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Abstract. Bayesian network structure learning (BNSL) is the problem
of finding a BN structure which best explains a dataset. Score-based
learning assigns a score to each network structure. The goal is to find
the structure which optimizes the score. We review two recent studies of
empirical behavior of BNSL algorithms.

The score typically reflects fit to a training dataset; however, models
which fit training data well may generalize poorly. Thus, it is not clear
that finding an optimal network is worthwhile. We review a comparison
of exact and approximate search techniques. Sometimes, approximate
algorithms suffice; for complex datasets, the optimal algorithms produce
better networks.

BNSL is known to be NP-hard, so exact solvers prune the search
space using heuristics. We next review problem-dependent characteristics
which affect their efficacy. Empirical results show that machine learning
techniques based on these characteristics can often be used to accurately
predict the algorithms’ running times.

Keywords: Bayesian networks · Structure learning · Algorithm selec-
tion · Empirical hardness

1 Introduction

Bayesian networks (BNs) (Pearl 1988) are a widely-used formalism for repre-
senting uncertain relationships among variables in a domain of interest. In some
cases, domain experts can specify these relationships as a BN structure; however,
when they are unknown, we must learn the structure from data.

In the commonly-used score-based framework (Heckerman et al. 1995), a score
is assigned to each structure. The score is typically a penalized log-likelihood
which trades off the fit of a BN to the data with the complexity of the structure.
The BN structure learning problem (BNSL) is then cast as an optimization
problem in which the goal is to find a BN structure with an optimal score.

BNSL is known to be NP-hard (Chickering 1996), so early optimization
algorithms (such as Cooper and Herskovits (1992), Heckerman et al. (1995),
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Friedman et al. (1999), Chickering (2002), Moore and Wong (2003), Teyssier
and Koller (2005), Tsamardinos et al. (2006)) used local search techniques.
However, these algorithms suffer from the same problem faced by all local
search techniques: the quality of the found solution relative to an optimal one is
unknown. Consequently, a variety of algorithms have been proposed which solve
the problem exactly (Ott et al. 2004; Koivisto and Sood 2004; Silander and
Myllymäki 2006; Parviainen and Koivisto 2009; de Campos and Ji 2011; Yuan
and Malone 2013; Bartlett and Cussens 2015; van Beek and Hoffmann 2015).

Since BNSL is NP-hard, the exact algorithms have exponential worst-case
behavior. Nevertheless, many of the algorithms employ sophisticated heuristics,
such as branch-and-bound techniques, to provably rule out many possible struc-
tures. In practice, these algorithms can learn provably optimal networks for
modestly-sized datasets; in general, optimal networks on the order of 50 vari-
ables can be learned with reasonable resources (Malone et al. 2014).

The score of a BN structure is ideally a reflection of how well it models a
training dataset. The general assumption has been that networks which model
the training data well also accurately reflect new data. However, it is well-known
that a model can describe a training set very well, yet generalize poorly to new
data (Mitchell 1997). Thus, there is no guarantee that a network which optimizes
a score for a training set will generalize well to new data.

Until a recent study (Malone et al. 2015), there was no clear empirical
evidence on whether the increased computational efforts required by exact
approaches to BNSL are justifiable in terms of generalization to unseen test-
ing data. As the first half of this paper, we review that work, which shows that
for some datasets, simple strategies such as greedy hill climbing can provide
good generalization. However, the simple strategies fail to generalize well on
other datasets. Predictive likelihood results show that the optimal algorithms
consistently generalize well.

Because of their guarantees, all of the exact algorithms find optimal, equiva-
lent networks. So, in terms of generalization, these algorithms are equivalent. As
previously mentioned, though, the algorithms use sophisticated, and very dif-
ferent, heuristics to find the optimal network and prove its optimality. In terms
of resource requirements, then, specific implementations of these algorithms,
solvers, are very different (van Beek and Hoffmann 2015).

For the second half of this work, we review a study (Malone et al. 2014) which
shows that machine learning techniques can learn a simple, yet nontrivial, model
that accurately predicts the fastest solver for a given instance. Additional fea-
tures are shown to capture the hardness of an instance more accurately. Models
with the additional features significantly improve prediction accuracy.

The rest of this paper is structured as follows. In Sect. 2, we formally intro-
duce Bayesian networks and BNSL. Section 3 provides an overview of the specific
solvers used in this work, while Sect. 4 outlines the datasets used. Generalization
of learned networks is reviewed in Sect. 5, and Sect. 6 reviews results on exact
solver behavior. Finally, Sect. 7 concludes the paper.
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2 Background

A Bayesian network (Pearl 1988) is a compact representation of a joint proba-
bility distribution over the random variables V = {X1, . . . , Xn}. It consists of
a directed acycic graph (DAG) in which each vertex corresponds to one of the
random variables; a directed edge indicate direct dependence between two vari-
ables. Additionally, each variable Xi has an associated probability distribution,
conditioned on its parents in the DAG, PAi. The joint probability distribution
given by the network is

P (V) =
n∏

i=1

P (Xi|PAi). (1)

Given a dataset D = {D1, . . . DN}, where each Di is a complete instantiation
of V, the goal of structure learning is to find a Bayesian network N which best
fits D. The fit of N to D is quantified by a scoring function s. Many scoring func-
tions have been proposed in the literature, including Bayesian scores (Cooper
and Herskovits 1992; Heckerman et al. 1995), MDL-based scores (Suzuki 1999;
Silander et al. 2008), and independence-based scores (de Campos and Huete
2000), among others. The scoring functions can typically be interpretted as
penalized log-likelihood functions. All commonly used scoring functions are
decomposable (Heckerman et al. 1995); that is, they decompose into a sum of
local scores for each variable, its parents, and the data,

s(N ;D) =
n∑

i=1

si(PAi;D), (2)

where si(PAi) gives the score of Xi using PAi as its parents and is non-negative.
We omit D when it is clear from context.

A variety of pruning rules (Suzuki 1999; Tian 2000; Teyssier and Koller 2005;
de Campos and Ji 2011) can be used to demonstrate that some parent sets are
never optimal for some variables. Additionally, in practice, large parent sets are
often pruned a priori. We refer to parent sets remaining after all pruning as
candidate parent sets and denote all candidate parent sets of Xi as Pi.

The Bayesian network structure learning problem (BNSL) is defined as fol-
lows.

The BNSL Problem
Input: A set V = {X1, . . . , Xn} of variables and a local score

si(PAi) for each PAi ∈ Pi for each Xi.
Task: Find a DAG N∗ such that

N∗ ∈ arg min
N

n∑

i=1

si(PAi),

where PAi is the parent set of Xi in N and PAi ∈ Pi.
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3 Solvers

This section describes all solvers (algorithm implementations) used in this work.
Hill climbing with a tabu list and random restarts (tabu, http://www.
bnlearn.com). Hill climbing is a widely-used local search technique in discrete
optimization (Russell and Norvig 2003) that typically finds local optima for
an objective function f by maintaining a current solution and applying search
operators. At each step, all search operators are tentatively applied to the cur-
rent solution to find its neighborhood. The member of the neighborhood which
results in the biggest improvement to f is selected as the new current solu-
tion. This process is repeated until a local optimum is found. Random restarting
is a strategy to escape from a local optimum by randomly changing a locally
optimal solution and restarting the search from the new random solution. The
tabu list strategy (Glover 1990) augments random restarts by keeping track of
recently visited solutions; solutions in the tabu list are ignored when considering
new neighborhoods. Even with random restarts and a tabu list, the algorithm
provides no guarantees on the proximity of local optima to globally optimal
solutions.

In the context of BNs, each solution corresponds to a network; the search
operators considered here are edge addition, deletion and reversal (as long as the
resulting structure is a DAG). The objective function f is exactly the scoring
function s.

Max-min hill climbing (MMHC, http://www.bnlearn.com). Max-min hill
climbing (Tsamardinos et al. 2006) is a two-phase hybrid learning algorithm.
During the first phase, it uses a set of statistical independence tests to iden-
tify arcs that are forbidden from appearing in the learned network. The second
phase uses tabu to find local optima within this restricted space. Here we use
a mutual information statistical test during the first phase. The first phase of
MMHC is similar to constraint-based methods such as pc (Spirtes et al. 2000).
Empirically, MMHC has been shown to outperform several other state-of-the-
art algorithms, including pc, sparse candidate, three phase dependency analy-
sis, optimal reinsertion and greedy equivalence search (Tsamardinos et al. 2006).
While MMHC does guarantee to recover BN structures when the data are faith-
ful to a DAG in the large sample limit (Tsamardinos et al. 2006), it does not
offer any non-trivial guarantees about the generalization quality of the learned
network for unfaithful, finite datasets.

Chow-Liu (CL). The Chow-Liu algorithm (Chow and Liu 1968) is an exact,
polynomial-time algorithm for finding an optimal tree-structured BN. The algo-
rithm calculates the mutual information between all pairs of variables to form a
weighted graph. The maximum spanning tree through the graph corresponds to
the optimal tree-structured BN.

A∗ (A∗, http://www.urlearning.org). State space search using A∗ (Yuan and
Malone 2013) is a provably optimal algorithm which is guaranteed to optimize
s. It is based on casting BNSL as a shortest-path finding problem; A∗ is then

http://www.bnlearn.com
http://www.bnlearn.com
http://www.bnlearn.com
http://www.urlearning.org


Empirical Behavior of Bayesian Network Structure Learning Algorithms 109

used to solve the shortest path problem, which gives the optimal network for
the given local scores. For the exact solver comparisons, we refer to a variant of
A∗ which uses multiple pattern databases as A∗ec.

Integer linear programming (ILP, http://www.cs.york.ac.uk/aig/sw/
gobnilp/). Another approach to solving BNSL optimally is based on integer
linear programming (ILP) (Bartlett and Cussens 2015). In ILP, BNs are defined
as vertices on a particular polytope, and a cutting plane approach is used to find
the vertex corresponding to the optimal BN.

Branch and Bound (BnB, http://www.ecse.rpi.edu/∼cvrl/structlearning.
html). The branch-and-bound search algorithm (de Campos and Ji 2011)
searches for optimal networks in a relaxed space of directed graphs that may
contain cycles. Found cyclic solutions are iteratively ruled out by removing one
arc in it and branching over the possible choices of the arc to remove.

Provably optimal (opt). All optimal algorithms (including A∗, ILP, BnB,
and their variants) find equivalent networks1. Thus, in the context of the gener-
alization analysis, they are equivalent and only one of the optimal algorithms is
used for each dataset.

Solver resource constraints. For running the experiments we used a cluster
of Dell PowerEdge M610 computing nodes equipped with two 2.53-GHz Intel
Xeon E5540 CPUs and 32-GB RAM. For each individual run, we used a timeout
of 2 h and a 28-GB memory limit. We treat the runtime of any instance as 2 h if
a solver exceeds either the time or memory limit.

4 Datasets

We used a similar set of benchmark datasets for both studies; in total, we used
48 distinct datasets2:

– Datasets sampled from benchmark Bayesian networks. 19 datasets, sampled.
– Datasets from the UCI repository. 19 datasets, UCI.
– Datasets sampled from random Bayesian networks. 7 datasets, syn.
– Datasets we compiled by processing log files. 3 datasets, log.

We preprocessed each dataset by removing all continuous variables, variables
with very large domains (e.g., unique identifiers), and variables that take on only
one value. Other than preprocessing, the datasets were used slightly differently
in the generalization study compared to the exact solver analysis; the relevant
sections discuss exactly how the datasets were used.
1 This work assumes s is score-equivalent (Heckerman et al. 1995).
2 The datasets are available at http://bnportfolio.cs.helsinki.fi/.

http://www.cs.york.ac.uk/aig/sw/gobnilp/
http://www.cs.york.ac.uk/aig/sw/gobnilp/
http://www.ecse.rpi.edu/~cvrl/structlearning.html
http://www.ecse.rpi.edu/~cvrl/structlearning.html
http://bnportfolio.cs.helsinki.fi/
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5 Generalization of Learned Networks

Our aim in the first part of this work is to shed light on the relationship of
different learning strategies, based on the solvers discussed in Sect. 3, and the
unknown discrepancy between training set scores and generalization. In par-
ticular, we address the following research questions for different fixed learning
algorithms and training sets.

Q1 How do hard constraints on the number of parents in learned structures
affect their generalization?

Q2 How does the amount of training data affect the generalization of learned
structures?

Q3 Which learning strategies result in networks with the best generalization?

Our main findings, based on a rigorous experimental setup, are the following.
With respect to Q1, we show that for small datasets, hard constraints limiting
the maximum number of parents to 2 improves generalization on a few datasets
for local search algorithms; however, optimal algorithms usually benefit from a
higher limit. We answer Q2 by using increasingly large subsets of available train-
ing data. Regardless of the algorithms’ guarantees, more training data results
in more accurate predictions on testing data. Finally, we address Q3 by consid-
ering all of the data collected during the evaluation. For some datasets, simple
strategies such as the tractable Chow-Liu algorithm can provide good general-
ization. However, the simple strategies fail to generalize well on other datasets.
Predictive likelihood results show that optconsistently generalizes well.

5.1 Experimental Setup

Datasets. We used 29 datasets from the UCI and sampled categories; the num-
ber of variables in the datasets ranges from 17 to 60, and the number of records
ranges from about 30 to 20 000. We used standard 10-fold cross-validation in
order to evaluate the learning strategies.

Parent limit. For all algorithms except CL, we used hard limits of 2 and 8
on the number of parents. When discussing algorithms, we use a subscript to
indicate the maximum number of parents, such as opt8.

Scoring function. We selected the commonly-used Bayesian Dirichlet with
score equivalence and uniform structure prior (BDeu) scoring function (Heck-
erman et al. 1995) with an equivalent sample size (ESS) of 1 as the scoring
function.

Inference. For all learned structures, parameter values were set using a sym-
metric Dirichlet prior with a concentration parameter of 1 (which is equivalent
to Laplacian smoothing). All testing likelihood calculations were performed by
multiplying relevant family factors.

Evaluation. In order to address our research questions, we use the predictive
likelihood to evaluate the generalization capability of the learned networks. In
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particular, for a dataset d and learning strategy l, we calculate the per-prediction-
likelihood, �d,lpp , which is the likelihood of each prediction on the test set,

�d,li =
N∑

r=1

log P (dr|N ) =
N∑

r=1

n∑

i=1

log P (Xr
i |PAr

i ) (3)

�d,lpp = −
∑10

i=1 �d,li

Nd · nd
, (4)

summing over the folds i = 1..10, where �d,li is the predictive likehood on the
test set for fold i using learning strategy l, Nd is the number of records in the
test set, and nd is the number of variables in the dataset.

The numerator of Eq. 4 is the sum over all of the test set predictive likeli-
hoods for learning strategy l and dataset d. Each �d,li term comprises Nd

10 · nd

terms. In total, the sum in the numerator includes Nd · nd terms, each of which
corresponds to the log probability of one variable of one record from the test set.
Consequently, the denominator serves as a normalizing constant, and �d,lpp is the
average log probability of each prediction.

In order to compare learning strategies, we normalize the �d,lpp values for each
dataset between 0 and 1 to obtain

�̂d,lpp = 1 − �d,lpp − minl′{�d,l
′

pp }
maxl′{�d,l

′
pp } − minl′{�d,l

′
pp } (5)

where l′ ranges over all learning strategies. Note that, after normalization, the
learning strategy with the best �d,lpp has �̂d,lpp = 0 while the worst learning strategy
has �̂d,lpp = 1.

It is important to note that �d,lpp and �̂d,lpp consider all variables equally. In
particular, they do not consider a special “class” variable.

5.2 Impact of Restricting Parent Set Size

We study question Q1 by comparing the �̂d,lpp among datasets when using k = 2
and k = 8 as the maximum number of parents for each learning algorithm.
The BDeu score implicitly restricts the maximum number of selected parents as
a soft constraint by integrating over all parameterizations of parent instantia-
tions. Other scores, such as MDL, explicitly incorporate a complexity penalty to
discourage large parent sets. In both cases, though, this restriction is a soft con-
straint. Here, we consider the maximum number of parents as a hard constraint.

Optimal. Figure 1 (left) shows the performance (in terms of �̂d,lpp ) of generaliza-
tion using optk for parent limits k = 2, 8. The (left, top) and (left, bottom)
plots show distinctly different patterns. Figure 1 (left, top) clearly shows that
opt2 results in better generalization for sampled datasets with 100 records.
However, as the number of records increases, opt8 yields better performance. In
contrast, for UCI datasets, opt8 is almost always better.
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Fig. 1. The �̂d,lppvalues for opt (left), tabu (center) and MMHC (right) with a hard
limit of k = 2 and k = 8 for sampled (top) and UCI (bottom) datasets. The datasets
are sorted in ascending number of records. Lighter colors indicate better performance.
Close inspection of the MMHC strategies show some slight difference; however, they
are difficult to discern in the scaled image.

Tabu. In contrast to the results for opt, Fig. 1 (center, bottom) shows that
tabu2 generalizes better than tabu8 for UCI datasets. One possible explana-
tion for this difference is that the greedy strategy of tabu8 favors structures
which improve the likelihood while increasing the complexity of the learned
structures. Thus, the learned structure overfits the training data and does not
generalize well to testing data. In contrast, as opt is guaranteed to find the
best-scoring structure, it finds structures which better balance training set like-
lihood and complexity. The hard constraints on the number of parents for tabu2

forbid it from selecting the complex structures. Both tabu2 and tabu8 typically
generalize well on sampled datasets.

MMHC. Figure 1 (right) shows that the hard parent limit has little effect on
�̂d,lpp for MMHC. The first phase of MMHC uses a set of statistical independence
tests to restrict the learned network structures. For many of the datasets, the
relatively small number of records restricts the power of these tests and leads to
a very small search space in the second phase, despite initially allowing many
more structures for the 8-parent space.

In summary, the answer to Q1 clearly depends both on the training datasets
and learning algorithm; the global guarantees of opt allow it to fully take advan-
tage of the larger k = 8 search space, but the local search strategy of tabu per-
forms better in the more restricted k = 2 space.

More data is required to accurately estimate the conditional probability dis-
tributions for complex structures (with more parameters). This may explain why
opt2 generalizes better than opt8 for datasets with a small number of records.
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Fig. 2. The �̂d,lpp values for using the opt8 (left), tabu2 (center), and CL (right) learn-
ing strategies as the number of records increases. The top row is for the carpo dataset
(sampled); the bottom row is for the agaricus dataset (UCI). Note the different
y-axes for the plots. Lower values and smaller boxes are better.

5.3 Impact of Amount of Training Data

To investigate the impact of the amount of available training data, to answer Q2
we compared how �d,lpp of opt8, tabu2 and CL behave as the number of records
available for training increases. Figure 2 shows that for all algorithms on both
sampled and UCI datasets, more records lead to better �d,lpp . Furthermore, the
plots also show that with more records, the variance of �d,lpp decreases. Interest-
ingly, the plot also shows that CL performs better than opt8 and tabu2 on
carpo, a sampled dataset, when only 100 records are available. This again high-
lights that restricted model classes can generalize better than those which allow
more parameters, especially when little data is available to estimate the para-
meter values. Despite the differences in guarantees, opt8, tabu2 and cl perform
similarly for carpo1 000 and carpo10 000.

As with carpo, for the UCIagaricus dataset, the likelihood improves and
variance decreases as the number of records increases. However, opt8 improves
from �d,lpp ≈ 0.7 for 81 records to �d,lpp ≈ 0.48 with 812 records. In contrast,
tabu2 only improves from �d,lpp ≈ 0.7 to about �d,lpp ≈ 0.55, and CL exhibits even
less improvement. For agaricus, opt8 using only 812 records results in better
generalization than tabu2 or CL with all 8 123 records.

We observed similar behavior on other sampled and UCI datasets as the
amount of training data was varied. The same general trends hold for all
algorithms and datasets with respect to Q3. Namely, the predictive likelihood
improves and variance decreases as the size of the training set increases.
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Fig. 3. The �̂d,lpp values for the best learning strategies. The empty network is included
as a baseline. The sampled datasets are shown in the left heatmap, and UCI datasets
are in the right. The datasets are sorted in ascending number of records. Lighter colors
indicate better performance (Color figure online).

5.4 Comparison Across Learning Strategies

Finally, based on the previous results, we studied Q3 by choosing the best learn-
ing strategies and comparing their �̂d,lpp across all of the datasets. In essence, we fix
the training set while varying the learning strategy. Additionally, empty (with
no edges) was included as a baseline. The results in Fig. 3 show several expected
trends and a few surprises. As expected, empty is the worst on almost all of the
datasets. For the reasons mentioned in Sect. 5.2, MMHC8 was typically worse
than the other strategies. These trends are consistent for both sampled and
UCI datasets. For sampled datasets, tabu2 and opt8 have very similar �̂d,lpp for
most datasets; the �̂d,lpp of CL is also surprisingly similar to that of the two more
“sophisticated” strategies.

For UCI datasets, opt8 continues to consistently have good �̂d,lpp . On the other
hand, CL and tabu2 exhibit much more inconsistency in their generalization
relative to opt8. For some datasets, such as dermatology and kredit, they match
opt8; on others, such as credit and tumor,CL and tabu2 do not generalize well.
Surprisingly, CL exhibits the best �̂d,lpp for letter, the UCI dataset with the most
records.

For Q3, opt guarantees consistently translate into networks with good gener-
alization. Algorithms with weaker guarantees produce networks with inconsistent
generalization.

Comments on Datasets. Besides the behavior of the learning algorithms, these
results also suggest differences in the datasets themselves. In particular, it seems
that sampled datasets are “easier,” in the sense that many learning strategies
find networks which generalize well. On the other hand, only the strategy with
strong guarantees consistently generalizes well on UCI datasets. In some sense,
this result is not surprising. The sampled data is by construction accurately
modeled by a BN, while it is very unlikely that UCI datasets are faithful to any
BN. These caveats are important for future evaluations.
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Fig. 4. Comparison of two state-of-the-art algorithms for finding an optimal Bayesian
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See Sect. 5 for descriptions of the solvers and the datasets.

6 Exact Solver Empirical Hardness Models

As shown in Sect. 5, exact algorithms often lead to networks which generalize
better than those found with approximation algorithms. Due to the intrinsic
differences between the algorithmic approaches underlying the solvers, it is not
surprising that their relative efficiency varies on a per-instance basis. To exem-
plify this, a comparison of the runtimes of ILP and A∗ec is illustrated in Fig. 4
using typical benchmark datasets. Evidently, neither of these two solvers domi-
nates the other, as there clearly are instances on which one solver is much more
efficient than the other.

To explain the observed orthogonal performance characteristics shown in
Fig. 4, it has been suggested, roughly, that typical instances can be solved to opti-
mum by A∗ if the number of variables n is at most around 50 (Fan et al. 2014),
and by ILP if the number of candidate parent sets m is not very large (Bartlett
and Cussens 2015).

Unfortunately, beyond this rough characterization, the practical time com-
plexity of the fastest algorithms is currently poorly understood. The gap
between the analytic worst-case and best-case bounds is very large, and typ-
ical instances fall somewhere in between. Moreover, the sophisticated search
heuristics employed by the algorithms are quite sensitive to small variations in
the instances, which results in somewhat chaotic looking behavior of runtimes.
Even the following basic questions are open:

Q4 Are the simple features, the number of variables n and the number of candi-
date parent sets m, sufficient for determining which of the available solvers
is fastest for a given instance?

Q5 Are there other efficiently computable features that capture the hardness of
the problem significantly more accurately than n and m alone?

In this section, we answer both these questions in the affirmative. We answer
Q4 by learning a simple, yet nontrivial, model that accurately predicts the fastest
solver for a given instance based on n and m only. We show how this yields an
algorithm portfolio that almost always runs as fast as the fastest algorithm, thus
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significantly outperforming any fixed algorithm on a large collection of instances.
To address this issue and answer Q5, we introduce and study several additional
features that potentially capture the hardness of the problem more accurately
for a given solver. In particular, we show that learning models with a much wider
variety of features yields significant improvement in the prediction accuracy.

Related Work. The idea of learning to predict an algorithm’s runtime from
empirical data is not new. Rice (1976) proposed feature-based modeling to
facilitate the selection of the best-performing algorithm for a given problem
instance, considering various example problems. More recently, machine learn-
ing and empirical hardness models (Leyton-Brown et al. 2002) have been used
for solver portfolios in several domains.

6.1 Capturing Hardness

The hardness of a BNSL instance, relative to a given solver, is the runtime
of the solver on the instance. We aim to find a model that approximates the
hardness and is efficient to evaluate for any given instance from a small set
of efficiently computable features of BNSL instances. We can then learn the
model by computing the feature values and collecting empirical runtime data
from a set of BNSL instances. We first introduce several candidate features that
are potentially informative about the hardness of BNSL instances for one or
more solvers. We then explain how we learn a hardness model and estimate its
prediction accuracy.

Features for BNSL. We consider several features which naturally fall into four
categories, explained next, based on the strategy used to compute them: Basic,
Basic extended, Lower bounding, and Probing. Due to space constraints,
please refer to the original paper for the complete list of features.

The Basic features include the number of variables n and the mean number
of candidate parent sets per variable, m/n. The features in Basic extended
summarize the size distribution of the collections Pi and the parent sets PAi

in each Pi. In the Lower bounding category, the features reflect statistics
from a directed graph that is an optimal solution to a relaxation of the original
BNSL problem. In the Simple LB subcategory, a graph is obtained by letting
each variable select its best parent set according to the scores. Many solvers
use this lower bounding technique. In the Pattern database LB subcategory,
the features are the same but the graph is obtained from a more sophisticated
relaxation using pattern databases (Yuan and Malone 2013).

Probing refers to running a solver for several seconds and collecting statistics
about its behavior during the run. We consider three probing strategies: tabu, an
anytime variant of A∗ (Malone and Yuan 2013), and ILP (Cussens et al. 2013).
Probing is implemented by running each algorithm for 5 s and collecting several
features of the learned structure.

Model Training and Evaluation. Based on the features discussed in the pre-
vious section, we trained reduced error pruning trees (REP trees) (Quinlan 1987)
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to predict the runtime of an instance of BNSL for each solver. We chose these
decision tree models because of their interpretability, compared to techniques
such as neural networks or support vector machines, and because of their flexi-
bility, compared to linear regression and less expressive model classes.

6.2 Experiment Setup

We used all of the datasets mentioned in Sect. 4. We considered 5 different scoring
functions3: BDeu with the Equivalent Sample Size selected from {0.1, 1, 10, 100}
and BIC. For each dataset and scoring function, we generated scores with parent
limits ranging from 2 to up to 6. The size of the datasets ranged from about
100 records to over 60, 000 records. For portfolio construction we removed very
easy instances (solved within 5 s by all solvers) as uninteresting, and instances
on which all solvers failed, leaving 586 instances. We evaluated the portfolios
using 10-fold cross-validation.

6.3 Portfolios for BNSL

This section focuses on the construction of practical BNSL solver portfolios in
order to address question Q4. Optimal portfolio behavior is to always select the
best-performing solver for a given instance. As the main results, we will show
that, perhaps somewhat surprisingly, it is possible to construct a practical BNSL
solver portfolio that is close-to-optimal using only the Basic features.

As the basis of this work, we ran all the solvers and their parameterizations
on all the benchmark instances. Figure 5 (left) shows the number of instances for
which each solver was the fastest. The performance of BnB is in general inferior
to the other solvers; in the following we will focus on ILP and A∗ec. However,
recall Fig. 4: while ILP is clearly best measured in the number of instances
solved the fastest, the performance of ILP on a per-instance basis is very much
orthogonal to that of A∗. We now show that a simple BNSL solver portfolio can
capture the best-case performance of both of these approaches.

A Very Simple Solver Portfolio. We found that using only the Basic fea-
tures are enough to construct a highly efficient BNSL solver portfolio. While on
an intuitive level the importance of these two features may be to some extent
unsurprising, such intuition does not directly translate into an actual predictor
that would close-to-optimally predict the best-performing solver.

Figure 5 (right) shows the performance of each individual solver variant, as
well as the Virtual Best Solver (VBS), which is the theoretically optimal portfolio
which always selects the best algorithm, constructed by selecting a posteriori
the fastest solver for each input instance. “portfolio” is our simple portfolio
which uses only the Basic features. As the figure shows, the performance of our
simple portfolio is very close to the theoretically optimal performance of VBS
and greatly outperforms the individual solvers.
3 Our results were not very sensitive to the scoring function, except its effect on the

number of CPSs, so our results generalize to other decomposable scores.
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Fig. 5. (left) VBS contributions of each solver, i.e., the number of instances for which
a solver was fastest. Several variants of ILP and A∗ were used. Please see the original
paper for more details. (right) Solver performance: VBS, our simple portfolio, ILP,
A∗ec, and BnB.

6.4 Predicting Runtimes

To address Q5, we investigate the effect of the feature sets on prediction accuracy.
As just shown, the Basic features can effectively distinguish between solvers

to use on a particular instance of BNSL. However, notable improvements in
runtime prediction accuracy are gained by employing a much wider range of
features. Figure 6 (left) compares the actual runtimes for A∗ec to the predictions
made by the REP tree model trained using only the Basic features. The model
clearly splits the instances into only a few bins and predicts the same runtime
for all instances in the bin. The actual runtime ranges are quite wide within each
bin. For example, for the bin with predictions near 80 s, the actual runtimes span
from around 5 s to about an hour. Even though these predictions allow for good
portfolio behavior, they are not useful to estimate actual runtime.

On the other hand, Fig. 6 (right) shows the same comparison for models
learned using A∗ probing features (1–38, 51–62). Many more of the predictions
fall along or near the main diagonal. That is, the larger, more sophisticated
feature set results in more accurate runtime predictions. We observed similar,
though less pronounced, trends for ILP.

6.5 REP Tree Characteristics

For additional insight, we considered how often specific features were selected
(Table 1). A feature is rarely selected for predicting both solvers. This further
confirms that the solver runtimes are influenced by different structural properties
of instances. Nevertheless, Simple LB features were helpful for both algorithms.
Somewhat surprisingly, the Pattern database LB features were more useful
for ILP, even though A∗ec directly uses the pattern database in its search. For
all of the graph-based features (node degree and non-trivial SCCs), the standard
deviation was always selected over the maximum and mean. This suggests that
systematic variations between nodes are important for determining the hardness
of an instance. The table also shows that a small number of features were con-
sistently selected for most of the cross-validation folds for any particular solver.
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Fig. 6. Predicted vs. actual runtimes for A∗ec using Basic features only (left) and all
features up to A∗ probing (right).

Qualitatively, this implies that most of the trees were based on the same small
set of features. Developing a more in-depth understanding of these instance char-
acteristics in light of solver performance is an important aspect of future work.

Table 1. Features used for A∗ec and ILP in more than 5 of the 10 cross-validation
folds. For each solver, the set of possible features consisted of non-probing features
(1–38) and the relevant probing features.

Feature A∗-ec ILP

(1) Number of variables, n 10 0

(2) Number of CPS, mean 0 7

(3) Number of CPS, sum, m 2 10

(4) Number of CPS, max 0 7

(8) CPS cardinalities, sd 0 8

(11) Simple LB, Node in-degree, sd 0 7

(14) Simple LB, Node out-degree, sd 8 0

(17) Simple LB, Node degree, sd 10 0

(26) Pd LB, Node in-degree, sd 1 9

(38) Pd LB, Size of non-trivial SCCs, sd 0 8

(62) A∗ probing, Error bound 10 0

(68) ILP probing, Node out-degree, sd 0 10

(74) ILP probing, Error bound 0 10

7 Discussion

Bayesian network structure learning (BNSL) continues to be an area of very
active research. In this review, we have presented two orthogonal studies of
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BNSL algorithms. The first demonstrated that, whenever possible, exact learning
algorithms should be used for finding structures. The second study showed that
it is typically possible to not only select the best exact learning algorithm for a
given dataset but also predict how long it will take to find the optimal structure.

These studies suggest a variety of future investigations. For example, the most
“Bayesian” approach to generalization should be a model averaging strategy, but
the current work considers only a single structure. In light of the generalization
results, empirical hardness models could be built for different dataset categories.
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Malone, B., Järvisalo, M., Myllymäki, P.: Impact of learning strategies on the qual-
packing Bayesian networks: an empirical evaluation. In: Proceedings of the 31st
Conference on Uncertainty in Artificial Intelligence (2015)

Malone, B., Kangas, K., Järvisalo, M., Koivisto, M., Myllymäki, P.: Predicting the
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