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Abstract
Dynamic nuclear polarization (DNP) NMR spectroscopy, a high-polarization
method, is rapidly changing the landscape of what is possible in solid-state nuclear
magnetic resonance spectroscopy. To date, there have been over 200 publications
discussing high-frequency DNPNMR of solids with more than half being released
within the past few years. Below we provide for researchers that may be interested
in this high-sensitivity technique an introduction to high-frequency DNP NMR
spectroscopy, including instrumentation, mechanisms, polarizing agents, and sam-

M. Ha · V. K. Michaelis (*)
Department of Chemistry, University of Alberta, Edmonton, AB, Canada
e-mail: michelle.ha@ualberta.ca; vladimir.michaelis@ualberta.ca

# Springer International Publishing AG, part of Springer Nature 2018
G. A. Webb (ed.), Modern Magnetic Resonance,
https://doi.org/10.1007/978-3-319-28388-3_140

1183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-28388-3_140&domain=pdf
mailto:michelle.ha@ualberta.ca
mailto:vladimir.michaelis@ualberta.ca
https://doi.org/10.1007/978-3-319-28388-3_140


ple preparation. While there are many applications utilizing high-frequency DNP
NMR, Part II will deal with recent advances in method development and applica-
tions to biomolecular solids and materials science.

Keywords
Dynamic nuclear polarization · Nuclear magnetic resonance · Magic angle
spinning · High polarization · High field · Microwave · Gyrotron · Glassing
agent · Radical · Polarizing agent · Mechanism · Cryogens · High sensitivity ·
Instrumentation · Cross effect · Biradical · Biomolecular · Materials

Introduction

Solid-state nuclear magnetic resonance (NMR) spectroscopy is a mature field and
arguably one of the most robust analytical techniques for characterizing atomic- and
molecular-level structure in solids. It can be found in nearly every scientific disci-
pline such as biomolecular, chemical, materials and earth science due to the unique
ability to probe subnanometer short- and medium-range structure of ordered and
disordered solids. A particular strength of NMR spectroscopy is its ability to
elucidate various isotropic and anisotropic interactions that are rich in atomic- or
molecular-level structural and dynamic information. For example, dipolar coupling
(a through space interaction) is readily used to address medium-range order within
solids [1–5]. The isotropic chemical shift is vital in identifying functional groups
within organic molecules, polymorphs in pharmaceutical compounds, or coordina-
tion environments and bonding arrangements important in materials science and
geoscience [6, 7]. The quadrupolar interaction, affecting over 70% of the
NMR-active nuclei on the periodic table, is highly sensitive to the overall molecular
and atomic environment. The magnitude and shape of the interaction has aided in
studying many chemical systems [8, 9].

The large versatility of NMR spectroscopy can be overshadowed by the small
nuclear Zeeman polarization resulting in poor overall sensitivity. Solids are partic-
ularly disadvantaged as many suffer from broad NMR resonances ranging between
10s of kHz (dipolar coupling, magnetic shielding) to MHz (quadrupolar coupling)
and a range in relaxation properties (e.g., T1 and T2). Over the past 50 years, several
innovations have advanced the field, providing practical gains in sensitivity. The first
breakthrough was made by Andrew and Lowe [10, 11] who introduced magic-angle
spinning; another important advance was the introduction of cross-polarization
[12] (CP). In the early 1990s progress in high-field NMR magnets surged, with the
introduction of ultrahigh-field magnets from a host of commercial and home-built
systems; today commercial systems exist as high as 1 GHz, with plans for 1.2 and
1.3 GHz in the very near future [13, 14]. At each stage these developments have left
a lasting impact in the field of NMR spectroscopy.

With the recent commercialization of dynamic nuclear polarization (DNP), a
high-polarization technique in NMR spectroscopy, the field is undergoing a rapid
change due to the technique’s unprecedented sensitivity [15, 16]. DNP NMR
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involves transferring the large electron polarization of unpaired electron spins to
nearby insensitive nuclei via microwave irradiation of the electron-nuclear transi-
tions, resulting in sensitivity gains in varying orders of magnitude (i.e., 10–100 [3])
over traditional NMR spectroscopy (e.g., up to 658-fold (ɣe/ɣn) increase in the case
of 1H). This makes otherwise impossibly long experiments practical to complete. For
example, an enhancement factor (ε) of 20 reduces the required experimental time by
a factor of 400 (202), reducing experimental times from months to hours and opening
new frontiers for scientific exploration.

To gain a better understanding of the various components necessary for high-
frequency DNP NMR, this article contains two parts, below (Part I) will provide an
overview of the instrumentation, mechanisms, polarizing agents, and sample prep-
aration that are commonly used within the field; Part II highlights the new areas DNP
NMR is making available to the research community including DNP method
development, biomolecular solids, and materials science. Many excellent reviews
have emerged over the years, and the following articles are recommended for
interested readers [17–28].

High-Frequency DNP NMR Instrumentation

Robust and reliable instrumentation is essential to performing experimental high-
frequency DNP research and is still a key barrier in implementing DNP NMR within
international research groups. A DNP NMR spectrometer (Fig. 1) is comprised of
four major components: (i) a solid-state NMR spectrometer, (ii) a microwave device
and accessories, (iii) cryogenics, and (iv) a DNP NMR probe.

Solid-State NMR Spectrometer

A conventional NMR spectrometer (i.e., superconducting magnet, spectrometer,
pneumatic control system, user interface, etc.) is required to perform NMR experi-
ments. For DNP NMR, the magnet bore must be 89 mm (i.e., wide-bore) rather than a
standard bore of 51 mm to accommodate the probe electronics, dewar, microwave
waveguide, sample eject, and insulation requirements for performing low-temperature
experiments. Another consideration is whether the main magnetic field is coupled to
an outer coil that can be adjusted to varying degrees (i.e., a sweep coil) to increase or
decrease the field strength in fine steps. This is particularly important for radical
development and for other targeted applications. The sweep coil enables one to
optimize the strength of the main magnetic field for advanced applications.

Microwave Devices

One of the most challenging pieces of instrumentation to develop is a source that
generates high-frequency microwaves. With high-frequency DNP NMR now
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ranging from 5–19 T (200–800 MHz), microwave devices must generate micro-
waves in the 140–527 GHz frequency range. The most commonly applied device is
known as a gyrotron. This is in part due to the significant development in gyrotron
technology for the application in DNP NMR carried out by Temkin and Griffin at
MIT [29–33], by Osaka University and the University of Fukui [34–36] and
commercially by Bruker Biospin, Communications and Power Industries (CPI),
and by Bridge12.

Fig. 1 (a) Schematic of a high-frequency DNP NMR spectrometer and (b) photo of a
699 MHz/460 GHz DNP NMR spectrometer (Francis Bitter Magnet Laboratory, Massachusetts
Institute of Technology, Cambridge, MA, USA) including (i) solid-state NMR spectrometer,
(ii) gyrotron and transmission line, (iii) cryogenics, and (iv) DNP NMR probe
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The basis of a gyrotron is its use of stimulated cyclotron radiation generated when
present in a superconducting magnet. A gyrotron is capable of generating high-
power microwaves at high frequency (>100 GHz). The fast-wave device is often
operated in a higher mode which improves the robustness and cooling abilities
providing a microwave device that is extremely stable, with high output power and
continuous operation for days to months. The design of these devices is also attractive
for their longevity with lifetimes expected to be 10+ years. These features make them
ideal for NMR studies where experiments often require days to weeks of continuous
acquisition. As discussed above, the NMR spectrometer may be equipped with a
sweep coil to allow fine adjustments of the field strength. If this is not possible, an
alternative is having a tunable microwave device such as a tunable gyrotron, as one
can fluctuate the output of the microwave frequency while keeping the main magnetic
field of the NMR instrument constant [33, 37–40]. However, an issue to be aware of is
maintaining a stable and constant microwave output over a wide tuning range.

Alternative microwave sources, optimal for applications below 5 T, including
extended interaction Klystrons (EIK), oscillators (EIO), and amplifiers (EIA), have
also been successfully applied to higher field strengths; for example the Tycko group
has an operational system at 9.4 T (400 MHz, 1H, and 264 GHz, e�) [41]. Unfortu-
nately, these alternatives suffer from limited output power at high frequencies, ~5 W
at 265 GHz, which affects enhancements and strains the device, limiting their
longevity (lifetimes of ~10,000 h, ~1.2 years at 265 GHz). Furthermore, commercial
units are unavailable for applications above 265 GHz. As advancements and demand
of microwave technology continue, these sources may be attractive for certain DNP
applications as they become available at higher magnetic fields and/or microwave
output powers.

Cryogenics

Conventional DNP NMR relies on the ability to cool the sample to cryogenic
temperatures to improve the electron and nuclear relaxation behavior, aiding the
effective transfer of bulk polarization within the sample. This can be accomplished
by using a cryogenic heat exchanger whereby a sealed can within a larger container of
liquid nitrogen is pressurized to provide a stream of gas at cryogenic temperatures
[42]. By adjusting the pressure within the heat exchanger, one can control the output
temperature. Finer control can easily be achieved using a cryogenic temperature
control (e.g., Lakeshore unit) that can be equipped with a heater to regulate the output
gas to within 1 K or better. Similar types of devices have been successfully
implemented using liquid He although the increasing cost of He is a prominent
concern. Breakthroughs in DNP have occurred with recirculated He; in particular,
the groups of De Paëpe [43] and Matsuki [35] have successfully designed a closed-
loop system for their DNP NMR instrument that can operate at He temperatures.
Tycko et al. [44, 45] and Levitt et al. [46] have also recently contributed to the
He-cooled MAS NMR area. The major expense of DNP beyond the initial invest-
ment in infrastructure is its thirst for cryogens (both N2 and He). Hence, the authors
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believe a worthwhile goal of this field as it matures should be to strive to reduce
the operating costs associated with the cryogens. For example, cryogenic
pre-chillers and nitrogen gas generators have been successfully used in Osaka
University [36] and MIT [47].

DNP NMR Probe

The NMR probe is responsible for sending and detecting the signal during an NMR
experiment, and if necessary, cooling the sample, rotating the sample, and providing
the conduit for microwave irradiation prompting the transfer of polarization
between electron and nuclear spins. A cryogenic DNP NMR probe is based on
conventional home-built or commercial MAS NMR probes, but a few key modifi-
cations are required. The lines that provide a stream of compressed gas (i.e., drive
and bearing) to levitate and rotate the rotor must be vacuum jacketed. The insulation
enables the transfer of chilled gas for the drive and bearing to cool the sample and
probe. Typical spinning frequencies are between 4 and 20 kHz, but newly designed
commercially available probes are capable of spinning samples up to 40 kHz
(depending on rotor size and experimental temperature). In the foreseeable future,
frequencies >40 kHz will surely be attained as room temperature probes are capable
of spinning frequencies beyond 100 kHz [48]. The stator housing requires a
modification near the coil to accommodate the microwave transmission line,
responsible for guiding and projecting the microwave beam onto the rotor. The
probe is often encased within a vacuum jacketed dewar to aid in localized cooling of
the probe, and more importantly to protect the bore of the NMR magnet
(T ¼ ~290 K) from the cryogenic temperatures (<120 K) located within the
probe. Samples can be placed into zirconia or sapphire NMR rotors, the latter
appear to provide larger enhancements, although thin-wall zirconia is proving
quite successful commercially and is slightly more robust. The drive caps can be
Torlon® or Vespel® that are glued using cryo-epoxy or machined zirconia in
combination with a small polymer plug.

It should be noted that several variations from this general design model do exist.
A few noteworthy differences include: (i) an added variable temperature line (3rd
vacuum jacketed line) that can accommodate N2 or He to assist in cooling, [44, 47]
(ii) the microwave waveguide may be directed at the top of the stator or pointed to
the head of the NMR rotor, [36] (iii) sample ejection [47, 49, 50] for ease of changing
samples (above or below models exist), and (iv) the gyrotron may be placed above
the probe using the same superconducting magnet to produce microwaves and
record the NMR experiment. As the probe body is cooled, this does affect the overall
behavior of the electronics which can have positive benefits in generating high RF
fields (i.e., ɣB1/2π), but it can also affect the tuning circuit. In regards to the RF
design, the most effective approach has been a topic of discussion for many years,
issues include whether the probe design should be transmission line versus locally
tuned and weighing the benefits of implementing a balanced RF circuit design [44,
45, 51–58].
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As the field has rapidly advanced with the introduction of commercial units in
2010, systems have been successfully implemented in several research groups
worldwide; a few are summarized in Table 1.

DNP Mechanisms

For solids using a continuous microwave source there are four DNP mechanisms that
can be considered in order to achieve bulk polarization transfer between an unpaired
electron source (polarizing agent) and a nucleus: (i) thermal mixing (TM),
(ii) Overhauser effect (OE), (iii) solid effect (SE), and (iv) cross effect (CE). The
latter mechanism is by far the most targeted area in high-frequency DNP NMR
applications due to the wide array of wide-line nitroxide radicals that favor the
polarization of high-gamma nuclei (i.e., 1H). SE has been effective at lower field
strengths [63] although a range of developments and results have recently appeared
in the literature [64–66] so that it is still an active field of study in high-frequency
DNP development. Likewise, Overhauser effect has recently emerged as a contender
for higher field DNP NMR [67, 68]. Further developments with radicals could be
fruitful as the enhancements scale linearly with magnetic field strength. Below is a

Table 1 Examples of homebuilt and commercial DNP NMR instruments

Type
Location/
manufacturer Bo (MHz/GHz)

Microwave
source Completed

Home-built MIT 211/140 [30, 59]
380/250 [29, 38,
60]
700/460 [23, 33,
47]
500/330 [32, 39]
800/527 [31]

Gyrotron
Gyrotron
Gyrotron
Gyrotron
Gyrotron

ca. 1991–
1993
ca. 2002–
2003
ca. 2011–
2013
ca. 2014–
2016
in-prep.

Home-built NIH 400/263 [41] Diode ca. 2009–
2010

Home-built Osaka 600/395 [36, 40]
700/460 [34, 35]

Gyrotron
Gyrotron

ca. 2010–
2012
ca. 2015–
2016

Home-built Warwick 284/187 –
600/395 [61]

Gyrotron ca. 2012

Home-Built Washington U. St.
Louis

300/198 [62] Gyrotron ca. 2016–
2017

Commercial Bruker Biospin
[48, 50]

400/263
600/395
800/527

Gyrotron
Gyrotron
Gyrotron

ca. 2009–
2010
ca. 2011–
2012
ca. 2012–
2013
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brief overview of the CE and SE DNP mechanisms; the following references are
provided for a more comprehensive review [15, 16, 21, 24, 27, 65, 67–83].

The dominant DNP mechanism depends on the targeted NMR-active nucleus
and on the EPR characteristics of the selected polarizing agent. For example, the
most common approach in DNP NMR applications of solids is through indirect
polarization transfer using a CP step (e� ! 1H ! X, where X is a lower gamma
nucleus). Using this approach one can select for SE by using a narrow-line radical
such as trityl or for CE with TOTAPOL, a wide-line biradical. In other words, it is
the relative magnitudes of the electron homogeneous (δ) and inhomogeneous (Δ)
linewidths, and the nuclear Larmor frequency (ω0I) that guide the DNP
mechanism.

Cross Effect DNP Mechanism

The CE mechanism can be described as a three-spin flip-flop-flip process between
two electrons and a nucleus, which is dominant when Δ > ω0I > δ. The difference
between the two electron Larmor frequencies should be near the nuclear Larmor
frequency to achieve maximum polarization transfer between electron and nuclear
spins [73, 75, 79, 84].

ω0I ¼ ω0S2 � ω0S1 (1)

To satisfy Eq. 1 for high-gamma nuclei like 1H, the polarizing agent needs to
have EPR characteristics (EPR spectrum) of a broadline; this is readily seen in
nitroxide-based radicals including monoradicals such as TEMPO and TEMPONE,
and biradicals such as SPIROPOL, AMUPOL, and TEKPOL. The need to have two
electrons in close proximity (i.e., dipolar coupled) while minimizing the paramag-
netic bleaching of nuclear spins has pushed the field into biradicals [85, 86]. Teth-
ered radicals provide the chemical design to reasonably direct orientation and
electron-electron distance so that the dipolar coupling is on the order of 20–
35 MHz, while enabling the concentration of unpaired electrons to be minimized,
typically <15 mM solution (i.e., <30 mM electrons). In contrast to biradicals,
monoradicals with a 40 mM electron concentration have significantly reduced
dipolar couplings of <2 MHz when present in a homogenous glassy sample [85–
88]. The CE mechanism is often the choice for high-frequency DNP NMR exper-
iments as the mechanism is based on allowable transitions (Fig. 2) and loosely
scales with the inverse of magnetic field strength. In the past few years, descriptions
of the CE mechanism taking into account the level crossing that occurs under
magic-angle spinning has shed further light into the spinning rate dependence of
the overall enhancement. The reader is referred to the works by the Tycko [89] and
Vega [81] groups where they discuss modulations of the energy levels within DNP
mechanisms when using magic-angle spinning and the impact it has on polarization
transfer.
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Solid Effect DNP Mechanism

The SE mechanism can be described as a two-spin process involving an electron and a
nucleus. The SE mechanism is dominant when the nuclear Larmor frequency is larger
than the electron homogeneous and inhomogeneous EPR linewidths (ω0I > δ, Δ), and
microwave irradiation is applied at the electron-nuclear zero- or double-quantum tran-
sition as shown in Fig. 3 [65, 66, 69, 90]. The SE matching condition is satisfied when:

ωmw ¼ ω0S � ω0I (2)

where ω0S and ωmw are the electron Larmor and microwave frequencies, respec-
tively. The mechanism may be observed when a narrow-line radical (e.g., BDPA,
trityl, etc.) is used as the polarizing agent (narrow EPR spectrum) and has an electron
spin-lattice relaxation time (T1S) that is optimized to allow for efficient polarization
transfer to nearby NMR-active nuclei.
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Fig. 2 Cross effect DNP: (a) on (DNP) and off (No DNP) 13C[1H] CP MAS NMR experiment on
urea using a wide-line nitroxide radical, (b) EPR and 1H DNP NMR field profile for a nitroxide
polarizing agent, and (c) energy level diagram for CE DNP displaying spin population distribution
for a three-spin (two electrons and one nucleus) system at thermal equilibrium, positive and
negative CE DNP conditions. Microwave saturation of the electron transition (ω0S1 or ω0S2) leads
to a three-spin flip-flop-flip process that distributes the population (ωCE), thus increasing the net
nuclear polarization
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Polarizing Agents

Dynamic nuclear polarization requires a source of unpaired electron spins, which is
typically achieved using exogenous organic-based radicals also known as polarizing
agents. Radicals are typically divided into two categories as either narrow-line or
wide-line radicals based on their EPR characteristics, since it is the EPR character-
istics of the polarizing agent that give insight into what type of DNP mechanism
governs the e� – no polarization transfer. For several compelling reasons, including
its reduced spin�lattice relaxation, improved sensitivity possible through CP, and a
large database of nitroxide radicals, 1H is often the nucleus of choice for initial
polarization at cryogenic temperatures using a wide-line biradical polarizing agent.
Subsequent to polarization of 1H, a CP step is used to observe low-gamma nuclei.
This indirect polarization transfer method (e� ! 1H ! X, Fig. 4) has been
successfully applied to a wide range of solids including biomolecular, materials
and surfaces [18–20, 91]. An alternative to indirect polarization is polarizing an
NMR active nucleus (X) directly from a source of unpaired electrons, e� ! X (i.e.,
direct polarization, Fig. 4) [23, 87, 88, 92–95]. This approach is of interest for many
chemical systems that do not cross-polarize efficiently by high-γ nuclei (e.g., 1H
or 19F), or those where the high-γ nuclei are absent, and the approach may be of
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−’ve DNP, DQEquilibriumE

Fig. 3 Solid effect DNP: (a) on (DNP) and off (No DNP) experiment showing the positive and
negative DNP enhancement (13C[1H] CP MAS NMR experiment on urea using a narrow-line
radical), (b) EPR and 1H DNP NMR field profile for a narrow-line polarizing agent, and (c) energy
level diagram for SE displaying spin-population distribution for a two-spin (one electron and one
nucleus) system at thermal equilibrium, positive (ω0S – ω0I, ZQ) and negative, (ω0S + ω0I, DQ) DNP
enhancements
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assistance in spectral editing to distinguish between protonated and nonprotonated
chemical environments.

The choices can be vast as many organic radicals exist, particularly with the
recent explosive developments in high-frequency DNP NMR and the push for
improved biradicals. Below, we highlight a few of the key polarizing agents that
are often used for various applications, organized by their characteristic EPR spectra
of narrow-line and wide-line radicals.

Narrow-Line Polarizing Agents

Within the DNP NMR field, only a handful of narrow-line radicals are currently
viable. Although limited in options, these chemically designed radicals provide an
interesting array of tunability allowing the selection of different DNP mechanisms
and permitting an exploration into various direct and indirect polarization methods.
Generally, these narrow-line radicals have been used within applied fields (vide
infra), and can display the CE or SE DNP mechanism depending on the
NMR-active nucleus being probed. In the case of 1H, these radicals exhibit
solid-effect characteristics which scale unfavorably with field strength dependence

Fig. 4 Schematic of indirect (through 1H’s) and direct e� – no polarization transfer pathways in
DNP NMR of solids. Indirect polarization (most common) enhances 1H (ε1H), with a theoretical
gain in sensitivity of 658, which can then be transferred to NMR-active nuclei of interest such as
13C, 15N, 17O, etc. Direct polarization (less common) enhances NMR active low-gamma nuclei
directly (not through a cross-polarization step from 1H or 19F). The theoretical gain depends on the
NMR active nucleus, such as 2,618 for 13C (ε13C), 3,311 for

29Si (ε29Si), 4,855 for
17O (ε17O), 6,493

for 15N (ε15N), etc.
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(ε / B0
�2) [96]. This may change as microwave technology emerges offering

higher-output power able to circumvent the losses from increased B0.
Figure 5 illustrates a series of narrow-line radicals that have been successfully

applied to various chemical problems. They are promising candidates for
low-gamma polarization including 13C [88, 94, 97], 2H [93], 17O [23, 87], and
29Si [98], as these begin to satisfy the CE DNP mechanism of low-gamma nuclei
via direct polarization. This may be attractive for materials that do not contain high-
gamma nuclei or solids that suffer from extremely long 1H T1’s. Recently, research
has begun to emerge adopting the Overhauser DNP mechanism for 1H at high
magnetic fields using narrow-line radicals [67, 68, 99]. As the Overhauser effect is
the only DNP mechanism that improves with magnetic field strength and requires
little microwave power to saturate the electrons [99], it may offer significant
advantages including permitting the use of low-power microwave sources (e.g.,
EIK). As the field turns to higher and higher magnetic fields (>800 MHz), alterna-
tive radicals will surely be developed.

Wide-Line Polarizing Agents

The most prominent radicals used in DNP NMR applications are wide-line polariz-
ing agents, typically comprised of nitroxide moieties. These are chosen due to the
range of offerings within the literature and/or commercial sources, synthetic tunabil-
ity, and ease in which they satisfy the CE DNP mechanism for 1H. In most
applications of DNP NMR, polarization transfer occurs indirectly through high-
polarized protons and a CP step to lower gamma nuclei such as 13C, 15N, or 29Si. As
outlined above, targeting 1H is advantageous; in addition, in some cases this
approach allows one to tune the 1H spin-lattice relaxation and 1H-1H spin-diffusion
behavior through 2H exchange (i.e., adjusting the 1H to 2H ratios within the solvent
and/or solid of interest).

Early work focused on monoradicals, typically involving TEMPO-based
derivatives which are easily sourced. To reach maximum CE DNP enhancements,
quantities of 40+ mM electrons were required as at this level favorable e� � e�

dipole interactions on the order of a few MHz were obtained, but this caused
significant paramagnetic relaxation resulting in a loss of signal as well as reduc-
tion in T2, affecting resolution. In 2006, Song and Hu, graduate students within
the Swager and Griffin groups (MIT), respectively, synthesized a highly effective
and water soluble biradical known today as TOTAPOL [86]. This began the
movement to utilize biradicals which permit a reduction of the concentration of
the polarizing source (5–15 mM biradical or 10–30 mM electrons) and conse-
quently reduce signal quenching [100] while yielding larger enhancements as the
two electrons required within the three-spin CE DNP mechanism are highly
coupled due to the chemical tether. Current research suggests that a dipolar
coupling of between 25 and 35 MHz, the relative orientation between the two
organic radical moieties and the exchange interaction appear to be important
factors [96, 101–103].

1194 M. Ha and V. K. Michaelis



Fi
g
.5

C
om

m
on

na
rr
ow

-l
in
e
ra
di
ca
ls
us
ed

as
po

la
ri
zi
ng

ag
en
ts
in

hi
gh

-f
re
qu

en
cy

D
N
P
N
M
R

57 High-Frequency Dynamic Nuclear Polarization NMR for Solids: Part 1 –. . . 1195



For years two biradicals, bTbK [104] and TOTAPOL [86] (Fig. 6), were the
benchmarks for high-frequency DNP, but with the introduction of commercial
instrumentation, advances in both organic and water soluble radicals has exploded
since 2013. The nature of biradicals have varied using a host of species; some of the
most efficient radicals that have emerged include AMUPOL (hydrophilic biradical)
[105] and TEKPOL derivatives (hydrophobic biradical) [103, 106], among many
others [86, 102, 104–111].

Emerging areas in radical development include a report highlighting the benefit of
using a mixed biradical that tethers a TEMPO and trityl moiety. The report demon-
strates the excellent high-field enhancements, surpassing conventional biradical
nitroxides as well as reducing the signal quenching of the sample, adding another
dimension worth exploring in this exciting field [101]. There have also been
advances in the use of paramagnetic metals as DNP polarizing agents including
homogeneous solids, biomolecular and inorganic chemical systems [64, 112–
115]. There is no doubt that radical development will continue to advance along
with high-frequency DNP.

Sample Preparation

The vast majority of high-frequency DNP NMR experiments applied to chemical
systems utilize an ex situ polarizing agent with a cryoprotectant. A DNP sample will
consist of a polarizing agent, typically a biradical in 10 � 5 mM concentration, a
solvent mixture and the sample of interest. The cryoprotectant (i.e., solvent mixture)
is important for several reasons such as allowing the homogeneous dispersion of the
polarizing agent within the sample, assisting in providing uniform polarization
across the sample and protecting the sample from cryogenic temperatures (particu-
larly important in biological specimens). When choosing a solvent mixture one
should consider whether the solvent is more likely to have an amorphous-like
consistency or to crystallize, as this has drastic effects on the enhancement efficiency
as well as on radical homogeneity [109]. It is also important to ensure the solvent
does not react with the sample of interest. Typically, a glycerol-water (60:40, v/v)
mixture is the most effective solvent, forming an excellent glass at cryogenic
temperatures. Glycerol has been used for decades as a cryoprotecting medium in a
host of research projects requiring low-temperature experiments. Other solvent
mixtures that appear in the DNP literature include DMSO/water (60:40, v/v),
dichloroethane/methanol (95:5, v/v), o-terphenyl, etc. [23, 50, 109, 116–120] Typ-
ically, hydrophilic solvents are preferred for biomolecular solids while hydrophobic
solvents are preferred for inorganic solids.

One further step in choosing the appropriate solvent mixture is the ability to
exchange isotopes. In general, a 1H concentration of approximately 10% within a
solvent has been found to be an effective 1H spin-bath reservoir. Thus, for example,
the 1H concentration in the glycerol/water mixture (colloquially referred to as DNP
Juice) is diluted to approximately 10% using a combination of glycerol-d8, D2O, and
H2O (60:30:10, v/v/v).
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A homogenous sample is one where the radical and chemical sample is readily
dissolved in the solvent-matrix and upon quenching a homogeneous glass is formed.
This approach often leads to the most effective polarization transfer as the radical is
effectively distributed throughout the sample. DNP NMR of a homogeneous, amor-
phous chemical system can be limited in resolution due to line-broadening
stemming from a distribution of chemical shifts, a commonly observed occurrence
for many organic and inorganic amorphous materials, as well as from slower side-
chain dynamics at cryogenic temperatures. A heterogeneous sample is one where the
solvent matrix (radical and solvent) are in contact with the chemical sample,
although the sample of interest does not readily dissolve in the matrix. Large
enhancements are achievable for these systems although they are typically reduced
due to inhomogeneous radical distribution, solvent selection, glassing ability,
domain size, pore size, radical-sample interaction, and the limitations in effective
e� – 1H and 1H – 1H spin-diffusion across the solid [23, 66, 83, 121–126]. Dynamics
and hydrogen concentrations within the sample can also affect the recorded enhance-
ment. An added benefit of heterogeneous DNP within nano- and microcrystalline
solids is that resolution is typically unhampered at cryogenic temperatures enabling
both a savings in acquisition time as well as high-resolution spectra that provide
detailed structural information. It has also been our experience that using low radical
concentrations (<10 mM biradical) tends to diminish the quenching effect on spin-
spin relaxation (T2), providing higher resolution spectra, although the enhancement
is reduced (a trade-off between sensitivity gain and spectral resolution). DNP NMR
spectroscopy has been successfully applied to a diverse range of homogeneous and
heterogeneous biomolecular [18, 29, 121, 123, 127–139] and inorganic [18, 20, 23,
121, 123, 125, 126, 140, 141] solids.

Other sample preparations have also proven effective for high-frequency DNP
NMR including ones that are cryoprotectant-free, an approach that does not need a
solvent, or instead one that disperses the radical with a solvent that is subsequently
removed. For example, a radical that is introduced onto or into a chemical system
such as cellulose or a porous material then followed by evaporation has recently
shown promise for natural-abundance systems [142–144]. A self-cryoprotecting
solvent-free approach using in situ or ex situ sedimented (SED) DNP within an
apoferritin complex (480 kDa) and BSA has recently been described [23, 145, 146].

Although these methods lead to a more heterogeneous distribution of radicals and
hence polarization is not uniform within the samples, they maintain excellent
sensitivity and produce excellent spectral resolution from an overall smaller effect
from paramagnetic broadening. More recently a series of in situ methods have
appeared using either paramagnetic metals within inorganic solids [115] or tagging
organic radicals [147] or metals [112, 114] onto biomolecular solids. These unique
approaches to chemically engineering the polarizing agent within the system are
interesting avenues that could improve homogenous radical dispersion within the
host material, such as crystalline solids (for example, alleviate domain size issues in
solids) or incorporating radicals as synthetic tags with proteins (for example, incor-
porating the radical in the lipid within membrane proteins, or using alternative
labeling procedures to tag the protein itself).
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Summary and Future Outlook

High-frequency DNP NMR will continue to revolutionize our ability to explore the
most challenging spectroscopic questions. The balance between radical concentra-
tion and resolution is a critical concept that must be carefully evaluated while sample
preparation is critical to one’s ability to obtain the highest quality spectra. Due to the
access of biradicals, glass forming solvents and ease in implementing CE DNP
NMR, this area will surely lead in future DNP NMR applications and development
for solids. To circumvent some of the enhancement issues at high fields and/or access
to high power microwave sources, mixed and narrow-line radical development will
surely continue, with the latter turning the attention to Overhauser DNP NMR.

As for the next technological challenges we face, DNP NMR growth will
continue with development beyond 800 MHz/527 GHz on the horizon, faster
magic-angle spinning (i.e., >40 kHz), reducing the cryogen-usage footprint and
method development (e.g., electron decoupling, pulsed versus CW DNP NMR,
frequency tunable microwave devices, etc.) to improve the sensitivity gains and
resolution at higher magnetic fields and/or temperatures. One can foresee the day
where a DNP NMR spectrometer will be as routine in research facilities as liquids
and solid-state NMR spectrometers are today.
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