for evaluating domain adaptation and transfer
learning tasks. So, in this paper, we investigate the classification ability of deep

1000

5 Convolutional layers 3 fully-connected

layers

Input

40964096

Max pooling

Max pooling
Max pooling

ImageNet-1000 for 

CNN Training

Caltech/Amazon/Webcam/DSLR 

data X for CNN testing

ELMs/SVMs

Fig. 1 Diagram of the training and testing protocol in this paper

Table 1 Details of 4DA-CNN datasets

Dataset #Class #Dimension #Samples ns/c nt/c

Amazon 10 4096 958 20 3
DSLR 10 4096 157 8 3
Webcam 10 4096 295 8 3
Caltech 10 4096 1123 8 3
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representation on domain shifted data. We adopt the deep features for SVMs/ELMs
training, and compare the classification accuracy. The specific experimental setup is
described in Experiments section.

4 Experiments

4.1 Experimental Setup

In the experiment, three settings are investigated respectively, as follows.

1. Setting 1: single-domain recognition task.
For example, we train a model on the training data of Amazon, and report the
test accuracy on the remaining data of Amazon. As shown in Table 1 (ns/c), 20,
8, 8, and 8 samples per class are randomly selected for training from Amazon,
DSLR, Webcam and Caltech domains, respectively, and the remaining are used
as test samples for each domain. 20 random train/test splits are run, and the
average recognition accuracy for each method is reported.

2. Setting 2: cross-domain recognition tasks–source only.
We perform a cross-domain recognition task. For example, we train a
SVM/ELM on the Amazon and test on DSLR, i.e. A → D. Totally, 12
cross-domain tasks among the four domains are conducted. Note that the
training data is source data only (source only) without leveraging the data from
target domain. The number of training data is 20, 8, 8 and 8 per class for
Amazon, DSLR, Webcam and Caltech domains, respectively, when used as
source domain. 20 random train/test splits are run, and the average recognition
accuracy for each method is reported.

3. Setting 3: cross-domain recognition tasks—source and target.
Similar to Setting 2, we perform a cross-domain recognition task. For example,
we train a SVM/ELM on the Amazon and test on DSLR, i.e. A → D. Totally,
12 cross-domain tasks among the four domains are conducted. However, the
difference from Setting 2 lies in that the training data includes the labeled source
data and few labeled target data. The number of training data is 20, 8, 8 and 8
per class for Amazon, DSLR, Webcam and Caltech domains, respectively, when
used as source domain. The number of few labeled target data is 3 per class for
each domain when they are used as target domain, as shown in Table 1 (nt/c).
20 random train/test splits are run, and the average recognition accuracy for each
method is reported.
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4.2 Parameter Setting

To make sure that the best result of each method can be obtained, we have adjusted
the parameters. For SVM the penalty coefficient C and kernel parameter σ are set as
1000 and 1, respectively, by using Libsvm-3.12 toolbox. For LSSVM, the two
coefficients are automatically optimized with a grid search by using LSSVM-1.7
toolbox. For ELM, the penalty coefficient C and the number L of hidden neurons
are set as 100 and 5000, respectively. For KELM, the penalty coefficient C and
kernel parameter σ are set as 100 and 0.01, respectively. Note that the penalty
coefficient C and kernel parameter σ for SVM, ELM, and KELM are adjusted from
the set C = {1, 100, 10000} and σ = {0.0001, 0.01, 1, 100}.

4.3 Experimental Results

1. Results of Setting 1.
For experimental Setting 1, the average accuracy of 20 randomly generated
train/test splits for five methods including NN, SVM, LSSVM, ELM and KELM
are reported in Table 2. We can observe that the recognition performance based
on the deep features from the 6-th layer (f6) and 7-th layer (f7) is slightly
different. The best two methods are highlighted with bold face. From the
comparisons, we can find that ELMs outperforms SVMs and NN methods for all
domains, and KELM shows a more competitive performance. Specifically, by
comparing KELM and SVM, the improvement in accuracy for the deep features
f6 is 0.8, 0.2, 1.1 and 2.1 % for Amazon, DSLR, Webcam, and Caltech,
respectively. For the deep features f7, the improvement is 1.0, 0.6, 0.8, and
2.5 %, respectively.

2. Results of Setting 2.
Table 3 presents the average recognition accuracy of 20 randomly generated
train/test splits based on the experimental setting 2. Totally, 12 cross-domain
recognition tasks are conducted. The first two highest accuracies are highlighted
in bold face. We can observe that (1) the recognition performance with deep
feature f7 clearly outperforms that of f6, which demonstrates the effectiveness of
“deep”; (2) the performance of ELM and KELM is significantly better than
SVM and LSSVM, the average improvement of 12 tasks of KELM is 4 % better
than that of SVM. The results demonstrate that for more difficult problems (i.e.
cross-domain tasks), the ELM based methods show a more competitive and
robust advantage for classification.

3. Results of Setting 3.
The results under experimental Setting 3 are reported in Table 4, from which we
can find that ELMs especially KELM outperform other methods. Note that the
digits in bold denote the first two highest accuracies for each task. Due to that
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few labeled data from target domain are leveraged in model training with
domain adaptation, so the recognition accuracies are much higher than that from
Table 3. The average differences between ELMs and SVMs are therefore
reduced from 4 % in Setting 2 to 1.5 % in Setting 3.

5 Conclusion

In the paper, we present a systematic comparison between SVMs and ELMs for
object recognition with multiple domains based on the deep convolutional activa-
tion features trained by CNN on a subset of 1000-category images from ImageNet.
We aim at exploring the most appropriate classifiers for high-level deep features in
classification. In experiments, the deep features of 10-category object images of
4 domains from the 6-th layer and 7-th layer of CNN are used as the inputs of
general classifiers including NN, SVM, LSSVM, ELM and KELM, respectively.
The recognition accuracies for each method under three different experimental
settings are reported. A number of experimental results clearly demonstrate that
ELMs outperform SVM based classifiers in different settings. In particular, KELM
shows state-of-the-art recognition performance among the presented 5 popular
classifiers.
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Learning with Similarity Functions:
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Abstract This research analyzes the affinities between two well-known learning
schemes that apply randomization in the training process, namely, Extreme
Learning Machines (ELMs) and the learning framework using similarity functions.
These paradigms share a common approach to inductive learning, which combines
an explicit data remapping with a linear separator; however, they seem to exploit
different strategies in the design of the mapping layer. This paper shows that the
theory of learning with similarity functions can stimulate a novel reinterpretation of
ELM, thus leading to a common framework. This in turn allows one to improve the
strategy applied by ELM for the setup of the neurons’ parameters. Experimental
results confirm that the new approach may improve over the standard strategy in
terms of the trade-off between classification accuracy and dimensionality of the
remapped space.
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1 Introduction

This paper wants to provide new insights on ELM, which has recently emerged as a
powerful and flexible paradigm in this context. In practice, the ELM framework
implements a Single-hidden-Layer Feedforward Network (SLFN), in which all
hidden-nodes parameters are set randomly. This configuration simplifies the learning
stage with respect to conventional feedforward NNs, since ELM training just
requires to solve a linear system. Nonetheless, the literature shows that such
framework can obtain effective results on a wide range of applicative domains [1–6].

The present research will analyze pro et contra of the ELM model by exploiting
the relationship between such model and the framework discussed in [7], where a
learning theory based on similarity functions is formalized. In this regard, two are the
interesting aspects that emerge from [7]. First, one can tackle inductive learning with
similarity functions instead of kernel functions; as a major consequence, one is no
longer tied to functions that (1) span high-dimensional spaces implicitly, and (2) rely
on positive semi-definite matrixes. Secondly, similarity functions support a
two-stage learning algorithm that shares a common formalism with the ELM model.
The first stage involves an explicit mapping of data in a new space whose dimen-
sionality corresponds to the number of units in the hidden layer. In the second stage,
a conventional learning algorithm sets a linear classifier in the remapped space.

The reinterpretation of ELM can stimulate novel investigations on the learning
model itself. This research focuses in particular on the strategy applied to set the
free parameter of the activation/similarity function (e.g., the bias in the sigmoid
function). In the standard ELM model, the value of such parameter is different for
each neuron, and is assigned on a random basis. However this paper shows that—in
the view of the parallel between activation and similarity function—such approach
may lead to ineffective mapping layers. Accordingly, a novel strategy for the setup
of the free parameters in the mapping layer is presented and empirically validated.

The experimental verification involved three real-world benchmarks: Ionosphere
[8], Glass Identification [9], and Statlog Landsat Satellite [9]. Experimental results
show the effectiveness of the proposed strategy, which allows one to achieve a
better performance in terms of the trade-off between size of the mapping layer (i.e.,
number of neurons) and generalization error scored by the ELM-based predictor.

2 Connecting ELM with Similarity-Function Learning

2.1 Background: Learning with Similarity Functions

Similarity-based classifiers predict the class of an input sample by exploiting the
notion of similarity between two generic patterns x, x′ ∈ X, were X is the sample
domain (in general, X ⊂ ℝD, with D ∈ N+). Let T = {(x, y)i; x ∈ X; y ∈ {−1, 1};
i = 1, …, Z} be a labeled training set and let Κ: X × X → ℝ be the function that
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expresses the notion of similarity Κ(xm, xn); then, the classifier will assess the label
of a new input sample x′ by utilizing (1) the pairwise similarities between the
training patterns and (2) the similarities between x′ and the training patterns.
Kernel-based learning machines [10] are a popular and powerful family of such
classifiers.

In practice, if Κ satisfies the notion of “good similarity function” formalized in
[7] for the learning problem at-hand, then one can exploit the notion similarity to
perform an explicit remapping of the original data in a new space in which exists a
low-error large-margin separator. As a major result, it is possible to use standard
predictors to find the linear separator in the new space.

For the present research, the crucial elements of the theory of learning with
similarity functions proposed in [7] can be summarized by the following definition.

Definition [7] A similarity function Κ is an (ε, γ)—good similarity function for a
learning problem P if there exists a bounded weighting function ω over X (ω(x′) ∈
[0, 1] for all x′ ∈ X) such that at least a (1 − ε) probability mass of example x satisfy:

Ex′ ∼P½ωðx′ÞKðx, x′ÞjyðxÞ= yðx′Þ�≥Ex′∼P½ωðx′ÞKðx, x′ÞjyðxÞ≠ yðx′Þ�+ γ ð1Þ

When considering the eventual learning algorithm, the crucial aspect is that the
definition requires the bounded weighting function ω to exist, but it is not required
that such function is known a-priori.

As a major result, a similarity function Κ that is (ε, γ)—good can support the
learning algorithm outlined in Fig. 1, which mainly includes two steps [7]. The first

Fig. 1 The learning scheme that exploits the theory of learning with (ε, γ)—good similarity
functions [7]
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step implements an explicit remapping of the space X into a new space ℝL; here L is
the number of landmarks, i.e., a subset of samples randomly extracted from the
domain distribution p(X) that characterizes P. Thus, both labeled and unlabeled
patterns provide an admissible resource of landmarks. For a given pattern, x, the
remapping requires to compute the similarity Κ between the pattern itself and each
landmark. In the second step, a linear predictor is trained in the new feature spaceℝL.

Algorithm 1 exploits the notion of (ε, γ)—good similarity function to remap the
original space into a new space where data are separated by a (possibly large)
margin with error ε. Then, the task of assessing the weighting function ω is assigned
to the linear predictor. The learning abilities of this procedure have been formally
analyzed in [7]: if one set L = 16 · ln(4/ε*)/γ2, then with probability at least 1 − ε*/2
there exists a low-error (≤ε + ε*) large-margin (≥γ/2) separator in the new feature
space.

2.2 ELM and Similarity-Function Learning:
Common Elements

The ELM model and the learning machine that exploits the theory of learning with
(ε, γ)—good similarity functions (Fig. 1) feature two distinct affinities:

1. Hypothesis space: both the frameworks realize a single-hidden layer feedfor-
ward neural network. In the case of Algorithm 1, one has

fSIMðxÞ= ∑
L

j=1
wjϕjðx, ljÞ ð2Þ

Thus, the hidden layer involves L mapping neurons, one for each landmark.
2. Learning model: both the frameworks apply in the hidden layer an explicit

remapping of the original input space X. Thus, the training procedure should
only address the setting of the weights wj that connect the hidden layer to the
output.

The final aspect that the two learning models share in common is the use of
randomization in the implementation of the explicit mapping stage. The two
frameworks, though, apparently utilize different strategies. In Algorithm 1, the
design of the mapping stage stems from the theoretical background provided in [7].
Hence, by sampling at random the available dataset one tries to take advantage,
with a given probability, of the fruitful properties of the underlying (ε, γ)—good
similarity function. In the ELM model, on the other hand, the goal is to set the
parameterization of the hidden layer (i.e., of the activation functions) independently
of the training data, thus simplifying the learning procedure. In this regard, ran-
domness provides a suitable criterion to achieve the goal while preserving effective
generalization performance [11, 12].
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3 ELM Model and Similarity-Function Learning:
A Common Framework

3.1 Activation Functions as Similarity Functions

In ELM, a neuron utilizes an activation function with preset parameters to remap a
pattern x ∈ X into ℝ; hence, a(x, R): X → ℝ defines the activation function for each
neuron, where R is the set of parameters. Let a(x, R) be, for example, the RBF
function. The parameters to be (randomly) set are the centroid c and the spread
factor ζ. From the point of view of the theory of learning with similarity functions,
one may indeed affirm that the neuron uses a similarity function Κ (i.e., the RBF) to
remap the original input x. In this case, the “landmark” is the centroid c, which has
been randomly selected between all the admissible points that lay on X. In addition,
the parameter ζ simply sets the specific shape of the similarity function to be
adopted, as Κ basically involves a family of functions.

A similar reasoning can be extended to all the activation functions commonly
used in ELM. In practice, an activation function defines a notion of similarity
between the input x ∈ X and a random vector x* that lies on the same domain.
Indeed, the activation/similarity function may actually involve a family of func-
tions; accordingly: aðx,RÞ=Kðx, x*, κÞ, where κ is the free parameter that char-
acterizes the family of functions at hand.

In the ELM framework, κ is set randomly; nonetheless, in general, each neuron
defines its κ and its x*. Hence, one may re-formalize ELM decision function as
follows:

fELMðxÞ= ∑
N

j=1
wjKðx, x*j , κjÞ ð3Þ

3.2 Landmarks Placement

The strategy applied by ELM for the placement of the landmarks is apparently in
contrast with that suggested in [7]. However, a closer look to the definition of (ε, γ)
—good similarity function (see Sect. 2) reveals that landmarks may also be
obtained from a random sampling of the overall input space, X.

First, to avoid mixing two issues (landmark placement and parametrization of
the similarity function), one may temporary work under the hypothesis that ELM
applies the following decision function

fELMðxÞ= ∑
N

j=1
wjKðx, x*j , κ*Þ ð4Þ
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Second, it is useful to provide a novel definition of (ε, γ)—good similarity
function.

Definition I A similarity function Κ is an (ε, γ)—good similarity function for a
learning problem P and a set of landmarks L if there exists a bounded weighting
function ω over X (ω(x′) ∈ [0, 1] for all x′ ∈ X) such that at least a (1 − ε) prob-
ability mass of example x satisfy:

Ex′ ∼ L½ωðx′ÞKðx, x′ÞjyðxÞ= yðx′Þ�≥Ex′ ∼ L½ωðx′ÞKðx, x′ÞjyðxÞ≠ yðx′Þ�+ γ

Such definition stresses the fact that one, in principle, is interested in the com-
bination (K, L) most suitable for the learning problem P, which in fact is represented
by a training set T. The latter aspect is a major concern when considering, for
example, that the size of the training set may be modest, or that the training set may
be corrupted by some noise. Therefore, T might not be a consistent source of
landmarks.

In this regard, the ELM model suggests a possible strategy to deal with the
intricacies of Definition I. Given a training set T and a similarity function K, L may
be generated by randomly sampling the input space X. Such approach might not
fully inherit the theoretical credentials that characterize the original definition of
(ε, γ)—good similarity function. However, in practice, one expects this approach to
be quite reliable in a probabilistic sense. Hence, one may conclude that, at this
stage, the mapping strategy applied in the ELM framework is fully congruent with
that suggested in [7].

3.3 Similarity Function

The mapping function ϕ(x) (as per Algorithm 1) does not explicitly involve sim-
ilarity functions with free parameters. In practice, ϕ(x) can be also formulated as
ϕðxÞ= η ⋅Kðx, l1, κÞ, . . . , η ⋅Kðx, lL, κÞf g. This expression points up that in ϕ(x) all
the mapping units share a common setting for the free parameter κ.

Indeed, to fit the ELM model, one should actually redefine ϕ(x) as follows

ϕ′ðxÞ= η ⋅Kðx, l1, κ1Þ, . . . , η ⋅Kðx, lL, κLÞf g

In general, though, given a similarity function K and a set L of landmarks, one
has that ϕd(x) = αd · ϕ′d(x), where αd is a scalar. That is, the output of the dth unit
of ϕ(x) differs from the output of the dth unit of ϕ′(x) only for a scale factor. Thus,
in practice, the ELM model, by setting κ for each mapping unit (neuron), actually
defines a specific scale factor for each unit. In terms of the theory of learning with
similarity functions, this ultimately means that the mapping function ϕ′(x) may
convert an (ε, γ)—good similarity function into an (ε, γ′)—good similarity
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function. Such transformation is a direct consequence of the role played by the scale
factors, which set the span covered by each single mapping unit.

Indeed, this analysis confirms that the learning model implemented by ELM is
fully congruent with that outlined in Fig. 1, which implicitly utilizes a single κ for
each mapping unit.

4 An Improved Mapping Strategy for the ELM Model

The reinterpretation of the ELM model as a learning machine that fits within the
framework discussed in [7] allows one to provide novel insights on the model itself.
In particular, it is interesting to analyse the peculiar opportunity offered by ELM of
setting the free parameter κ of the similarity function K for each mapping unit.

4.1 ELM: Activation Function and Free Parameters

According to the conventional learning model that characterizes ELM, each neuron
actually implements an activation function, which may involve a free parameter. In
fact, if the activation function is interpreted as a similarity function, the role played
by κ changes considerably. To fully understand this issue, one can consider the case
in which the RBF is used as activation/similarity function.

Let T = {(x, y)i; i = 1,…, 18; x ∈ ℝ6} be a balanced training set (i.e., patterns are
evenly distributed among class ‘+1’ and class ‘−1’). Accordingly, Fig. 2 refers to
the mapping ℝ6 → ℝ applied by the dth mapping unit of ELM on the patterns in
T when using (a) the RBF as notion of similarity and (b) a landmark l′ randomly
selected on ℝ6. Thus, in Fig. 2 the 18 patterns are plotted according to their
similarity to l′. Asterisk markers refer to patterns of class ‘+1’, while circle markers
refer to patterns of class ‘−1. Figure 2a refers to a case in which all the patterns

Fig. 2 The mapping applied by the dth unit of ELM on the patterns in T when using the RBF as
notion of similarity: a ζ = 50; b ζ = 1
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collapse in K(x, l′) = 0; that is, all the patterns are very far from the landmark l′ with
respect to the standard deviation assigned to the RBF. Figure 2b refers to a set up in
which the patterns eventually spread along ℝ; in this case, one is able to distinguish
all the patterns.

Overall, this example proves that—given T, K and a landmark—the value
assigned to the free parameter κ can heavily influence the behavior of the mapping
unit. A mapping unit that collapses all the patterns x ∈ X in one single point p ∈ ℝ
is not useful in terms of learning. Actually, the eventual goal of the mapping layer is
to project the input samples in a new space in which positive and negative patterns
are separable. In practical terms, if μ+ denotes the barycenter of the positive patterns
on ℝ after the remapping provided by the dth unit, and μ− denotes the corre-
sponding barycenter of the negative patterns, one expects:

μðdÞ+ ≠ μðdÞ− d=1, . . . ,L ð5Þ

where L is the number of mapping units (i.e., the number of landmarks in the
mapping layer). Nonetheless, it is clear that—in principle—the best mapping unit is
the one that guarantees the largest margin between μ+ and μ−.

4.2 Design of a Novel Algorithm for the Setup
of Free Parameters

The present research aims at assessing experimentally the consequences of a ‘blind’
assignment of the free parameters κd in ELM. Therefore, it is convenient to compare
the conventional strategy applied by ELM for the setup of κd with a novel strategy
that takes into account the goal of being compliant with (5).

Basically, the objective of the novel strategy is to check the configuration
assigned to a mapping unit d; such configuration is considered flawed when

μðdÞ+ − μðdÞ−
��� ���< τ ð6Þ

where τ is a threshold to be set empirically. In practice, the algorithm should
validate the value assigned to κd, as both the similarity function K implemented by
the unit and the landmark assigned to the unit are considered chosen. Hence, for
each mapping unit d, the goal is to find a compliant value κd.

Figure 3 outlines the algorithm that implements such strategy. The algorithm
receives as input: a labeled training set T = {(x, y)i; i = 1, …, Z}, an
activation/similarity function K, an admissible range of values for κ = [κinf, κsup],
the threshold τ, and a target value L for the dimensionality of the mapping layer; the
latter parameter corresponds to the number of neurons according to the conven-
tional ELM notation, i.e., the number of landmarks in the theory of learning with
similarity functions. For each mapping unit, the algorithm first generates the
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corresponding landmark by using the standard ELM strategy; thus, a random
number generator is exploited. Without loss of generality, it is assumed that
X = [−1, 1]T. Then, the routine for the selection of κd starts: (1) choose a random
value in the suggested range, and (2) validate such value. The routine stops when
the second step completes with success.

The proposed algorithm clearly is less efficient of the original procedure applied
by ELM in terms of computational complexity, as the number of attempts required
to find a suitable κ for each mapping unit is not predictable. On the other hand, it
seems quite interesting to evaluate also the advantages that the strategy applied in
Algorithm 2 can offer in terms of the trade-off between generalization performance
and size of the mapping layer.

5 Experimental Results

The experimental section aims at evaluating the ability of Algorithm 2 (as per
Fig. 3) to improve the overall performance of the ELM model in terms of classi-
fication accuracy. To the purpose of robustly assessing such aspect, three different
benchmarks have been involved in the experimental evaluation: Ionosphere [8],
Glass Identification [9], and Statlog Landsat Satellite [9].

Each experimental session has been designed to provide a fair comparison
between the generalization performances of two ELM models: the one that applies
the conventional strategy in the setup of free parameters and the one that exploits
Algorithm 2. Therefore, in each experiment, the two implementations of ELM have
been compared by defining a common configuration for both the range of

Fig. 3 The proposed algorithm for the setup of free parameters in ELM
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admissible λs (i.e., the regularization parameter), and the dimensionality, L, of the
remapped space (i.e., the number of landmarks/neurons):

• Λ ∈ {1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2, 1 × 10−1, 1, 1 × 101,
1 × 102, 1 × 103, 1 × 104, 1 × 105}

• L ∈ {50, 100, 200, 500, 1000}

5.1 Ionosphere Dataset

The Ionosphere dataset includes a total of 351 patterns, which lie in a
34-dimensional space. In the proposed experimental design, both the training set
and the test set include 50 patterns per class; all the 34 features are renormalized in
the interval [−1, 1].

Two different activation/similarity functions have been involved in the session:
sigmoid function and RBF. Thus, the free parameters are the bias b and the spread
factor ζ, respectively. In both cases the enhanced ELM implementation exploits
Algorithm 2 with threshold τ = 0.3.

Figure 4 provides the outcomes of the experiments. The graph compares, for each
admissible value of L, the performance of the standard ELM (dark markers) with the
performance of the enhanced ELM (light markers). In particular, given a value of
L (x axis), four predictors are plotted: standard ELM with sigmoid activation/
similarity function (marker: asterisk), enhanced ELM with sigmoid activation/
similarity function (marker: circle), standard ELM with RBF activation/similarity
function (marker: square), enhanced ELM with RBF activation/similarity function
(marker: triangle). The y axis gives the classification error: the performance of a
predictor is assessed by the average classification error on the test set over 50 different
rounds; that is, 50 different randomizations of the mapping layer in the ELM model.
Accordingly, the graph also provides the confidence interval ±σ.

Fig. 4 Results of the experiments involving the Ionosphere dataset
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Overall, the graphs clearly show that the enhanced ELM can improve over
standard ELM in terms of classification performance. Indeed, two are the interesting
outcomes of the experimental session. The first conclusion is that Algorithm 2
offers more improvement when using RBF as activation/similarity function than
with the sigmoid as activation function. The second conclusion is that the enhanced
ELM based on RBF is actually the best predictor, with classification error of 7.2 %
(L = 50).

5.2 Glass Dataset

The Glass Identification dataset includes 214 samples that lie in a 9-dimensional
space. The benchmark involves a multi-class problem, as six different classes are
represented in the dataset; the experiments presented here, though, only addresses a
binary classification problem, namely, class 1 versus class 2. In the proposed
experimental design, both the training set and the test set include 30 patterns per
class randomly extracted from the original dataset. All the 9 features were renor-
malized in the interval [−1, 1].

The experimental session has been organized by following the same design of
the one involving the Ionosphere dataset. As above, both the sigmoid function and
the RBF are involved in the experiments; the enhanced ELM exploits Algorithm 2
with threshold τ = 0.3.

Figure 5 provides the outcomes of the experiments. The format adopted for the
graphs replicates the one used for the previous experimental session. In general,
these results confirm the tendency identified with the Ionosphere dataset. However,
this run seems to show that the improvement provided by the enhanced ELM is less
sharp in this case. In addition, with this dataset the RBF does not seem able to
outperform the sigmoid function, which supported a predictor that scored a clas-
sification error of 25.0 % as best result (L = 200).

Fig. 5 Results of the experiments involving the Glass dataset
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5.3 Landsat Dataset

The Landsat satellite dataset provides a training set including 4435 samples and a
test set including 2000 samples; data are drawn from a 36-dimensional space. The
original benchmark involves a multi-class problem, but the present experiments
only address a binary classification problem: class 4 versus class 7. In the proposed
experimental design, the training set includes 300 patterns per class randomly
extracted from the original training database; the test set includes 150 patterns per
class randomly extracted from the original test database. All the 36 features have
been renormalized in the interval [−1, 1].

As above, both the sigmoid function and the RBF are involved in the experi-
ments; the enhanced ELM exploits Algorithm 2 with threshold τ = 0.3. Figure 6
gives the outcomes of the experiments. The format adopted for the graphs replicates
the one used for the previous experimental sessions. The experiments confirm that
the enhanced ELM can always outperform the standard ELM. In the case of RBF as
activation/similarity function, the gap is more relevant. One the other hand, the best
results in terms of classification error have been obtained with the sigmoid function
as activation/similarity function: 10.9 % (L = 1000).

6 Conclusions

This research showed that the theory of learning with similarity functions can
provide the basis for the development of novel insights on the ELM model. The
crucial outcome is that it is possible to reinterpret the ELM mapping layer by
introducing the concepts of similarity function and landmark. As a major result, the
learning scheme applied by ELM can be described as a viable strategy to search for
a consistent (ε, γ)—good similarity function.

Within this context, the paper suggested a possible enhancement to such strategy
by focusing on the peculiar role played by the free parameter of the activation/
similarity function. The proposed upgrading addressed a validation of the actual

Fig. 6 Results of the experiments involving the Landsat dataset

276 F. Bisio et al.



effectiveness of a mapping unit. The basic directive is that each mapping unit should
avoid the remapped patterns to collapse in a single point, as such configuration would
hamper any distinction between samples belonging to different classes. Empirical
evidence supported the proposed solution.
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A Semi-supervised Low Rank Kernel
Learning Algorithm via Extreme Learning
Machine

Bing Liu, Mingming Liu, Chen Zhang and Weidong Wang

Abstract Semi-supervised kernel learning methods have been received much more
attention in the past few years. Traditional semi-supervised Non-Parametric Kernel
Learning (NPKL) methods usually formulate the learning task as a Semi-Definite
Programming (SDP) problem, which is very time consuming. Although some fast
semi-supervised NPKL methods have been proposed recently, they usually scale
very poorly. Furthermore, many semi-supervised NPKL methods are developed
based on the manifold assumption. But, such an assumption might be invalid when
handling some high-dimensional and sparse data, which has severely negative effect
on the performance of learning algorithms. In this paper, we propose a more effi-
cient semi-supervised NPKL method, which can effectively learn a low-rank kernel
matrix from must-link and cannot-link constraints. Specially, by virtue of the
nonlinear spectral embedded technique based on extreme learning machine (ELM),
the proposed method has the ability of coping with data points that do not have a
clear manifold structure in a low dimensional space. The proposed method is
formulated as a trace ratio optimization problem, which is combined with dimen-
sionality reduction in ELM feature space and aims to find optimal low-rank kernel
matrices. The proposed optimization problem can be solved much more efficiently
than SDP solvers. Extensive experiments have validated the superior performance
of the proposed method compared to state-of-the-art semi-supervised kernel
learning methods.
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Keywords Kernel learning ⋅ Low-rank kernel ⋅ Spectral embedding ⋅
Clustering

1 Introduction

Kernel learning is one of the fundamental topics in machine learning and pattern
recognition. It is crucial to choose appropriate kernel functions or kernel matrices in
many kernel-based machine learning methods. Unfortunately, kernel learning
cannot be addressed effectively in unsupervised settings since it is extremely dif-
ficult to construct a well-defined optimization problem in the absence of supervi-
sory information. Since supervisory information is not generally available for
learning tasks, side information, such as pairwise constraints, is usually substituted
for class labels. The goal of semi-supervised kernel learning is to effectively learn
appropriate kernel functions or kernel matrices by utilizing some limited supervi-
sory information as well as a large amount of unlabeled data.

In the last few years, there has been a growing research interest in semi-supervised
kernel learning. Some kernel-based nonlinear metric learning methods have been
introduced to learn a kernel or equivalently a nonlinear transformation based on the
global Mahalanobis metric [1]. Few algorithms [2, 3] are proposed to learn param-
eters of parametric kernels. Some other studies, such as semi-supervised multiple
kernel learning (MKL) [4], aims at learning a convex combination of several pre-
defined base kernels or matrices. Since these methods generally assume the target
kernel is of some parametric forms with several fixed kernels or graph Laplacian
matrices, the choice of the target kernel matrices is limited, which decreases the
flexibility of kernel learning algorithms and limits their capacity of fitting diverse
patterns.

Recently, Non-Parametric Kernel Learning (NPKL) methods, which aim to learn
a Positive Semi-Definite (PSD) kernel matrix directly from data, have been actively
explored. NPKL not only avoids the parametric form of the target kernel, but is easy
to incorporate prior/side information into its learning model. Thus, the learned
kernel can characterize the data similarity very well. By means of the pairwise
constraints and unlabeled data, Hoi et al. [5] and Li et al. [6] have developed NPKL
methods early. Nevertheless, these methods need to solve a Semi-Definite Pro-
gramming (SDP) problem because of the PSD constraint. To improve the efficiency
and scalability of semi-supervised NPKL, Zhuang et al. [7] have proposed a
Simple NPKL method. By virtue of trace ratio maximization and the pairwise
constraints, Baghshah et al. [8] have introduced a more efficient semi-supervised
low rank NPKL method by constructing more appropriate optimization model.
Nonetheless, these efficient methods heavily depend on the manifold assumption [9,
10], namely, that two nearby data points of a low-dimensional manifold have the
same class label. Such an assumption may not hold due to the bias caused by the
curse of dimensionality. In other words, NPKL methods lack of dimensionality
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reduction mechanism to exploit the complex topological structure of data without
the clear low-dimensional manifold, which would result in the inaccuracies of the
target kernels.

In this paper, we present a novel NPKL method to address the manifold
assumption invalidation issue, which still maintains the efficiency and scalability of
semi-supervised NPKL methods proposed by Baghshah et al. The proposed method
is formulated as a trace ratio optimization problem by incorporating the pairwise
constraints and the structure of the data. More importantly, we impose a linearity
regularization with the nonlinear spectral embedded technique on the objective
function. Motivated by the efficiency of extreme learning machine (ELM), we
utilize random activation functions of ELM as nonlinear embedding functions.
Thus, the proposed method is much more efficient than those methods with standard
SDP solvers by trace ratio optimization algorithms. Compared to the nonlinear
distance metric semi-supervised learning methods, the proposed low-rank kernel
learning method does not need an initial kernel and directly learns a non-parametric
low-rank target kernel matrix. In addition, compared to the existing efficient
semi-supervised NPKL methods introduced in Refs. [5–7, 11, 12], our method is
more robust to some high-dimensional and sparse data without clear
low-dimensional manifold structure and also applicable to large scale problems.

The rest of this paper is organized as follows: in Sect. 2, the proposed algorithm
is introduced. In this section, we formulate an optimization problem using con-
straints and the topological structure of the data and solve this problem to find an
appropriate low-rank kernel matrix. Moreover, we show the relation between the
spectral clustering methods and low-rank kernel learning. Experimental results are
presented in Sect. 4. Finally, we give concluding remarks in Sect. 5. In order to
avoid confusion, we give a list of the main notations used in this paper in Table 1.

Table 1 Notations

Notations Descriptions

ℝd The input d-dimensional Euclidean space

n The number of total training data points
c The number of classes that the samples belong to
X X= ½x1, . . . , xn�∈ℝd × n is the training data matrix
Y Y = ½y1, . . . , yn�T ∈𝔹n×c is the 0–1 class assignment matrix
ϕ ϕ xð Þ= ψ1ðx1Þ, . . . ,ψnðxnÞð Þ is the transformed data to the kernel space
kðx, yÞ Kernel function of variables x and y
K Kernel matrix K = k xi, xj

� �� �
n× n =ϕTϕ

ei The ith column of the n× n identity matrix
tr(A) The trace of the matrix A, that is, the sum of the diagonal elements of the matrix A
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2 Related Works

2.1 Extreme Learning Machine

The output function of ELM for generalized SLFNs in the case of one output
node is

fLðxÞ= ∑
L

i=1
βihiðxÞ= hðxÞβ, ð1Þ

where β= β1, . . . , βL½ �T is the vector of the output weights between the hidden layer
of L nodes and the output node, and hðxÞ= h1ðxÞ, . . . , hLðxÞ½ � is the output
(row) vector of the hidden layer with respect to the input x. In fact, hðxÞ maps the
data from the d-dimensional input space to the L-dimensional hidden-layer feature
space (ELM feature space) H. ELM is to minimize the training error as well as the
norm of the output weights [13]

minβ
C
2

Hβ−Tk k2 + 1
2

βk k2, ð2Þ

where C is a tradeoff parameter between the complexity and fitness of the decision
function and H is the hidden-layer output matrix denoted by

H=

hðx1Þ
hðx2Þ
⋮

hðxnÞ

2664
3775=

h1ðx1Þ . . . hLðx1Þ
h1ðx2Þ . . . hLðx2Þ

⋮ ⋮ ⋮
h1ðxnÞ . . . hLðxnÞ

2664
3775. ð3Þ

Similar to support vector machine (SVM), to minimize the norm of the output
weights βk k is actually to maximize the distance of the separating margins of the
two different classes in the ELM feature space: 2 ̸ βk k, which actually controls the
complexity of the function in the ELM feature space.

2.2 Locality Preserving Regularization

In this section, we use graph Laplacian to represent the geometrical structure of data
in input space. To preserve the intrinsic geometric structure of the data in trans-
formed feature space, we define Qðϕ,XÞ to measure how closely the mapping ϕ
can preserve the topological structure of the data points in X.

Specifically, denote an undirected weighted graph by G= fX,Wg, where X is a
vertex set and W ∈ℝn× n represents an affinity matrix. Each entry Wij of the
symmetric matrix W is used to record the edge weights that characterize the
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similarity relationship between a pair of vertices of G. In this paper, we use the
k-nearest neighbor method to define W [14]:

W ij =
1 ifðxi ∈NkðxjÞ⋀xj ∈NkðxiÞÞ
0 otherwise

�
ð4Þ

where NkðxiÞ denotes the k-nearest neighbors set of xi.
The smoothness of the mapping ϕðxÞ on the data points, which captures the

local dependency between ψ i and ψ j, can be defined as

Q ϕ,Xð Þ= 1
2

∑
n

i, j=1
wij

ψ iffiffiffiffiffi
Di

p −
ψ jffiffiffiffiffi
Dj

p�����
�����
2

2

= tr ϕLϕT� �
= trðKLÞ, ð5Þ

where L is the normalized graph Laplacian matrix defined as:

L= I−D− 1 2̸WD− 1 2̸, ð6Þ

where D= diagðD1, . . . ,DnÞ is a diagonal matrix with the diagonal elements
defined as Di = ∑n

j=1 wij ⋅Q ϕ,Xð Þ essentially measures the weighted sum of the
squared distances between the neighboring data points in the kernel space.

3 Semi-supervised Nonlinear Embedded Low Rank
Kernel Learning

3.1 Formulation

We first denote ML and CL as the must-link and cannot-link pairwise constraints set
respectively. To effectively utilize pairwise constraints information, we define
SML(K) as the sum of the squared distances between pairs of similar data in the
kernel space as follows.

SMLðKÞ= ∑
ðxi , xjÞ∈ML

ψðxiÞ−ψðxjÞ
�� ��2

2

= ∑
ði, jÞ∈ML

Kii +Kjj − 2Kij

= ∑
ðei , ejÞ∈ML

ðei − ejÞTKðei − ejÞ

= ∑
ðei , ejÞ∈ML

tr ðei − ejÞðei − ejÞTK
	 


= trðKEMLÞ ð7Þ
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where EML = ðei − ejÞðei − ejÞT, and ei denotes a column vector, in which the ith
element is one when the ith sample point has been chosen into set ML (must-link),
while others are zero. Similarly, SCL(K), which denotes the sum of the squared
distances between pairs of dissimilar data in the kernel space, is defined as:

SCLðKÞ= ∑
ðxi, xjÞ∈CL

ψðxiÞ−ψðxjÞ
�� ��2

2 = tr(KECLÞ ð8Þ

where ECL = ðei − ejÞðei − ejÞT.
It is desirable that the target kernel matrix should be consistent with small

distances between similar pairs and large distances between dissimilar pairs in the
kernel space. Furthermore, it should preserve the intrinsic geometric structure of the
data in the kernel space. In addition, we make good use of the nonlinear spectral
embedded method to improve the performance of semi-supervised NPKL methods
and enhance the scalability of them through optimizing a low rank kernel matrix.
We can present the kernel matrix in terms of a decomposition K =FFT, where F is
a n× r matrix and r< n. It should be noted that F can be considered as a class
assignment matrix if we set r as the number of class. The semi-supervised low rank
kernel learning optimization problem is defined as follows:

maxK≽0
SCLðKÞ

SMLðKÞ+ αQ ϕ,Xð Þ+ μ Hβ−Fk k2 + γgtr βTβ
� �	 
 ð9Þ

where α and μ are adjusting parameters. The term Q ϕ,Xð Þ characterizes the
topological structure of the data in the kernel space. The term Hβ−Fk k2 +
γgtr βTβ

� �
uses the nonlinear transformation of ELM to control the error between

the cluster assignment matrix and the low-dimensional embedding of the data. The
low rank kernel learning method proposed in Ref. [15] has added the constraint
item rank ðKÞ≤ r. By substituting (5), (7) and (8) into (9), the problem (9) can be
rewritten as:

maxF∈ℝn× r
tr(FTECLFÞ

tr(FTðEML + αLÞFÞ+ μð Hβ−Fk k2 + γgtrðβTβÞÞ
ð10Þ

Similar to the method in Ref. [11], we add the orthogonal constraint FTF= Ir to
avoid the trivial solution. The problem (10) can be reformulated as

maxFTF= Ir
tr(FTECLFÞ

tr(FTðEML + αLÞFÞ+ μ Hβ−Fk k2 + γgtr βTβ
� �	 
 ð11Þ
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3.2 Algorithm

To solve the optimization (11), we need to transform it into another simple form.
We have the following theorem.

Theorem 1 The optimization problem (11) can be transformed into the following
minimization problem:

maxFTF= Ir
tr(FTECLFÞ

tr(FTðEML + αL+ μLHÞFÞ
ð12Þ

where LH = In −HHTðγgIn +HHTÞ− 1 or LH = In −HðγgIL +HTHÞ− 1HT ⋅ IL rep-
resents the identity matrix of size c by c and L is the number of hidden layer nodes
in ELM.

Proof By setting the derivatives of the objective function (11) with respect to β to
zero, we have

β=HTðγgIn +HHTÞ− 1F ð13Þ

By substituting β in (11) by (13), the optimization problem (11) becomes

maxFTF= Ir
tr(FTECLFÞ

tr(FTðEML + αLÞFÞ+ μtr FT In −HHTðγgIn +HHTÞ− 1
	 


F
	 
 ð14Þ

which can be denoted as follows:

maxFTF= Ir

tr FTECLF
� �

tr FTðEML + αL+ μLHÞF
� � ð15Þ

where LH = In −HHTðγgIn +HHTÞ− 1 and LH can be transformed into another
form as follows:

LH = In −HðγgIL +HTHÞ− 1 ⋅ ðγgIL +HTHÞ ⋅HTðγgIn +HHTÞ− 1

= In −HðγgIL +HTHÞ− 1HT

This completes the proof of Theorem 1. □

Obviously, problem (12) is the orthogonally constrained trace ratio optimization
problem. Although it can be solved by using generalized eigenvalue decomposition.
But, prior woks in Ref. [16] suggest that it is more reasonable to solve it directly.
Since ECL and EML + αL+ μLH are PSD matrices, the algorithm proposed in
Ref. [17] can be used to solve problem (12). Table 2 summarizes the proposed
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algorithm. Since the proposed semi-supervised nonlinear spectral embedded low
rank kernel learning method is based on ELM, we call it as LRKL-ESE in the
following sections.

3.3 Computational Complexity

From the LRKL-ESE algorithm, we can see that the most costly computation is
carrying out the eigen-decomposition of ECL and EML + αL+ μLH . Since the
number of constraints is usually very low, the matrix ECL is sparse and its
eigen-decomposition can be performed more quickly than the matrix
EML + αL+ μLH [7]. Consequently, the computational complexity of the proposed
algorithm mainly depends on the time cost of obtaining the c eigenvectors corre-
sponding to c largest eigenvalues of EML + αL+ μLH , which is O n3ð Þ. In addition,
the computational complexity of computing LH is O L3ð Þ, where L≪ n. Therefore,

Table 2 LRKL-ESE
algorithm

Input: A dataset X = xif gni=1 ∈ℝn× d , must-link set ML and
cannot-link set, the number of class c, the number of the nearest
k, parameters α, μ and γg, an error constant ε.

Output: K* =F*F*T ∈ℝn× n, where
F* = argmaxFTF= Ic tr FTECLF

� �
t̸r FTðEML + αL+ μLHÞF
� �

.

Step 1: Construct the weighted matrix W using the k-nearest
neighbors method.
Step 2: Calculate Laplacian matrix L= I−D− 1 2̸WD− 1 2̸.
Step 3: Randomly generate input weights ai, bið Þf gLi=1 and
initiate an ELM network of L hidden neurons, calculate the
output matrix of the hidden layer.
Step 4: if L≤ n let LH = In −HðγgIL +HTHÞ− 1HT

else LH = In −HHT ðγgIn +HHT Þ− 1.
Step 5: Perform the eigen-decomposition on ECL and
EML + αL+ μLH . k= k1, k2, . . . , kc½ � is a matrix composed of
the first c largest eigenvalues of ECL, while t= t1, t2, . . . , tc½ �
composed of the first c smallest eigenvalues of
EML + αL+ μLH .
Step 6: Let λ1 = trðT1Þ t̸rðT2Þ and
λ2 = ∑c

i=1 ki ̸∑
c
i=1 ti, λ= ðλ1 + λ2Þ 2̸.

Step 7: repeat
Compute r(λÞ as the sum of the first c largest eigenvalues of
ECL − λðEML + αL+ μLHÞ
if r(λÞ>0 then λ= λ1, otherwise λ= λ2
λ= ðλ1 + λ2Þ 2̸
until λ1 − λ2 > ε.
Step 8: F* = z1, z2, . . . , zc½ � constructed by c eigenvectors
corresponding the first c largest eigenvalues of
ECL − λðEML + αL+ μLHÞ.
return the kernel matrix K* =F*F*T.
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the total computational complexity of the proposed algorithm is O n3ð Þ, which is
much lower than that of the SDP problem solvers that can be as high as O n6.5

� �
.

4 Experiments

In this section, we test the proposed algorithm on some benchmark datasets to
evaluate the performance of our method. To compare the performance of different
kernel learning methods, we apply the kernel k-means algorithm on the obtained
kernels. Thus, the performance of kernel learning methods can be evaluated by the
clustering results. Specifically, we first perform the kernel k-means clustering
algorithm on the kernels learned by our method, termed as (LRKL-ESEC). Then,
LRKL-ESEC is compared with the traditional K-means without metric learning
algorithm (Euclidean), kernel k-means with the low-rank kernel learned by Bagh-
shah et al.’s method (LRKL) [11], kernel k-means with the kernel learned by Hoi
et al.’s method (NPK) [5] and spectral clustering based on the LRKL algorithm
(LRKL + SC) [18]. All the experiments have been performed in MATLAB R2013a
running in a 3.10 GHZ Intel CoreTMi5-2400 with 4-GB RAM. In the experiments,
we set the number of clusters as the number of classes c in each dataset. Normalized
mutual information (NMI) and the clustering accuracy (ACC) [19] are used to
evaluate the clustering performance.

4.1 Experimental Datasets and Parameter Settings

The basic information of the datasets is listed in Table 3. All of the data are
normalized before conducting experiments. For fair comparison, we set the number
of nearest neighbors to k=5 and the regularization parameter to α=0.2. For
LRKL-ESEC, the parameters γg varies from 0.01 to 0.9 and the parameter μ ranges
from 0 to 1. They are specified using 5-fold cross validation. The error constant ε is

Table 3 Properties of
datasets

Dataset Samples Dimensions Clusters

Iris 150 4 3
Wine 178 13 3
USPS 900 256 3
Balance 625 4 3
Glass 214 10 6
Yale 165 1024 15
ORL 100 4096 10
Isolet 390 1234 13
COIL20 1440 1024 20
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set as 0.01. The RBF kernel is selected as the hidden node function and a grid
search of the number of hidden nodes L on f100, 150, 200, . . . , 1000g is conducted
in seek of the optimal result by using 5-fold cross validation. The number of
must-link pairwise constraints is equal to that of cannot-link. All clustering algo-
rithms are independently repeated 50 times with different random initializations for
each set of constraints.

4.2 Experiment Results

We first compare LRKL and LRKL-ESEC which use the same trace ratio maxi-
mization algorithm to obtain the target kernel. Tables 4 and 5 report the mean ACC
results on Iris and the NMI results on Yale, respectively. As can be seen from
Tables 4 and 5, LRKL-ESEC significantly outperforms LRKL with the increasing
of the number of pairwise constraints. For the high-dimensional Yale dataset,
LRKL-ESEC performs better than LKRL by using the nonlinear spectral embedded
technique based on ELM. For the low dimensional Iris dataset, LRKL-ESEC still
achieves superior performance compared to LRKL, which is due to the fact that
LRKL-ESEC introduces the nonlinear spectral embedded method into its model,
which is essentially a kind of regularization methods and contributes to the per-
formance improvement of kernel learning algorithms.

The average NMI of each method versus the number of constraints on UCI
datasets is displayed in Fig. 1. From Fig. 1, we can see that the proposed
LRKL-ESEC method achieves much better clustering results than the other meth-
ods. Only LRKL is comparable to our method on the Glass dataset. The experi-
mental results on UCI datasets demonstrate that LRKL-ESEC is also applicable to
handle low-dimensional datasets. The NMI performance curves for
high-dimensional data sets have also been shown in Fig. 2. As can be seen from

Table 4 The ACC results of LRKL and LRKL-ESEC on the Iris dataset

Algorithm The number of pairwise constraints

30 50 70 90 110 130 150 170

LRKL 35.7333 35.7466 45.4666 51.7066 56.8400 64.1333 66.6000 70.0266

LRKL-ESEC 88.4222 88.8667 93.1111 87.4889 90.3111 90.5778 89.7111 89.5778

Table 5 The NMI results of LRKL and LRKL-ESEC on the Yale dataset

Algorithm The number of pairwise constraints
30 50 70 90 110 130 150 170

LRKL 0.1868 0.2736 0.3791 0.6005 0.6841 0.7534 0.8309 0.8429
LRKL-ESEC 0.3312 0.3373 0.3829 0.6500 0.7151 0.7892 0.8297 0.8526
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Fig. 2, LRKL-ESEC significantly performs better than the other algorithm since it
can cope with the high-dimensional data which do not exhibit a clear
low-dimensional manifold structure. Thus, these clustering results demonstrate that
our method has better kernel learning performance than the other methods and
validate the effectiveness of the proposed algorithm for both low-dimensional and
high-dimensional datasets.

To compare the learned kernel matrices, we take the Iris and USPS dataset for
example and transform the learned kernel matrices into gray images, which are
shown in Fig. 3. Obviously, the block structure of the kernel matrix learned by our
method is much clearer than that obtained by LRKL, which shows that data points
in the same cluster are compact and those in different clusters are separated very
well. Consequently, the better clustering results can be achieved based on the
proper kernel matrices learned by our method. In UCI datasets demonstrate that
LRKL-ESEC is also applicable to handle low-dimensional datasets. The NMI
performance curves for high-dimensional datasets have also been shown in Fig. 2.
As can be seen from Fig. 2, LRKL-ESEC significantly performs better than the
other algorithm since it can cope with the high-dimensional data which do not
exhibit a clear low-dimensional manifold structure. Thus, these clustering results
demonstrate that our method has better kernel learning performance than the other
methods and validate the effectiveness of the proposed algorithm for both
low-dimensional and high-dimensional datasets.

To compare the learned kernel matrices, we take the Iris and USPS dataset for
example and transform the learned kernel matrices into gray images, which are
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Fig. 1 Clustering results of different algorithms on UCI datasets (the mean NMI values versus the
number constraints) a iris, b wine, c USPS, d balance, e glass
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Fig. 2 Clustering results of different algorithms on high-dimension datasets (the mean NMI
values versus the number constraints) a Yale, b ORL, c Isolet, d COIL20

Fig. 3 Kernel matrices learned by LRKL and LRKL-ESEC on Iris and USPS: a the kernel matrix
learned by LRKL on Iris, b the kernel matrix learned by LRKL-ESEC on iris, c the kernel matrix
learned by LRKL on USPS and d the kernel matrix learned by LRKL-ESEC on USPS
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shown in Fig. 3. Obviously, the block structure of the kernel matrix learned by our
method is much clearer than that obtained by LRKL, which shows that data points
in the same cluster are compact and those in different clusters are separated very
well. Consequently, the better clustering results can be achieved based on the
proper kernel matrices learned by our method.

5 Conclusions

In this paper, we have present a semi-supervised low rank kernel learning method
combined with nonlinear spectral embedded regularization method and ELM. The
proposed method is formulated as an orthogonally constrained trace ratio maxi-
mization problem by virtue of pairwise constraints and the structure of the data. The
proposed model can be can be solved efficiently by using the popular trace ratio
optimization algorithm. Experimental results show that the performance of our
method is much better than that of some existing NPKL methods for both
low-dimensional and high-dimensional datasets. In the future, we will find a way to
automatically specify the optimal rank of the target kernel matrix.
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Application of Extreme Learning Machine
on Large Scale Traffic Congestion
Prediction

Xiaojuan Ban, Chong Guo and Guohui Li

Abstract Short-Term prediction aimed at the urban traffic congestion is an
important goal for Intelligent Transport Systems (ITS). Short-term traffic prediction
module tries to predict Traffic Congestion Index accurately and in approximately
real-time. Up to date, there have been three basic methods in short-Term traffic
prediction research namely the Kalman Filtering (KF) (Okutani and Stephanedes in
Transport Res Part B 18B:1–11, 1984, [1]) method, Time Series models (Williams
and Hoel in ASCE J Transport Eng 129:664–672, 2003, [2]) and Neural Network
(NN) models (Smith and Demetsky in Transport Res Rec J Transport Res Board
1453:98–104, 1994, [3]). The Neural Networks based methods have proven to give
good accuracy rate but they are time consuming in training. In our paper, we have
implemented the new Neural Networks based algorithm called Extreme Learning
Machine (ELM) (Huang and Siew in ICARCV, pp. 1029–1036, 2004, [4]) to
design a real-time traffic index in the data of a real world city of Nanning in South
China. Our experiment results show that ELM algorithm provides good general-
ization performance at extremely fast learning speed compared with other
state-of-art algorithms. The algorithm obtains high accuracy in practical prediction
application. In addition, quick training and good fitting results on our own large
scale traffic data set proves ELM algorithm works well on large data sets.

Keywords Extreme learning machine ⋅ ELM ⋅ Traffic congestion prediction ⋅
Intelligent transport system ⋅ Large-scale computing ⋅ Real-time predicting ⋅
High-speed

X. Ban (✉) ⋅ C. Guo
School of Computer and Communication Engineering, University of Science
and Technology Beijing, Beijing 100083, China
e-mail: banxj@ustb.edu.cn

C. Guo
e-mail: kotrue2015@gmail.com

G. Li
Ao Jin Tech Co., Ltd, Tianjin 300072, China
e-mail: 951859818@qq.com

© Springer International Publishing Switzerland 2016
J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 1,
Proceedings in Adaptation, Learning and Optimization 6,
DOI 10.1007/978-3-319-28397-5_23

293



1 Introduction

Nanning City in China has successfully constructed a complete Taxi Read-time
Monitoring System (TRMS). Taxis can continuously transmit real-time information
including GPS, driving speed and direction to Information Processing Center via
TRMS. We are responsible for building a real-time evaluation and short-term
prediction system of the urban traffic congestion based on TRMS. The system
describes the urban traffic condition by Traffic Congestion Index (continuous
integer range from 0 to 100). High dimensions of features and large scale of training
data drive us to look for a faster neural network algorithm. Extreme learning
machine (ELM) is an emerging learning algorithm for the generalized single hidden
layer feed-forward neural networks (SLFNs), of which the hidden node parameters
are randomly generated and the output weights are analytically computed. ELM has
been proven to provide good generalization performance at extremely fast learning
speed [4].

The traffic conditions evaluation and prediction are vital components of Intel-
ligent Transport System (ITS) which aim to impact travel routes selection and
reduce traffic congestion. Real-time traffic congestion evaluation and accurate
predictions of future traffic condition can offer to citizens advices to determine
appropriate travel routes and enhance performance of urban road network. Nanning
city in China has established a relatively complete Real-time Taxi Monitoring
System. About 8000 taxis generate voluminous real-time traffic information
everyday and more than 20,000 messages are transmitted to data processing center
per minute. The information contains speed, taxi location GPS, taxi direction and
more. Actually, the voluminous data covers nearly 75 % roads of Nanning city
every five minutes. These huge amount of data, and the traffic condition information
they represent are essential to assess the urban traffic condition. Nanning has
constructed Traffic Congestion Index Evaluation and Prediction System to offer to
its citizens traffic congestion index which range from 0 to 100 and indicate the
traffic congestion condition. The higher congestion index is, the worse traffic
condition is. Traffic congestion index in the system are divided into three cate-
gories: historic index, current index and predictive index. Historic index describes
the state of traffic condition in the previous time periods. Current index is the most
up-to-date status about traffic. Considering taxi density, current index is produced
every 5 min by using aggregate data collected in past 5 min, and it turns to be
historic with time going on. Predictive index, to be exact the short-term predictive
index, is the predicting traffic status for next 30 min. Like current index, the pre-
dictive index is forecasted every 5 min. This paper mainly focuses on the prediction
implementation.

Over the last four decades, many researchers developed or proposed a consid-
erable number of algorithms of short-term traffic prediction and numerous publi-
cations can be found in the open literature. A lot of tools and algorithms have been
applied, most of which focused on developing new or improving existing prediction
models. For instance, the Kalman Filtering (KF) method was first used for traffic
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volume prediction by Okutani and Stephanedes [1]. Recently, in a study by Yang
et al. [5], a Recursive Least Square (RLS) approach was proposed for short-term
traffic speed prediction by means of KF to adapt to changing patterns quickly, based
on the maximum likelihood method and Bayesian rule.

Another group of short-term traffic prediction models are based on Time Series
models, which predict different types of traffic parameters. For instance, some
studies developed a time series model to predict future traffic volumes, such as
Williams and Hoel [2], while others commonly used time series for short-term
traffic speed prediction, such as Farokhi et al. [6].

Apart from Time Series models, Neural Network (NN) models are another class
of models successfully used for short term traffic prediction. Smith and Demetsky
[3] introduced the back-propagation neural network model for traffic volume pre-
diction. Park et al. [7] conducted a study to involve prediction short-term freeway
traffic volumes with a Radial Basis Function (RBF) neural network. Yin et al. [8]
realized a fuzzy-neural model (FNM) to predict the traffic flows in an urban street
network. The model contained two modules: a gate network (GN) and an expert
network (EN). Ishak [9] conducted a study to optimize short-term traffic prediction
performance via utilizing multiple topologies of dynamic neural networks under
numerous parameters and traffic-condition settings. With the purpose of improving
the performance of the NN models, many hybrid models were proposed. For
example, Abdulhai et al. [10] developed a system on the basis of Time Delay
Neural Network (TDNN) model synthesized using Genetic Algorithm (GA) for
short-term traffic prediction. Alecsandru and Ishak [11] put forward a hybrid
model-based and memory-based methodology to advance predictions under both
recurrent and non-recurrent conditions. The model-based approach depended on a
combination of static and dynamic neural network architectures to attain optimal
prediction performance under various input and traffic condition settings. Vla-
hogianni et al. [12] incorporated GA to optimize the learning rule along with the
network structure. The GA approach consisted of three steps: selection, crossover,
and mutation, founded on the principles of genetics. Many other NN models on
short-term traffic prediction were found in the literature (see for instance Jiang and
Adeli [14]).

The literature review shows that the Time Series and NN models were the most
commonly used models for short-term traffic prediction. Although NN models have
good fitting results, large scale training data make it’s training time consuming. In
this paper, we used a new NN networks called ELM, which can produce good
generalization at extremely fast speed, to predict traffic status.

The rest of this paper is organized as follows. Section 2 introduces the funda-
mental theory and implementation of ELM. The output of traffic evaluation is the
source of traffic congestion prediction training data. Therefore it’s necessary to
make a brief introduction on traffic evaluation and make it easy to understand the
following. Section 3 will give a very brief description on traffic evaluation strate-
gies. Section 4 illustrates how to pre-process input feature by clustering feature to
reduce dimensions. Performance evaluation is presented in Sect. 5. Discussions and
conclusions are given in Sect. 6.
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2 Brief Review of ELM Algorithm

Learning speed of feedforward neural networks is in general far slower than
required. Extreme learning machine (ELM) for single-hidden layer feedforward
neural networks (SLFNs) is proposed which randomly chooses hidden nodes and
analytically determines the output weights of SLFNs. For N arbitrary distinct
samples (xi, ti), where xi = ½xi1, xi2, . . . , xin�T ∈Rn and ti = ½ti1, ti2, . . . , tim�T ∈Rm,
standard SLFNs with Ñ hidden nodes and activation function gðxÞ are mathemat-
ically modeled as

∑
N ̃

i=1
βigiðxjÞ ∑

N ̃

i=1
βigi wi * xj + bi

� �
=Oj, j=1, . . . ,N ð1Þ

where wi = ½wi1,wi2, . . . ,win�T is the weight vector connecting the ith hidden node
and the input nodes, βi = ½βi1, βi2, . . . , βim�T is the weight vector connecting the ith
hidden node and the output nodes, and bi is the threshold of the ith hidden
node.wi * xj denotes the inner product of wi and xj. The output nodes are chosen
linear.

That standard SLFNs with Ñ hidden nodes with activation function gðxÞ can
approximate these N samples with zero error means that ∑Ñ

i = 1 Oj − tj
�� ��=0, i.e.,

there exist βi, wi and bi such that

∑
N ̃

i=1
βigi wi * xj + bi

� �
= tj, j=1, . . . ,N. ð2Þ

The above N equations can be written compactly as

Hβ=T ð3Þ

According to ELM theory [4], input weights and hidden layer biases can be
randomly assigned if only the activation function is infinitely differentiable. For
fixed input weights wi and the hidden layer biases bi, to train an SLFN is simply
equivalent to finding a least-squares solution bβ of the linear system Hβ=T:

H w1, . . . ,wN ̃, b1, . . . , bN ̃
� �

β̌−T
�� ��= min

β
H w1, . . . ,wN ̃, b1, . . . , bN ̃
� �

β̌−T
�� �� ð4Þ

If the number N ̃ of hidden nodes is equal to the number N of distinct training
samples, N ̃ = N, matrix H is square and invertible when the input weight vectors wi
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and the hidden biases bi are randomly chosen, and SLFNs can approximate these
training samples with zero error.

However, in most cases the number of hidden nodes is much less than the
number of distinct training samples, N ̃≪N, H is a nonsquare matrix and there may
not exist wi, bi, βiði=1, . . . ,N ̃Þ such that Hβ=T. The smallest norm least-squares
solution of the above linear system is

bβ=H+T ð5Þ

where H+ is the Moore–Penrose generalized inverse of matrix H.
ELM algorithm have the following important properties: minimum training

error; smallest norm of weights [4].

3 Traffic Evaluation

3.1 Average Speed

In practice, the roads are split into small road pieces as basic units of evaluation
and prediction. There are 18,041 pieces in Nanning City. Figure 1a show the road
pieces in Nanning City and Fig. 1b is the enlarged view of road pieces. Complex
algorithms are used to bind taxi with road by using taxi GPS and driving direction
information, thus it’s easy to obtain the current running speed of the car on this
road piece. Taxis cover at least 75 % road pieces in previous 5-min and transmit

Fig. 1 Roads are split into many small pieces. Road pieces are the basic unit to evaluate or
predict. a Overall view of road pieces in Nanning city. b Enlarged view of part of road pieces in
Nanning City
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100,000 messages. It’s easy to get average driving speed by aggregate 5-min
speed.

3.2 Speed-TCI Model

Driving speed is an important indicator to judge road condition. It is easy to get
average driving speed by collecting 5-min speed. We mainly use speed to determine
the Traffic Congestion Index (TCI). Equation 6 is the model used to evaluate
transport condition in the system and its graph is shown in Fig. 2.

f ðxÞ=100− 200 ⋅
1

1+ e− 0.46x −
1
2

� �
ð6Þ

where x is the speed of road piece (unit: km/h) while f(x) represents TCI. As
described in the graph, road condition reaches worst when the running speed is
zero, thus TCI equals 100. Conversely, traffic condition turns to be better when
speed grows. Therefore when speed tends to be infinite, TCI tends to be 0. y = 0 is
the horizontal asymptote of f(x).

The output of evaluation is a continuous value which varies between 0 and 100.
The practical result shows that the speed-TCI model is reasonable and can describe
traffic status properly. The evaluation results meet the real situation as shown on
Fig. 3. The system generates evaluation output every 5 min to describe the current
urban traffic status of each road piece. These data becomes historical with time
going on. The historical evaluation data can be used for training predicting model
and obviously there are a huge amount of training samples every day. Actually
almost 1,000,000 useful samples are produced every day. Big data calls for a fast
model. In this paper we have chosen ELM algorithm which tends to provide good
generalization performance at fast learning speed.
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Fig. 2 Graph of Eq. 6
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4 Feature Extraction

For a machine learning application, feature extraction is a very important part and
will directly affect the predicting results. Apparently, factors such as if there are
traffic lights on the road, which region the road is in, whether there is a business
district or a school nearby and more strongly influence the traffic condition of roads.
But in our system, these features are difficult to get automatically. Therefore these
features are not considered. After a lot of trials with feature select tools, we selected
the following five features.

• Current time: categorical, 06:05, 08:05, …, 21:55. 191 in total.
• Road logical region: categorical feature, 1, 2, 3, …, 50, 50 in total.
• Traffic congestion index of last time: continuous, vary from 0 to 100.
• Road type: categorical, express way, backbone road, side road.
• Number of adjacent roads: continuous, positive integer.

Physical region, which to some extent describes the environment of roads, can
play a significant role in road congestion. For instance, roads near the school may
always be in good condition except when children go to school in the morning, and
when they go home in the afternoon. Meanwhile, traffic condition has a strong
spatiotemporal periodicity and region feature should be taken into account.
Unfortunately, physical region information are not automatically provided by the
TRMS and are very sensitive to change, especially under the circumstance that
there is a new road constructed when system runs. Besides, the region labeled by
people may not be accurate sometimes. This paper tries to use a logical region
instead of physical region to describe roads’ environment information.

We define xi, jð0≤ xi, j < 100Þ as the traffic congestion index of road i at time j
(is evaluated every 5-min and 191 indexes a day in total, from 6:00 to 22:00). For a

Fig. 3 The comparison of camera results and evaluation results shows that the evaluation model is
reasonable
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specific road i, ½xi, 0, xi, 1, xi, 2, . . . , xi, 190�T is the vector of congestion index of a day.
Thus vectors of all roads can be written as following:

x0 = ½x0, 0, x0, 1, x0, 2, . . . , x0, 190�T
x1 = ½x1, 0, x1, 1, x1, 2, . . . , x1, 190�T

. . .
xn = ½xn, 0, xn, 1, xn, 2, . . . , xn, 190�T

K-means algorithms can be used to cluster vectors above, thus roads are clus-
tered into k clusters, which is called logical region in this paper. Roads in same
cluster have the similar traffic condition in a day, and roads from different clusters
differ a lot. Roads cluster or so-called road logical region can distinguish roads
logically. The value of k is tuned and set k = 50 in this paper.

In general, variables either indicate measurements on some continuous scale like
traffic congestion index of last time in this case, or represent information
about some categorical or discrete characteristics like current time in the above
features. The features used in this paper mix categorical features with real-valued
features, and should be transformed into all categorical or real-valued features. In
our cases, all categorical features are subdivided into several single real-valued
features, whose value is set to be either 1 or 0. For instance, feature current time will
be transformed into 192 new features. Each of them is 0 or 1 to indicate if it appears
or not. Thus all the features become real-valued and can be equally evaluated.
According to the experiments in practice, such transformation increase the accuracy
rate by 2.2 % compared with using original feature directly (limit to the words this
paper won’t give the details).

5 Experimental Result

In this section, the performance of ELM on real world traffic data is evaluated.
Comparisons are made with other popular regression algorithms used in practice,
e.g., Ridge Regression, Support Vector Machine for Regression, Lasso Regression
and Gradient Boosting Decision Tree Regression. This section mainly contains 3
parts. Part 1 shows the performance of ELM when hidden nodes change. The
performance of ELM is compared with the popular regression algorithms in part 2.
Part 3 gives the performance of our prediction system based on ELM. All the
simulations are carried out in Ubuntu 12.04 environment running in a Core Duo i7
2.50 GHZ CPU.

Although 2,400,000 training data are produced a day, there are only 1,515,446
distinct training samples, the redundancy of the training data has been removed. All
the simulations run 4-fold cross validation except for special explanation. The
training samples is randomly partitioned into 4 equal sized subsamples. Of the 4
subsamples, a single subsample is remained as the validation data for testing the
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model, and the remaining 3 subsamples are used as training data each time. The
details of data set are shown in Table 1.

The regression results are continuous integer varying between 0 and 100. In this
paper, prediction is correct when ytruth − yestimatej j≤ 25, ytruthð0≤ ytruth < 100Þ, is the
actual congestion index in testing data while yestimateð0≤ yestimate < 100Þ is the
estimate result predicted by models.

5.1 ELM Performance on Traffic Data Set

The ELM is implemented using Python 2.7. In this experiment, activation function
g is tuned and set as defined in Eq. 7, the other parameters are given in default. The
number of hidden nodes are gradually increased from 2 to 800. Figure 4 shows the
performance of ELM with different number of neurons.

gðxÞ= 1

ð1+ x2Þ2 ð7Þ

As observed from Fig. 4, overall speaking, the more hidden nodes ELM has, the
better fitting result it produces, but more time it cost. Figure 4a is the accuracy
performance with growth of nodes. At the beginning, with the growth of hidden
nodes, prediction accuracy increases dramatically. Prediction accuracy can increase
from 86.86 to 91.18 % while nodes grow from 2 to 200. Finally, the accuracy
increases slightly even stabilizes when hidden layer nodes reach to 200.
Although ELM runs extremely fast compared with other SLFNs algorithms,
number of hidden nodes has a great influence on training time. Figure 4b shows the
training time cost when hidden nodes grow. When number of nodes grow to 400,
training time becomes obvious and tend to be increase dramatically. Taking into
account cost and benefit, we set L = 200 when ELM compared with other
algorithms.

The part of prediction result (L is set to 400) is shown Fig. 5. For a good
visualization, we just randomly select 50 test samples and draw true values and
ELM predictions respectively. Figure 5 shows the ELM algorithms has great fitting
results on traffic training data. The difference between the true one and the estimated
values are so small for most the cases, some even completely same!

Table 1 Information of the simulation training and testing data

Training samples Testing samples Attributes

1,136,585 378,861 243
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5.2 Comparison with Other Algorithms

ELM is compared with some of other the-state-of-art algorithms in this section. The
algorithms to compare include Ridge Regression, Support Vector Machine for
Regression, Lasso Regression and Gradient Boosting Decision Tree Regression. All
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Fig. 5 Part of regression prediction shows ELM (L = 400) has a great fitting result
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the algorithms in experiments except for ELM are implemented by Sklearn 1.4
machine learning package. There are a lot of parameters in these algorithms, they
are set to be default exception for specific explanation. For ELM algorithm, the
number of hidden nodes L is 200 and activation function is Eq. 7. Depth in Gradient
Boosting Decision Tree is set to 9. The results of comparison is shown in Table 2.

As observed in Table 2, the ELM and GBDT have almost the same and best
success rate but the ELM training time is 10 times better than the GBDT. Though
Lasso regression has considerably a short training time comparing to ELM but it is
accuracy is less reliable than the ELM accuracy in the same accuracy condition the
ELM training time is 6.48 s (where L = 8 and accuracy is 88.15).

It’s worth to mention that we actually did the Linear SVM simulations.
Unfortunately, SVM seems not able to give the output result in a short time on this
full dataset. The simulation has run 2080 min (about 35 h) before we kill it on this
full data set.

5.3 Performance of Prediction System Based on ELM

The model used to predict traffic condition is trained everyday with the data of
previous week. The next 30 min traffic status will be updated every 5 min. For
instance, the predicting results of period from 8:00 to 8:35 are produced at 7:55
while period from 8:05 to 8:40 are updated at 8:00. Figure 6 are part of predicting
results in the morning, in the middle of the day and in the evening respectively.

Figure 6a shows the accuracy of prediction produced at 7:55 am. The accuracy
of 8:00 am is 92.12 % while 8:05 is 83.91 %. We can see that forecast accuracy
decreases with the increasing of time. Actually, this change is mainly caused by
feature traffic congestion index of last time. The 8:00 prediction is based on the
actual evaluation congestion index value at 7:55, while 8:05 prediction is based on
the previous predicted value at 8:00, Therefore, prediction accuracy is gradually
decreasing over time.

Figure 6b is the performance result of prediction at 10:55 and Fig. 6c is the result
at 16:55. The former represent the performance in normal period while the later
represents the result in evening run hours. Both of them have the similar perfor-
mance compared with Fig. 6a. The prediction accuracy in all day ranges from 76 to
92 % and our system have a good performance at short-term traffic status prediction.

Table 2 Performance
comparison in traffic
congestion index predict
application

Algorithms Train time (s) Best success rate (%)

ELM 309.39 91.08
GBDT 4204.86 92.26
Ridge 1006.18 90.68
Lasso 9.80 88.77
LR 6.78 75.64
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6 Discussion and Conclusion

The experimental results in 5.3 shows the more hidden nodes ELM has, the better
fitting result it produces, but more time it cost. The number of hidden nodes is
adjusted to 200 in our prediction system for a good performance both in training
and predicting. Our simulations also show that ELM algorithm provides good
generalization performance at extremely fast learning speed compared with other
state-of-art algorithms. In addition, successful application in real world traffic
congestion prediction proves ELM algorithm works well on large data sets.
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a shows the prediction
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hours (predicted at 7:55 am
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c are the predicting results
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Extreme Learning Machine-Guided
Collaborative Coding for Remote Sensing
Image Classification

Chunwei Yang, Huaping Liu, Shouyi Liao and Shicheng Wang

Abstract Remote sensing image classification is a very challenging problem and

covariance descriptor can be introduced in the feature extraction process for remote

sensing image. However, covariance descriptor lies in non-Euclidean manifold, and

conventional extreme learning machine (ELM) cannot effectively deal with this

problem. In this paper, we propose an improved ELM framework incorporating the

collaborative coding to tackle the covariance descriptor classification problem. First,

a new ELM-guided dictionary learning and coding model is proposed to represent

the covariance descriptor. Then the iterative optimization algorithm is developed to

solve the model. By evaluating the proposed approach on the public dataset, we show

the effectiveness of the proposed strategy.

Keywords Extreme learning machine ⋅ Collaborative coding ⋅ Covariance

descriptor

1 Introduction

Extreme Learning Machine (ELM), which was firstly proposed by Huang [1], has

become an effective learning algorithm for various classification tasks. It works

on a simple structure named Single-hidden Layer Feed-forward Neural networks

(SLFNs) and randomly applies computational hidden nodes. This mechanism is dif-

ferent from the conventional gradient descent learning of SLFNs. It provides a good

generalization and a highly accurate learning solution for both classification and

regression problems [2, 3]. ELM yields better performance than other conventional

learning algorithms in application with higher noise. It also has an extremely fast
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learning speed compared with traditional gradient-based algorithms. Furthermore,

ELM technique successfully overcomes the difficulty of the curse of dimensionality.

Currently, the application scope of ELM covers classification [4, 5], detection [6, 7],

recognition [8, 9], and so on. Among these applications, remote sensing image clas-

sification using ELM has been attracting more and more attentions in recent years [5,

10]. For example, Ref. [5] presented a remote sensing image classification method

based on NMF and ELM ensemble (NMF-ELM). Reference [10] fused ELM and

graph-based optimization methods and proposed a multiclass active learning method

for remote sensing image classification.

On the other hand, Covariance Descriptor (CovD) can be introduced in the fea-

ture extraction and representation processes for complicated image, and has been

widely adopted in many computer vision applications [11]. One key problem of

CovD method is the model and computation of CovD. It is well known that the space

of CovD is not a linear space, but forms a Lie group that is a Riemannian manifold

[11]. Hence, the mathematical modeling in this space is different from what is com-

monly done in the Euclidean space. This results in great challenges for application

of ELM. To tackle this problem, we propose a collaborative coding approach incor-

porating ELM supervised term which can jointly optimize the reconstruction error

and the ELM classifier. The main contributions are listed as follows:

1. A new ELM-guided dictionary learning and collaborative coding method is pro-

posed which can learn a dictionary, represent the CovD as a more discriminative

feature vector and derive the ELM classifier simultaneously.

2. An iterative optimization algorithm is developed to solve the ELM-guided col-

laborative coding model.

3. Extensive experimental results on UCMERCED dataset show the proposed ELM-

guided collaborative coding strategy performs well on the representation task for

CovD.

The rest of this paper is organized as follows: Sects. 2 and 3 give brief introduc-

tions of ELM and CovD, respectively. Sections 4 and 5 show the proposed model

and corresponding optimization algorithm. Experiments and conclusions are given

in Sects. 6 and 7.

2 Brief Introduction of ELM

ELM was initially proposed for SLFNs and then extended to the “generalized”

SLFNs with wide types of hidden neurons [3, 12, 13]. ELM stands out from other

learning methods with the following characteristics: extremely fast training, good

generalization, and universal approximation capability and has been demonstrated

to have excellent learning accuracy and speed in various applications [14, 15].

Suppose SLFNs with L hidden nodes can be represented by the following equation
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f (𝐱) = 𝐡(𝐱)𝜷 =
L∑

i=1
hi(𝐱) ∗ 𝜷 i =

L∑

i=1
Gi(𝐱, 𝐜i, bi) ∗ 𝜷 i. (1)

where 𝜷 i =
[
𝜷1,… , 𝜷L

]T
is the vector of the output weights between the hidden

layer with L nodes to the output layer with m nodes, and 𝐡(𝐱) =
[
h1(𝐱),… , hL(𝐱)

]

is the output vector of the hidden layer. Gi(⋅) denotes the ith hidden node activation

function which is a nonlinear piecewise continuous function, and 𝐜i, bi are the input

weight vector connecting the input layer to the ith hidden layer and the bias weight

of the ith hidden layer, respectively.

For additive nodes with activation function g, Gi is defined as follows

G(𝐱, 𝐜i, bi) = g(𝐜i ⋅ 𝐱 + bi). (2)

From the learning point of view, unlike traditional learning algorithms, ELM the-

ories emphasize that the hidden neurons need not be adjusted, and ELM solutions

aim to simultaneously reach the smallest training error and the smallest norm of

output weights [1]:

Minimize ∶ ||𝜷||𝜎1p + C||𝐇𝜷 − 𝐓||𝜎2q . (3)

where 𝜎1 > 0, 𝜎2 > 0, p, q = 0, 1∕2, 1, 2,… ,+∞. 𝐇 is the hidden layer output

matrix, and 𝐓 is the training data target matrix:

The output weight 𝜷 is calculated by

̂𝜷 = 𝐇†𝐓 (4)

where 𝐇†
is the Moore-Penrose generalized inverse of matrix 𝐇.

3 Covariance Descriptor

CovD was first proposed as a compact region descriptor by Tuzel et al. [11]. For-

mally, let
{
𝐟i
}
i=1,…,d be a feature vector denoting the p-dimensional feature points

such as intensity, color orientation, spatial attributes, etc. Then, a p × p CovD 𝐑 of

an image can be represented as:

𝐑 = 1
d − 1

d∑

i=1
(𝐟i − 𝝁)(𝐟i − 𝝁)T . (5)

where d is the number of pixels of the image and 𝝁 is the mean feature vector.

As is indicated in [11], CovD has several advantages. First, a CovD extracted from

an image is usually enough to match the image in different views and poses. Second,
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it proposes a natural way of fusing multiple features which might be correlated. The

diagonal entries of the CovD represent the variance of each feature and the nondi-

agonal entries represent the correlations. Third, it is low-dimensional compared to

other descriptors and due to symmetry 𝐑 has only (p2 + p)∕2 different values.

However, the CovD is a symmetric positive definite (SPD) matrix, and one key

problem of SPD matrix-based learning methods is the model and computation of

SPD matrices. We know that the space of p × p SPD matrices 𝐑 is not a linear space

but a Lie group which is a Riemannian manifold [16]. Hence, the mathematical mod-

eling in this space is different from what is commonly done in the Euclidean space.

Here, we approximate their distances using the log-Euclidean metric [17],

d(𝐑𝟏,𝐑𝟐) = ||logm(𝐑𝟏) − logm(𝐑𝟐)||F. (6)

where 𝐑𝟏 and 𝐑𝟐 are two SPD matrices, logm is the matrix logarithm and || ⋅ ||F is

the Frobenius norm.

4 ELM-guided Collaborative Coding Model

In this section, we propose an ELM-guided collaborative coding model, which con-

sists of two components working jointly as dictionary learning and ELM classifi-

cation which is shown in Fig. 1. Firstly, in the dictionary learning phase, the ELM

training is incorporated into the process, making the resulting coding vector 𝐗 more

discriminative. Then, in the classification phase, the ELM classifier 𝜷 is obtained in

terms of coding vector 𝐗. The objective functions in each phase are combined in one

unified optimization problem so that a collaborative coding strategy and the match-

ing ELM classifier can be jointly found. Finally, based on the obtained dictionary

coefficients 𝐀, the testing signal 𝐬 is converted to a linear representation 𝐳, which is

used for ELM classification.

Given the N training samples {𝐲i}Ni=1 ⊂ , where  is a Riemannian mani-

fold. We map the training samples into a higher dimensional space by a proper

mapping function. In other words, we denote 𝛷(⋅) ∶  →  to be the implicit

nonlinear mapping from  into a high-dimensional (maybe infinite dimensional)

dot product space . For convenience, we denote the dimension of  as ñ. This

mapping function is associated with some kernel 𝜅(𝐲i, 𝐲j) = 𝛷

T (𝐲i)𝛷(𝐲j), where

𝐲i, 𝐲j ∈ . Here, for CovD, we choose Gaussian kernel due to its excellent per-

formance in many works [18]

𝜅(𝐲i, 𝐲j) = exp(−𝛽||logm(𝐲i) − logm(𝐲j)||) (7)

where 𝛽 is a decay parameter which is empirically set as 0.2 here.

The aim of dictionary learning is to empirically learn a dictionary adapted to the

training sample set {𝐲i}Ni=1. Therefore we need to determine some atoms 𝐝1,𝐝2,… ,

𝐝K ∈ , where K < N is the size of the dictionary, to represent each training sam-
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ple in the feature space. By denoting 𝛷(𝐘) = [𝛷(𝐲1),… , 𝛷(𝐲N)] ∈ Rñ×N
and 𝐃 =

[𝐝1,… ,𝐝K] ∈ Rñ×K
, we can formulate the kernel dictionary learning problem as

min
𝐗,𝐃

||𝛷(𝐘) − 𝐃𝐗||22 + 𝛼||𝐗||22, (8)

where 𝐗 ∈ RK×N
is the coding matrix and 𝛼 is the penalty parameter.

By using the mapping function 𝛷(⋅), we can transform the problem on Rie-

mannian manifold to the collaborative coding problem in feature space. This is the

great advantage of the kernel trick [19]. However, such a formulation admits chal-

lenge to the dictionary learning since the dictionary atoms 𝐝j may be in infinite

dimensional space. Fortunately, some recent literatures pointed that the dictionary

can be represented by 𝐃 = 𝛷(𝐘)𝐀, where 𝐀 ∈ RN×K
is a coefficient matrix. This

means that the dictionary atoms can be linearly reconstructed by the training sam-

ples in the feature space. This conclusion was proved in [20] and [21]. Based on this

formulation, the dictionary learning problem becomes

min
𝐀,𝐗

||𝛷(𝐘) −𝛷(𝐘)𝐀𝐗||22 + 𝛼||𝐗||22. (9)

Such a formation provides significant convenience since the learning of dictionary

becomes the search of the matrix𝐀 and provides a principled derivation for nonlinear

dictionary learning and coding that essentially reduces to linear problems for any

type of kernel function.

Based on the above, we propose to combine the dictionary learning phase and

classification phase into a single optimization problem as

min
𝐀,𝐗,𝜷

||𝛷(𝐘) −𝛷(𝐘)𝐀𝐗||22 + 𝜆||𝐗||22 + 𝛼||𝐓 − (𝐗𝐓𝐂𝐓 + 𝐁)𝜷||22 + 𝛾||𝜷|||22. (10)

where the first and second term denote dictionary learning term, and the remaining

stands for classification term. The parameter 𝛼 controls the trade-off between the rep-

Fig. 1 The illustration of the proposed model
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resentation of the signal and classification, and 𝜆 and 𝛾 are penalty parameters. Note

that for the ELM classification stage, we use the additive nodes, and the activation

function g is set to 1, which means

G(𝐱, 𝐜i, bi) = g(𝐜i ⋅ 𝐱 + bi) = 𝐜i ⋅ 𝐱 + bi. (11)

After the optimal solution of variables 𝐀 and 𝜷 are found, as to a testing sample

𝐬, the linear representation 𝐳 is obtained through

min
𝐳

||𝛷(𝐬) −𝛷(𝐘)𝐀𝐳||22 + 𝛼||𝐳||22. (12)

Then, 𝐳 is used for ELM classification.

5 Optimization Algorithm

The optimization problem (10) includes three variables:𝐀,𝐗 and 𝜷. Here, we present

an iterative solution for one of the three variables at a time by fixing the others and

repeating for a certain number of iterations.

First, fixing 𝐗 and 𝜷, taking a derivative with respect to 𝐀 (here, (10) is denoted

as 𝐅(𝐀,𝐗,𝜷), and the subscripts (k) and (k + 1) mean that the variables obtained

from the kth and (k + 1)th iteration, respectively)

𝜕𝐅(𝐀,𝐗(k), 𝜷 (k))
𝜕𝐀

= 0. (13)

And the optimal solution of 𝐀 is

𝐀(k+1) = 𝐗T
(k)(𝐗(k)𝐗T

(k))
−1
. (14)

Second, fixing 𝐀 and 𝜷, taking a derivative with respect to 𝐗

𝜕𝐅(𝐀(k+1),𝐗, 𝜷 (k))
𝜕𝐗

= 0. (15)

Then, the optimal solution of 𝐗 is

𝐗(k+1) = (𝛼𝐂T𝜷(k)𝜷
T
(k)𝐂 + 𝐀T

(k+1)𝐊(𝐘,𝐘)𝐀(k+1) + 𝜆𝐈)−1

(𝛼𝐂T𝜷 (k)𝐓 + 𝐀T
(k+1)𝐊(𝐘,𝐘) − 𝛼𝐂T𝜷 (k)𝜷

T
(k)𝐁

T ).
(16)

where 𝐊(𝐘,𝐘) is a N × N square matrix of which (i, j)th element is 𝜅(𝐲i, 𝐲j).
Finally, fixing 𝐀 and 𝐗, taking a derivative with respect to 𝜷 and the optimal

solution of 𝜷 is obtained.
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𝜕𝐅(𝐀(k+1),𝐗(k+1), 𝜷)
𝜕𝜷

= 0. (17)

𝜷(k+1) = (𝛼(𝐂𝐗(k+1) + 𝐁T )(𝐗T
(k+1)𝐂

T + 𝐁) + 𝛾𝐈)−1𝛼(𝐂𝐗(k+1) + 𝐁T )𝐓 . (18)

Once the optimal 𝐀 is found, as to (12), the optimal solution 𝐳 can be obtained as

𝐳i = (𝐀T𝐊(𝐘,𝐘)𝐀 + 𝛼𝐈)−1𝐀T𝐊T (𝐬i,𝐘)) (19)

where 𝐊(𝐬i,𝐘) = [𝜅(𝐬i, 𝐲1),… , 𝜅(𝐬i, 𝐲N)].
Then, 𝐳i is used for classification in terms of the optimal 𝜷.

6 Experimental Results

6.1 Dataset and Baseline Methods

In this section, we demonstrate the application of our framework in the classification

experiments using the UCMERCED high-resolution aerial image dataset [22]. This

dataset includes 21 challenging scene categories with 100 samples per class. Three

samples of each category are shown in Fig. 2.

For each class, we randomly partition into five subsets, each of which contains

20 images. Four subsets are used as training and the rest one subset is used as test-

ing. The experiments are repeated five times by selecting one of the five subsets as

testing, and the average classification is reported in this paper. At each pixel (u, v) of

an image, we compute the 15-dimensional feature vector 𝐟u,v = [𝐜TR,u,v, 𝐜
T
G,u,v, 𝐜

T
B,u,v]

T
,

where 𝐜C,u,v = [IC,u,v, |𝜕IC∕𝜕u|, |𝜕IC∕𝜕v|, |𝜕2IC∕𝜕u2|, |𝜕2IC∕𝜕v2|]T , where IC is the

intensity image for the C channel and C ∈ {R,G,B} represents one of the color

channel.

For comparison, we designed the following dictionary learning methods:

1. RandDict: This method just randomly selects K atoms subset {𝐲1,… , 𝐲K} from

the training sample set {𝐲i}Ni=1 to construct the dictionary.

2. K-Medoids method: For RCovD, we just use the conventional K-Medoids cluster-

ing method to get the K dictionary atoms. As a result, we also get the dictionary

as {𝐲1,… , 𝐲K}.

3. Conventional ELM: This method separately train the dictionary and the ELM

classifier.

4. Proposed method: This method jointly optimizes the reconstruction error in the

kernel space and the classification performance using ELM.
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Fig. 2 Samples from the UCMERCED. Example images associated with 21 land-use categories

are shown here

6.2 Parameter Analysis

There are five parameters needing to be tuned: 𝜆, 𝛼, 𝛾 , number of hidden nodes L,

and dictionary size K. Fixing the other parameters, we investigate the influence the

each parameter. Note that we initialize the above five parameters as 0.1, 0.1, 0.1, 600

and 210.

Firstly, we range parameter 𝜆, 𝛼, and 𝛾 from 0.1 to 1, and the classification accu-

racy versus each parameter is shown in Fig. 3a–c. We can see that when 𝜆 = 0.2,

𝛼 = 0.2, 𝛾 = 0.2 (or 0.4), the method obtains the best performance (84.76 %). Mean-
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Fig. 3 Evaluation of the effect on the classification accuracy for parameters a 𝜆, b 𝛼, c 𝛾 and d
number of hidden nodes L

while, our method is not sensitive to these three parameters, which indicates the

robustness of our method.

Then, fixing 𝜆 = 0.2, 𝛼 = 0.2, 𝛾 = 0.2, we investigate the effect of the number of

hidden nodes of ELM shown in Fig. 3d, which indicates that the best classification

accuracy (85.24 %) occurs when L = 800.

6.3 Experiment Results and Comparison

To validate the effectiveness of our method, we show the classification accuracy

compared with other methods in Fig. 4. From this figure we see that the proposed

method always performs better than other methods, and the proposed method obtains

best performance (88.10 %) when K = 336. From this figure we also find that the

conventional ELM, which neglects the intrinsic structure of the CovD and the ELM

classifier, cannot obtain the satisfactory performance.

Figures 5 and 6 show the confusion matrices of the conventional ELM and our

proposed ELM-guided method, respectively. Compared with conventional ELM, the

classification accuracy of 20 out of 21 categories of our method is higher. From Fig. 6
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Fig. 4 Comparison of different methods

Fig. 5 The average confusion matrix of conventional ELM

we can find that the classification accuracy of 15 out of 21 categories is more than

80 %, among which 11 categories are more than 90 %. However, the classification

accuracy of 4 categories is less than 70 %, which are buildings, dense residential,

intersection and medium density residential.
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Fig. 6 The average confusion matrix of proposed method

7 Conclusions

In this paper, the ELM classifier is developed to tackle the covariance descriptor clas-

sification problem. Since covariance descriptor lies in non-Euclidean space, we pro-

pose a new ELM-guided coding strategy incorporating dictionary learning and ELM

classifier design. Such a coding strategy can jointly obtain the dictionary and ELM

classifier. Experiments on the public dataset show the effectiveness of our method.
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Distributed Weighted Extreme Learning
Machine for Big Imbalanced Data Learning

Zhiqiong Wang, Junchang Xin, Shuo Tian and Ge Yu

Abstract Extreme Learning Machine (ELM) and its variants have been widely used

in many big data learning applications where raw data with imbalanced class dis-

tribution can be easily found. Although there have been several works solving the

machine learning and robust regression problems using MapReduce framework,

they need multi-iterative computations. Therefore, in this paper, we propose a novel

Distributed Weighted Extreme Learning Machine based on MapReduce framework,

named DWELM, which can learn the big imbalanced training data efficiently. Firstly,

after indepth analyzing the properties of centralized Weighted ELM (WELM), it can

be found out that the matrix multiplication operators in WELM are decomposable.

Next, a DWELM based on MapReduce framework can be developed, which can first

calculate the matrix multiplications effectively using two MapReduce Jobs in paral-

lel, and then calculate the corresponding output weight vector with centralized com-

puting. Finally, we conduct extensive experiments on synthetic data to verify the

effectiveness and efficiency of our proposed DWELM in learning big imbalanced

training data with various experimental settings.
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1 Introduction

With the proliferation of mobile devices, artificial intelligence, web analytics, social

media, internet of things, location based services and other types of emerging tech-

nologies, the amount of data, and the rate at which it’s being accumulated, is rising

exponentially. For examples, Facebook users share 2.5 billion unique pieces of con-

tent, hit the “like” button 2.7 billion times and upload 300 million photos a day. Thus,

the era of big data has arrived [1, 2].

Extreme Learning Machine (ELM) [3–8] has recently attracted increasing atten-

tion from more and more researchers due to the characteristics of excellent general-

ization performance, rapid training speed and little human intervene [9]. ELM and

its variants have been extensively used in many fields, such as text classification,

image recognition, handwritten character recognition, mobile object management

and bioinformatics [10–21].

Recently, as important variants of ELM, some Distributed ELM (DELM)

[22–25] have been proposed to resolve the problem of big data learning, and a cen-

tralized Weighted ELM (WELM) [26] has been proposed to deal with data with

imbalanced class distribution. However, neither DELM nor WELM can cope with

big imbalanced training data efficiently since they only consider one aspect of big

imbalanced data, though raw data with imbalanced class distribution can be found

in many big data learning applications [26]. Therefore, in this paper, a Distributed

Weighted Extreme Learning Machine (DWELM) which combines the advantages

of both DELM and WELM based on distributed MapReduce framework [27–29] is

proposed, to improve the scalability of centralized WELM and make it learn the big

imbalanced data efficiently. The contributions of this paper are as follows.

∙ We prove theoretically that the matrix multiplication operators in centralized

WELM are decomposable.

∙ A novel Distributed Weighted Extreme Learning Machine based on MapReduce

framework (DWELM) is proposed to learn big imbalanced data efficiently.

∙ Last but not least, our extensive experimental studies using synthetic data show

that our proposed DWELM can learn big imbalanced data efficiently, which can

fulfill the requirements of many real-world big data applications.

The rest of the paper is organized as follows. Section 2 briefly reviews the back-

ground for our work. The theoretical foundation and the computational details of

the proposed DWELM are introduced in Sect. 3. The experimental results to show

the effectiveness of the proposed approaches are reported in Sect. 4. Finally, Sect. 5

concludes this paper.
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2 Background

2.1 Weighted Extreme Learning Machine

ELM [3, 4] has been originally developed for single hidden-layer feedforward neural

networks (SLFNs) and then extended to the “generalized” SLFNs where the hidden

layer need not be neuron alike [5, 6]. ELM first randomly assigns the input weights

and the hidden layer biases, and then analytically determines the output weights of

SLFNs. It can achieve better generalization performance than other conventional

learning algorithms at an extremely fast learning speed. Besides, ELM is less sensi-

tive to user-specified parameters and can be deployed faster and more conveniently

[7, 8]. Recently, a centralized Weighted ELM (WELM) [26] has been proposed to

deal with data with imbalanced class distribution.

For N arbitrary distinct samples (𝐱j, 𝐭j), where 𝐱j = [xj1, xj2,… , xjn]T ∈ ℝn
and

𝐭j = [tj1, tj2,… , tjm]T ∈ ℝm
, standard SLFNs with L hidden nodes and activation

function g(x) are mathematically modeled as

L∑

i=1
𝛽igi(𝐱j) =

L∑

i=1
𝛽ig(𝐰i ⋅ 𝐱j + bi) = 𝐨j (j = 1, 2,… ,N) (1)

where 𝐰i = [wi1,wi2,… ,win]T is the weight vector connecting the ith hidden node

and the input nodes, 𝛽i = [𝛽i1, 𝛽i2,… , 𝛽im]T is the weight vector connecting the ith
hidden node and the output nodes, bi is the threshold of the ith hidden node, and

𝐨j = [oj1, oj2,… , ojm]T is the jth output of the SLFNs [3].

The standard SLFNs with L hidden nodes and activation function g(x) can approx-

imate these N samples with zero error. It means
∑L

j=1 ||𝐨j − 𝐭j|| = 0 and there exist

𝛽i, 𝐰i and bi such that

L∑

i=1
𝛽ig(𝐰i ⋅ 𝐱j + bi) = 𝐭j (j = 1, 2,… ,N) (2)

The equation above can be expressed compactly as follows:

𝐇𝛽 = 𝐓 (3)

where 𝐇 is called the hidden layer output matrix of the neural network and the ith
column of 𝐇 is the ith hidden node output with respect to inputs 𝐱i, 𝐱2,… , 𝐱N .

To maximize the marginal distance and to minimize the weighted cumulative

error with respect to each sample, we have an optimization problem mathematically

written as
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Minimize ∶ 1
2
‖𝛽‖2 + C𝐖 1

2

N∑

i=1
‖
‖𝜉i

‖
‖
2

Subject to ∶ 𝐡(𝐱i)𝛽 = 𝐭Ti − 𝜉

T
i

(4)

where C is the regularization parameter to represent the trade-off between the min-

imization of weighted cumulative error and the maximization of the marginal dis-

tance. 𝜉i, the training error of sample 𝐱i, is caused by the difference of the desired

output 𝐭i and the actual output 𝐡(𝐱i)𝛽. 𝐖 is a N × N diagonal matrix associated with

every training sample 𝐱i, and

Wii = 1∕#(𝐭i) (5)

or

Wii =
{

0.618∕#(𝐭i) if #(𝐭i) > AVG
1∕#(𝐭i) if #(𝐭i) ≤ AVG (6)

where #(𝐭i) is the number of samples belonging to class 𝐭i, and AVG is the average

number of samples per class.

According to Karush-Kuhn-Tucker (KKT) theorem [30], we have the following

solutions for Weighted ELM (WELM):

𝛽 =
( 𝐈
𝜆

+𝐇T𝐖𝐇
)−1

𝐇T𝐖𝐓 (7)

when N is large or

𝛽 = 𝐇T
( 𝐈
𝜆

+𝐖𝐇𝐇T
)−1

𝐖𝐓 (8)

when N is small.

2.2 MapReduce Framework

MapReduce is a simple and flexible parallel programming model initially proposed

by Google for large scale data processing in a distributed computing environment

[27–29], with one of its open source implementations Hadoop.
1

The typical proce-

dure of a MR job is as follows: First, the input to a MR job starts as the dataset stored

on the underlying distributed file system (e.g. GFS [31] and HDFS [32]), which is

split into a number of files across machines. Next, the MR job is partitioned into

many independent map tasks. Each map task processes a logical split of the input

dataset. The map task reads the data and applies the user-defined map function on

each record, and then buffers the resulting intermediate output. This intermediate

data is sorted and partitioned for reduce phase, and written to the local disk of the

machine executing the corresponding map task. After that, the intermediate data

1
http://hadoop.apache.org/.

http://hadoop.apache.org/
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files from the already completed map tasks are fetched by the corresponding reduce

task following the “pull” model (Similarly, the MR job is also partitioned into many

independent reduce tasks). The intermediate data files from all the map tasks are

sorted accordingly. Then, the sorted intermediate data is passed to the reduce task.

The reduce task applies the user-defined reduce function to the intermediate data

and generates the final output data. Finally, the output data from the reduce task is

generally written back to the corresponding distributed file system.

3 Distributed Weighted Extreme Learning Machine

3.1 Preliminaries

In big imbalanced data learning applications, the number of training records is much

larger than the dimensionality of the feature space, that is to say, N ≫ L. According

to N ≫ L, the size of 𝐇T𝐖𝐇 is much smaller than that of 𝐖𝐇𝐇T
. Therefore, it is

a better choice of using Eq. (7) to calculate the output weight vector 𝛽 in WELM.

Similar with ELM
∗

[23], we analyze the properties of centralized WELM, and find

the part that can be processed in parallel, and then transplant it into MapReduce

framework. In this way, we can make WELM extend to the scale of big imbalance

data efficiently. Let 𝐔 = 𝐇T𝐖𝐇, 𝐕 = 𝐇T𝐖𝐓, and we can get,

𝛽 =
( 𝐈
𝜆

+ 𝐔
)−1

𝐕 (9)

According to the matrix multiplication operator, we have

𝐔 = 𝐇T𝐖𝐇 =
N∑

k=1
h(𝐱k)TWkkh(𝐱k) (10)

Then, we can further get,

uij =
N∑

k=1
Wkk × g(𝐰i ⋅ 𝐱k + bi) × g(𝐰j ⋅ 𝐱k + bj) (11)

Similarly, according to the matrix multiplication operator, we also have

𝐕 = 𝐇T𝐖𝐓 =
N∑

i=1
h(𝐱k)TWkk𝐭k (12)

Then, we can further get,
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vij =
N∑

k=1
Wkk × g(𝐰i ⋅ 𝐱k + bi) × tkj (13)

According to Eq. (11), we know that the item uij in matrix 𝐔 can be expressed by

the summation of Wkk × g(𝐰i ⋅ 𝐱k + bi) × g(𝐰j ⋅ 𝐱k + bj). Here, Wkk is the weight of

training sample (𝐱k, 𝐭k), and hki = g(𝐰i ⋅ 𝐱k + bi) and hkj = g(𝐰j ⋅ 𝐱k + bj) are the ith
and jth elements in the kth row h(𝐱k) of the hidden layer output matrix 𝐇, respec-

tively. Similarly, according to Eq. (13), we know that item vij in matrix 𝐕 can be

expressed by the summation of Wkk × g(𝐰i ⋅ 𝐱k + bi) × tkj. Here, Wkk is the weight of

training sample (𝐱k, 𝐭k), hki = g(𝐰i ⋅ 𝐱k + bi) is the ith element in the kth row h(𝐱k)
of the hidden layer output matrix 𝐇, and tkj is the jth element in the kth row 𝐭k of

matrix 𝐓 which related to (𝐱k, 𝐭k).
The variables involved in equations of matrices 𝐔 and 𝐕 include: Wkk, hki, hkj and

tkj. According to Eqs. (5) and (6), to calculate the corresponding weightWkk related to

training sample (𝐱k, 𝐭k), we must first get the number #(𝐭k) of training samples which

belongs to the same class as 𝐭k. The numbers of training samples in all classes can be

easily calculated in one MR job. At the same time, the remaining three variables hki,
hkj and tkj only have relationship with training sample (𝐱k, 𝐭k) itself, and have nothing

to do with the other training samples, so the calculation of matrices 𝐔 and 𝐕 can be

done in another MR Job.

To sum up, the calculation process of matrices 𝐔 and 𝐕 is decomposable, there-

fore, similar to ELM
∗

[23], we can realize the parallel computation of matrices 𝐔
and 𝐕 by using MapReduce framework, to break through the limitation of single

machine, so as to improve the efficiency of which WELM learns big imbalanced

training data.

3.2 DWELM

The process of DWELM is shown in Algorithm 1. Firstly, we randomly generate L
pairs of hidden node parameters (𝐰i, bi) (Lines 1–2). And then, using a MR Job to

count the number of training samples contained in each class (Line 3). Next, using

another MR Job to calculate matrices 𝐔 and 𝐕 according to the input parameters

and randomly generate parameters (Line 4). Finally, we solve output weight vector

𝛽 according to the Eq. 7 (Line 5).

Algorithm 1 DWELM

for i = 1 to L do
Randomly generate hidden node parameters (𝐰i, bi)

Calculate all #(𝐭k) using Algorithm 2

Calculate 𝐔 = 𝐇T𝐖𝐇, 𝐕 = 𝐇T𝐖𝐓 using Algorithm 3

Calculate the output weight vector 𝛽 = (𝐈∕𝜆 + 𝐔)−1 𝐕
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Here are the specific processes of two MR Jobs involved in DWELM:

The process of the 1st MR Job is shown in Algorithm 2. The algorithm includes

two classes, Class Mapper (Lines 1–10) and Class Reducer (Lines 11–16). Class

Mapper contains three methods, Initialize (Lines 2–3), Map (Lines 4–7) and Close

(Line 8–10), while Class Reducer only contains one method, Reduce (Lines 12–16).

In the Initialize method of Mapper, we initialize one array, c, which is used to store

the intermediate summation of training samples contained in each class (Line 3). In

the Map method of Mapper, firstly, we analyze the training sample s, and resolve the

class which sample s belongs to (Lines 5–6). Then, adjust the corresponding value

in the array c (Line 7). In the Close method of Mapper, the intermediate summations

stored in c are emitted by the mapper (Lines 9–10). In the Reduce method of Reducer,

firstly, we initialize a temporary variable sum (Line 13). And then, we combine the

intermediate summations of different mappers which have the same Key, and fur-

thermore, get the final summation of the corresponding element of the Key (Lines

14–15). Finally, we store the results into the distributed file system (Line 16).

Algorithm 2 The 1st MR Job of DWELM

class MAPPER

method INITIALIZE()

c = new ASSOCIATIVEARRAY

method MAP(sid id, sample s)
𝐭 =ParseT(s)
num =Class(𝐭)
c[num] = c[num] + 1

method CLOSE()

for i = 1 to c.Length() do
context.write(cid i, count c[i])

class REDUCER

method REDUCE(cid id, counts [c1, c2,…])
sum = 0
for all count c ∈ [c1, c2,…] do

sum = sum + c
context.write(cid id, count sum)

The process of the 2nd MR Job is shown in Algorithm 3. The algorithm includes

two classes, Class Mapper (Lines 1–21) and Class Reducer (Lines 22–27). Class

Mapper contains three methods, Initialize (Lines 2–4), Map (Lines 5–15) and Close

(Line 16–21), while Class Reducer only contains one method, Reduce (Lines 23–

27). In the Initialize method of Mapper, we initialize two arrays, u and v, which

are used to store the intermediate summations of the elements in matrices 𝐔 and 𝐕
respectively. In the Map method of Mapper, firstly, we initialize a local variable h
(Line 6). Then, we resolve the input training sample s, dividing s into training feature

𝐱 and its corresponding training result 𝐭 (Line 7). Again, according to training result

𝐭 and the result of Algorithm 2, we get the corresponding weight w of s (Line8).

And then calculate the corresponding hidden layer output vector h(𝐱) (Lines 9–10).

Finally, separately calculate local summations of the elements in matrices 𝐔 and 𝐕,
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and save the result to local variables u and v (Lines 11–15). In the Close method of

Mapper, the intermediate summations stored in u and v are emitted by the mapper

(Lines 17–21). In the Reduce method of Reducer, firstly, we initialize a temporary

variable uv (Line 24). And then, we combine the intermediate summations which

have the same Key, and furthermore, get the final summation of the corresponding

element of the Key (Lines 25–26). Finally, we store the results into the distributed

file system (Line 27).

Algorithm 3 The 2nd MR Job of DWELM

class MAPPER

method INITIALIZE()

u = new ASSOCIATIVEARRAY

v = new ASSOCIATIVEARRAY

method MAP(sid id, sample s)
h = new ASSOCIATIVEARRAY

(𝐱, 𝐭) =ParseAll(s)
w =Weight(Counts[Class(𝐭)])
for i = 1 to L do

h[i] = g(𝐰i ⋅ 𝐱 + bi)
for i = 1 to L do

for j = 1 to L do
u[i, j] = u[i, j] + w × h[i] × h[j]

for j = 1 to m do
v[i, j] = v[i, j] + w × h[i] × 𝐭[j]

method CLOSE()

for i = 1 to L do
for j = 1 to L do

context.write(triple (
′U′

, i, j), sum u[i, j])
for j = 1 to m do

context.write(triple (
′V ′

, i, j), sum v[i, j])
class REDUCER

method REDUCE(triple p, sum [s1, s2,…])
uv = 0
for all sum s ∈ [s1, s2,…] do

uv = uv + s
context.write(triple p, sum uv)

4 Performance Evaluation

4.1 Experimental Platform

All the experiments are running on a cluster with 9 computers which are connected

in a high speed Gigabit network. Each computer has an Intel Quad Core 2.66 GHZ

CPU, 4 GB memory and CentOS Linux 5.6. One computer is set as the Master node
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Table 1 Experimental parameters

Parameter Range and default

Dimensionality (D) 10, 20, 30, 40, 50
Number of hidden nodes (Nh) 100, 150, 200, 250, 300

Number of records (Nr) 3M(1.4G), 4M(1.86G), 5M(2.3G), 6M(2.8G),

7M(3.27G)

Number of classes (Nc) 5, 10, 15, 20, 25

Imbalance ratio (R) 0.3, 0.4, 0.5, 0.6, 0.7

Number of nodes (Nn) 1, 2, 3, 4, 5, 6, 7, 8

and the others are set as the Slave nodes. We use Hadoop version 0.20.2 and configure

it to run up to 4 map tasks or 4 reduce tasks concurrently per node. Therefore, at any

point in time, at most 32 map tasks or 32 reduce tasks can run concurrently in our

cluster.

Because DWELM is MapReduce-based implementation of centralized WELM,

and it does not change any formula in WELM, so it does not have any effect on the

classification accuracy rate. In addition, the other learning algorithms of MapRe-

duce solutions such as SVM needs many iterations to obtain the final results. Our

DWELM only use two MapReduce job to gain the results. So, the performance

of two MapReduce jobs is obviously optimal to several MapReduce computations.

Even though we compare the SVM and DWELM, the results of our DWELM are

better than SVM. Therefore, we only evaluate the training time of DWELM in the

experiments. Table 1 summarizes the parameters used in our experimental evalua-

tion, along with their ranges and default values shown in bold. In each experiment,

we vary a single parameter, while setting the remainders to their default values. The

imbalance ratio which quantitatively measure the imbalance degree of a dataset is

defined as Min(#(𝐭i))∕Max(#(𝐭i)) [26].

4.2 Experimental Results

Firstly, we investigate the influence of the training data dimensionality. As shown in

Fig. 1, with the increase of training data dimensionality, the training time of DWELM

increase slightly. Increase of training data dimensionality leads to the running time

for calculating the corresponding row hk of hidden layer output matrix 𝐇 in Mapper

slightly increases, then leads to the training time of DWELM slightly increases.

Secondly, we investigate the influence of the number of hidden nodes. As shown

in Fig. 2, with the increase of the number of hidden nodes, the training time of

DWELM increases. Increasing of the number of hidden nodes leads to an increase

of the dimensionality of hidden layer output matrix 𝐇, and indirectly leads to the

increase of the dimensionality of the intermediate matrices 𝐔 and 𝐕. This not only
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Fig. 1 The influence of D
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Fig. 2 The influence of Nh
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makes the computation time of the local accumulated sum of 𝐔 and 𝐕 increase, but

also makes the transmission time of intermediate results in MR Job increase. There-

fore, the training time of DWELM increases with the number of hidden nodes.

Again, we investigate the influence of the number of training records. As shown

in Fig. 3, with the increase of the number of records, the training time of DWELM

increases obviously. Increasing of the number of records means that the number that

MR Job needs to deal with increases, leading to the amount of Mapper and Reducer

Fig. 3 The influence of Nr
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which need to be launched increase. On the other hand, it increases the number of

corresponding local accumulated sum of 𝐔 and 𝐕 which need to be transmitted,

leading to the transmission time of intermediate results increases. Therefore, the

training time of DWELM increases with the increasing of the number of training

records.

Then, we investigate the influence of the number of classes. As shown in Fig. 4,

along with the increase of the number of classes, the training time of DWELM is

basically stable. The number of classes increases, which only increases the number

of statistical values in the 1st MR Job and the number of input values in the 2nd

MR Job of DWELM, which has limited impact on the overall training time, so the

training time is relatively stable.

Next, we investigate the influence of imbalance ratio. As shown in Fig. 5, with

the increase of imbalance ratio, the training time of DWELM is basically stable.

Increasing of imbalance ratio did not produce any substantial effects on the calcula-

tion process of MR Job, so the training time is relatively stable.

Finally, we discuss the influence of the number of working slave nodes in the

Cluster. As shown in Fig. 6, with the number of slave nodes increasing, the train-

ing time of DWELM decreased significantly. Increasing of number of slave nodes

implies that increasing of the amount of Mapper/Reducers that be launched at the

same time, it also means that the work can be completed in unit time increasing.

Fig. 4 The influence of Nc
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Fig. 6 The influence of Nn

 0

 400

 800

 1200

 1600

 2000

 2400

 1  2  3  4  5  6  7  8

T
im

e 
(s

)

Number of Slave Nodes

Therefore, in the premise of constant total workload, the training time of DWELM

decreases.

In summary, no matter how the experimental parameters change, DWELM can

always deal with large-scale data (millions of data) effectively and rapidly (several

minutes). At the same time, DWELM has better scalability, through the expansion of

the hardware platform, they can easily handle billions and even hundreds of billion

of the big imbalanced training data, thereby improve the processing efficiency of big

data learning applications significantly.

5 Conclusions

Neither WELM nor DELM can cope with big imbalanced training data efficiently

since they only consider either “big” or “imbalanced” aspect of big imbalanced

training data. In this paper, we combine the advantages of WELM and DELM, and

propose a Distributed Weighted Extreme Learning Machine based on MapReduce

framework (DWELM). Specifically, through analyzing the characters of centralized

WELM, we found that the matrix multiplication operators (i.e. 𝐇T𝐖𝐇 and 𝐇T𝐖𝐓)

in WELM are decomposable. Then, we transform the corresponding matrix multipli-

cation operators into summation forms, which suit MapReduce framework well, and

propose a DWELM which calculates the matrix multiplications using two MapRe-

duce Jobs. Finally, in the Cluster environment, we use synthetic data to do a detailed

validation of the performance of DWELM with various experimental settings. The

experimental results show that DWELM can learn big imbalanced training data

efficiently.
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NMR Image Segmentation Based
on Unsupervised Extreme Learning Machine

Junchang Xin, Zhongyang Wang, Shuo Tian and Zhiqiong Wang

Abstract NMR image is often used in medical diagnosis. And image segmentation

is one of the most important steps in the NMR image analysis, which is valuable for

the computer-aided detection (CADe) and computer-aided diagnosis (CADx). As

traditional image segmentation methods based on supervised learning required a lot

of manual intervention. Thus, segmentation methods based on unsupervised learn-

ing have been received much concern, and unsupervised extreme learning machine

(US-ELM)’s performance is particularly outstanding among the unsupervised learn-

ing methods. Therefore, in this paper, we proposed a NMR image segmentation

method based on US-ELM, named NS-UE. Firstly, a NMR image feature model

is established for the input NMR image; Secondly, the clustering based on US-ELM

is proposed to separate the various regions of NMR image. Finally, a large number

of experimental evaluation results demonstrated the effectiveness and efficiency of

the proposed algorithms for the NMR image segmentation.
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1 Introduction

Nuclear magnetic resonance (NMR) is one of the most frequently used methods in

medical diagnosis. As NMR images contain the information of a large number of

lesions used in clinical treatment. The purpose of segmentation of NMR image is to

extract more diagnostic auxiliary meaningful information effectively, which refers

to that the NMR image is divided into a number of different areas, or divide the

region of interest (ROI), which is valuable for computer-aided detection (CADe)

and computer-aided diagnosis (CADx) [1, 2]. As NMR image segmentation is one

of important components of the NMR image processing system [3], has become

a hot issue in image processing technology, which attracted the attention of many

researchers [4–6].

Current clustering methods for image segmentation based on machine learning

approaches have gained great success. Existing image segmentation methods are

divided into two major categories, which are respectively based on supervised seg-

mentation and unsupervised segmentation. Supervised learning methods have been

widely used in image segmentation. Erbas et al. [7] proposed that Bayesian clas-

sifier and neural network classifier, and get extensive promotion and application in

medical image segmentation research. Jyoti et al. [8] proposed a method that both

the concept of clustering and thresholding technique with edge based segmentation

methods like sobel, prewitt edge detectors is applied. Further the segmented result

is passed through a gaussian filter to obtain a smoothed image. Pham et al. [9] pro-

posed for an image segmentation that can be used in fruit defect detection. The main

shortcomings of the method based on the supervision are the need of large amount of

prior information, the image segmentation process is limited by manual intervention.

Since the unsupervised segmentation method does not need manual intervention,

it attracts a lot of researchers’ attention in recent years. Ahmadvand et al. [10] uses

a proper combination of clustering methods and MRF and proposes a preprocessing

step for MRF method for decreasing the computational burden of MRF for segmenta-

tion. Hocking et al. [11] presents a novel unsupervised learning approach to automat-

ically segment and label images in astronomical surveys. Maji et al. [12] introduced

an unsupervised feature selection method, based on maximum relevance-maximum

significance criterion, to select relevant and significant textural features for segmen-

tation problem, along with a comparison with related approaches, is demonstrated

on a set of synthetic and real brain MR images using standard validity indices. Halim

et al. [13] applied an unsupervised moving k-means clustering algorithm on the var-

ious colour components of RGB and HSI colour models for segmentation of blast

cells from the red blood cells and background regions in leukemia image, and proved

its effectiveness and efficiency.

No prior information of the image in the process of segmentation results that large

amount of computation is produced in the image segmentation process, led to the

clustering is difficult to achieve satisfactory accuracy. Moreover, extreme Learning

Machine (ELM) requires fewer optimization constraints and results in simpler imple-

mentation, faster learning, and better generalization performance. Unsupervised
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extreme learning machine (US-ELM)’s performance is proved particularly outstand-

ing [15]. Therefore, in this paper, a segmentation method based US-ELM is proposed

(NS-UE). Firstly, feature model is established for the input NMR image; Secondly,

using unsupervised extreme learning machine for data processing, data in the embed-

ded space of US-ELM are clustered by K-means. With the clustered date, we can get

the segmentation images. Finally, experimental evaluation proved the effectiveness

and efficiency of the algorithm. The contributions of this paper can be summarized

as follows.

∙ A NMR image pixels feature model based on the N neighborhood pixels is pro-

posed, which is prepared for data clustering.

∙ Based the feature model we established, the segmentation method based on US-

ELM is proposed, named NS-UE, for unsupervised clustering segmentation of

NMR image.

∙ Last but not least, the experimental evaluation shows that our proposed approach

can separate the various regions of NMR image effectively.

The remainder of the paper is organized as follows. Section 2 introduces unsu-

pervised extreme learning machine. The details description of the proposed NMR

image segmentation based on US-ELM, named NS-UE are introduced in Sect. 3. The

experimental evaluation results show the effectiveness and efficiency of the proposed

approach are reported in Sect. 4. Finally, we conclude this paper in Sect. 5.

2 Unsupervised Extreme Learning Machine

ELM [17, 18] as been originally developed for single hidden-layer feedforward

neural networks (SLFNs) and then extended to the “generalized” SLFNs where the

hidden layer need not be neuron alike [19, 20]. ELM first randomly assigns the

input weights and the hidden layer biases, and then analytically determines the out-

put weights of SLFNs. It can achieve better generalization performance than other

conventional learning algorithms at an extremely fast learning speed. Besides, ELM

is less sensitive to user-specified parameters and can be deployed faster and more

conveniently [21, 22].

Unsupervised Extreme Learning Machine is proposed by Huang et al. [15]. A

number of hidden neurons which map the data from the input space into a nh-

dimensional feature space (nh is the number of hidden neurons) are randomly gen-

erated. Denote h(xi) ∈1×nh to the output vector of the hidden layer with respect to xi,
and 𝛽 ∈nh×n0 the output weights that connect the hidden layer with the output layer.

Then, the outputs of the network are given by

f (xi) = h(xi)𝛽, i = 1,… ,N. (1)

ELMs aim to solve the output weights by minimizing the sum of the squared

losses of the prediction errors, which leads to the following formulation
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min
𝛽∈nh×n0

1
2
‖𝛽‖2 + C

2

l∑

i=1
‖
‖ei‖‖

2

s.t. h(xi)𝛽 = yTi − eTi , i = 1,… ,N
(2)

where the first term in the objective function is a regularization term which controls

the complexity of the model, ei ∈n0 is the error vector with respect to the ith training

pattern, and C is a penalty coefficient on the training errors. By substituting the con-

straints into the objective function, we obtain the following equivalent unconstrained

optimization problem:

min
𝛽∈nh×n0

∇LELM = 1
2
‖𝛽‖2 + C

2
‖Y −𝐇𝛽‖2 (3)

If 𝐇 has more rows than columns and is of full column rank, which is usually the

case where the number of training patterns are more than the number of the hidden

neurons, the above equation is over determined, the following closed form solution

for:

𝛽

∗ =
(

𝐇T𝐇 +
Inh
C

)−1

𝐇TY (4)

If the number of training patterns are less than the number of hidden neurons,

then 𝐇 will have more columns than rows, which often leads to an under-determined

least squares problem.

𝛽

∗ = 𝐇T
(

𝐇T𝐇 +
Inh
C

)−1

Y (5)

The US-ELM algorithm [15] for unsupervised learning is introduced. In an unsu-

pervised setting, the entire training data X ∈n×ni are unlabeled. The formulation of

US-ELM is reduced to

min
𝛽∈nh×n0

‖𝛽‖2 + 𝜆Tr(𝛽T𝐇TL𝐇𝛽) (6)

Notice that the above formulation always attains its minimum at 𝛽 = 0, the formu-

lation of US-ELM is given by

min
𝛽∈nh×n0

‖𝛽‖2 + 𝜆Tr(𝛽T𝐇TL𝐇𝛽)

s.t.(𝐇𝛽)T𝐇𝛽 = In0
(7)

An optimal solution to problem (7) is given by choosing 𝛽 as the matrix whose

columns are the eigenvectors (normalized to satisfy the constraint) corresponding

to the first no smallest eigenvalues of the generalized eigenvalue problem:

I0 + l𝐇TL𝐇v = 𝛾𝐇T𝐇v (8)
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The problem (7) can be rewrited as

min
𝛽∈nh×n0

,𝛽

TB𝛽=In0
Tr(𝛽TA𝛽) (9)

where A = Inh +𝜆𝐇TL𝐇 and B = 𝐇T𝐇. It is easy to verify that both A and B are Her-

mitian matrices. Thus, the above trace minimization problem attains its optimum if

and only if the column span of 𝛽 is the minimum span of the eigenspace correspond-

ing to the smallest no eigenvalues of Eq. (8). Therefore, by stacking the normalized

eigenvectors of Eq. (8) corresponding to the smallest no generalized eigenvalues,

which can obtain an optimal solution to Eq. (7). In the algorithm of Laplacian eigen-

maps, the first eigenvector is discarded since it is always a constant vector propor-

tional to 1 (corresponding to the smallest eigenvalue 0), In the US-ELM algorithm,

the first eigenvector of Eq. (8) also leads to small variations in embedding and is not

useful for data representation.

Let 𝛾1𝛾2 … 𝛾n0+1𝛾1 ≤ 𝛾2 ≤ ⋯ ≤ 𝛾n0+1 be the (no + 1) smallest eigenvalues of

(8) and v1v2 … vn0+1 be their corresponding eigenvectors. Then, the solution to the

output weights 𝛽 is given by

𝛽

∗= [ṽ1, ṽ2,… , ṽn0+1] (10)

where ṽ = vi∕ ‖‖𝐇vi‖‖ , i = 2,… , n0 + 1 are the normalized eigenvectors.

3 NMR Image Segmentation Based on US-ELM

In this section, we proposed the method that NMR image segmentation based on

US-ELM. Firstly, feature model are established by image preprocessing; Secondly,

using US-ELM for data processing, we can get the segmentation images [15]. Image

Feature Model process is introduced in Sect. 3.1, and the main segmentation method

based on US-ELM (NS-UE) is introduced in Sect. 3.2.

3.1 NMR Image Feature Model

The data are processed by median filtering [23] to reduce the noise, and to improve

the smoothness of the image. The output image If of the Median filtering is shown

in Eq. (11), where g(x, y) is the output pixel of the median filtering.

If =
⎡
⎢
⎢
⎢
⎣

g(x1, y1) g(x1, y2) ⋯ g(x1, yn)
g(x2, y1) g(x2, y2) ⋯ g(x2, yn)

⋮ ⋮ ⋱ ⋮
g(xm, y1) g(xm, y2) … g(xm, yn)

⎤
⎥
⎥
⎥
⎦m×n

(11)
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Fig. 1 The image feature

model

At present, in most image processing methods, extracting image features to achieve

the establishment of image segmentation based on learning method is adopted, how-

ever, the feature extraction of image is extracted by artificial methods, which affects

the segmentation results because of the differences and changes of the computation

when the features are extracted artificially. However, different features can cause a

direct impact on the results of segmentation. In order to avoid the occurrence of

this problem, and make full use of the advantage of US-ELM, the method in this

paper establish a feature model directly using the pixels and the information of mul-

tiple pixels within its neighborhood as the feature of image. When the Image feature

model is set, pixels are used as a feature directly, it usually selects the neighborhood

of a certain size, and can select all elements with the neighborhood of 3 × 3 or 5 × 5
or higher as the corresponding image pixels feature as shown in Fig. 1. The process

of the image feature extraction can be shown in the Eq. (12), F is the feature scale of

the pixel of input image.

F =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

f (x − nk−1
2

, y − nk−1
2

) ⋯ f (x − nk−1
2

, y) ⋯ f (x − nk−1
2

, y + nk−1
2

)
⋮ ⋱ ⋮ . .

.
⋮

f (x, y − nk−1
2

) ⋯ f (x, y) ⋯ f (x, y + nk−1
2

)
⋮ . .

.
⋮ ⋱ ⋮

f (x + nk−1
2

, y − nk−1
2

) ⋯ f (x + nk−1
2

, y) ⋯ f (x + nk−1
2

, y + nk−1
2

)

⎤
⎥
⎥
⎥
⎥
⎥
⎦
nk×nk

(12)

where f (x, y) is the pixel of the input image, nk is the size of the neighborhood.

3.2 NMR Image Segmentation Based on US-ELM

In this paper, we presents an image segmentation method based on US-ELM. Firstly

the process of this method is to use the US-ELM to process the image data, to get
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Algorithm 1 MRI Segmentation based on US-ELM

Input:

NMR image I;
Parameters of US-ELM 𝜆;

Number of hidden neurons n0;

Parameters C for clustering;

Output:

Clustering results: I1, I2, I3, I4 ;

1 Load input image I: f (x, y) ∈ I;
2 For x = 1 ∶ m do

for y = 1 ∶ n do

F = Denoising(f (x, y));
3 For x = 1 ∶ m do

for y = 1 ∶ n do

F = Feature(f (x, y));
4 X ∈ Rn×ni=F;

7 L = Laplace(X),X ∈ Rn×ni ;
6 for i = 1 to n0 do

Randomly generated hidden layer node parameters (𝐰𝐢, bi) ;

7 Calculate hidden layer node output matrix H;

8 Calculate A = Inh + 𝜆HTLH;

9 Calculate B = HTH;

10 As 𝐀v = 𝛾𝐁v
Calculate vi, i = 2, 3,… n0 + 1;

11 As ṽi = vi∕ ‖‖Hvi‖‖ , i = 2, 3,… n0 + 1;

Calculate 𝛽 = [ṽ2,ṽ3, … ṽn0+1];
12 Calculate the embedded matrix E = H𝛽:

15 Set the parameters C = 4 for clustering;

14 Get clustered results y by K-means;
15 Initializing clustering center Ci;

16 Divided data into clusters;

17 Recalculate the new clustering center C′

i ;

18 If C′

i ≠ C′

i−1, return to step 16;

19 Get I1, I2, I3, I4 by y.

new embedding space, and then the clustering operation on the data is in the new

embedding space, the clustering segmentation of the image is realized by the one-to-

one mapping relationship between the new embedding space and the original one,

and restore segmented image according to the results of clustering.

Taking a concrete NMR image as an example the process is shown in Algorithm 1,

for the input NMR image I0. Feature model is established for I0 to get X ∈ Rn×ni .

Firstly, constructing the Laplacian matrix L according to the X ∈ Rn×ni , then set-

ting the number of conceal layer node of US-ELM, and the hidden node parameters

(𝐰𝐢, bi) are generated randomly according to the number of hidden nodes, and the

output matrix H ∈ Rn×ni of the hidden layer is calculated according to the para-

meters of the hidden layer nodes in US-ELM. According to the principle of US-

ELM, A = Inh + 𝜆HTLH, B = HTH, calculating the generalized eigenvalues and

eigenvectors, and the generalized eigenvector v2,v3,… vn0+1 corresponding to the
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minimum generalized eigenvalue from 2 to n0 + 1 is found in them,then getting

𝛽 = [ṽ2,ṽ3, … ṽn0+1] after uniting them, here ṽi = vi∕ ‖‖Hvi‖‖ , i = 2, 3,… n0 + 1;

and calculating the feature space E according to 𝛽, the method of Kmeans based

on spatial neighborhood is used to cluster 𝐄 = (e1, e2,… en)T , Here set the num-

ber of categories to 4, and the corresponding image elements in the original data

are clustered according to the clustering center C′

i , get the image after segmentation

I1, I2, I3, I4.

4 Experiments Evaluation

In this section, the experimental setting is introduced in Sect. 4.1, and the experi-

mental results is introduced in Sect. 4.2.

4.1 Experimental Setting

In this paper, US-ELM is applied to the segmentation of MRI according to the way

above. The DICOM format images are used for segmentation processing. This exper-

iment are run on the environment of MATLAB2013a, with the Intel Core i3 2.7 GHz

CPU and 6GB RAM for simulation and data processing. In the experiment, after

discussion, 200 hidden layer nodes are adopted. Excitation function of ELM is “sig-

moid”, according to the principle of US-ELM above, the value of 𝜆 is set to 1 and

according to the different requirements to the dimension in US-ELM training, differ-

ent dimensions of the experiments were carried out. In the experiment, the results of

different image segmentation methods are firstly compared in the experiment. And

to compare them through a number of evaluation criteria. The including contrast

method is:

∙ K-means: Original K-means clustering approach;

∙ NS-UE: NMR Image Segmentation based on US-ELM;

Since there is no gold standards for the experimental data and segmentation results

so the unsupervised evaluation program proposed by Zhang et al. [24] is adopted in

the experiment, the images segmented are evaluated by the regional uniformity and

gray uniformity.

4.2 Experimental Results

The effect of the number of hidden nodes on the experimental results is evaluated.

With the increase of the hidden layer nodes of data as shown in the Fig. 2a, b, we

can see that the uniform does not increase. In contrast, the increase in the number
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Fig. 2 Changing of the number of hidden layer nodes. a Regional uniformity. b Gray uniformity.

c Running time

of nodes in the hidden layer increases the running time, which is shown in Fig. 2c.

Therefore, the number of hidden layer nodes in this paper is set to 200.

It can be seen from the four maps, NS-UE can separate different regions of

the NMR image, but it still exists phenomenon that the edge is not complete in

the process of segmentation (Fig. 3). K-means can not get the segmentation distin-

guished accurately. According to the evaluation method described in the last section,

the segmentation effects of the two methods are compared. In the case of the white

matter section, the results are compared with the results of the experiments, the

results of the uniformity are compared with the results of the following experiments

in the Fig. 4a. By the contrast of the region uniformity, it can be seen that the uniform

similarity of the image based on NS-UE is better than others. After comparing the

uniformity of the region, we make the evaluation of the effect of the whole gray level,

and the evaluation is as follows in the Fig. 4b, c: By the contrast of the gray unifor-

mity in the Fig. 4a, it can be seen that the gray uniformity in the Fig. 4b, the image

based on NS-UE is better than K-means. The efficiency of the algorithm is also one

of the evaluation indexes of the algorithm, so the running time of the algorithm is

compared below: From the Fig. 4c, it can be seen that the operating efficiency of the

image based on NS-UE is obviously higher. Take the two evaluation indexes above

as an example, in the calculation of US-ELM, when the dimension of the output data
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Fig. 3 Segmentation results. a Background of K-means. b Background of NS-UE. c Edge of

K-means. d Edge of NS-UE. e Gray matter of K-means. f Gray matter of NS-UE. g White mat-

ter of K-means. hWhite matter of NS-UE

Fig. 4 The compared with the results of white matter section. a Regional uniformity. b Gray uni-

formity. c Running time

changes [15], the segmentation effect can also be affected, the following image is the

impact of the change of dimension on the three evaluation indexes above:

With the increase of the dimensions of data as shown in the Fig. 5a, we can see

that the uniform does not increase, on the contrary, when the dimension is higher

than a certain threshold, the segmentation effect will decline.It can be seen that the

segmentation effect is the best when the dimension is about 25. With the increase of

the dimensions of data as shown in the Fig. 5b, you can see that gray uniform does not

increase, on the contrary, when the dimension is higher than a certain threshold, the

segmentation effect will decline.It can be seen that the segmentation effect is the best

when the dimension is about 25. From the image shown in the Fig. 5c, because of the

increase of dimension, the clustering data increase, so the running time will increase

according to the increase of the dimension. According to the image pre-processing
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Fig. 5 The contrast of dimension. a Regional uniformity. b Gray uniformity. c Running time

described in last section, this paper established a feature model for adjacent area pixel

set as the image feature, the above experimental results select size of neighborhood of

5, in order to verify the effects of the size of selected on the experimental results,and

start from 3 respectively, gradually increasing the size of its neighborhood pixels,

and analyze its effect on segmentation.

From the Fig. 6a, when the size of neighborhood increases, the regional uni-

formity increase at first, however when the neighborhood continue increases, the

regional uniformity of segmentation results will decrease. Because when the pixels

in region increase, the pixels of different classification are introduced as their fea-

tures, and the effect of the segmentation is disturbed. It can be seen from the in the

Fig. 6b that when the size of neighborhood increases, the gray uniformity reduces,

which is the same reason as described above. From the Fig. 6c, the running time

increases continuously for different neighborhood sizes, because with the increase

of the data dimension, it increases the computational complexity of the learning

machine, resulting the increase of computation time.
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Fig. 6 The contrast of changing of neighborhood. a Regional uniformity. b Gray uniformity.

c Running time

5 Conclusions

In this paper, we proposed an MRI segmentation method based on unsupervised

extreme learning machine, named NS-UE. As NMR image is an important part in

the disease diagnosis, image segmentation is one of the first the most important step

in image analysis. And unsupervised learning has been a great success in application.

In which US-ELM’s performance is particularly outstanding. Firstly, feature model is

established for the input NMR image; Secondly, using unsupervised extreme learn-

ing machine for data processing. Finally, through a large number of experimental

data and calculation proved the effectiveness and efficiency of the algorithms.

Acknowledgments This research was partially supported by the National Natural Science Foun-

dation of China under Grant Nos. 61472069 and 61402089, and the Fundamental Research Funds

for the Central Universities under Grant Nos. N130404014.



NMR Image Segmentation Based on Unsupervised Extreme Learning Machine 345

References

1. Kallergi, M., Clark, R., Clarke, L.: Medical image databases for CAD applications in digital

mammography: design issues. Stud. Health Technol. Inf. 43, 601–605 (1997)

2. Vijaya, G., Suhasini, A.: Synergistic clinical trials with CAD systems for the early detection of

lung cancer. Adv. Intell. Syst. Comput. 324, 561–567 (2015)

3. Pham, D., Xu, C., Prince, J.: Current methods in medical image segmentation. Annu. Rev.

Biomed. Eng. 2(1), 175–272 (2000)

4. Clarke, L., Velthuizen, R., Camacho, M., Heine, J., Vaidyanathan, M.: MRI segmentation:

methods and applications. Magn. Reson. Imag. 13(3), 343–368 (1995)

5. Scott, A., Macapinlac, H., Divgi, C.D., Zhang, J., Kalaigian, H.: Clinical validation of SPECT

and CT/MRI image registration in radiolabeled monoclonal antibody studies of colorectal car-

cinoma. J. Nuclear Med. Official Publication Society of Nuclear Medicine 35(12), 1976–1984

(1994)

6. Mauri, G.: Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver

tumors undetectable with US: results in 295 cases. Cardiovasc. Intervent. Radiol. 38(11), 143–

151 (2014)

7. Erb, R.J.: The backpropagation neural network-a Bayesian classifier. Introduction and applica-

bility to pharmacokinetics. Clin. Pharmacokinet. 29(2), 69–79 (1995)

8. Jyoti, A., Mohanty, M.N., Kar, S.K.: Optimized clustering method for CT brain image segmen-

tation. In: FICTA, vol. 327, pp. 317–324 (2015)

9. Pham, V.H., Lee, B.R.: An image segmentation approach for fruit defect detection using

k-means clustering and graph-based algorithm. Vietnam J. Comput. Sci. 2(1), 25–33 (2015)

10. Ahmadvand, A., Daliri, M.R.: Improving the runtime of MRF based method for MRI brain

segmentation. Appl. Math. Comput. 256, 808–818 (2015)

11. Hocking, A., James, E.G., Davey, N., Sun, Y.: Teaching a machine to see: unsupervised image

segmentation and categorisation using growing neural gas and hierarchical clustering. Instru-

mentation and Methods for Astrophysics (astro-ph.IM); Cosmology and Nongalactic Astro-

physics (astro-ph.CO), vol. 1507 (2015)

12. Maji, P., Roy, S.: Rough-fuzzy clustering and unsupervised feature selection for wavelet based

MR image segmentation. PLoS ONE 10(4), e0123677 (2015)

13. Abd, H.H., Mashor, M.Y., Abdul, A.S., Mustafa, N., Hassan, R.: Colour image segmenta-

tion using unsupervised clustering technique for acute leukemia images. In: ICoMEIA 2014,

vol. 1660 (2014)

14. Vargas, R.R., Bedregal, B.R., Palmeira, E.S.: A comparison between K-Means, FCM and

ckMeans Algorithms. 2011 Workshop-School on Theoretical Computer Science, pp. 32–38

(2011)

15. Huang, G., Song, S., Gupta, J.N.D., Wu, C.: Semi-supervised and unsupervised extreme learn-

ing machines. IEEE Trans. Cybern. 44(12), 2405–2417 (2014)

16. Adhikari, S.K., Sing, J.K., Basu, D.K.: Conditional spatial fuzzy C-means clustering algorithm

with application in MRI image segmentation. Find out how to access preview-only content. Inf.

Syst. Des. Intell. Appl. 340, 539–547 (2015)

17. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications.

Neurocomputing 70(1–3), 489–501 (2006)

18. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental constructive

feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892

(2006)

19. Huang, G.-B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing

70(16–18), 3056–3062 (2007)

20. Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learning

machine. Neurocomputing 71(16–18), 3460–3468 (2008)

21. Huang, G.-B., Ding, X., Zhou, H.: Optimization method based extreme learning machine for

classification. Neurocomputing 74(1–3), 155–163 (2010)



346 J. Xin et al.

22. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and

multiclass classification. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(2), 513–529

(2012)

23. Yong, H.-L., Kassam, S.-A.: Generalized median filtering and related nonlinear filtering tech-

niques. IEEE Trans. Acoust. Speech Signal Process. 33(3), 673–683 (2012)

24. Zhang, S., Dong, J.W., She, L.H.: The methodology of evaluating segmentation algorithms on

medical image. J. Image Graphics 14(9), 1972–1880 (2009)



Annotating Location Semantic Tags in LBSN
Using Extreme Learning Machine

Xiangguo Zhao, Zhen Zhang, Xin Bi, Xin Yu and Jingtao Long

Abstract In recent years, location-based social networks have become very

popular. However, it is difficult to extract proper location features from constrained

users’ check-in activities datasets. In this paper, by capturing the check-in activi-

ties of similar users, we propose a new extracting location feature method similar

user pattern (SUP) to automatically annotate category tags for all locations lacking

semantic tags. Extreme learning machine (ELM) is well-known for having a faster

learning speed and good generalization performance, so we apply a binary ELM to

train extracting location features for each tag in the tag space in order to support

multi-label classification. We also combined with other existing feature extraction

methods to train ELM aimed for finding the most effective feature combinations for

annotating semantic tags. Finally, to verify the effectiveness and efficiency, we con-

duct experimental study based on a real dataset collected from Foursquare, which is

popular LBSN service. The results show that our proposed method SUP is effective

in annotating semantic tag for locations.

Keywords Location-based social networks ⋅ Extreme learning machine ⋅
Multi-label classification ⋅ Semantic annotation of locations

1 Introduction

With the development of GPS technology and the wide use of intelligent termi-

nal, location-based social networks (LBSN) have become very popular. There are

lots of LBSN services such as Foursquare, Gowalla, Facebook Places, Whrrl. These

services allow users to share their locations and location-related content, such

as geo-tagged photos and notes [2]. Based on real traces of users’ locations and

activities, LBSNs have attracted the attention of many researchers. One of them is
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Fig. 1 Users and locations in LBSN

automatically annotating category for all locations lacking any semantic descrip-

tions [17]. Ye et.al proposed many locations have been annotated with useful tags

such as restaurant or cinema. However, based on analysis of data collected from

Whrrl and Foursquare, about 30 % of all locations are lacking any semantic tags. So,

it is significant to research how to automatically annotate semantic tags for locations.

In LBSN, a location also may be associated with multiple tags. Such as, a location

associated with a tag restaurant may also be tagged with bar. Hence, location seman-

tic annotation in LBSN may be addressed as a muti-lable classification problems

[3, 18].

Figure 1 shows some users’ check-in activity records. Users and locations are

connected through a set of check-in activities C = {⟨u, l, h, t⟩|u ∈ U ∧ l ∈ L ∧ h ∈
H ∧ t ∈ T}, in which U denotes the set of users, L denotes the set of locations, H
denotes the set of time stamps and T denotes the tag space. Every check-in activity

c ∈ C describes that a user u has checked in a location l at time h in which the seman-

tic tag of the location is t. The locations of majority records have existed semantic

tags t ∈ T . Such as bar, restaurant. However a few locations (the question marks in

Fig. 1) lack any semantic tags.

There are two phases to automatically annotate category tags for all locations

lacking semantic tags: (1) extracting the features; (2) the features to train extreme
learning machine (ELM). For the first phase, we propose a new method similar

user pattern (SUP) to extract features of locations and improve the semantic annota-

tion technique in LBSN. For every check-in activity in which the locations lack any

semantic tags, we obtain the user information, calculate the top-k similar users of the

user and extract those similar users’ the location tags of check-in activities within a

time period around the the user’ check-in time. Finally, we approximately take the

statistical result as probability that the location tag of this check-in activity belongs

to every category tag in the tag space.

For the second phase, we use the SUP combined with other existing feature

extraction methods to train a set of binary ELM classifiers in order to automatically

annotate category tags for all locations lacking semantic tags. Location semantic

annotation in LBSN has been considered as a muti-lable classification problems.
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However, most muti-lable classification learning methods still are based on transfor-

mation of the multi-label classification problem to a binary classification problem

and then use binary classification learning methods to classify the input data.

Specifically, our research work main contributions can be summarized as:

∙ we propose a new feature extraction method SUP to annotate semantic tags for the

locations which are lacking any semantic tags. It is proved to be a very effective

feature extracting method.

∙ We also combined with other existing feature extraction methods to train ELM

aimed for finding the most effective feature combinations for annotating semantic

tags of locations.

∙ By a comprehensive experimental study, using a real dataset collected from

Foursquare. We confirm that our proposed method SUP is effective in annotat-

ing semantic tag for locations.

The remainder of this paper is organized as follow. In Sect. 2, we review related

works. Next, in Sect. 3, according to the information of users’ check-in the activi-

ties, we summarize existing existing feature extraction methods and introduce SUP

in detail. In Sect. 4, we introduce the ELM and further discuss the issue that the

extracting the features of locations to train ELM. In Sect. 5, we conduct an empirical

study using the collected Foursquare and analyze our results. Finally, in the Sect. 6,

we conclude our work.

2 Related Work

In this section, we review a number of existing works in the areas of extreme learning
machine (ELM), and multi-label classification.

Previous studies on multi-label classification have been conducted in the domains

of text classification [14, 16], protein function classification [5], music categoriza-

tion [13], and semantic scene classification [3]. In [16], BoosTexer has been devel-

oped to handle multi-label text categorization. In [14], a mixture model derived by

expectation maximization (EM) has been trained to select the most probable set of

tags. In [11], a set of binary SVM classifiers have been developed to realize multi-

label classification for text classification.

In ELM, hidden node parameters are chosen randomly. ELM generally requires

much less training time than the conventional learning machines and tends to reach

the smallest training error. ELM has been originally developed based on single-

hidden layer feed forward neural networks (SLFNs) [7–10]. It is well-known for

having a faster learning speed than other traditional learning methods, and it not

only tends to reach the smallest training error but also the smallest norm of weights.

Its classification performance is also better than the gradient based learning method.

The simulation aiso results proved that ELM can achieve better generation perfor-

mance than the traditional support vector machine (SVM) [6].
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3 Semantic Annotation of Places

In this section we first present a brief introduction about existing feature extraction

method, then present our similar user pattern (SUP) method to extract features of

locations.

3.1 The Existing Feature Extraction Methods

So far, there have been some the feature extraction methods to annotate category

tags for all locations lacking semantic tags. Based on those, we propose a new fea-

ture extraction method SUP and combine with other other existing feature extrac-

tion methods to train extreme learning machine (ELM). We first briefly introduce

the existing feature extraction methods involved in this paper.

Ye et al. proposed to extract explicit pattern (EP) feature fed from users’ check-in

records to train SVM classifiers [17]. The EP features contain five aspects: (1) total

number of check-ins; (2) total number of unique visitors; (3) maximum number of

check-ins by a single visitor; (4) distribution of check-in time in a week; (5) distrib-

ution of check-in time in 24-h scale. The features extracted from EP are summarized

from all check-ins at a specific location which is different angles with SUP. So, EP

will be combined with SUP in Sect. 5 to find the most effective feature combinations

for annotating semantic tags for the locations. Ye et al. also proposed implicated

relatedness(IR) features which is a major contribution to this paper. The regularity

appears in certain users to be used for correlating similar locations. The locations

checked in by the same user at around the same time show strong relatedness. To

capture the relatedness among locations and extract discriminative features from IR.

It builds a network of related places(NRP). The feature extracted from IR are sum-

marized from the check-in activities of users do exhibits a strong regularity. Our

SUP is improved based on IR. So, The SUP will be compared with IR in Sect. 5. Ou

et al. proposed to extract a demographic feature fde(DFs) that is complementary to

EP based on the interest features [15]. So, DFs also will be combined with SUP in

Sect. 5 to find the most effective feature combinations for annotating semantic tags

for the locations.

3.2 The SUP Method to Extract Features

we propose a new SUP method to extract features of location. As mentioned earlier,

the only data resource we have is the users’ check-in activities at various locations

and time. Fortunately, human behaviors are not completely random. We discover two

regulars from Foursquare datasets: (1) regularity of the certain user; (2) regularity
of between users. Regularity of the certain user reflects on the check-in activities
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of the certain user do exhibits a strong regularity. Regularity of the between users

reflects on the some users daily behaviors have similarities and possible go to the

locations which have similar semantic tags at the same time or closer time. Moreover.

According to it,we formulate the similar users problem.

Definition 1 (Similar Users) Given the check-in activities of two users: C11 =
{⟨u1, l1, h1, t1⟩|u1 ∈ U ∧ l1 ∈ L ∧ h1 ∈ H ∧ t1 ∈ T} and C21 = {⟨u2, l2, h2, t2⟩|u2 ∈
U ∧ l2 ∈ L ∧ h2 ∈ H ∧ t2 ∈ T}. t1, t2 are the similar location tags and h1, h2 are

closer time, we can call u1 ∼ u2. P is similar rate between the two users. Here we

think the same user is the greatest similarity, and the similar rate P is 1.

Before introducing SUP method, we explain how to calculate similar users. First,

it assumes that we regroup locations by functions into n general tags. For example,

Coffee, Snacks, Cafe, Delis and etc., all belong to the same category ‘Restaurant’.
And it assumes that we divide 24 h one day into m time periods (In the Sect. 5, we

will find the best time period partition method by the experiment). Then we put

check-in activities having location semantic tags of all the users into different groups

according to both semantic tags of location and check-in period of time. Such as, we

assume that Sa is one of the general tags and k is one of the periods of time. So,

all check-in records with Sa location tags and also within the k time period will

be classified into one group. Thus, we can put check-in activities having location

semantic tags of all the users into m × n groups.

After the end of the grouping of the check-in activities, we use the Vector Space
Model (VSM) [4] to calculate the Similar Users. The grouping of each user check-

in is considered as a vector. In order to reflect the users repeated access to the same

group and the similar behavior of visiting users in the groups. The groups of all users

consists of the user-group Matrix, as follows:

Vm×n =
⎡
⎢
⎢
⎢
⎣

V1,1 V1,2 ⋯ V1,n−1 V1,n
V2,1 V2,2 ⋯ V2,n−1 V2,n
⋮ ⋮ ⋱ ⋮ ⋮

Vm,1 Vm,2 ⋯ Vm,n−1 Vm,n

⎤
⎥
⎥
⎥
⎦

(1)

where m is the number of visiting users, n is the number of groups. Vij is the number

of check-ins by the user i in the group region j.
When obtaining the user-group Matrix, we use the cosine angle [1] between two

vectors to measure Similar Users. Suppose that the user a and the user b are repre-

sented as vector Ua and Ub in n-dimensional the user-group Matrix, the similarity

between user a and the user b is defined as follows:

sim(a, b) = cos(Ua,Ub) =
Ua ∙ Ub

‖Ua‖‖Ub‖
(2)

When understanding the method of similar users calculation, We present SUP

method to extract location features. First, we find the check-in activities Cm =
{cm1, cm2,… , cmn} in which the location is no semantic tagging. Here it assumes
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that we will give the check-in activity cm1 = {⟨um1, lm1, hm1, ?⟩|um1 ∈ U ∧ lm1 ∈ L ∧
hm1 ∈ H∧? ∈ T} to annotate tags. First we find the user of check-in activity um1 and

calculate the most similar k users {um1,1, um1,2,… , um1,k}with um1 by the above intro-

duction of similar users calculation method. Then we extract all the check-in activ-

ities records of existing location tag from {um1,1, um1,2,… , um1,k} which is around

hm1 within a certain period. For example, [hm1 − i, hm1 + i] in which i can be val-

ued 0.5, 1, 1.5, 2 h. We define those the check-in activities as C{[m1,1],[m1,2],…,[m1,n]}.

we find all location semantic tagging {Tm1,1,Tm1,2,… ,Tm1,n} from check-in records

C{[m1,1],[m1,2],…,[m1,n]} .Then we do probability statistics for each tag in order to adapt

to ELM. As mentioned earlier, we still assume that it takes the location of seman-

tic tags into n groups as {T1,T2,… ,Tn}. Then we calculate the probability of

{Tm1,1,Tm1,2,… ,Tm1,n} belonging each category which approximate as probability

that the location tag Tm1 of cm1 belongs to each category in the tag space. The equa-

tions follows:

Pr[Tm1 = Ti(i ∈ [1, n])] =
∑

j(Tm1,j ∈ Ta)
∑n

i=1 Tm1,i
(3)

4 The Features to Train ELM

4.1 Brief Introduction of ELM

In this section, we further discuss the issue that the extracting features train extreme

learning machine (ELM) in detail. First, it is brief introduction of ELM.

For N arbitrary distinct samples (xi, ti), where xi = [xi1, xi2,… , xin]T ∈ Rn
and ti =

[ti1, ti2,… , tim]T ∈ Rm
, standard SLFNs with ̃N hidden nodes and activation function

g(x) are mathematically modeled in [10] as

̃N∑

i=1
𝛽igi(xj) =

̃N∑

i=1
𝛽ig(wi ⋅ xj + bi) = oj (j = 1,… ,N) (4)

where wi = [wi1,wi2,… ,win]T is the weight vector connecting the ith hidden node

and the input nodes, 𝛽i = [𝛽i1, 𝛽i2,… , 𝛽im]T is the weight vector connecting the ith

hidden node and the output nodes, and bi is the threshold of the ith hidden node.

That standard SLFNs with ̃N hidden nodes with activation function g(x) can

approximate these N samples with zero error means that
∑̃N

j=1 ‖oj − tj‖ = 0, i.e.,

there exist 𝛽i, wi and bi such that

̃N∑

i=1
𝛽ig(wi ⋅ xj + bi) = tj (j = 1,… ,N) (5)
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The above N equations can be written compactly as 𝛽i, wi and bi such that

H𝛽 = T (6)

where

H(w1,… ,w
̃N , b1,… , b

̃N , x1,… , x
̃N)

=
⎡
⎢
⎢
⎣

g(w1 ⋅ x1 + b1) ⋯ g(wl ⋅ xL + bL)
⋮ ⋱ ⋮

g(w1 ⋅ xN + b1) ⋯ g(wL ⋅ xN + bL)

⎤
⎥
⎥
⎦N×L

(7)

where H is called the hidden layer output matrix of the neural network; the ith hidden

node output with respect to inputs {x1, x2,… , xN}. T is the target matrix of the output

layer.

4.2 Multi-label Classification of ELM

The article is less for multi-label classification in ELM. Most multi-label classifi-

cation learning methods still are based on transformation of the multi-label classifi-

cation problem to a binary classification problem and then use binary classification

learning methods to classify the input data. Because of the location semantic annota-

tion as a multi-label classification problem, we also proposed to address the location

semantic annotation problem by learning a binary ELM for each tag in the tag space

in order to support the multi-label classification. We give the training stage algorithm

of multi-label classification of ELM. It is illustrated in Algorithm 1.

Algorithm 1: Multi-label classification of ELM Algorithm

Input: Input N training samples (xi, ti),
hidden node number L,

the whole tag space T(T1,T2,… ,Tn)
Output: Output the tag space element number corresponding to 𝛽

for j = 1 to number of elements in the tag space do1
for i = 1 to L do2

randomly assign input weight wi;3
randomly assign bias bi; end for;4
Calculate Hj;5
Calculate 𝛽j = H∔

j T6
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5 Experiments

In this section, we conduct a series of experiments to verify the effectiveness of

our proposed similar user pattern (SUP) method and find the most effective feature

combinations to annotate semantic tags for the locations from all extraction methods

by using extreme learning machine (ELM). In the following, we first describe the real

world datasets used in the experiments, introduce the metrics employed to evaluate

the performance, and finally analyze the experiment results.

5.1 Dataset Setting and Performance Metrics

We collect three datasets from Foursquare, a very popular LBSN service all around

the world. The one dataset consists of 5,687 users and their check-in records in UK.

The second dataset contains 5842 users and their check-in records in USA. The third

dataset consists of 4300 users and their check-in records in Ireland between July and

August 2013. Among all those locations of check-in records in three datasets, 19 %

of them are not specified with any semantic tags. We group all the tags of locations

into 13 general categories.

In order to conduct the experiments, we pre-process this raw dataset to obtain a

ground-truth dataset for performance evaluation. First, the locations in the ground-

truth dataset should have category tags, so we filter out those locations without cate-

gory tags. Then, we select the 20 % over the ground-truth dataset as the test samples

and remove category tags. We use the features of locations to train ELM in order to

recover the category tags for those the test samples.

Multi-label classification requires a different set of performance metrics to eval-

uate the effectiveness and efficiency of the training method. We evaluate the perfor-

mance by the following four metrics: Hamming Loss, Average Precision, Recall and

F1-Measure which they are widely employed in previous multi-label classification

studies [12, 16–18]. Our experiments mainly evaluate the following two aspects: (1)

the effect of parameters on the performance; (2) Evaluating our SUP algorithm; (3)

Finding the most effective feature combinations for annotating semantic tags. For

initial input of ELM, we use the sigmoidal additive activation function in the simu-

lations and set the number of hidden node to 180.

5.2 Experimental Result

First, we give the effect of parameters on the performance by the experiment. In

Sect. 3, we have introduced feature extraction method SUP which contains three

parameters: (1) when calculating the Similar Users. based on the check-in activi-

ties of human have time distributed regularity, we divided 24 h one day into m time
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periods; (2) we need to calculate the top-k Similar Users for SUP method which

involves how to select parameters k; (3) for calculating the tag probability of SUP

Algorithm, when we give the check-in activity cm1 to annotate tags, we use parame-

ters [hm1 − i, hm1 + i] to define a certain time period.

Because of the article length limit, we only give experiment comparison chart by

the third parameter. For the first and second parameters, we only give experiment

results. When the second parameter k value is 5 and third parameter is [hm1 − 1,
hm1 + 1], by the experiment, we finally find that dividing 24 h one day into eight

time periods including 8:00–11:00, 11:00–14:00, 14:00–17:00, 17:00–20:00, 20:00–

23:00, 23:00–2:00, 2:00–5:00, 5:00–8:00 is best for the SUP algorithm performance.

When the first parameter is eight time periods and third parameter is [hm1 − 1, hm1 +
1], by the experiment, the results show that when k select 4–6, the SUP algorithm

performance is best. Now we focus on the results of the third parameter experi-

ments. As mentioned earlier, it assumes that we give the check-in activity cm1 to

annotate tags. When the first parameter is eight time periods and k value is 5,

we respectively use Hamming Loss, Average Precision, Recall and F1-Measure to

evaluate the performance of three datasets of UK, USA, Ireland within those time

period ([hm1 − 0.5, hm1 + 0.5], [hm1 − 1, hm1 + 1], [hm1 − 1.5, hm1 + 1.5], [hm1 − 2,
hm1 + 2]). As shown in Fig. 2, we can conclude that the selection of parameter i inside
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Fig. 2 Selecting a appropriate certain period. a Hamming loss. b Average precision. c Recall.

d F1-Measure
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[hm1 − i, hm1 + i] is very important for the performance of the SUP method. Whatever

the performance evaluation in three datasets in UK, USA, Ireland, the period of

[hm1 − 1, hm1 + 1] and [hm1 − 1.5, hm1 + 1.5] are relatively better. The reason is that

the time period chosen too short may lead to little check-in activities conform to the

rules, and it is not easy to do probability. But if the time period chosen too long, it

is likely that many check-in activities conform ro rules and lead calculating the tag

probability is inaccurate. So the experiment result is reasonable.

In Fig. 3, we have made a comparative experiment between our proposed method

SUP and Ye et al. proposed method of IR [17]. According to the above the experiment

result, when the first parameter is eight time periods, the second parameter k value

is 5 and third parameter is [hm1 − 1, hm1 + 1], we respectively use Hamming Loss,

Average Precision, Recall and F1-Measure to evaluate the performance of SUP and

IR in three datasets of UK, USA, Ireland. We can conclude that our proposed method

SUP outperform IR method in all the four metrics. The reason is that IR method is

very good algorithm, but, there are some limitations that IR algorithm just use a

single user check-in regularity for annotation location tags. Although the check-in

activities of users do exhibits a general regularity, there must be some special case.

If the user’ check-in record is messy and has no daily regularity, it is bound to affect

the results of the annotation location tags. Our SUP method do daily statistical for

the top-k Similar Users in the period of time, so the affected degree is small.



Annotating Location Semantic Tags in LBSN Using Extreme Learning Machine 357

0

0.05

0.1

0.15

0.2

UK USA Ireland

H
am

m
in

g 
L
os

s
SUP

SUP ∝ EP
SUP ∝ EP ∝ DF

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UK USA Ireland

A
ve

ra
ge

P
re

ci
ou

s

SUP
SUP ∝ EP

SUP ∝ EP ∝ DF

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
ec

al
l

SUP
SUP ∝ EP

SUP ∝ EP ∝ DF

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UK USA Ireland UK USA Ireland

F
1-

M
ea

su
re

SUP
SUP ∝ EP

SUP ∝ EP ∝ DF

(a) (b)

(c) (d)

Fig. 4 Performance comparison of SUP, SUP ∝ EP and SUP ∝ EP ∝ DF. a Hamming loss.

b Average precision. c Recall. d F1-Measure

In Fig. 4, our proposed method SUP combined with the other feature extraction

methods to train ELM in order to find the most effective feature combinations from

all extraction methods. According to the above the experiment result, when the first

parameter is eight time periods, the second parameter k value is 5 and third parameter

is [hm1 − 1, hm1 + 1], we respectively use Hamming Loss, Average Precision, Recall

and F1-Measure to evaluate the performance of SUP, SUP ∝ EP, and SUP ∝ EP ∝

DF in three datasets of UK, USA, Ireland where the EP is proposed by Ye et al.

[17] and DF is proposed by Ou et al. [15]. We can conclude that the combination of

feature extraction methods SUP ∝ EP ∝ DF is better than other in the four metrics.

The reason is that our SUP do not consider features in each individual location. It

is just one feature from all extraction features. SUP ∝ EP ∝ DF includes multiple

features which consider not only features of individual locations but also capture the

Similar Users by exploiting the regularity of user check-in activities to determine the

probability that the location tag belongs to each category in the tag space.

6 Conclusions

In this paper, we propose a new extracting location feature method similar user pat-

tern (SUP) by users’ check-in records to annotate category tags for all locations lack-

ing tags and improve the semantic annotation technique. Besides the SUP considers
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that the check-in activities of users do exhibits a strong regularity, some users daily

behaviors have similarities. We also combine with other existing semantic anno-

tation of locations algorithms to learn a set of binary extreme learning machine

(ELM) classifiers in order to find the most effective feature combinations to anno-

tate semantic tags. Finally, we use the proposed features with some existing method

in our experiment and result shows our proposed method SUP have a satisfactory

improvement in performance metrics and the most effective feature combinations is

SUP ∝ EP ∝ DF.
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Feature Extraction of Motor
Imagery EEG Based on Extreme
Learning Machine Auto-encoder
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Abstract Feature extraction plays an important role in brain computer interface
system that significantly affects the success of brain signal classification. In this
paper, a feature extraction method of electroencephalographic (EEG) signals based
on Extreme Learning Machine auto-encoder (ELM-AE) is applied. Firstly, the
original data is classified by Extreme Learning Machine (ELM) and the number of
hidden layer’s neuron with the highest accuracy is selected as the dimension of
feature extraction. Then, ELM-AE’s output weight learns to represent the features
of the original data. Finally, the features are classified by Support Vector Machine
(SVM) classifier. Experiment result shows the efficiency of our method for both the
speed of feature extraction and the accuracy of the classification for data set la,
which is a typical representative of one kind of BCI competition 2003 data.
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1 Introduction

An electroencephalogram-based brain computer interface is a growing research
field which allows users to control computers and other external devices by brain
activities rather than depend on the normal output pathways of peripheral nerves
and muscles [1]. We focus on motor imagery, which is the mental rehearsal of a
motor act, such as movements of hands, limbs, tongue and fingers without any overt
motor activities [2]. EEG is most commonly used for capturing motor imaginary
brain activities in BCI systems, because of its fine temporal resolution,
non-invasiveness, easy implementation and low set-up costs [3].

The accurate classification is a key issue for efficient EEG-based communication
and control, which is dependent on extracting relevant features and developing a
classification algorithm which is suitable for the features [4–7]. A number of fea-
tures have been extracted to design BCI such as amplitude values of EEG signals
[8], band powers (BP) [9], power spectral density (PSD) values [10], autoregressive
(AR) and adaptive autoregressive (AAR) parameters [11] and so on.

A method which can balance classification accuracy of the extracted feature and
consuming time while extracting features should be used for the EEG data. Huang
et al. proposes a new learning algorithm called extreme learning machine (ELM) for
single-hidden layer feed forward neural networks (SLFNs) with a fast learning
speed and good generalization [12–14]. Based on ELM, new method called ELM
auto-encoder is proposed by Chamara Kasun et al. [15]. The features can be rep-
resented ELM-AE’s output weight.

In this paper, the extraction method is based on ELM auto-encoder. At first, the
input data is classified by Extreme Learning Machine and the number of hidden
layer’s neuron with the highest accuracy is selected as the dimension of feature
extraction. Then, ELM-AE’s output weight learns to represent the features of the
input data. At last, the features are classified by Support Vector Machine
(SVM) classifier. Experiment result shows not only the features extracted by our
method obtained the highest classification accuracy but also the speed of feature
extraction is fastest in comparison with other common EEG feature extraction
methods.

The rest of the paper is organized as follows. The methods are demonstrated in
Sect. 2. The experiments are displayed in Sect. 3. The conclusion is drawn in the
last section.

2 Method

In this section, we first introduce the framework of the algorithm. And then we
describe the method of Extreme Learning Machine auto-encoder. At last, we
illustrate feature extraction based on Extreme Learning Machine auto-encoder in
details.
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2.1 Algorithm Description

The framework of our method is drawn in Fig. 1. Firstly, feature vectors of original
EEG signals are extracted by the method based on ELM-AE. Then, in order to verify
the efficiency of the feature vectors, SVM classifier is used to obtain the classifi-
cation accuracy which is regarded as the criteria to evaluate the extracted features.

2.2 Extreme Learning Machine Auto-encoder

Extreme Learning Machine auto-encoder is based on the network of ELM and the
theory of auto-encoder. According to ELM theory, ELMs are universal approximators
[16], hence ELM-AE is as well. ELM-AE’s main objective is to represent the input
features meaningfully in three different representations as drawn in Fig. 2 [15].
ELM-AE’s output weight is responsible for representing the features of the input data.

As shown in Fig. 2, when repenting the input features, ELM-AE has the fol-
lowing three different representations:

• Compressed. Represent features from a higher dimensional input data space to a
lower dimensional feature space;

• Sparse. Represent features from a lower dimensional input data space to a higher
dimensional feature space;

• Equal. Represent features from an input data space dimension equal to feature
space dimension.

The method of ELM-AE can be summarized as Table 1.

Fig. 1 The framework of the
algorithm
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2.3 Feature Extraction Based on Extreme Learning
Machine Auto-encoder

As ELM-AE has the same solution as the original extreme learning machine except
that its target output is the same as input x, and the hidden node parameters ðai, biÞ
are made orthogonal after being randomly generated [15], the number of hidden
nodes of ELM-AE is selected according to the accuracy of original ELM. Before

Fig. 2 ELM-AE’s network structure

Table 1 Extreme learning
machine auto-encoder

Algorithm 1: Extreme learning machine auto-encoder

Input: input data ℵ= fðxi, yiÞgNi=1 ∈Rd ×Rm, number of hidden
neurons L, activation
01: Step 1. Generate weight a and bias b of hidden nodes
randomly, then orthogonalize them aTa= I, bTb=1
02: Step 2. Calculate the output matrix of hidden nodes

H =
G a1, b1, x1ð Þ . . . G aL, bL, x1ð Þ

⋮ . . . ⋮
G a1, b1, xNð Þ . . . G aL, bL, xNð Þ

2
4

3
5
N × L

03: Step 3. Calculate output weights β
04: If d ! = L,

05: If N ≥ L, β= ð IC +HTHÞ− 1HTX

06: Else β=HT ð IC +HHT Þ− 1X

07: Else β=H − 1Y , βTβ= I

Output: code: a, b Encode: β
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extracting features, we use original ELM to classify EEG data with different
numbers of hidden nodes. Then, the numbers of hidden nodes of ELM with the
highest classification accuracy is chosen as the numbers of hidden nodes of
ELM-AE, namely, the features’ dimension after extracting by the feature extraction
based on ELM-AE. The procedure of feature extraction method based on ELM-AE
is shown in Fig. 3.

As shown in Fig. 3, in the beginning, to select dimension of feature extraction,
the EEG signals data is classified by original ELM with different numbers of hidden
nodes and then the number of hidden nodes of ELM with the highest classification
accuracy is considered as the number of hidden nodes of ELM-AE. After that, we
use ELM-AE with the selected number of hidden nodes to calculate the output
weight β for representing features. In the end, to obtain the feature vectors, β is
transposed and the feature vector is the input data multiplied by βT .

3 Experiments

In this section, firstly, we introduce the EEG dataset used in the experiment. Then,
we present the parameters selection of feature extraction. Finally, we compare
performance of our method with other common methods in the aspects of speed of
feature extraction and classification accuracy of the features.

3.1 Description of EEG Data

The data used in this paper comes from the BCI competition 2003 data set Ia, which
is a batch of high quality of the data set provided by University of Tübingen,

Fig. 3 Procedure of feature
extraction with the method of
ELM-AE
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Institute of Medical Psychology and Behavioral Neurobiology, Niels Birbaumer
[17, 18]. The dataset was taken from a healthy subject. The subject was asked to
move a cursor up and down on a computer screen, while his cortical potentials were
taken [19]. During the recording, the subject received visual feedback of his slow
cortical potentials (Cz-Mastoids). Cortical positivity leads to a downward move-
ment of the cursor on the screen. Cortical negativity leads to an upward movement
of the cursor. All the trails are composed by training set (268 trials, 135 for class 0,
133 for class 1) and testing set (293 trials, 147 for class 0, 146 for class 1). Each
trial lasted 6 s. During every trial, the task was visually presented by a highlighted
goal at either the top or bottom of the screen to indicate negativity or positivity from
second 0.5 until the end of the trial. The visual feedback was presented from second
2 to 5.5. Only this 3.5 s interval of every trial was provided for training and testing.
The sampling rate of 256 Hz and the recording length of 3.5 s resulted in
896 samples per channel for every trial.

Six EEG electrodes were located according to the International 10–20 system as
shown in Fig. 3 [20] and referenced to the vertex electrode Cz as follows:
Channel 1: A1 (left mastoid); Channel 2: A2 (right mastoid); Channel 3: F3 (2 cm
frontal of C3); Channel 4: P3 (2 cm parietal of C3); Channel 5: F4 (2 cm frontal of
C4); and Channel 6: P4 (2 cm parietal of C4) (Fig. 4).

3.2 Parameters Selection of Feature Extraction

According to our previous research on BCI competition 2003 data set Ia [21], the
optimal electrodes of A1 and A2 are selected in the experiment. Compute the
classification accuracy of A1 and A2 respectively in ELM classifier with the
number of hidden nodes ranging from 20 to 900 with the step of 20. Then select the
number of hidden nodes with the highest accuracy. Finally using the best hidden
nodes, extract the feature of electrode A1 and A2 respectively with the method of
ELM-AE. The result is shown in Fig. 5.

In Fig. 5, the two red pentagrams are the highest accuracy, namely 0.8381 and
0.7814, and their corresponding number of hidden nodes, namely 440 and 200,

Fig. 4 Distribution of EEG electrodes for 6 channels
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which are the numbers of hidden nodes of ELM-AE about electrode A1 and A2
respectively. Thus, after being extracted features the dimensions of the features of
electrode A1 and A2 are 440 and 200 respectively.

3.3 Comparison Performance with Other Methods

To verify the efficiency of feature extraction method based on ELM-AE, we
compare our method with other related methods which are commonly used in
feature extraction of EEG signals data, such as Principle Component Analysis
(PCA) [22], Linear Discriminative Analysis (LDA) [22] and Waveform Packet
Decomposition (WPD) [20]. In this section, we compare the above methods from
the aspect of classification accuracy of extracted features and the speed of extracting
features.

Comparison Performance about Classification Accuracy of Extracted
Features. To test the classification accuracy of different methods, SVM classifier
which is widely used in the field of EEG classification is adopted in this experiment.
The results are shown in Table 2.

Fig. 5 Classification
accuracy of electrodes A1 and
A2 by the classifier of ELM
with different numbers of
hidden layer nodes

Table 2 Comparison of accuracy of two features by ELM-AE and other related methods

Method Dimension of electrode A1 Dimension of electrode A2 Accuracy (%)

PCA [22] 19 13 76.45
LDA [22] 1 1 50.17
WPD [20] 272 272 64.85
ELM-AE 440 200 86.69
Bold value indicates the best result
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From the Table 2, the method of feature extraction based on ELM-AE is proved
effectively although the feature’s dimension is a bit large.

Comparison Performance about the Speed of Extracting Features . In this
subsection, we compare performance about the speed of extracting features. All the
experiments are performed on a PC with an Intel Core i5-4570 processor at
3.2 GHz, 8G RAM and coded with MATLAB 2012b.

In Table 3, the fastest feature extraction method is ELM-AE. In other words,
even though the dimension of features’ extracted by our method is large, the speed
of feature extraction is still fast. This advantage of speed is in accordance with the
characteristic of basic ELM.

All in all, from the analysis of Tables 2 and 3, the efficiency of feature extraction
method based on ELM-AE can be verified from the aspect of classification accuracy
of extracted features and the speed of extracting features.

4 Discussion and Conclusion

In this paper, we presented a feature extraction method based on ELM-AE. We test
the efficiency of the method on BCI EEG signal for identifying motor imagery in
the aspect of classification accuracy of extracted features and the speed of extracting
features. The main conclusions are summarized as follows:

• The method is suitable for the high-dimensional EEG data of motor imagery
task. From the better accuracy of the features extracted by our method, the
method can extract the discriminative information of original EEG data
efficiently.

• In the view of speed of feature, our method can maintain the advantage of fast
learning speed, which is the obvious characteristic of ELM. Although the
experiments are all offline, we believe the merit of our method may be
prospective to handle online data which is strict with speed.

In this paper, the dimension of the features extracted by our method is a bit large.
In the process of EEG features, feature selection is a common technique. Therefore,
we believe our method may be suitable for combination with related feature
selection as well.

Table 3 Speed comparison of two features by our method and other methods

Method Dimension of electrode A1 Dimension of electrode A2 Speed (s)

PCA [22] 19 13 0.2436
LDA [22] 1 1 3.5209
WPD [20] 272 272 98.2906
ELM-AE 440 200 0.2054
Bold value indicates the best result
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Multimodal Fusion Using Kernel-Based
ELM for Video Emotion Recognition

Lijuan Duan, Hui Ge, Zhen Yang and Juncheng Chen

Abstract This paper presents a multimodal fusion approach using kernel-based
Extreme Learning Machine (ELM) for video emotion recognition by combing
video content and electroencephalogram (EEG) signals. Firstly, several audio-based
features and visual-based features are extracted from video clips and EEG features
are obtained by using Wavelet Packet Decomposition (WPD). Secondly, video
features are selected using Double Input Symmetrical Relevance (DISR) and EEG
features are selected by Decision Tree (DT). Thirdly, multimodal fusion using
kernel-based ELM is adopted for classification by combing video and EEG features
at decision-level. In order to test the validity of the proposed method, we design and
conduct the EEG experiment to collect data that consisted of video clips and EEG
signals of subjects. We compare our method separately with single mode methods
of using video content only and EEG signals only on classification accuracy. The
experimental results show that the proposed fusion method produces better clas-
sification performance than those of the video emotion recognition methods which
use either video content or EEG signals alone.
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1 Introduction

With the rapid development of multimedia technology, various digital videos
emerge in large numbers. However, some contents of the video are not suitable for
juveniles to watch, such as contents with violence and eroticism. For the healthy
growth of juveniles, establishing a good network environment is necessary. Rec-
ognizing different video emotions accurately is a basis of establishing a good
network environment. Recently, how to recognize different video emotions accu-
rately is a challenging and important issue for many researchers [1, 2].

Multimodality can represent video content more comprehensively and recognize
video emotion more accurately than single modality, so multimodal fusion
approaches for video emotion recognition are becoming increasingly popular. In
current multimodal fusion approaches, face, speech, video, text and physiological
signal are the most common combined modalities. Bailenson et al. [3] uses facial
features and physiological signal to carry out real-time classification of evoked
emotions. Mansoorizadeh et al. [4] combines facial features with speech features to
construct multimodal information fusion application of human emotion recognition.
Koelstra [5] uses facial expressions and electroencephalogram (EEG) signal for
affect recognition and implicit tagging of videos. Ye et al. [6] presents an approach
combing speech signal with textual content for emotion recognition. Wang et al. [7]
combines video content with EEG signal at two different levels (feature-level and
decision-level) to annotate videos’ emotional tags for the first time and proves that
fusion accuracy of video content and EEG signal is higher than video only or EEG
only. In previous studies, various classifiers are adopted, such as support vector
machine (SVM) [8], neural network [9], hidden Markov models [10]. In Wang’s
method [7], three Bayesian Networks are adopted for fusion.

In this study, we propose a novel multimodal fusion method using kernel-based
Extreme Learning Machine (ELM) for video emotion recognition. In the proposed
method, the fusion of video content and EEG is adopted at decision-level. The
contributions of this paper mainly include: (1) to the best of our knowledge,
kernel-based ELM is applied to implement the fusion of video content and EEG
signal for the first time; (2) a multimodal fusion method using kernel-based ELM is
proposed for video emotion recognition; (3) the fusion method is shown experi-
mentally to be more accurate than single mode method of using video content or
EEG signal separately.

The remainder of this paper is organized as follows. In Sect. 2, the proposed
multimodal fusion method is presented particularly. In Sect. 3, experimental
materials and EEG experiment protocol are illustrated. In Sect. 4, the parameter
selection that used in experiment and performance evaluation of the classification
method are described, respectively. Finally, the ‘‘Conclusions’’ is given.
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2 Methods

The proposed multimodal fusion method involves three steps: (1) obtain video
features, (2) obtain EEG features, (3) carry out classification fusion using
kernel-based ELM and obtain the final decision. The framework of the proposed
multimodal fusion method is shown as Fig. 1.

2.1 Feature Extraction

Content-based video features. In order to describe video clips accurately,
content-based video features consist of audio-based features and visual-based fea-
tures in our research.

Fig. 1 The framework of the proposed multimodal fusion method
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Audio-based features. Actually, the digital audio signal is time-varying signal. For
purpose of analyzing audio signal in a traditional way, it is assumed that the audio
signal is stable in a few milliseconds. To obtain short-time audio signal, window
operation is adopted. That is to say, each audio signal is divided to frames and one
audio signal corresponds to with one video clip. For each audio frame, low-level
features of 25 dimensions are extracted, shown as Table 1. These features are
widely used in audio and speech processing and audio classification. In conclusion,
25 audio-based features are got in each video clip.
Visual-based features. Digital video is a serial of images composed of frames,
which contains rich information. In order to remove redundant information and
reduce calculation amount, key frames are extracted and then visual features of key
frames are extracted. In this paper, the hierarchical clustering approach based on
color histogram is adopted to extract key frames. Assume that the duration of each
video clip is t seconds, the video frame sequences of each video clip are classified
by clustering into 3 * t clusters. Then from every cluster, the frame nearest cluster
center is selected as one key frame. Finally, 3 * t key frames of each video clip are
obtained. In this work, color histogram features from key frames in the HSV space
are extracted. The color histogram is obtained by counting the number of times each
color occurs in the image array [11]. We divide H to 24, S to 22, V to 22, so 256
HSV color histogram features in each key frame are obtained. After a frame of
image is sampled in a dense sample way and is described by SIFT descriptors, a
descriptor set is obtained. Then the descriptor set is quantized into W visual words
by using K-means clustering. After that, the spatial pyramid descriptor of entire
image is formed, which has Q level and 22ðQ− 1Þ cells at level Q. For one key frame,
PHOW features with W*22ðQ− 1Þ dimensions are obtained.
EEG features. The EEG signal is down-sampled to 500 Hz and EOG is subtracted
from EEG data. 8–30 Hz band-pass filter is used to reduce artifacts. Wavelet packet
decomposition (WPD) is used in our research. WPD features have been previously
used for EEG signal analysis and worked very well at classification accuracy [12]. In
the WPD analysis, signal is decomposed to high frequency component and low
frequency component. Accordingly, WPD coefficients are obtained. Then each
component is decomposed similarly. For one electrode’s EEG signal corresponding
to one video clip, one second time window is used to process signal and the signal is
divided into t segments. For signal of each window, the level of decomposition is set

Table 1 Audio-based features

Domain Feature list Statistics Dimension

Time domain Zero crossing rate (Std/mean)2 1
Short time energy (Std/mean)2 1

Frequency domain Spectral flux Std 1
Spectral rolloff Std 1
Spectral centroid Std 1

Time-frequency domain MFCCs Std 20
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to J and db6 is selected as wavelet basis to obtain 2JWPD features. In this way, 2J * t
WPD features in each electrode’s signal are got. For E electrodes’ EEG signals
corresponding to one video clip, E * 2J * t WPD features are obtained.

2.2 Feature Selection

Video feature selection. In this paper, Double Input Symmetrical Relevance
(DISR) is adopted to select video features. The DISR has two properties: first, a
combination of features can return more information on the output class than the
sum of the information that is returned by each of the features individually; sec-
ondly, it is intuitive to assume a combination of the best performing subsets of
d − 1 features as the most promising set. In video features, audio-based features just
have 25 dimensions, so only features on visual-based features are selected. Con-
sidering the balance between audio-based features and visual-based features, the
dimension of DISR features is the same as the dimension of audio-based features,
namely, 25 DISR features are obtained. Then 50 video features are got.

EEG feature selection. EEG signal has redundant information in high dimensional
space. Therefore, a method to reduce the dimensionality should be chosen to
remove redundant information. Decision tree (DT) has been widely used in the
classification because of its fast speed and high precision. However, the main factor
that influences the performance of decision tree classification is the selection
problem [13]. For EEG signal, attribute selection problem is spatial feature selec-
tion problem. So DT is selected as EEG features selection approach. C4.5 is one of
the widely used DT algorithms. In this paper, decision tree algorithm C4.5 is
adopted to select EEG features. EEG data’s each feature is regarded as one attribute.
Simplified tree’s all attributes are used as EEG features selected. Finally, Z EEG
features are obtained from E * 2J * t WPD features.

2.3 Classification

A brief review of kernel-based ELM. ELM is proposed for “generalized” single
hidden layer feed forward networks (SLFN) by Huang et al. [14]. It is shown that
the learning speed of ELM is much faster than other learning algorithms such as
SVM. The essence of ELM is that the hidden layer of SLFNs need not be tuned.
The output function of ELM with L hidden nodes for generalized SLFNs can be
expressed by

fLðxiÞ= ∑L
j=1 βihiðxiÞ= hðxiÞβ ð1Þ
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where xi is the input sample vector, and the output weight vector between the hidden
layer of L nodes to the c (c ≥ 1) output nodes is denoted as β= ½β1, . . . ,βL�T , and
ELM nonlinear feature mapping is denoted as hðxiÞ= ½h1ðxiÞ, . . . , hLðxiÞ�. In real
applications, hiðxiÞ, the output of the jth hidden node, can be hiðxiÞ=Gðwj, bj, xiÞ,
where Gð ⋅ Þ is the activation function of the hidden nodes, and ðwj, bjÞ are hidden
node parameters. Given N input vectors, Eq. (1) can be written in matrix form as
Hβ=T, where the hidden layer output matrix is

H=
hðx1Þ
⋮

hðxNÞ

24 35=
Gðw1, b1, x1Þ ⋯ GðwL, bL, x1Þ

⋮ ⋱ ⋮
Gðw1, b1, x1Þ ⋯ GðwL, bL, x1Þ

24 35 ð2Þ

and the training data label matrix is

T=
tT1
⋮
tTN

24 35=
t11 ⋯ t1c
⋮ ⋱ ⋮
tN1 ⋯ tNc

24 35. ð3Þ

In ELM, the input weights wj and hidden biases are randomly generated so that
H does not need to be tuned. β is solved by minβ∋RL× c Hβ−Tk k2. To train ELM, a
least-square solution must be found by using Moore-Penrose generalized inverse.
The optimal solution is given by

β* =H†T ð4Þ

where H† is the Moore-Penrose generalized inverse of H, and H† = ðHTHÞ− 1HT

or HTðHHTÞ− 1.
In order to make learning system more stable and generalization performance

better, kernel-based ELM [15] introduces a positive regularization coefficient into
ELM. If N > L, we have

β* = ðHTH+ I γ̸Þ− 1HTT ð5Þ

where I is an identity matrix of dimension L, and HTH is called “ELM kernel
matrix”. If N < L, we get

β* =HT HHT + I γ̸
� �− 1T ð6Þ

where I is an identity matrix of dimension N, and HHT is called “ELM kernel
matrix”.

Classification fusion using Kernel-based ELM. In this work, decision-level
fusion is adopted. Z EEG features and 50 video features are respectively input into
kernel-based ELM. The actual outputs (T in Eq. 3) of kernel ELM are regarded as
decision features. So EEG decision features and video decision features are
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obtained. Then EEG decision features and video decision features are combined
together to form new decision features. Finally, the new decision features are input
into kernel-based ELM and final decision can be obtained. The proposed classifi-
cation fusion system is depicted graphically by Fig. 2. Ei denotes EEG features
corresponding with one video clip. The dimension of Ei is n and n = Z. Vi denotes
video features of the same video clip. The dimension of Vi is m and m = 50. If the
actual outputs TE = tE1 ⋯ tEc½ � and TD = tD1 ⋯ tDc½ �, decision features Di

is given by

Di = ½TE TD� ð7Þ

where c denotes the number of video classes, and both TE and TD denote the actual
outputs of kernel-based ELM. In addition, tDj ( j=1, . . . c) also denotes the actual
outputs of kernel-based ELM.

3 Materials and Experiment

3.1 Materials

The video dataset is created for the experiment. 90 video clips are extracted from
different famous movies and television program. The movies include two major
genres, which are action and drama. These video clips include three emotional
classes: violence, neutral, eroticism. In addition, the clips in television program

Fig. 2 Schematic diagram of the proposed classification fusion system
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Human and Nature were selected as neutral clips, and the clips in various movies
were included as the other two classes’ clips. The number of video clips in each
class is the same. Each video clip only includes one emotional event, and has
duration of approximately six seconds. The video dataset were built by six students
(3 males and 3 females).

3.2 EEG Experiment Protocol

13 healthy subjects (7 males and 6 females, from 24 to 28 years old) participated in
the experiment. At the start of the experiment, the screen displayed the experimental
instruction and the announcements in the experiment. After watching them, the user
pressed the space key to start the experiment. For one subject, 30 clips are selected
from the video dataset and each 10 clips belonged to the same class. For avoiding
subject to form the memory of inertia, the clips were played randomly. Before
playing each clip, prompt displayed in the screen to attract the attention of the
subject. When 30 clips were finished playing, the experiment ended. During the
experiment, the subject’s EEG signals were recorded. The experiment repeated for
each subject. Finally, 17 subjects’ EEG signals are obtained.

4 Experimental Results and Analyses

4.1 Result of EEG Feature Selection

In this paper, decision tree algorithm C4.5 is adopted to select EEG features. EEG
data’s each feature is regarded as one attribute. Simplified tree’s all attributes are
used as EEG features selected. In the experiment, simplified tree contained 14
attributes. Therefore, 14 EEG features are obtained from 3072 WPD features. The
position of the selected features is C6, C5, M1, PO3, FP1, FT7, F3, POZ and AF4.
In addition, FP1 includes five features, and C5 includes two features and other
electrodes only have one feature. AF4 and F3 correspond to brain’s frontal area.
FT7 corresponds to frontal- temporal area. C5 and C6 correspond to brain’s central
area. PO3 and POZ correspond to brain’s parietal-occipital area. According to
findings in brain research, frontal lobe is associated with attention, short memory,
and planning; parietal lobe is associated with movement; occipital lobe is associated
with vision; temporal lobe is associated with sensory input processing, language
comprehension, and visual memory retention. The selected features demonstrate
audio-visual task stimulate brain’s frontal area, central area and parietal-occipital
area. This result is consistent with findings in brain research and confirms that
applying decision tree to EEG feature selection is reasonable.
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4.2 Evaluation of Classification Fusion Using
Kernel-Based ELM

In order to test the validity of the proposed method, we compare our method
separately with single mode methods of using video content only and using EEG
signals only on classification accuracy. Classification accuracy is obtained by using
the averaged tenfold cross-validation. To select optimal parameters that make
classification performance optimal, regularization coefficient of kernel-based ELM
ranges from 2−15 to 215 and kernel_para ranges from 10−15 to 1020, and step sizes
are 2 and 10 respectively. The results of classification are shown in Table 2. In
particular, the first row of Fusion in Optimal parameters denotes the optimal
parameters of kernel-based ELM whose inputs are video features. The second row
of Fusion in Optimal parameters denotes the optimal parameters of kernel-based
ELM whose inputs are EEG features. The last row of Fusion in Optimal parameters
denotes the optimal parameters of kernel-based ELM whose inputs are decision
features. From the last column of the Table 2, we can see that the accuracy of the
proposed fusion method is higher than that of method using video only and EEG
only. The classification accuracy obtained by using the proposed method is about
3.34 % higher than using video content only and approximately 21.11 % higher than
using EEG signals only.

5 Conclusions

In this paper, we proposed a multimodal fusion method using kernel-based ELM to
recognize video emotion by combing video content and EEG signals. Then we
design and conduct the EEG experiment to collect data. At last, the proposed fusion
method is applied to our collected data. The main conclusions are summarized as
follows:

Table 2 Classification results comparing the proposed method with single mode methods

Method Optimal parameters Accuracy (%)

Video only Regularization_coefficient = 21;
‘RBF_kernel’; Kernel_para = 1

73.33

EEG only Regularization_coefficient = 210;
‘RBF_kernel’; Kernel_para = 1017

55.56

Fusion (V)Regularization_coefficient = 24;
‘RBF_kernel’; Kernel_para = 102

76.67

(E)Regularization_coefficient = 21;
‘RBF_kernel’; Kernel_para = 103

(D)Regularization_coefficient = 24;
‘RBF_kernel’; Kernel_para = 1

Multimodal Fusion Using Kernel-Based ELM … 379



1. The method is suitable for three-class recognition of video emotion. The validity
of our approach has been demonstrated with our data set.

2. We compare the proposed method separately with single mode methods of using
video content only and EEG signals only on classification accuracy. The
experimental results show that the proposed fusion method produces better
classification performance than those of the video emotion recognition methods
which use either video content or EEG signals alone. In addition, the classifi-
cation accuracy obtained by using the proposed method is about 3.34 % higher
than using video content only and approximately 21.11 % higher than using
EEG signals only.
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Equality Constrained-Optimization-Based
Semi-supervised ELM for Modeling Signal
Strength Temporal Variation in Indoor
Location Estimation

Felis Dwiyasa, Meng-Hiot Lim, Yew-Soon Ong and Bijaya Panigrahi

Abstract Signal strength can be used to estimate location of a wireless device. As

compared to other signal measures such as time-based and angle-based metrics, sig-

nal strength is normally embedded in wireless transceivers. This allows us to add

location estimation feature on top of any wireless systems without requiring hard-

ware modification. However, signal strength is affected by many environmental fac-

tors which cause temporal and spatial variation that could degrade the accuracy of

location estimation system if not handled properly. In this paper, we focus on the

temporal variation effect which is inevitable in dynamic environments where people

and surrounding objects are typically not stationary. We try to improve the Location

Estimation using Model Trees (LEMT) algorithm, a previous work that uses M5

model tree, by proposing that the calibration of the radio map over time can be done

using Equality Constrained-optimization-based Semi-Supervised Extreme Learning

Machine (ECSS-ELM). By using continuous signal strength readings collected from

reference tags and tracking tag of a 2.4-GHz Radio Frequency Identification (RFID)

system, we found that the algorithm can achieve comparable performance with much

faster training time and testing time as compared to the M5 model tree.
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1 Introduction

A wide range of sensors such as infrared [1], ultrasonic [2] and inertial sensor [3]

have been proposed to offer a solution for indoor navigation system. There are also

numerous research works on wireless-based positioning based on Ultra Wideband

(UWB) [4], Wi-Fi [5–7], and Radio Frequency Identification (RFID) [6, 7]. In wire-

less communication system, signal strength is one of the most popular techniques

for positioning.

Multiple devices are typically required to provide accurate positioning of a tracked

device. One common approach is to use several measurement units [5–8]. Some

methods use several reference devices places in static positions [6, 7]. In coopera-

tive learning, a tracked device may also use the location information gathered from

other tracked devices nearby [8].

Various building layout and materials, furniture placements, human activity

within the building, and interferences from other wireless devices may strengthen

or weaken a signal. Fingerprint-based technique could adapt to different test-site

layouts by doing offline training phase before the real testing phase is conducted.

However, when there is any change in environmental condition, the radio map pat-

tern may change and the data collected during training phase may not correlate well

with the data at testing phase.

As repeated training data collection can be a tedious manual process, automatic

real-time calibration has been considered to provide an efficient way in capturing

temporal variation effect. In LANDMARC algorithm [6], reference tags are installed

in a grid of fixed positions to capture the temporal variation. LANDMARC assumes

that functional relationship between tags is inversely proportional to the distance

between them. It also requires that all tags are nearly identical and that reference tags

are placed in a way that the k-nearest reference tags are not blocked in an unbalanced

manner [6].

Location Estimation using Model Trees (LEMT) [7] proposes that functional rela-

tionship between tags can be learned during training phase. By doing so, LEMT is

found to be not much affected by non-uniformity of device hardware and propagation

path.

Despite its better robustness, LEMT has a potential complexity issue, particu-

larly because the depth of its tree depends on the training data and therefore the

complexity of the algorithm may grow unpredictably. To solve uncertain training

time experienced by the model tree, we would like to explore Extreme Learning

Machine (ELM) approach which has a very quick training time as compared to other

neural network approaches. To our knowledge, there has been no previous work that

explores the use of ELM to replace tree-based model. We apply ELM algorithm to

learn the functional relationship between the reference tags and tracking tag when

the signal strength is experiencing temporal variation due to environmental changes.

Our work extends the work presented in [9], in which semi-supervised ELM is

used to learn spatial variation. Instead of spatial variation, our work uses the semi-

supervised ELM for learning temporal variation. The semi-supervised ELM allows
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us to use unlabeled data, which, in our location system, are the signal strength of

the reference tags. Unlabeled data are easy to collect because we do not need to

manually label the location of the tracking tag during the data collection. We also

merge the concept of equality constrained-optimization-based from [10] into the

semi-supervised ELM [9] to improve accuracy, and then apply the model to replace

M5 model tree in LEMT algorithm [7]. The ability of the model to provide a good

approximation to adapt a changing radio map will be evaluated in terms of speed and

accuracy.

2 Learning Temporal Variation

2.1 LEMT Algorithm

Because signal strength is affected by many environmental factors, it is inevitable

that signal strength value may change over time due to environmental dynamics. This

phenomenon is often referred to as temporal variation. It is one of the most important

factors to consider when developing indoor location estimation system. A calibrated

location estimation system which does not adapt to temporal variation would have

its radio map obsolete and would certainly experience performance degradation over

time.

LEMT algorithm [7] is developed based on the assumption that tags at static loca-

tions have functional relationship that does not change over time. The algorithm con-

sists of two phases: offline training phase and online testing phase. The functional

relationship between the reference tags and the tracking tag is learned during offline

training phase. Later on, the functional relationship is used to estimate the signal

strength of the tracking tag during online testing phase.

Consider a 2-dimensional coordinate of physical location li = (xi, yi) for 1 ≤ i ≤
n, where n is the number of possible physical locations. For each location i, the signal

strength of m reference tags and a tracking tag are measured by p readers. During

training phase, the objective is to find the functional relationship which is defined as

s(i)j = fij
(
r(i)1j , r

(i)
2j ,… , r(i)mj

)
(1)

where r(i)kj is the signal strength of reference tag k measured by reader j at location

i, fij (.) is the functional relationship of reader j at location i, and s(i)j is the signal

strength of tracking tag measured by reader j at location i.
As mentioned previously, LEMT assumes that fij(.) does not change over time

and therefore the functional relationship that is learned from training data can be

applied on testing data. The functional relationship fij(.) is learned using M5 model

tree algorithm [11] which constructs a decision tree that contains piecewise linear

functions. The tree is built by recursively splitting the training data into subsets with
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the objective that the subsets maximize the expected reduction in error. A detailed

explanation on how an M5 model tree is formed can be found in [7, 11].

During online testing phase, the signal strength of the tracking tag is estimated

based on the signal strength of reference tags and the functional relationship that has

been learned during the training phase:

𝜎

(i)
j = fij

(
r(i)1j , r

(i)
2j ,… , r(i)mj

)
(2)

The most likely location of the tracking tag, L, is the location li that minimizes

the Euclidean distance Di between the estimated signal strength 𝜎

(i)
j and the tracking

tag signal strength s(i)j for all readers, as defined by:

Di =

√
√
√
√

p∑

j=1

(
𝜎

(i)
j − s(i)j

)2
(3)

L = argmin
li
Di (4)

As presented in [7], the time complexity of LEMT algorithm is O(m′np), where

m′
is the average depth of the model trees. The number of independent model trees

that must be built and stored is O(np). This complexity analysis shows that the time

and space requirements linearly increase when we use more readers, more reference

tags, and more locations to distinguish.

2.2 Extreme Learning Machine

ELM is a single hidden-layer feedforward network which has its hidden layer neu-

rons randomized instead of optimized [12]. Because the output layer is the only layer

optimized during training phase, ELM has a very fast training time as compared to

conventional neural network algorithms which use backpropagation training. Vari-

ous regression and classification problems can be solved by ELM with reasonable

accuracy and much faster training time [10].

Similar with other neural network approaches, each neuron in ELM performs a

nonlinear function such as sigmoid, Gaussian, hard-limit, or various types of kernel

methods. Therefore, ELM can be used to approximate nonlinear functions. Using the

same notations used in Sect. 2.1, our objective is to use ELM to solve the functional

relationship fij (.) during the training phase. We chose ELM which has a very fast

training time in lieu of M5 model tree used in LEMT algorithm.

To achieve this, we build a training dataset which consists of rows of input vector

and target output. As shown in Eqs. (5) and (6), we define the input vector 𝐮 as the
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signal strength of all reference tags, and the target output v as the signal strength of

the tracking tag.

𝐮 = {r(i)1j , r
(i)
2j ,… , r(i)mj} (5)

v = s(i)j (6)

During training phase, the ELM learns the relationship between the input vec-

tor and target output by randomizing the weights of hidden neurons and solving the

weights of output neurons. During testing phase, the weights of hidden neurons and

output neurons are used to estimate the signal strength of the tracking tag. The sig-

nal strength estimates obtained from ELM are then used to substitute 𝜎

(i)
j in LEMT

equation in Eq. (3).

In this work, we focus on several types of ELM, which are: (1) Original ELM

(2) Equality Constrained-optimization-based ELM (EC-ELM) (3) Semi-Supervised

ELM (SS-ELM) and (4) Equality Constrained-optimization-based Semi-Supervised

ELM (ECSS-ELM). The main difference of those algorithms is on how the weights

of output neurons are solved.

The original ELM algorithm [12] solves the weights of output neurons 𝜷 as:

𝜷 = 𝐇+𝐓 (7)

where 𝐇 is a weight matrix of output neurons, + is Moore-Penrose pseudoinverse

operator and 𝐓 is the training data output.

In EC-ELM [10], the pseudoinverse in Eq. (7) is replaced by matrix regularization

and matrix inverse as follow:

𝜷 =
( 𝐈
C

+𝐇T𝐇
)−1

𝐇T𝐓 (8)

In SS-ELM [9], additional unlabeled training samples are used as a constraint

for the target regression. Unlabeled training samples are training data that are con-

structed by training input only, whereas labeled training samples are training data

that are constructed by training input and training output. Unlabeled data are easier

to collect than labeled data because they do not contain training output which is usu-

ally obtained from manual labeling process. SS-ELM adds smoothness constraint

and calculates the weights of output neurons as:

𝜷 =
((
𝐉 + 𝜆

̃𝐋T)𝐇
)+ 𝐉𝐓 (9)

where 𝐉 is a diagonal matrix which has its diagonal elements set to 1 for labeled

training data and 0 for unlabeled training data, ̃𝐋 is a Laplacian matrix that is aimed

to include smoothness constraint and 𝜆 is a constraint weight that controls how much

the smoothness factor affects the weights of output neurons.
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The Laplacian matrix is defined as:

̃𝐋 = ̃𝐃 − ̃𝐖 (10)

̃Wij = exp
⎛
⎜
⎜
⎜
⎝

− |
|
|
𝐗i − 𝐗j

|
|
|

2

2𝛿2

⎞
⎟
⎟
⎟
⎠

(11)

̃Dii =
m∑

j=1

̃Wij (12)

where 𝐗t is the training input data at time t, and 𝛿 is the standard deviation of

Gaussian process. For the rest of the paper we assume that 𝛿 is calculated as the

standard deviation of
|
|
|
𝐗i − 𝐗j

|
|
|

2
.

In addition to the ELM algorithms presented above, we propose ECSS-ELM

which merges the equality constrained-optimization concept in Eq. (8) and semi

supervised concept in Eq. (9). It calculates the weights of output neurons as:

𝜷 =
( 𝐈
C

+𝐐T𝐐
)T

𝐐−1𝐓 (13)

𝐐 =
(
𝐉 + 𝜆

̃𝐋T)𝐇 (14)

3 Experimental Testing

3.1 Test Scenario

To analyze the temporal variation phenomenon, we conducted signal strength mea-

surement for 50 min using a 2.4-GHz active RFID system. The system consists of

2 readers, 8 reference tags and 1 tracking tag in an indoor environment shown in

Fig. 1. The tags broadcast a ping signal every 3 s and the readers measure the signal

strength of every incoming ping signals.

We placed 4 reference tags in Room A and the other 4 tags in Room B. All refer-

ence tags were placed on the floor at fixed positions throughout the experiment. The

tracking tag was placed in Room A for the first 24 min and then moved to Room B

during a 1-min break. The tracking tag was then left in Room B for the following

24 min, followed by a 1-min break.
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Fig. 1 Test site layout

Because ping signals may not always be received well by readers due to unex-

pected anomalies such as signal collision, we deal with missing data by taking the

average of the signal strength received during 15 s. In total we get a dataset that

contains 48 min × 4 samples/min = 192 data samples.

Temporal variation was deliberately introduced by changing the state of a door

that separates Room A and Room B every 3 min. The door was either fully closed or

fully opened.

Training data is built by taking the first 12-min data of all tags measured by each

reader at each location. The last 12-min data are used as testing data. We took con-

secutive Tr samples of training data as labeled data, where Tr represents the training

data length that varies from 3, 6, 9 and 12 min. The remaining training data are unla-

beled and used for SS-ELM and ECSS-ELM.

Simulation was repeated for 50 times to cover random statistical error. For each

trial, we used fixed time-width sliding window for selecting training data.

We ran Matlab simulation by using the source codes of the original ELM and M5

model tree taken from [13] and [14] respectively. ELM parameter configurations

used for the experiment are as shown in Table 1.

Table 1 Parameter configurations for the ELM algorithms

(1) Original ELM (2) EC-ELM (3) SS-ELM (4) ECSS-ELM

Regression mode

Sigmoid activation

100 hidden nodes

Regression mode

Sigmoid activation

100 hidden nodes

C = 224

Regression mode

Sigmoid activation

100 hidden nodes

𝜆 = 6

Regression mode

Sigmoid activation

100 hidden nodes

𝜆 = 6 C = 224
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3.2 Data

The signal strength of four reference tags placed in Room A, four reference tags

placed in Room B, and the tracking tag are as shown in Fig. 2a, b. Clearly, the signal

strength fluctuate even when tags are not physically moved.

Fluctuations are more significant for pairs of reference tag and reader that are

blocked by the door. In Fig. 2a, Reader A which was placed in Room A observes

more fluctuations on the signal strength of the reference tags in Room B, whereas in

Fig. 2b Reader B observes more fluctuations on the signal strength of the reference

tags in Room A.

Tags that are located in the same room tend to have closer signal strength values

as compared with tags that are located in separated rooms. In the first 24-min data

of Fig. 2a, which correspond to the data measured by Reader A when the tracking

tag was in room A, the signal strength data of the tracking tag range from −30 to

Fig. 2 Signal strength of

reference tags and tracking

tag. a Signal strength

measured by Reader A.

b Signal strength measured

by Reader B
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−27 dBm for most of the time. It is closer to the signal strength data of the reference

tags in Room A which range from −40 to −32 dBm, rather than the signal strength

data of the reference tags in Room B which range from −60 to −48 dBm. Similarly,

as shown in the last 24-min data of Fig. 2a, b, the signal strength data of the tracking

tag when the tracking tag was in Room B are closer to the signal strength data of

reference tags in Room B.

However, an anomaly can be observed in the first 24-min data of Fig. 2b which

correspond to the signal strength measured by Reader B when the tracking tag is

in Room A. Here the signal strength data of the tracking tag range from −48 to

−40 dBm, which are in between the signal strength of the reference tags located

in Room A and Room B. Therefore, reference tags that are physically closer to a

tracking tag are not always the ones that have closer signal strength fingerprints.

This anomaly would cause difficulties for the LANDMARC algorithm to decide

the k-nearest reference tags because the k reference tags that have closer fingerprints

for Reader A would differ from those for Reader B. Reader B would not have k-

nearest fingerprints from one room only, whereas reader A could easily pick the k-

nearest fingerprint from Room A. It is highly possible that this anomaly is caused by

the indoor propagation behavior which can be unpredictable due to the complexity

of indoor environment. Selecting wrong k-nearest reference tags would deteriorate

the performance of LANDMARC [6].

In contrast, LEMT may not be affected by the anomaly because it does not perform

reference tags selection as LANDMARC. Furthermore, the patterns on the signal

strength values when the door is opened or closed seem to be repeating over time.

If the patterns are repeating, the functional relationship could be learned, either by

using model tree originally used in LEMT algorithm or by using ELM algorithm we

propose.

3.3 Performance Evaluation

For speed comparison, we recorded the training time and testing time of M5 model

tree and ELM for each trial. Because LEMT algorithm requires independent func-

tional relationship modeling for each location and each reader, we accumulated the

time required to obtain the functional relationship of all locations and all readers so

that we could compare the overall performance.

We calculated the Root Mean Square Error (RMSE) to measure the error between

the estimated signal strength and the actual signal strength of the tracking tag in

Eqs. (1) and (2) for each reader at each location using the following equation:

RMSE(i)
j =

√
√
√
√ 1

Ts

Ts∑

t=1

(
𝜎

(i)
j − s(i)j

)2
(15)
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We also measured the localization accuracy, which is defined as the correctness

percentage in pinpointing the most likely location of the tracking tag, whether it is

in Room A or Room B in our test case.

The training time, testing time, RMSE, and localization accuracy of the repeated

experiments for all readers at all locations are then aggregated and presented as sta-

tistical mean and standard deviation.

As shown in Tables 2 and 3, the training time and testing time of ELM algorithms

are much shorter than M5 model tree. Moreover, the training time and testing time

of ELM algorithms are relatively constant regardless of the length of training data.

As for M5 model tree, the training time and testing time increase significantly when

more training data are used. The training time of M5 model tree ranges from 71.2 to

443.2 ms, whereas the testing time of M5 model tree ranges from 36.2 to 62.2 ms.

Furthermore, ELM algorithms are much faster than M5 model tree in terms of

training time and testing time. For 12-min training data, the training time of ELM

is between 14 and 35 times faster than M5 model tree, whereas its testing time is

between 10 and 14 times faster.

Although the training time and testing time required by M5 model tree is under

1 s, which is still reasonable, we should note that the scale of our experiment is still

very small. In real deployment, the training time and testing time can be significant

when hundreds or thousands of devices are involved. Speed improvement is impor-

tant when we want to achieve a large-scale real-time localization system.

Table 2 Comparison of training time (mean ± standard deviation)

Algorithms Training data length (min)

3 6 9 12

Training time (ms)

M5 model tree 71.2 ± 65.2 186.1 ± 19.4 322.7 ± 27.9 443.2 ± 20.1

Original ELM 8.7 ± 6.9 12.1 ± 6.0 20.6 ± 7.6 27.2 ± 10.2

EC-ELM 19.2 ± 78.7 11.6 ± 6.8 11.9 ± 3.2 12.4 ± 3.3

SS-ELM 30.3 ± 4.5 30.5 ± 1.7 30.7 ± 1.3 30.9 ± 1.3

ECSS-ELM 24.9 ± 21.5 22.8 ± 8.4 28.1 ± 20.3 22.0 ± 5.2

Table 3 Comparison of testing time (mean ± standard deviation)

Algorithms Training data length (min)

3 6 9 12

Testing time (ms)

M5 model tree 36.2 ± 9.7 49.0 ± 7.9 57.4 ± 7.7 62.2 ± 2.3

Original ELM 7.8 ± 6.1 6.0 ± 2.3 6.3 ± 4.1 6.3 ± 2.0

EC-ELM 4.9 ± 1.3 6.7 ± 4.8 6.4 ± 2.9 6.1 ± 3.3

SS-ELM 4.7 ± 1.9 4.3 ± 0.5 4.4 ± 0.7 4.3 ± 0.5

ECSS-ELM 5.8 ± 3.6 5.9 ± 4.1 6.5 ± 6.1 5.3 ± 2.5
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Table 4 Comparison of root mean square error (mean ± standard deviation)

Algorithms Training data length (min)

3 6 9 12

RMSE (dB)

M5 model tree 2.20 ± 0.81 1.76 ± 0.76 1.48 ± 0.12 1.48 ± 0.00

Original ELM 49.52 ± 89.29 52.29 ± 155.93 26.20 ± 23.03 46.87 ± 18.20

EC-ELM 4.53 ± 2.16 2.94 ± 3.98 1.64 ± 0.20 1.54 ± 0.10

SS-ELM 6.61 ± 3.87 8.35 ± 4.41 11.10 ± 4.72 16.42 ± 3.93

ECSS-ELM 2.16 ± 0.46 1.70 ± 0.28 1.53 ± 0.18 1.47 ± 0.08

Table 5 Comparison of location estimation accuracy (mean ± standard deviation)

Algorithms Training data length (min)

3 6 9 12

Localization accuracy (%)

M5 model tree 99.93 ± 0.26 99.96 ± 0.22 100.00 ± 0.00 100.00 ± 0.00

Original ELM 85.89 ± 19.19 89.54 ± 13.74 85.65 ± 8.76 78.63 ± 4.50

EC-ELM 99.11 ± 3.19 99.54 ± 2.93 100.00 ± 0.00 100.00 ± 0.00

SS-ELM 97.98 ± 4.67 95.46 ± 6.92 90.96 ± 8.60 82.83 ± 5.64

ECSS-ELM 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Table 4 shows that the best RMSE is achieved by M5 model tree and ECSS-ELM.

As for the remaining ELM algorithms, their RMSE are significantly higher.

In Table 5, it is clear that ECSS-ELM obtains the best localization accuracy.

Except for the original ELM, the localization accuracy of the remaining algorithms is

not too far from 100 % in most cases. This could have happened due to the simplicity

of our experimental setup. In an environment with more complex temporal variation

with higher number of locations to decide, accuracy degradation is expected.

4 Conclusions and Future Work

In this paper, we have presented several ELM algorithms to learn indoor radio map.

As compared to M5 model tree, which is the original method proposed in LEMT

algorithm, the training and testing speed of ELM can be much faster. The speed

improvement would be useful if the localization system needs to fulfill a strict time

constraint and be deployed in a larger scale. Among the four ELM algorithms tested,

ECSS-ELM achieves the best accuracy in terms of RMSE and localization accuracy

with a reasonable training time and testing time.
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As temporal variation introduced in this work may only represent a simple type

of signal fluctuation, the first research direction we want to pursue is to conduct the

temporal variation observation in a more realistic indoor environment where more

complex human activities are present on the test site. Second, we will increase the

number of readers and reference tags to observe the performance of our proposed

method when applied on a large-scale system. Third, we will also consider various

methods to deal with missing data such as presented in [15] because some signal

strength data might be missing in a large-scale indoor environment due to the limited

range of wireless transceivers. Finally, we will explore other regression and predic-

tion methods such as methods presented in [16, 17] in order to find an indoor radio

map updating method that has reasonable training time and achieves higher accuracy

than what we have obtained in this work.
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Extreme Learning Machine with Gaussian
Kernel Based Relevance Feedback
Scheme for Image Retrieval

Lijuan Duan, Shuai Dong, Song Cui and Wei Ma

Abstract As for the huge gap between the low-level image features and high-level
semantics, content-based image retrieval still could not receive a satisfying result by
now. Since the special request of the relevance feedback, making full use of the rare
number of labeled data and numerous unlabeled data is an ideal way. Because ELM
has excellent classification accuracy and processing time, and high accuracy and
fast speed are the key factors to evaluate the relevance feedback performances. In
this paper, we proposed an Extreme learning Machine with Gaussian kernel Based
Relevance Feedback scheme for image retrieval, to overcome the above limitations,
our method uses three component classifiers to form a strong learner by learning
different features extracted from the hand-marking data, then we use it to label the
image database automatically. From the experiments we can see the use of the ELM
with kernel have high classification accuracy, the processing time get largely
decreased at the same time. Thus, it improves the efficiency of entire relevance
feedback system. The experiments results show that the proposed algorithm is
significantly effective.
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1 Introduction

In recent years, with the explosive increase in volume of digital images,
content-based image retrieval technique is getting popular, lots of systems had been
developed in the decades, including QBIC, Photobook, MARS, PicHunter and
others [1, 2]. In a CBIR system, the system fails to be so perceptive to the user’s
intention that cannot return the satisfactory results, which mostly owning to the
huge gap between the high-level semantic concepts and the low-level image fea-
tures. In that way, relevance feedback methods were proposed [3]. And this tech-
nique had widely applied in vary content-based image retrieval systems [4, 5].

In this paper, we proposed an Extreme learning Machine (with Gaussian kernel)
based relevance feedback approach. Firstly, we extract the features of labeled data
and use them to train the component ELM classifiers. Secondly, we predict the
whole database based on the tri-training method and vote for the result. Thirdly, the
new labeled data are used to retrain the component classifiers and get the final
learner group.

Cox et al. [6] proposed an interactive relevance feedback scheme based on
Bayesian model by optimizing the features’ probability distribution. Rui et al. [3]
proposed an optimizing scheme for the relevance feedback performance by ana-
lyzing the features of positive samples. Zhou et al. [7] combined the
semi-supervised method with active learning method by labeling the uncertain
samples, which could have the unlabeled-data used.

The rest of this paper is organized as follows. Section 2 describe the method we
proposed. Section 2.1 contains the description of our ELM with kernel based
relevance feedback system. Section 3 describes the experiments and the perfor-
mance of our scheme. Section 4 concludes this paper.

2 Method

2.1 Extreme Learning Machine with Gaussian Kernel

Extreme learning machine (ELM) was first proposed by Huang et al. [8]. ELM
works for generalized single-hidden layer feed forward networks (SLFNs) [9, 10].
ELM algorithm tends to provide better generalization performance at extremely fast
learning speed. Structure of the SLFNs [10] is shown as Fig. 1.

With L hidden nodes in output layer, the output function of SLFNs can be
expressed by:

fLðxÞ= ∑
L

i=1
βigiðxÞ= ∑

L

i=1
iβiGðai, bi, xÞ. ð1Þ

The function also can be written as fðxÞ= hðxÞβ where β= ½β1, β2, . . . ,βL� is
the vector of the output weights between the hidden layer of L neurons and the
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output neuron and hðxÞ= ½h1ðxÞ, h2ðxÞ, . . . , hLðxÞ� is the output vector of the
hidden layer with respect to the input x, which maps the data from input space to
the ELM feature space [11].

In particular, L equals to N, which is rare condition because L is far smaller than
N in actual problem, that is to say, that there is error between the output value and
the actual value. So, the most important thing is to find least-squares solution β̂ of
the linear system.

Hβ = T, β̂ = H†T. ð2Þ

where H† is the Moore-Penrose Generalized inverse of matrix H [12, 13],

H† = ðH′HÞ− 1H′ or H′ðHH′Þ− 1, depending on the singularity of H′H or HH′.
In the newly developed kernel ELM, it’s getting more stable to introduce a

positive coefficient into the learning system. If H′H is nonsingular, the coefficient
1/λ is added to the diagonal of H′H in the calculation of the output weights β After
that, β=H′ðI λ̸+HH′Þ− 1, the corresponding function of the regularized ELM is:

f ðxÞ=hðxÞβ=hðxÞH′ 1
λ
I+HH′

� �− 1

T. ð3Þ

Huang et al. [11] shown that ELM with a kernel matrix can be defined as
follows. Let ΩELM =HH′:ΩELMi, j =hðxiÞhðxjÞ=Kðxi, xjÞ. The output function can
be written as:

f ðxÞ=hðxÞH′ 1
λ
I+HH′

� �− 1

T=
K(x, x1)

⋮
K(x, xN)

24 35′

1
λ
I+ΩELM

� �− 1

T. ð4Þ

The hidden layer feature mapping hðxÞ need not to be known, and instead its
corresponding kernel Kðu, vÞ can be computed. In this way, the Gaussian kernel is
used, Kðu, vÞ= expð− γjju− vjj2Þ [14].

Fig. 1 Single-hidden layer
feed forward networks
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2.2 Algorithm Description

Due to the special requirement of relevance feedback, short processing time and
high accuracy are the key points. Our method shown the promising effect.

Step 1: Label the data.
In the image retrieval system we proposed, let L denote the labeled data
set, U denote the unlabeled data set. While L=P∪N, where P denote the
labeled positive samples and N denote the labeled negative samples.

Step 2: Feature extraction and train the component classifiers.
Inspired by the co-training paradigm [15], the labeled data used as the data
of first train, and extract three different features to train the component
classifier to reduce the variance of unstable procedures, which leading to
improved prediction [16].

Step 3: Vote.
The whole database as known as U is put into the combined-
classifier-group. From the Fig. 2 we can see the framework of voting
procedure. Each component classifier will give its predicted label of ith
trail of U data set, and the output is set as Yin. All the trails are fed into m
number of sub-ELM. Finally, a class label set ψ can be got.

Step 4: Label the unlabeled data automatically.
Let L temp denote the whole database with labels. L temp is used to retrain
the component classifiers in order to level up the classification ability.
From the Fig. 3, the dataset U has been classified by updating the classifier
group.

Fig. 2 The framework of voting

Fig. 3 The framework of labeling the unlabeled data
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For the ith trail, Pi is the total number of the component classifiers which predict
the class of ith trail to be 0; Qi is the total number of the component classifiers
which predict the class of ith trail to be 1. The sum of Pi and Qi is 3. The vote
function can be shown as bellow:

vote(ΨÞ=
Y1
⋮
YM

24 35
M ×1

,Yi = ⌊
Qi

Pi
⌋ ð5Þ

Step 5: Update the classifiers.
As the result, let P* denote the positive dataset, N* denote the negative dataset.

In each iteration of the feedback, the whole result list is returned by the ascend order
of the similarity rank.

3 Experiments

In this section, we firstly introduce the image database our experiments performed
on. Secondly we describe the methods of the feature extraction. Then we illustrate
the structure of our relevance feedback system. Finally, we compare the perfor-
mance of our methods with other methods in the aspect of the average-AP values
and the aspect of processing time.

3.1 Image Database

We perform our experiments on the COREL photo gallery, which contains 1000
images into 10 categories, and 6000 images into 60 categories. The size of every
image in the database is 256 × 384 or 384 × 256. A ground truth of the image
database is needed to evaluate the performance of our experiment. Thus, the natural
categories of the COREL photo gallery are used as the semantic categories, and we
define that images belong to the same category are relevant, otherwise, are
irrelevant.

3.2 Feature Selection

For the image retrieval system with relevance feedback, use 3 image features are
used: SIFT, color and LBP.

Based on the former work in our laboratory, using Bag-of-Features model to
extract two image features which based on SIFT and color, respectively. The color
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information is the most informative feature because of its robustness with respect to
scaling, rotation, perspective, and occlusion.

Local Binary Pattern as known as LBP which is an effective image descriptor, it
has been used as the texture feature of the image.

3.3 Image Retrieval System

For the image relevance feedback, the image retrieval system is required to return
the images which are the most semantically relevant. Figure 4 shows our system has
three main parts. The feedback part is the key function in the system.

• Retrieval part: Extract three features which mentioned above of every image in
the image database. Computing the Euclidean distance as the similarity between
the query and each image of the database, and return the top 20 images as the
retrieval result.

• Feedback part: Let the user choose and label the negative images, extract the
image features, the images that displayed and without labeled are set positive.
Training classifier groups for the each kind of features respectively, to label
the unlabeled database automatically. Updating the classifier groups by using
the new-labeled data, as the result, the final classifier is using for classifying the
unlabeled database.

• Display part: Displaying the retrieval result for the retrieval operation,
displaying the feedback result of the each iteration for the relevance feedback
operation.

Fig. 4 The framework of image retrieval system with relevance feedback
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3.4 Experiment Results

Before the relevance feedback procedure, the top 20 images are result which dis-
played on the panel. The user interface is shown on the Fig. 5. The image that at the
top of left is the query image and the other images on the ‘result panel’ are the
retrieval result. User label the ‘negative’, the rest images are labeled ‘positive’
automatically.

From Fig. 6 has shown only 4 images of the retrieval result meet our request.
After the first iteration of relevance feedback, the result had notable improvement,
the result shown on Figs. 7, 8 and 9 show the feedback results by iteration 1, 2, 3,
respectively. The ‘right’ images are getting more, semantically, the result is more
and more meets our request. It took us only 3 iterations to have all the results right.

We use the Average Precision (AP) measure. The retrieval result has been
optimized by performing our relevance feedback scheme. At the each iteration of
relevance feedback, The AP value can be obtained, which is defined as the average
of precision value obtained after each relevant image is retrieved. Let P̄ denotes the
average precision which is obtained at the current iteration, and it is computed by:

P̄= ∑
Ei ∈R

Pi

Sj j ð6Þ

where Pi denotes the precision value obtained after the system retrieves i top-ranked
images, Ei is the element of the relevant images set, S is the set of all relevant
images that belong to the same category as the query, and Sj j denotes the cardinality
of S. The AP calculated over all the relevant images can avoid the fluctuation of
precision that is usually encountered by the traditional precision measurement.

Fig. 5 The user interface and the retrieval result
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We report the feasibility and utility of our algorithm, and compare it with five
feedback methods. Figures 9 and 10 show the average-AP value of different
method.

According to the uncertainty of the ELM which brought by the random
parameters, 3 ELM are used classifiers to get a stable component-classifier,
respectively. Thus, 9 elm classifiers are used to compose the component-classifiers.
Because of the randomness of the ELM, the experiments performed 20 times to get
the stable data. From the figures we can see that the result of 9-elm-classifiers

Fig. 6 The result of first relevance feedback iteration

Fig. 7 The result of second relevance feedback iteration
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method is very close to the result of 3-elm-classifiers method, so 3-elm-classifiers
method is better in order to reduce the unnecessary processing time. The
average-AP values of the kernel ELM method are superior for the 4 iterations. And
the final iteration our method perform the most perfect result than the other
methods.

Figures 11 and 12 show the processing time of various methods getting short as
the number of feedback iterations increases. And they show our methods based on
ELM with Gaussian kernel have enormous advantage in each iteration whatever on
10 categories or 60 categories which is the most important factor to the relevance
feedback. Eventually, from the result of accuracy and time, the effectiveness of the
ELM with Gaussian kernel based relevance feedback scheme is utilized.

Fig. 8 The result of third relevance feedback iteration

Fig. 9 The average-AP
values of different method
performed on 10 categories
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Fig. 10 The average-AP
values of different method
performed on 60 categories

Fig. 11 The processing times
of various methods performed
on 10 categories

Fig. 12 The processing times
of various methods performed
on 60 categories
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4 Conclusions

Recently, Extreme Learning Machine has been widely applied in relevance feed-
back. It’s an important and efficient way to improve the performance of image
retrieval. Most of the advantages of ELM are suitable for the relevance feedback,
such as: short processing time, high accuracy of classification, and good generalize
ability, etc. However, the conventional feedback relevance schemes could not give
considerations to the both accuracy and speed. To combine ELM with the
semi-supervised method, we can overcome the limitation of the conventional
problems. The experiments performed on the Corel-Photo gallery shows that our
new method can have an excellent performance.
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Routing Tree Maintenance Based
on Trajectory Prediction in Mobile
Sensor Networks

Junchang Xin, Teng Li, Pei Wang and Zhiqiong Wang

Abstract With the wireless sensor networks (WSNs) becoming extremely widely

used, mobile sensor networks (MSNs) have recently attracted more and more

researchers’ attention. Existing routing tree maintenance methods used for query

processing are based on static WSNs, most of that are not directly applicable to

MSNs due to the unique characteristic of mobility. In particular, sensor nodes are

always moving in real world, which seriously affects the stability of the routing tree.

Therefore, in this paper, we propose a novel method, named routing tree maintenance

based on trajectory prediction in mobile sensor networks (RTTP), to guarantee a long

term stability of routing tree. At first, we establish a trajectory prediction model based

on extreme learning machine (ELM). And then, we predict sensor node’s trajectory

through the proposed ELM based trajectory prediction model. Next, according to

the predicted trajectory, an appropriate parent nodes are chose for each non-effective

node to prolong the connection time as much as possible, and reduce the instabil-

ity of the routing tree as a result. Finally, extensive experimental results show that

RTTP can effectively improve the stability of routing tree and greatly reduce energy

consumption of mobile sensor nodes.

Keywords Mobile sensor networks ⋅ Extreme learning machine ⋅ Routing tree ⋅
Trajectory prediction
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1 Introduction

In recent years, WSNs have been broadly used in various fields, such as national

defense, national economy and environment monitoring, with many existing main-

tenance algorithms applied to make the routing tree work regularly. As a more com-

plex situation in WSNs, MSNs have attracted more and more researchers’ attention.

Routing tree of the MSNs, as the basis of sensing data queries, plays an important

role in all kinds of sensing applications. However, existing algorithm for routing tree

are not applicable to MSNs directly because they cannot keep routing tree struc-

ture stable if plenty of sensor nodes are outing from routing tree when sensor nodes

move frequently. Therefore, we need to study routing tree maintenance methods to

improve stability of the routing tree.

In the MSNs, the geographical location of all sensor nodes will be changed by

anytime and anywhere due to the uncertain surrounding environment. Sometimes,

one node may move towards the direction far from its parent nodes relatively. If the

distance between the node and its parent node exceeds the communication radius,

it cannot transmit its sensoring data to the base station. As a result, the routing tree

structure that nodes have been established in MSNs will be destroyed. And if the

node is out of the routing tree frequently, it will waste a lot of precious energy to

reconstruct the local routing tree. Therefore, the longer connection time between the

node and it parent node is, the more stable the routing tree structure is, and the more

energy is saved.

While a sensor node cannot keep connection with its parent node due to mobility,

the key is to select a available node as its new parent node. In this paper, trajectory

prediction by extreme learning machine (ELM) is researched firstly. According to

the trajectory predicted, the connection time between two sensor nodes in a period

time in the future can be calculated. Then, the problem that the new parent node’s

choice is studied. When a sensor node dropped from the routing tree, the sensor node

that has the longest connection time with it can be set as its new parent node. The

contributions of this paper can be summarized as follows.

1. A trajectory prediction model is built based on ELM, which can be used to predict

a sensor node’s trajectory.

2. Basing on the trajectory predicted, a novel method called routing tree mainte-

nance based on trajectory prediction in mobile sensor networks is proposed to

improve the stability of routing tree in MSNs.

3. Last but not least, our extensive experimental studies using synthetic data show

that the proposed approach can largely improve the stability of the whole routing

tree in MSNs.

The remainder of the paper is organized as follows. Section 2 briefly introduces

the related works that researched by other academicians. The problem statement is

introduced in Sect. 3. Routing tree maintenance based on trajectory prediction in
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mobile sensor networks is described in Sect. 4. The experimental results are reported

in Sect. 5 to show the effectiveness of our approach. Finally, we conclude this paper

in Sect. 6.

2 Related Works

Routing tree, as the basis of sensing data queries, plays an important role in all kinds

of WSNs applications. Madden et al. [1] propose TAG, a typical in network aggre-

gation approach for routing tree in WSNs. Manjhi et al. [2] propose the combination

of two routing methods, tributary and delta structure, which fully plays the advan-

tages of the two routing structures. In addition to that, Sharaf et al. [3] combine the

construction of the routing tree with the Group by clause in the query to improve the

computational efficiency in the net of aggregation query. Branislav et al. [4] present

a method that using a sensor node closer to mobile sink as the relay node. Its rout-

ing algorithm updates information potentials for both the current and predicted relay

node. Chang et al. [5] have proposed a routing algorithm where all the nodes are

mobile. A node on arriving at a new location sends an anchor information request

to neighbor nodes. Nguyen et al. [6] dive all nodes into clusters according to the

predicted distance between cluster head and node, which allows node to choose a

cluster to join with the lowest cost.

Trajectory prediction of moving objects is gradually becoming an active research

area. In literature [7], a dynamic adaptive probabilistic suffix tree (PST) prediction

method was put forward, which can achieve a better prediction results. Qiao et al.

[8] introduced an uncertain trajectory prediction algorithm based on trajectory con-

tinuous time Bayesian networks (CTBN). In [9], the definition of path probability

and an uncertain path prefix tree are used to generate the uncertain trajectory. Zhang

et al. [10] proposed a bus-based ad hoc routing mechanism Vela. Feng et al. [11]

studied non-confilict data aggregation scheduling problem in MSN. Then an algo-

rithm based on dynamic programming is proposed. In [12], a hidden Markov model

(HMM)-based trajectory prediction algorithm is proposed, called hidden Markov

model-based trajectory prediction (HMTP). As traditional neural networks have been

widely studied and used in system modeling and perdition, ELM plays an important

role for developing efficient and accurate model for these applications [13].

3 Problem Statement

3.1 Routing Tree in MSNs

In MSNs, the geographical location of all sensor nodes will be changed by any-

time and anywhere due to the surrounding environment. As a result, the routing tree
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structure that nodes have been established will be changed, which will lead to the

delayed reception or lost of uncertain sensored data collected by sensor nodes.

Definition 1 (Effective node and non-effective node). In MSNs, a sensor node S on

the routing tree is an effective node if it can transmit its sensored data to the base

station within a finite number of hops, if not, sensor node S is called non-effective

node.

Definition 2 (Neighbor node). In MSNs, all sensor nodes who can communicate

with S are the neighbor nodes of S.

Definition 3 (Ancestor node and descendant node). In MSNs, if sensor node S is

an effective node, then all the sensor nodes on the way from S to base station are

ancestor nodes of S, and S is the descendant node of them.

Suppose that Fig. 1 is the initial state of the mobile sensor network (t = 0) and

Fig. 2 is the structure of the routing tree in 4 consecutive time. In Fig. 2, red lines

indicate the nodes who have moved but can still keep communication with their

neighbor nodes. Similarly, red dash lines indicate the nodes who are not connected

with their neighbor nodes after moving.

Figure 2a is the structure of routing tree at time t = t1. After moving, sensor nodes

S2, S6 and S16 can still keep communication with their parent nodes. So we can say,

S2, S6 and S16 are still effective nodes. But the location volatility of nodes S7 and

S15 is relatively large. Node S15 and node S7 are no longer connected with their own

parent nodes. And node S7 is no longer connected with its child node S12. Therefore,

sensor nodes like S15, S7 and S12 are non-effective nodes. At the moment t = t2,
t = t3 as well as t = t4, the structure of the routing tree is shown in Fig. 2b–d. The

transformation of sensor nodes like node S2 between effective node and non-effective

frequently leads to instability of the whole MSN. As a result, it will seriously affect

the quality of the transmission of the sensored data between the sensor nodes.

In a word, the most important problem we faced in MSNs is to construct a stable

routing tree, and to guarantee the quality of the sensored data transmission among

nodes. Most of related academic achievements build routing tree only based on loca-

tion model which take the nearest sensor node as the new parent node. As we known,

Fig. 1 The initial state of

routing tree in mobile WSN
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Fig. 2 Example for mobile WSN

location-based model can only guarantee that two sensor nodes keep connection at

current moment, which would consume too much energy to check and reconstruct

the routing tree. Therefore, this method is defective.

3.2 Location-Based Routing Tree Maintenance in MSNs

Location-based routing tree maintenance in MSNs (LRTM) is a naive method widely

used to maintain a routing tree, which will be introduced in this section.

The process of LRTM on sensor node is shown in Algorithm 1 in detail. Sensor

node S is a non-effective node that needs a new parent node. Then, S will broadcast

messages to all of its neighbor nodes (Lines 1–2). After the neighbor nodes of S
receiving the message from S, they will send their locations to S that will choose the

nearest one to be its new parent node (Lines 7–11). Finally, return the new parent of

S (Line 12).

In the steps of S’s new parent node choice, a variable min_dist representing the

minimal distance is set at first (Line 6). Then, for each sensor node in set LS, the

distance between it and S is calculated (Line 7); If the distance is less than min_dist,
the new minimal distance should be reset and the parent node of S should be chosen

(Lines 9–11).
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Algorithm 1 LRTM on sensor nodes

1: If sensor node S is a non-effective then
2: Sensor node S broadcast messages to its all neighbor nodes;

3: LS = {};

4: While S receives a reply from its neighbor node N do
5: LS.add(N);
6: min_dist = Inf .;
7: For each sensor node N in LS do
8: dist = Distance(S,N);
9: If dist < min_dist then
10: min_dist = dist;
11: S.parent = N;

12: Return S.parent;

As we know, though the naive method LRTM can choose a new parent for non-

effective nodes, it cannot maintain the stability of the routing tree, which leads to

more energy consumption. If we choose the one that has a longer time to keep con-

nection with non-effective node, energy consumption of routing tree maintenance

will be reduce greatly.

4 Routing Tree Maintenance Based on Trajectory
Prediction in MSNs

In this section, we firstly introduce the trajectory prediction model based on ELM,

in detail. Then, the routing tree maintenance based on trajectory predicted in MSNs

is illustrated.

4.1 Trajectory Prediction Model Based on ELM

ELM [14, 15] has been originally developed for single hidden-layer feedforward

neural networks (SLFNs) and then extended to the “generalized” SLFNs where the

hidden layer need not be neuron alike [16, 17]. ELM first randomly assigns the

input weights and the hidden layer biases, and then analytically determines the out-

put weights of SLFNs. Besides, ELM is less sensitive to user-specified parameters

and can be deployed faster and more conveniently [18, 19]. And ELM prediction is

proved accurate and efficient. As a result, a trajectory prediction model based ELM

is first built.

Definition 4 (Historical trajectory and future trajectory). In MSNs, given a sensor

node S’s trajectory L = {la,… , lb}. For ∀i ∈ [a, b], Lf = {la,… , li} is the future tra-

jectory of Lh = {li+1,… , lb}, and Lh is the historical trajectory of Lf . The length of

Lf is i − a + 1 and the length of Lh is b − i.
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The specific process of trajectory prediction model based on ELM is shown in

Algorithm 2. At first, the trajectory of sensor node S is collected by S and stored

(Line 1). Then, it cuts the trajectory into two segmentations including historical tra-

jectory and future trajectory. The historical trajectory can be used as the input feature

vectors 𝐅 of the model. The future trajectory can be used as the actual regression

results 𝐓 of the model (Lines 2–3). When the number of hidden layer node ranges

from 1 to L, the input weights 𝐰i and biases bi of hidden neurons are generated

randomly (Lines 4–5). Next, the output matrix 𝐇 is obtained by 𝐰i, bi and the fea-

ture vector 𝐅 of the sensor node’s historical trajectory (Line 6). And then, get the

parameter 𝛽 according to 𝐇†
and 𝐓 (Line 7). Finally, return parameters 𝐰, b and 𝛽

(Line 8).

Algorithm 2 Trajectory Prediction Model based on ELM

1: Get the trajectory L of sensor node S;

2: 𝐅 = getPositionFeatureVectors(L);
3: 𝐓 = getActualRegressionResults(L);
4: For i = 1 to L do
5: Randomly generate input weights 𝐰i and biases bi of hidden neurons;

6: Calculate the output matrix 𝐇 of hidden layer nodes by 𝐅;

7: Calculate 𝛽 = 𝐇†𝐓;

8: Return < 𝐰, b, 𝛽 >;

4.2 Routing Tree Maintenance Based on Trajectory
Prediction in MSNs

By Sect. 3.2, we know that LRTM can find a new parent node for the non-effective

sensor nodes, which can guarantee the connectivity of the whole routing tree. But

it is the truth that LRTM can only keep the whole routing tree’s connectivity at a

moment. In the case that sensor nodes in MSNs move more frequently, LRTM needs

to reset parent node for the sensor node which is out of the routing tree. As a result,

the more burden of sensor nodes, the more frequent construction of routing tree, the

more consumption that unnecessary, all of them will harm the long-term using of

MSNs.

Definition 5 (Isolated loop). In MSNs, if a sensor node S can transmit it sensed data

to itself within a finite number of hops, then we can say there exists a isolated loop

in routing tree, represented by RC =< S, S >. The length of R satisfies that LRC ≥ 2.

Theorem 1 Given two sensor nodes S1 and S2 in a WSN, if S1, S2 satisfies that S1
is the ancestor node of S2 and S2 is also the ancestor node of S1. Then it can be
proved that there exists an isolated loop in the routing tree, which is RC =< S, S >

(S = S1, S2).
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Proof It can be proved that sensor node S1 can transmit its sensed data to S2 because

S1 is the ancestor node of S2. Similarly, S2 can transmit its sensed data to S1. Then,

the sensed data collected by S1 will transmit from S1 to S1. That is to say ∃RC =
< S1, S1 >.

When choose a new parent node for the non-effective node S, there will be isolated

loops generate if mistakenly set the descendants of S as its parent node, which will

cause serious consequences. According to Throrem 1, it is necessary to classify the

candidate parent nodes into three sets including set Ch, set Clnd and set Cd. Ch stores

sensor nodes whose level is no less than S’s level. The set Clnd stores sensor nodes

whose level is less than S’s level but they are not the descendants of S. All the sensor

nodes in candidate parent nodes belonging to descendants of S are stored in set Cd.

S will select new parent node from Ch at first; if failed, then S will find a sensor node

in Clnd; if still can not find its appropriate new parent, S will find a sensor node in

Cd. When S find its new parent node in set Cd, disconnect all its child nodes in Cd
from S and reset its child nodes’ parent node except S. As a result, S can find a new

parent in Cd.

Algorithm 3 RTTP on sensor nodes

1: If sensor node S is a non-effective then
2: Sensor node S broadcast messages to its all neighbor nodes;

3: Ch = {};

4: Clnd = {};

5: Cd = {};

6: While S receives a reply from its neighbor node N do
7: If N.level ≥ S.level then
8: Ch.add(N);
9: Else if S! = N.ancestor then
10: Clnd .add(N);
11: Else
12: Cd .add(N);
13: If Ch is not NULL then
14: S.parent = getParentNode(Sethigher);
15: Else if Clnd is not NULL then
16: S.parent = getParentNode(Setnon − d);
17: Else
18: For each sensor node M in Cd do
19: If M.parent = S then
20: M.parent = RTTP(noS);
21: S.parent = getParentNode(Cd);
22: Return S.parent;

The process of routing tree maintenance by RTTP is shown in Algorithm 3 in

detail. First of all, a new parent node for non-effective node S should be chosen. Then,

S will broadcast messages to all of its neighbor nodes (Lines 1–2). After receiving a

reply from its neighbor nodes N, sensor node S will put N into a corresponding set

(Lines 6–12). If there are sensor nodes in Ch, S chooses its new parent node from
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Cd (Lines 13–14). If there is not any sensor node in Ch with set Clnd not empty, S
chooses its new parent node from Clnd (Lines 15–16). Otherwise, reset parent nodes

for the child nodes of S in Cd except itself (Lines 17–21). Finally, return the new

parent of S (Line 22).

Definition 6 (Expected connection time, ECT). In MSNs, given sensor nodes S1,

S2, S1’s trajectory LS1 = {la, la+1,… , lb}(a ≤ b) and S2’s trajectory LS2 = {l′a, l
′
a+1,

… , l′b}(a ≤ b), ∃i ∈ [a, b] and ∀t ∈ [a, i], S1 at location lt and S2 at location l′t can

keep connection with each other, and at time t = i + 1, S1 is disconnect with S2, then

the ECT between S1 and S2 is i.

When choose the appropriate parent node in Cd for non-effective node S, the

future trajectory of S is obtained first of all, and future trajectory of all nodes in

Cd is obtained subsequently. And, choose the node that has maximum ECT with S
as its new parent node. The specific process of the algorithm is shown in 4. Initializ-

ing the trajectory LS empty (Line 1) at first. Then, the future trajectory is predicted by

trajectory prediction model based on ELM (Line 2). After that, initializing the vari-

able max_ECT zero. Next, for each N node in CandidateSet get the future trajectory

future trajectory of N by trajectory prediction model based on ELM and calculate

the ECT between S and N (Lines 5–6). If the ECT is bigger than max_ECT , make

max_ECT equal ECT and set the parent node of S as N (Lines 7–9). Finally, return

the parent node of S.

Algorithm 4 getParentNode()

1: LS = {};

2: LS = S.getFurureTrajectory();
3: max_ECT = 0;

4: For each sensor node N in CandidateSet do
5: LN = N.getFutureTrajectory();
6: ECT = getECT(LN ,LS);
7: If ECT > max_ECT then
8: max_ECT = ECT;

9: S.parent = N;

10: Return S.parent;

5 Performance Evaluations

In this section, the experimental settings are introduced at first, then, the experimen-

tal results are illustrated in detail.

5.1 Experimental Settings

All the experiments were conducted on a compute with Inter(R) Core(TM) i7-3770

CPU 3.40 GHz and 8.00 GB RAM. The experimental data is processed basing on
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Table 1 Experimental parameters

Parameters’ name Parameters’ value

The number of hidden nodes 700

Radious 2
√
2, 3, 4, 5, 6

Time 200, 300, 400, 500, 600
The number of sensor nodes 100, 200, 300, 400, 536

the origin data. The origin data includes the information of 536 taxis in yellow in

San Francisco collected by GPS from May 2008 to June 2008. The origin data has

four attributes including dimension, longitude, whether there are passengers and time

stamp.

As the reason that the moving law of taxis are different from sensor nodes’, the

dimension, longitude and time stamp in origin data are token in experiments. The

dimension is regarded as horizontal coordinates, the longitude is regarded as longi-

tudinal coordinate. In experiments, the data are mapped into a smaller map.

The specific settings of the experimental parameters are shown in Table 1, which

includes hidden node number, communication radius and the length of time and

setting range of sensor nodes number. Among them, bold font is the default value.

In order to improve the computational efficiency of the trajectory prediction model,

ELM training function is proceed offline.

5.2 Experimental Results

The root-mean-square error (RMSE) of ELM prediction is shown in Table 2. In the

experiments, we take the average value of the RMSE of 536 sensor nodes future

trajectory prediction to evaluate the experiments. In Table 2, we compare the average

RMSE value of the predicted future trajectory whose length is 1, 5 and 10. Obviously,

the longer future trajectroy, the bigger average RMSE. But the RMSE is relatively

small while the length of future trajectory is 10, which proved that the trajectory

prediction by ELM is better than other methods.

The experiments are shown in Fig. 3. As we can see, both the curves are smooth

with the increase of time interval. The gap between results illustrate the better per-

formance of RTTP. Because while a sensor node is out of the routing tree, its new

parent node was selected the nearest one by LRTM. But the one who has the longest

connection time with it was selected by RTTP that can reduce the average number

of dropped nodes of the routing tree.

As the number of the nodes changes, the number of non-effective nodes per

minute generated by the RTTP and LRTM for the maintenance of the routing tree is

described in Fig. 4. As we can see, the bigger the total number of the sensor nodes is,

the bigger the number of invalid nodes per minute generated by the RTTP and LRTM



Routing Tree Maintenance Based on Trajectory . . . 419

Table 2 Different length of future trajectory’s RMSE

Future trajectory’s length RMSE (%) Historical trajectory’s length

1 0.035 30

5 0.080 35

10 0.125 40

Fig. 3 The average number

of non-effective versus time
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is. But it is clear that there is a significant improvement of the RTTP compared with

LRTM, which means RTTP has a better effect on the stability of the routing tree in

MSNs.

6 Conclusions

Routing tree plays a vital role in the query processing in WSNs, especially in MSNs.

How to improve the stability and minimize energy consumption becomes an essential

problem of routing tree maintenance. In this paper, a novel method called RTTP is

proposed to keep the whole routing tree of MSNs in a more stable state. Different

from the naive methods like LRTM, in RTTP non-effective nodes choose a node
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as its parent node who can keep connection with it in a longer period. As a result,

the average number of non-effective nodes needed to be processed is reduced largely,

which can decrease energy consumption. Furthermore, a large number of experiment

results prove that compared with LRTM, RTTP can maintain a more stable routing

tree with less energy consumption.
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Two-Stage Hybrid Extreme Learning
Machine for Sequential Imbalanced Data
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Abstract In many practical engineering applications, data tend to be collected in

online sequential way with imbalanced class. Many traditional machine learning

methods such as support vector machine and so on generally get biased classifier

which leads to lower classification precision for minor class than major class. To get

fast and efficient classification, a new online sequential extreme learning machine

method with two-stage hybrid strategy is proposed. In offline stage, data-based strat-

egy is employed, and the principal curve is introduced to model the distribution of

minority class data. In online stage, algorithm-based strategy is employed, and a

new leave-one-out cross-validation method using Sherman-Morrison matrix inver-

sion lemma is proposed to tackle online imbalance data, meanwhile, with add-delete

mechanism for updating network weights. The proposed method is evaluated on

the real-world Macau air pollutant forecasting dataset. The experimental results

show that, the proposed method outperforms the classical ELM, OS-ELM and meta-

cognitive OS-ELM in terms of generalization performance and numerical stability.
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1 Introduction

Data imbalance problem occurs commonly in real applications [1]. Many batch

learning algorithms suffer from this problem that has an “undo” effect to minority

class [2]. To improve the generalization of imbalance data, two kinds of strategies

are widely applied. Data-based strategy [3, 4] only focus on sampling method that

adjust the size of training data, with increasing data for minority class or decreasing

data for majority class. Algorithm-based strategy [5, 6] mainly involves introduction

of the cost-sensitive information in a classification algorithm to handle data imbal-

ance. These two strategies and their extensions have been proved effective for many

data imbalance problems [7, 8].

In this paper, we focus on one special imbalance problem where data are collected

in online sequential way with imbalanced class. We call it as online sequential data
imbalance problem. There are two main challenges to improve the generalization for

online sequential data imbalance problem. One is how to choose a proper baseline

algorithm for online sequential setting, and another is how to make the majority and

minority classes balanced while obeying the original distribution of online sequential

data. As a extension form of single-hidden layer feedforward neural network(SLFN),

extreme learning machines(ELMs), introduced by Huang [9], have shown its very

high learning speed and good generalization performance in solving many problems

of regression estimate and pattern recognition [10, 11]. As a sequential modifica-

tion of ELM, online sequential ELM(OS-ELM) proposed by Liang [12] can learn

data one-by-one or chunk-by-chunk. In many applications such as time-series fore-

casting, OS-ELMs also show good generalization at extremely fast learning speed.

Threfore, OS-ELM is a proper solution for the first challenge. To solve the second

challenge, Vong [13] introduced prior duplication strategy to generate more minority

class data, and utilized OS-ELM to train an online sequential prediction model. The

experimental results on air pollutants forecasting data from Macau also show this

method has higher generalization than many classical batch learning algorithms in

online setting. To our best knowledge, there are very few other researches concerning

this topic.

However, although OS-ELM in [13] works effectively on online sequential data,

it still not yet applies better imbalance strategy in online stage. Specifically speaking,

as the imbalance strategy in [13] is only duplicating minority class observations, it

couldn’t explore the real data distribution of minority class. On the other hand, in the

level of algorithm, the method in [13] lacks an efficient mechanism to exclude the

redundant and harmful samples including new generated virtual samples. Therefore,

to solve this problem, this paper blends the data-based strategy and algorithm-based

strategy, and proposes a new two-stage hybrid strategy. In offline stage, the principal

curve is used to explore the data distribution and further establish an initial model

on imbalance data. In online stage, some virtual samples are generated according

to the principal curve, and a new leave-one-out(LOO) cross-validation method is

proposed to tackle online unbalanced data with add-delete mechanism for updating

network weights. This LOO cross-validation method uses Sherman-Morrison matrix
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inversion lemma, and can effectively reduce the redundant computation of matrix

inversion. Experimental results demonstrate the proposed method outperforms the

traditional ELMs in generalization performance.

2 Background

2.1 Review of ELM and OS-ELM

ELM proposed by Huang [14] is a learning method for generalized SLFNs where all

the hidden node parameters are randomly generated and the output weights of SLFNs

are analytically determined. Furthermore, ELM tends to provide good generalization

at extremely fast learning speed because of its simple and efficient learning algorithm

in which iterative tuning is not required in the hidden layers [15].

Like ELM, all the hidden node parameters in OS-ELM are randomly generated,

and the output weights are analytically determined based on the sequentially arrived

data. OS-ELM process is divided into two steps: initialization phase and sequential

learning phase [12].

Step 1. Initialization phase: choose a small chunk M0 = {(xi, ti), i = 1, 2,… ,N0} of

initial training data, where N0 ≥ ̃N.

(1) Randomly generate the input weight 𝐰i and bias bi, i = 1, 2,… ,

̃N. Calculate

the initial hidden layer output matrix 𝐇𝟎.

(2) Calculate the output weight vector:

𝜷0 = D0H0
TT0 (1)

where D0 = (H0
TH0)−1, T0 = [t1, t2,… , tN0

]T .

(3) Set k = 0

Step 2. Sequential learning phase

(1) Learn the (k + 1) th training data: dk+1 = (𝐱N0+k+1, tN0+k+1)
(2) Calculate the partial hidden layer output matrix:

Hk+1 = [g(𝐰1 ⋅ 𝐱N0+k+1 + b1) … g(𝐰L ⋅ 𝐱N0+k+1 + bL)]1×L (2)

Set Tk+1 = [tN0+k+1]
T
.

(3) Calculate the output weight vector

Dk+1 = Dk − DkHk
T
+1(I +Hk+1DkHk+1

T )−1Hk+1Dk (3)

𝜷k+1 = 𝜷k + Dk+1Hk+1
T (Tk+1 −Hk+1𝛽

k) (4)

(4) Set k = k + 1. Go to step 2(1).



426 W. Mao et al.

2.2 Review of Principal Curve

In 1983, Hastie [16] firstly introduced the theory of principal curve. Afterwards, this

theory were successfully applied to solve practical problems, like data visualisation

[17] and ecology analysis [18], etc. Principal curve is extension of principal com-

ponent analysis and its basic idea is to find a continuous one-dimensional manifold

that approximate the data in the sense of “self-consistency”, i.e. the curve should

coincide at each position with the expected value of the data projecting to that posi-

tion [18]. Intuitively, this curve passes through the “middle” of a high-dimensional

data set. In this paper, we choose k-curve for its good practicability. The definition

of k-curve is listed as follows [19].

Definition 1 (K-principal curve [19]) For a data set X = {x1, x2,… , xn} ⊂ ℝd
, a

curve f ∗ is called a K principal curve of length L for X if f ∗ minimizes △(f ) over all

curves of length less than or equal to L, where f is a continuous function f ∶ I → ℝd
,

△(f ) is the expected squared distance between X and f and defined as:

△(f ) = E[△(X, f )] = E[inf
𝜆

‖X − f (𝜆)‖2] = E[‖X − f (𝜆f (X))‖2]

where 𝜆f (x) = sup {𝜆 ∶ ‖X − f (𝜆)‖ = inf
𝜏

‖x − f (𝜏)‖} is called projection index.

The goal of K curve is to find a set of polygonal lines with K-segments and with a

given length to approximate the principal curve. The algorithm is based on a common

model about complexity in statistical learning theory [19]. The framework of this

algorithm can be summarized as follows. At the beginning, f1,n is initialized by the

first principal component line and in each iteration step, a new vertex is added on

fi−1,n which is obtained in i− 1 step, to increase the number of segments. According

to the principle of minimizing the projection distance, the position of vertexes are

optimized to construct a new curve fi,n. Kégl [19] gave a detailed description of this

algorithm.

3 OS-ELM with Two-Stage Hybrid Strategy

3.1 Offline Stage

As principal curve can truly reflect the shape of data set, we employ the principal

curve in offline stage to balance the samples in minority and majority classes. Then

the initial model is established using the obtained dataset.

The concrete process can be described as follows:

Step 1. Plot the principal curve of minority or majority samples D = {(Dxi,Dyi)}
using k-curve [17] presented in Sect. 2.2. Get the samples S = {(Sxi, Syi)} on prin-

cipal curve using polynomial interpolation.
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Step 2. Generate virtual samples for minority class by adding Gaussian white noise

on original samples Z = {(Zxi,Zyi)}. Keep the majority class sample set unchanged.

Step 3. Filter samples for two classes using the following formulation:

{|
|
|
Sxi − Dxj

|
|
|
≤ 𝛿x

|
|
|
Syi − Dyj

|
|
|
≤ 𝛿y

(5)

where 𝛿x, 𝛿y are pre-defined threshold. The samples not meeting Eq. (10) will be

excluded from the minority or majority class sample set.

Define the obtained sample set filtered by principal curve as D = {(xi, ti)|i =
1, 2,… ,N}. Given activation function g(x) and the number of hidden neurons L,

choose input weight 𝐰i and bias bi, i = 1, 2,… ,L randomly and calculate the input

matrix H1:

H1 =
⎡
⎢
⎢
⎢
⎣

𝐡(𝐱1)
𝐡(𝐱2)
⋮

𝐡(𝐱N)

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g(𝐰1 ⋅ 𝐱1 + b1) … g(𝐰L ⋅ 𝐱1 + bL)
g(𝐰1 ⋅ 𝐱2 + b1) … g(𝐰L ⋅ 𝐱2 + bL)

…
…
…

g(𝐰1 ⋅ 𝐱N + b1) … g(𝐰L ⋅ 𝐱N + bL)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦N×L

(6)

Here the output vector is T1 = [t1, t2,… , tN]T , and the output weight is:

𝜷1 = H1
+T1 (7)

where

H1
+ = (H1

TH1)−1H1
T

(8)

Let M1 = (H1
TH1)−1, Eq. (8) can be rewritten as H1

+ = M1H1
T
.

3.2 Online Stage

In this stage, we employ leave-one-out (LOO) cross validation to choose more valu-

able samples. However, the traditional LOO cross validation is computationally

expensive. In this section, we will derive a new fast LOO error estimation method.

Meanwhile, we introduce a add-delete mechanism to update output weights in order

to highlight the value of new arrived sample and keep the model simple.
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3.2.1 Add New Sample

Add the new arrived sample (xN+1, tN+1) into training set. The output vector becomes

T2 = [t1, t2,… , tN , tN+1]T = [T1
T tN+1]T , and the hidden layer matrix becomes H2 =

[h1T ,h2T ,… ,hNT
,hN+1T ]T = [H1

T hN+1T ]T . Then we have:

H2
+ = (H2

TH2)−1H2
T

(9)

Let M2 = (H2
TH2)−1, then Eq. (9) becomes:

H2
+ = M2H2

T
(10)

Because

H2
TH2 = [H1

T hN+1T ][H1
T hN+1T ]T = H1

TH1 + hN+1ThN+1 (11)

we have

M2
−1 = M1

−1 + hN+1ThN+1 (12)

Calculate the inversion of Eq. (12), and according to Sherman-Morrison matrix

inversion lemma, we have:

M2 = (M1
−1 + hN+1ThN+1)−1 = M1 −

M1hN+1ThN+1M1

1 + hN+1M1hN+1T
(13)

As shown in Eq. (13), M2 can be calculated based on M1, which reduces compu-

tational cost largely. Then we have H2
+

by substituting Eq. (13) into Eq. (11).

3.2.2 Delete Old Sample

After adding new sample (xN+1, tN+1), to reduce the negative effect of old sample and

make the model simple, we need to exclude the oldest sample (x1, t1). After excluding

(x1, t1), the output vector becomes T3 = [t2, t3,… , tN , tN+1]T , and the hidden layer

matrix becomes H3 = [h2T ,h3T ,… ,hNT
,hN+1T ]T . We have:

H3
+ = (H3

TH3)−1H3
T

(14)

Let M3 = (H3
TH3)−1, then we have:

H3
+ = M3H3

T
(15)

Because

H2
TH2 = [h1T H3

T ][h1T H3
T ]T = h1Th1 +H3

TH3 (16)
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we have:

M3
−1 = M2

−1 − h1Th1 (17)

We use Sherman-Morrison matrix inversion lemma again, and have:

M3 = (M2
−1 − h1Th1)−1 = M2 +

M2h1Th1M2

1 − h1M2h1T
(18)

Similar to Eq. (13), M3 can be obtained directly from M2. Then we have H3
+

by

substituting Eq. (18) into Eq. (15).

3.2.3 Fast Online LOO Error Estimation

In [20], Liu et al. derived a fast LOO error estimation of ELM. The generalization

error in ith LOO iteration can be expressed as:

ri = ti − fi(xi) =
ti −HxiH

+T
1 − (HxiH

+)i
(19)

where (⋅)i means the ith element, H is hidden layer matrix, and Hxi means the row

about the sample xi in H.

However, this LOO estimation cannot be directly applied to online sequential

scenario. We observe in Eq. (19), when adding a sample and delete another sample,

the only affected element is H. So, we simply set H+ = H3
+

which is calculated

from Eq. (15), and the generalization error in ith LOO iteration can be expressed as:

ri = ti − fi(xi) =
ti −HxiH+T
1 − (HxiH+)i

(20)

After introducing PRESS statistic, we have the LOO error estimation:

LOO = 1
N

N∑

i=1
ri2 (21)

4 Experimental Results

In this section, we examine one typical imbalanced real-world data set, i.e., air pol-

lutants forecasting in Macau [13]. Our goal is to demonstrate that the proposed algo-

rithm can efficiently improve the generalization performance of OS-ELM in data

imbalance problem. For comparison, we choose three baselines. The first is classical
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ELM [14]. The second is OS-ELM [12]. The third is meta-cognitive OS-ELM(MC-

OSELM) proposed in [13, 21]. In this approach, minority class samples are dupli-

cated directly in online phase. Moreover, the proposed OS-ELM algorithm based on

principal curve and fast LOO cross-validation is named PL-OSELM.

As shown in [13], air pollutants data is a typical time-series imbalance data. We

use the data collected from 2010 to 2013 year to conduct experiment. Specifically,

the data in 2010 are used for initial offline training, the data in 2011 are used for

online training, the data in 2012 are used for validation, and the data in 2013 are

used for test. The description of data set is shown in Table 1.

It is clear that the data of every year is severely imbalanced. Meanwhile, it is still

time series. Hence we use these data to examine the performance of PL-OSELM.

First, we use principal curve-based method described in Sect. 3.1 to expand minority

sample and cut down redundant majority sample in initial offline stage. We use k-

principal curve [17] to plot the principal curve of majority and minority data in 2010,

respectively, as shown in Fig. 1.

Obviously, the principal curves have revealed the variation tendency. Based on the

obtained principal curve, we exclude the redundant majority samples, and generate

virtual minority samples by adding white noise whose intensity is set 10 dB. With the

threshold 𝛿x = 0.002, 𝛿y = 0.005, we get the new training set described in Table 2.

After preprocessing using principal curve, the ratio between majority and minor-

ity classes becomes almost 1:1. The data imbalance problem has been released to

some extents.

Table 1 Description of original data set from 2010 to 2013

2010 2011 2012 2013

Minority sample 31 30 29 51

Majority sample 334 335 337 313

Ratio of minority (%) 8.49 8.22 7.92 14.01

Ratio of majority (%) 91.51 91.78 92.08 85.99
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Fig. 1 Principal curve of PM10 data in 2010 with a majority class and b minority class



Two-Stage Hybrid Extreme Learning Machine for Sequential . . . 431

Table 2 Description of new data set based on principal curve in 2010

Majority sample Minority sample Ratio of majority

(%)

Ratio of minority

(%)

Orignal data set 334 31 91.51 8.49

New data set 154 131 54.03 45.97

Table 3 Classification accuracy on minority class of four algorithms on air pollutant data set

PLOSELM OSELM ELM MCOSELM

Training time (s) 14.7473 0.4940 0.0468 0.2979

Test time (s) 0.0052 0.0052 0.0260 0.3093

Minority training

accuracy (%)

80.31 20.22 21.31 79.22

Majority training

accuracy (%)

93.52 99.30 99.05 95.60

Minority test

accuracy (%)

53.44 21.84 18.49 50.34

Majority test

accuracy (%)

96.34 99.80 99.31 97.73

Whole training

accuracy (%)

88.04 92.69 92.56 91.65

Whole test

accuracy (%)

89.71 92.26 92.08 90.80

Table 3 provides the comparative results of four algorithms. We mainly focus on

the accuracy on minority class. Here the hidden neurons are set 50.

From Table 3, although PL-OSELM get relative low accuracy on majority class

and whole data, but it still obtains the highest training and test accuracy on minor-

ity class, which is precisely our algorithm’s value. Similar to the results in [13],

MC-OSELM also gets much higher accuracy on minority class than OS-ELM and

ELM, which also demonstrates the necessity of solving online sequential data imbal-

ance problem. OS-ELM gets highest accuracy on whole data, but as stated in section

Introduction, this value is meaningless because the correct prediction gathers nearly

in majority class.

We also examine the effect of hidden neurons. Figure 2 shows the accuracy of four

algorithms with different number of hidden neurons. Note that the slight fluctuation

of results are caused by the randomness of ELM.

From Fig. 2, PL-OSELM and MC-OSELM both get satisfying results on minor-

ity class, with aggravated performance on majority class, which demonstrate their

good ability to handle online sequential imbalance data. In comparison, PL-OSELM

behaves in more stable way. Although OS-ELM and ELM get much better accuracy

in Fig. 2b, the results have no reference value because almost all minority class sam-

ples are incorrectly predicted.
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Fig. 2 Classification accuracy of Macau air pollutant data with different number of hidden neurons

on a minority class and b majority class

5 Conclusion and Future Work

In this paper, a kind of data imbalance problem, online sequential data imbalance

problem, is addressed. The key idea is to reduce the data imbalance phenomenon in

online sequential learning process. Data-based strategy and algorithm-based strategy

are integrated into a two-stage hybrid strategy. To realize this strategy, this paper uti-

lizes principal curve in offline stage to reduce the gap between majority and minor-

ity classes, and proposes a fast leave-one-out cross-validation error estimation to

reduce data imbalance in online stage. Following this strategy, a new OS-ELM algo-

rithm based on principal curve and fast leave-one-out error estimation is proposed.

This algorithm can adjust training samples in more efficient way, and update output

weights automatically with “add-delete” mechanism. The experimental results on

the real-world data set demonstrate the effectiveness of the proposed approach.
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Feature Selection and Modelling of a Steam
Turbine from a Combined Heat and Power
Plant Using ELM

Sandra Seijo, Victoria Martínez, Inés del Campo,
Javier Echanobe and Javier García-Sedano

Abstract The modelling of complex industrial processes is a hard task due to the

complexity, uncertainties, high dimensionality, non-linearity and time delays. To

model these processes, mathematical models with a large amount of assumptions

are necessary, many times this is either almost impossible or it takes too much com-

putational time and effort. Combined Heat and Power (CHP) processes are a proper

example of this kind of complex industrial processes. In this work, an optimized

model of a steam turbine of a real CHP process using Extreme Learning Machine

(ELM) is proposed. Previously, with the aim of reducing the dimensionality of the

system without losing prediction capability, a hybrid feature selection method that

combines a clustering filter with ELM as wrapper is applied. Experimental results

using a reduced set of features are very encouraging. Using a set of only three input

variables to predict the power generated by the steam turbine, the optimal number

of hidden nodes are only eight, and a model with RMSE less than 1 % is obtained.

Keywords Extreme learning machine ⋅ Combined heat and power ⋅ Feature

selection ⋅ Nonlinear system modelling

1 Introduction

Modelling the behaviour of complex industrial processes is a hard task for many

reasons: uncertainties, high dimensionality, non-linearity and time delays involved

in the process behaviour. To model these processes, mathematical models with many

assumptions are necessary [1–3]. Most of the times modelling this processes is either

almost impossible or it takes too much computational time and effort. Also, to obtain
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results from such physical models is usually time-consuming and not useful for ‘real-

time’ applications as long as they use iterative methods for final solutions.

Combined Heat and Power (CHP) processes is a proper example of complex

industrial process. CHP or cogeneration, is the simultaneous production of elec-

tricity and heat, both of which are used [4]. In CHP plants the flue gases are used

to generate more electricity or in other process. This implies cost saving, because

the amount of fuel is reduced. In addition, this fuel saving results in a reduction of

pollution.

Computational Intelligence (CI) techniques are a set of methodologies, inspired

in nature, able to deal with problems which are very hard to solve with standard

methods [5]. One of the most widely used CI technique are Artificial Neural Net-

works (ANNs). ANN have been used in CHP process, as for example to predict the

baseline energy consumption of a cogeneration plant due to its high level of robust-

ness against uncertainty affecting measured values of input variables [6]. In addition,

ANNs have demonstrated that they are a useful tool to predict the power generated

in a cogeneration plant with simple models where the number of necessary variables

is not high [7, 8]. A method to predict the power output based on ANN is carried

out in [9], where a study of the relationships between the electricity produced in a

cogeneration power plant and the properties of the fuel is performed. Power predic-

tion is the objective in [10] where the process is divided into two submodules and

each one has its own ANN model.

Although ANNs have been successfully applied to solve numerous problems,

they present some drawbacks that make them unsuitable for an increasing number of

cutting-edge applications. It is well known that the design of Back Propagation (BP)

based ANNs is a time-consuming task that depends on the skills of the designer to

obtain effective solutions. The designer has to select the most suitable network para-

meters, optimize the parameters to avoid overfitting, and be aware of local minima.

As a consequence, applications requiring autonomy (i.e. no human intervention) are

difficult to manage using this approach.

Extreme Learning Machines (ELM) have attracted increasing attention recently

because they outperform conventional Artificial Neural Networks in some aspects.

ELM is a learning algorithm for training a particularly type of single hidden-layer

feedforward neural networks (SLFNs) [11, 12]. ELM provides a robust learning

algorithm, free of local minima, without overfitting problems and less dependent

on human intervention than the ANN. ELM is appropriate for the implementation of

intelligent autonomous systems with real-time learning capability.

In this work, an optimized model of a steam turbine of a real CHP process using

ELM is proposed. Previously, with the aim of reducing the dimensionality of the

system without losing prediction capability, a hybrid feature selection method that

combines a clustering filter with ELM as wrapper, is applied.

The rest of the paper is organized as follows: Sect. 2 introduces the extreme learn-

ing machines algorithm. In Sect. 3, the combined heat and power plant used in this

work is presented. Section 4 explains the data collection and the feature selection

method for the steam turbine. Section 5 presents the experimental results for the mod-

elling of the steam turbine: Finally, in Sect. 6 some concluding remarks are noted.
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2 Extreme Learning Machine

Extreme learning machines were originally proposed by Huang et al. [13] for the

single hidden-layer feedforward neural networks and then extended to the general-

ized single hidden-layer feedforward networks where the hidden layer needs not to

be neuron alike [14].

Suppose a SLFN with n inputs, m outputs and l nodes in the hidden layer (see

Fig. 1). The output j of the SLFNs can be written as:

yj = 𝛽jh(x) (1)

where 𝛽j = [𝛽j1,… , 𝛽jl]T is the weight vector connecting the hidden layer and the jth
output node, h = [h1, hi,… , hl] is the vector formed by the values hi = g(aix + bi)
being g() the activation function, ai = [ai1,… , ain]T the vector connecting the input

x = [x1,… , xn] with the ith hidden node and bi the bias of the ith hidden node.

The main difference between ELM and traditional learning approaches is that the

hidden layer needs not to be tuned; it is a randomized layer. That is to say, the set of

parameters of the hidden nodes (ai, bi), 1 ≤ i ≤ l, are randomly generated. Therefore,

they are independent of the application and of the training samples. Learning in ELM

is a straightforward procedure that aims at computing the vector of output weights,

𝛽j in (1), for each output node.

For k arbitrary distinct samples (xk, tk), where xk = [xk1,… , xkn]
T ∈ Rn

are the

input data and tk = [tk1, t
k
2,… , tkm]

T ∈ Rm
are the target data, the above linear equa-

tions can be written in the matrix form:

H(x)𝛽 = T (2)

Fig. 1 The topological

structure of the SLFN
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where H(a1,… , an, b1,… , bl, x1,… , xk)

H =
⎡
⎢
⎢
⎣

g(a1 · x1 + b1) … g(al · x1 + bl)
⋮ … ⋮

g(a1 · xk + b1) … g(al · xk + bl)

⎤
⎥
⎥
⎦K×L

(3)

T = [t1,… , tK]′K×m is a vector of target labels and 𝛽 = [𝛽1,… , 𝛽m]
′

L×m. The solution

of above equation is given as: 𝛽 = H†T , where H†
is the Moore-Penrose generalized

inverse of matrix H [15].

3 Combined Heat and Power Plant

The CHP plant being evaluated in this work is located in Monzón (Huesca), in the

North of Spain [16]. The plant generates electricity with four internal combustion

engines feeded with natural gas and a steam turbine. The four engines are identical,

Fig. 2 Scheme of the combined heat and power plant
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with the same characteristics and the nominal power of each being 3700 kW. The

engines are refrigerated with two refrigeration circuits that use water from the cool-

ing towers as Fig. 2 shows. Therefore, the engines generate electrical energy and

high temperature gases. Subsequently, the electrical power generated is sold and the

high temperature gases go to an exhaust steam boiler. Moreover, the steam generator

creates steam using the heat from the exhaust steam boiler. This steam is used in a

steam turbine to generate more electricity, with 1000 kW of nominal power, that is

also sold. The heat from exhaust steam boiler is also used in a slurry drying process

that uses the slurry from nearby farms. After being processed by the plant it becomes

fertilizer and clean water for irrigation.

4 Data Collection and Feature Selection

The data collection used in this work is obtained from the combined heat and power

plant described in the previous section. The data collection contains variables from

the four engines, the refrigeration circuits, the exhaust steam boiler, the steam tur-

bine, and the slurry drying process. It was collected over a one-year period from the

whole cogeneration process with a sample time of 1 min. The data collection starts

in December 2012 and finishes in November of 2013. The non informative variables,

i.e. variables that are always constant, are removed from the dataset. Subsequently,

the Lower Heating Value (LHV) of the natural gas used to feed the engines is added

to the dataset with a sample time of one value per day. This variable is provided by

the supplying company Enagas [17]. Besides, the ambient temperature and humidity

are added too, with a sample time of one hour, provided by the State Meteorological

Agency (AEMET) of Spain [18]. Finally, a dataset with 200 signals is available.

In order to have a proper model of the steam turbine, feature selection techniques

are important to select a series of features that are particularly informative for the

steam turbine behaviour. There are two main categories of feature selection tech-

niques: filter methods and wrapper methods. The former select a reduced subset of

variables by evaluating general characteristics of the data (i.e. the selected learning

algorithm is not involved in the selection process), while the latter use the perfor-

mance of the selected machine-learning algorithm to evaluate each subset of vari-

ables. Filters measure the relevance of different subsets of features. Usually they

order features individually or as nested subsets of features, while the filter assessment

is done by means of statistical tests. They are robust against overfitting, but may fail

to select the most useful features for a given classifier. On the other hand, wrappers

measure the usefulness of feature subsets. They perform an exhaustive search of the

space of all feature subsets and use cross validation to evaluate the performance of

the classifier. Wrappers are able to find the most useful features, but they favour over-

fitting and are very time-consuming. As will be seen, a combination of both, filter

and wrapper, provides a trade-off between usefulness and robustness.
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4.1 Correlational Relationships Between Signals

First, a simple correlation study is performed with the aim of detecting strong lineal

relationships between pairs of signals. Signals with correlation coefficients higher

than ‖r‖ > 0.9801 have been removed from the original dataset. Taking into account

the correlation threshold, a total of 12 signals are eliminated. Henceforth a dataset

with 188 signals is available to apply hybrid feature selection techniques.

4.2 Hybrid Feature Selection

The reduced set of 188 signals is examined in order to obtain a collection of infor-

mative features. A hybrid feature selection method is then applied to reduce the sys-

tem dimensionality without losing significant identification capability. The proposal

combines a clustering filter based on the nearest shrunken centroids (NSC) proce-

dure for feature selection in high-dimensional problems [19], with a wrapper around

the extreme learning machine algorithm. The NSC method is a modification of the

nearest centroid classifier that considers denoised versions of the centroids as the

class prototypes. The class centroids are increasingly shrunken towards the overall

centroid, and as they are shrunk, some features from the initial set no longer con-

tribute to the classification.

Let xij be the values for the variables i = 1,… , p, and for the samples j = 1,… , n.

And letCk be the set of the indices of the nk samples in class k = 1,… ,K. A t-statistic

dik is used to compare each class k to the overall centroid for each variable i:

dik =
x̄ik − x̄i

mk(si + s)
(4)

with si being the pooled within-class standard deviation for each variable:

s2i =
1

n − K
∑

k

∑

j𝜖Ck

(xij − x̄ij)2 (5)

s is the median value of the si over the set of variables, and mk =
√
1∕nk + 1∕n.

In the shrinkage, dik is the reduced by soft-thresholding:

d′ik = sign(dik)(|dik − 𝛥|)+ (6)

where t+ = t if t > 0 and zero otherwise. And according to Eq. 4 the shrunken

centroids are calculated as follows:

x̄′ik = x̄i + mk(si + s) d′ik (7)
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As the parameter 𝛥 increases, dik for some variables are reduced to zero for all

classes, and all centroids x̄ik are shrunk to x̄i. Those variables are therefore effectively

eliminated from the class prediction.

In order to implement the above of the distances of elements (steam turbine power

data) to the gravity centers of their intervals. A total of 20 classes have been generated

in this case.

The shrinkage is applied from △ = 0, that is to say, no shrinkage and no signals

eliminated, up to △ = 40, where only one variable is left. The training and testing

root mean squared error (RMSE) are computed for different △ values in this range.

The collection of samples is randomly divided into a training set consisting of the

75 % of data, and a test set with the last 25 %. Training and prediction are evaluated

both by the nearest shrunken centroids clustering procedure, and by the extreme

learning machine method.

The nearest shrunken centroids classification of a test sample x∗ = (x∗1, x
∗
2,… , x∗p)

is done by calculating the standardized distances of sample x∗ to each shrunken cen-

troid or prototype of class k:

𝛿k(x) =
p∑

i=1

(x∗i − x̄′ik)
2

(si + s)2
(8)

The prediction for sample x∗ is then carried out by a “winner-takes-all” rule that

chooses the class for which the distance 𝛿k is the smallest.

The extreme learning machine training and prediction are performed at each △
value over the subset of active variables. In every case, the average accuracy over

100 trails of ELM has been computed to provide more stable results and mini-

mize the effect of randomness. Figure 3 shows the shrinkage results where good

Fig. 3 ELM testing accuracy as a function of the shrinkage parameter △, and the relevant vari-

ables during the hybrid feature selection method
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Table 1 Relevant variables

throughout the hybrid feature

selection method

Variable

TAG

Description of the variable and units

TT3210 Water temperature refrigeration engine B (
◦
C)

TT5802 Gas temperature engines room (
◦
C)

P145_C Crankshaft pressure of engine C (bar)

FT8208 Steam flow to the steam turbine (kg/h)

PT8210 Inlet pressure steam to steam turbine (bar)

PT080 Steam generator pressure (bar)

performance of the extreme learning machine is noticeable, and some relevant vari-

ables are pointed out (Table 1). The minimum ELM test error reached for a shrinkage

△ = 32.48, with a subset of only 3 variables (FT8210, PT8210, PT080) from the

initial 188 variables. The zone with shrinkage between △ = 32.48 and △ = 38.64
is very stable. Then, variable PT8210 is eliminated and the error increases slightly.

We can conclude that the subset with lowest testing error is the most suitable to

generate a model to predict the power generated by the steam turbine.

5 Experimental Results

In this section, the optimized model for the steam turbine is developed. For this pur-

pose, the set of 3 input variables selected in the previous section with the hybrid

feature selection method from the initial 188 variables, is used to predict the power

generated by the steam turbine. Firstly, the optimal number of hidden nodes is cal-

culated using cross validation. The original one year dataset is separated into 12

subsets, each with data relating to one month, except the last 5 days of each month

(these data are reserved for later use). From these 12 subsets, fourfold cross valida-

tion is applied, using each time 9 months for training and 3 months for testing. For

each of the four folds, the hidden nodes are increased from 1 up to 100, and 10 trials

for each fold are realized. The testing Root Mean Squared Error (RMSE) average and

the standard deviation (STD) average are calculated for the same number of hidden

nodes in all the trials done for the four folds.

Figure 4 shows the RMSE average and the STD as a function of the number of

hidden nodes. From the results it can be concluded that the zone with lowest RMSE

and STD is between 3 and 9 hidden nodes. The minimum testing average error is

RMSE = 0.0164 with 8 hidden nodes. Then, it can be concluded that the optimal

number of hidden nodes for the steam turbine system is 8. For this number of hidden

nodes the standard deviation average is only STD = 0.0045. Then, this means that

the number of eight hidden nodes is the optimal number regardless of the random

assignment of values to the hidden layer.
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Fig. 4 Testing RMSE and STD according to the number of hidden nodes

Fig. 5 Real and predicted values of the power generated by the steam turbine using the best model

for the testing dataset

After calculating the optimal number of hidden nodes, 100 trials with 8 hidden

nodes are obtained and the model with best performance is selected. The training

dataset used for this tests is a dataset with all data used in the cross validation to cal-

culate the optimum number of hidden nodes. The testing dataset is composed of the

last 5 days of each month. The best model testing error is RMSE = 0.0099. Figure 5

shows, the real values and the predicted values for the power generated by the steam

turbine in the testing dataset for the best model. As can be seen, predicted power is

able to follow the trend of the real power quite well. However, in the beginning and

around 40000–55000 samples, the predictions are not as good as in the rest of the

testing dataset.

The model was tested with the last 5 days of each month separately, the testing

errors are as shown in Fig. 6. It can be seen that the highest testing errors are for the

months with the most extreme environmental conditions, i.e. December, January,

July and August. In Fig. 5, the periods with lowest prediction correspond to these

months. Despite of this, the optimal model obtained has good performance and its

testing accuracy is less than 0.01.
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Fig. 6 RMSE testing the last 5 days of each month separately

6 Conclusions

In this work, an optimized model of a steam turbine of a real CHP process using

Extreme Learning Machine (ELM) is proposed. In addition, with the aim of reduc-

ing the dimensionality of the system without losing prediction capability, a hybrid

feature selection method that combines a clustering filter with ELM as wrapper is

applied.

First, a correlation study is performed to detect strong lineal relationships between

pairs of signals and the signals with higher correlation coefficients than a threshold

are removed. Then, the feature selection results reveal that a subset of only three

variables, (FT8208, PT8210, PT080), is the most suitable to generate a model to

predict the power generated by the steam turbine.

After the feature selection, the optimum number of hidden nodes were found and

subsequently the best steam turbine model was determined. Experimental results

reveal that ELM with only 3 input variables and 8 hidden nodes is able to predict

the power generated by the steam turbine. This straightforward topology provides a

high accuracy model with RMSE less than 1 %.
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On the Construction of Extreme Learning
Machine for One Class Classifier

Chandan Gautam and Aruna Tiwari

Abstract One Class Classification (OCC) has been prime concern for researchers
and effectively employed in various disciplines for outlier or novelty detection. But,
traditional methods based one class classifier is very time consuming due to its
iterative process for various parameters tuning. This paper presents four novel
different OCC methods with their ten variants based on extreme Learning Machine
(ELM). As we know, threshold decision is a crucial factor in case of OCC, so, three
different threshold declining criteria have been employed so far. Our proposed
classifiers mainly lie in two categories i.e. out of four proposed one class classifiers,
two classifiers belong to reconstruction based and two belong to boundary based. In
four proposed methods, two methods perform random feature mapping and two
methods perform kernel feature mapping. These methods are tested on three
benchmark datasets and exhibit better performance compared to eleven traditional
one class classifiers.

Keywords One class classification (OCC) ⋅ One class extreme learning machine
(OCELM) ⋅ Autoassociative ELM (AAELM) ⋅ Kernelized extreme learning
machine (KELM)

1 Introduction

Novelty or outlier detection [1] has been always prime attention of researchers in
various disciplines and one class classifier [2] has been broadly applied for this
purpose. One class classification (OCC) was coined byMoya et al. [3]. In case of any
binary or multiclass classification problem, data is available for only one class or
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other classes’ data is not available. In such case, we need to learn with single class
data. It becomes necessity when data of only one class is available or other classes’
data are very rare. As an example, classifier design between healthy and unhealthy
people. In this case, it is possible to define the range of the data for the healthy people
but not possible to define such a definite range for unhealthy people. Because it is
possible to prepare the data based on only existing diseases but not possible to
prepare based on forthcoming diseases. One thing is quite clear by this example that
which data is available for training, called as positive or normal or target class and
another class, which is not possible to define or very rare or unknown, called as
negative or abnormal or outlier class. Reason behind the absence of outlier samples
can be the very high measurement costs or the less occurrence of an event, examples
are failure of nuclear power plant or a rare medical disease or machine fault
detection. Even if outlier examples are available then there is a possibility that those
examples are not well distributed or does not characterize all possible issues of
outliers, therefore, we can’t rely on the outlier examples. Thus, one class classifi-
cation has been broadly applied in the field of novelty or outlier detection. Overall
goal of one class classifier is to accept target samples and reject the outliers. Basic
assumption of multi class classification also follows here that examples belong to
same class share same pattern among them. So, it can be applied in various type of
problems [2] viz., (i) Novelty detection, e.g. Machine fault detection (ii) Outlier
detection e.g. Intrusion detection in network (iii) Classification in case of badly
balanced data e.g. Classification in medical data where data is not properly balanced.

Various methods have been proposed to resolve the one class classification
problem. According to Pimentel et al. [1], these methods can be broadly divided
into 5 categories: probabilistic or density based, distance based, Information the-
oretic techniques, domain or boundary based, reconstruction based. While, Tax [2]
divided OCC methods in three parts density based, boundary based and recon-
struction based. We will discuss about this in the next section. This paper is mainly
focused on last two categories i.e. boundary and reconstruction based. Our literature
survey is also primarily focused on these two categories only.

The remaining paper is organized as follows. Literature survey about OCC is
discussed in Sect. 2. Section 3 presents motivation of our proposed work. Section 4
provides a brief description of ELM. Section 5 discusses about proposed work with
three threshold deciding criteria. Section 6 describes about experimental setup and
dataset description. Section 7 provides performance based comparison of existing
and proposed classifiers on three benchmark datasets. Conclusion and future
direction of work are discussed in Sect. 8.

2 Literature Survey

OCC word is firstly coined by Moya et al. [3] and applied for target recognition
application. As far as learning for OCC is concerned, it can be divided into three
parts: Learning with (i) positive examples only (ii) positive and small amount of
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negative examples only (iii) positive and unlabeled data. Japkowicz [4] proposed
autoassociative based approach for OCC in the absence of counterexamples. OCC
have been widely studied by Tax [2] and he developed various model to handle
OCC problem viz., three models based on density methods (i) Gaussian model
(ii) mixture of Gaussians and (iii) Parzen density estimator, 3 models based on
boundary methods (i) k-centers method (ii) NN-d and (iii) SVDD and reconstruc-
tion based models (i) k-mean clustering (ii) self-organizing maps (iii) PCA and
mixtures of PCA’s and (iv) diabolo networks. Tax and Duin [5] proposed algorithm
to handle OCC problem based on support vector machine (SVM) using positive
examples only. In text classification community, learning with positive and unla-
beled data [6] have received much attention. Most recently, Leng et al. [7] proposed
OCC based on Extreme Learning Machine (ELM) where ELM consists of only one
node in output layer. Leng et al. [7] tested their model with only one type of
threshold deciding criteria i.e. rejection of few percentages of most deviant training
samples after completion of training on all samples. So, there is lot of scope open
for OCC based ELM as Leng et al. [7] also stated in their paper. Although, ELM
has been applied earlier also for anomaly or intrusion detection by using binary
classification [8–10]. Xiang et al. [10] proposed map reduce based ELM for
intrusion detection in big data environment.

3 Motivation of Our Work

Our proposed methods are based on ELM. Various papers have been presented in
the past, which exhibited the superiority of ELM [11–13] over traditional machine
learning techniques like Back-propagation (BP), SVM, Probabilistic Neural Net-
work (PNN), Multilayer Perceptron (MLP) etc. in terms of generalization capability
and training time for binary and multiclass classification. Since, traditional methods
have required tuning of weight and various parameters in each iteration but ELM
provides result just in one pass. ELM has been well explored for binary and
multiclass classification problem but not well explored in case of OCC problem.
Since, existing OCC models are based on traditional methods, so, problem lies with
traditional methods also remain with existing OCC models. As an example,
backpropagation based OCC require many iteration to stabilize the weight, so it will
be very time consuming compare to single hidden layer feed forward network
(SLFN). We are going to present 4 methods with their 10 variants of OCC based on
ELM. Earlier, ELM had been presented for binary and multiclass classification but
we are presenting it for one class classification.
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4 A Brief Overview of ELM

ELM is proposed by Huang et al. [11, 12] for addressing the slow learning speed of
traditional neural network. We can state basic ELM in three steps. For N given
training samples, activation function g(x) and by assuming m number of hidden
neurons following steps are taken to perform learning of the neurons,

1. Random initialization of input weights Wi and bias bi for all m number of
nodes/neurons, where i = 1, 2…m.

2. Calculate the hidden layer output matrix H by applying X over all m number of
hidden neurons with W and b with activation function g as gðW X + bÞ.

3. Calculate the output weight β=H†T, where, H† = ðHTHÞ− 1 HT and T = Output
layer.

Here, Objective of ELM is to minimize the training error as well as norm of the
output weights [11, 12]:

Minimize: Hβ− Tk k2 and βk k,

5 Proposed Work

In this paper, we proposed methods based on two types of OCC viz., reconstruction
based one class ELM i.e. autoassociative ELM (AAELM) and boundary based one
class ELM (OCELM). The Kernelized version of both AAELM and OCELM viz.,
autoassociative Kernelized ELM (AAKELM) and one class Kernelized ELM
(OCKELM), is also presented in this paper. In all methods, only positive samples
are used for training. Now onwards, positive samples will be called as target data
and negative samples as outliers.

5.1 Boundary Based

Assumption “Model is trained by only target data x and endeavored to approxi-
mate all data to 1 because training have only one class. Since, weights between
layers are trained according to pattern of target data i.e. positive data. But if any
pattern other than target data will provide to trained model then it will not be
properly approximate to one. Therefore, difference between approximated value
and one will be large if pattern is differing from target data. If difference will be
more than the threshold then treat that sample as outlier otherwise belongs to target
data”.
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5.1.1 One Class Extreme Learning Machine (OCELM)

By following above assumption, algorithm of OCELM (see Fig. 1) is as follows:

1. Normalize the training dataset ‘X’ in the range of [0 1] using min-max
normalization.

2. Select the number of hidden nodes and activation function.
3. Assign random hidden nodes parameter, input weights W and bias b.
4. Calculate the hidden layer output matrix H= gðW X + bÞ, where g is an acti-

vation function.
5. The output nodes contain the identity row or column matrix as the target

variables due to only one class is available for training.

6. Calculate the output weight β=H†T, where T = identity row or column
matrix i.e. we are approximating all training i.e. normal data to one. Therefore,
Objective of AAELM is modified as:

Minimize Hβ− Tk k2and βk k,

where, T = identity row or column matrix
7. Calculate the threshold value using anyone threshold criteria Thr1 or Thr2 but

not Thr3 as mentioned in the Sect. 5.3 by using training data only.
8. Calculate the error i.e. difference between predicted value by above steps and

one for each input sample in testing and if it is greater than threshold value,
which was calculated during training then that sample will be treated as outlier
otherwise normal data.

5.1.2 One Class Kernelized Extreme Learning Machine (OCKELM)

Training of OCKELM is different from OCELM in term of feature mapping.
In OCKELM, kernelized feature mapping is employed instead of random feature

Fig. 1 Architecture of one
class extreme learning
machine (OCELM)
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mapping and rest of the procedure is same as OCELM. We have used four different
kernels: polynomial kernel, linear kernel, rbf kernel and wave kernel.

5.2 Reconstruction Based

Assumption “Reconstruct the input vector X at the output layer during training
and weights between layers are trained only for target data i.e. positive data. So, if
any pattern other than target data passed to the model then that pattern will not be
well reconstructed. Therefore, difference between input and output in case of outlier
will be more than the difference between input and output of target dataset. So, we
can decide threshold in such a way that if dissimilarity is more than this threshold
then assume as outlier data otherwise target data”.

5.2.1 Autoassociative Extreme Learning Machine (AAELM) Based
One Class Classifier

By following above assumption, we modified ELM architecture. Output layer is
modified and present input data in the output layer for training i.e. T = input data,
but those data belongs to only one class (See Fig. 2).

1. Steps 1 to 4 are same as OCELM in Sect. 5.1.1.
2. The output nodes contain input X in output layer.

3. Calculate the output weight β=H†T, where T = X (Note: It is different from
OCELM). Therefore, Objective of AAELM is modified as:

Minimize Hβ−Tk k2and βk k,
where, T = Input Data from only one class

Fig. 2 Architecture of
autoassociative extreme
learning machine (AAELM)
for one class classification
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4. Calculate the threshold value using anyone threshold criteria Thr1, Thr2 or
Thr3 as mentioned in the Sect. 5.3.

5. Calculate the error i.e. difference between predicted value by above steps and
Y for each input sample and if it is greater than threshold value, which was
calculated during training then that sample will be treated as outlier otherwise
normal data. It is noted that Y = Testing Data.

5.2.2 Autoassociative Kernelized Extreme Learning Machine
(AAKELM) Based One Class Classifier

Training of AAKELM is different from AAELM in terms of feature mapping.
AAKELM use Kernel feature mapping and AAELM use random feature mapping
and rest of the procedure is same as AAELM. We have used four different kernels:
polynomial kernel, linear kernel, rbf kernel and wave kernel.

5.3 Threshold Deciding Criteria for Proposed Methods

In One class classification, threshold plays crucial role in distinguishing outlier
from target data. We deployed 3 methods to determine the threshold for acceptance
of data as target i.e. in other word rejection of data as outlier. One point must be
noted that only positive samples are used for deciding the threshold criteria.

1. Thr1: Calculate the error using Euclidean distance between actual and predicted
on each training data and arrange the error in decreasing order. Afterwards, set
the threshold at rejection of 10 % most erroneous data i.e. false negative rate
should be expected at the rate of 10 %.

2. Thr2: Calculate the error between actual and predicted on training and set the
threshold (Thr) using following formula:

Thr2=Error + 0.2*Std ð6Þ

Error Mean square error over all the training data
Std Standard deviation of error

3. Thr3: This threshold criteria is only for reconstruction based methods i.e. not
for boundary based methods. Calculate relative error between actual (act) and
predicted (pred) on each attribute of training dataset by using following formula:
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erri = abs
acti − predi

acti

� �
, where i = 1, 2 . . . n. ð7Þ

Well_reconstructed_attribute=0

for i=1 to n

if erri < thr_condn1

Well_reconstructed_attribute=
Well_reconstructed_attribute +1;

end if

end for

This error is a deciding factor that whether attribute is well reconstructed in
output layer or not. There are 2 conditions require to satisfy for this threshold
deciding criteria. We need to satisfy first condition (thr_condn1) at this point for
deciding how many attributes are well reconstructed at output layer.

Afterwards, we need another condition (thr_condn2) for deciding whether data
should be treated as genuine or outlier. If number of Well_recon-
structed_attribute is above thr_condn2 then it will be treated as target
data otherwise outlier. We considered thr_condn1 = 0.5 and thr_condn2 = 0.7 *
no. of features in dataset i.e. if more than 70 % attributes are well reconstructed
then consider that sample as target sample otherwise outlier sample.

Remark for Thr3: Thr1 and Thr2 rejected few percent of data for deciding
threshold but Thr3 doesn’t reject any percentage of data for deciding the threshold.

6 Experimental Setup and Dataset Description

Performance of proposed methods has been tested on variety of three benchmark
datasets [See Table 1]. These datasets are downloaded from UCI Machine Learning
Repository [14] and website of TU Delft [15]. Breast cancer database is obtained

Table 1 Dataset description

Dataset name Number of
attributes

Number of
target

Number of
outlier

Name of target
class

Breast cancer
[14, 16]

9 458 241 Benign

Page blocks [14] 10 4913 560 Text
Spambase [14] 57 1813 2788 Not spam

454 C. Gautam and A. Tiwari



from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg
[14, 16]. There are 2 classes in this dataset viz., benign and malignant. We used
benign class as the target class. Second dataset, Page Blocks dataset has been first
employed for classifying all the blocks of the page layout of a document that has
been detected by a segmentation process. This is an essential step in document
analysis in order to separate text from graphic areas. Indeed, the five classes are:
text, horizontal line, picture, vertical line and graphic. We used test class as target
class and remaining classes as outlier class. Third dataset, Spambase dataset is
created in Hewlett-Packard Labs [14] and consists of 1813 normal samples and
2788 spam samples. Normal samples are used as target class in our experiment. We
prepared the dataset for OCC in the same way as prepared by Leng et al. [7]. 50 %
data from target class is selected randomly for training and rest of the data used for
testing. So, we divided our target class dataset into 50-50. Each classifier has been
executed 10 times and calculates the average of 10 runs for each performance
evaluation measure viz., Precision, Recall (Sensitivity), F1, Accuracy (Acc) and
Area under curve (AUC). But we presented Acc and AUC only due to number page
constraint in the conference.

Our proposed methods are compared with the methods proposed by Tax [2]. Tax
[2] has done resounding work on OCC. He proposed various one class classifiers as
we have discussed in literature. Tax also provided a MATLAB toolbox viz., DD
toolbox [17] to employ these classifiers. We deploy below classifiers using con-
sistency based optimization [18]:

• Density based methods: (i) Parzen density data description (parzen_dd)
(ii) Naive Parzen density data description description (nparzen_dd) (iii) Gaus-
sian data description (gauss_dd)

• Boundary based methods: (i) K-nearest neighbor data description (knndd)
(ii) Minimax probability machine data description (mpm_dd) (iii) Support
vector data description (svdd) (iv) Incremental SVDD (incsvdd)

• Reconstruction based methods: (i) Auto-encoder neural network data descrip-
tion (autoenc_dd) (ii) k-means data description (kmeans_dd) (iii) Principal
component data description (pca_dd) (iv) Self-Organizing Map data description
(som_dd)

Above classifiers are tested with the same benchmark datasets along with the
similar criteria (i.e. 10 % rejection (Thr1), 50-50 division of dataset etc.) as we
applied on our proposed methods. The generated results are presented in tabular
form, Tables 2, 3 and 4. All experiments have been executed in MATLAB under
Windows 7 environment with Intel Core 5 processor and 4 GB RAM.
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Table 2 Average result of
Breast cancer dataset over 10
Runs

AUC Acc

knndd 94.808 94.936
svdd 74.716 75.362
kmeans_dd 93.321 93.489
parzen_dd 89.061 89.340
nparzen_dd 94.386 94.489
pca_dd 86.593 86.511
mpm_dd 73.952 74.617
incsvdd 93.654 93.681
som_dd 93.958 94.106
autoenc_dd 93.681 93.809
gauss_dd 93.265 93.426
Proposed
AAELM_thr1 (Sig, 10) 94.502 94.617
AAELM_thr2 (Sig, 10) 94.830 94.936
AAELM_thr3 (Sig, 2) 63.374 63.234
AAKELM_thr1 (Poly, 10−6, [1 1]) 95.535 95.638
AAKELM_thr2 (Wav, 103, [106 1 1]) 95.962 96.043
AAKELM_thr3 (RBF, 106, [10−6]) 94.563 94.596
OCELM_thr1 (Sig, 2) 87.956 87.915
OCELM_thr2 (Sig, 2) 89.217 89.383
OCKELM_thr1 (Wav, 103, [104 1 1]) 95.085 95.170
OCKELM_thr2 (RBF, 1, [102]) 95.805 95.851

Table 3 Average result of
Page blocks dataset over 10
Runs

AUC Acc

knndd 83.918 88.077
svdd 74.794 59.622
kmeans_dd 81.326 86.280
parzen_dd 49.604 19.629
nparzen_dd 70.930 82.954
pca_dd 87.816 89.227
mpm_dd 49.331 18.780
incsvdd 68.642 81.698
som_dd 78.153 85.355
autoenc_dd 87.420 89.267
gauss_dd 88.324 89.281
Proposed
AAELM_thr1 (Sig, 95) 89.590 88.816
AAELM_thr2 (Sig, 100) 89.604 87.885
AAELM_thr3 (Sig, 5) 83.997 81.054
AAKELM_thr1 (RBF, 103, [1]) 89.857 89.105
AAKELM_thr2 (RBF, 103, [1]) 90.115 89.536
AAKELM_thr3 (Wav, 103, [104 1 1]) 88.618 88.525
OCELM_thr1 (Sig, 200) 86.087 86.131
OCELM_thr2 (Sig, 250) 85.469 83.654
OCKELM_thr1 (Wav, 1, [10−2 1 1]) 88.593 86.844
OCKELM_thr2 (RBF, 1, [10−2]) 88.771 85.249
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7 Results and Discussion

The proposed methods are tested on three benchmark datasets and their perfor-
mances are evaluated by varying numerous variables viz., number of hidden neurons,
kernel parameters, regularization parameter, different kernels and three threshold
deciding criteria. By employing Thr1 and Thr2 on all 4 proposed methods, we gen-
erated 8 novel variants of ELM for OCC viz., OCELM_Thr1, OCELM_Thr2,
OCKELM_Thr1, OCKELM_Thr2, AAELM_Thr1, AAELM_Thr2, AAKEL-
M_Thr1, and AAKELM_Thr2. We proposed 2 novel variants of ELM for OCC by
employing Thr3 with reconstruction based methods AAELM and AAKELM, viz.,
AAELM_Thr3 and AAKELM_Thr3.

After analyzing Tables 2, 3 and 4, it is quite clear that our proposed approaches
outperformed earlier existing approaches by significant margin in terms of AUC
and Accuracy. Reconstruction based one class classifier outperforms boundary
based classifiers among all the proposed methods. It is also clearly visible that
kernel feature mapping performed better compared to random feature mapping for
all 3 datasets. Figure 3a–e depict the behavior of the proposed methods viz.,

Table 4 Average result of
Spambase dataset over 10
Runs

AUC Acc

knndd 61.004 46.040
svdd 56.628 76.762
kmeans_dd 56.472 40.189
parzen_dd 55.415 56.194
nparzen_dd 48.117 27.212
pca_dd 61.316 47.737
mpm_dd 53.450 77.122
incsvdd 54.922 37.147
som_dd 52.805 34.434
autoenc_dd 58.261 42.006
gauss_dd 81.431 77.864
Proposed

AAELM_thr1 (Sig, 30) 81.309 77.753
AAELM_thr2 (Sig, 45) 80.420 78.525
AAELM_thr3 (Sig, 30) 80.759 81.354
AAKELM_thr1 (Lin, 106) 82.321 79.686
AAKELM_thr2 (Poly, 103, [104 1]) 82.195 77.515
AAKELM_thr3 (Wav, 103, [1 1 1]) 81.374 75.731
OCELM_thr1 (Sig, 150) 79.218 77.650
OCELM_thr2 (Sig, 70) 77.386 75.504
OCKELM_thr1 (Wav, 1, [1 1 1]) 80.822 77.783
OCKELM_thr2 (Wav, 1, [1 1 1]) 80.660 79.112
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Fig. 3 Above figure from a–e represents that how various variants of kernelized based OCC
behave after varying the two parameters viz., regularization and Kernel parameter over 3 threshold
criteria for RBF kernel on Breast cancer dataset. a AAKELM_Thr1. b AAKELM_Thr2.
c AAKELM_Thr3. d OCKELM_Thr1. e OCKELM_Thr2. Note Proposed methods name format in
all above Figures and Tables—[AAELM or OCELM]_Thr1, Thr2 or Thr3 (activation function,
No. of hidden nodes) [AAKELM or OCKELM]_ Thr1, Thr2 or Thr3 (Kernel name, regularization
parameter, Kernel parameter). Note All above figure a–e contain same axis parameter as a (due to
space constrains of conference papers, we provided small size of b–e)
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AAKELM and OCKELM, over changing the kernel parameters (KERN_PAR),
regularization parameter (C), threshold criteria. Figure 3a–e is depicted for RBF
kernel, however we tested with 4 kernels viz., RBF, Polynomial, linear and
Wavelet. As you can see in Fig. 3a–e, behavior of both Kernelized methods for
Thr1 and Thr2 does not change much but it performs totally different for Thr3.
However, performance of Thr3 is comparable to other threshold criteria viz., Thr1
and Thr2, except for AAELM in the Breast Cancer dataset.

We have tested our function for all 4 kernels and also calculated F1, sensitivity,
specificity, standard deviation but didn’t present all results due to space constrains.

8 Conclusion and Future Work

In this paper, we proposed ELM based four OCC methods with their ten different
variants by using three different threshold deciding criteria. Our proposed
approaches are fast and simple compared to earlier OCC methods and also

Fig. 3 (continued)
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outperformed various existing methods from literature but it needs user intervention
for optimal selection of parameters. This verifies a viable and effective alternative
for outlier detection using OCC. Although, our Thr3 performed well but it would
fail on those cases where actual value would be zero, so, we need to improve Thr3.
Our future work will carry this discussion forward for optimal selection of
parameter without user intervention and make Thr3 more robust. These issues need
further investigation.
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Record Linkage for Event Identification
in XML Feeds Stream Using ELM

Xin Bi, Xiangguo Zhao, Wenhui Ma, Zhen Zhang and Heng Zhan

Abstract Most of the news portals and social media networks are utilizing RSS

feeds for information distribution and content sharing. Event identification improves

the service quality of feeds providers in the aspect of content distribution and event

browsing. However, thriving challenges arise due to representation of structural

information and real-time requirement in feeds streams mining. In this paper, we

focus on the record linkage problem which classifies stream content into known cate-

gories. To realize fast and efficient record linkage over XML feeds stream, we design

two classification strategies: a classifier based on ensemble ELMs and an incremental

classifier based on OS-ELM. Experimental results show that our solutions provide

effective and efficient record linkage for event identification applications.

Keywords XML ⋅ Stream ⋅ ELM ⋅ Classification ⋅ Record linkage

1 Introduction

Content providers such as news portals (e.g., CNN, BBC, ABC, etc.) and social

media networks (e.g., Twitter, Flickr, etc.) are using RSS (Really Simple Syndica-

tion) feeds in the format of XML streams as up-to-date and inclusive content releases.

As to content providers, event mining plays a critical role in improving the quality

of content distribution and event browsing quality, and attracts wide attention and

interest in both academia and industry of information technology.

Event identification problem [1] has been addressed under two different scenarios

[2], i.e., known-event and unknown-event identification. In this paper, we only dis-

cuss known-event identification with priori knowledge of planned events. The iden-

tification phase is also referred as Record Linkage [3].
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Since the RSS feeds are XML streams essentially, as news information and the

user-generated data volume keep proliferating, record linkage task faces two major

challenges in RSS feeds stream: (1) the representation of semi-structured feeds for-

matted in XML containing both semantic and structural information; (2) efficient

classification component to handle fast and large-scale feeds stream.

Record linkage task is treated as a problem of classification over XML stream
data in this paper. We introduce Extreme Learning Machine (ELM) [4, 5] combined

with different stream processing strategies to realize real-time identification of fast

and large-scale feeds content. In summary, the contributions of this paper are sum-

marized as:

1. Based on the thorough study on XML feeds stream classification, we present a

naïve algorithm intuitively as the baseline method;

2. Following the streaming data model, we propose an ensemble based algorithm

with update strategies of ELM classifiers;

3. Taking all the historical learning experience into consideration, we propose an

online sequential algorithm based on OS-ELM;

4. Extensive experiments on real-world datasets are conducted to verify the effec-

tiveness and efficiency of our algorithm.

The remainder of the paper is organized as follows. Section 2 gives a survey on

the study of event identification and ELM. In Sect. 3 we present the data model and

problem definition. In Sect. 4 we introduce a brief of ELM theory, based on which

our algorithms are proposed based on different stream strategies for event identifica-

tion in Sect. 5. We present and discuss our experimental results in Sect. 6, and draw

conclusions in Sect. 7.

2 Related Work

Extreme Learning Machine (ELM) [4, 5] achieves extremely fast learning speed and

good generalization performance. ELM has been proven to be a powerful learning

component in many fields [6–9].

The event detection task [10, 11] was first studied to identify news events on a

continuous stream of news documents. Clustering techniques are usually applied to

discover event topics [12, 13]. In recent years, most event identification solutions

focus on social media streaming data [14–17], which takes all the features of social

media into consideration. In this paper, we focus on the record linkage task in feeds

stream, which are treated as a semantic classification problem in XML documents

stream.

In the aspect of motivation, the most similar work [18] aims at event identification

from social media RSS feeds using Naive Bayes Model. However, considering the

distinct advantages of ELM, it is a great choice to design ELM based strategies rather

than traditional learning algorithms.
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In the aspect of techniques, a similar work [19] has proposed UC-ELM and WEC-

ELM, which realize classification over uncertain data stream by utilizing weights of

instances and classifiers. WEC-ELM also applies classifier update strategies using

uncertainties as criteria. Different from UC-ELM and WEC-ELM, in this paper,

we (1) focus on XML data classification and utilize semi-structural representation

model; (2) design classifier update criteria for certain XML data learning applica-

tions other than uncertainty-related threshold. To our best knowledge, there is no

existing work on classification over XML stream aiming at record linkage task in

event identification.

3 Preliminaries

3.1 Problem Definition

In the event identification problem, each content entry will be identified with an

event topic, which is also considered as a classification problem. A feeds stream is

essentially a stream of XML documents. Each XML document contains one or more

feeds entry. Thus, we consider the record linkage task as an XML stream classifica-
tion problem.

We introduce slidingwindow to denote a finite collection of the XML stream. Note

that in most case, each XML document in the RSS feeds contains a variable num-

ber of content entries, that is, RSS feeds release up-to-date content in batches. For

convenience of definitions and calculations, we denote each element of the stream

as an XML document. Thus, we define record linkage task in event identification as

a classification problem as Definition 1.

Definition 1 (Record linkage problem) Given an RSS feeds stream S, assuming

there is a set SY ∈ S, each SYi ∈ SY is related to a known event topic ci ∈ C. For

the set SN = S ⧵ SY , the problem of record linkage is to learn a classification func-

tion 𝜑 ∶ SN → C using a learning algorithm, so that each feeds entry SNi ∈ SN will

be assigned with an event topic ci ∈ C.

3.2 XML Representation

In the feeds stream, each XML document has to be transformed into representation

model to be taken as inputs to the classifier component. In this paper, we utilize our

proposed Structured Vector Model (DSVM) [20] based on Structured Link Vector

Model (SLVM) [21] to further strengthen the ability of representation. DSVM not

only inherits the advantages of SVLM in containing structural information, but also
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benefits in feature subset selection using information gain to achieve improved rep-

resentation ability. In DSVM, an XML document with m features is represented as

𝐝DSVM = ⟨𝐝1
uji
,… ,𝐝k

uji
,… ,𝐝m

uji
⟩ (1)

where 𝐝k
uji

is the kth term feature calculated as

𝐝k
uji
=

m∑

j=1
(TF(wk, doc.ej) ⋅ 𝜀j) ⋅ IDFex(wk, c) ⋅ 𝜌CD (2)

wherem is the number of elements in XML document doc, doc.ej is the jth element ej
of doc, 𝜀j is the dot product of 1 × s unit vector and 1 × s weight vector. IDF

ex
(wi, c)

is the revised IDF. 𝜌
CD

is the distribution modifying factor, which is the reciprocal of

arithmetic product of WCD and ACD. Due to the space constraint, detailed definition

and calculation of DSVM referring in [20] will not be given in this paper.

4 Brief of ELM

In order to achieve extremely fast learning speed and good generalization perfor-

mance, Extreme Learning Machine (ELM) generates parameters of the single hidden

layer randomly to avoid iteratively tuning. Given N arbitrary samples (𝐱i, ti) ∈ 𝐑n×m
,

ELM is mathematically modeled as

L∑

i=1
𝛽i G(𝐰i, bi, 𝐱) = 𝜷 h(𝐱) (3)

where L is the number of hidden layer nodes, 𝐰i = [wi1,wi2,… ,win]T is the input

weight vector from input nodes to the ith hidden node, bi is the bias of ith hidden

node, 𝜷 i is the output weight from the ith hidden node to the output node. G(𝐰i, bi, 𝐱)
is the activation function to generate mapping neurons, which can be any nonlinear

piecewise continuous functions [22].

The ELM feature mapping denoted as 𝐇 is calculated as

𝐇 =
⎡
⎢
⎢
⎣

h(𝐱1)
⋮

h(𝐱N)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

G(𝐰1, b1, 𝐱1) ⋯ G(𝐰L, bL, 𝐱1)
⋮ ⋯ ⋮

G(𝐰1, b1, 𝐱N) ⋯ G(𝐰L, bL, 𝐱N)

⎤
⎥
⎥
⎦N×L

(4)

ELM aims to minimize the training error and the norm of output weights:

Minimize: ‖𝐇𝜷 − 𝐓‖2 and ‖𝜷‖ (5)
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Therefore, the output weight 𝜷 can be calculated as

𝜷 = 𝐇†𝐓 (6)

where 𝐇†
is the Moore-Penrose Inverse of 𝐇.

5 Classification over XML Stream

5.1 Naïve Solution

Based on the definitions of stream processing problem, we assume that learning of

classifiers focus on the stream elements in the current sliding window. That is, the

expired elements are out of value immediately. In this case, each time the sliding

window slides, we train a new classifier using the current s elements in the sliding

window to replace the former one to solve the concept drift problem.

Figure 1 shows the flow chart of our naïve solution Baseline Stream Extreme

Learning Machine (BS-ELM). The upper arrow with intervals is a feeds stream. The

overall framework of BS-ELM (as Algorithm 1) is that: (1) with the current sliding

window Xi, BS-ELM use the latest flow-in element Si+s−1 to test the former classi-

fier cli−1; (2) a new classifier is trained using all the elements of Xi; (3) the sliding

window continues to slide as the stream flows.

Classifier update

cli

 Identify event topics

Train

Next 
sliding window

Test

Xi+1 Xi Xi-1

cli-1

Si+s-1Si+jSi+1Si

Fig. 1 Flow chart of BS-ELM
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Algorithm 1: BS-ELM

Input: Feeds stream S, sliding window X with size s
Output: Classification results

X = {S1,… , Ss};1
Train an initiate classifier using X: 𝜷 = 𝐇†𝐓;2
Ss+1 flows in X and S1 expires;3
while !S.end() do4

X = {Si ∣ Si within the current sliding window};5
Calculate output of the latest flown-in element Xs: 𝐎s = 𝐇𝜷;6
Identify the event topic with the max index of 𝐎i to Ss;7
Update the classifier with the current X: 𝜷 = 𝐇†𝐓;8
The sliding windows continues to slide;9

5.2 Ensemble Strategy

The naïve algorithm BS-ELM retrains the classifier each time the sliding window

slides. In order to avoid frequent updates on the premise of concept drift detection,

we propose an Ensemble based Stream Extreme Learning Machine (ES-ELM). Com-

pared with BS-ELM, the improvement of ES-ELM are:

1. The sliding step in ES-ELM is the size of the sliding window, so that more stream

elements can participate in both the training and testing procedures;

2. The ensemble strategy combined with mechanisms such as voting theory improves

the overall classification performance;

3. ES-ELM applies a lazy strategy of classifier update, that is, whether the classi-

fiers should be updated is determined by some evaluation criteria of classification

performance.

Figure 2 presents the flow chart of ES-ELM. We assume that ES-ELM has already

trained m classifiers, namely cl1, cl2,…, clm, in the initiate phase. With the current

sliding window Xi, ES-ELM tests all the elements with each of the m ensemble clas-

sifiers. For each classifier, let’s say cli, we calculate its error rate. If the error rate

is larger than the threshold 𝜀, classifier cli will be eliminated. ES-ELM trains a new

classifier using all the elements in the current sliding window Xi to replace cli. If all

the error rate of ensemble classifiers are smaller than 𝜀, we keep all these m classi-

fiers without update. And the sliding window continues to slide as the stream keep

flowing.

ES-ELM utilizes error rate as the evaluation criterion of classifiers elimination.

The formal definition of error rate is given as follows.

Definition 2 (Error rate) For an stream element xi and a classifier clj, if xi is cor-

rectly classified by clj, we set flagxicj = 0, otherwise, flagxicj = 1. Thus, for s elements

in the current sliding window, the error rate of classifier clj is
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ERi<
Train a classifier 

to replace cl i

Yes

No

Train

Next
sliding window

Xi+1 Xi Xi-1

Si+1 Si+jSi Si+s-1

cl1 clicl2 clm

Results of 
all the 

elements 
from cl1

Results of 
all the 

elements 
from cl2

Results of 
all the 

elements 
from cl i

Results of 
all the 

elements 
from clm

Test

Fig. 2 Flow chart of ES-ELM

ERj =
Σs
i=1flag

xi
cj

s
(7)

The detailed algorithm is described as Algorithm 2.

Given a feeds stream S, the size s of sliding window X, the number of classifiers m
and the threshold 𝜀 of error rate, ES-ELM initiates m classifiers using the elements

in the initiate sliding window (Lines 1, 2). After the first slide (Line 3), for each

of the m ensemble classifiers (Lines 6–11), ES-ELM calculates the outputs of each

element Xj in the current sliding window (Lines 7, 8). Then the error rate ERi or each

classifier cli is calculated (Line 8). If the error rate ERi of classifier cli is larger than

threshold 𝜀, ES-ELM eliminates cli and trains a new classifier with all the elements in

the current sliding window X (Line 11). With all the outputs of the s elements from

the m classifiers, ES-ELM utilizes voting mechanism to identify the event topics

with max votes to each of the element (Line 12). The procedure will be executed

iteratively as the feeds stream flows.
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Algorithm 2: ES-ELM

Input: Feeds stream S, sliding window X with size s, number of classifiers m, error rate

threshold 𝜀

Output: Classification results

X = {S1,… , Ss};1
Train m initiate classifiers using X: 𝜷 = 𝐇†𝐓;2
X slides with a step of s elements;3
while !S.end() do4

X = {Si ∣ Si within the current sliding window};5
for i = 1 to m do6

for j=1 to s do7
Calculate output 𝐎i

j of element Xj using cli;8

Calculate error rate ERi of classifier cli;9
if ERi > 𝜀 then10

Update cli with a new classifier trained with all the elements in X;11

for i = 1 to s do12
Identify the event topic with the max votes of {𝐎1

i ,… ,𝐎m
i } to Xi;13

The sliding windows continues to slide;14

5.3 Online Sequential Strategy

Both BS-ELM and ES-ELM strictly follows the definitions and principles of stream

processing problem, that is, the out-of-date stream elements expire and do not con-

tribute to the learning of the current classifier. Online Sequential Extreme Learn-

ing Machine (OS-ELM) [23] realizes incremental learning, which we believe suites

the learning over data stream better. The learning of the stream elements within

the current sliding window can be incrementally combined with historical learning

experience. In this section, we propose Online Sequential Stream Extreme Learning

Machine (OSS-ELM) based on OS-ELM.

In OS-ELM, given a chunk of samples 𝐇i, which will be viewed as the set of the

elements in the current sliding window in OSS-ELM, the latest output weight 𝜷k+1
is calculated by a transition matrix 𝐏k+1 as

𝜷k+1 = 𝜷k + 𝐏k+1𝐇T

k+1(𝐓k+1 −𝐇k+1𝜷k) (8)

where

𝐏k+1 = 𝐏k − 𝐏k𝐇T

k+1(𝐈 +𝐇k+1𝐏k𝐇T

k+1)
−1𝐇k+1𝐏k (9)

Figure 3 shows the flow chart of OSS-ELM. After the initiate phase, OSS-ELM

first uses the stream elements in the current sliding window Xi to test the former

classifier cli−1 and identify event topics to the elements. Then OSS-ELM utilizes

incremental calculation to train an up-to-date classifier.
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Fig. 3 Flow chart of

OSS-ELM

cli
Incremental

Training

Test

Next sliding window

Si Si+1 Si+j Si+s-1

Xi+1 Xi Xi-1

 Identify event topics

cli-1

Algorithm 3: OSS-ELM

Input: Feeds stream S, sliding window X with size s, number of classifiers m, error rate

threshold 𝜀

Output: Classification results

X = {S1,… , Ss};1
Train an initiate classifier using X;2
X slides with a step of s elements;3
while !S.end() do4

X = {Si ∣ Si within the current sliding window};5
for i = 1 to s do6

Calculate output 𝐎i
of element Xi;7

Identify an event topic to Xi according to 𝐎i
;8

Calculate matrix 𝐇k+1 and 𝐏k+1;9
Calculate output weight 𝜷k+𝟏;10
The sliding windows continues to slide;11

Algorithm 3 describes the detailed procedure of OSS-ELM. After initialize the

sliding window (Line 1) and the classifier (Line 2), the sliding window slides with a

step of the size of the sliding window (Line 3). When processing the rest of the feeds

stream, each time given the updated stream elements set within the current sliding

window (Line 5), OSS-ELM test all the elements in X and identify event topics to

them (Lines 6–8). Then OSS-ELM calculates matrix 𝐇k+1 and 𝐏k+1 (Line 9), and

then the up-to-date output weight 𝜷k+1 (Line 10) based on OS-ELM. This procedure

also iterates while the feeds stream continues to flow.
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6 Performance Evaluation

6.1 Experiments Setup

All the experiments are conducted on a machine with Intel Core i5 3.50 GHz CPU

and 8 GB RAM. We realize our algorithms by MATLAB R2013b on 64-bit Windows

7. Two datasets of XML streams are used in our experiments, namely IBM Develop-

erWorks
1

articles and ABC News.
2

We use the feeds channels as known event topics.

For each dataset, we choose 6 event topics and 6000 feeds entries under each event

topic.

Three parameters have to be set manually in our experiments, which are the num-

ber of hidden layer nodes, the size of sliding window, and the number of ensemble

classifiers. After a set of preparation experiments, we set the number of hidden layer

nodes to 110.

6.2 Evaluation Results

6.2.1 Training Time Comparison with Varied Sliding Window Sizes

Event identification problem requires real-time processing of the fast and large-scale

data stream. Thus, we first compare the training time among BS-ELM, ES-ELM,

OSS-ELM and SVM. The size of sliding window varies from 20 to 120.

Figure 4 charts the trend of training time with the increasing size of sliding win-

dow. It can be seen that when the size of sliding window is relatively small, all the

four algorithms have high frequencies of updates. The baseline algorithm has the

fast learning speed due to its relatively simple calculation. When the size of sliding

window is larger than 60, ES-ELM and OSS-ELM have less training time. As to

ES-ELM, the lazy update strategy leads to less times of classifier retraining, and the

ensemble strategy improves the overall accuracy of the classifier component. As to

OSS-ELM, larger size of sliding window leads to less incremental calculation.

6.2.2 Classificaton Performance Comparison with Varied Sliding
Window Sizes

The other important evaluation criterion is classification performance. Figure 5

present the classification performance comparison among BS-ELM, ES-ELM, OSS-

ELM and SVM on different datasets.

1
http://www.ibm.com/developerworks.

2
http://abcnews.go.com.

http://www.ibm.com/developerworks
http://abcnews.go.com
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Fig. 4 Training time comparison. a Dataset IBM. b Dataset ABC News
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Fig. 5 Classification performance comparison. a Accuracy on IBM. b Accuracy on ABC. c Recall

on IBM. d Recall on ABC. e F1 on IBM. f F1 on ABC

From this set of experimental results, we find that BS-ELM has the lowest per-

formance, since BS-ELM utilizes the naïve strategy to learn classifiers with only the

stream elements in the sliding window. SVM based methods has the similar perfor-

mance to BS-ELM. ES-ELM has a higher performance due to its ensemble strategy.

OSS-ELM has the highest performance, since it takes all the historical learning expe-

rience into consideration without expiring any former elements. On the other hands,

all these four algorithms gain higher performance when the size of sliding window

increases.

6.2.3 Influence of Ensemble Number on ES-ELM

As to ES-ELM, a parameter of ensemble number has to be set manually. Ensemble

number decides the number of classifiers being maintained by ES-ELM. Figure 6

shows the influence of ensemble number on the classification performance of

ES-ELM.
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Fig. 6 Classification performance comparison with varied ensemble numbers. a Accuracy.

b Recall. c F-measure

Figure 6a shows the trend of accuracy as the ensemble number increases. Figure 6b

shows the trend of recall and Fig. 6c shows the trend of F-measure. This set of exper-

iments demonstrate that though training more classifiers cost more learning time,

more ensemble classifiers lead to better classification performance.

7 Conclusion

Record linkage task in RSS feeds is treated as classification problem over XML

stream in this paper. We propose ELM based algorithms with ensemble strategy

and online sequential strategy respectively to realize efficient classification over fast

and large-scale XML stream. Experimental results indicate that our algorithms gains

effectiveness and efficiency for XML stream problems, which provides practical

guidance to event identification applications.
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Timeliness Online Regularized Extreme
Learning Machine
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Abstract A novel online sequential extreme learning machine (ELM) algorithm

with regularization mechanism in a unified framework is proposed in this paper.

This algorithm is called timeliness online regularized extreme learning machine

(TORELM). Like the timeliness managing extreme learning machine (TMELM)

which incorporates timeliness management scheme into ELM approach for the incre-

mental samples, TORELM also processes data one-by-one or chunk-by-chunk under

the similar framework, while the newly incremental data could be prior to the histor-

ical data by maximizing the contribution of the newly increasing training data. Fur-

thermore, in consideration of the disproportion between empirical risk and structural

risk in some traditional learning methods, we add regularization technique to the

timeliness scheme of TORELM through the use of a weight factor to balance them to

achieve better generalization performance. Therefore, TORELM may has its unique

feature of higher generalization capability with a small testing error while imple-

menting online sequential learning. And the simulation results show that TORELM

performs better than other ELM algorithms.
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1 Introduction

Neural networks (NNs) have been widely used in machine learning due to their

ability of solving those problems that classical techniques are not able to deal

with. Among the available NN-based machine learning algorithms, extreme learning

machine (ELM) for single-hidden layer feedforward network (SLFN) has attracted

much attention because of its quickness and simplicity [1–5]. Usually, the traditional

ELM algorithm would make full use of training data to establish an ELM model.

Therefore, it may be difficult to obtain the whole samples only once time in the real

situations. Then, the newly incremental data and historical data need to be separated.

To avoid such limitation, an online sequential ELM (OSELM) was proposed to learn

data one-by-one or chunk-by-chunk with fixed or varying chunk size [6]. And it will

discard those data for which the training has been already done. And only new arrived

single or chunk of samples are handled and learned.

Furthermore, some practice experiences show that the newer data has more effec-

tive and obvious relevance than it of the older data. Thus, a timeliness should be taken

into consideration for the newly incremental data in some actual applications. And

those newly incremental data play a critical role in implementing the learning task.

With this problem considered, a timeliness managing ELM (TMELM) was proposed

through the full use of the incremental data [7]. Through the use of the adaptive time-

liness weight and iteration scheme in TMELM, the incremental data can contribute

reasonable weight to represent the current situation to ensure the stability of the

model.

Although ELM is extremely fast in speed and has good generalization ability,

its solution has some drawbacks. First, ELM based on empirical risk minimization

(ERM) principle [8] is very likely to result an over-fitting model. Also, it provides

weak control capacity since it directly calculates the minimum norm least-squares

solution. Finally, it does not consider heteroskedasticity in real applications. In order

to address these issues, regularization based on structural risk minimization (SRM)

is taken into consideration. According to statistical learning theory [9], the real pre-

diction risk of learning is consisted of empirical risk and structural risk. A model

with good generalization ability should have the best tradeoff between the two risks.

So, a weight factor for empirical risk is introduced to regular the proportion of the

SRM and ERM to achieve better generalization performance [10]. Motivated by it,

a novel algorithm named timeless online regularized ELM (TORELM) is proposed

in this paper. This approach can overcome singular and ill-posed problems by using

regularization mechanism while implementing online sequential learning. And, the

generalization performance of this algorithm is improved. Simulation results show

that it is faster to achieve the minimize error than the traditional algorithms.

The rest part of this paper is organized as follows: Sect. 2 briefly describes the

related works related to ELM and OSELM, Sect. 3 proposes an implementation of

TORELM for the prediction, Sect. 4 analyzes the performance of proposed algorithm

via simulation, and Sect. 5 provides a conclude for this paper.
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2 ELM and OSELM

For N arbitrary distinct training samples {(𝐱i, 𝐭i)Ni=1}, where 𝐱i = [xi1, xi2,… , xin]T ∈
ℝn

and 𝐭i = [ti1, ti2,… , tim]T ∈ ℝm
, the corresponding output function of ELM with

L hidden neurons and activation function g(⋅) are mathematically modeled as (1) and

𝐰j = [wj1,wj2,… ,wjn]T is the weight vector connecting the jth hidden neuron, the

input neurons 𝛽j = [𝛽j1, 𝛽j2,… , 𝛽jm]T is the weight vector connecting the jth hidden

neuron and the output neurons, and bj is the threshold of the jth hidden neuron. In

addition, 𝐰j ⋅ 𝐱i denotes the inner product of 𝐰j and 𝐱i [11].

𝐭i =
L∑

j=1
𝛽jg(𝐰j ⋅ 𝐱i + bj), (1)

The above N equations can be written compactly as:

𝐇𝛽 = 𝐓, (2)

Here, 𝐇 is called the hidden layer output matrix of the SLFN. And the ith column of

𝐇 is the ith hidden node output with respect to the inputs 𝐱1, 𝐱2,… 𝐱N . The ith row

of 𝐇 is the hidden layer feature mapping with respect to the ith input 𝐱i.
The orthogonal projection method can be efficiently used in ELM:𝐇† = (𝐇T𝐇)−1

𝐇T
if 𝐇T𝐇 is nonsingular, where 𝐇†

is the Moore-Penrose generalized inverse of 𝐇.

Therefore, the solution of 𝛽 is [12]:

𝛽 = 𝐇†𝐓 = (𝐇T𝐇)−1𝐇T𝐓. (3)

Furthermore, OSELM as an incremental learning algorithm does not need to handle

all the samples [6]. The effect of incremental data is influenced by the correction

𝛥𝛽, which modifies the historical model 𝛽0 to form a new model 𝛽
∗

based on the

following equation:

𝛽

∗ = 𝛽0 + 𝛥𝛽(X∗). (4)

In [13], a solution to this model was provided. The detailed steps are as follows.

Given a chunk of initial training set of safety data ℵ0 = {(𝐱i, 𝐭i)
N0
i=1} (N0 ⩾ L), under

the ELM scheme, we can find that

𝛽0 = 𝐊−1
0 𝐇T

0𝐓0, (5)

where 𝐊0 = 𝐇T
0𝐇0. Then, suppose that we are given another chunk of data set

ℵ1 = {(𝐱i, 𝐭 i)
N0+N1
i=N0+1

}, where N1 denotes the number of new samples in this data set.

Considering both training data sets ℵ0 and ℵ1, the output weight 𝛽1 becomes [6]:
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𝛽1 = 𝐊−1
1

[
𝐇0
𝐇1

]T [𝐓0
𝐓1

]

= 𝛽0 +𝐊−1
1 𝐇T

1 (𝐓1 −𝐇1𝛽0), (6)

where

𝐊1 =
[
𝐇0
𝐇1

]T [𝐇0
𝐇1

]

= 𝐊0 +𝐇T
1𝐇1.

As can be seen from (6), the calculation of 𝛽1 is based on 𝛽0, which will improve

the computational efforts. Then, (𝐓1 −𝐇1𝛽0) is obtained by using the old model

parameters 𝛽0, where𝐇1𝛽0 is considered the error of predicting the newly added data.

With the increase of incremental number, after (k + 1) times incremental learning,

the model parameter can be written as follows:

𝛽k+1 = 𝛽k +𝐊−1
k+1𝐇

T
k+1(𝐓k+1 −𝐇k+1𝛽k). (7)

3 Timeless Online Regularized Extreme Learning Machine
(TORELM)

Different from OSELM, under the adaptive timeliness weight and iteration scheme

in TMELM, the incremental data can contribute reasonable weights to represent the

current situation [7]. The current collection of data has higher contribution to the

system model. Thus, a penalization weight w is designed to adjust the contribution

of data. Then, (7) can be rewritten as [7]:

𝛽k+1 = 𝛽k + w ⋅𝐊−1
k+1𝐇

T
k+1(𝐓k+1 −𝐇k+1𝛽k). (8)

Here, the penalization weight w reflects the timeliness effect of newly incremental

data. Moreover, w can be expressed as follows [14]:

w = 1 + 2 ⋅ exp(−|mean(a1)−mean(a2)||var(a1)−var(a2)|), (9)

where a1 is the newly incremental data, a2 is the history adjacent incremental data,

mean is the function used to obtain the mean value and var is the function used to

obtain the variance value.

In our TORELM, the model parameter is updated with (8).
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3.1 Regularization

ELM is still able to be considered as empirical risk minimization theme and tends to

generate over-fitting model. Additionally, since ELM doesnt consider heteroskedas-

ticity in real applications, its performance will be affected seriously when outliers

exist. Thus, regularization is being taken into consideration for the calculation of

error [10].

Generally, we may wish to obtain specific 𝐰i, 𝛽i, bi(i = 1, 2,… ,N) to meet empir-

ical risk minimization and structural risk minimization. So, (1) should be written as

min ||𝜺||2

s.t.

L∑

i=1
𝛽ig(𝐰i ⋅ 𝐱j + bi) − 𝐭j = 𝜺j, j = 1, 2,… ,N (10)

where 𝜺j = [𝜀j1, 𝜀j2,… , 𝜀jm] is the resident between target value and real value of the

jth sample, and 𝜺 = [𝜺1, 𝜺2,… , 𝜺N].
According to statistical learning theory, the real prediction risk of learning is con-

sisted of empirical risk and structural risk. And a weight factor 𝛾 is introduced to be

regularized for empirical risk. The empirical risk is represented by ||𝜀||2 and struc-

tural risk is represented by ||𝜏||2 which is obtained by maximizing the distance of

margin separating classes [15]. Moreover, with the purpose of obtaining a robust

estimate weakening outlier interference, the error 𝜺j is weighted by variable vi. Thus,

||𝜀||2 is going to be extended to ||𝐃𝜀||2, where 𝐃 = diag(v1, v2,… , vN). Therefore,

the proposed regularized mathematic model can be written as follows [10]:

min 1
2
||𝜏||2 + 1

2
𝛾||𝐃𝜀||2

s.t.

L∑

i=1
𝛽ig(𝐰i ⋅ 𝐱j + bi) − 𝐭j = 𝜺j, j = 1, 2,… ,N

(11)

We can adjust the proportion of empirical risk and structural risk by means of chang-

ing 𝛾 . The Lagrangian function for (11) can be described as:

L(𝜏, 𝜀, 𝛼) = 𝛾

2
||𝐃𝜀||2 + 1

2
||𝜏||2 −

N∑

j=1
𝛼j(

L∑

i=1
𝛽ig(𝐰i ⋅ 𝐱j + bi) − 𝐭j − 𝜺j)

= 𝛾

2
||𝐃𝜀||2 + 1

2
||𝜏||2 − 𝛼(𝐇𝛽 − 𝐓 − 𝜺), (12)

where 𝛼j ∈ ℝ (j = 1, 2,… ,N) is the Lagrangian multiplier with the equality con-

straint of (11) in (12).

Then, the method of solving this equation is described as:

𝜕L
𝜕𝛽

→ 𝛽

T = 𝛼𝐇,

𝜕L
𝜕𝜀

→ 𝛾𝜺T𝐃2 + 𝛼 = 0,
𝜕L
𝜕𝛼

→ 𝐇𝛽 − 𝐓 − 𝜺 = 0.
(13)
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By solving (13), we will obtain the solution of 𝛽:

𝛽 =
(
𝐈
𝛾

+𝐇T𝐃2𝐇
)†

𝐇T𝐃2𝐓, (14)

where 𝐈 is an unit matrix.

There are many kinds of method to compute the weights vj [16], e.g.

vj =
⎧
⎪
⎨
⎪
⎩

1
c2−|𝜀j∕ŝ|
c2−c1
10−4

|𝜀j∕ŝ| ≤ c1
c1 ≤ |𝜀j∕ŝ| ≤ c2

otherwise

(15)

where ŝ is robust estimate of the standard deviation of the unweighted regularized

ELM error variables 𝜀j, and

ŝ = IQR

2 × 0.6745
. (16)

The inter quartile range (IQR) is the difference between the 75th percentile and the

25th percentile. During the process of estimating ŝ, one takes into account how much

the estimates error distribution deviates from a Gaussian distribution. In addition, the

constants c1 and c2 are set as 2.5 and 3, respectively [17].

3.2 Algorithm Framework

The framework of TORELM is summarized as follows:

(1) Assign the model parameters by N0 initial samples, such as the number of hid-

den neurons L, activation function g(⋅).
(2) Determine arbitrary input weight 𝐰i and bias bi, i = 1,… ,L.

(3) Calculate the initial hidden layer output matrix 𝐇0.

(4) Calculate the 𝛼 and 𝜀i respectively based on 𝛼 = −𝛾(𝐇0𝛽0 − 𝐓0)T and 𝜀i =
𝛼i

𝛾

(i = 1, 2,… ,N0). Also, ŝ and weights of vj are supposed to be computed.

(5) Update the initial output weight 𝛽0 = ( 𝐈
𝛾

+𝐇T
0𝐃

2𝐇0)†𝐇T
0𝐃

2𝐓0.

(6) Add a group of samples ℵ1 and calculate the penalty weight w using (9).

(7) Calculate 𝐇1 and 𝛽1 using ℵ1 and (6). Here, k is set to 1.

(8) Calculate 𝛽k using (8) and j = 0.

(9) If |𝛽k(j+1) − 𝛽k(j)| < 𝜎, the iteration stops, else

𝛽k(j+1) = 𝛽k(j) + w ⋅𝐊−1
k+1𝐇

T
k+1(𝐓k+1 −𝐇k+1𝛽k(j)). Then, j = j + 1.

(10) Obtain 𝛽k(j+1).

(11) Learn new increment data with k = k + 1 and skip to step 8.
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4 Simulation Results and Discussions

4.1 Simulation Description

The idea behind of TORELM is to strengthen the recent data and weaken the older

data with the goal of SRM and ERM. In order to test the effectiveness of this algo-

rithm, we evaluate the performance of TORELM through the successful prediction

rate. Meanwhile, the performance of TORELM is also evaluated by comparing dif-

ferent traditional schemes, including OSELM, WOSELM [14], and TMELM. The

difference between WOSELM and TMELM is the selection of penalization weight

w. The adaptive weight is calculated in TMELM instead of fixed weight used in

WOSELM.

In addition, the performance of accuracy is evaluated by prediction error. And

in this paper, we use the root mean square error (RMSE) to measure the prediction

error between the predicted value and the actual value.

4.2 Results and Discussions

The initial data are randomly generated the same as [14]. Let X be the input data

set. It is randomly generated in the range [−10, 10] and the output value Y meets the

‘SinC’ relationship with X according to (17).

X = 20 ⋅ rand(1,Q) − 10, Y = sin(X)
X

, (17)

where Q is the number of data.

To make the whole data set more like a real world problem. We add noise in the

range [−0.4, 0.4], that is:

Y = Y + 0.8 ⋅ rand(1,Q) − 0.4. (18)

Taking timeliness into consideration, the distribution of incremental data does not

ought to be the same as that of initial data. Therefore, the incremental data X is

obtained using (19). And the output Y is adjusted with a scalar and bias as follows:

X = 20 ⋅ rand(1,Q) + 10, Y = A ⋅
sin(X)
X

+ B, (19)

where A and B are set 1.5 and 2, receptively.

The testing data are generated the same as incremental data. And, the initial num-

ber of data is 1000, the number of hidden neurons is 50, the activate function is radial

basis function (‘rbf’), the number of increment is 10, and the number of incremental
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Fig. 1 Testing errors with

different weights
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data is 500 once. In our new algorithm, we first study the relationship between dif-

ferent weight and RMSE, which is showed in Fig. 1. If the testing data is not closer to

the incremental data, it will produce a large testing error. So, we should take the test-

ing error into consideration. In Fig. 1, the increasing value of weight within [1,10],

the testing error first comes down, then goes up. And the weight of w is set as 2
which is better than others.

In our algorithm, a weight factor 𝛾 is being trained to balance the empirical risk

and structural risk. In order to obtain the relationship between 𝛾 and the testing error,

we set different value of 𝛾 to test. From Fig. 2, we can see that the testing error is

relatively small and it reaches the bottom level after a declination. When the log2 𝛾
is set to −4, the performance is best.

The performance of TORELM and other ELM-based learning algorithms is

compared. Figure 3 shows the testing error of different algorithms. During the
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Fig. 3 Performance

comparison in testing error
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computation, with the increase of increment number, the training data will be larger

that covers more samples. Thus, the testing error for all algorithms comes down.

From Fig. 3, we can see that with the increase of increment number, the testing

error shows a decreasing trend. However, the testing error of OSELM is the high-

est because of its absence of weight scheme. Compared with OSELM, WOSELM

using a fixed weight has a smaller testing error on the data. But, a fixed weight is

not reasonable for the varied training data. Then, TMELM is being trained to obtain

a good testing accuracy and it does achieve a fine result. Furthermore, considering

the disproportion between empirical risk and structural risk, regularization is used to

develop TORELM based on TMELM. Unsurprisingly, TORELM quickly achieves

small testing error and stability due to its anti-noise function and weight scheme.

Moreover, TORELM is more stable than other algorithms due to its regulation. Thus,

the generalization performance of the proposed algorithm is improved.
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Figure 4 shows the training time consumption. Even though TORELM algorithm

employs iteration and weight schemes, it just costs a litter more time than OSELM.

On the whole, TORELM is more outstanding than others. It achieves good perfor-

mance both in testing error and time consumption.

5 Conclusion

Motivated by TMELM, a novel online sequential learning algorithm TORELM with

regularization mechanism is proposed. This algorithm can implement processing

task as OSELM by learning data one-by-one or chunk-by-chunk. After employing the

timeliness management and adaptive weight techniques to train the samples under

TMELM scheme, our proposed algorithm considers empirical risk and structural risk

with a good tradeoff between them. A weight factor for empirical risk is introduced

to implement regularization for the proportion of structural risk and empirical risk

to achieve better generalization performance and strengthen the control ability. Then

this optimal model with the minimum prediction error could be achieved by selecting

appropriate weight factor. In addition, the proposed scheme holds strong anti-noise

ability when outliers exist in the dataset. Therefore, we can see that the performance

of TORELM is better than that of other ELM-based algorithms through the analysis

of simulation results. It spends less time to achieve the minimum error when the

data has noise samples. In doing so, it may be more feasible that the incremental

data can contribute reasonable weight and appropriate proportion of structural risk

and empirical risk to obtain an optimal model.
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An Efficient High-Dimensional Big Data
Storage Structure Based on US-ELM

Linlin Ding, Yu Liu, Baoyan Song and Junchang Xin

Abstract With the rapid development of computer and the Internet techniques, the

amount of data in all walks of life increases sharply, especially accumulating numer-

ous high-dimensional big data such as the network transactions data, the user reviews

data and the multimedia data. The storing structure of high-dimensional big data is

a critical factor that can affect the processing performance in a fundamental way.

However, due to the huge dimensionality feature of high-dimensional data, the exist-

ing data storage techniques, such as row-store and column-store, are not very suit-

able for high-dimensional and large scale data. Therefore, in this paper, we present

an efficient high-dimensional big data storage structure based on US-ELM, High-

dimensional Big Data File, named HB-File, which is a hybrid storage model of

row-store and column-store. With the intensive experiments, we show the effective-

ness of HB-File for storing the high-dimensional big data.

Keywords US-ELM ⋅ HDFS ⋅ Big data ⋅ High-dimensional data

1 Introduction

With the rapid development of computer and the improvement of human cogni-

tive abilities, the understanding view and depth of things by human also continues

extending and deepening. Many attributes are derived to describe the things and

entities, so the high-dimensional data is generated, such as the network transactions

data, the user reviews data and the multimedia data. Especially when the era of
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data explosion comes, many data sets to be processed and analyzed are being the

“big data”, so more and more high-dimensional data forms the high-dimensional

big data. For example, the number of user comments is close to 3.2 billion every

day in Facebook. The high-dimensional big data mixes the typical features of both

high-dimensional data and big data, which brings the new problems and challenges

of the query processing and optimization of high-dimensional big data. In this case,

the storing structure of high-dimensional big data is a critical factor that can affect

the processing performance in a fundamental way.

However, the existing storage structures of big data are not suitable for storing

high-dimensional big data. For example, the column-store structure, typical HBase

[1], is very fit for storing the data with sparse columns features. But, due to the

large amount and high coherence among dimensions of high-dimensional big data,

if we use the pure column-store technology to manage high-dimensional big data,

there would be numerous join operations among the dimensions during recovering

the data. Instead, if we use row-store structure, typical HDFS [2], to store the high-

dimensional big data, the single data record would be very long due to so many data

dimensions. So, each data block only has a little high-dimensional big data records,

which would reduce the storage efficiency. In a word, it is an urgent need to design

efficient storage model for efficient storing high-dimensional big data.

Therefore, in this paper, we present an efficient high-dimensional big data stor-

age model, High-dimensional Big Data File, named HB-File. First, a table stored

high-dimensional big data in HB-File vertically partitioned into two tables, respec-

tively key dimension table and non key dimension table, which are confirmed by US-

ELM [3] and FCM [4] algorithms. Second, the non key dimension table is directly

stored in HDFS. The key dimension table is stored in HBase according to the cluster

results of US-ELM and FCM. Each key dimension cluster is stored in a column fam-

ily of HBase. Then, HB-File utilizes a column-wise data compression within each

column group to avoid unnecessary column decompression during query execution.

So, according to the characteristics of high-dimensional big data, HB-File is a mixed

data storage structure combining proper column and row storage based on US-ELM

and FCM.

The remainder of this paper is organized as follows. Section 2 briefly introduces

the background, containing the ELM, US-ELM and the data placement for big data.

Our HB-File structure is proposed in Sect. 3. The experimental results to show the

performance of HB-File are reported in Sect. 4. Finally, we conclude this paper in

Sect. 5.

2 Background

2.1 Review of ELM and US-ELM

Nowadays, Extreme Learning Machine (ELM) [5] and its variants [6–8] have the

characteristics of excellent generalization performance, rapid training speed and lit-

tle human intervene, which have attracted increasing attention from more and more
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researchers. ELM is originally designed for single hidden-layer feedforward neural

networks (SLFNs [9]) and is then extended to the “generalized” SLFNs. Though

ELMs have become popular in a wide range of domains, ELMs are primarily applied

to supervised learning problems such as classification and regression, which greatly

limits their applicability. Obtaining labels for fully supervised learning is time con-

suming and expensive, while a multitude of unlabeled data are easy and cheap to

collect. Only a few existing research works based on ELM can process the problem

of semi-supervised learning or unsupervised learning. The manifold regularization

framework was added into the ELM for processing labeled and unlabeled data [10],

which extended ELMs for semi-supervised learning.

The US-ELM extends ELMs to handle unsupervised learning problems and inher-

its the computational efficiency and the learning capability of traditional ELMs.

The US-ELM uses spectral techniques for embedding and clustering by combin-

ing Laplacian Eigenmaps (LE) [11] and spectral clustering (SC) [12]. In all these

algorithms, an affinity matrix is first built from the input patterns. When LE and SC

are used for clustering, then k-means is adopted to cluster the data in the embedded

space. The US-ELM consists of two stages: the random feature learning stage and the

output weights learning stage. The random feature learning stage can generate the

hidden layer, which is the essence of the ELM theory. The output weights learning

stage of US-ELM is obtained by solving a generalized eigenvalue problem.

2.2 Data Storage for Big Data

In recent years, MapReduce [13] and its variants [14–16] have become the common

methods of processing big data [17] and gained series of the research achievements.

For data storage of big data based on MapReduce, there are mainly three data storage

structures widely used, horizontal row-store, vertical column-store and hybrid store

structure.

For horizontal row-store [18, 19], the row-store structure adopts the one-size-

fits-all method to store data. Data records are placed contiguously in a disk page.

The major advantage of row-store for a Hadoop-based system is that it has fast data

loading and strong adaptive ability to dynamic workloads. But, the row-store cannot

provide fast query processing and cannot achieve a high data compression.

For vertical column-store [20, 21], the vertical store scheme is based on a column-

oriented store model for read-optimized data warehouse systems. In a vertical stor-

age, a relation is vertically partitioned into several sub-relations. Column-store can

avoid reading unnecessary columns during a query execution, and can easily achieve

a high compression ratio by compressing each column within the same data domain.

However, column-store cannot guarantee that all fields in the same record are located

in the same cluster node.

For hybrid store structure, the main representatives are PAX [22], RCFile [23] and

their improvements. For a record with multiple fields from different columns, PAX

puts them in a single disk page to save additional operations for record reconstruc-
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tions. Within each disk page, PAX uses a mini-page to store all fields belonging to

each column, and uses a page header to store pointers to mini-pages. RCFile applies

the concept of “first horizontally-partition, then vertically-partition” from PAX. It

combines the advantages of both row-store and column-store.

Though each of these structures has its own advantages to store data records in

different situations, all the structures are not very fit for storing the high-dimensional

big data. The reason is that high-dimensional big data has not only huge data dimen-

sions and data volume, but also the coherence of the dimensions is very high. Pure

row-store structure and pure column-store structure are not satisfy the features of

high-dimensional big data obviously. The PAX structure use column-store inside

each disk page which cannot improve the I/O performance for big data. RCFile first

horizontally partitioned the data records using row-store, where the non key dimen-
sion of high-dimensional big data would waste a lot of computation and transfer. So,

it is necessary to design an efficient data structure for high-dimensional big data.

3 The Design of HB-File Structure

3.1 Overview of HB-File

In this section, we present HB-File (High-dimensional Big Data File), a data place-

ment structure designed for high-dimensional big data storage structure in Hadoop

ecosystem. HB-File applies the concept of “first vertically-partition, then hori-
zontally partition, last vertically compression” according to the characteristics of

high-dimensional big data. It combines the advantages of both row-store and column-

store. First, as column-store, HB-File can store the dimensions of high-dimensional

big data separately following our design, so it can skip unnecessary column reads.

Second, as row-store, HB-File guarantees the similar data in key dimension are

located in the same node to reduce the network transfer. Last, HB-File can exploit

a column-wise data compression to skip unnecessary column reads. HB-File is

designed and implemented on the Hadoop Distributed File System (HDFS). Figure 1

shows the workflow of HB-File structure.

First, we divide the whole data dimensions of high-dimensional big data into key
dimension and non key dimension by using US-ELM and FCM algorithm with sam-

pled data. Then, The non key dimension of data records are directly stored in HDFS

blocks for their features. Because the key dimension of data records forms several

clusters, each cluster will be stored in one column group, and then be partitioned

horizontally into blocks according to the design of HB-File. Last, the columns in

each column group of HB-File can be compressed.
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Fig. 1 Overview of HB-File structure

3.2 Choose Key and Non Key Dimension

The dimensions of high-dimensional big data are huge and the correlations of these

dimensions are very tight, so pure column-store or pure row-store can not be used for

efficient storing of high-dimensional big data. The dimension information of high-

dimensional big data shows obvious clustering characteristics. That is to say, the

huge dimensions can be divided into many clusters by suitable cluster algorithms.

The dimensions in the same cluster have similar attributes and information. If the

features of one cluster can be found, it can be used for representing the cluster. So,

it is necessary to use the cluster information to enhance the storing efficiency of

high-dimensional big data. There are many methods to represent a cluster. Because

each cluster has its cluster centric, in this paper, we use the cluster centric as the key
dimension. The definition of key dimension is shown in Definition 1.

Definition 1 (Key Dimension) The high-dimensional big data can be clustered into

many clusters. The clustering centric dimension of each cluster is defined as the key
dimension of this cluster.

According to the definition of key dimension, many cluster algorithms can be used

to identify the key dimension. As shown above, the US-ELM extends ELMs to han-

dle unsupervised learning problems and inherits the computational efficiency and

the learning capability of traditional ELMs. There are two main stages in the train-

ing process, the random feature learning stage and the output weights learning stage.
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In the first stage, it is the essence of the ELM theory to generate the random feature

learning, which is the embedding matrix of the training data. For high-dimensional

big data, this stage can be also regarded as the dimensionality reduction. In the sec-

ond stage, the US-ELM treats each row of the embedding matrix as a point, and

clusters the N points into k clusters using k-means algorithm. However, the number

of clusters about the high-dimensional big data can not be identified and estimated

easily according to the characteristics of high-dimensional big data, so k-means algo-

rithm is not suitable for the clustering of key dimension. That is to say, US-ELM

algorithm can be used for identifying the embedding matrix of high-dimensional

big data.

In this paper, according to the characteristics of high-dimensional big data, we

improve the US-ELM algorithm to cluster the dimensions by adding FCM algo-

rithm. The fuzzy c-means algorithm (FCM) is a widely used clustering algorithm,

which can cluster the data records according to the features. The clustering course

containing US-ELM and FCM is used to cluster the dimensions of high-dimensional

big data. There are also two stages in this course, the first course is the same to the

first stage of US-ELM, and the embedding matrix can be gained in the first stage.

Then, in the second stage, we use FCM algorithm to cluster the embedding matrix of

high-dimensional big data. Because the FCM algorithm can identify the cluster cen-

tric, the key dimension can be gained. The dimensions of key dimension and non key
dimension can be divided. However, due to the huge dimensions of high-dimensional

big data, after one course of US-ELM and FCM, the number of key dimension is still

very large, so it is necessary to design the method of gaining the proper key dimen-
sion. This course of US-ELM and FCM can be a loop. The loop can find the cluster

centric, so it is needed to design a standard. There are two standards for identifying

the cluster centric. Once the clustering results remain stable or the number of cluster

centrics reach the predefined value, this loop can be stopped.

3.3 Horizontal Partition and Data Compression

After the above course, the key dimension and non key dimension of high-dimensional

big data can be gained. Then, the non key dimension of data records are stored in

HDFS according to the principle of HDFS. The key dimension of data records are

stored in column groups according to the cluster results of data records. One cluster

is stored in a column group. In each column group, the data records are partitioned

horizontally. In order to efficiently store the data records, the similar data records

should be stored in the same data nodes to minimize network transfer. So, in all clus-

ters of key dimension, we use Definition 2 to define the primary key dimension. After

that, we partition the data records horizontally in each column group by the primary
key dimension. We store high-dimensional big data into HB-File, each dimension

will be stored into a column, the column stored key dimension will be called as key
column.
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Definition 2 (Primary Key Dimension) The biggest variance of clustering centric

dimension of key dimension is defined as the primary key dimension of data

records.

After horizontal partition, in each column cluster, the column information can be

compressed. Because all the values in the same column are the same type so they

can be compressed well. HB-File takes two kinds of compression. One is normal

Gzip algorithm to compress non key dimension and the other one is the RLE (Run

Length Encoding) algorithm to compress key dimension. Since key dimension inHB-
File will be involved in massive computations and decompressions when processing

queries, it is not suitable for Gzip algorithm. We use RLE algorithm to compress key
dimensions as the RLE algorithm can find the long runs of the same data records.

With RLE compression algorithm, we can avoid unnecessary data read and decom-

pression of other dimensions. RLE algorithm gets the most optimal compression

effect in sorted sequence, but sorting all the columns will waste a lot of time. So we

only use it on the key dimensions that will reduce the sorting time and data restructing

time. While compressing all the column data, after horizontal partition, according to

the concept of “each column cluster stores in a column group”, we sort the key col-
umn of the column group and store the whole column group into HB-File. Because

of existing the updates, we do not need to guarantee that all the HB-Files is in order

but we must guarantee that key column is in order in each HB-File. Then compress

HB-File by RLE for key column and Gzip for non key column.

4 Performance Evaluation

4.1 Experimental Setup

The experimental setup is a Hadoop cluster running on 9 nodes in a high speed

Gigabit network, with one node as the Master node, the others as the Slave nodes.

Each node has an Intel Quad Core 2.66 GHZ CPU, 500 GB disk, 4 GB memory and

CentOS Linux 6.4. We use Hadoop 0.20.2 and compile the source codes under JDK

1.7. The US-ELM algorithm is implemented in MATLABR2009a.

We have conducted a comprehensive evaluation of HB-File using synthetic data

sets. We generate different data sizes and different dimension numbers of our experi-

ment data. The data sizes are from 128 GB to 1 TB, where the default size is 128 GB.

The dimension numbers are from 120 to 300, where the default dimension num-

ber is 120. We compared HB-File with RCFile, row-store and column-store in three

aspects, space occupancy rate, data loading time and query execution time.
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4.2 Experimental Results

Space Occupancy Rate. We generate different sizes and dimension numbers of raw

data to measure the data space occupancy rate. Space occupancy rate is the rate of

the actual data space occupancy and real data size.

Figures 2 and 3 show the space occupancy rate of different storage structures with

different data sizes and dimension numbers. Figure 2 shows that the space occupancy

rate of all the storage structures grow with the increasing of data volume, since the

meta data grows while the records of data set is greater. Meta data and real column

data are not compressed together so that they will effect the compression efficiency.

From Fig. 2 we can also conclude that except for raw data, row-store structure has the

worst compression efficiency compared with column-store structure, since a column-

wise data compression is much better than a row-wise data compression with mixed

data domains.
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From Fig. 3 we can see that the growth of dimensions effects the rate much

more than the growth of data volume. The reason is that the growth of dimensions

will lead to the increasing of meta data columns, and it will limit the compression

performance. So we can see HB-File has slightly better compression than RCFile,

because US-ELM has clustered all the similar column previously, and a Column

Controller holds all the meta data of a column group. While storing column meta

data and real column data together, it cannot compress them separately. So, with too

many columns in high-dimensional big data, RCFile cannot perform well because

each column has a column holder and column holders burden on the compression

performance.

Query Execution Time. We designed three groups of experiments to demon-

strate the effectiveness of HB-File for different kinds of queries, range query, multi-

ple columns query and similarity query.

(1) Range query. We execute range query on the above data set. The query finds

all the results that meet the where clause condition, like “where a<x<b”, where x is

an attribute in the table, a and b is the upper and lower bounds of x.

According to Fig. 4, query on row-store is the slowest. While querying on row-

store structures, query executor has to read all the unnecessary columns of a record

so that it will waste a lot of time. HB-File is the fastest among all the column-store

structures. Data in HB-File is stored in order, so when processing a range query, HB-
File can avoid unrelated file blocks by using ordered data records and improve query

performance.

(2) Mutiple columns query. We also execute multiple columns query on the above

table. Compared with range query, multiple columns query includes more than one

column. We design a multiple columns query to demonstrate the effectiveness of

HB-File.

Figure 5 shows the execution times of the multiple columns query with the four

data storage structures. RCFile is much slower than HB-File. The reason is that when

processing related columns query, RCFile needs much network I/O and join oper-

ations since RCFile does not store related column together. While our HB-File has
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Fig. 5 The performance of
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preprocessed the high-dimensional data into column group via US-ELM, each col-
umn group stores on the same node so that it can avoid lots of join operations and

network transmission.

(3) Similarity query. Besides the two queries above mentioned, similarity query

is also very common in high-dimensional big data. We define Euclidean distance

as the metric of similarity. As Fig. 6 shows, similarity on HB-File is faster than any

other storage structures. For the reason, HB-File can only compute the distance by

key dimensions that are regarded as the representatives of all the column groups.

So similarity query can be much faster and more accurate on HB-File. While other

storage structures do not differentiate key dimensions from the all, so they cannot

avoid computing all the columns. High-dimensional big data has large amounts of

columns so the query costs much more calculations and takes longer executing time.
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5 Conclusions

The management of high-dimensional big data is the research hot of database. The

storing of high-dimensional big data is important for the query and analysis of high-

dimensional big data. In this paper, we present an efficient high-dimensional big data

storage model, named HB-File. First, a table stored high-dimensional big data in

HB-File vertically partitioned into two tables, respectively key dimension table and

non key dimension table, which are confirmed by US-ELM and FCM algorithms.

Second, the non key dimension table is directly stored in HDFS. The key dimension
table is stored in HBase according to the cluster results of US-ELM and FCM. Each

key dimension cluster is stored in a column family of HBase. Then, HB-File utilizes

a column-wise data compression within each Column Family to avoid unnecessary

column decompression during query execution. So, according to the characteristics

of high-dimensional big data, HB-File is a mixed data storage structure combining

proper column and row storage for storing high-dimensional big data.
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An Enhanced Extreme Learning Machine
for Efficient Small Sample Classification

Ying Yin, Yuhai Zhao, Ming Li and Bin Zhang

Abstract ELM, as an efficient classification technology, is used to many popular

application domain. However, ELM has weak generalization performance when the

original data set is small related to its feature space. In this paper, aiming to the

above problem, an enhanced ELM classification framework is proposed to improve

the accuracy of ELM classifier. At first, the method automatically obtains the k

discretization intervals for the continuous data and removes the irrelevant features

and the redundancy features by mutual information. Further, we only select those

features which have high relevance with the object node by an improved Markov

Boundary identify algorithm. Finally, Obtaining the enhanced ELM classifier by an

efficient weight voting mechanism. The experiments conducted on real-life small

sample datasets demonstrate that the proposed framework outperforms the previous

methods, especially for small sample data.

Keywords Extreme Learning Machine ⋅ Representative features ⋅ Small sample

data

1 Introduction

In recent years, classification problem has regained extensive research efforts from

computer scientists, due to the explosive emergence of new classification applica-

tions, especially with the emergence of the big data. It is one of the challenges

for the researcher on how to learn a model from the various data and classify the

data quickly, such as protein sequences classification in bioinformatics [1, 2], online
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social network prediction [3], XML document classification [4], cloud resource clas-

sification [5], online real-time stream data prediction [6], Uncertain Graph [1] and

user-generated text documents from the Internet and so on [7]. How to classify the

data quickly and correctly is an important thing.

Extreme Learning Machine (ELM) is becoming popular since it generally requires

far less training time than the conventional learning machines [8–13]. ELM has orig-

inally been developed based on Single-hidden Layer Feedforward Neural Networks

(SLFNS) in [14, 15]. In ELM, hidden nodes parameters are chosen randomly. A

Survey has been done on ELM and its variants in [7].

ELM has a better classification and prediction performance in many domains.

However, it rise new challenges to ELM because of the extremely large dimension-

ality of the feature space. Despite of the success of ELM on classification and pre-

diction, it remains unclear how to tackle the difficulty on the insufficiency of training

samples. That is, ELM has weak generalization performance when the original data

set is small related to its feature space. For example, in bioinformatics, some special

characteristics of microarray data pose the great challenges to most existing data

analysis algorithms. This is because a typical microarray data is often of severely

limited number of samples, but of several orders of magnitude more dimensions

(genes). According to the traditional learning theory, given n dimensions (genes),

the required number of samples m for the reliable classifier learning should be on

the scale of O(2n) [16]. However, even the minimum requirement (m = 10 ∗ n) as a

statistical “rule of thumb” is patently impractical for a real microarray dataset [16].

As such, selecting a small number of representative features (genes) showing distinct

profiles in different classes of samples becomes highly necessary.

With the aim of choosing a subset of good features with respect to the target con-

cepts, feature subset selection is an effective way to solve the small sample problem

through reducing dimensionality removing irrelevant data, increasing learning accu-

racy, and improving result comprehensibility. The wrapper and filter techniques are

two basic approaches for feature selection [16]. The wrapper methods use the predic-

tive accuracy of a predetermined learning algorithm to determine the goodness of the

selected features, the accuracy of the learning algorithms is usually high. However,

the generality of the selected features is limited and the computational complexity is

high. The filter methods’s computational complexity is low and having good gener-

ality capability. However, the accuracy of the learning algorithms is not guaranteed

[10, 17, 18]. The filter methods are usually a good choice when the number of fea-

tures is very large. However, the filter methods ignore the dependence relationship

of attributes with each other.

Among all the existing solutions, Bayesian graphical model [19] has proved its

advantages, especially on robust statistical accuracy and bounded time complexity.

Markov Boundary, which is the global optimal feature combination with respect to

the class label. Interestingly, Markov Boundary considers the dependency relation-

ship between attributes. Thus, we will adopt a group of conditional independence

tests to derive Markov Blanket in an efficient and effective way.

The main contributions in this paper are as follows: (1) A Framework for the

whole process of constructing ELM using Markov Boundary; (2) Methods for auto-
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matic obtaining k discretization intervals for the continuous data. (2) Proposal of a

idea to identify representative feature subsets with markov boundary for different

category. (3) Obtain enhanced ELM classifier by training ELM with efficient weight

vote mechanism.

The remainder of this paper is organized as follows: Sect. 2 gives a brief overview

of ELM. Section 3 presents the classification architecture based on enhanced ELM.

Section 4 studies the feature prefiltration mechanism. In Sect. 5, we report the

enhanced ELM classification with voting strategy. Finally, in Sect. 6, we summarize

the present study and draw some conclusions.

2 Brief Introduction of Extreme Learning Machine

Three common approaches of feedforward networks training were summarized in

[20]: (1) gradient-descent based (e.g., back propagation method for multi-layer feed-

forward neural networks); (2) least square based (e.g., ELM for the generalized

single-hidden layer feedforward networks); (3) standard optimization method based

(e.g., SVM for a specific type of Single-hidden Layer Feedforward Networks). ELM

and its variants [9, 21] based on SLFNs for classification and can achieve better gen-

eralization performance than that of conventional learning algorithms. Moreover,

ELM is less sensitive to user specified parameters, and can be deployed faster and

more conveniently [20].

As mentioned, ELM is based on SLFN type classifiers. Standard SLFNs with N

arbitrary samples (𝐱𝐢, 𝐭𝐢) ∈ 𝐑𝐧×𝐦
and activation function g(x) are modeled in [15] as

L∑

i=1
𝛽igi(𝐱𝐣) =

L∑

i=1
𝛽ig(𝐰𝐢 ⋅ 𝐱𝐣 + bi) = 𝐨𝐢, (j = 1,… ,N) (1)

where L is the number of hidden layer nodes, 𝐰𝐢 = [wi1,wi2,… ,win]T is the weight

vector between the ith hidden node and the input nodes, 𝛽i = [𝛽i1, 𝛽i2,… , 𝛽im]T is

the weight vector between the ith hidden node and the output nodes, and bi is the

threshold of the ith hidden node. Then we have the output of ELM

f (x) =
L∑

i=1
𝛽ig(𝐚𝐢, bi, 𝐱) (2)

where

H(𝐰𝟏,… ,𝐰𝐋, b1,… , bL, 𝐱𝟏,… , 𝐱𝐋) =
⎡
⎢
⎢
⎣

g(𝐰𝟏 ⋅ 𝐱𝟏 + b1) … g(𝐰𝐋 ⋅ 𝐱𝟏 + bL)
⋮ … ⋮

g(𝐰𝟏 ⋅ 𝐱𝐍 + b1) … g(𝐰𝐋 ⋅ 𝐱𝐍 + bL)

⎤
⎥
⎥
⎦N×L

,
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𝛽 =
[
𝛽

T
1 ,… , 𝛽

T
L
]T
m×L

The decision function for binary classification [8] is

d(x) = sign(
L∑

i=1
𝛽ig(𝐚𝐢, bi, 𝐱)) = sign(𝛽 ⋅𝐇) (3)

When g(x) approximates the N samples with zero error that ΣL
j=1‖oj − tj‖ = 0, their

outputs 𝛽i, wi and bi such that

L∑

i=1
𝛽ig(𝐰𝐢 ⋅ 𝐱𝐣 + bi) = 𝐭𝐣, j = 1,… ,N (4)

The equation above can be expressed compactly as following

𝐇𝛽 = 𝐓 (5)

where 𝐓 = [𝐭T1 ,… , 𝐭TL ]
T
m×L.

The ELM algorithm is a relatively fast method as compared to the conventional

learning algorithms. ELM not only tends to reach the smallest training error but

also the smallest norm of weights [7]. Given a training set ℵ = {(𝐱𝐢, 𝐭𝐢)|𝐱𝐢 ∈ 𝐑𝐧
, 𝐭𝐢 ∈

𝐑𝐦
, i = 1,… ,N}, activation function g(x) and hidden node number L, algorithm

ELM is described as following [15].

Algorithm 1 ELM

1: for i=1 to L do
2: randomly assign input weight wi
3: randomly assign bias bi
4: end for
5: calculate 𝐇
6: calculate 𝛽 = 𝐇†𝐓

3 The Enhanced ELM Classification Framework

In order to immediately comprehend our idea, we illustrate the whole process of

constructing ELM using Markov Boundary based the process consists of three major

phases: (1) preprocessing, which discretizates automatically the continuous data into

the k representative features selection by the Fig. 1. As shown, intervals; (2) the

representative features selection, instead of constructing a large Bayesian network

by all features, we only select those features which have high relevance with the
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Fig. 1 The framework
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( 2 ) 

( 3 ) 

object node; (3) Enhanced ELM classifier construction by training ELM with effi-

cient weight voting mechanism using the extracted feature subsets.

(1) Preprocessing. Most of the data in the real world is continuous. The discretiza-

tion makes the continuous attributes simple and uniform, since all features would be

encoded by the same scheme regardless of their original data type. On the other

hand, for continuous data, it is often a trouble matter to automatically determine the

number of discrete attributes. It relies on the ability of a discretization algorithm to

find good intervals. This part will be discussed in Sect. 4.

(2) The representative features selection. Since not all attributes provide useful

information, a dimensionality reduction process is needed to identify and remove

the redundant feature as much as possible. Dimensionality reduction is the process

of reducing the computing space, and can be performed by means of feature selec-

tion. Therefore, the good feature subsets should contain those features with highly

correlated with the class [22]. Keeping these in mind, we develop a novel algorithm

which can efficiently and effectively deal with both irrelevant and redundant features,

and obtain a quick training time and a good classification accuracy. The represen-

tative feature selection processing (shown in Fig. 1 (2)) which composed of the two

connected steps of irrelevant feature removal and redundant feature elimination. The

first step obtains relevant features to the target by eliminating irrelevant ones, and

the second step removes redundant features from relevant ones via choosing repre-

sentatives from different categories, and thus produces the final feature subset. The

irrelevant feature removal is relative easy once the relevance measure is defined. We

eliminate the redundant feature by an efficient way to derive the Markov Boundary. It

involves (i) the construction of Markov Boundary; (ii) pruning; and (iii) the selection

of representative features from the learning. Limit by space, we omit the details.
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(3) Enhanced ELM classifier. The framework first select a group of representa-

tive features (shown in Fig. 1 (3)) which composed of the two connected steps of

irrelevant feature removal and redundant feature elimination. Besides, we applied

an efficient weight voting mechanism proposed in this paper in classifying samples

to achieve a higher accuracy than the original ELM. Then, an efficient postprocess-

ing method is also proposed to further optimize the voting results. This part will be

described in Sect. 5.

4 Feature Prefiltration

At first, we adopt a model selection criteria, AIC, to automatically determine the

number of discrete attributes. However, for high dimensional and multivariate data,

there are some attributes which have little correlation with class labels. All these

properties were calculated to learn a model with labels are expensive. In order to

reduce the computational cost, this paper only selects those attributes associated

with the labels. In order to determine which attributes are associated with the sam-

ple label, using mutual information method for initial filtering. Mutual information

measures how much the distribution of the feature values and target classes differ

from statistical independence. This is a nonlinear estimation of correlation between

feature values or feature values and target classes. The mutual information of event X

and event Y is defined as:

I(X,Y) = H(X) + H(Y) − H(X,Y) (6)

where H(X, Y) is the joint entropy, defined as:

H(X,Y) =
∑

p(x, y)logp(x, y) (7)

and p(x, y) is the probability.

By computing the mutual information between a feature value and the target class,

we can obtain the correlation degree between a feature value and the target class.

Further, we get the candidate boundary nodes by sorting mutual information values.

Feature selection is essentially a task to remove irrelevant and/or redundant fea-

tures. Irrelevant features severely affect the accuracy of the learning machines.

Redundant features are a type of irrelevant feature [16]. The distinction is that a

redundant feature implies the co-presence of another feature; individually, each fea-

ture is relevant, but the removal of one of them will not affect learning performance.

The selection of features can be achieved in two ways: One is to rank features accord-

ing to some criterion and select the top k features, and the other is to select a mini-

mum subset of features without learning performance deterioration. In other words,

subset selection algorithms can automatically determine the number of selected fea-

tures, while feature ranking algorithms need to rely on some given threshold to select
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features. Therefore, we will adopt the Markov Boundary [23] to find the representa-

tive features for a special object class.

5 ELM Classification with Voting Decision Function

However, Not all ELM training results are of high accuracy due to various reason,

such as, data distribution sparsity or the unsuitable hidden nodes setting. Therefore,

it is unfair to the classifier when we use all ELM results voting with assigning the

same weight. Further, the method affects the real accuracy rate. This is because the

training error on every ELM running is different. Due to many application data in

reality were composed of multiple labels. The two commonly used methodologies

for multi-class classification are one against-all (OAA) and one-against-one (OAO)

[24]. We refer the ELM-OAO [24] process. At first, Classifying the m classes into

t(t − 1) = 2 parts. Each part is trained by an ELM classifier elm(x;y). That is, when

classifying a sample, the ELM classifier outputs j+ or j− if the sample is of class x or

y. In this paper, we consider an optimized decision function using different weight to

vote ELM for multi-class classification. The voting result is computed by the decision

function once the process completes all ELM voting for the output nodes. We only

assign the highest number of votes as the final classification result.

Algorithm 2 presents the training process. At first, the data sets D need to be

divided into training data sets and validation data sets. For every partitioned training

data (in line 1), the phase invokes ELM using the algorithm 1 and the decision func-

tion is invoked after all the ELM classifiers complete training phase(in line 2–10).

Algorithm 2 MB-ELM
1: divide the data sets D into training data sets and validation data sets

2: for j = 1 to (m-1) do
3: for k = (j+1) to m do
4: select samples belonging to class j, k
5: assign to training subsets train_data(j,k)
6: train an ELM(j,k) with train_data(j,k) using Algorithm 1

7: end for
8: end for
9: computing with voting decision function(VDF)

10: assign the input test sample to the ith class with VDF

6 Conclusion

In this paper, an enhanced ELM classification framework based on representa-

tive features is proposed to improve the accuracy of ELM classifier. At first, the

method automatically obtains the k discretization intervals for the continuous data
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and removes the irrelevant features and the redundancy features by mutual informa-

tion. Further, we only select those features which have high relevance with the object

node by an improved Markov Boundary identify algorithm. Finally, Obtaining the

enhanced ELM classifier by training ELM with an efficient weight voting mecha-

nism. A series of experiment results demonstrate that the proposed enhanced ELM

classifiers outperforms the other existed methods. A series of experiments show

F-ELM has the highest performance and efficiency.
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Code Generation Technology of Digital
Satellite

Ren Min, Dong Yunfeng and Li Chang

Abstract The digital satellite is a complex system. And it has great development
difficulty, low extensibility, great difficulty of debug and test. A theory that complex
system is resolved into a set of underlying decisions so that the complex system can
be handled by program is advanced based on the theory of dimension decompo-
sition of engineering methodology and cognitive science. A complete digital
satellite code generation process is designed according to the theory. The digital
satellites configuration and code generation based on several satellites are com-
pleted. And digital satellites are used for simulations in the typical condition. The
simulations reveal that digital satellite can be assembled automatically using the
theory.

Keywords Digital satellite ⋅ Satellite simulators ⋅ Fractals ⋅ Code generation

1 Background

Digitization and informatization is the core of a new generation of intelligent
manufacturing. The parallel system is effective way to deal with complex problems.
Digital satellite is the parallel system of real satellite and an important tool in the
design, development and transit process of satellite.

Research on digital satellite has made some achievements [1–9]. However, the
digital satellites in traditional development mode have great development difficulty,
a long lead time and huge resource consumption. And the traditional digital

R. Min ⋅ D. Yunfeng ⋅ L. Chang (✉)
School of Astronautics, Beihang University, Beijing, People’s Republic of China
e-mail: 619920580@qq.com

R. Min
e-mail: 286611209@qq.com

D. Yunfeng
e-mail: sinosat@buaa.edu.cn

© Springer International Publishing Switzerland 2016
J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 1,
Proceedings in Adaptation, Learning and Optimization 6,
DOI 10.1007/978-3-319-28397-5_40

511



satellites have low extensibility. The change of design requirements is accompanied
by a lot of modification of source code. With the development of digital simulation
technology, the traditional development mode of digital satellite is difficult to meet
the demand of development, production and simulation of real satellites.

The core of artificial intelligence is that let the machine make the decision and
finish the work instead of human. Cognitive science is the basis of artificial intel-
ligence and an important force in promoting the development of artificial intelli-
gence. Cognitive science has become a frontier subject. It has received extensive
attention in academic circles and has made progress on several fronts. The method
that let the machine do the source code writing instead of human not only improve
the efficiency, but also encapsulate design specification inside the tool of satellite
design. The method gives a new insight into the aerospace industry informatization.

2 Dimension Decomposition of the Programmer Decision

Human intelligence is reflected in the process to deal with the complicated situation.
Human can analyze problem and split it up into several sub problems when human
face the complicated situation. The complicated problem can be solved if every sub
problems can be solved. Engineering methodology is abstraction and refinement of
method which human solve problems use. The program will be intelligent if it is
taught to solve problems according to engineering methodology.

The method that problems are decomposed according to the concept of
dimension is a not repetitive and missing method of decomposition. The common
dimensions are dimensions of system, time and logic. Satellite can be decomposed
into payload and service module according to the dimensions of system. Service
module can be further decomposed into structure, power, thermal control, telemetry
and command, propulsion, attitude and orbit control, on-board data management
subsystems. The satellite assembly process can be decomposed into components
library establishment, satellite physical components assembly, information trans-
mission assembly, simulation deployment configuration and common code
assembly. The method of decomposition according to logic dimension is to
decompose problems according to the logic of handling problems process. The
process can be decomposed into defining problems and solving problems. Defining
problems can be decomposed into defining goals and indexes design. Objectives of
satellite should be defined such as working life, observation targets and perfor-
mance indexes of satellite should be defined such as the coverage performance
indexes and control performance indexes in the early stage of digital satellite
design. Solving problems can be decomposed into proposing solutions and
implementing solutions. Satellite should be designed and the generation program
can generate the source code of digital satellite according to the result of design in
source code of digital satellite generation process.

Dimensions have fractal properties so that a grid in dimensions can be further
decomposed. A gird in Fig. 1 can be further decomposed according to system
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dimension, time dimension and logic dimension. System dimension and time
dimension are often reflected in the high level decomposition. The fractal property
of logic dimension is more obvious when it is closer to the bottom operation. Each
stages and steps of digital satellite are decomposed into data or sources that can be
processed by machines so that digital satellite code generation is made feasible.

Each work can be decomposed into several parts which can form a tree structure.
The work will be completed if the tree were executed. The tree structure is stored in
databases in order to facilitate the execution of the work. The qualitative description
can be separated from quantitative analysis when the tree structure is being stored
so that the stored data are streamlined and scalability and extensibility of the
program are increased. The programs can assemble a complete digital satellite by
reading the information from databases and executing the operations according to
the information to complete each links.

3 Program Assembly

3.1 Method of Program Generation

The source codes of digital satellite simulator can be decomposed into statements
according to the dimensions. Program statements are the basic elements of source
codes. The process of statements generation is to read variable information from
databases, to piece the information and fixed codes together into a string according
to a standard format and to print the string in a source file. Statements can be
divided into variable definition, variable assignment, function call and condition
judgment statements.

A variable is a string. The variable type need be declared and the variable value
need be initialized to meet the needs of programming, such as

double GyroMeasureValue[1] = {0};

The parts before the equal sign are the type, name and dimension of the variable.
The parts after the equal sign are fixed variable value initialization. The program
can read the information that the type of the variable is “double”, the name of the
variable is “GyroMeasureValue” and the dimension of the variable is 1 from

Fig. 1 A grid in dimensions
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database. And the program piece the information together into a string according to
the format as “type” + “name” + “[dimension]” + “={0};”. And the program prints
the string in a source file. The generation of variable definition statement is
completed.

The variable assignment statement is similar to the variable definition statement,
such as

GyroMeasureValue[0] = 0.1;

The parts before the equal sign are the name and dimension of the variable. The
parts after the equal sign are the value of the variable. The program can read the
information that the name of the variable is “GyroMeasureValue”, the dimension of
the variable is 0 and the value of the variable is 0.1 from database. And the program
piece the information together into a string according to the format as
“name” + “[dimension]” + “=” + “value;”. And the program prints the string in a
source file. The generation of variable assignment statement is completed.

The function call statement is composed by the name and the parameters of the
function. The name of the function is generally fixed. And it can also be read from
databases. The parameters of the function can be fixed or be read from databases or
be calculated by program, such as

SendUARTPackageðulUARTGyroChannelNoforGyro, chrRawValue, 17Þ;

The name of the function is fixed. The first parameter is read from database. The
second parameter is fixed. And the third parameter is calculated by program. The
program can piece the information together into a string according to the format as
“name of function” + “(” + “name of first parameter” + “, name of second
parameter,” + “value of third parameter” + “)”. And the program prints the string in
a source file. The generation of function call statement is completed.

The condition judgment statement is composed by the fixed frame and the
variable condition. The condition can be read from databases completely. It can also
be constructed of the name of variable, the logic of judgment and the value of the
condition which are read from databases. Such as

if(ucThrusterIsUpdated == 1)

The program can read the information that the name of the variable is “ucThrus-
terIsUpdated”, the logic of the condition is equation and the value of the condition
is 1. The program can piece the information together into a string according to the
format as “if(” + “name of variable” + “logic of judgment” + “value of condi-
tion” + “)”. And the program prints the string in a source file. The generation of
condition judgment statement is completed.

Several parts of source codes in program are fixed and selectively enabled
according to the requirements of satellite assemble, such as functional models of
devices, algorithms of the satellite, etc. These parts do not need to generate each
statement. These parts can be stored in source files and the names and paths of files
are stored in databases. Program can read the information of needed models and
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algorithms from databases, find the specified files and print the source codes in a
source file completely. The assembly of parts of source codes is completed.

The value of several parameters of source codes will change according to the
requirements when the source codes are being assembled. The parameters of fixed
source codes can be assigned in two ways. One of them is to generate the variable
assignment statements in head files. The names and values of variables are stored in
databases. The program can generate the head files according to the process of
generation of the variable assignment statement. And the source codes include the
head file to assign the variables. Another way is to generate the values of param-
eters in XML files. The satellite simulator can read the XML files to assign the
variables.

3.2 Static Assembly

Static refers to that data do not change over time and the data and the data is
updated via information transmission. So that the main work of static assembly is
information flow assembly. The static assembly can be decomposed into device
assembly and satellite assembly.

The source codes of device information transmission are highly generic. The
sources of different devices have the same format. So that the flow of information
transmission is defined and the program can piece the variable information together
into source codes according to a standard format.

The core of source codes of device information transmission is the process of
packing and unpacking of information package. The process of packing information
package is introduced because the process of packing and unpacking of information
package is similar. The source codes of packing information package are composed
by the packing package statements of each data in the package. Such as

memcpy(chrRawValue+6, &TimeNow, 8);

The statement is a function call statement. The name of the function is fixed. The
first half part of the first parameter is fixed name of variable. The second half part of
the first parameter is the position of the data which can be calculated by program in
the process of packing package. The second parameter is fixed. The third parameter
is the length of variable which can be read form databases. The information and
ordering of variable in package are stored in databases so that program can query
the name and length of each variable in the package and generate the statements of
packing package of each variable in the package in order to complete the generation
of whole source codes of packing package.

The information flow assembly of satellite can be completed by assembling the
information flow between devices and algorithm module of satellite on the basis of
information flow assembly of devices. The content of the information package is
fixed so that the source codes of information flow between devices and algorithm
module of satellite can be decomposed into several fixed parts of source codes. The
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package that the digital satellite need is stored in databases. And the program can
generate the whole source codes of information flow according to the process of
parts of source codes assembly.

3.3 Dynamic Assembly

The dynamic assembly of digital satellite can be decomposed into devices
assembly, onboard algorithm assembly and satellite assembly.

The functional models of devices can be decomposed into the principle model,
error model and failure model. The source codes of the functional models of each
device are fixed so that the source codes can be stored in classified files according to
the model of devices. The information of which device is needed by digital satellite
is stored in databases. And the program can assemble the models of devices
according to the process of parts of source codes assembly.

The onboard algorithm assembly primarily includes attitude control system
assembly and data management system assembly. The attitude control system
primarily includes outlier elimination, filtering, attitude determination and attitude
control algorithm. Data management system primarily includes CCSDS telemetry
processing, data compression, video and image mosaicking algorithm etc. Each
algorithm is fixed. And the values of parameters of each algorithm need to be
modified to meet the different needs of the design. So the source codes of the
algorithms are stored in several files. The program can assemble algorithms
according to the process of parts of source codes assembly and assign the param-
eters of algorithms according to the method of generating the head files.

The work of attitude control system can be divided into different modes for
different tasks. The different modes can enable different algorithms and the
parameters of the algorithms can be different. The flight modes interrelate through
various switching conditions and form a flight flow. The execution process of a
flight mode includes parameters input, algorithm execution, condition judgment and
mode switching. The source codes of parameters input are variable assignment
statements. The source codes of algorithm execution are function call statements.
The source codes of condition judgment are condition judgment statements. The
source codes of mode switching are function call statements. The names and values
of variables, the names of algorithms, the conditions of switching and the name of
target mode are stored in databases so that the program can generate the source
codes of execution process of flight modes according to the process of generation of
the corresponding statements.

The satellite assembly can be decomposed into assemblies of dynamic algo-
rithm, thermodynamic algorithm, energy flow algorithm, fuel flow algorithm, radio
transmission loss algorithm and optical imaging algorithm.

The dynamic algorithm can be decomposed into the dynamic modules of rigid
body, flexible construction, liquid sloshing etc. The source codes of algorithms of
each dynamic module are fixed and there is no coupling between modules. The
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source codes of dynamic algorithm are stored in files. So the program can assemble
algorithms according to the process of parts of source codes assembly and generate
the values of dynamic parameters in XML files which are read by digital satellite
simulator to complete the assembly of the dynamic algorithm.

The thermodynamic algorithm is to calculate the satellite temperature field
according to the thermal network method. The source codes of algorithm are fixed.
Coefficients of network of thermal conduction and radiation of different satellites
are different. The source codes of thermodynamic algorithm are stored in files. So
the program can assemble algorithms according to the process of parts of source
codes assembly. The structure and material of satellite is stored in databases. The
program can read the information and partition thermal unit by using ANSYS
software automatically and generate the values of coefficients in files which are read
by digital satellite simulator to complete the assembly of the thermodynamic
algorithm.

The energy flow algorithm, fuel flow algorithm, radio transmission loss algo-
rithm and optical imaging algorithm are composed by fixed algorithm and func-
tional models of related devices. The energy flow algorithm relates to battery and
solar array. The fuel flow algorithm is relates to tank, gas cylinder and valve. The
radio transmission loss algorithm is relates to antenna and amplifier. The optical
imaging algorithm is relates to camera. The fixed source codes of algorithm are
stored in files and the information of which device is needed by digital satellite is
stored in databases. So the program can assemble the fixed parts of source codes
according to the process of parts of source codes assembly. And the program can
further assemble the whole algorithms by cooperating with the functional models of
devices.

4 Cases of Digital Satellite Assembly

Three different satellites have been assembled for validating the feasibility, effec-
tiveness and generality of code generation of digital satellite. The digital satellites
were assembled as follows.

The devices that satellites need were defined. The parameters of devices were
entered in databases such as size, mass, electric power, thermal power etc. And the
principle models, error models and failure models of devices were stored in files.

The main load-carrying structure was chosen. The devices that the satellite uses
were chosen. And the number and the installation information of devices were con-
figured. The first satellite used gyro, sun sensor, earth sensor, star sensor, GPS,
thruster, wheel, heater, battery, solar array, oxidizer tank, fuel tank, gas cylinder,
valve, antenna, amplifier and camera. The second satellite used the same type of
devices with the first satellite, but the models and installation information of devices
were different. The third satellite used CMG additionally on the basis of the first
satellite. The overall constitution of the satellites was gotten after the process above.
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The constitution of power and propulsion subsystem of one satellite is showed in
Fig. 2.

The processes of information transmission between devices of three satellites
were defined respectively. The processes of information transmission between
devices and algorithm module were defined and were stored in files.

The execution processes of flight modes and the switching conditions between
flight modes were defined. The flight modes of different satellites were different.
The parameters of data management algorithms were defined.

The dynamic algorithm of the first satellite only included the part of rigid body.
The dynamic algorithm of the second satellite included the part of rigid body and
flexible construction and the parameters of flexible construction were inputted. The
dynamic algorithm of the third satellite included the part of rigid body, flexible
construction and liquid sloshing and the parameters of flexible construction and
liquid sloshing were inputted.

The program of generation was run to read the results of configuration of three
satellites respectively and generate the simulators of three satellites successfully.
The three simulators were run in the typical working conditions. The results of
simulation referred to that the simulators which were generated by program were
consistent with the requirements. The three-dimension display of one satellite is
showed in Fig. 3.

Fig. 2 Three-dimension displays of power and propulsion subsystems

Fig. 3 Three-dimension
display of the satellite
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5 Conclusion

A theory that complex system is resolved into a set of underlying decisions so that
the complex system can be handled by program is advanced based on the theory of
dimension decomposition of engineering methodology and cognitive science. The
theory is used for development of digital satellite and the digital satellite simulator
is decomposed into several logic and regular modules. The method of generation of
statements is advanced based on the results of decomposing. And a complete digital
satellite code generation process is designed according to the theory. The digital
satellites configuration and code generation based on several satellites are com-
pleted. And digital satellites are used for simulations in the typical condition. The
simulations reveal that digital satellite can be assembled automatically using the
theory. The code generation technology of digital satellite based on the theory
greatly simplifies the development of digital satellite, shortens the lead time of
digital satellite and makes the mass production of digital satellite possible.

The theory above has strong generality. The theory can be expanded to devel-
opment of ground testing program and give references for code generation of
several kinds of program.
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Class-Constrained Extreme Learning
Machine

Xiao Liu, Jun Miao, Laiyun Qing and Baoxiang Cao

Abstract In this paper, we have proposed a new algorithm to train neural network,

called Class-Constrained Extreme Learning Machine (C
2
ELM), which is based on

Extreme Learning Machine (ELM). In C
2
ELM, we use class information to con-

strain different parts of connection weights between input layer and hidden layer

using Extreme Learning Machine Auto Encoder (ELM-AE). In this way, we add

class information to the connection weights and make the features in the hidden layer

which are learned from input space be more discriminative than other methods based

on ELM. Meanwhile, C
2
ELM can retain the advantages of ELM. The experiments

shown that C
2
ELM is effective and efficient and can achieve a higher performance

in contrast to other ELM based methods.
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1 Introduction

Extreme Learning Machine (ELM) [1–5] is firstly proposed to train “generalized”

single-hidden layer feedforward neural networks (SLFNs). In ELM, the connection

weights between input and hidden layer are called input weights. The input weights

and hidden biases are chosen randomly. The connection weights between hidden

layer and output layer, which are called output weights, are analytically determined

[4], i.e. the only free parameters which need to be learned are the output weights [6].

The learning process is without iteratively tuning and with a fast learning speed. In

this way, ELM can be regarded as a linear system [2] and the objective is to minimize

the training error and the norm of output weights at the same time. Thus, ELM has

a good generalization performance according to the work of Bartlett [7]. Because of

the fast learning speed and good generalization performance, ELM has been widely

used in many aspects, such as regression [5], classification [8], clustering [8, 9] and

feature learning [10, 11].

In order to achieve a desirable performance, ELM usually uses a large number of

hidden nodes which increases the computation cost of training and testing process

and easily leads the model to be over-fitting. Besides, as the randomly chosen input

weights and hidden biases determine the computation of the output weights, the input

weights and hidden biases may exist a more compact and discriminative parameter

set which can contribute to improve the performance of ELM [12]. So as to get a more

compact and discriminative parameter set, several methods are proposed. Yu et al.

[13] used back-propagation method to train the SLFNs and then used the learned

connection weights between input layer and hidden layer and the hidden biases of

SLFNs to initialize the input weights and hidden biases of ELM, which can achieve

a better performance than randomly chosen input weights and hidden biases. Kasun

et al. [11] learned the feature mapping matrix using ELM-AE, which is useful to

initialize the input weights of deep ELM, and also improved the performance of

ELM. Zhu et al. [14] proposed constrained ELM (C-ELM), which constrain the

input weights to a set of difference vectors of between-class samples in training

data. McDonnell et al. [15] proposed shaped input-weights and combined different

approaches of parameters initialization to explore the performance of ELM.

In this paper, we propose a method based on ELM-AE. We reconstruct each class

of training samples and all the training samples using ELM-AE to get the feature

mapping matrices respectively, i.e. output weights of ELM-AE. Then we combine

all the feature mapping matrices to form the input weights of ELM, where we can not

only get the feature mapping related to all the samples, but also use class informa-

tion to constrain the feature mapping. In this way, we get a more discriminative input

weights of ELM and we call this model Class-Constrained ELM (C
2
ELM). Exper-

imental results show that C
2
ELM can achieve a better performance than ELM and

other methods which are based on ELM. Besides, the results show that our method

can have a better generalization ability with less number of hidden nodes.
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The remaining of this paper is organized as follows: Sect. 2 briefly describes the

ELM and ELM-AE; the proposed C
2
ELM is described in Sect. 3; experiments are

presented in Sect. 4; in Sect. 5, we conclude our work.

2 Preliminaries

2.1 Extreme Learning Machine

Extreme Learning Machine (ELM) replaces universal but slow learning methods

with randomly chosen input weights and hidden biases and analytically determines

output weights.

Generally, forN arbitrary distinct samples {(𝐱i, 𝐭i)|𝐱i ∈ Rk
, 𝐭i ∈ Rm

, i = 1,… ,N},

the number of hidden nodes L and activation function {G(𝐰, b, 𝐱)|𝐱 ∈ Rn
, b ∈ R, 𝐱 ∈

Rn
, i = 1,… ,N}, where𝐰 is input weights and b is the biases of hidden nodes, firstly,

we can get the mapping from input data to the random feature space:

𝐇 =
⎡
⎢
⎢
⎣

𝐡(𝐱1)
⋮

𝐡(𝐱N)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

G(𝐰1, b1, 𝐱1) ⋯ G(𝐰L, bL, 𝐱1)
⋮ ⋯ ⋮

G(𝐰1, b1, 𝐱N) ⋯ G(𝐰L, bL, 𝐱N)

⎤
⎥
⎥
⎦N×L

(1)

Then the output of ELM is given by Eq. 2:

𝐟 (𝐱) =
L∑

i=1
hi(𝐱)𝛽i = 𝐡(𝐱)𝜷 (2)

where 𝜷 =
[
𝜷𝟏,… , 𝜷L

]
is the output weights and 𝐡(𝐱) =

[
h1(𝐱),… , hL(𝐱)

]
is the fea-

ture space for an input sample 𝐱, where {hi(𝐱) = G(𝐰i, bi, 𝐱), i = 1,… ,L}. So for N
input samples, we can get 𝐇 =

[
𝐡(𝐱1),… ,𝐡(𝐱N)

]T
. The output weights 𝛽 can be

calculated by Eq. 3:

𝜷 = 𝐇†𝐓 (3)

where 𝐇†
is the Moore-Penrose generalized inverse [16] of matrix 𝐇 and 𝐓 =

[
𝐭T1 ,… , 𝐭TN

]T
is the label vector or ground truth.

In general, we could solve the learning problem according to Eq. 4:

min ‖𝜷‖ + C‖𝐇𝜷 − 𝐓‖ (4)

where C is the regularization factor and it means that we not only calculate the small-

est norm of 𝜷 but also minimize training error at the same time. In this way we can

get a more robust solution. Then the output weights 𝜷 can be calculated as
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𝜷 = 𝐇T
( 𝐈
C

+𝐇𝐇T
)−1

𝐓 (5)

or

𝜷 =
( 𝐈
C

+𝐇T𝐇
)−1

𝐇T𝐓 (6)

where 𝐈 is the identity matrix.

2.2 Extreme Learning Machine Based AutoEncoder

Similar with AutoEncoder [17], if we let the output space of ELM reconstruct the

input space in a unsupervised way, i.e. we set 𝐭 = 𝐱, ELM can learn the feature map-

ping matrix of input data by reconstruction. In this way, the output weights 𝜷T
can be

considered as the feature mapping matrix from the input space to the hidden space

and this method is called Extreme Learning Machine AutoEncoder (ELM-AE) [11].

The output weights 𝛽ELM−AE of ELM-AE is the feature mapping matrix of input

space and can be calculated by Eq. 7:

𝜷ELM−AE = 𝐇†𝐗 (7)

Also, we can get a more robust solution by Eqs. 8 and 9:

𝜷ELM−AE = 𝐇T
( 𝐈
C

+𝐇𝐇T
)−1

𝐗 (8)

or

𝜷ELM−AE =
( 𝐈
C

+𝐇T𝐇
)−1

𝐇T𝐗 (9)

3 Class-Constrained Extreme Learning Machine

The output weights 𝜷ELM−AE learn the variance information [11] by reconstructing

the input data. In fact, feature mapping matrix 𝜷ELM−AE maps the input data to a

reconstruction space which can represent all the input data. In our algorithm, we try

to add the class information to constrain the feature mapping matrix.

In ELM-AE, the output weights 𝜷ELM−AE learn the variance information of all

sample data. This is a generative learning method. It ignores the class information,

which is discriminative and may be helpful for classification. So in our algorithm,

we try to use ELM-AE to learn variance information of each class to constrain the

feature mapping matrix.
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Fig. 1 The structure of C
2
ELM

For input data of each class 𝐗c = {(𝐱cj )|𝐱
c
j ∈ Rk

, c = 1,… ,C, j = 1,… , nc},

where C represent the number of class and nc is the number of samples in each class

and N = n1 +⋯ + nC, we use samples of each class to train an ELM-AE to get the

output weights 𝜷c
ELM−AE using Eq. 7. In each ELM-AE, the number of hidden nodes

is lc, which is related to class c. Then we use all the samples to train the 𝜷ELM−AE
with the number of hidden nodes lall. We get the feature mapping matrix, i.e. input

weights of ELM, 𝐖ELM =
[
𝜷1
ELM−AE,… , 𝜷C

ELM−AE,𝜷ELM−AE
]T

, with the number of

the hidden nodes L = l1 +⋯ + lC + lall. The structure of C
2
ELM is shown in Fig. 1.

In our proposed algorithm, in fact, we add the class information to constrain the

ELM feature mapping matrix and we call it Class Constrained Extreme Learning

Machine (C
2
ELM). From the above discussion, the training algorithm for C

2
ELM

can be concluded in the Algorithm 1.

4 Performance Evaluation

In this section, we evaluate our C
2
ELM and compare it with some other meth-

ods which are used to initialize ELM. These methods are evaluated on large scale

datasets. We compare C
2
ELM with the baseline Extreme Learning Machine (ELM),

Extreme Learning Machine Auto Encoder (ELM-AE) [11], Constrained Extreme

Learning Machine (CELM) [14], Computed Input Weights Extreme Learning

Machine (CIW-ELM) [15] and Receptive Field Extreme Learning Machine (RF-

ELM) [15]. Note that, we use randomly input weights and biases instead of orthog-

onalization of the input weights and bias to initialize the ELM-AE [11].
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Algorithm 1 Class-Constrained Extreme Learning Machine (C
2
ELM)

Input: The training samples {(𝐱i, 𝐭i)|𝐱i ∈ Rk
, 𝐭i ∈ Rm

, i = 1,… ,N}, the number of hidden nodes

L of ELM, the number of hidden nodes lc, lall of ELM-AE;

Output: The input weights 𝐖ELM , hidden layer biases 𝐛ELM and output weights 𝜷ELM of ELM;

1: Obtain samples of each class 𝐗c = {(𝐱cj )|𝐱
c
j ∈ Rk

, c = 1,… ,C, j = 1,… , nc} from all samples

𝐗;

2: Calculate ELM-AE output weights 𝜷c
ELM−AE with the number of hidden nodes lc for each class

input data 𝐗c
;

3: Calculate ELM-AE output weights 𝜷ELM−AE for all the input data 𝐗 with the number of hidden

nodes lall which satisfies L = l1 +… + lC + lall;
4: Combine all the ELM-AE output weights to form the input weights of ELM: 𝐖ELM =

[
𝜷1
ELM−AE ,… , 𝜷C

ELM−AE , 𝜷ELM−AE
]T

;

5: Generate bias vectors 𝐛ELM randomly;

6: Calculate the hidden layer output matrix 𝐇 by Eq. 1;

7: Calculate the output weight 𝜷ELM by Eq. 3;

The experiments were carried out in a desktop computer with a core i7-470@3.4

GHz processor and 32GB RAM runing in MATLAB R2014a.

We have evaluated our C
2
ELM on two large size of databases, which are MNIST

[19] and CIFAR-10 [20]. The MNIST is a commonly used dataset to test the perfor-

mance of ELM, which contains 60,000 training samples and 10,000 testing samples

and each sample is real-value image with the size of 28 × 28 pixels. The CIFAR-10

is also used in classification task which is with the size of 32 × 32 × 3 and contrains

50,000 training samples and 10,000 testing samples. In our experiments, the values

of the original samples of these two datasets are normalized in a range between 0

and 1.

In this part, we compare C
2
ELM with baseline ELM, ELM-AE, CELM on all

the two datasets, while CIW-ELM and RF-ELM datasets are just used on MNIST,

where these two algorithms do not give the configurations on CIFAR-10 [15]. Ten

rounds are conducted at intervals of 100 nodes of hidden layer. In experiments, we

set L = C × lc + lall, where L is the number of hidden nodes in ELM and lc, lall are

the numbers of hidden nodes in ELM-AE as described in Sect. 3 and lc ≈ lall.

4.1 Experiments Results on MNIST

In this experiment, these methods are implemented without regularized terms. The

performance on MNIST is illustrated in Fig. 2. We can see that the performance

of C
2
ELM is the best one, where the curve of the testing accuracy is above other

algorithms based on ELM, when the number of hidden nodes are more than 100

nodes.

When the number of hidden nodes is less than 2,000 nodes, the advantage of

C
2
ELM is very obvious. When more than 2,000 nodes, the performance tends to

be stable, but C
2
ELM is still better than others. Table 1 shows the testing accuracy
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Fig. 2 Experiments results

on MNIST dataset
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Table 1 Test accuracy on MNIST

Algorithm The number of hidden nodes

500 1000 1500 2000 2500 3000

Baseline

ELM

0.9125 0.9365 0.9477 0.9531 0.9571 0.9622

ELM-AE 0.9265 0.9495 0.9596 0.9638 0.9676 0.9697

CELM 0.9412 0.9572 0.9640 0.9685 0.9707 0.9725

CIW-ELM 0.9378 0.9585 0.9661 0.9694 0.9729 0.9750

RF-ELM 0.9208 0.9498 0.9617 0.9668 0.9709 0.9737

C
2
ELM 0.9541 0.9660 0.9704 0.9724 0.9737 0.9753

at intervals of 500 nodes of hidden layer. From Table 1, we also can see that the

performance of C
2
ELM is better than the other algorithms.

Besides, we also calculate the time consumption and compare C
2
ELM with base-

line ELM, ELM-AE and CELM, where the Matlab codes have the similar code struc-

ture, which is shown in Table 2. We can see that, even though C
2
ELM is not as faster

as baseline ELM, the time consumption is close to each other.

4.2 Experiments Results on CIFAR-10

Figure 3 shows the performance on CIFAR-10. We can see that C
2
ELM also achieves

the best performance in comparison with the other ELM based algorithms. When

the number of hidden nodes are less than 1,500 nodes, the advantage of C
2
ELM

is also very obvious. The curve of the testing accuracy of C
2
ELM is always above
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Table 2 Time consumption on MNIST (s)

Algorithm The number of hidden nodes

500 1000 1500 2000 2500 3000

Baseline

ELM

4.48 10.22 17.34 27.44 40.61 56.51

ELM-AE 8.90 21.07 36.37 58.18 86.59 121.61

CELM 4.54 10.58 18.33 28.97 43.09 60.53

C
2
ELM 5.68 12.47 20.42 32.01 47.01 64.85

Fig. 3 Experiments results

on CIFAR dataset
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Table 3 Test accuracy on CIFAR-10

Algorithm The number of hidden nodes

500 1000 1500 2000 2500 3000

Baseline

ELM

0.3962 0.3957 0.3935 0.4008 0.4099 0.4279

ELM-AE 0.4142 0.4247 0.4302 0.4415 0.4510 0.4586

CELM 0.4422 0.4629 0.4744 0.4839 0.4882 0.4928

C
2
ELM 0.4555 0.4707 0.4777 0.4837 0.4901 0.4951

other algorithms, which shows that when we use the class information to constrain

the ELM feature mapping matrix is efficient. Table 3 shows the testing accuracy at

intervals of 500 nodes of hidden layer and time consumption is shown in Table 4.
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Table 4 Time consumption on CIFAR-10 (s)

Algorithm The number of hidden nodes

500 1000 1500 2000 2500 3000

Baseline

ELM

5.86 12.18 19.60 29.34 41.88 57.51

ELM-AE 12.60 26.07 41.39 60.67 85.98 117.76

CELM 5.98 12.50 18.21 27.24 36.92 51.00

C
2
ELM 9.13 15.78 23.7 35.18 49.55 63.39

5 Conclusion

In this paper, we initialize the input weights of ELM using ELM-AE, where we

not only reconstruct input data of all samples but also reconstruct each class. In

this way, we add the class information, which is helpful for classification, to the

feature mapping matrix. The results have shown that C
2
ELM can achieve a better

performance in comparison with ELM based algorithms on the large scale datasets,

such as MNIST and CIFAR-10.
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