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Preface

Over the last few decades, graphical models such as Bayesian and Markov networks
have become increasingly popular artificial intelligence (AI) approaches. In the Inter-
national Workshop on Advanced Methodologies for Bayesian Networks (AMBN), we
explore methodologies for enhancing the effectiveness of graphical models including
modeling, reasoning, model selection, logic-probability relations, and causality. The
exploration of methodologies is complemented by discussions of practical considera-
tions for applying graphical models in real-world settings, covering concerns such as
scalability, incremental learning, parallelization, and so on. The first AMBN was held
in Tokyo (2010).

The second AMBN was held in Yokohama, Japan, during November 16–18, 2015;
it was co-sponsored by the Japanese Society Artificial Intelligence (JSAI) and the
National Institute of Advanced Industrial Science and Technology (AIST).

This AMBN was the first to celebrate the publication of accepted papers in the
Lecture Notes in Artificial Intelligence series by Springer. Out of 29 submissions, 26
contributions were selected for presentation at the conference and 15 papers were
selected for this volume. Each submission underwent a rigorous review by three
members of the AMBN Program Committee, with each committee member reviewing
at most two papers.

In addition to the 29 presentations, we were honored to have six invited speakers:

– Russell Almond (Florida State University, USA)
– Aapo Hyvarinen (University of Helsinki, Finland)
– Brandon Malone (Max Planck Institute, Germany)
– Changhe Yuan (Queens College/CUNY, USA)
– Cassio P. de Campos (Queens University, UK)
– Shohei Shimizu (Osaka University, Japan)

We are grateful for their highly inspiring presentations. The six abstracts and three
full papers of the six invited talks are contained in this volume.

To conclude, we would like to thank the 23 Program Committee members and nine
advisors for their efforts, and for their punctual and high-quality reviews. And, last but
not least, we are most indebted to AIST for their financial support.

November 2015 Joe Suzuki
Maomi Ueno
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Advanced Search Algorithms for Learning
Optimal Bayesian Network Structures

Changhe Yuan

Queens College/CUNY, USA

Abstract. Research on learning optimal Bayesian network structures from data,
once thought impractical, have made strides in the last decade. One promising
approach is based on admissible heuristic search. The approach formulates the
learning problem as a shortest path problem, and uses search techniques such as
A* or BFBnB to solve the problem in finding an optimal network structure.
I will discuss how to create admissible heuristic functions for the algorithms.
Moreover, I will discuss two techniques for extracting extra information from
data in order to scale up the learning. The first technique can potentially lead to a
decomposition of the learning problem to a set of smaller independent learning
problems, and the second technique creates tighter heuristic functions that lead
to much improved search efficiency.



Empirical Behavior of Bayesian Network
Structure Learning Algorithms

Brandon Malone

Max Planck Institute for the Biology of Ageing

Abstract. Bayesian network structure learning (BNSL) is the problem of finding
a BN structure which best explains a dataset. Score-based learning assigns a
score to each network structure. The goal is to find the structure which optimizes
the score. We review two recent studies of empirical behavior of BNSL algo-
rithms.

The score typically reflects fit to a training dataset; however, models which
fit training data well may generalize poorly. Thus, it is not clear that finding an
optimal network is worthwhile. We review a comparison of exact and approx-
imate search techniques. Sometimes, approximate algorithms suffice; for com-
plex datasets, the optimal algorithms produce better networks.

BNSL is known to be NP-hard, so exact solvers prune the search space
using heuristics. We next review problem-dependent characteristics which affect
their efficacy. Empirical results show that, machine learning techniques based on
these characteristics can often be used to accurately predict the algorithms’
running times.

Keywords: Bayesian networks · Structure learning · Algorithm selection ·
Empirical hardness

Brandon Malone—This paper is based on Malone et al. (2014, 2015), with co-authors Matti Järvisalo,
Petri Myllymäki, Kusta Kangas and Mikko Koiviso from HIIT and the Department of Computer
Science at the University of Helsinki.



An Entropic Approach to Causal Discovery
in Non-Gaussian and Non-linear Models

Aapo Hyvarinen

University of Helsinki, Finland

Abstract. Recent advances in machine learning have shown how it is possible to
determine the causal direction, or direction of effect, between two continuous-
valued random variables. We show how to use entropy to develop a simple and
general framework for determining the causal direction. First, we consider the
likelihood ratio under the linear non-Gaussian acyclic model (LiNGAM) and
show how it gives rise to a non-Gaussianity measures based on differential
entropy. Second, we develop a similar framework for the nonlinear additive
noise model. We further discuss how to extend the framework to more than two
variables, and how the framework is related to independent component analysis.



A Non-Gaussian Approach for Causal
Discovery in the Presence of Hidden

Common Causes

Shohei Shimizu

The Institute of Scientific and Industrial Research, Osaka University
8-1 Mihogaoka, Ibaraki, Osaka 5670047, Japan

https://sites.google.com/site/sshimizu06/

Abstract. We discuss the problem of estimating the causal direction between
two observed variables in the presence of hidden common causes. Managing
hidden common causes is essential when studying causal relations based on
observational data. We previously proposed a Bayesian estimation method for
estimating the causal direction using the non-Gaussianity of data. This method
does not require us to explicitly model hidden common causes. The experiments
on artificial data presented in this paper imply that Bayes factors could be useful
for selecting a better causal direction when using a non-Gaussian method.

Keywords: Causal discovery · Hidden common causes · Structural equation
models · Non-Gaussianity



Learning Bayesian Networks
with Biomedical Applications

Cassio P. de Campos

Queen’s University Belfast
Northern Ireland, UK

c.decampos@qub.ac.uk

Abstract. This talk presents a brief overview of methods for learning Bayesian
networks. It discusses on recent methods and theoretical results to speed up
computations and to improve accuracy, leading to an approach which can deal
with many thousands of variables. Applications arising in biomedical problems
are described, where it is argued that Bayesian networks can provide meaningful
and interpretable results. In particular, we discuss on the use of Bayesian net-
works for data imputation, unsupervised clustering and classification using
high-dimensional data sets of lymphoma patients.

Keywords: Bayesian networks · Structure learning · Data imputation ·
Clustering



Tips and Tricks for Building Bayesian
Networks for Scoring Game-Based

Assessments

Russell G. Almond

Educational Psychology and Learning Systems
College of Education

Florida State University
Tallahassee, FL 32306
ralmond@fsu.edu

Abstract. Game-based assessments produce multiple, dependent observations
from student game play. Bayesian networks can model the dependence, but,
typically, only a small amount of pilot data are available at the time the network
is constructed. This paper examines the process of creating Bayesian network
scoring models, focusing on several practical techniques that have been used in
the construction of models for Physics Playground. In particular, the following
techniques are helpful: (1) The use of evidence-centered assessment design to
define latent competency variables and observable indicator variables. (2) The
use of correlation matrixes to uncover and validate the conditional independence
structure of the Bayes net. (3) The use of discrete IRT models to create large
portion of the Bayesian networks from a single spreadsheet. (4) Adjusting the
Bayes net parameters using both hand tuning and a generalized EM algorithm,
creating networks which are a mixture of expert opinion and data. (5) Using
expected classification accuracy matrixes to judge assessment validity and
reliability. (6) Using evidence balance sheets to identify unusual subjects and
observable indicators.

Keywords: Bayesian networks · Evidence-centered assessment design ·
Prior information · Weight of evidence · Classification consistency
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Efficiently Learning Bayesian Network
Structures Based on the B&B Strategy:

A Theoretical Analysis

Joe Suzuki(B)

Osaka University, Toyonaka, Japan
suzuki@math.sci.osaka-u.ac.jp

Abstract. This paper addresses the problem of efficiently finding an
optimal Bayesian network structure w.r.t. maximizing the posterior prob-
ability and minimizing the description length. In particular, we focus on
the branch and bound strategy to save computational effort. To obtain
an efficient search, a larger lower bound of the score is required (when
we seek its minimum). We generalize an existing lower bound (Campose
and Ji, 2011) for the Bayesian Dirichlet BDeu (Bayesian Dirichlet equiva-
lent uniform) to one for the BD (Bayesian Dirichlet) and mathematically
prove that the number of variables in each parent set cannot be bounded
for maximizing the posterior probability.

Keywords: Parent set · B&B (branch and bound) · Lower bound ·
Score · MDL (minimum description length) · Maximizing posterior
probability · Learning Bayesian network structures

1 Introduction

In many tasks associated with statistical analysis and machine learning, we often
need to find a relation between variables given a dataset in which n-tuples of
examples for N variables are stored in an n×N data frame. If we wish to obtain
a relation that maximizes the posterior probability given the dataset, the task
itself may be straightforward, but the computation is intractable if the number
of variables N is large.

In this paper, assuming that the probabilistic relation is expressed by a
Bayesian network [12], we find an efficient search for the optimal solution. Based
on the data, we connect edges that express probabilistic relations between ver-
tices that represent variables until the structure is completed.

By the best Bayesian network structure, we refer to two things: one that
maximizes the posterior probability (Cooper and Herskovits 1991 [5]) and one
that minimizes the description length (Suzuki 1993 [14]). The latter is used to
describe the given data in terms of a rule and its exceptions in many ways and
to choose the rule that renders the total length the shortest (minimum descrip-
tion length (MDL) principle [8]). Although constraint-based algorithms [11] that
statistically test conditional independence for each combination of variables are
c© Springer International Publishing Switzerland 2015
J. Suzuki and M. Ueno (Eds.): AMBN 2015, LNAI 9505, pp. 1–14, 2015.
DOI: 10.1007/978-3-319-28379-1 1



2 J. Suzuki

available, in this paper, we focus on the two criteria based on the associated
scores.

Currently, the algorithm developed by Silander and Myllymaki [9] is con-
sidered to be the fastest, and it can deal with both the posterior probability
and the description length. However, this method utilizes dynamic program-
ming (DP) and requires a lot of memory; therefore, Yuan and Malone [19], for
example, proposed consuming a partial amount of resources using the idea of
the A∗ algorithm.

In contrast, in the early era of learning Bayesian network structures, Suzuki
[13] proposed applying the branch and bound (B & B) technique to save compu-
tational effort. We can do so if the current solution reaches the lower bound of
the solution set when we aim for minimization. The idea was adopted by many
authors such as Tian 2000 [17] and recently by Campose and Ji 2011 [6]. The
branch and bound technique can be applied to both DP and A∗ algorithms.

In particular, Campos and Ji [6] noted that the optimal parent set contains
at most O(log n) variables for a minimum description length. However, no upper
bound of the number of variables in each parent set has been obtained for max-
imizing the posterior probability. Although they derived a lower bound for the
posterior probability, the bound was only obtained for BDeu [2] (not the whole
BD). Moreover, we are not sure whether the bound is tight enough, even if we
know that the value obtained is a lower bound.

Our contributions are as follows:

1. an extension of the lower bound [6] from BDeu to BD (Theorem 1)
2. the number of variables in each parent set cannot be upper bounded for

maximizing the posterior probability (Theorem2).

This paper is organized as follows: Sect. 2 provides a background for efficient
searches of optimal Bayesian network structures. Because the algorithms for the
problem are quite complicated, we make special efforts to precisely understand
the previous results. Section 3 states and proves two theorems. The results occupy
only a few pages because we have found a shorter proof, which is preferable in
the sense of the MDL principle. Section 4 concludes the paper and summarizes
the results.

2 Background

2.1 Bayesian Network

Let X(1), · · · ,X(N) (N ≥ 1) be random variables that take on a finite number
of values. We define a Bayesian network (BN) using a directed acyclic graph
(DAG) that expresses the factorization of the distribution P (X(1), · · · ,X(N)).
For example, suppose N = 3. If we express the three variables by X,Y,Z, then
the three factorizations

P (X)P (Y |X)P (Z|Y ) , P (Y )P (X|Y )P (Z|Y ) , P (Z)P (Y |Z)P (X|Y )
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and the factorization P (X)P (Y |XZ)P (Z) are expressed as

P (XY )P (Y Z)
P (Y )

and
P (X)P (Z)P (XY Z)

P (ZX)
,

respectively. We can check that only two of the 27 directed graphs with three
vertices contain a cycle, where the 25 DAGs are categorized into eleven classes
(see Fig. 1):

P (X)P (Y )P (Z)

P (X)P (Y Z), P (Y )P (ZX), P (Z)P (XY )

P (ZX)P (XY )
P (X)

,
P (XY )P (Y Z)

P (Y )
,

P (ZX)P (XY )
P (Z)

P (Y )P (Z)P (XY Z)
P (Y Z)

,
P (Z)P (X)P (XY Z)

P (ZX)
,

P (X)P (Y )P (XY Z)
P (XY )

,

and P (XY Z)

Hereafter, we denote the eleven equations as (1)–(11).

Fig. 1. The eleven Bayesian networks

2.2 Learning Bayesian Network Structures

Suppose that we wish to test whether random variables X and Y are indepen-
dent1 from n pairs of examples xn = (x1, · · · , xn) and yn = (y1, · · · , yn) emitted
from X and Y.

Let α and β be the cardinalities of the sets in which X and Y take val-
ues, respectively. Suppose that we define the prior probability 0 < p < 1
of X ⊥⊥ Y and some alternatives Qn(X), Qn(Y ), Qn(X,Y ) of probabilities of
xn, yn, (xn, yn) and that we decide that X ⊥⊥ Y if and only if

pQn(X)Qn(Y ) ≥ (1 − p)Qn(X,Y ). (12)
1 We denote X ⊥⊥ Y |Z if X and Y are independent given Z.
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If we estimate the conditional probability of xi by
ci−1(xi) + a

i − 1 + aα
when

X = xi occurs ci−1(xi) times in (x1, · · · , xi−1), i = 1, · · · , n, the probability
of (x1, · · · , xn) can be expressed as [7]

Qn(X) =
n∏

i=1

ci−1(xi) + a

i − 1 + αa
,

where a > 0 is a constant. Alternatively, the formula can be obtained by weight-
ing the probability θx of X = x by

w(θ) = K
∏

x

θa−1
x

where K is a normalization constant:

Qn(X) =

∫ ∏
x

θcn(x)w(θ)dθ = K

∫ ∏
x

θcn(x)+a−1dθ =
Γ (αa)

∏
x Γ (cn(x) + a)

Γ (a)αΓ (n + αa)
,

(13)
where x ranges over all of the values that X takes. If we require the constant a
in (13) to depend on x, such as a(x), the formula (13) can be expressed as

Qn(X) =
Γ (

∑
x a(x))

∏
x Γ (cn(x) + a(x))∏

x Γ (a(x))Γ (n +
∑

x a(x))
(14)

(BD, Bayesian Dirichlet [5]).
Similar constructions are possible for Qn(Y ) and Qn(X,Y ). For example,

we can obtain Qn(X,Y ) by replacing the occurrence cn(x) of X = x with their
simultaneous occurrences cn(x, y) of (X,Y ) = (x, y) and replacing α with αβ.
Then, the decision (12) is made based on the values Qn(X)Qn(Y ) and Qn(X,Y )
multiplied by the prior probabilities p and 1 − p of X ⊥⊥ Y and X �⊥⊥ Y ,
respectively, and we choose the quantity with the larger posterior probability.
Suzuki 2012 [15] showed

(12) ⇐⇒ X ⊥⊥ Y

for large n with probability one as n → ∞.
Now, given n-tuples of examples

X(1) = x1,1, · · · ,X(N) = x1,N

· · · , · · · , · · ·
X(1) = xn,1, · · · ,X(N) = xn,N

of variables X(1) · · · ,X(N), we learn the BN structure. For example, if N = 3, the
problem is to choose one of the eleven DAGs in Fig. 1. We assume the following:

1. no missing values in the n-tuples of examples, and
2. the prior probabilities are given.
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If N = 3, for (1)–(11), we compare the values

Qn(X)Qn(Y )Qn(Z)

Qn(X)Qn(Y,Z), Qn(Y )Qn(Z,X), Qn(Z)Qn(X,Y )

Qn(Z,X)Qn(X,Y )
Qn(X)

,
Qn(X,Y )Qn(Y,Z)

Qn(Y )
,

Qn(Z,X)Qn(X,Y )
Qn(Z)

Qn(Y )Qn(Z)Qn(X, Y, Z)

Qn(Y, Z)
,

Qn(Z)Qn(X)Qn(X, Y, Z)

Qn(Z, X)
,

Qn(X)Qn(Y )Qn(X, Y, Z)

Qn(X, Y )
,

Qn(X,Y,Z)

multiplied by the prior probabilities, and we obtain a BN structure with the
maximum posterior probability (Cooper and Herskovits, 1992 [5]).

We term values such as Qn(X), Qn(Y,Z) local scores and denote by Qn(W )
the local score of the variables in W ⊆ V . For example, if W = {X,Y,Z}, Q(W )
expresses Q(X,Y,Z).

In contrast, we term
Qn(Z,X)Qn(X,Y )

Qn(X)
,

Qn(X,Y )Qn(Y,Z)
Qn(Y )

multiplied by

the prior probabilities as global scores. The posterior probabilities are propor-
tional to the global scores, and maximizing either one is equivalent to the other.
For example, if N = 3, there are eight local and eleven global scores.

However, for general N , the computation has been already proven to be
NP-hard [4].

In 2006, assuming that the prior probabilities are equal, Silander and Mylly-
maki [9]2 proposed a way of efficiently finding a BN structure with the maximum
posterior probability.

If we define the parent set πW (X) of X ∈ W w.r.t. W ⊆ V to be the U that

maximizes Qn(X|U) :=
Qn({X} ∪ U)

Qn(U)
for U ⊆ W\{X}, then, we recursively

obtain the parent set Qn(X|πW (X)) by

Qn(X|πW (X)) = max{Qn(X|W ) , max
Y ∈W\{X}

Qn(X|πW\{Y }(X))} , (15)

where W is assumed to be sorted in lexicographic order. Furthermore, we obtain
the global score Rn(V ) of a structure with the maximum posterior probability
recursively by Rn({X}) = Qn({X}), X ∈ V , and

Rn(W ) := max
X∈W

[Qn(X|πW (X)) · Rn(W\{X})] (16)

for W ⊆ V . The BN structure with vertices

XN := argmaxX∈V Rn(V ) , XN−1 := argmaxX∈V \{XN}R
n(V \{XN}) , · · ·

2 The idea of using dynamic programing was invented by A. P. Singh & A. W. Moore
(2005).
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directed from the vertices included in

πN := πVN
(XN ) , πN−1 := πVN−1(XN−1) , · · · , π1 := πV1(X1) = {}

maximizes the posterior probability, where

VN := V , VN−1 := V \{XN} , · · · , V1 = {X1}.

In other words, we have

Rn(V ) = Qn(XN |πN ) · Qn(XN−1|πN−1) · · · Qn(X2|π2)Qn(X1),

and the probability distribution is factorized into

P (XN |πN )P (XN−1|πN−1) · · · P (X2|π2)P (X1). (17)

For example, if W = {Y,Z} and V = {X,Y,Z}, then

Qn(X|π{Y,Z}(X))
= max{Qn(X|{Y,Z}), Qn(X|π{Y }(X)), Qn(X|π{Z}(X))}
= max{Qn(X|{Y,Z}),max{Qn(X|{Y }), Qn(X)},max{Qn(X|{Z}), Qn(X)}}
= max{Qn(X|{Y,Z}), Qn(X|{Y }), Qn(X|{Z}), Qn(X)}

in (15) and

R
n
({X, Y, Z})

= max{Q
n
(X|π{Y,Z}(X))R

n
({Y, Z}), Q

n
(Y |π{Z,X}(Y ))R

n
({Z, X}),

Q
n
(Z|π{X,Y }(Z))R

n
({X, Y })}

= max{Q
n
(X|{Y, Z})max{Q

n
(Y |π{Z}(X))R

n
({Z}), Q

n
(Z|π{Y }(X))R

n
({Y })},

Q
n
(Y |π{Z,X}(Y ))max{Q

n
(Z|π{X}(Z))R

n
({X}), Q

n
(X|π{Z}(X))R

n
({Z})},

Q
n
(Z|π{X,Y }(Z))max{Q

n
(X|π{Y }(X))R

n
({Y }), Q

n
(Y |π{X}(Y ))R

n
({X})}}

= max{Q
n
(X|π{Y,Z}(X))Q

n
(Y |π{Z}(Y ))Q

n
({Z}), Q

n
(X|π{Y,Z}(X))Q

n
(Z|π{Y }(Z))Q

n
({Y }),

Q
n
(Y |π{Z,X}(Y ))Q

n
(Z|π{X}(Z))Q

n
({X}), Q

n
(Y |π{Z,X}(Y ))Q

n
(X|π{Z}(X))Q

n
({Z}),

Q
n
(Z|π{X,Y }(Z))Q

n
(X|π{Y }(X))Q

n
({Y }), Q

n
(Z|π{X,Y }(Z))Q

n
(Y |π{X}(Y ))Q

n
({X})}

in (16) can be computed. For general N , O(N22N ) time and O(N2N ) memory
in (15) and O(N2N ) time and O(2N ) memory in (16) are required, as stated by
Silander and Myllymaki [9].

Learning Bayesian network structures based on the MDL principle

Thus far, we have considered maximizing the posterior probability of the
Bayesian network structure given the data.

However, for learning Bayesian network structures, there is another option:
minimizing the description length of the given examples. The idea is to describe
the given data in terms of a rule and its exceptions in many ways and to
choose the rule that makes the total length the shortest (minimum description
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length (MDL) principle [8]). The idea of applying the MDL principle to learning
Bayesian networks was first developed by Suzuki 1993 [14]3.

Although they are closely related, there are clear merits in applying the MDL
principle over maximizing the posterior probability, which will be explained after
applying the MDL principle to the current problem.

Let α,β,γ be the cardinalities of the sets in which variables X,Y,Z take
values. If we calculate − log Qn(X) with a = 0.5 in (13) using Stirling’s formula,
then we find [8] that the difference between − log Qn(X) and

Ln(X) = Hn(X) +
α − 1

2
log n, (18)

is at most O(1), where the first term

Hn(X) :=
∑

x

cn(x) log
n

cn(x)
,

is called the empirical entropy of xn = (x1, · · · , xn) w.r.t. X, and α − 1 is the
number of parameters.

When we find the parent set π{Y,Z}(X) of X w.r.t. {Y,Z}, we compare the
values of description lengths Ln(X), Ln(X|{Y }), Ln(X|{Z}), and L(X|{Y,Z})
given the candidates {},{Y },{Z}, and {Y,Z}, respectively. For example, given
(x1, · · · , xn) and (y1, · · · , yn), Ln(X|{Y }) can be computed as follows.

For each Y = y, if we extract xi such that yi = y to obtain (x̃1, · · · , x̃cn(y))
from (x1, · · · , xn), where cn(y) is the number of occurrences of y in (y1, · · · , yn),
then we can obtain a description length similar to (18) with n = cn(y) for the
sequence (x̃1, · · · , x̃cn(y)) instead of (x1, · · · , xn):

Ln(X|y) = Hn(X|y) +
α − 1

2
log cn(y),

where Hn(X|y) is the empirical entropy of (x̃1, · · · , x̃cn(y)). Thus, in total, the
description length will be

∑

y

Ln(X|y) =
∑

y

{Hn(X|y) +
α − 1

2
log cn(y)},

where the approximation is still reasonable at this point. However, for conve-
nience of computation, we usually set the upper bounds using cn(y) ≤ n for
each Y = y:

Ln(X|{Y }) = Hn(X|Y ) +
(α − 1)β

2
log n,

where Hn(X|Y ) =
∑

y Hn(X|y). It is considered that the last approximation
causes a problem when cn(y) is small for some y. In a similar manner, we obtain
the values of Ln(X), Ln(X|{Y }), Ln(X|{Z}), and L(X|{Y,Z}) for which the
number of parameters are α− 1, (α− 1)β, (α− 1)γ, and (α− 1)βγ, respectively.
3 At the same conference (Uncertainty in Artificial Intelligence 1993), Wai and Buc-

chus [20] presented another approach for MDL-based Bayesian network learning.
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Despite the approximation loss in the MDL formulae, there are merits to be
gained over maximizing the exact posterior probability. One merit is that we can
adjust the balance between the empirical entropy and the number of parameters
in terms of a function d(n) of n. For example, if the AIC [1] is preferred over MDL
in a situation, we can replace MDL with d(n) = 0.5 log n by setting d(n) = 1
for AIC.

2.3 Efficiency of Learning Bayesian Network Structures w.r.t. MDL

The other merit, on which we focus in this paper, is that we can save the com-
putational effort of finding the best structure w.r.t. MDL by using the branch
and bound technique.

Fig. 2. Choose either {Y }, {Y, Z} or their supersets for the parent set of X.

In 1996, Suzuki [13] showed that when we find the parent set of variable X,
for any Z �∈ W ⊆ V , if the value of

Hn(X|W ) +
k(X|W )

2
log n

has been obtained and is smaller than
k(X|W ∪ {Z})

2
log n, before computing

Hn(X|W ∪ {Z}) +
k(X|W ∪ {Z})

2
log n

we find that neither W ∪ {Z} nor its supersets are optimal parent sets. Suzuki
proposed using a cutting rule for searching for the best Bayesian network struc-
ture w.r.t. MDL.

For example, suppose that the parent set of X is {Y } and that we need to
determine whether Z should be included in the current parent set (Fig. 2). Then,
the rule is that if

Hn(X|Y ) ≤ (α − 1)β(γ − 1)
2

log n, (19)

we should exclude both {Y,Z} and its supersets from the parent set of X. This
is because Hn(X|Y,Z) ≥ 0 and

Hn(X|Y ) +
(α − 1)β

2
log n ≤ Hn(X|Y,Z) +

(α − 1)βγ

2
log n,
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and the number (α−1)βγ of parameters further increases if an additional variable
is joined to {Y,Z}.

In 2011, Cassio de Campose and Qiang Ji [6] noted the following:

β ≥ n =⇒ (19). (20)

This is because from Hn(X|Y ) ≤ n log α and γ ≥ 2, we have

β ≥ n ≥ 2n log α

(α − 1) log n
≥ 2Hn(X|Y )

(α − 1)(γ − 1) log n
.

Hereafter, we use the term state for the combination of the variables in a
parent set. For example, if {Y,Z} is the parent set of X, there are βγ states
for X:

(1, 1), · · · , (1, γ), · · · , (β, 1), · · · , (β, γ) .

When the parent set consists of more than one variable other than one such
as {Y }, the value β is replaced by the number of states of the parent set π for X.

In contrast, if a parent set π contains |π| variables, then we have β ≥ 2|π|.
In combination with (20), we have

|π| ≥ log2 n� =⇒ 2|π| ≥ n =⇒ β ≥ n =⇒ (19)

Proposition 1 (Campse and Ji, 2011 [6]). The number of variables in the
best parent set w.r.t. MDL is at most log2 n�.

Proposition 1 is attractive because only O(N2n) time and O(Nn) memory
are required in (15), which is the computationally most intensive process in
Silander and Myllymaki [9].

For (16), we currently cannot determine the merit of Proposition 1 in Silander
and Myllymaki [9], and it is possible to obtain an efficient A∗ search strategy
from the algorithm approach by Yuan and Malone [19] using Proposition 1.

2.4 Efficiency of Learning Bayesian Network Structures w.r.t.
Maximizing the Posterior Probability

A similar bound has been found for maximizing the posterior probability.
Suppose that we have already obtained the value of − log Qn(X|π(X)) and

hope to avoid the computation of − log Qn(X|π(X) ∪ {Z}) if

− log Qn(X|π(X)) ≤ − log Qn(X|π(X) ∪ {Z})

for each of Z �∈ π ∪ {X}. The computation can be avoided if − log Qn(X|π(X))
is smaller than a lower bound of − log Qn(X|π ∪ {Z}). The lower bound can be
obtained easily, and the computation (overhead) should be as small as possible
and at least less than that involved when computing − log Qn(X|π(X) ∪ {Z})
itself.
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Campose and Ji [6] considered a specific case (BDeu [2,18]) of the BD
(Bayesian Dirichlet) model [5] in which the constant a in Qn(X|π(X)) does
not depend on X = x and π(X) = s, where s is a state of the parent set π(X)
for X:

Qn(X|π(X)) =
∏

s

Γ (αa)
∏

x Γ (cn(x, s) + a)
Γ (a)αΓ (cn(s) + αa)

, (21)

where cn(s) :=
∑

x cn(x, s) is the number of occurrences of state π(X) = s for
X in the n-tuples of examples.

They derived the following lower bound:

Proposition 2 (Campse and Ji [6], J. Cussen [3]).

− log Qn(X|π(X)) ≥ Sn log α ,

where Sn is the number of actually occurred states s in the n-tuples of examples
(cn(s) ≥ 1).

However, the current result does not answer the following questions:

1. what is the exact form of Proposition 2 for the general BD rather than BDeu?
2. how tight is the bound obtained in Proposition 2?
3. how many variables should be prepared in the parent set for the purposes of

conditions such as Proposition 1?

3 Contributions

In this section, we focus on the score − log Qn(X|π(X)). We first generalize
Proposition 2 for a general BD and then provide a negative result (main result)
for the second and third problems stated at the end of the previous section.

3.1 A General Lower Bound for the Score

To obtain the main results, we derive some simple mathematical statements.
They can be obtained easily by using elementary calculus and the property
zΓ (z) = Γ (z + 1) of the Gamma function Γ (x) =

∫ ∞
0

tz−1e−tdt.

Proposition 3. We define x′ such that a(x′) = maxx a(x). We have Qn(X) = 1
for n = 0 and

Qn(X) ≤ a(x′)∑
x a(x)

for n ≥ 1.

Proof. We claim the following for n ≥ 0”

Qn(X) ≤ Qn
∗ (X) :=

Γ (n + a(x′))
Γ (a(x′))

· Γ (
∑

x a(x))
Γ (n +

∑
x a(x))

. (22)
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In fact, for n = 0, both sides are one. If the claim is true for n, then we have

Qn+1(X) = Qn(X) · cn(xn+1) + a(xn+1)
n +

∑
x a(x)

≤ Qn
∗ (X) · cn(xn+1) + a(xn+1)

n +
∑

x a(x)

≤ Γ (n + a(x′))
Γ (a(x′))

· Γ (
∑

x a(x))
Γ (n +

∑
x a(x))

· n + a(x′)
n +

∑
x a(x)

=
Γ (n + 1 + a(x′))

Γ (a(x′))
· Γ (

∑
x a(x))

Γ (n + 1 +
∑

x a(x))

= Qn+1
∗ (X) ,

which means (22), where the first inequality follows from the assumption of
induction at n, and the second follows from cn(xn+1) ≤ n and a(xn+1) ≤ a(x′)
for any xn+1. Finally, from a(x′) ≤ ∑

x a(x), we have for n ≥ 1,

Qn
∗ (X) =

n + a(x′)
n +

∑
x a(x)

· · · 1 + a(x′)
1 +

∑
x a(x)

· a(x′)∑
x a(x)

≤ a(x′)∑
x a(x)

. (23)

Equations (22) and (23) imply the proposition.
Next, we consider the conditional probability of X given π(X) expressed by

Qn(X|π(X)) =
∏

s

Γ (
∑

x a(x, s))
∏

x Γ (cn(x, s) + a(x, s))∏
x Γ (a(x, s))Γ (cn(s) +

∑
x a(x, s))

, (24)

when given a pair of examples (x1, · · · , xn) and (s1, · · · , sn), where cn(s) and
cn(x, s) are the numbers of occurrences of π(X) = s and (X,π(X)) = (x, s),
respectively, in the two sequences.

Then, we obtain the first result:

Theorem 1. We consider xs such that a(xs, s) = maxx a(x, s) for each s. We
have

− log Qn(X|π(X)) ≥ −
∑

s:cn(s)≥1

log
a(xs, s)∑
x a(x, s)

for n ≥ 0.

Proof. If we define

Qn(X|s) =
Γ (

∑
x a(x, s))

∏
x Γ (cn(x, s) + a(x, s))∏

x Γ (a(x, s))Γ (cn(s) +
∑

x a(x, s))
,

then we have from Proposition 3 Qn(X|s) = 1 for n = 0 and

Qn(X|s) ≤ a(x′, s)∑
x a(x, s)

for n ≥ 1. By multiplying all s such that cn(s) ≥ 1 and taking − log, we obtain
the theorem.

Note that if the value of a(x, s) does not depend on X = x and π(X) = s in
Theorem 1, then Proposition 2 is obtained.
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3.2 Main Result

Let α(1), · · · , α(N) be the cardinalities of the sets to which X(1), · · · ,X(N)

belong. Then, for the n-tuples of the examples consisting of N variables, the
(α(1) · · · α(N))n datasets can be obtained.

Our claim is that for at least one of the datasets and at least one variable
X = X(j), the score − log Qn(X|π(X)) will not be lower than the lower bounds
stated in Proposition 2 and Theorem 1. Hence, we cannot bound the number of
variables in the parent sets.

Proposition 4. There exists at least one (x1, · · · , xn) such that

Qn(X) ≤ α−n.

Proof. From (14), the sum of Qn(X) over all the αn sequences is one. Suppose we
have Qn(X) > α−n where all the αn are sequences. This contradicts

∑
Qn(X) =

1, which completes the proof.

Theorem 2. At least one dataset and one variable X exist such that the score
− log Qn(X|π(X)) is not lower than the lower bound of − log Qn(X|π(X)∪{Y })
with Y �∈ π(X) ∪ {X} given by Theorem 1.

Proof. From Proposition 4, there exists at least one pair of (x1, · · · , xn) for each
s such that

Qn(X|s) ≤ α−cn(s) .

By multiplying all y, we have

Qn(X|π(X)) =
∏

s

Qn(X|s) ≤
∏

s

α−cn(s) = α−∑s cn(s) = α−n .

Thus, there exists at least one pair of (x1, · · · , xn) and (s1, · · · , sn) such that

− log Qn(X|π(X)) ≥ n log α .

Let Sn be the number of states S associated with parent set π(X) ∪ {Y },
Y �∈ π(X) ∪ {X}, such that cn(s) ≥ 1. Then, from n ≥ Sn, we have

n log α ≥ Sn log α ≥ −
∑

s:cn(s)≥1

log
a(xs, s)∑
x a(x, s)

,

where s ranges over all the states associated with parent set π(X) ∪ {Y }. This
means that at least for one pair (x1, · · · , xn) and (s1, · · · , sn), − log Qn(X|π(X))
does not reach the lower bound of − log Qn(X|π(X) ∪ {Y }) for any π(X) and
Y �∈ π(X) ∪ {X}.

Hence, we conclude that the lower bounds given by Theorem1 as well as
Proposition 2 are too loose to specify at most how many variables are to be
prepared in each parent set before the dataset is available.
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4 Concluding Remarks

We have obtained the two results given by Theorems 1 and 2.
The generalization (Theorem 1) is useful because thus far, the lower bound

of the score for maximizing the posterior probability was given only for BDeu
[6]. We have now provided a general lower bound for arbitrary BD.

The main result negatively answers the question of whether a counterpart of
Proposition 1 is available, which, however, does not necessarily mean the lower
bounds (Proposition 2 and Theorem 1) are not useful. In fact, from (23), we can
increase the lower bound by

∑

s

cn(s)∑

i=1

log{ i +
∑

x a(x, s)
i + a(xs, s)

} (25)

if we check the counts cn(s) each time, though the overhead may increase. The-
orem 2 does not claim that no data exist that do not reach the original bound
plus (25). In this sense, we need to consider an improved lower bound in the
future.

For MDL, the approximation error is large for states s with small counts
cn(s), and the formula is simple enough to evaluate the lower bound. In fact, in
MDL, the number of states accounts for even the states s such that cn(s) = 0.
Conversely, for maximizing the exact posterior probability, it is more difficult to
obtain an appropriate lower bound of the score.

We will continue to develop an efficient search for finding the best Bayesian
network structures for both criteria.
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Abstract. A score-based learning Bayesian networks, which seeks the
best structure with a score function, incurs heavy computational costs.
However, a constraint-based (CB) approach relaxes this problem and
extends the available learning network size. A severe problem of the CB
approach is its lower accuracy of learning than that of a score-based app-
roach. Recently, several CI tests with consistency have been proposed.
The main proposal of this study is to apply the CI tests to CB learning
Bayesian networks. This method allows learning larger Bayesian net-
works than the score based approach does. Based on Bayesian theory,
this paper addresses a CI test with consistency using Bayes factor. The
result shows that Bayes factor with Jeffreys’ prior provides theoretically
and empirically best performance.

Keywords: Bayesian networks · Conditional independence test ·
Jeffreys’ prior · Learning Bayesian networks

1 Introduction

A Bayesian network is a probabilistic graphical model that represents relations
of random variables using a directed acyclic graph (DAG) and a conditional
probability table (Heckerman 1995; Pearl 1988). When a joint probability distri-
bution has the DAG probabilistic structure, it can be decomposed exactly into a
product of the conditional probabilities of variables given their parent variables.
Therefore, a Bayesian network is guaranteed to provide a good approximation
of the joint probability distribution. When we use a Bayesian network, it is
necessary to estimate the structure of a Bayesian network from data because
it is generally unknown. Estimating the structure is called “learning Bayesian
network”.

Two approaches can be used for learning Bayesian networks. First are
score-based (SB) approaches (Chickering 2002; Cooper and Herskovits 1992;
Heckerman 1995; Heckerman et al. 1995). The SB approach seeks the best struc-
ture with a score function that has consistency with the true DAG structure.
c© Springer International Publishing Switzerland 2015
J. Suzuki and M. Ueno (Eds.): AMBN 2015, LNAI 9505, pp. 15–31, 2015.
DOI: 10.1007/978-3-319-28379-1 2
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Therefore, this approach is called score-based learning. A popular Bayesian net-
work learning score is the marginal likelihood (ML) score (using a Dirichlet prior
over model parameters), which finds the maximum a posteriori (MAP) struc-
ture, as described by Buntine (1991) and Heckerman et al. (1995). In addition,
the Dirichlet prior is known as a distribution which is only likelihood equivalent
when certain conditions hold (Heckerman et al. 1995); this score is known as
“Bayesian Dirichlet equivalence (BDe)” (Heckerman et al. 1995). Given no prior
knowledge, the Bayesian Dirichlet equivalence uniform (BDeu), as proposed ear-
lier by Buntine (1991), is often used. Actually, BDeu requires an “equivalent
sample size (ESS)”, which is the value of a user-specified free parameter. More-
over, it has been demonstrated in recent studies that the ESS plays an important
role in the resulting network structure estimate.

Several learning algorithms in this approach have been developed based on
dynamic programming (Cowell 2009; Koivisto and Sood 2004; Silander and Myl-
lymaki 2006), A* search (Yuan et al. 2011), branch and bound (Malone et al.
2011), and integer programming (Cussens 2011; Jaakkola et al. 2010). However,
the Bayesian network score-based learning is adversely affected by exponential
time and NP hard problems (Chickering 1996). Consequently, the SB approach
makes it difficult to apply a large network.

Second is a constraint-based (CB) approach. Fundamentally, the solution of
the CB approach sequentially checks conditional independence relations among
all variables by statistical testing (CI), and directs edges of the structure from
observed data. Actually, the CB approach can relax computational cost prob-
lems and can extend the available learning network size for learning. Recently,
Yahezkel et al. (2009) proposed the recursive autonomy identification (RAI) algo-
rithm. The RAI algorithm decomposes into autonomous sub-structures after the
basic solution of CB approaches. This sequence is performed recursively for each
sub-structure. The advantage of the RAI algorithm is to be able to minimize
the number of parent nodes when using CI tests in the CB approach. The RAI
algorithm is, therefore, the highest accuracy in CB approaches. However, the
CB approach depends on the threshold of CI test. It has no consistency with the
true DAG structure. Traditional CI tests use G2 or χ2 test, and mutual informa-
tion (MI). Recently, several CI tests with a score function have been proposed
for learning Bayesian networks. For example, de Campos (2006) proposed a new
score function based on MI for CI tests (de Campos 2006). MI shows consis-
tency for the conditional independence relations between two nodes, but it has
not proved the strong consistency (van der Vaart 2000).

On the other hand, a Bayes factor is known to have a strong consistency (van
der Vaart 2000). The Bayes factor indicates the ratio of the marginal likelihoods
for two hypotheses. The marginal likelihood finds the maximum a posteriori
(MAP) structure, as described by Buntine (1991) and Heckerman et al. (1995).
Steck and Jaakkola (2002) proposed a CI test using a Bayes factor that set of
BDeu as the marginal likelihood. The CI test does not address the orientation of
edges between two variables. To detect the orientation correctly, BDeu adjusts
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the number of parameters to be constant. However, this adjustment entails bias
of the prior distribution (Ueno 2011).

In addition, Suzuki (2012) proposed a CI test that has strong consistent
estimator of mutual information. As the result of the research, the proposed
method corresponds to asymptotically a Bayes factor. But the method is only
applied in the Chou–Liu algorithm and is not used in the learning Bayesian
networks. Suzuki (2015) also proposed a CI test but he did not write how to use
the test for learning Bayesian networks.

This study proposes constraint-based learning Bayesian networks using Bayes
factor. A Bayes factor consists of the marginal likelihood for conditional joint
probability distributions between two variables in Bayesian networks. This paper
also shows that the Bayes factor using Jeffreys’ prior is theoretically optimal for
CI tests of Bayesian network. Clarke and Barron (1994) derived that the mini-
mum risk value of the hyperparameter of Dirichlet prior is 1/2, which is Jeffreys’
prior because it minimizes the entropy risk of prior. For a score-based learning
Bayesian network, the Jeffreys’ prior works worse than BDe(u) does because it
does not satisfy the likelihood equivalence property. However, this study shows
theoretically that Jeffreys’ prior is the optimal for the proposed Bayes factor.
In addition, some numerical experiments underscore the effectiveness of the pro-
posed method. This study gives score-based learning for a large Bayesian network
including more than 60 variables.

This paper is organized as follows. First, we introduce the learning Bayesian
networks in Sect. 2. Section 3 shows traditional CI tests. Section 4 presents the
CI test using the Bayes factor with consistency. Section 5 presents the theoreti-
cal analyses about the proposed method that is introduced into Sect. 4. Section 6
introduces the recursive autonomy identification algorithm, which is the state-of-
the-art algorithm in the CB approach. Section 7 shows experimental evaluations
using the RAI algorithm. In these experiments, we review the learning accu-
racy of the RAI algorithm according to comparison of each CI tests. Section 8
concludes the paper and suggests avenues of future work.

2 Learning Bayesian Networks

Let {x1, x2, · · · , xN} be a set of N discrete variables; each can take values in the
set of states {1, · · · , ri}. Actually, xi = k means that xi is state k. According
to the Bayesian network structure g ∈ G, the joint probability distribution is
given as

p(x1, x2, · · · , xN | g) =
N∏

i=1

p(xi | Πi, g), (1)

where G is the possible set of Bayesian network structures, and Πi is the parent
variable set of xi.

Next, we introduce the problem of learning a Bayesian network. Let θijk be a
conditional probability parameter of xi = k when the j-th instance of the parents
of xi is observed (we write Πi = j). Buntine (1991) assumed the Dirichlet prior



18 K. Natori et al.

and used an expected a posteriori (EAP) estimator as the parameter estimator
Θ̂ = (θ̂ijk) (i = 1, · · · , N, j = 1, · · · , qi, k = 1, · · · , ri − 1):

θ̂ijk =
αijk + nijk

αij + nij
, (k = 1, · · · , ri − 1). (2)

Therein, nijk represents the number of samples of xi = k when Πi = j, nij =∑ri

k=1 nijk, αijk denotes the hyperparameters of the Dirichlet prior distributions
(αijk is a pseudo-sample corresponding to nijk), αij =

∑ri

k=1 αijk, and θ̂ijri
=

1 − ∑ri−1
k=1 θ̂ijk.

The marginal likelihood is obtained as

p(X | g, α) =

N∏
i=1

qi∏
j=1

Γ(αij)

Γ(αij + nij)

ri∏
k=1

Γ(αijk + nijk)

Γ(αijk)
. (3)

Here, qi signifies the number of instances of Πi, where qi =
∏

xl∈Πi
rl and X

is a dataset. The problem of learning a Bayesian network is to find the MAP
structure that maximizes the score (3).

Particularly, Heckerman et al. (1995) presented a sufficient condition for sat-
isfying the likelihood equivalence assumption in the form of the following con-
straint related to hyperparameters of (3):

αijk = αp(xi = k,Πi = j | gh). (4)

Here, α is the user-determined equivalent sample size (ESS); gh is the hypo-
thetical Bayesian network structure that reflects a user’s prior knowledge. This
metric was designated as the Bayesian Dirichlet equivalence (BDe) score metric.

As Buntine (1991) described, αijk = α/(riqi) is regarded as a special case
of the BDe metric. Heckerman et al. (1995) called this special case “BDeu”.
Actually, αijk = α/(riqi) does not mean “uniform prior,” but “is the same value
of all hyperparameters for a variable”.

These methods are called a “score based approach.” Score-based learning
Bayesian networks are hindered by heavy computational costs. However, a con-
ditional independence (CI) based approach is known to relax this problem and
to extend the available learning network size.

3 CI Tests

Common means of CI testing are by thresholding conditional mutual information
(CMI) or a statistic that measures statistical independence between variables (in
Pearson’s chi-square or likelihood ratio G-test).

Mutual Information. Mutual Information (MI) between variables X and Y
measures the amount of information shared between these variables, which is
provided as

MI(X;Y ) =
∑

x∈X,y∈Y

P (x, y) log{P (x, y)/(P (x)P (y))}. (5)
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It also measures the degree to which uncertainty about Y decreases when X
is observed (and vice versa) (Cover and Thomas 1991). Actually, MI is the
Kullback–Leibler (KL) divergence between P (x, y) and P (x)P (y) (Cover and
Thomas 1991), measuring how much the joint differs from the marginals’ prod-
uct, or how much the variables can be regarded as not independent.

The CMI between X and Y , given a conditioning set Z, is given as

CMI(X;Y | Z) =
∑

x∈X,y∈Y,z∈Z

P (x, y, z) log{P (x, y | z)/(P (x | z)P (y | z))}.

(6)
By definition, MI(X;Y ) and CMI(X;Y | Z) are non-negative. MI(X;Y ) = 0

(CMI(X;Y | Z) = 0) if and only if X and Y are independent (given Z). The
true MI is unknown. The estimated M̂I is larger than MI (Treves and Panzeri
1995), and therefore for independent variables larger than 0. Practically, M̂I is
compared to a small threshold, ε, to distinguish pairs of dependent and pairs
of independent variables (Aliferis et al. 2010; Besson 2010; Cheng et al. 1999;
2002). If M̂I(X;Y ) < ε, X and Y are regarded as independent and the edge
connecting them is removed. The test for CI using CMI is similar.

Pearson’s chi-square and G2 test Statistical tests compare the null hypoth-
esis that two variables are independent of the alternative hypothesis. If the null
is rejected (cannot be rejected), then the edge is learned (removed). A statistic
that is asymptotically chi-square distributed is calculated and compared to a
critical value. If it is greater (smaller) than the critical value, then the null is
rejected (cannot be rejected) (Agresti 2002; Spirtes et al. 2000). In Pearson’s
chi-square test, the statistic X2

st is

X2
st =

∑

x∈X,y∈Y

(Oxy − Exy)2/Exy ∼ χ2
d.f=(|X|−1)(|Y |−1), (7)

where Oxy(Exy) is the number of records (expected to be if the null was correct)
for which X = x, Y = y, and |X| and |Y | are the corresponding cardinalities.
If the null is correct, P (x, y) = P (x) · P (y),∀x ∈ X, y ∈ Y . We expect that
Exy/N = (Ex/N) · (Ey/N),∀x ∈ X, y ∈ Y and Exy = Ex ·Ey/N for Ex and Ey,
which are the numbers of records in which X = x and Y = y, respectively, and
where N is the total number of records. If X2

st is greater than a critical value
for a significance value α, X2

st > Xd.f=(|X|−1)(|Y |−1),α, then we reject the null
hypothesis.

Instead, based on maximum likelihood, if the statistic

G2
st = 2

∑

x∈X,y∈Y

Oxy log(Oxy/Exy) ∼ χ2
d.f=(|X|−1)(|Y |−1) (8)

is larger than the previous critical value G2
st > X2

d.f=(|X|−1)(|Y |−1),α, then we
reject the null hypothesis.

However, the learning accuracy of the CB approach is less than that of score-
based learning because these CI tests have no strong consistency (van der Vaart
2000).
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4 Bayes Factor for CI Test

Traditional CI tests have used statistical tests without consistency. Therefore,
the traditional CI tests are not guaranteed to obtain the correct structure even
when the data size becomes large. In this paper, we propose a CI test with
consistency using the Bayes factor to improve the traditional CI test.

The Bayes factor is the ratio of the marginal likelihood (ML) (Kass and
Raftery 1995), which finds the maximum a posteriori (MAP) of the statistical
model. Therefore, the Bayes factor has asymptotic consistency. For example, the
Bayes factor is given as p(X | g1)/p(X | g2), where g1 and g2 are the hypothetical
structures from observed data X. If the value is larger than 1.0, then g1 is favored
more than g2, else g2 is favored more than g1.

Steck and Jaakkola (2002) proposed a CI test using the Bayes factor. In
this method, X presents observed data for only two variables X1 and X2 given
conditional variables as

log
p(X | g1)
p(X | g2)

. (9)

In the CI test, g1 shows a dependent model in Fig. 1; g2 shows an independent
model in Fig. 2, where C is the conditional variables. When the log-Bayes factor
takes a negative value, then the edge between x1 and x2 is deleted.

Fig. 1. g1; dependent model. Fig. 2. g2; independent model.

Steck and Jaakkola (2002) applied BDeu as the marginal likelihoods of the
Bayes factor. However, Ueno (2010, 2011) pointed out that BDeu’s prior is not
non-informative. Especially, BDeu is not guaranteed to optimize CI tests because
it was developed for score-based learning Bayesian network. The CI test does not
address the orientation of edge between two variables. To detect the orientation
correctly, BDeu adjusts the number of parameters to be constant. However, this
adjustment causes the bias of the prior distribution (Ueno 2011).

To solve this problem, our approach uses a joint probability distribution of X1

and X2 because it is unnecessary to consider the orientation of edge between X1

and X2. Let θjk1k2 represent p(x1 = k1, x2 = k2 | Π(x1,x2) = j, g1), where Π(x1,x2)

represents a set of common parents variables of x1 and x2. Here, njk1k2 denotes
the number of samples of x1 = k1 and x2 = k2 when Π(x1,x2) = j, nk1k2 =∑r1

k1=1

∑r2
k2=1 njk1k2 . It is noteworthy that θjr1r2 = 1 − ∑r1−1

k1=1

∑r2−1
k2=1 θjk1k2 .

Assuming a uniform prior αjk1k2 = α, the marginal likelihood is obtained as
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p(X|g1) =
Γ(r1r2α)

Γ(α)

qi∏

j=1

r1∏

k1=1

r2∏

k2=1

Γ(α + njk1k2)
Γ(r1r2α + nk1k2)

, (10)

p(X|g2) =
∏

i=1,2

Γ(riα)
Γ(α)

qi∏

j=1

ri∏

ki=1

Γ(α + njki
)

Γ(riα + nki
)
. (11)

The remaining problem is determination of the value of hyper-parameter α.
Clarke and Barron (1994) described that the optimal minimum risk value of the
hyperparameter of the Dirichlet prior is 1/2, which is Jeffreys’ prior because it
minimizes the entropy risk of prior. Ueno (2010, 2011) claimed that Jeffreys’
prior is not efficient for score-based learning Bayesian network. However, this
study specifically examines CI tests. The Jeffreys’ prior is theoretically optimum
for this problem.

Suzuki (2012) proposed a Bayes estimator of the mutual information for
extending the Chow–Liu algorithm. The estimator is almost identical to the pro-
posed Bayes factor in this paper. However, their purposes differ because Suzuki
(2012) learned probabilistic tree structures to maximize the Bayes estimator.

Suzuki (2015) also proposed a CI test but he did not write how to use the
test for learning Bayesian networks. The main proposal of this study is to apply
the Bayes factor CI test to CB learning Bayesian networks.

5 Theoretical Analyses

In this section, we present results from some theoretical analyses of CI tests
using the proposed method. From (3), the sum of hyperparameters α of BDeu
is constant for the number of parents because αijk = α/(riqi), but that of the
proposed method increases as the number of parents increases. For example, one
might consider two binary variables with the empty set of C, as shown in Figs. 1
and 2. Then the proposed score for g1 is calculable by

p(X | g1) =
Γ(4α)
Γ(α)

2∏

k1=1

2∏

k2=1

Γ(α + nk1k2)
Γ(4α + nk1k2)

.

The proposed score for g2 is obtained as

p(X | g2) =
Γ(2α)
Γ(α)

2∏

k1=1

2∏

k2=1

Γ(α + nk1k2)
Γ(2α + nk1k2)

.

The proposed score for g1 is equivalent to the BDeu score where ESS = 4α,
but the proposed score for g2 is equivalent to the BDeu score where ESS = 2α.
Consequently, from the view of BDeu, the proposed score changes the ESS value
according to the number of parameters. From this, the reader might suspect that
the proposed method is affected by estimation bias.
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To clarify the mechanisms of marginal likelihood of Bayesian network, Ueno
(2010) analyzed the log-marginal likelihood asymptotically and derived the fol-
lowing theorem.

Theorem 1. (Ueno 2010) When α + n is sufficiently large, log-marginal likeli-
hood converges to

log p(X | g, α) = log p(Θ̂ | X, g, α)−1
2

N∑

i=1

qi∑

j=1

ri∑

k=1

ri − 1
ri

log
(

1 +
nijk

αijk

)
+const.,

(12)
where

log p(Θ̂ | X, g, α) =
N∑

i=1

qi∑

j=1

ri∑

k=1

(αijk + nijk) log
(αijk + nijk)
(αij + nij)

,

and const. is the term that is independent of the number of parameters.

From (12), the log-marginal likelihood can be decomposed into two fac-
tors: (1) a log-posterior term log p(Θ̂ | X, g, α) and (2) a penalty term
1
2

∑N
i=1

∑qi
j=1

∑ri

k=1
ri−1

ri
· log

(
1 + nijk

αijk

)
.

∑N
i=1

∑qi
j=1

∑ri

k=1
ri−1

ri
is the number

of parameters.
This well known model selection formula is generally interpreted (1) as reflect-

ing the fit to the data and (2) as signifying the penalty that blocks extra arcs
from being added. This result suggests that a tradeoff exists between the role
of αijk in the log-posterior (which helps to block extra arcs) and its role in the
penalty term (which helps to add extra arcs).

From (12), the value of hyperparameter αijk should not be changed because
the change of αijk strongly affects the penalty term of the score. The difference
between BDeu and the proposed marginal likelihood is that the value of αijk in
BDeu decreases as the number of parameters increases because αijk = α/(riqi)
in BDeu, but that of the proposed method is constant for the different number
of parameters. However, we use αijk = α/(riqi) only for correct orientation
identification. Therefore, generally, the decrease of αijk leading to the increase
the number of parameters in BDeu cannot be justified. Consequently, BDeu
might show somewhat unstable performance in the CI test.

6 Recursive Autonomy Identification Algorithm

The remaining problem is which CB algorithm we employ to implement the
Bayes factor CI test. In this study, we use the recursive autonomy identification
(RAI) algorithm which is the state-of-art algorithm for the CB approach. In this
section, we present the definition and procedure of the RAI algorithm.
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Yehezkel and Lerner (2009) proposed the RAI algorithm to reduce unneces-
sary CI tests. They show that X and Y which are the variables of structure are
independent conditioned on a set of conditional variables S using X ⊥ Y | S, and
make use of d-separation (Pearl 1988). Also, they define d-separation resolution
as the purpose to evaluate d-separation for different the number of conditional
variables, and an autonomous substructure.

D-Separation Resolution. The resolution of a d-separation relation between
a pair of non-adjacent nodes in a graph is the size of the smallest condition set
that d-separates the two nodes.

Exogenous Causes. A node Y in g(V ,E) is an exogenous cause to g′(V ′,E′),
where V ′ ⊂ V and E′ ⊂ E, if Y �∈ V ′ and X ∈ V ′, Y ∈ P a(X, g) or
Y �∈ Adj(X, g) (Pearl 2000).

Autonomous Sub-structure. In DAG g(V ,E), a sub-structure gA(V A,EA)
such that V A ⊂ V and EA ⊂ E is said to be autonomous in g given a set
Vex ⊂ V of exogenous causes to gA if ∀X ∈ V A, P a(X, g) ⊂ {V A ∪ Vex}. If
Vex is empty, we say the sub-structure is (completely) autonomous.

They define sub-structure autonomy in the sense that the sub-structure holds
the Markov property for its nodes. Given a structure g, any two non-adjacent
nodes in an autonomous sub-structure gA in g are d-separated given nodes either
included in the sub-structure gA or exogenous causes to gA.

In this method, starting from a complete undirected graph and proceeding
from low to high graph d-separation resolution, the RAI algorithm uncovers the
correct pattern of a structure by performing the following sequence of operations.

First, all relations between nodes in the structure are checked using the CI
test. Second, the edges are directed by orientation rules. Third, structure decom-
poses autonomous sub-structures. For each sub-structure, the RAI algorithm is
applied recursively, while increasing the order of the CI tests. The important idea
is that the entire structure decomposes autonomous sub-structures. By perform-
ing that procedure, decrease the high order of the CI tests. In the experimentally
obtained results, the RAI algorithm was shown to be significant in comparison
with other algorithms of the CB approach.

By the procedure, the RAI algorithm is able to realize the computational
cost smaller than any other algorithm in the CB approach.

7 Numerical Experiments

This section presents some numerical experiments used to evaluate the effec-
tiveness of our proposed method. For this purpose, we compare the learning
accuracy of the proposed method with the other methods.
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7.1 Experimental Design

We conducted some simulation experiments to evaluate the effectiveness of the
proposed method. In the experiments, we compare the performances of Bayes
factor with αijk = 1/2, those with αijk = 1, those with BDeu (α = 1) (Steck
and Jaakkola 2002), those of de Campos’s method (2006), and those of the
mutual information with the threshold of 0.003 which is derived as best value
by Yehezkel and Lerner (2009). These methods are presented in Table 1.

In Sect. 7.2, we evaluate the performances of CI tests using three small net-
work structures with binary variables. First structure shows a strongly skewed
conditional probability distribution. Second has a skewed conditional probability
distribution. Third has a uniform conditional probability distribution.

In Sects. 7.3 and 7.4, we present learning results obtained using large net-
works. We use the Alarm network in Sect. 7.3 and the win95pts network in
Sect. 7.4. These benchmark networks were used from the bnlearn repository
(Scutari 2010).

Table 1. Comparison of methods.

# Methods

1 αijk = 1
2

2 αijk = 1

3 BDeu (α = 1)(Steck and Jaakkola 2002)

4 MI & χ2 (de Campos 2006)

5 MI (Yehezkel and Lerner 2009)

7.2 Experimentation with Small Network

First, we evaluated the learning accuracy using a five-variable structure. Figure 3
has a strongly skewed conditional probability distribution. Figure 4 has a skewed
conditional probability distribution. Figure 5 has a uniform conditional proba-
bility distribution.

The procedures of this experiment are described below.

1. We generated 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1,000 samples
from the three structures.

2. Using CI tests in Table 1, Bayesian network structures were estimated from
100, 200, 300, 400, 500, 600, 700, 800, 900, and 1,000 samples.

3. We repeated procedure 2 for 10 iterations for each number of samples.

We presented the average of the total learning errors for each CI test.
The learning error shows the difference between the learned structure and
the true structure, which is called the structure Hamming distance (SHD).



Constraint-Based Learning Bayesian Networks Using Bayes Factor 25

Fig. 3. Strongly skewed distribution. Fig. 4. Skewed distribution.

Fig. 5. Uniform distribution.

Tsamardinos et al. (2009) proposed the evaluation of the accuracy of the learning
structure using the SHD, which is the most efficient metric between the learned
and the true structure.

The results are depicted in Fig. 6. The results show that our proposed
method (#1) produces the best performance. For a strongly skewed distrib-
ution (Fig. 3), our proposed method decreases the learning error faster than
αijk = 1 as the sample size becomes large. For a skewed distribution (Fig. 4),
our proposed method decreases the learning error faster than αijk = 1 as the
sample size becomes large. For a uniform distribution (Fig. 5), all CI tests tend
to be adversely affected, showing somewhat unstable behaviors. However, only
the method with αijk = 1/2 converges to zero error for a uniform distribution.

From Fig. 6, for a small network, performances with de Campos’s method
and MI are more adversely affected than those with the other methods because
they have no strong consistency.

7.3 Experimentally Obtained Result with the Alarm Network

To evaluate a large network, we first used the Alarm network because it is
widely known as a benchmark structure for the evaluation of learning Bayesian
networks. The Alarm network includes 37 variables and 46 edges. The maximum
in-degree is four. In this experiment, we determined the number of states of all
variables as two.

To evaluate the CI test accuracy, we used learning errors of three types
(Spirtes et al. 2000; Tsamardinos et al. 2006). An extra edge (EE) is a learned
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Fig. 6. Results of the learning small network.

edge, although it does not exist in the true graph. A missing edge (ME) is a
missed edge from learning, although it exists in the true graph. Additionally, we
used SHD.

For evaluation of learning of the Alarm network, we generated N = 10, 000,
20,000, 50,000, 100,000, and 200,000 samples. Then we let the RAI algorithm
with each CI test learn the structure using these samples. We repeated this
procedure 10 times. We plot the MEs, EEs, and SHDs of the methods for each
sample size to evaluate the learning accuracy in Figs. 7, 8, and 9. Additionally,
we show the average of run-time in comparison with the method presented in
Table 2.

Table 2. Comparison of the average run-time for each CI method in the Alarm network.

N Average run-time results (s)

#1 #2 #3 #4 #5

10,000 80.9469 80.9974 80.2859 0.7680 0.5558

20,000 167.6280 168.2110 169.8730 1.1758 0.7945

50,000 423.5380 423.7020 424.3510 2.3933 1.6321

100,000 1.8034E+03 1.8283E+03 1.7869E+03 5.8928 4.3668

200,000 4.3404E+03 4.3984E+03 4.3753E+03 9.5591 7.1311
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Fig. 7. Average numbers of MEs Fig. 8. Average numbers of EEs

Fig. 9. Average numbers of SHDs

Fig. 10. Average numbers of MEs. Fig. 11. Average numbers of EEs.

In Table 2, the proposed methods are shown to consume more run-time than
the traditional MI methods do. In addition, the run-time of the proposed meth-
ods increases linearly as the sample size increases.
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Fig. 12. Average numbers of SHDs.

From Figs. 7 and 9, Bayes factor with αijk = 1/2 outperforms other methods
in many cases. Our proposed method tends to be adversely affected more by extra
edges for small sample sizes. As the sample size becomes larger than 100,000,
the EEs of the proposed method show the best results.

7.4 Experimentally Obtained Results with the Win95pts Network

In the SB approach, Cussens (2011) proposed a learning algorithm using the
integer programming and achieved the learning structure with 60 variables. To
prove that our proposed method can learn a structure with more than 60 vari-
ables, we used the win95pts network. The network includes 76 variables and 112
edges. In addition, the maximum number of degrees is seven.

In this experiment, we also evaluated our proposed method using the same
method as that used for learning the Alarm network. We compared the per-
formances of the CI tests for N = 10, 000, 20, 000, 50, 000, 100, 000, and 200,000
samples. The procedure was repeated 10 times.

In Figs. 10, 11, and 12, we depict the experimentally obtained results from
using MEs, EEs, and SHDs. Additionally, we show the average of run-time in
comparison with the method presented in Table 3.

Table 3. Comparison of the average run-time for each CI method in the win95pts
network.

N Average run-time results (s)

#1 #2 #3 #4 #5

10,000 1.0222e+03 1.0642e+03 986.1200 7.7304 5.2507

20,000 2.1132e+03 1.9826e+03 2.0241e+03 13.5052 8.3541

50,000 4.9998e+03 5.1772e+03 4.7857e+03 21.9171 13.4316

100,000 1.5838e+04 1.5379e+04 1.4425e+04 39.9133 23.6153

200,000 3.3139e+04 3.2942e+04 3.2829e+04 66.8592 36.7520
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From Fig. 10, our proposed method (#1) is shown to be the best. From
Fig. 11, our proposed method (#1) tends to be adversely affected by extra edges.
However, de Campos’s method produces fewer extra edges. From Fig. 12, for a
small sample size, the Bayes factor with αijk = 1 exhibits superior performance.
However, regarding the performance of the proposed method, the Bayes factor
with αijk = 1, and de Campos’s method show almost identical performance
when the sample size becomes large. Actually, de Campos’s method without
strong consistency provides the best performance because the sample size in this
experiment is insufficiently large for this network.

From Table 3, the proposed methods consume more run-time than the tra-
ditional MI methods do. In addition, the run-time of the proposed methods
increases linearly as the sample size increases. The run-time of the traditional
MI methods increases rapidly as the network size increases. Consequently, the
proposed method is expected to be applicable to extremely large networks.

8 Conclusion

As described herein, we proposed a new CI test using the Bayes factor with
αijk = 1/2 for learning Bayesian networks. Additionally, we provided some the-
oretical analyses of the proposed method. The results show that the prior dis-
tribution of BDeu for score-based learning is not non-informative, and it might
cause biased and unstable estimations. The proposed CI test based on Jeffreys’
prior minimizes the entropy risk of the prior and optimum the learning results.
Using some experiments, we demonstrated that our proposed method improves
learning accuracy compared with the other CI tests. Although the CI tests using
Bayes Factor based on BDeu (Steck and Jaakkola 2002) have already been pro-
posed, our proposed CI test worked better than the other CI tests did. However,
for a large network, we were unable to find a significant difference from the other
methods. For a large network, the proposed method requires a large sample size
because it has asymptotic consistency.

On a different note, this work indicates that it begins taking a modest step
towards improving the theory of the CB approach. A future work is to investigate
the performance of the proposed method for larger networks and huge samples.
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Abstract. To learn accurate BN parameters from small data set, com-
bined with data, domain knowledge is often incorporated into the learn-
ing process as parameter constraints. Currently, most of the existing
parameter learning methods take parameter learning problem as an exact
optimization problem and regard the optimal solutions as the final para-
meters. However, due to the scarcity of data, objective functions con-
structed from the data, like likelihood function and entropy function,
are not accurate. Therefore, parameters derived from the objective func-
tions do not approach the true parameters well while some suboptimal
parameters fit the true parameters better. Thus, searching more reason-
able suboptimal parameters is a possible approach to learn better BN
parameters. In this paper, we propose to visualize suboptimal parameters
with parallel coordinate system and propose a Spatially Maximum a Pos-
teriori (SMAP) method. Experimental results reveal that the proposed
method outperforms most of the existing parameter learning methods.

Keywords: Bayesian Networks · Parameter learning · Small data set ·
Convex optimization · Linear programming

1 Introduction

Bayesian Network (BN) is a type of directed acyclic graph (DAG) with parame-
ters, which is the combination of probability theory and graphical model theory
[1]. It was systematically introduced in 1988 [1]. After about 30 years develop-
ment, it has become a powerful tool for uncertainty analysis and is applied on
wide issues like gene analysis [2], fault diagnosis [3], robot control [4], target
tracking [5], signal processing [6], ecosystem modeling [7], etc. Generally, to con-
struct a BN, relevant data is required and the number is decided by complexity
of the problem to be solved. When sufficient data is available, constructing a
good BN model from training data can be accomplished by traditional methods,
like Maximum Likelihood [8] for parameter learning. Unfortunately, for domains
like earthquake prediction and new-emerging disease diagnosis, collecting suffi-
cient data is tough. In that situation, domain knowledge is often merged into
modelling process of the network as supplement information.
c© Springer International Publishing Switzerland 2015
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In this paper, we focus on BN parameter learning and assume structure of
the network is fixed. For parameter learning, domain experts feel more comfort-
able to provide qualitative domain knowledge [9], which can be transformed
into parameter constraints, in the form like p1 > 0.8, p1 ≈ p2, p1 > p2,
(p1 + p2) > (p3 + p4), etc. These constraints look simple, but are very effective for
improving BN model accuracy, especially when the data set is small. Generally,
research about parameter learning from small data set experienced two stages:
learning with single type of parameter constraints and learning with multiple
types of parameter constraints. In the first stage: Wittig [10] proposed a Con-
strained Adaptive Probabilistic Networks (CAPN) method, which is suitable for
qualitative influence constraints. First, parameter constraints are transformed
from the qualitative expert knowledge. Then, an optimization model consisting
of maximum entropy function and parameter constraints is built. Finally, the
optimization model is solved by Adaptive Probabilistic Networks. Altendorf [11]
proposed a Gradient-descent Estimation (GDE) method, which also applies to
qualitative influence constraints. The difference is that the parameter constraints
are integrated into the maximum entropy function as a penalty function, which
evolves into a new objective function. The new objective function is then solved
using gradient-descent algorithm. Feelders [12] proposed an Isotonic Regression
Estimation (IRE) method, which also fits qualitative influence constraints. First,
initial rough parameters are learnt by ML method. Then, parameter orders are
constructed from qualitative influence constraints. Finally, the initial parameters
are regulated by Isotonic Regression method and ultimately obey all the parame-
ter orders. Isozaki [13] proposed a Minimum Free Energy (MFE) method, which
is effective on the basic normalization constraints. First, a minimum free energy
function, which consists of Kullback-Leibler divergence and entropy function,
is taken as the objective optimization function. Then the minimum free energy
function and normalization constraints are combined by Lagrange multipliers.
Finally, the gradient method is employed to optimize the model.

As single type of parameter constraints can only restrict the optimal para-
meters into a broad possible parameter space, constraining force of those para-
meter constraints is weak. As a result, parameters computed based on the data
and single type of constraints are far from accurate. On the other hand, meth-
ods suiting one type of constraints generally do not work on other types of
constraints. Therefore, methods applicable to multiple types of parameter con-
straints are preferred and studied. In this stage: Niculescu [14] and Campos [15]
proposed a Constrained Maximum Likelihood (CML) method. First, multiple
types of parameter constraints are transformed from expert knowledge. Then,
a convex optimization problem consisting of the likelihood function and para-
meter constraints is built. Finally, the optimization model is solved by convex
optimization method. Campos [16] proposed a Constrained Maximum Entropy
(CME) method. First, an Imprecise Dirichlet Model incorporating both data
and prior information is constructed. Then a convex optimization model con-
sisting of an entropy function and convex parameter constraints is presented.
Finally, the model is also solved by the convex optimization method. Rui [17]
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proposed a Qualitative Maximum a Posterior (QMAP) method. First, certain
amount of possible parameters are sampled from possible parameter space con-
structed by parameter constraints using rejection-acceptance sampling method.
Then, hyper-parameters of Dirichlet distribution prior are specified by a virtual
sampling number. Finally, optimal parameters are computed as the maximum a
posteriori estimation of real data and pseudo data. Guo [18] proposed a Dually
Constrained Estimation (DCE) method. First, parameters in the network are
separated into two classes: parameters referring to different child states but the
same parent configuration state and parameters referring to different parent
configuration states but the same child state. Then, a beta distribution approx-
imation based Bayesian estimation method is proposed to learn parameters of
the first class. Finally, isotonic regression estimation method is employed to com-
pute the second class parameters. Zhou [19] proposed a Multinomial Parameter
Learning with Constraints (MPL-C) method. First, frequency number of dif-
ferent child node states but fixed parent node configuration state are counted.
Then, an auxiliary BN model incorporating both data and parameter constraints
is constructed. Finally, the optimal parameters are computed as the mean val-
ues of the probability distribution, which is inferred by a dynamic discretization
junction tree method.

Generally, existing methods take the global optimal solution of the con-
strained optimization problem as the final parameters. However, when the avail-
able data is limited, objective function constructed from the data, like likelihood
function, will overfit the data. As a result, parameters calculated by the existing
methods often fail to approach the true parameters well while some suboptimal
parameters approach the true parameters better. For the above reasons, in this
paper, we analyze BN parameter learning problem from a spatial viewpoint and
propose a Spatially Maximum a Posteriori (SMAP) method.

This paper is organized as follows: In Sect. 2, we describe the studied prob-
lem. In Sect. 3, we introduce the principle of the proposed method. In Sect. 4,
the proposed Spatially Maximum a Posteriori (SMAP) method is introduced
in detail. In Sect. 5, we perform some experiments and analyze the experiment
results. In Sect. 6, we give some conclusions and point out some interesting future
research directions.

2 Preliminaries

2.1 Bayesian Network

Bayesian network is a probabilistic graphic model, whose foundation are graph
theory and probability theory. A Bayesian network consists of structure and
parameters. Figure 1 is a typical and well-known Bayesian network – Asia BN.
In that network, nodes like VA, S and TB, represent disease symptoms or diag-
noses. Arrows from one node to another represent the influence imposed from the
top node onto the bottom node. Conditional probability, like P (D|LCTB,B),
represents the strength of joint influence imposed by the symptom nodes LCTB



Learning Bayesian Network Parameters from Small Data Set 35

Fig. 1. The Asia Bayesian Network

and B onto the diagnosis node D. In this paper, we focus on learning of parame-
ters in a network, especially discrete Bayesian network, whose structure is fixed
in advance.

2.2 Parameters Learning in Bayesian Network

Learning parameters in a BN is to estimate parameters from a given sample data
set. In this paper, samples with missing values are not considered. For a network
with n node variables, parameter estimation can be expressed as a maximization
problem of the log-likelihood function �(p|D), where

�(p|D) =
n∑

i=1

∑

xi,xπ(i)

n(xi, xπ(i)) ∗ log p(xi |xπ(i)) (1)

According to the decomposability of BN, parameter estimation of a network
can be decomposed into the product of independent estimation of each vari-
able node Xi and the Maximum Likelihood (ML) estimation of the parameter
p(xi|xπ(i)) is

p(xi |xπ(i)) =
n(xi, xπ(i))

n(xπ(i))
(2)

2.3 The Sample Complexity of Parameters Learning
in Fixed-Structure Bayesian Networks

When the given data is sufficient, ML method is an ideal approach for accurate
parameter learning. However, when the data set is small, learning results of
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ML method are not satisfactory. Therefore, definition on sample complexity
of BN parameter learning helps to decide whether ML is superior enough to
learn expected accuracy parameters. If not, more information such as parameter
constraints are required. About this topic, Dasgupta [20] defined a calculation of
sample complexity bounds for parameters learning under a fixed BN structure.
For a network with n boolean nodes, if no node has more than k parents, with
confidence 1 − δ, sample complexity is upper-bounded by:

288 ∗ n2 ∗ 2k

ε2
ln2(1 +

3n

ε
) ln

1 + 3n/ε

εδ
(3)

Constant ε is the error rate and is often set as ε = αn, for a small constant α.

2.4 Common Parameter Constraints

Generally, eight types of parameter constraints can be provided by domain
experts as qualitative domain knowledge. The constraints are defined as below:

(1) Axiomatic Constraint: It describes relation between parameters referring to
a fixed parent configuration state. It is a very basic constraint, which means,
domain experts are not required to provide them.

ri∑

k=1

θijk = 1, 0 ≤ θijk ≤ 1,∀i, j, k (4)

(2) Range Constraint: It defines the upper and lower values of a parameter,
which is very common in reality. Also, domain experts feel more comfortable
to provide such constraints.

0 ≤ αijk ≤ θijk ≤ βijk ≤ 1 (5)

(3) Intra-distribution Constraint: It describes the comparative relation between
two parameters referring to the same parent configuration state j but differ-
ent child node states k and k′.

θijk ≤ θijk′ ,∀k �= k′ (6)

(4) Cross-distribution Constraint: It describes the comparative relation between
two parameters referring to the same child node state k but different parent
node configuration states j and j′.

θijk ≤ θij′k,∀j �= j′ (7)

(5) Inter-distribution Constraint: It describes the comparative relation between
two absolutely different parameters.

θijk ≤ θi′j′k′ ,∀i �= i′, j �= j′, k �= k′ (8)
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(6) Approximate-Equality Constraint: It describes the close relation between
any two parameters.

θijk ≈ θi′j′k′ ,∀i �= i′, j �= j′, k �= k′ (9)

Since the form of the above constraints is intractable for calculation, it can
be transformed into the form as below:

| θijk − θi′j′k′ |≤ ε,∀i �= i′, j �= j′, k �= k′ (10)

(7) Additive Synergy Constraint: It describes the comparative relation between
sums of each two parameters under different distributions.

θij1k + θij2k ≤ θij3k + θij4k,∀i, k (11)

(8) Product Synergy Constraint: It describes the comparative relation between
products of each two parameters under different distributions.

θij1k ∗ θij2k ≤ θij3k ∗ θij4k,∀i, k (12)

To be noticed, parameter constraints of type (1–7) are all convex, while
product synergy constraints are non-convex.

3 Principle of the Proposed Method

To illustrate the principle of the proposed method, we take a local network
(Fig. 2) of Asian network as the sample BN and explain the parameter learning
process. First, a random set of parameters are generated and assumed as the true
parameters. Then, small amount of synthetic data is sampled from the network.

Fig. 2. An independent example Bayesian Network

Usually, parameters in BN are “high-dimensional” (at least four dimensions
with one Boolean child node and one Boolean parent node). So, it is tough
to visualize parameters by X-Y-Z axis system. For that reason, we propose to
visualize parameters by parallel coordinate system. For simplicity, we assign
an index for each parameter of the sample network in Table 1 and the indexes
instead of parameters are plotted on the x axis of the parallel coordinate graph.
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Table 1. Indexes for parameters

Index Parameter Index Parameter

1 P (D = 0 | LCTB = 0, B = 0) 5 P (D = 1 | LCTB = 0, B = 0)

2 P (D = 0 | LCTB = 0, B = 1) 6 P (D = 1 | LCTB = 0, B = 1)

3 P (D = 0 | LCTB = 1, B = 0) 7 P (D = 1 | LCTB = 1, B = 0)

4 P (D = 0 | LCTB = 1, B = 1) 8 P (D = 1 | LCTB = 1, B = 1)

Table 2. Parameter constraints

Index Constraint Index Constraint Index Constraint

1 P1 ≥ P5 4 P8 ≥ P4 7 P8 ≥ P7

2 P6 ≥ P2 5 P8 ≥ P5 8 P6 ≥ P5

3 P7 ≥ P3 6 P8 ≥ P6 9 P7 ≥ P5

Parameter constraints transformed from the medical expert knowledge are
listed in Table 2.

Then, we compute the maximum and minimum values of each parameter by
linear programming with constraints and we plot them as green lines (one line
for one set of parameters) in Fig. 3. Finally, we plot the true parameters as the
red line in Fig. 3, which satisfy all the parameter constraints.

To better approach the true parameters, we try to reduce the possible para-
meter space, where the true parameters lie in. In Fig. 4, we assume that the
reduced possible parameter space is the area between the black line and the blue
line, which respectively represent center parameters and border parameters.

If the center and border parameters can be correctly determined (their com-
putation will be explained in later section), then, we can find a set of parameters,
which better approach the true parameters.

Before the calculation of more optimal parameters, let us consider the prin-
ciple indicated in Fig. 5: (1) If the point we search for lies between point A and
point B, then point A is closer to the searched point than point M and point

Fig. 3. Visualization of the True Parameters
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Fig. 4. Visualization of the Border and Center Parameters

D. (2) If the point we search for lies between point B and point C, then point
M is closer to the searched point than point A and point D. (3) If the point
we search for lies between point C and point D, then point D is closer to the
searched point than point A and point M. Uniformly, the searched point more
likely lies between point B and point C (probability 50 %) than that between
point A and point B (probability 25 %) and that between point C and point D
(probability 25 %).

Fig. 5. Principle of the proposed method

Based on the above indicated principle, in Fig. 6, under uniform distribution,
expected parameters (in pink) have more possibility (50 %) to better approach
the true parameters (in red) than the border parameters (in blue) (25 %) and
center parameters (in black) (25 %).

To compute expected parameters in Fig. 6, border parameters and center
parameters should be calculated first. In Sect. 4, we will introduce the computa-
tion of those parameters.

4 Spatially Maximum a Posteriori Method

For BN parameter estimation, it has a trait, which is: (1) when the given data
set contains much parameter information, parameters calculated by ML method
may satisfy all the parameter constraints. In that case, parameters θML

ijk can be
taken as the final optimal parameters. (2) when the given data set contains not
much information, parameters calculated by ML method fail to satisfy all the
parameter constraints. In that case, better parameters are preferred.
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Fig. 6. Visualization of the true parameters and the optimal parameters (Color figure
online)

For Spatially Maximum a Posteriori (SMAP) method, to learn better para-
meters, border parameters and center parameters should be computed first.

4.1 Border Parameter Calculation

When parameters θML
ijk do not satisfy all the parameter constraints, parameters

derived from constrained maximum likelihood problem lie on border of the pos-
sible parameter space. Therefore, the border parameter can be acquired [21] as
solutions of the convex optimization model defined by Eqs. (13) and (14).

Maximize logP (D | θ,G) (13)

Subject to Ω(θijk) ≤ 0 (14)

Ω(θijk) denotes all parameter constraints.

4.2 Center Parameter Calculation

To calculate the center parameter, maximum value θmax
ijk and minimum value

θmin
ijk of parameter θijk should be calculated beforehand. With models in Eqs. (15)

and (16), the maximum value θmax
ijk can be computed by linear programming.

Maximize θijk (15)

Subject to Ω(θijk) ≤ 0 (16)

Likewise, the minimum value θmin
ijk can be figured out from the following

model by linear programming.

Maximize − θijk (17)

Subject to Ω(θijk) ≤ 0 (18)
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Based on parameters θmax
ijk and θmin

ijk , the center parameter θC
ijk can be com-

puted by Eq. 19.

θC
ijk =

1
2

∗ (θmax
ijk + θmin

ijk ) (19)

4.3 Spatially Maximum a Posteriori Parameter Calculation

Based on the above analysis and calculation, SMAP method can be summa-
rized as bellow:

Step 1: Calculate parameter θML
ijk from training data set by ML method

(Eq. 2).
Step 2: If the parameter θML

ijk satisfies all the parameter constraints, then it
is taken as the final optimal parameter

θSMAP
ijk = θML

ijk (20)

If not, go to step 3.
Step 3: Calculate border parameter θB

ijk by Eqs. (13) and (14) and center
parameter θC

ijk by Eqs. (15)–(19) and go to step 4.
Step 4: Compute SMAP parameter by following equation:

θSMAP
ijk =

1
2

∗ (θB
ijk + θC

ijk) (21)

To be noticed, since ML method converges, calculation in Step 1 guarantees
the convergence of SMAP method.

5 Experiments

We perform experiments on the network in Fig. 2 with seven parameter
learning schemes: Maximum Likelihood (ML), Constrained Maximum Likelihood
(CML), Maximum Entropy (ME), Constrained Maximum Entropy (CME), Max-
imum a Posteriori (MAP), Qualitatively Maximum a Posteriori (QMAP) and
Spatially Maximum a Posteriori (SMAP). All the experiments are implemented
under Matlab software environment.

5.1 Parameter Learning with Different Sample Sizes

Under different sample size, we evaluate learning results of different algorithms
by Kullback-Leibler divergence [22] of the learnt parameters to the true parame-
ters. Since the true parameters of the network are unknown, we assign random
probability values as the true parameters. For such assignment, it has an advan-
tage, that is, network embedded with different parameter assignment stands for
different reality network. Thus, such assignments can test the generality of dif-
ferent algorithms. For each parameter assignment, we sample synthetic data sets
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of different sample size, i.e. 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. The gen-
erated data is used to learn the original assigned parameters. In each learning
task, MAP method is executed with Dirichlet parameter αijk = 1. We repeated
each learning process with different parameter assignment. Final results for each
learning scheme with various training samples are shown in Fig. 7.

Fig. 7. Parameter learning results under different sample sizes

Seen from the experimental results in Fig. 7, we can conclude that SMAP
method outperforms all the existing parameter learning methods under almost
any sample size except extremely small one, like 10. The explanation is, with
extremely small size data set, border parameters can not be correctly determined
by Eqs. (13) and (14). That makes parameters calculated by SMAP method
deviate from the true parameters. However, with slightly more data, calculation
results of Eqs. (13) and (14) become more trustable and further improve the
performance of SMAP method.

5.2 Parameter Learning to Achieve Certain KL Divergences

We calculate sample sizes needed by different algorithms to achieve certain
KL divergences, like 0.1, 0.2, 0.3, 0.4, and 0.5. Final results are shown in Fig. 8.

Seen from the experimental results in Fig. 8, we can find that, to achieve any
KL divergence, SMAP method requires fewer samples than any other algorithms.
Besides, algorithm showing good performance in the first experiment may per-
forms terrible and require much more samples to achieve certain KL divergence.
For example, QMAP can learn notably low KL divergence parameters with small
data set. However, when higher accuracy parameters are preferred (like parame-
ters of KL divergence 0.1, 0.2), extremely large number of samples (more than
100) are needed by QMAP algorithm.
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Fig. 8. Sample sizes needed to achieve different KL divergences (Color figure online)

5.3 Time Consumption Analysis

To show the time consumption of each algorithm, we continue the exper-
iments and calculate the average running time of algorithm. Final results are
shown in Fig. 9.

Fig. 9. Time consumption of different algorithms

Seen from the experiment results in Fig. 9, we can find that, MLE algo-
rithm and MAP algorithm have much lower time consumption than other algo-
rithms. ME, CML and CME consume more time, because those algorithms
involve optimization of entropy and likelihood function, which is very time-
consuming. Averagely, SMAP is more time-consuming than QMAP algorithm
because it involves calculation of both center and border parameters, while
QMAP algorithm includes only center parameters calculation. However, com-
pared with QMAP algorithm, SMAP algorithm is less time-consuming on center
parameters calculation because linear programming technology in SMAP algo-
rithm consumes much less time than rejection-acceptance sampling method in
QMAP algorithm.
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6 Conclusions

From spatial analysis viewpoint, a new BN parameter learning method –
SMAP is proposed in this paper. The proposed method has following features:

Advantages:
(1) The method is proposed based on high-dimensional analysis, which makes

it possible to observe the learning processes and results of different parameter
learning algorithms. Furthermore, distance between the learnt parameters and
true parameters is more intuitive under high-dimensional visualization than KL
divergence.

(2) Linear programming technology is embedded into SMAP algorithm to
calculate the center parameters, which is less time-consuming than rejection-
acceptance sampling method in QMAP algorithm.

Disadvantages:
(1) Border parameters derived from Eqs. (13) and (14) is occasionally incor-

rect when sample size is extremely small. So, better border parameter calcula-
tion methods will be one of the future research directions, which can enormously
improve the learning performance of SMAP algorithm.

(2) Convex optimization of likelihood function is time-consuming, which
makes SMAP algorithm slow. So, better likelihood function optimization meth-
ods will be another future research direction, which would tremendously reduce
the time consumption of SMAP algorithm.

(3) As border parameters are calculated by convex optimization method,
SMAP algorithm does not suit non-convex parameter constraints, like prod-
uct synergy constraints in Sect. 2. So, extension of SMAP algorithm making it
applicable to no-convex constraints will also be a future research direction, which
may also improve the learning performance of SMAP algorithm.
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Abstract. In this work, we address the well-known score-based
Bayesian network structure learning problem. Breadth-first branch and
bound (BFBnB) has been shown to be an effective approach for solv-
ing this problem. Delayed duplicate detection (DDD) is an important
component of the BFBnB algorithm. Previously, an external sorting-
based technique, with complexity O (m log m), where m is the number of
nodes stored in memory, was used for DDD. In this work, we propose a
hashing-based technique, with complexity O (m), for DDD. In practice,
by removing the O (log m) overhead of sorting, over an order of magni-
tude more memory is available for the search. Empirically, we show the
extra memory improves locality and decreases the amount of expensive
external memory operations. We also give a bin packing algorithm for
minimizing the number of external memory files.

Keywords: Bayesian networks · Structure learning · State space
search · Delayed duplicate detection

1 Introduction

Bayesian networks (BNs) are a widely-used formalism for capturing uncertainty
among variables in a domain of interest. When the relationship among the vari-
ables is not known a priori, we must learn those relationships from data. In this
work, we present a novel approach to significantly reduce both the time and
memory complexity for an existing structure learning algorithm.

In the score-based framework, the BN structure learning problem (BNSL) is
cast as an optimization problem in which the goal is to find a BN structure which
optimizes a scoring function. The scoring function is typically a penalized log-
likelihood function which trades off the fit of a BN to the data with its complexity.
Even though BNSL is known to be NP-hard (Chickering 1996), many algorithms
have been proposed which solve the problem exactly (Ott et al. 2004; Koivisto
and Sood 2004; Silander and Myllymäki 2006; de Campos and Ji 2011; Yuan
and Malone 2013; Bartlett and Cussens 2015; van Beek and Hoffmann 2015).

State space search algorithms have been shown to be among the state-of-the-
art approaches to solving BNSL (Malone et al. 2014). In particular, breadth-
first branch and bound (BFBnB) takes advantage of regularities in the search
c© Springer International Publishing Switzerland 2015
J. Suzuki and M. Ueno (Eds.): AMBN 2015, LNAI 9505, pp. 46–60, 2015.
DOI: 10.1007/978-3-319-28379-1 4



Hashing-Based HDD for Bayesian Network Structure Learning 47

space to efficiently find the optimal BN. Nevertheless, the size of the space is
still exponential in the size of the network, and, in the worst case, exploring
it requires exponential time and memory. Previous work (Malone et al. 2011)
has shown that, in practice, the exponential memory requirement is especially
challenging. The algorithm can always be given more time; however, if it exceeds
the available memory resources, nothing can be done to solve the instance.

Previously (Malone et al. 2011), a sorting-based hybrid duplicate detection
(sHDD) strategy was used to allow BFBnB to efficiently use external memory,
such as hard disk. This approach uses a hash table of size m to efficiently detect
duplicates in the search space. When the size of the hash table grows too large,
it is sorted and written to disk; duplicates are detected later using an exter-
nal memory merge-sort operation. Of course, sorting the hash table requires
O (m log m) memory1. Thus, sHDD actually requires M = O (m log m) memory
due to sorting. In some sense, then, a factor of O (log m) memory is wasted.

In the heuristic search community, hashing-based delayed duplicate detec-
tion (Korf 2008) has emerged as a linear-complexity alternative to sorting-based
approaches. In this approach, one hash function is used to write nodes to disk,
while a second hash function is used to identify duplicates in memory. The first
hash function must ensure the number of unique nodes written to any file does
not exceed memory resources. Importantly, this hashing-based approach replaces
the O (m log m) sorting with linear-complexity operations.

In this work, we develop a hashing-based hybrid duplicate detection (hHDD)
strategy for use in BFBnB for solving BNSL. In particular, we construct an
appropriate hash function for writing nodes to files which respects memory lim-
itations. Additionally, we propose a bin packing algorithm for minimizing the
number of files. Experimentally, we show that, for a fixed amount of memory,
hHDD has better locality than sHDD because hHDD does not use memory
for sorting. We also show that much of the locality inherent in sHDD can be
preserved by expanding disk files in a particular order.

The rest of the paper is structured as follows. In Sect. 2, we give background
on BNSL and the state space formulation. Section 3 presents our main contribu-
tions: the necessary hashing functions and bin packing algorithms for hHDD.
We experimentally evaluate sHDD and hHDD in Sect. 4; discussion in Sect. 5
concludes the paper.

2 Background

2.1 Bayesian Networks

A Bayesian network (Pearl 1988) is a compact representation of a joint prob-
ability distribution over the random variables V = {X1, . . . , Xn}. It consists

1 In this work, we use “memory” to refer to fast-access storage, such as RAM; by
“external memory,” we mean storage with slower access, such as hard disks and
network storage. All of the theoretical complexity analysis, such as O (·), refers to
fast-access storage.
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of a directed acycic graph (DAG) in which each vertex corresponds to one of
the random variables; the edges in the graph indicate conditional independencies
among the variables. Additionally, each variable Xi has an associated probability
distribution, conditioned on its parents in the DAG, PAi. The joint probability
distribution given by the network is

P (V) =
n∏

i

P (Xi|PAi). (1)

Given a dataset D = {D1, . . . DN}, where each Di is a complete instantiation
of V, the goal of structure learning is to find a Bayesian network N which best
fits D. The fit of N to D is quantified by a scoring function s. Many scoring func-
tions have been proposed in the literature, including Bayesian scores (Cooper
and Herskovits 1992; Heckerman et al. 1995), MDL-based scores (Suzuki 1999;
Silander et al. 2008), and independence-based scores (de Campos and Huete
2000), among others. The scoring functions can typically be interpretted as
penalized log-likelihood functions. All commonly used scoring functions are
decomposable (Heckerman et al. 1995); that is, they decompose into a sum of
local scores for each variable, its parents, and the data,

s(N ;D) =
n∑

i

si(PAi;D), (2)

where si(PAi) gives the score of Xi using PAi as its parents and is non-negative.
We omit D when it is clear from context.

A variety of pruning rules (Suzuki 1999; Tian 2000; Teyssier and Koller 2005;
de Campos and Ji 2011) can be used to demonstrate that some parent sets are
never optimal for some variables. Additionally, in practice, large parent sets are
often pruned a priori (Malone et al. 2015). We refer to parent sets remaining
after such pruning as candidate parent sets and denote all candidate parent sets
of Xi as Pi.

The Bayesian network structure learning problem (BNSL) is then defined as
follows2.

The BNSL Problem
Input: A set V = {X1, . . . , Xn} of variables and a local score

si(PAi) for each PAi ∈ Pi for each Xi.
Task: Find a DAG N∗ such that

N∗ ∈ arg min
N

n∑

i=1

si(PAi),

where PAi is the parent set of Xi in N and PAi ∈ Pi.

2 The problem can also be defined as a maximization using non-positive local scores.
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{X1, X2, X3}

{X1, X2 {} X2, X3} {X2, X4} {X3, X4}{X1, X3} {X1, X4}

∅

{X2, X3, X4}{X1, X2, X4} {X1, X3, X4}

{X1, X2, X3, X4}

{X2} {X3} {X4}{X1}

Fig. 1. The order graph for four variables

2.2 State Space Search for BNSL

State space search algorithms are one state-of-the-art technique for solving
BNSL (Yuan and Malone 2013; Malone et al. 2014). Figure 1 shows the implicit
space for four variables. Each node in the space corresponds to an optimal net-
work over a subset of the variables; we refer to nodes in the graph and subsets
of the variables interchangeably. The top-most node, containing no variables, is
the start node, and the bottom-most node with all variables is the goal node.

An arc from U to U ∪ {Xi} in the graph indicates generating a successor
node by adding the variable Xi as a leaf of the optimal subnetwork for U. The
cost of the arc is the score of the optimal parent set for Xi out of U,

BestScore(Xi,U) = min
PAi⊂U

si(PAi). (3)

Each node U stores the cost from start to U, g(U), which is the sum of the arc
costs on the shortest path from start to U.

Expanding a node amounts to adding each remaining variable as a leaf of its
current subnetwork. Thus, a path in the implicit graph from start to goal corre-
sponds to a total ordering over the variables; consequently, this graph is called
the order graph. The cost of the path exactly gives the cost of the corresponding
network. Thus, BNSL can be solved by finding the shortest path from start to
goal.

Several algorithms, such as A* (Yuan and Malone 2013) and depth-first
search (Malone and Yuan 2014), have been used to solve this problem. Breadth-
first branch and bound (Malone et al. 2011; Fan et al. 2014) (BFBnB) has been
shown to be an effective search strategy for this space. In BFBnB, nodes are
expanded in a layer-wise fashion, where a layer corresponds to all subnetworks
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of the same size. The optimal network can be reconstructed using standard back-
pointer techniques (Russell and Norvig 2003) or more memory-efficient recursive
strategies (Zhou and Hansen 2003).

Pruning. Much like depth-first branch and bound, BFBnB can benefit from
pruning (Zhou and Hansen 2006). Before beginning the search, an upper bound
b on the cost of the optimal solution is found with an approximation algorithm,
such as greedy hill climbing. Then, for each node U, an admissible heuristic
function h is used to estimate the distance from U to the goal, h(U). If the
sum g(U) + h(U) is worse than b, then U can be pruned. For BNSL, pattern
databases (Yuan and Malone 2012; Fan et al. 2014) are effective admissible
heuristics.

Immediate Duplicate Detection. One of the main operators of BFBnB is
duplicate detection (DD). In the context of BNSL, duplicates are subnetworks
over the same set of variables but with different orderings. Due to Eq. 3, DD
entails selecting the subnetwork with the minimum score.

A typical approach to DD is to use an in-memory hash table to detect nodes
for the same subnetwork. The hash table retains the best copy of a node found
so far. Since the hash table is used to detect duplicates as soon as they are
generated, we refer to this strategy as immediate duplicate detection (IDD). For
BNSL, the in-memory hash table stores, in the worst case, all of the nodes in one
layer. The largest layer of the order graph contains O

(
C(n, n

2 )
)
, where C(·, ·) is

the binomial coefficient. Thus, the size of the largest layer is still exponential in
the number of variables.

Delayed Duplicate Detection. Due to the exponential worst-case memory
requirement, previous work (Malone et al. 2011) augmented IDD with delayed
duplicate detection (DDD) (Korf 2004). The essence of DDD is to use external
memory, such as hard disk, to store nodes. Then, efficient disk access techniques
are used to remove duplicates from disk.

2.3 Hybrid Duplicate Detection

The previous BFBnB algorithm for BNSL (Malone et al. 2011) combined IDD
with DDD. We refer to this combined strategy as hybrid duplicate detection
(HDD). In particular, a sorting-based HDD (sHDD) strategy was used. In
sHDD, IDD is performed until the hash table reaches a given memory limit
m; then, the nodes in the hash table are sorted and written to an external mem-
ory file. After expanding all of the nodes in one layer, DDD is performed via an
external-memory merge sort operation on the disk files (Korf 2004). As a result
of the sorting, nodes for each layer are always expanded in sorted order. The
space complexity of sHDD is dominated by sorting, which requires O (m log m)
space.

An empirically important aspect of HDD is locality. In this context, locality
refers to duplicates detected with IDD. Specifically, we define the locality of
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search strategy S as follows.
�SM =

nu

nw
, (4)

where S is the HDD strategy, M is the memory bound, nu is the number of
unique nodes in the search space and nw is the number of nodes written to disk.
So, algorithms with a high locality remove most duplicates with IDD. If IDD
removes all duplicates, then �SM = 1. In our analysis, we define the locality of
HDD for a single layer of the order graph analogously.

Increasing locality reduces the time spent on expensive external memory read
and write operations. Larger in-memory hash tables (larger m) allow for more
effective IDD and improve locality. (We empirically verify this in Sect. 4.)

As previously mentioned, sorting the hash table before writing it to disk
requires O (m log m) space.3 Thus, in order to ensure sorting does not exceed
the memory bound M , the size of the hash table is restricted to M

logm . So, the
sorting operation impairs locality because the hash table cannot use all of the
available memory.

3 Hashing-Based HDD for BNSL

In this work, we propose to use hashing-based DDD (Korf 2008) for the DDD
operation in HDD. In hashing-based DDD, rather than writing nodes to multiple
sorted files, a hash function is used to distribute nodes to files. The hash function
must ensure all duplicates are written to the same file. Additionally, it must
ensure at most M unique nodes are written to any single file. After expanding
all of the nodes in a layer, each external file is sequentially read back into an
in-memory hash table to identify and remove duplicates. The space complexity
of hashing-based DDD is O (m). Since hashing-based DDD avoids the O (log m)
overhead of sorting, it allows the use of the entire M space for the hash table.

In this section, we describe the hash functions necessary for hashing-based
DDD for BNSL. Additionally, we give a bin packing algorithm for minimizing
the number of external memory files.

3.1 Dividing Nodes into Families

The basic idea for dividing order graph nodes into files is based on the use of
subcombinations, somewhat similar to the approach used by Tamada et al., for
parallelization (Tamada et al. 2011). We refer to S ⊂ U as a subcombination of
U. Furthermore, when S contains (exactly) the lexicographically first k elements
of U, we refer to S as a first-k subcombination of U. Additionally, when S is
a first-k subcombination of U, we refer to U as an extension of S. We denote
all size-l extensions of S as FS

l (the “family” of S). In general, FS
l contains

O (C(n − k, l − k)) elements, where C(·, ·) is the binomial coefficient.
3 Efficient sorting implementations, such as the g++ version of std::sort, often do not

exhaust the additional O (log m) space; however, it is difficult to a priori estimate the
required overhead, so O (m log m) must be used to ensure stable algorithm behavior.
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We assign each node to the lexicographically first family to which it belongs.
For example, U = {X1,X2,X3} belongs to F{X1,X2}

3 rather than F{X1,X3}
3 .

3.2 Optimizing Family Size

In order to minimize hashing-related overhead, we aim to minimize the number
of families. As mentioned in Sect. 3.1, at layer l with families based on first-k
subcombinations, the largest family contains C(n − k, l − k) nodes.

As a resource restriction, we assume the in-memory hash table can store at
most m nodes4. Thus, we select k such that the largest family contains no more
than m nodes. At each layer of the order graph, we select k by solving

argmin
k

C(n − k, l − k) ≤ m, (5)

where n, l and m are fixed and 0 < k < l. Empirically, we found that a linear
scan of values of k outperformed more sophisticated optimization strategies, such
as Newton’s method, for minimizing Eq. 5.

3.3 Distributing Families to Files

A simple approach, which we empirically evaluate in Sect. 4, assigns each family
to a separate external memory file. Thus, the hash function extracts the first-k
subcombination of a node and directly maps that to a file on disk. During the
search, the files are expanded in lexicographic order of the corresponding first-k
subcombinations; within the files, though, the nodes are unordered. We refer to
this strategy as hHDD.

3.4 Packing Families into Files

After choosing k by solving Eq. 5, the maximum number of nodes in any family
is C(n−k, l−k). However, as mentioned in Sect. 3.1, nodes are distributed to the
lexicographically first family to which they can belong. For example, F{X1,X2}

3

“steals” {X1,X2,X3} from F{X1,X3}
3 . Therefore, F{X1,X3}

3 will contain one node
less than given by the bound.

In fact, because nodes are assigned to the lexicographically first family pos-
sible, FS

l is assigned only nodes which follow S lexicographically. This is, if we
take Xi as the lexicographically last element of S, then all extensions assigned to
FS

l use only variables Xj such that j > i, other than those in S. So, due to steal-
ing, FS

l , with Xi as the lexicographically last element, is assigned C ′(n− i, l−k)
nodes, where C ′(n − i, l − k) is defined to be 0 when 0 < n − i < l − k and
the binomial coefficient otherwise. We denote the number of nodes assigned to
FS

l as |FS
l |.

4 For this analysis, we do not consider the load factor of the hash table.
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Algorithm 1. Bin packing algorithm for packing families into files
procedure pack(memory limit M , families F)

files ← ∅ � map from families to disk files
file ← ∅ � families are greedily added to the current file
for FS

l in F do � iterate in reverse lexicographic order
if |FS

l | +
∑

S′∈file |FS′
l | ≤ M then

file ← file ∪ FS
l

else
files ← files ∪ file
file ← FS

l

end if
end for
return files

end procedure

Furthermore, since the lexicographically last element of the subcombination
for the family is Xi, the other k − 1 elements must come from the i− 1 elements
which precede Xi. Thus, C(i − 1, k − 1) families end with Xi.

For a variety of reasons, such as operating system constraints on open file
handles and latencies associated with accessing many hard disk files, we aim to
minimize the number of files used for storing the families. Thus, we assign many
families to a single file. The constraint on assigning families is that the sum of
the sizes of families assigned to a single file cannot exceed M .

Based on the previous analysis, the number of subcombinations and the num-
ber of items belonging to each subcombination is known. Thus, we can solve a
bin packing problem to assign families to files in order to minimize the number of
required files. Bin packing is known to be NP-hard (Garey and Johnson 1979);
however, a variety of efficient approximation algorithms are available for this
problem (Johnson 1973; Korf 2002). We use Algorithm 1 for assigning families
to files.

Thus, for this strategy, the hash function for distributing a node to disk first
extracts the first-k subcombination to find the family of the node. Then, the
results of the bin packing algorithm give the file to which that family is written.
The bin packing algorithm does not attempt to assign lexicographically similar
families to the same files, so the order of node expansions is close to random.
We refer to this strategy as hHDD-pack.

4 Experiments

Locality is an important factor in the performance of HDD. Thus, we designed
a set of experiments to better understand how different HDD strategies affect
locality. In particular, we tested the following three hypotheses.

1. The proposed bin packing algorithm is comparable to state-of-the-art tech-
niques.
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2. Given a fixed hash table size m, sHDD has a higher locality than hHDD and
hHDD-pack.

3. Given a fixed amount of memory M , hHDD and hHDD-pack have a higher
locality than sHDD.

4. For a fixed packing strategy, locality and m are positively correlated.

4.1 Datasets and Environment

All of the experiments were run on dual quad-core Intel Xeon E5540 processors
with 32 GB of RAM. Hard disk space was limited to 16 GB.

As described in Sect. 2.2, pruning is very important for the performance of
BFBnB; however, pruning is dependent both on the quality of the bound and
the quality of the heuristic. These are both data-dependent and difficult to ana-
lytically characterize. Consequently, in order to remove this confounding factor
from our analysis, we do not using pruning.

Our analysis uses a 29-variable dataset from a previous study (Malone and
Yuan 2013). We do not use pruning, so the dataset generation parameters inves-
tigated in the previous study do not affect locality. Since the locality behavior
of the HDD strategies is completely deterministic, we report results on just one
dataset.

4.2 Bin Packing Performance

We first evaluated the performance of the hHDD-pack bin packing algorithm
in Sect. 3.4 by considering the number of files used by different strategies. For
comparison, we include the basic approach of assigning each family to a sin-
gle file, hHDD. Additionally, we include the commonly-used first-fit decreasing
approximation algorithm(ffd) (Johnson 1973), which is known to be an 11

9 -
approximation, and an optimal packing strategy (opt)5. Figure 2 shows that
the packing algorithm reduces the number of files by over an order of magnitude
compared to hHDD across all bounds for m. Indeed, the hHDD-pack packing
strategy only results in one extra file for two layers compared to opt. Thus, we
conclude that our packing strategy is appropriate for reducing the number of
files.

4.3 Locality, Fixed Hash Table Size

We next compared the locality of sHDD, hHDD and hHDD-pack when all
algorithms are allowed to use the same maximum hash table size m = 25e6.
Thus, due to the overhead of sorting, this experiment actually allows sHDD to
use more memory than the other approaches. In Fig. 3, we show how locality
varies across layers in the order graph from 29 variables.
5 The strategy is optimal in that it minimizes the number of files. We solve the opti-

mization problem using an integer linear programming formulation.
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Fig. 2. The number of files resulting from different bin packing strategies. There is
only 1 file for all strategies in the unshown layers.
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Fig. 3. The locality of HDD algorithms for layers of the order graph for 29 variables
when the size of the hash table is m = 25e6. The locality for all HDD algorithms is 1
for all unshown layers.

As we expected, the locality is consistently higher for sHDD compared
to the other approaches. We explain this behavior by noting that, by design,
sHDD expands nodes in sorted order. Thus, it inherently exhibits more locality
than the hashing-based HDD strategies. On the other extreme, hHDD-pack sac-
rifices locality by packing many families into the same file. As mentioned in
Sect. 3.3, hHDD expands the files in order of the first-k subcombinations, but
the nodes within the same family are unordered. So it represents a compromise
between the completely-sorted expansion strategy of sHDD and the nearly-
random strategy of hHDD-pack. The figure shows that its locality is closer to
that of sHDD than hHDD-pack.

4.4 Locality, Fixed Maximum Memory

We then compared locality when holding the maximum memory requirement
constant. In particular, we used M = 25e6; thus, the size of the hash tables
for hHDD and hHDD-pack are m = 25e6, while the size of the hash table
for sHDD is m = 1.7e6 because of the O (log m) memory overhead for sorting.
Unsurprisingly, Fig. 4 shows the same relationship among hHDD and hHDD-
pack as in Fig. 3.

Of course, due to the smaller hash table size, sHDD exhibits worse locality
for most layers than the other two strategies. Unexpectedly, though, sHDD has
better locality than hHDD-pack for layers 13 and 14. We again attribute this
behavior to the locality inherent in expanding nodes in sorted order.
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Fig. 4. The locality of HDD algorithms for layers of the order graph for 29 variables
when the maximum amount of memory is constant at M = 25e6. For sHDD, m = 1.7e6;
for hHDD, m = 25e6. The locality for all HDD algorithms is 1 for all unshown layers.

4.5 Locality and Memory Correlation

We finally evaluated the relationship between the hash table size m and local-
ity for all three HDD strategies. Figure 5 reveals several differences among the
relationships for the three strategies. Compared to the other HDD strategies,
hHDD-pack undergoes the most drastic locality changes as the available mem-
ory increases. In particular, it exhibits an almost linear relationship between
m and locality. We explain this behavior with the somewhat random order of
node expansions due to packing; in contrast, both sHDD and hHDD inherently
expand nodes in sorted order, so even a modest-sized hash table removes many
of the duplicates. Therefore, the locality inherent in these strategies reduces
the need for larger hash tables. Interestingly, for the largest layers (14 and 15),
the locality of sHDD improves markedly from m = 25e6 to m = 50e6, but
the improvement is less drastic when the size is again increased to m = 75e6.
On the other hand, for hHDD, there is little improvement from m = 25e6 to
m = 50e6, but the locality significantly improves when the size of the hash table
is increased to m = 75e6.

5 Discussion

In this paper, we have presented a novel approach for hybrid duplicate detection
using hashing-based delayed duplicate detection for solving Bayesian network
structure learning with breadth-first branch-and-bound search. The main con-
tribution of this work is a hash function which is used to distribute the nodes
in the search space to files on disk; importantly, the hash function ensures that
no single file contains more unique nodes than will fit in memory. Compared
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Fig. 5. The locality of HDD algorithms for layers of the order graph for 29 variables as
the hash table size increases. The locality for all HDD algorithms is 1 for all unshown
layers.
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to previous sorting-based techniques (sHDD), hHDD reduces the the memory
complexity by a factor of O (log m). In practice, m is on the order of tens to
hundreds of millions, so the reduction is quite substantial. Experimentally, we
verified that hHDD can significantly improve locality and reduce the number of
expensive external memory operations used for delayed duplicate detection.

Furthermore, we developed a bin packing algorithm for minimizing the num-
ber of external memory files. Empirically, we showed that the bin packing app-
roach often optimally minimizes the number of files, but sacrifices locality for
doing so. Minimizing the number of files and maximizing locality amounts to a
dual-objective discrete optimization problem. Nevertheless, locality-aware pack-
ing strategies could improve this behavior. The hash function and bin packing
algorithm could also be used to distribute nodes for parallel processing.
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Abstract. In strategic management of retail industry, the advanced
investigation by using radio frequency identification (RFID) technology
to capture customers’ in-store behavior has been dramatically attracted
scholars and practitioners in past ten years. As a small RFID tag attached
to the shopping carts can be recognized as surrogates instead of enumer-
ators to trail the customers, it can provide us an objective and direct
perspective to observe and measure the in-store behavior of customers.
In this article, we present a study on this new type of in-store behavior
data named RFID data, which can improve the understanding of pur-
chase behavior of customers with emphasis on meaningful knowledge via
analysis of RFID data. In contrast to prior studies in this research field,
this paper has paid special attention to shopping time that customers
spent in supermarket (so-called stay time), and presents methodological
analysis into two folds. First, we develop a bayesian network (BN) model
to combine both of purchase behavior and in-store behavior as features.
As BN is a probabilistic graphical model, it can provide an quantita-
tive analysis process of purchase behavior decision over stay time and
also allow us to interpret the decision process of purchasing in a much
more intuitive measurement. The results show BN has a better accuracy
than other typical prediction models (linear discriminant analysis, logis-
tic regression and support vector machine). Second, due to BN can esti-
mate and predict in a nonlinear correlation between purchase intention
and stay time, we examine a tedium effect on purchase behavior. During
the customers wander in shopping, purchase intention represents a non-
monotonic phenomena accounting for the long stay time. Finally, we also
investigate the sensitivity and specificity of purchase behavior predicted
by our proposal in adjustment of decision threshold and implement sev-
eral business decision-making implications in actual business situations.
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network · Shopping session
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1 Introduction

In management of retail industry, consumer behavior has been increasingly recog-
nized as a key strategic resource. Most of business models and loyalty programs
in this field are being applied to lead the customer to being loyalty and prof-
itability [1,5,12]. In most of previous studies [4,6,7,16], consumer behavior is
generally considered as purchase behavior of customer which is based on the his-
torical point of sale (POS) data. Via analyzing the POS data can help retailers
to enhance the activity and loyalty of their customers so as to increase their sales
and profits. However, it is impossible to shed any light on the decision-making
process of purchase only depending on POS data.

Recently, a wireless no-contact technology named radio frequency identifica-
tion (RFID) has brought a new perspective on this situation. By using the RFID
tag attached to the customer, their in-store behavior can be tracked accurately
[18]. When the customers walk along the shelves in supermarket, the RFID tag
emits signals every second giving the location information as coordinates (x, y).
Then these signals are received and sent to the back-end server via an RFID
receptor at the bottom (on the top) of shelves, and transformed into RFID data
automatically in the back-end server. The utility of RFID data has been inves-
tigated by Larson et al. [10], also in other previous studies [8,13,19,20]. In these
studies, through analyzing the in-store behavior of customers individually or in
groups, several canonical shopping path and visiting patterns are discovered,
and behavioral hypotheses are tested.

In contrast to prior innovators in this research field, this paper has paid spe-
cial attention to time spent on shopping in a target area rather than the whole
supermarket, which can allow us to interpret the decision process of purchas-
ing one product or a series of products in a much more intuitive and precise
measurement. Also, in these studies, shopping time is used only as a clustering
indicator, and its effect on the decision-making process of purchase behavior and
time-based predictions of purchase behavior are not considered. Therefore, this
article develops an integrated model to combine POS data and RFID data. Using
the historical POS data, we generate an attitudinal feature - purchase back-
ground, which can represent past purchase incidences of individual customer.
Using the RFID data, we generate a behavioral feature - stay time, which can
represent customers’ purchase intention over time. This paper employ a stochas-
tic graphical approach - bayesian network (BN) [2,14,21] to combine these two
types of consumers’ features as explanatory variables and inspect their affect on
the purchase decision. As BN can represent a set of random variables and their
conditional dependencies via a directed acyclic graph, The use of the BN enables
the purchase decision to be estimated with probability in quantitative process
and also a nonlinear approach. These advantages of BN can support us to inves-
tigate the tedium effect [11] between the purchase decision and the time spent
on the decision to be estimated with probability in a quantitative process and to
revise the traditional results from a nonlinear perspective. Additionally, due to
BN can treat the variables into discrete values (states) by using the clustering
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algorithm, we examine an investigation across multiple shopping sessions during
the customers wander in shopping.

In the experiments, the optimal cluster number of stay time and purchase
background is examined for maximizing the performance accuracy, and the
results also show BN has a better accuracy than other typical prediction models
(linear discriminant analysis [4,16], logistic regression [6,7] and support vector
machine [3,9,15]). Finally, we also investigate the sensitivity and specificity of
purchase behavior predicted by our proposal in adjustment of decision threshold
and implement several business decision-making implications in actual business
situations.

The remaining part of the article is as follows. In Sect. 2, a overview of RFID
system on consumer in-store behavior and the preliminary stage of POS data and
RFID data are described briefly. Bayesian network application and the present
algorithm is explained in Sect. 3. Numerical results and discussion are shown in
Sect. 4. The results are summarized again in Sect. 5.

2 System Overview of RIFD Data

2.1 Collection of RFID Data

In this section, we demonstrate how this system can be used to capture actual
movement data of customers. This system is implemented at a mid-sized super-
market in the Chubu region of Japan. During the period of experiment, the
shopping carts used by customers are equipped with RFID tags (Fig. 1(a)),
which allow the carts as surrogates to track customer movements within the
store precisely. The RFID system consists of 5 steps as shown in Fig. 1.

Fig. 1. Overview of RFID system for data collecting procedure in supermarket

(a) RFID tags are attached the shopping carts with an unique ID, individually.
(b) When the customers walk through shelves with this cart, RFID tag emits

signals per second which can express the position information.
(c) These signals are received and sent to the back-end server via a RFID recep-

tor at the bottom (on the top) of shelves.
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(d) In the back-end server, a tracking system is employed to identify the signals
and save them as the raw data.

(e) By using another preprocessing system in the back-end server, the raw data
is transformed into RFID data in XML form.

Fig. 2. Floor layout of supermarket

In order to match customers’ movement data and record the trip of customer
into database, the layout of supermarket containing 16 sections is reproduced
into a picture from x and y coordinates on the scale of 15.7 pixels per meter
(Fig. 2). While the customer passes a certain area of the supermarket with a
shopping cart attached RFID tag, the information of customer position can be
received by RFID receptor around the shelves and be transformed to a pixel
point into database using the floor layout matching. RFID tag number attached
to shopping cart, shopping date, time stamp, x and y coordinates of that time
stamp, section of that coordinate and elapsed time are recorded, and Table 1
shows the sample data obtained using RFID system.

When the customers come to the checkout register and purchase, the POS
data what he has bought are also recorded into database. The dataset is the
shopping details as shown in Table 2. There are customer number, shopping
date and time, name and category of the item, volume and amount, 7 columns
in this table.

Actually, until the customer comes to purchase in registers, the tracking
process seems to be competed. we define this process as a basic unit of cus-
tomer’s in-store behavior and give a unique ID to identify it. Also, the pre-
processing system in the back-end server uses this ID to link the customer’s
purchase behavior obtained from POS data to her in-store behavior obtained
from RFID data (Fig. 3).
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Table 1. RFID data of the movement

RFID tag no Date Time X Y Selling area Elapsed time

T001 2009/05/20 18:15:17 91 542 Entrance 1

T001 2009/05/20 18:15:43 66 331 Vegetable 3

T001 2009/05/20 18:16:12 85 88 Fish 2

T001 2009/05/20 18:17:23 398 138 Coffee 2

T001 2009/05/20 18:17:57 487 160 Bread 3

T001 2009/05/20 18:18:21 556 361 Drinking 1

T001 2009/05/20 18:18:37 319 511 Register 1

Table 2. Detail of the POS data

Customer Date Time Item name Item category Volume Amount

Lucy 2009/05/20 18:18:52 Cabbage Vegetable 1 158

Lucy 2009/05/20 18:18:52 Banana Fruit 1 198

Lucy 2009/05/20 18:18:52 Sashimi Fish 2 596

Lucy 2009/05/20 18:18:52 Loaf Bread 1 112

Fig. 3. Match purchase behavior to in-store behavior in the preprocessing system

2.2 Measuring Stay Time in Small Region

The experiment was carried out in a typical supermarket in Chubu region of
Japan. Comparing with the previous studies, we focus on the customers’ in-
store behavior in a certain small area instead of the whole supermarket. Since
bread is featured much more prominently than other kind of stable food on the
Japanese plate, the bread selling area is selected as the experiment object. And,
the measuring range is shown as the shadowy pattern in Fig. 4.

In this section, we also explain the definition of the stay time for the cus-
tomers how they spent in bread selling area. For given a customer, her shopping
trip which is tracked from her coming into the entrance until coming to the
checkout register to purchase is tracked by the RFID tag. Here, the time spent
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Fig. 4. Measuring area of products in bread category

by customer in the supermarket is expressed as follows:

Sum =
n∑

i=0

ti (1)

where the notation ti denotes the “Elapsed Time” shown in the Table 1. And
making an addition to Eq. (1), only if customer comes into the bread selling area
(the shadow shown in Fig. 4), this in-store position of customer is adopted as
the experiment target, and “Elapsed Time” ti spent in this position is recognize
as stay time for bread selling area. Therefore, the total stay time T of customer
spent in bread selling area is defined as follow:

T =
n∑

i=0

ti, (2)

ti =
{

Elapsed Time, if position in bread selling area.
0, otherwise.

By using the Eq. (2), the stay time is calculated for the individual customer
who has spent in the bread selling area.

3 Method

3.1 Bayesian Network

Bayesian network (BN) is a probabilistic graphical model that represents a set
of random variables and their conditional dependencies via a directed acyclic
graph. The probability theory of BN is based upon the bayes’ rule, and if two
observed events have the relation like A → B can be expressed as follows:

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)
. (3)
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Pr(A) and Pr(A|B) denote the prior probability of event A and the posterior
probability of event A when A according to the event B, respectively. Pr(B|A)
denotes the likelihood function. The denominator Pr(B) is equal to ΣiPr(B|A =
ai)Pr(A = ai) which denotes the marginal distribution in all states of event A.
By using Eq. (3), the prior probability Pr(A) is revised to Pr(A|B) by multiplying
the likelihood Pr(B|A). Generally, for a set of variables, the method of maximum
likelihood selects the set of values of the model parameters that maximizes the
likelihood function.

3.2 Graph Structure and Probabilistic Reasoning

In our study, there are three variables - purchase behavior (P ), purchase back-
ground (B) and stay time (T ). Suppose that purchase behavior is depending on
purchase background and stay time as P → B and P → T , respectively. Also,
suppose that stay time is also depending on purchase background as T → B.
As the purchase behavior is considered to be the response variable, purchase
background and stay time to be the explanatory variables, bayesian network is
constructed as Fig. 5.

Fig. 5. Bayesian network for consumer behavior

According to the Fig. 5, the purchase probability based on purchase back-
ground and stay time is obtained as follows:

Pr(P |B, T ) =
Pr(P )Pr(B|P )Pr(T |B,P )∑

P

Pr(P )Pr(B|P )Pr(T |B,P )
(4)

where Pr(P ) and Pr(P |B, T ) denote the prior probability and posterior probabil-
ity of purchase behavior, respectively. Pr(B|P ) and Pr(T |B,P ) are the likelihood
function, also known as the conditional probability.

As shown in Eq. (4), Pr(P |B, T ) denotes the posterior purchase probability
in the condition of purchase background and stay time for given a customer. The
notation P denotes the purchase event as a boolean variable and we define P = 1
if a purchase occurs and P = 0 otherwise. According to Bayes’ rule, the purchase
probability can be estimated by the Eq. (5) as follows. The denomination is
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the marginal distribution of the purchase in the purchased state (P = 1) and
unpurchased state (P = 0).

Pr(P = 1|B, T ) =
Pr(P = 1)Pr(B|P = 1)Pr(T |B,P = 1)∑

P∈{0,1}
Pr(P )Pr(B|P )Pr(T |B,P )

(5)

4 Experiment

4.1 Initialization of Variables

The experiment is carried out from May 11, 2009 to June 15, 2009 and total
1155 shopping paths are extracted for the bread category (The shopping paths
having no position in measuring bread area are excluded from the experimental
objects). As the hold-one-out validation is employed as the model estimation, we
separate the data into 2 folds. One is from 11 May 2009 to 10 June 2009 used as
the training data (containing 924 samples), the other one is the remained part
from 11 June 2009 to 15 June 2009 used as the testing data (containing 231
samples).

– Response variable:
• Purchase behavior is the response variable defined as a binary variable

0/1, which denotes unpurchased state and purchased state, respectively.
As each shopping path is also linked to POS data to map the purchase
behavior, the prior probability of observed purchase behavior Pr(P = 1)
is 31.95 %.

– Explanatory variables:
• Stay time is one of the explanatory variables used as the behavioral factor.

Only if the customers come into the measuring range as shown in Fig. 4,
the position point is accepted as the collecting target. The total elapsed
time of each target point is recognized as the stay time (Eq. 2).

• Purchase background is another explanatory variable used as the attitu-
dinal factor. In contrast to purchase behavior and stay time, this variable
has an independent experimental period just 3 months before the RFID
experiment. Purchase behavior is generate from historical POS data dur-
ing 11 February 2009 to 10 May 2009, which is also a cumulative factor
to indicate the customers’ attitude to the products. With a synergistic
effect of stay time, decision-making process of purchase behavior can be
demonstrated from both attitudinal and behavioral perspectives.

4.2 Optimization of Cluster Number

In this section, the effect of the cluster number to the predicting accuracy is
discussed. For either of explanatory variables, the cluster number is taken from
2 to 10 by using k-meaning clustering. As shown in Eqs. (6) and (7), the notation
Tl and Bm denote one cluster in stay time and purchase background respectively,
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and the notation L and M denote the total cluster number in stay time and
purchase background respectively.

{T1, T2, · · · , TL} (6)

{B1, B2, · · · , BM} (7)

For the selection of cluster number, Bayesian information criterion (BIC) is
adopted as the criterion to estimate and determine the optimal cluster number
for bayesian network by the minimum value of BIC [17]. As we focus on the
penalty term which denotes the number (k) of parameters in the model, k equals
the number of total variables when the model is considered as 1-dimension linear
model. In our case, due to both variable are in L-dimension and M -dimension
respectively, the number of parameter in the penalty term can be estimated as
(L + M) for each combination, and BIC can be rewritten as follow:

BIC = n · ln(σ2) + (L + M) · ln(n). (8)

The notation σ2 denotes the error variance. As purchase behavior is the
binary variable, we use (1 - hit rate) as the residual term. The notation L and
M denote the cluster number of purchase background and stay time, respectively.
The notation n denotes the size of sample data. Eq. (8) is a decreasing function of
hit rate and an increasing function of cluster number. By penalizing the cluster
number, the lowest value of Eq. (8) is the one to be preferred.
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Fig. 6. Density estimation of BIC in all combinations of L and M

As shown in Fig. 6, the BIC results are drawn in density estimation. The
X-axis and Y -axis denote cluster number of stay time (L) and purchase back-
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Table 3. Accuracy comparison of predicting models

LDA LR SVM BN (L = 7, M = 6)

Training data

Error 0.3019 0.2868 0.2078 0.1818

Testing data

Accuracy 63.64 % 76.62 % 73.59 % 77.49 %

ground (M), respectively. This figure shows that the minimum value of BIC is
obtained at L = 7 and M = 6.

4.3 Comparison of Accuracy

In the experiments, three prediction methods - linear discriminant analysis, logis-
tic regression and support vector machine are employed as the comparing targets,
which are denoted as LDA, LR and SVM in Table 3, respectively. With the opti-
mal combination of cluster numbers L = 7 and M = 6 denoted as BN (L = 7,
M = 6) in Table 3, our proposal is implemented by using the network as shown
in Fig. 5 and Eq. (5). The comparison results are shown in Table 3, and our pro-
posal shows the lowest Error in the training data and the highest Accuracy in
the testing data.

In the linear models (LDA, LR and SVM with linear kernel), the stay time are
considered as a positive effect and monotonic increasing relationship on the pur-
chase behavior, however, actually the customers would be coming into a tedium
emotion when they stay too long to make a purchase decision. This phenom-
enon which is disregarded by the traditional linear models, can be reproduced
exactly by our proposal (see Table 6), therefore BN can obtain higher predicting
performance than other models.

4.4 ROC Analysis

In most cases, decision functions are preferred to use a deterministic specification
in the field of classification. With a discriminant value below or above 0, the
target can be separated into two different categories. As a stochastic model is
applied to this situation, 0.5 is widely used as the reference value. Nevertheless,
when the positive (negative) data are in the minority group, it can cause a
extreme skewness in results. Only maximizing the hit rate on sample data can
increase the type I error (type II error). Here, we also introduce the multicriteria -
sensitivity and specificity, which are denotes as Eq. (9) and Eq. (10), respectively.

Sensitivity =
TP

TP + FN
, (9)

Specificity =
TN

FP + TN
(10)
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where TP , FN , TN and FP denote number of true positive data, false neg-
ative data, true negative data and false positive data, respectively. Therefore,
the performance of models are assessed under the multicriteria - sensitivity and
specificity, which denote the hit rate on positive data and negative data, respec-
tively.
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Fig. 7. ROC curve in adjustment of threshold

By using receiver operating characteristic (ROC) analysis, the results are
drawn by plotting in adjustment of decision threshold in Fig. 7. The X-axis and
Y -axis denote 1-Specificity (true negative rate) and Sensitivity (true positive
rate), respectively. The dot line, dash line, long ash line and solid line denote
the ROC curve of linear discriminant analysis, logistic regression, support vector
machine and our proposal. As shown in Table 4, our proposal has shown a larger
area under curve (AUC) than others.

Table 4. Comparison of area under ROC curve

LDA LR SVM BN (L = 7, M = 6)

AUC 0.7883 0.8094 0.8811 0.9023

Moreover, ROC curve can also show us the optimal decision threshold, which
can separate data into two different categories that they should be belonged in as
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Table 5. Comparison of multicriteria under optimal decision threshold

LDA LR SVM BN (L = 7, M = 6)

Training data

Threshold 0.2423 0.2713 0.1574 0.3409

Testing data

Accuracy 47.62 % 67.10 % 71.43 % 77.06 %

Sensitivity 24.23 % 78.26 % 51.81 % 88.41 %

Specificity 52.17 % 62.35 % 96.15 % 72.22 %

many as possible. As shown in Table 5, our proposal has shown a higher thresh-
old than other models. Under individual optimal decision threshold, Table 5 also
showed that our proposal has the highest performance in Accuracy and Sen-
sitivity, however Specificity in our proposal is lower than it in SVM. Due to
the Sensitivity in SVM is much worse, it seems SVM has an extreme skew-
ness predicting in negative samples and increases the type II error, which also
causes the low Accuracy. Therefore, under the muliticriteria our proposal not
only obtains the best Accuracy, also obtain the optimal balance between Sensi-
tivity and Specificity.

4.5 Discussion and Business Implication

Comparing with the previous studies, in which customers are always separated
into typical 2 classes (above and below average) or 3 classes (low, medium, high),
we investigated the classification of customers in a hierarchical process. As the
cluster number of customers (from 2 to 10) is estimated and compared by the
criterion - BIC, we can obtain the optimal clustering of customers for fitting
the model in order to get the lowest training error. As shown in Sect. 4.2, the
optimal cluster number of customers according to their purchase background is
6. In the meanwhile, the optimal cluster number of stay time is 7, which seems
to separate the shopping process into 7 shopping sessions. Due to our proposal
can provide a calibrated value of output in posterior probability, the change
of purchase probability in each shopping session comparing with the previous
shopping session is represented in Table 6. The column “Customer Group” shows
the customers grouping by purchase background in ascending order, and The
row “Shopping Session” shows the purchase intention separating by stay time in
ascending order.

From the results, we can see that there is an nonmonotonic increasing phe-
nomenon happened in all of customer groups, which supports the tedium effect
on purchase behavior over time. For this issue, we explain the one of business
implications in practice business situation basing on the results obtained by
our proposal. As “the longer not means the better”, an easily viewable layout
arrangement is suggested to be possible to help the customers to decrease their
wandering and make an efficient shopping. For the real instance in the coffee
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Table 6. The change of purchase probability over shopping sessions in each purchase
background groups

Customer Group Shopping session

1 2 3 4 5 6 7

1 - ↗ ↗ ↗ ↗ ↘ ↘
2 - ↗ ↗ ↗ ↘ ↘ ↘
3 - ↗ ↗ ↗ ↘ ↗ ↘
4 - ↗ ↗ ↘ ↗ ↘ ↘
5 - ↗ ↗ ↗ ↘ ↗ ↘
6 - ↗ ↗ ↘ ↘ ↘ ↘

(a) Designing in coffee shelves (b) Implementing in coffee shelves

Fig. 8. Implement business implication in real business situation

area (Fig. 8), we design the actual arrangement of coffee shelves like Fig. 8(a) to
lay clearly by category-specific and also implement it into the real supermarket
as Fig. 8(b). While the average stay time is decreasing from 10.81 s to 10.31 s,
the purchase rate is increasing from 5.38 % to 6.44 %.

5 Conclusions

In this article, we present an operational improvement on tracking customers’
in-store behavior. As the RFID tags attached to shopping carts can provide
a direct observation of in-store behavior and generate a quantitative measure
of in-store movement data, we introduce a new behavioral variable - stay time
extracted from RFID data. Comparing with other customer factors (e.g., age,
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gender and income) used in previous studies, stay time is also a measurable and
replicable variable without self-reported information, and this article applies it
to a time-based prediction of purchase behavior not studied in existing litera-
ture. Therefore, this article also presents three methodological investigations on
predicting customers’ purchase behavior based on stay time. First, we propose
an integrated predicting model constructed from purchase behavior, purchase
background and stay time, and when bayesian network is employed to train
the model, the predicting performance is much higher than other classic models
widely used in this field. Second, due to bayesian network can treat the variables
into discrete values, we examine the classification of customers in a comparable
process. In contrast to typical 2 classes (above and below average) or 3 classes
(low, medium, high), the clustering number is compared and estimated itera-
tively by the criterion - BIC. This improvement provides a subdivisible recogni-
tion on customer grouping than before, and also investigates the tedium effect
on customers’ purchase intention over time, when they are coming into long tail
of shopping session. Third, we examine the ROC analysis to maximizing the
accuracy under multicriteria - sensitivity and specificity. As the optimal decision
threshold can be obtained by using ROC curve, even in the larger threshold,
our proposal still shows higher sensitivity, specificity and accuracy than other
models.

Furthermore, we also implemented managerial implications drawn from the
results above. An easily viewable layout arrangement was proposed in the actual
supermarket, which was suggested to lead the customers to decrease their wan-
dering and make an efficient shopping. Due to the customers seemed to be able
to defuse the tedium effect via decreased their stay time, supermarket gained an
extra profit from customers accounting for their purchase rate increasing from
5.38 % to 6.44 %.

In future work, we plan to introduce a new variable to represent customers’
brand switching behavior, and investigate its effect on stay time so as to affect
purchase decision making when brand switching happened. We suggest this new
variable of switching behavior can lead our proposal to reach higher accuracy
level for predicting purchase behavior, and can also assist scholars and business
persons related to this field to extract more business implications for actual
applications.
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Abstract. Recently there has been an increasing interest in the devel-
opment of new methods using Pareto optimality to deal with multi-
objective criteria (for example, accuracy and architectural complexity).
Once one has learned a model based on their devised method, the prob-
lem is then how to compare it with the state of art. In machine learn-
ing, algorithms are typically evaluated by comparing their performance
on different data sets by means of statistical tests. Unfortunately, the
standard tests used for this purpose are not able to jointly consider per-
formance measures. The aim of this paper is to resolve this issue by
developing statistical procedures that are able to account for multiple
competing measures at the same time. In particular, we develop two tests:
a frequentist procedure based on the generalized likelihood-ratio test and
a Bayesian procedure based on a multinomial-Dirichlet conjugate model.
We further extend them by discovering conditional independences among
measures to reduce the number of parameter of such models, as usually
the number of studied cases is very reduced in such comparisons. Real
data from a comparison among general purpose classifiers is used to show
a practical application of our tests.

1 Introduction

In many real applications of machine learning, we often need to consider the
trade-off between multiple conflicting objectives. For instance, measures like
accuracy and architectural complexity are clearly two different (possibly conflict-
ing) criteria. This issue can be tackled by considering a multi-objective decision
making approach.

There are two main approaches to multi-objective decision making. The
weighted-sum approach, which consists of transforming the original multi-
objective problem into a single-objective problem by using a weighted formula;
The Pareto approach, which considers directly the original multi-objective prob-
lem and searches for non-dominated solutions, that is, solutions that are not
worse than any other solution with respect to all criteria.

c© Springer International Publishing Switzerland 2015
J. Suzuki and M. Ueno (Eds.): AMBN 2015, LNAI 9505, pp. 76–92, 2015.
DOI: 10.1007/978-3-319-28379-1 6
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Table 1. Architectural complexity and accuracy of two learning methods for PNN [3].

New State of art

Accuracy Complexity Accuracy Complexity

IRIS 97.8 38.4 95.3 50.0

WINE 98.3 26.9 92.3 24.0

PIMA 72.1 28.6 65.3 37.7

BUPA 70.3 23.4 69.1 36.0

In a weighted-sum approach, a multi-objective problem is transformed into
a single-objective problem by a numerical weight function that is assigned to
objectives and then values of the weighted criteria are combined into a single
value according to the weights. One of the reasons for its popularity is its simplic-
ity. However, there are several drawbacks associated to it. First, the definition
of weights in these formulas is often ad-hoc or requires great domain knowledge
which might not be available. Second, the optimal solution strongly depends on
that particular weight function, which misses the opportunity to find other mod-
els that might be actually more interesting to the user, for instance, representing
a better trade-off between different criteria. Third, a weighted formula involving
a linear combination of different criteria is meaningless in many scenarios, as the
criteria may be non-commensurable (comparison of apples and oranges).

In the Pareto approach, instead of transforming a multi-objective problem
into a single-objective problem and then solving it by using a single-objective
decision making, a multi-objective algorithm is used to solve the original multi-
objective problem. The advantage of the Pareto approach is that it can cope with
any kind of non-commensurable criteria. Recently there has been an increasing
interest in the development of new learning methods able to cope simultaneously
with multi-objective criteria using Pareto optimality [1–4]. The disadvantage
comes from the power of the Pareto approach in situations where a good weight
function can be devised, as the Pareto approach is more conservative than using
the weighted-sum idea. In this work we assume that a good weight function is
not available. Consider for instance the work in [3], where it is proposed a multi-
objective Pareto based optimization method for simultaneous optimization of
architectural complexity and accuracy for Polynomial Neural Networks (PNN).
By using multiple data sets, they compare their method with the state-of-art
method for learning PNN, producing the results presented in Table 1.

Based on Table 1, [3] claims that a multi-objective approach (jointly opti-
mizing architectural complexity and accuracy) is clearly beneficial. Can we say
that their method is clearly better than the state of art for both criteria and also
for each of them independently? For which criterion is it superior (respectively
inferior)? To answer these questions we need a method that statistically assesses
whether an algorithm is better than another in terms of all criteria. To the best
knowledge of the authors, this method is lacking in machine learning and so it
could not be used in [3].
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Competing methods/algorithms are typically compared by means of a sta-
tistical test, whose aim is to assess whether an algorithm is significantly better
than another (statistically comparing their performance on different data sets
or problem instances). For comparing two algorithms over a collection of data
sets, the most common approaches are the sign test or the Wilcoxon signed-rank
test [5], however these tests are only able to cope with one performance measure
(criterion) at a time, that is, they cannot consider a multi-objective approach
without resorting to the weighted-sum approach described earlier. In this paper,
we develop two tests that are able to cope jointly with multiple performance
measures without having to somehow combine them: a frequentist procedure
based on the generalized likelihood-ratio test and a Bayesian procedure based
on a multinomial-Dirichlet conjugate model. We further extend them by dis-
covering conditional independences among measures to reduce the number of
parameters of such models, an important add-on since usually the number of
data sets on which methods are compared is reduced. Applications of these new
tests are numerous. Here we use real data from a comparison of general purpose
classification methods to show a clear practical application of the tests.

2 Joint Analysis of Performance Criteria

Let M1, . . . , Mm be a set of m performance measures (criteria) and assume that
we are going to compare two algorithms A and B by jointly using these measures.

Definition 1. We call a ‘dominance statement’ for B against A a sequence of
m dominance conditions:

D(BA) = [�,�,≺, . . . ,�] ,

where the comparison � (or ≺) in the i-th entry of the vector D(BA) means that
algorithm B is better than A (respectively, A is better than B) on measure Mi. ��
Our goal is to make inferences on dominance statements by evaluating the m
performance measures for the algorithms A and B on n different case studies (for
instance, data sets, problem instances, etc.). In other words, we want to decide
which D(BA) is the most appropriate for A and B given tables with values M

(Alg)
ij

representing the j-th measure for the algorithm Alg ∈ {A,B} in the i-th case
study:

M(Alg) =

⎡

⎢⎢⎢⎢⎣

M
(Alg)
11 M

(Alg)
12 . . . M

(Alg)
1m

M
(Alg)
21 M

(Alg)
22 . . . M

(Alg)
2m

...
...

...
...

M
(Alg)
n1 M

(Alg)
n2 . . . M

(Alg)
nm

⎤

⎥⎥⎥⎥⎦
. (1)

Given the matrix of performances M(A) and M(B), we first build the binary
matrix X = [M(B) � M(A)], whose entry xij is equal to one if algorithm B is
better than algorithm A for the j-th measure in the i-th case study and zero
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otherwise. We assume that ties do not exist.1 To each matrix X we associate a
count vector n, whose entries represent the counts for each one of the 2m possible
dominance statements (many of which might be zero).

Example 1. Consider the comparison of two algorithms in terms of accuracies
M1 (expressed in percent values in the first row) and time M2 (in seconds, shown
in the second row) on 12 data sets:

MA =
[

85 87 87 91 91 91 94 94 94 94 94 94
8 11 11 12 12 12 16 16 16 16 16 16

]T

,

MB =
[

84 86 86 92 92 92 95 95 95 95 95 95
9 10 10 13 13 13 15 15 15 15 15 15

]T (2)

where T denotes transpose.
The matrix X = [M(B) � M(A)] is:2

X =
[

0 0 0 1 1 1 1 1 1 1 1 1
0 1 1 0 0 0 1 1 1 1 1 1

]T

. (3)

Hence, we derive that the dominance statement [≺,≺] (or [0, 0]), which means
that B is worse than A on both measures, is observed n0 = 1 time; the statement
[≺,�] (or [0, 1]), which means that B is worse than A on the first measure but
better on the second, is observed n1 = 2 times; the statement [�,≺] (or [1, 0]) is
observed n2 = 3 times; the statement [�,�] (or [1, 1]) is observed n3 = 6 times.
Hence, we have that n = [1, 2, 3, 6] (a binary lexicographic order is used for the
entries of n). ��
The matrix X or, equivalently, the vector n, include all the information that we
will use to derive our tests. While this approach might seem to lose information
because we only account for the sign of each difference M

(Alg)
ij − M

(Alg′)
ij , there

is no effective way of using the actual value of the difference across multiple
measures if these measures are assumed to be expressed in incomparable units,
as in this case no procedure could be used to compare the measures jointly or to
collapse the measures into a single one in order to run standard tests (using some
weighting function; we assume that normalizing the measures is not an option
either, as it entails an additional assumption about the measures which might
not hold). On the other hand, the sign of the difference is a proper comparable
value among measures regardless of the particular meaning of each of them. In
fact, we point out that the measures M

(Alg)
ij can themselves be obtained from

1 If there are ties we treat a tie in a measure by a standard approach: we replicate the
case with it into two and divide the weight of such case by two (this process might
need to be performed multiple times until no ties are present in the data). Such
approach preserves the sample size and fairly allocates ties between the algorithms
being compared.

2 An algorithm is better (�) than another when it has higher accuracy and lower
computational time.
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any arbitrary procedure (including statistical tests), as we only assume that the
sign of the difference M

(Alg)
ij − M

(Alg′)
ij is available (and we properly account

for ties). This provides us with a very general setting, allowing for numerous
applications.

3 Generalized Likelihood Ratio Test

We derive a simple null hypothesis significance test for the joint analysis of
performance measures. We denote by θk, for k = 0, . . . , 2m − 1, the probability
of obtaining one of the 2m possible dominance statements. Hence, θk ≥ 0 and∑2m−1

k=0 θk = 1. We have enumerated the dominance statements according to
their “binary order”, so that θ0 is the probability of the statement [≺, . . . ,≺,≺],
θ1 is the probability of [≺, . . . ,≺,�], θ2 is the probability of [≺, . . . ,≺,�,≺], etc.
Our goal is to find if there is a statement that is significantly more likely than
all others based on the observation matrix X. It is clear that n is a sufficient
statistic for this test, since its k-th entry nk corresponds to the counts for the k-th
statement. Hence, to achieve our goal, we can perform a Generalized Likelihood
Ratio Test (GLRT):

λ(n) =
maxθ∈Θ∗ L(θ|n)
maxθ∈Θ L(θ|n)

, where L(θ|n) =
2m−1∏

k=0

θnk

k , (4)

θ = [θ0, . . . , θ2m−1], Θ is the simplex for θ, Θ∗ = {θ ∈ Θ : θi∗ ≤ max(θ \ θi∗)}
(we abuse notation and indicate by θ \ θi∗ all thetas apart from θi∗) and i∗ =
argmaxi=0,...,2m−1ni. The rationality behind Eq.(4) is that we are testing two
hypothesis: (H0) θi∗ ≤ max(θ \ θi∗) and (H1) θi∗ > max(θ \ θi∗). Under H0,
the value of θ which better explains the observations is the maximum likelihood
estimate (MLE) subject to the constraint that θ ∈ Θ∗. Its likelihood is the
numerator of Eq. (4). The value of θ which maximizes the likelihood is instead
the MLE subject to θ ∈ Θ. It is clear that 0 ≤ λ(n) ≤ 1. GLRT employs λ(n) as
a test statistic and rejects H0 for small values of λ(n), that is, when λ(n) ≤ ρ,
where the value of ρ is determined by fixing the type-I error to be α. By Wilks’
theorem, for large n, −2 log(λ(n)) is chi-square distributed with one degree of
freedom [6,7]. Hence, the rejection zone for the null hypothesis is approximately
equal to

R =
{
n : − 2 log(λ(n)) > χ2

1,α

}
, (5)

where α is the confidence level. Therefore, to apply GLRT, we must only com-
pute λ(n).

Theorem 1. Given the count vector n, it holds that

λ(n) =

(
na+nb

2

)na+nb

nna
a nnb

b

, (6)

where na is the greatest value among n0, . . . , n2m−1 and nb the second greatest. ��
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Proof. The maximum likelihood estimate of θ subject to the constraint θ ∈ Θ is
(n0

n
,
n1

n
, . . . ,

n2m−1

n

)
,

in fact the only constraint on θ in this case is that its elements sum up to 1.
The maximum likelihood estimate of θ subject to the constraint Θ∗ = {θ ∈
Θ : θi∗ ≤ max(θ \ θi∗)} can be computed using KKT conditions of optimality
for optimization problems subject to inequality constraints [8]. To obtain this
estimate let us assume without loss of generality that n0 ≥ n1 ≥ n2... Note
that i∗ = argmaxi=0,...,2m−1ni and so considering the equality constraint θi∗ =
max(θ \ θi∗), we have that the maximum likelihood estimate of θ is

(nc

n
,
nc

n
,
n2

n
, . . . ,

n2m−1

n

)
,

where nc = (n0 + n1)/2. Then the likelihood ratio is

(nc

n )n0 · (nc

n )n1 · · · (n2m−1
n )n0

(n0
n )n0 · (n1

n )n1 · · · (n2m−1
n )n0

=
nn0+n1

c

nn0
0 nn1

1

,

which proves the theorem. ��
In case na = nb, we have λ(n) = 1 and −2 log(λ(n)) = 0, so that the null
hypothesis can never be rejected. It can be shown that:

Theorem 2. The GLRT (Eq. (5)) is (asymptotically) calibrated for a prescribed
significance level α obtaining the maximum type-I error when na + nb = n. ��
This can be proven using an approach similar to that described in [9, Ex. 21.2].

Example 2. In Example 1, m = 2 and Eq.(2) yields L(θ|n) = θ0θ
2
1θ

3
2θ

6
3, where

θ0 is the probability of the statement [≺,≺], θ1 of [≺,�], θ2 of [�,≺] and θ3 of

[�,�]. Hence, na = 6, nb = 3, the statistic λ(n) = ( 9
2 )

9

3366 ≈ 0.6 and the p-value is
0.313. Given the value of the p-value, we cannot conclude that B is better than
A on both measures. ��
GLRTs have the disadvantage that they do not provide the probability of the
hypotheses, but only its p-value under H0. This means that we do not have any
information about the probability of the alternative hypothesis being true. To
address this issue, in the next section we propose a Bayesian hypothesis test for
testing a certain dominance statement.

4 Bayesian Test

We implement the Bayesian hypothesis test by following a Bayesian estimation
approach, that is, by estimating the posterior probability of the vector of para-
meters θ. Given the count vector n, the likelihood of θ given the data is given by
the right-hand side of Eq. (4), which is a multinomial distribution. As prior we
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then consider a Dirichlet distribution: p(θ) ∝
2m−1∏
k=0

θαk−1
k , where αk > 0 are the

parameters of the Dirichlet distribution. In the rest of the paper, we will always
use the symmetric prior αk = 1/2m (however, we can also use other priors such
as the Jeffreys prior αk = 1

2 , or some robust prior model [10]). By conjugacy, the
posterior is also a Dirichlet with updated parameters nk + αk. In the Bayesian
setting, to make inferences on a dominance statement, we have simply to com-
pute the posterior probabilities P (θi > max(θ\θi)|n), for i = 0, . . . , 2m −1. This
is the posterior probability that θi (associated to the i-statement) is greater than
all other θ¬i values.

Proposition 1. It holds that
2m−1∑
i=0

P (θi > max(θ \ θi)|n) = 1. ��

This result follows from the simple fact that P (θi = θj |n) = 0 (i.e., since θi

are continuous variables, it is clear that P (θi = θj |n) = 0 since any probability
density function on continuous variables assign probability zero to singletons).
Hence, the above posterior probabilities enclose all the available information on
the dominance statements. These probabilities can easily be computed by Monte
Carlo sampling on the space of vectors θ from the posterior Dirichlet distribution
and then by counting the fraction of times we see θi > max(θ \ θi), for every i.

Example 3. Take again Example 1. We already know that L(θ|n) = θ0θ
2
1θ

3
2θ

6
3,

where θ0 is the probability of the statement [≺,≺], θ1 of [≺,�], θ2 of [�,≺] and θ3
of [�,�]. The posterior probabilities of hypotheses are: P (θ0 > θ¬0|n) ≈ 0.013,
P (θ1 > θ¬1|n) ≈ 0.051, P (θ2 > θ¬2|n) ≈ 0.136, and P (θ3 > θ¬3|n) ≈ 0.80.
Hence the most probable dominance statement is [�,�] and its probability is 0.8.
These probabilities have been computed by Monte Carlo sampling as discussed
above.

5 Bayesian Network

The columns of X = [M(B) � M(A)] can be seen as binary random variables
M = {M1, . . . , Mm} representing which algorithm is better according to that
measure. Because of possible stochastic conditional independences between these
variables, the estimation of a joint probability p(M) can be improved by using
a Bayesian network (BN). A BN can be defined as a triple (G,M,P), where
G = (VG , EG) is a directed acyclic graph (DAG) with VG a collection of m nodes
associated to the random variables M (a node per variable), and EG a col-
lection of arcs; P is a collection of conditional probabilities p(Mi|PAi) where
PAi denotes the parents of Mi in the graph (PAi may be empty), correspond-
ing to the relations of EG . In a Bayesian network, the Markov condition states
that every variable is conditionally independent of its non-descendants given its
parents. This structure induces a joint probability distribution by the factoriza-
tion p(M1, . . . , Mm) =

∏
i p(Mi|PAi). Let θ be the entire vector of parameters

such that θijk = p(Mi = k|PAi = j), where k ∈ {0, 1}, j ∈ {1, ..., 2|PAi|}
and i ∈ {1, . . . , m}. Note that this represents a different parametrization with
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respect to the θ of previous sections, but a simple transformation can be used
to compute those values through the factorization expression. Given the table X
with m measures and n case studies, the structure learning problem in Bayesian
networks is to find a DAG G that maximizes its posterior probability, that is,
G∗ = argmaxG∈Gp(G|X), with G the set of all DAGs over node set M.

p(G|X) ∝ p(G) ·
∫

p(X|G,θ) · p(θ|G)dθ,

where p(θ|G) is the prior of θ for a given graph G, assumed to be a symmetric
Dirichlet with positive hyper-parameter α∗:

p(θ|G) =
m∏

i=1

2|PAi|∏

j=1

Γ(
α∗

2|PAi| )
1∏

k=0

θ
α∗

2|PAi|+1 −1

ijk

Γ( α∗
2|PAi|+1 )

. (7)

α∗ is usually referred to as the Equivalent Sample Size (ESS). Such computation
is known as the Bayesian Dirichlet Equivalent Uniform (BDeu) criterion [11,12],
where we assume parameter independence and modularity [13]. We also assume
α∗ = 1 and that there is no preference for any graph and set p(G) as uniform.

In order to find the graph representing the best set of conditional indepen-
dences over the space of all possible DAGs G, multiple approaches have been
proposed in the literature. Because the number of measures is hardly above
15 to 20 and they are all binary, the combination of properties of the BDeu
score [14] with a dynamic programming algorithm [15] usually suffices. Otherwise
one might use more sophisticated ideas [16–18], which can deal with a greater
number of variables. Given the optimal graph G, we can employ the discovered
conditional independences to write the joint distribution for M opportunely:

p(X|G,θ) =
m∏

i=1

2|PAi|∏

j=1

θ
nij0
ij0 (1 − θij0)nij1 ,

where nijk counts the number of times (Mi = k ∧ PAi = j) in the data.
Combined with the prior p(θ|G) of Eq. (7), this can be used to compute
P (θi > max(θ \θi)|X) by Monte Carlo sampling as before (even if different from
previous sections, the parametrization of θ used here also works for that). The
advantages of using Bayesian networks are as follows. First, by using the p(G|X),
the dependence model underlying the distribution is automatically adapted to
what can be inferred from data, and so one usually needs fewer observations to
learn a good model than when working with the full joint. Second, the graph
can be used to identify relations between measures and how they are associ-
ated, which can be for instance used to ignore measures that are not able to
help in discriminating the algorithms. Third, computations can be carried out
efficiently (at least when we restrict ourselves to a couple of tens of variables).
We will illustrate these benefits later on.
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6 Experiments

In this section, we apply our tests to compare seven classifiers on 80 data
sets (10 runs of 10-folds cross-validation) and using several performance mea-
sures. We have considered the following classifiers ‘AODE’ (C1), ‘Bayes net’
(C2), ‘Bayes.NaiveBayes’ (C3), ‘trees.J48graft’ (C4), ‘trees.RandomForest’ (C5),
‘trees.bagging’ (C6) and ‘logistic’ (C7). We have performed all the experiments
using WEKA [19], which implements all such classifiers, and analyzed the results
using simple scripts in R. We note that our purpose is not to conclude in favor or
against any of the classifiers, but to illustrate the use of our new approaches to
compare them. The measures used in the analysis are available at http://www.
cs.qub.ac.uk/∼c.decampos/benavoli-ambn2015.ods.

6.1 Accuracy and FPR-TPR

In this experiment, we have considered three measures. Accuracy is the percent-
age of correct predictions of a model, the most common measure to evaluate
a classifier. For a binary classification problem, the true positive rate (TPR)
defines how many correct positive results occur among all positive samples avail-
able during the test. The false positive rate (FPR), on the other hand, defines
how many incorrect positive results occur among all negative samples available
during the test. It is well known that accuracy is highly dependent on TPR and
FPR (in the binary case it is just a convex combination of them). We compare
the classifiers using (i) only accuracy and (ii) FPR-TPR jointly, and expect to
see a great agreement between the results of (i) and (ii) because of the strong
dependence between those measures. For (i) we use the Wilcoxon sign-rank test
(which has more power than the sign test), and our tests for (ii). Matrix (8)
(left) reports the statistical comparison of the seven classifiers performed by
considering accuracy only. The numerical values in the matrix are the p-values
of Wilcoxon sign-rank test computed on the direction (≺ or �) corresponding
to the highest value of the statistic (most likely direction to refute the null
hypothesis). For instance, the meaning of the first matrix entry is as follows: C1

has been found better than C2 with p-value close to zero. Conversely, the first
element in the second row means that C2 has been found worse than C3 (but
non-significant with p-value 0.46). All pairwise comparisons with p-values less
than α/2 (e.g., α = 0.1 or 0.05) are significant. To control the family-wise type-I
error of many pairwise comparisons, the significance level should be adjusted
by the Bonferroni correction (or other more efficient approaches) [5]. Hereafter,
we report the p-values of the frequentist tests, so the implementation of such
corrections is straightforward.

⎛

⎜⎜⎜⎜⎜⎜⎝

C2 C3 C4 C5 C6 C7

C1 � 0 � 0 ≺ ≺ .17 � 0 � 0
C2 ≺ .46 ≺ 0 ≺ .046 � 0 � 0
C3 ≺ 0 ≺ .048 � 0 � 0
C4 � .026 � 0 � 0
C5 � 0 � 0
C6 ≺ 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

C2 C3 C4 C5 C6 C7

C1
�� .99 �� .99 ≺≺ .99 ≺≺ .85 ≺≺ 1 ≺≺ 1

C2
≺� .27 ≺≺ 1 ≺≺ .92 �� 1 �� 1

C3
≺≺ 1 ≺≺ .90 �� 1 �� 1

C4
�� .93 �� 1 �� 1

C5
�� 1 �� 1

C6
≺≺ 1

⎞

⎟⎟⎟⎟⎟⎟⎠

(8)

http://www.cs.qub.ac.uk/~c.decampos/benavoli-ambn2015.ods
http://www.cs.qub.ac.uk/~c.decampos/benavoli-ambn2015.ods
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Matrix (8) (right) reports the comparison performed with the Bayesian test
considering jointly TPR and -FPR (negative FPR so that as higher as better). In
this case, each entry of the matrix represents the most probable joint dominance
and the numerical value the relative probability. The first element says that C1

is jointly better than C2 because has higher -FPR (so lower FPR) and higher
TPR and this statement holds with posterior probability 0.99. The test using the
Bayesian network model achieved almost equal results for the probabilities (vari-
ations only because of Monte Carlo, data not shown), because the two measures
are well correlated (so the Bayesian network inferred the joint model as the most
probable, which reduced it to the standard Bayesian test without the Bayesian
network). Also the GLRT is consistent with the results obtained by the Bayesian
test. For instance, its p-values relative to the C1 row are 0.014, 0.024, 0, 0.29, 0, 0.
Apart from 0.29 all the p-values are significant for α = 0.05. A reason to prefer
GLRT to the Bayesian test is that we have shown that it is calibrated to type-I
error. On the other hand the probabilities returned by the Bayesian test have a
more direct interpretation. For this reason, in the following we will just show the
results of the Bayesian test. Comparing the two matrices is clear that the results
are quite in agreement (smaller p-values correspond to higher probabilities and
vice versa). The advantage of the new approach accounting for multiple measures
altogether is that it is able to jointly consider them and thus its conclusions have
additional meaning.

6.2 Accuracy, F-Measure and Weighted-AUC

In this section we compare the classifiers using accuracy, F-measure and
weighted-AUC: (i) separately; (ii) considering pairwise combinations of these
measures; (iii) considering the three measures together.

For the case of Accuracy and Weighted-AUC, Matrix (9) (on the left) reports
the results of the comparison obtained considering separately each of these mea-
sures (each cell contains the result for Accuracy on top and Weighted-AUC below
it), while Matrix (9) (on the right) is the result of the Bayesian joint test. For
performing the separate tests, we have used the Wilcoxon sign-rank test [5]. The
numerical values in the Matrix (9) (on the left) are the p-values of Wilcoxon
sign-rank test computed on the direction (≺ or �) corresponding to the high-
est value of the statistic (most likely direction to refute the null hypothesis).
For instance, the meaning of the comparison C1 versus C5, is as follows: C1

has been found worse than C5 in accuracy (with p-value 0.17) and better in
Weighted-AUC (with p-value 0.14). All pairwise comparisons with p-values less
than α/2 (e.g., α = 0.1 or 0.05) are significant.3 Matrix (9) (on the right) reports
the comparison performed with the Bayesian test considering jointly Accuracy
and Weighted-AUC. In this case, each entry of the matrix represents the most
probable joint dominance statement and the numerical value is the relative prob-
ability. Comparing the two matrices, there are two cases where the tests are in
3 To control the family-wise type-I error of many pairwise comparisons, the significance

level should be adjusted, as previously described.
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clear contradiction (in bold) and a case (C4 vs. C7) where the joint compar-
ison gives an evident advantage in power. This means that C4 is better than
C7 jointly on both accuracy and Weighted-AUC, while this is not true when
the two performance measures are considered separately. Therefore, it is evident
that decisions derived by a joint test can be very different from the decisions
carried out using a separate test for each performance measure. If the goal is
to compare algorithms considering jointly the measures, then it is more appro-
priate to use the new methods proposed here. The GLRT is overall consistent
with the results obtained by the Bayesian test (results not shown). For instance,
its p-value for “C4 better than C7 on both the performance measures” is almost
zero (so “very” significant). The choice between GLRT and the Bayesian test
depends on the user’s needs.

⎛

⎜⎜⎜⎜⎜⎜⎝

C2 C3 C4 C5 C6 C7

� 0
� 0

� 0
� 0

≺ 0
� 0

≺ .17
� .14

� 0
� 0

� 0
� 0≺ .46

≺ .37
≺ 0
� 0

≺ .05
� .47

� 0
� 0

� 0
� 0≺ 0

� 0
≺ .05
� .43

� 0
� 0

� 0
� 0� .026

≺ 0
� 0
� 0

� 0
� .14� 0

� 0
� 0
� 0≺ 0
≺ 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

C2 C3 C4 C5 C6 C7

C1
�� .99 �� .96 ≺� .99 ≺≺ .64 �� 1 �� 1

C2
�≺ .42 ≺� .99 ≺≺ .72 �� 1 �� 1

C3
≺� .99 ≺≺ .72 �� 1 �� 1

C4
�≺ .56 �� 1 �� 1

C5
�� 1 �� 1

C6
≺≺ 1

⎞

⎟⎟⎟⎟⎟⎟⎠

.

(9)
Now we consider Weighted-AUC and F-measure together. Matrix (10) (on

the left) reports the results of the comparison based on separate tests (each cell
contains the result for Weighted-AUC on top and F-measure below it), while
Matrix (10) (on the right) regards the Bayesian joint test. There are five cases
where the tests are in contradiction (in bold). In particular, in the comparisons C2

vs. C5 and C3 vs. C5, the Bayesian test asserts that C5 is jointly better with prob-
ability 0.91, while the separate tests do not find a significant dominance. Again
for C4 vs. C7, it is evident that the joint comparison gives an advantage in power.

⎛

⎜⎜⎜⎜⎜⎜⎝

C2 C3 C4 C5 C6 C7

� 0
� 0

� 0
� 0

≺ 0
� 0

≺ 0
� .14

� 0
� 0

� 0
� 0� .27

≺ .37
≺ 0
� 0

≺ 0
� .47

� 0
� 0

� 0
� 0≺ 0

� 0
≺ 0
� .43

� 0
� 0

� 0
� 0� 0

≺ 0
� 0
� 0

� 0
� .14� 0

� 0
� 0
� 0≺ 0
≺ 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

C2 C3 C4 C5 C6 C7

C1
�� .99 �� .99 ≺� 1 ≺≺ .81 �� 1 �� 1

C2
�≺ .37 ≺� 1 ≺≺ .91 �� 1 �� 1

C3
≺� 1 ≺≺ .91 �� 1 �� 1

C4
�≺ .55 �� 1 �� 1

C5
�� 1 �� 1

C6
≺≺ 1

⎞

⎟⎟⎟⎟⎟⎟⎠

.

(10)
Finally we consider the three performance measures together. Matrix (11)

reports the result of the Bayesian joint test.
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w-AUC F-measure Accuracy

Fig. 1. Three measures used to compare C4 and C5 and their (in)dependences.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C2 C3 C4 C5 C6 C7

C1

��� .99
��� .99

≺≺� 1
≺≺≺ .81

��� 1
��� 1

C2

��≺ .31
≺≺� 1

≺≺≺ .91
��� 1

��� 1

C3

≺≺� 1
≺≺≺ .91

��� 1
��� 1

C4

��≺ .55
��� 1

��� 1

C5

��� 1
��� 1

C6

≺≺≺ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

We can then assert that C1 is better than C2 and C3 jointly on all perfor-
mance measures. Overall, C5 appears to be jointly the best classifier followed by
C4. By using the Bayesian network inference to compare C4 and C5, we achieve
the very same conclusions (results not shown). The interesting outcome of that
inference is that we can graphically see the relation between measures in Fig. 1,
which is automatically learned from the matrix of measures, and not surprisingly,
all three measures of classification accuracy are dependent.

6.3 Comparison Using Six Measures

In this section we compare the same seven classifiers but now using six perfor-
mance measures jointly: Accuracy, F-measure, weighted-AUC, Kappa statistics,
root mean squared error (RMSE), and mean absolute error (MAE). In order to
illustrate the capabilities of the proposed approach, let us take on the task of
comparing the classifiers C1 and C2. By using the BN and the learned conditional
(in)dependences displayed in Fig. 2, we obtain the probability of C1 to be better
than C2 jointly in all six measures to be 0.5, while the value reaches 0.9 without
using the BN, which suggests that an unreliable decision could be taken because
independent measures where assumed to be dependent (the model without the
Bayesian network was learned with very few data, about 80 cases for a para-
meter space of dimension 63, which is clearly insufficient). From Fig. 2 we see
that RMSE and MAE are independent measures with respect to the others and
each other. With such information, we can look to their importance separately.
Using the Bayesian test for MAE we get a very low probability of 0.54 towards
C2, while RMSE achieves 0.99 towards C2. The other four connected measures
in Fig. 2 achieve probability 0.9999 towards C1. Hence we are able to identify
the source of this difference between the result with the Bayesian network and
without it, which clarifies the measures under which one classifier is better than
the other. Further applications are numerous, but they go beyond the scope of
this work.
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Accuracy F-measurew-AUC

KappaRMSE MAE

Fig. 2. Six measures used to compare classifiers C1 and C2 and their dependences.
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(b) m = 3 and n = 10.

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)m = 3 and n = 20.
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(d) m = 5 and n = 50.

Fig. 3. ROC curves for the GLRT (gray dashed-dotted) and the Bayesian test with
(black dashed) and without (black contiguous) the Bayesian network use during learn-
ing. Distributions and data (n samples) are generated for a domain with m measures.

6.4 Simulation Study

Finally, we perform a simulated study to understand the benefit of using the
Bayesian networks. We study scenarios with m equal to 2, 3 and 5 measures
from which we uniformly draw at random the multinomial parameters, that is,
22 − 1 = 3, 23 − 1 = 7 and 25 − 1 = 31 independent parameters, respectively.
We label each test case as follows: if the maximum θ is greater than the second
greatest plus 0.1 %, then this is labeled as a case where there is a difference
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(c)m = 3 and n = 20.
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(d) m = 5 and n = 50.

Fig. 4. ROC curves for the GLRT (gray dashed-dotted) and the Bayesian test with
(black dashed) and without (black contiguous) the Bayesian network use during learn-
ing. Distributions and data (n samples) are generated for a domain with m measures
uniformly at random assuming that all measures are independent from each other.

between the maximum and the others. Otherwise we say the maximum is not
greater than the others (and we force the maximum and second greatest to
be equal to each other). Then we randomly generate n samples (n =10, 20
or 50) from the distribution and run the GLRT and the Bayesian test with and
without the support of the Bayesian network to learn the underlying distribution
from data. For each test case, we record the probability that the maximum
parameter is greater than the others (or the p-value in the case of the GLRT).
This procedure is repeated one thousand times for cases where the maximum is
greater (so positive cases) and one thousand times with the maximum equal to
the second greatest value (negative cases). The results over these two thousand
test cases are used to build a receiver operating characteristic (ROC) curve
according to the usual procedure: True/false positive/negative are defined by
varying the threshold for the probability (or respectively the p-value) such that
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the method takes a decision of whether it is a positive or negative case. In this
way, we obtain the percentage (over two thousand test cases) of true positive,
true negative, false positive and false negative for each method for each threshold.
The curves with the GLRT (gray dashed-dotted) and the Bayesian test with the
Bayesian network (black dashed) and without it (black contiguous) are shown in
Fig. 3 for different values of m and n. In all cases, the GLRT is equal or inferior to
the Bayesian test, and the Bayes test with the Bayesian network version is always
equal or superior to the Bayesian test alone. We notice that the curves are barely
superior than random guess (which would correspond to the identity function in
the ROC graph). This happens because there are too many parameters to learn
in the multinomial with respect to the amount of data. We see that with the
increase of data (n = 50) and use of the Bayesian network to better fit a model,
the curve begins to improve with respect to random guesses.

We repeat the experiment but we now assume that the five measures are
independent from each other. In this scenario we expect the method with the
Bayesian network to be superior than using the full joint distribution, as it can
estimate a more appropriate distribution (given the limited amount of data).
The idea is that the Bayesian network can learn the fact that the measures
are independent (this fact is not disclosed to the methods, as in practice we
usually would not know it beforehand). Again we uniformly draw at random the
parameters of the multinomial (respecting the independence assumption among
all measures), then we draw the data and we label the cases as before. The ROC
curves for this scenario are shown in Fig. 4. Again, the Bayesian test with the
Bayesian network achieves the best curves.

Table 2 shows the area under the curves for each method and scenario. The
values obtained by GLRT are inferior to those of the Bayesian test. The latter has
consistently produced better results with the support of the Bayesian network

Table 2. Area under the ROC curve for each method in each scenario. m is the number
of measures, n the number of data points over which the measures are compared, and
Type describes whether the simulation sampled the parameters without restriction
(full) or with the forced assumption that each measure is independent of each other
(indep).

m n Type GLRT Bayesian test Bayesian test + BN

2 10 indep 0.686 0.703 0.715

2 10 full 0.583 0.601 0.622

3 10 indep 0.641 0.688 0.694

3 10 full 0.530 0.555 0.577

3 20 indep 0.735 0.764 0.791

3 20 full 0.524 0.549 0.590

5 50 indep 0.735 0.790 0.822

5 50 full 0.500 0.522 0.613
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for learning the distribution. The superiority of the method with the Bayesian
network is justified by the better estimation of the joint distribution with its
underlying independence assessments.

7 Conclusions

In machine learning and artificial intelligence, a very important task is to com-
pare the performance of algorithms on different case studies and to use multi-
ple different performance measures. This is typically performed using statistical
tests. In this paper, we have developed new statistical tests that are able to com-
pare the algorithms considering all the performance measures jointly. This allows
for example to make statements such as a classifier is jointly better than another
on multiple measures as well as on particular subsets of measures, which can be
identified with the use of a Bayesian network modeling the (in)dependences
among measures. With artificial and real-data examples we have shown that
the decisions derived by a joint test can be very different from the decisions
carried out using a separate test for each performance measure. We argue that
the ideas developed here can offer a new way for comparing algorithms using
multiple performance measures. Future work includes the exploration of appli-
cations and the further use of the Bayesian network structure to understand the
relations between performance measures and their importance for the evaluation
of algorithms. Moreover, we plan to extend this approach to be able to compare
multiple measures on multiple algorithms at the same time.
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Abstract. Probabilistic record linkage has been well investigated in
recent years. The Fellegi-Sunter probabilistic record linkage and its
enhanced version are commonly used methods, which calculate match
and non-match weights for each pair of corresponding fields of record-
pairs. Bayesian network classifiers – naive Bayes classifier and TAN have
also been successfully used here. Very recently, an extended version of
TAN (called ETAN) has been developed and proved superior in classi-
fication accuracy to conventional TAN. However, no previous work has
applied ETAN in record linkage and investigated the benefits of using a
naturally existing hierarchy feature level information. In this work, we
extend the naive Bayes classifier with such information. Finally we apply
all the methods to four datasets and estimate the F1 scores.

Keywords: Probabilistic record linkage · Naive Bayes classifier · TAN
and ETAN · Hierarchy feature level information

1 Introduction

Record linkage (RL) [1] proposed by Halbert L. Dunn (1946) refers to the task of
finding records that refer to the same entity across different data sources. These
records contain identifier fields (e.g. name, address, time, postcode etc.). The
simplest kind of record linkage, called deterministic or rules-based record linkage,
requires all or some identifiers are identical giving a deterministic record linkage
procedure. This method works well when there exists a common/key identifier
in the dataset. However, in real world applications, deterministic record linkage
is problematic because of the incompleteness and privacy protection [2] of the
key identifier field.

To mitigate against this problem, probabilistic record linkage (also called
fuzzy matching) is developed, which takes a different approach to the record
linkage problem by taking into account a wider range of potential identifiers.
This method computes weights for each identifier based on its estimated ability
to correctly identify a match or a non-match, and uses these weights to calculate
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a score (usually log-likelihood ratio) that two given records refer to the same
entity.

Record-pairs with scores above a certain threshold are considered to be
matches, while pairs with scores below another threshold are considered to be
non-matches; pairs that fall between these two thresholds are considered to be
“possible matches” and can be dealt with accordingly (e.g., human reviewed,
linked, or not linked, depending on the requirements). Whereas deterministic
record linkage requires a series of potentially complex rules to be programmed
ahead of time, probabilistic record linkage methods can be trained to perform
well with much less human intervention.

The Fellegi-Sunter probabilistic record linkage (PRL-FS) [3] is one of the most
commonly used methods. It assigns the match/non-match weight for each corre-
sponding field of record-pairs based on log-likelihood ratios. For each record-pair,
a composite weight is computed by summing each field’s match or non-match
weight. When a field agrees (the contents of the field are the same), the field
match weight is used for computing the composite weight; otherwise the non-
match weight is used. The resulting composite weight is then compared to the
aforementioned thresholds to determine whether the record-pair is classified as
a match, possible match (hold for clerical review) or non-match. Determining
where to set the match/non-match thresholds is a balancing act between obtain-
ing an acceptable sensitivity (or recall, the proportion of truly matching records
that are classified match by the algorithm) and positive predictive value (or pre-
cision, the proportion of records classified match by the algorithm that truly do
match).

In PRL-FS method, a match weight will only be used when two strings
exactly agree in the field. However, in many real world problems, even two strings
describing the same field may not exactly (character-by-character) agree with
each other because of typographical error (mis-spelling). For example, the field
(first name) comparisons such as (Andy, Andrew) and (Andy, John) are both
treated as non-match in PRL-FS even though the terms Andy and Andrew are
more likely to refer to the same person. Moreover, such mis-spellings are not
uncommon according to the research results [4] of US Census Bureau, which show
that 25 % of first names did not agree character-by-character among medical
record-pairs that are from the same person. To obtain a better performance in
real world usage, Winkler proposed an enhanced PRL-FS method (PRL-W) [5]
that takes into account field similarity (similarity of two strings for a field within
a record-pair) in the calculation of field weights, and showed better performance
of PRL-W compared to PRL-FS [6].

Probabilistic graphical models for classification such as naive Bayes (NBC)
and tree augmented naive Bayes (TAN) are also used for record linkage [7],
where the single class variable contains two states: match and non-match. These
models can be easily improved with domain knowledge. For example, monotonic-
ity constraints (i.e. a higher field similarity value indicating a higher degree
of ‘match’) can be incorporated to help reduce overfitting in classification [8].
Recently, a state-of-the-art Bayesian network classifier called ETAN [9,10] has
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been proposed and shown outperform the NBC and TAN in many cases. ETAN
relaxes the assumption about independence of features, and does not require
features to be connected to the class.

In this paper we will apply ETAN to the probabilistic record linkage prob-
lem. Also we will extend the naive Bayes classifier (referred to as HR-NBC)
by introducing hierarchy restrictions between features. As discussed in previous
work [11,12], these hierarchy restrictions are very useful to avoid unnecessary
computation of field comparison, and to help refine the Bayesian network struc-
ture.

In our model, such hierarchy restrictions are mined from the semantic rela-
tionships between features, which widely exist in real world record matching
problems. An example of this occurs especially in address matching. For exam-
ple, two restaurants with the same name located in two cities are more likely to
be recognized as two different restaurants. Because they might be two different
branches in two cities. In this case, the city locations have higher importance
than the restaurant names. And we can introduce a connection between these
two features.

To deal with mis-spellings in records, we use the Jaro-Winkler similarity
function to measure the differences between fields of two records. These field
difference values and known record linkage labels are used to train the classifier.
Finally, we compare all the methods – PRL-W, TAN, ETAN, NBC and HR-NBC
in four datasets. The results show the benefits of using different methods under
different settings.

2 Probabilistic Record Linkage

2.1 PRL-FS and PRL-W

Let us assume that there are two datasets A and B of n-tuples of elements from
some set F . (In practice F will normally be a set of a strings.) Given an n-tuple
a we write ai for the i-th component (or field) of a.

Matching. If an element of a ∈ A is the representation of the same object as
represented by an element of b ∈ B we say a matches b and write a ∼ b. Some
elements of A and B match and others do not. If a and b do not match we write
a � b. We write M = {(a, b) ∈ A × B|a ∼ b} and U = {(a, b) ∈ A × B|a � b}.
The problem is then, given an element x in A × B to define an algorithm for
deciding whether or not x ∈ M .

Comparison Functions on Fields. We assume the existence of a function:

cf : F × F → [0, 1].

With the property that ∀h ∈ F , cf(h, h) = 1. We think of cf as a measure of how
similar two elements of F are. Many such functions exist on strings including
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the normalised Levenshtein distance or Jaro-Winkler. In conventional PRL-FS
method, its output is either 0 (non-match) or 1 (match). In PRL-W method, a
field similarity score (Jaro-Winkler distance [5,13]) is calculated, and normalized
between from 0 and 1 to show the degree of match.

Discretisation of Comparison Function. Same as previous work [6], rather
than concern ourselves with the exact value of cf(ai, bi) we consider a set
of I1, · · · Is of disjoint ascending intervals exactly covering the closed interval
[0, 1]. These intervals are called states. We say cf(ai, bi) is in state k to mean
cf(ai, bi) ∈ Ik.

Given an interval Ik and a record-pair (a, b) we define two values1:

– mk,i is the probability that cf(ai, bi) ∈ Ik given that a ∼ b.
– uk,i is the probability that cf(ai, bi) ∈ Ik given that a � b.

Given a pair (a, b), the weight wi(a, b) of their i-th field is defined as:

wi(a, b) =
s∑

k=1

wk,i(a, b)

where

wk,i(a, b) =

{
ln(mk,i

uk,i
) if cf(ai, bi) ∈ Ik

ln(1−mk,i

1−uk,i
) otherwise.

The composite weight w(a, b) for a given pair (a, b) is then defined as

w(a, b) =
n∑

i=1

wi(a, b).

2.2 The E-M Estimation of Parameters

In practice, the set M , the set of matched pairs, is unknown. Therefore, the
values mk,i, and uk,i, defined above, are also unknown. To accurately estimate
these parameters, we applied the expectation maximization (EM) algorithm with
randomly sampled initial values for all these parameters.

The Algorithm

1. Choose a value for p, the probability that an arbitrary pair in A × B is a
match.

2. Choose values for each of the mk,i and uk,i, defined above.
3. E-step: For each pair (a, b) in A × B compute

1 Note in conventional PRL-FS method [3], two fields are either matched or
unmatched. Thus the k of mk,i can be omitted in this case.
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g(a, b) =

p
∏

(a,b)∈A×B

s∏

k=1

m′
k,i(a, b)

p
∏

(a,b)∈A×B

s∏

k=1

m′
k,i(a, b) + (1 − p)

∏

(a,b)∈A×B

s∏

k=1

u′
k,i(a, b)

(1)

where

m′
k,i(a, b) =

{
mk,i if cf(ai, bi) ∈ Ik

1 otherwise.

and

u′
k,i(a, b) =

{
uk,i if cf(ai, bi) ∈ Ik

1 otherwise.

4. M-step: Then recompute mk,i, uk,i, and p as follows:

mk,i =

∑

(a,b)∈A×B

g′
k,i(a, b)

∑

(a,b)∈A×B

g(a, b)
, uk,i =

∑

(a,b)∈A×B

g̃′
k,i(a, b)

∑

(a,b)∈A×B

1 − g(a, b)
, p =

∑

(a,b)∈A×B

g(a, b)

|A × B|

(2)
where

g′
k,i(a, b) =

{
g(a, b) if cf(ai, bi) ∈ Ik

0 otherwise.

and

g̃′
k,i(a, b) =

{
1 − g(a, b) if cf(ai, bi) ∈ Ik

0 otherwise.

In usage, we iteratively run the E-step and M-step until the convergence
criteria are satisfied:

∑
(|Δmk,i|) ≤ 1×10−8,

∑
(|Δuk,i|) ≤ 1×10−8, and |Δp| ≤

1 × 10−8. Having obtained values for mk,i and uk,i. We can then compute the
composite weight (the natural logarithm of g(a, b)) for each pair defined earlier.

In our implementation, we set the decision threshold as 0.5, and do not
consider possible matches. Because using a domain expert to manually examine
these possible matches is expensive. Thus, the record-pair (a, b) is recognized as
a match if g(a, b) > 0.5; otherwise it is a non-match.

3 Bayesian Network Classifiers for Record Linkage

In this section we discuss different Bayesian network classifiers (NBC, TAN and
ETAN) for record linkage. After that, we discuss the hierarchy structure between
features, and the proposed hierarchy-restricted naive Bayes classifier (HR-NBC).
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3.1 The Naive Bayes Classifier

Let record-pair feature vector
−→
f be an input vector2 to the classifier, and Ck be

a possible class of the binary variable C, where C1 = 0 indicates a non-match
and C2 = 1 indicates a match. The model calculates the probability of Ck given
the feature values (distance for each field-pair). This can be formulated as:

P (Ck|−→f ) = P (Ck) × P (
−→
f |Ck)

P (
−→
f )

(3)

In the naive Bayes classifier (Fig. 1(a)), we assume the conditional indepen-

dence of features, P (
−→
f |Ck) can be decomposed as P (

−→
f |Ck) =

n∏

i=1

P (fi|Ck).

Thus, Eq. (3) becomes:

P (Ck|−→f ) = P (Ck) ×

n∏

i=1

P (fi|Ck)

P (
−→
f )

(4)

Fig. 1. The graphical representation of NBC, HR-NBC, TAN, ETAN. The blue arrow
represents the dependency introduced by hierarchy feature level information.

2 Here
−→
f = {fi|fi = Ik, i = 1, ..., n} contains n elements, whose values indicate the

distances between two records on specific fields, Ik is the state/interval discretised
from cf(ai, bi).
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With this equation, we can calculate P (Ck|−→f ) to classify
−→
f into the class

(match/non-match) with the highest P (Ck|−→f ). This approach is one of the base-
line methods we compare our model to.

Like the probabilistic record linkage, one of the often-admitted weaknesses
of this approach is that it depends upon the assumption that each of its fields
is independent from the others. The tree augmented naive Bayes classier (TAN)
and its improved version ETAN relax this assumption by allowing interactions
between feature fields.

3.2 The Tree Augmented Naive Bayes Classifier

TAN [14] can be seen as an extension of the naive Bayes classifier by allowing
a feature as a parent (Fig. 1(c)). In NBC, the network structure is naive, where
each feature has the class as the only parent. In TAN, the dependencies between
features are learnt from the data. Given a complete data set D = {D1, ...,DL}
with L labelled instances, where each instance is an instantiation of all the
variables. Conventional score-based algorithms for structure learning make use
of certain heuristics to find the optimal DAG that best describes the observed
data D over the entire space. We define:

Ĝ = arg max
G∈Ω

�(G,D) (5)

where �(G,D) is the log-likelihood score, which is the logarithm of the likelihood
function of the data that measures the fitness of a DAG G to the data D. Ω is
a set of all DAGs.

Assume that the score (i.e. BDeu score [15]) is decomposable and respects
likelihood equivalence, we can devise an efficient structure learning algorithm for
TAN. Because every feature fi has C as a parent, the structure (fi has fj and
C as parents, i �= j) has the same score with the structure, where fj has fi and
C as parents:

�(fi, {fj , C},D) + �(fj , C,D) = �(fj , {fi, C},D) + �(fi, C,D) (6)

Beside the naive Bayes structure, in the TAN, features are only allowed
to have at most one other feature as a parent. Thus, we have a tree structure
between the features. Based on the symmetry property (Eq. (6)), we can have an
efficient algorithm to find the optimal TAN structure by converting the original
problem (Eq. (5)) into a minimum spanning tree construction problem. More
details could be found in [9].

3.3 The Extended TAN Classifier

As discussed in the previous section, the TAN encodes a tree structure over all
the attributes. And it has been shown to outperform the naive Bayes classifier
in a range of experiments [14]. However, when the training data are scarce or
a feature and the class are conditionally independent given another feature, we
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might not get a TAN structure. Therefore, people have proposed the Extended
TAN (ETAN) classifier [9,10] to allow more structure flexibility.

ETAN is a generalization of TAN and NBC. It does not force a tree to cover
all the attributes, and a feature to connect with the class. As shown in Fig. 1(d),
ETAN could disconnect a feature if such a feature is not important to predict C.
Thus, ETAN’s search space of structures includes that of TAN and NBC, and
we have:

�(ĜETAN ,D) ≥ �(ĜTAN ,D) and �(ĜTAN ,D) ≥ �(ĜNBC ,D) (7)

which means the score of the optimal ETAN structure is superior or equal to
that of the optimal TAN and NBC (Lemma 2 in [9]).

In the ETAN, the symmetry property (Eq. (6)) does not hold, because a
feature (e.g. f2 in Fig. 1(d)) is allowed to be disconnected from the class. Thus,
the undirected version of minimum spanning tree algorithm cannot be directly
applied here. Based on Edmonds’ algorithm for finding minimum spanning trees
in directed graphs, people developed the structure learning algorithm of ETAN,
whose computational complexity is quadratic in the number of features (as is
TAN). For detailed discussions we direct the reader to the papers [9,10].

3.4 Hierarchy Restrictions Between Features

To utilize the benefits of existing domain knowledge, we extend the NBC method
by allowing hierarchy restrictions between features (HR-NBC). These restric-
tions are modelled as dependencies between features in HR-NBC.

Hierarchy restrictions between features commonly occur in real world prob-
lems. For example, Table 1 shows four address records, which refer to two restau-
rants (there are two duplicates). The correct linkage for these four records is:
(1) record 1 and 2 refer to one restaurant in Southwark, and (2) record 3 and 4
refer to another restaurant in Blackheath. As we can see, even record 1 and 3
exactly match with each other in the field of restaurant name, they cannot be
linked with each other because they are located in a different borough.

Based on the description of the example Table 1, we can see there is a hier-
archy restriction between the name and borough fields, where the borough field
has higher feature level than name field. Thus, intuitively, it is recommended to
compare the borough field first to filter record linkage pairs. To let our classifier

Table 1. Four restaurant records with name, address, borough/town and type infor-
mation.

Index Name (f1) Address (f2) Borough (f3) Type (f4)

1 Strada Unit 6, RFH Belvedere Rd Southwark Roman

2 Strada at Belvedere Royal Festival Hall Southwark Italian

3 Strada 5 Lee Rd Blackheath Italian

4 Strada at BH 5 Lee Road BLACKHEATH Italian
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capture such hierarchy restriction, we introduce a dependency between these
two fields (f3 → f1) to form our HR-NBC model (Fig. 1(b)). Thus, Eq. (4) now
becomes:

P (Ck|−→f ) = P (Ck) ×
P (f1|f3, Ck)

n∏

i=2

P (fi|Ck)

P (
−→
f )

(8)

Parameter Estimation. Let θ denote the parameters that need to be learned
in the classifier and let r be a set of fully observable record-pairs. The classical
maximum likelihood estimation (MLE) finds the set of parameters that maximize
the data log-likelihood �(θ|r) = log P (r|θ).

However, for several cases in the unified model, a certain parent-child state
combination would seldom appear, and the MLE learning fails in this situation.
Hence, maximum a posteriori algorithm (MAP) is used to mediate this problem
via the Dirichlet prior: θ̂ = arg maxθ log P (r|θ)P (θ). Because there is no infor-
mative prior, in this work we use the BDeu prior [15] with equivalent sample
size (ESS) equal to 1.

4 Experiments

This section compares PRL-W to different Bayesian network classifiers. The goal
of the experiments is to do an empirical comparison of the different methods,
and show the advantages/disadvantages of using different methods in different
settings. Also, it is of interest to investigate how such hierarchy feature level
information could improve the classifier’s performance.

4.1 Settings

Our experiments are performed on four different datasets3, two synthetic
datasets [12] (Country and Company) with sampled spelling errors and two real
datasets (Restaurant and Tungsten). The Country and Company datasets con-
tain 9 and 11 fields/features respectively. All the field similarities are calculated
by the Jaro-Winkler similarity function.

Restaurant is a standard dataset for record linkage study [8]. It was created by
merging the information of some restaurants from two websites. In this dataset,
each record contains 5 fields: name, address, city, phone and restaurant-type4.

Tungsten is a commercial dataset from an e-invoicing company named Tung-
sten Corporation. In this dataset, there are 2744 duplicates introduced by user
entry errors. Each record contains 5 fields: company name, country code, address
line 1, address line 4 and address line 6.

3 These datasets can be found at http://yzhou.github.io/.
4 Because the phone number is unique for each restaurant, it, on its own, can be

used to identify duplicates without the need to resort to probabilistic record linkage
techniques. Thus, this field is not used in our experiments.

http://yzhou.github.io/
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The experiment platform is based on the Weka system [16]. Since TAN and
ETAN can not deal with continuous field similarity values, these values are
discretised with the same routine as described in PRL-W. To simulate real world
situation, we use an affordable number (10, 50 and 100) of labelled records
as our training data. The reason is clear that it would be very expensive to
manually label hundreds of records. The experiments are repeated 100 times in
each setting, and the results are reported with the mean.

To evaluate the performance of different methods, we compare their ability
to reduce the number of false decisions. False decisions include false matches
(the record-pair classified as a match for two different records) and false non-
matches (the record-pair classified as a non-match for two records that are
originally same). Thus these methods are expected to get high precision and
recall, where precision is the number of correct matches divided by the number
of all classified matches, and recall is the number of correct matches divided by
the number of all original matches.

To consider both the precision and recall of the test, in this experiment, we
use F1 score as our evaluation criteria. This score reaches its best value at 1 and
worst at 0, and is computed as follows:

F1 = 2 × precision × recall

precision + recall
(9)

4.2 Results

The F1 score of all five methods in different scenarios are shown in Table 2, where
the highest average score in each setting is marked bold. Statistically significant
improvements of the best result over competitors are indicated with asterisks *
(p = 0.05).

As we can see, the PRL-W gets the best result in Company and Restaurant
datasets. And its performance does not depends on the number of labelled data.
The reason is the record linkage weights were computed with an EM-algorithm
as described in Eqs. (1) and (2) over the whole dataset (labelled and unlabelled
data). When two classes are easy to distinguish, it is not surprising that the
PRL-W could get good performance with limited labelled data.

Because the scarce labelled data and large number of features, TAN and the
state-of-the-art ETAN methods have relatively bad performances in Country
and Company datasets. Although it is proven that ETAN provides higher fit
to the data (Eq. (7)) than TAN, it receives lower classification accuracies in
most settings due to overfitting. In the Tungsten dataset, TAN gets the best
performance.

According to the results, both NBC and HR-NBC get high F1 scores in all
settings. This demonstrates the benefits of using these two methods when the
labelled data is scarce. Moreover, the performance of our HR-NBC5 is equal or
superior to that of NBC in all settings.
5 In each dataset, we only introduce one hierarchy restriction between the name and
address fields.
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Table 2. The F1 score of five record linkage methods in different datasets.

Dataset L PRL-W TAN ETAN NBC HR-NBC

Country 10 0.974 0.920* 0.899* 0.938* 0.941*

50 0.971* 0.970* 0.967* 0.976 0.976

100 0.967* 0.977* 0.978 0.980 0.981

Company 10 0.999 0.969* 0.965* 0.987* 0.988*

50 0.999 0.995* 0.992* 0.997* 0.997*

100 0.999 0.997* 0.996* 0.998 0.999

Restaurant 10 0.996 0.874* 0.863* 0.884* 0.897*

50 0.996 0.950* 0.952* 0.957* 0.958*

100 0.995 0.957* 0.958* 0.959* 0.960*

Tungsten 10 0.872 0.878 0.877 0.878 0.877

50 0.873* 0.904 0.900 0.904 0.904

100 0.873* 0.914 0.911 0.911* 0.912

*p = 0.05

5 Conclusions

In this paper, we discussed the hierarchy restrictions between features, and
exploited the classification performance of different methods for record linkage
on both synthetic and real datasets.

Results demonstrate that, in settings of limited labelled data, PRL-W works
well and its performance is independent of the number of labelled data, and show
that TAN, NBC and HR-NBC have better performances than ETAN even though
the latter method provides theoretically better fit to the data. Compared with
NBC, HR-NBC achieves equal or superior performances in all settings, which
show the benefits of introducing hierarchy restrictions between features in these
datasets.

We note, however, that our method might not be preferable in all cases. For
example, in a medical dataset, a patient could move her or his address and have
multiple records. In this case, two records with different addresses refer to the
same person. Thus, the hierarchy restrictions used in this paper will introduce
extra false non-matches.

In future work we will investigate other sources of domain knowledge to
enhance the performance of the resultant classifier, such as improving accuracy
by using specific parameter constraints [17] elicited from experts.
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Abstract. Bayesian network structure learning (BNSL) is the problem
of finding a BN structure which best explains a dataset. Score-based
learning assigns a score to each network structure. The goal is to find
the structure which optimizes the score. We review two recent studies of
empirical behavior of BNSL algorithms.

The score typically reflects fit to a training dataset; however, models
which fit training data well may generalize poorly. Thus, it is not clear
that finding an optimal network is worthwhile. We review a comparison
of exact and approximate search techniques. Sometimes, approximate
algorithms suffice; for complex datasets, the optimal algorithms produce
better networks.

BNSL is known to be NP-hard, so exact solvers prune the search
space using heuristics. We next review problem-dependent characteristics
which affect their efficacy. Empirical results show that machine learning
techniques based on these characteristics can often be used to accurately
predict the algorithms’ running times.

Keywords: Bayesian networks · Structure learning · Algorithm selec-
tion · Empirical hardness

1 Introduction

Bayesian networks (BNs) (Pearl 1988) are a widely-used formalism for repre-
senting uncertain relationships among variables in a domain of interest. In some
cases, domain experts can specify these relationships as a BN structure; however,
when they are unknown, we must learn the structure from data.

In the commonly-used score-based framework (Heckerman et al. 1995), a score
is assigned to each structure. The score is typically a penalized log-likelihood
which trades off the fit of a BN to the data with the complexity of the structure.
The BN structure learning problem (BNSL) is then cast as an optimization
problem in which the goal is to find a BN structure with an optimal score.

BNSL is known to be NP-hard (Chickering 1996), so early optimization
algorithms (such as Cooper and Herskovits (1992), Heckerman et al. (1995),
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Friedman et al. (1999), Chickering (2002), Moore and Wong (2003), Teyssier
and Koller (2005), Tsamardinos et al. (2006)) used local search techniques.
However, these algorithms suffer from the same problem faced by all local
search techniques: the quality of the found solution relative to an optimal one is
unknown. Consequently, a variety of algorithms have been proposed which solve
the problem exactly (Ott et al. 2004; Koivisto and Sood 2004; Silander and
Myllymäki 2006; Parviainen and Koivisto 2009; de Campos and Ji 2011; Yuan
and Malone 2013; Bartlett and Cussens 2015; van Beek and Hoffmann 2015).

Since BNSL is NP-hard, the exact algorithms have exponential worst-case
behavior. Nevertheless, many of the algorithms employ sophisticated heuristics,
such as branch-and-bound techniques, to provably rule out many possible struc-
tures. In practice, these algorithms can learn provably optimal networks for
modestly-sized datasets; in general, optimal networks on the order of 50 vari-
ables can be learned with reasonable resources (Malone et al. 2014).

The score of a BN structure is ideally a reflection of how well it models a
training dataset. The general assumption has been that networks which model
the training data well also accurately reflect new data. However, it is well-known
that a model can describe a training set very well, yet generalize poorly to new
data (Mitchell 1997). Thus, there is no guarantee that a network which optimizes
a score for a training set will generalize well to new data.

Until a recent study (Malone et al. 2015), there was no clear empirical
evidence on whether the increased computational efforts required by exact
approaches to BNSL are justifiable in terms of generalization to unseen test-
ing data. As the first half of this paper, we review that work, which shows that
for some datasets, simple strategies such as greedy hill climbing can provide
good generalization. However, the simple strategies fail to generalize well on
other datasets. Predictive likelihood results show that the optimal algorithms
consistently generalize well.

Because of their guarantees, all of the exact algorithms find optimal, equiva-
lent networks. So, in terms of generalization, these algorithms are equivalent. As
previously mentioned, though, the algorithms use sophisticated, and very dif-
ferent, heuristics to find the optimal network and prove its optimality. In terms
of resource requirements, then, specific implementations of these algorithms,
solvers, are very different (van Beek and Hoffmann 2015).

For the second half of this work, we review a study (Malone et al. 2014) which
shows that machine learning techniques can learn a simple, yet nontrivial, model
that accurately predicts the fastest solver for a given instance. Additional fea-
tures are shown to capture the hardness of an instance more accurately. Models
with the additional features significantly improve prediction accuracy.

The rest of this paper is structured as follows. In Sect. 2, we formally intro-
duce Bayesian networks and BNSL. Section 3 provides an overview of the specific
solvers used in this work, while Sect. 4 outlines the datasets used. Generalization
of learned networks is reviewed in Sect. 5, and Sect. 6 reviews results on exact
solver behavior. Finally, Sect. 7 concludes the paper.
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2 Background

A Bayesian network (Pearl 1988) is a compact representation of a joint proba-
bility distribution over the random variables V = {X1, . . . , Xn}. It consists of
a directed acycic graph (DAG) in which each vertex corresponds to one of the
random variables; a directed edge indicate direct dependence between two vari-
ables. Additionally, each variable Xi has an associated probability distribution,
conditioned on its parents in the DAG, PAi. The joint probability distribution
given by the network is

P (V) =
n∏

i=1

P (Xi|PAi). (1)

Given a dataset D = {D1, . . . DN}, where each Di is a complete instantiation
of V, the goal of structure learning is to find a Bayesian network N which best
fits D. The fit of N to D is quantified by a scoring function s. Many scoring func-
tions have been proposed in the literature, including Bayesian scores (Cooper
and Herskovits 1992; Heckerman et al. 1995), MDL-based scores (Suzuki 1999;
Silander et al. 2008), and independence-based scores (de Campos and Huete
2000), among others. The scoring functions can typically be interpretted as
penalized log-likelihood functions. All commonly used scoring functions are
decomposable (Heckerman et al. 1995); that is, they decompose into a sum of
local scores for each variable, its parents, and the data,

s(N ;D) =
n∑

i=1

si(PAi;D), (2)

where si(PAi) gives the score of Xi using PAi as its parents and is non-negative.
We omit D when it is clear from context.

A variety of pruning rules (Suzuki 1999; Tian 2000; Teyssier and Koller 2005;
de Campos and Ji 2011) can be used to demonstrate that some parent sets are
never optimal for some variables. Additionally, in practice, large parent sets are
often pruned a priori. We refer to parent sets remaining after all pruning as
candidate parent sets and denote all candidate parent sets of Xi as Pi.

The Bayesian network structure learning problem (BNSL) is defined as fol-
lows.

The BNSL Problem
Input: A set V = {X1, . . . , Xn} of variables and a local score

si(PAi) for each PAi ∈ Pi for each Xi.
Task: Find a DAG N∗ such that

N∗ ∈ arg min
N

n∑

i=1

si(PAi),

where PAi is the parent set of Xi in N and PAi ∈ Pi.
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3 Solvers

This section describes all solvers (algorithm implementations) used in this work.
Hill climbing with a tabu list and random restarts (tabu, http://www.
bnlearn.com). Hill climbing is a widely-used local search technique in discrete
optimization (Russell and Norvig 2003) that typically finds local optima for
an objective function f by maintaining a current solution and applying search
operators. At each step, all search operators are tentatively applied to the cur-
rent solution to find its neighborhood. The member of the neighborhood which
results in the biggest improvement to f is selected as the new current solu-
tion. This process is repeated until a local optimum is found. Random restarting
is a strategy to escape from a local optimum by randomly changing a locally
optimal solution and restarting the search from the new random solution. The
tabu list strategy (Glover 1990) augments random restarts by keeping track of
recently visited solutions; solutions in the tabu list are ignored when considering
new neighborhoods. Even with random restarts and a tabu list, the algorithm
provides no guarantees on the proximity of local optima to globally optimal
solutions.

In the context of BNs, each solution corresponds to a network; the search
operators considered here are edge addition, deletion and reversal (as long as the
resulting structure is a DAG). The objective function f is exactly the scoring
function s.

Max-min hill climbing (MMHC, http://www.bnlearn.com). Max-min hill
climbing (Tsamardinos et al. 2006) is a two-phase hybrid learning algorithm.
During the first phase, it uses a set of statistical independence tests to iden-
tify arcs that are forbidden from appearing in the learned network. The second
phase uses tabu to find local optima within this restricted space. Here we use
a mutual information statistical test during the first phase. The first phase of
MMHC is similar to constraint-based methods such as pc (Spirtes et al. 2000).
Empirically, MMHC has been shown to outperform several other state-of-the-
art algorithms, including pc, sparse candidate, three phase dependency analy-
sis, optimal reinsertion and greedy equivalence search (Tsamardinos et al. 2006).
While MMHC does guarantee to recover BN structures when the data are faith-
ful to a DAG in the large sample limit (Tsamardinos et al. 2006), it does not
offer any non-trivial guarantees about the generalization quality of the learned
network for unfaithful, finite datasets.

Chow-Liu (CL). The Chow-Liu algorithm (Chow and Liu 1968) is an exact,
polynomial-time algorithm for finding an optimal tree-structured BN. The algo-
rithm calculates the mutual information between all pairs of variables to form a
weighted graph. The maximum spanning tree through the graph corresponds to
the optimal tree-structured BN.

A∗ (A∗, http://www.urlearning.org). State space search using A∗ (Yuan and
Malone 2013) is a provably optimal algorithm which is guaranteed to optimize
s. It is based on casting BNSL as a shortest-path finding problem; A∗ is then

http://www.bnlearn.com
http://www.bnlearn.com
http://www.bnlearn.com
http://www.urlearning.org
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used to solve the shortest path problem, which gives the optimal network for
the given local scores. For the exact solver comparisons, we refer to a variant of
A∗ which uses multiple pattern databases as A∗ec.

Integer linear programming (ILP, http://www.cs.york.ac.uk/aig/sw/
gobnilp/). Another approach to solving BNSL optimally is based on integer
linear programming (ILP) (Bartlett and Cussens 2015). In ILP, BNs are defined
as vertices on a particular polytope, and a cutting plane approach is used to find
the vertex corresponding to the optimal BN.

Branch and Bound (BnB, http://www.ecse.rpi.edu/∼cvrl/structlearning.
html). The branch-and-bound search algorithm (de Campos and Ji 2011)
searches for optimal networks in a relaxed space of directed graphs that may
contain cycles. Found cyclic solutions are iteratively ruled out by removing one
arc in it and branching over the possible choices of the arc to remove.

Provably optimal (opt). All optimal algorithms (including A∗, ILP, BnB,
and their variants) find equivalent networks1. Thus, in the context of the gener-
alization analysis, they are equivalent and only one of the optimal algorithms is
used for each dataset.

Solver resource constraints. For running the experiments we used a cluster
of Dell PowerEdge M610 computing nodes equipped with two 2.53-GHz Intel
Xeon E5540 CPUs and 32-GB RAM. For each individual run, we used a timeout
of 2 h and a 28-GB memory limit. We treat the runtime of any instance as 2 h if
a solver exceeds either the time or memory limit.

4 Datasets

We used a similar set of benchmark datasets for both studies; in total, we used
48 distinct datasets2:

– Datasets sampled from benchmark Bayesian networks. 19 datasets, sampled.
– Datasets from the UCI repository. 19 datasets, UCI.
– Datasets sampled from random Bayesian networks. 7 datasets, syn.
– Datasets we compiled by processing log files. 3 datasets, log.

We preprocessed each dataset by removing all continuous variables, variables
with very large domains (e.g., unique identifiers), and variables that take on only
one value. Other than preprocessing, the datasets were used slightly differently
in the generalization study compared to the exact solver analysis; the relevant
sections discuss exactly how the datasets were used.
1 This work assumes s is score-equivalent (Heckerman et al. 1995).
2 The datasets are available at http://bnportfolio.cs.helsinki.fi/.

http://www.cs.york.ac.uk/aig/sw/gobnilp/
http://www.cs.york.ac.uk/aig/sw/gobnilp/
http://www.ecse.rpi.edu/~cvrl/structlearning.html
http://www.ecse.rpi.edu/~cvrl/structlearning.html
http://bnportfolio.cs.helsinki.fi/
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5 Generalization of Learned Networks

Our aim in the first part of this work is to shed light on the relationship of
different learning strategies, based on the solvers discussed in Sect. 3, and the
unknown discrepancy between training set scores and generalization. In par-
ticular, we address the following research questions for different fixed learning
algorithms and training sets.

Q1 How do hard constraints on the number of parents in learned structures
affect their generalization?

Q2 How does the amount of training data affect the generalization of learned
structures?

Q3 Which learning strategies result in networks with the best generalization?

Our main findings, based on a rigorous experimental setup, are the following.
With respect to Q1, we show that for small datasets, hard constraints limiting
the maximum number of parents to 2 improves generalization on a few datasets
for local search algorithms; however, optimal algorithms usually benefit from a
higher limit. We answer Q2 by using increasingly large subsets of available train-
ing data. Regardless of the algorithms’ guarantees, more training data results
in more accurate predictions on testing data. Finally, we address Q3 by consid-
ering all of the data collected during the evaluation. For some datasets, simple
strategies such as the tractable Chow-Liu algorithm can provide good general-
ization. However, the simple strategies fail to generalize well on other datasets.
Predictive likelihood results show that optconsistently generalizes well.

5.1 Experimental Setup

Datasets. We used 29 datasets from the UCI and sampled categories; the num-
ber of variables in the datasets ranges from 17 to 60, and the number of records
ranges from about 30 to 20 000. We used standard 10-fold cross-validation in
order to evaluate the learning strategies.

Parent limit. For all algorithms except CL, we used hard limits of 2 and 8
on the number of parents. When discussing algorithms, we use a subscript to
indicate the maximum number of parents, such as opt8.

Scoring function. We selected the commonly-used Bayesian Dirichlet with
score equivalence and uniform structure prior (BDeu) scoring function (Heck-
erman et al. 1995) with an equivalent sample size (ESS) of 1 as the scoring
function.

Inference. For all learned structures, parameter values were set using a sym-
metric Dirichlet prior with a concentration parameter of 1 (which is equivalent
to Laplacian smoothing). All testing likelihood calculations were performed by
multiplying relevant family factors.

Evaluation. In order to address our research questions, we use the predictive
likelihood to evaluate the generalization capability of the learned networks. In
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particular, for a dataset d and learning strategy l, we calculate the per-prediction-
likelihood, �d,lpp , which is the likelihood of each prediction on the test set,

�d,li =
N∑

r=1

log P (dr|N ) =
N∑

r=1

n∑

i=1

log P (Xr
i |PAr

i ) (3)

�d,lpp = −
∑10

i=1 �d,li

Nd · nd
, (4)

summing over the folds i = 1..10, where �d,li is the predictive likehood on the
test set for fold i using learning strategy l, Nd is the number of records in the
test set, and nd is the number of variables in the dataset.

The numerator of Eq. 4 is the sum over all of the test set predictive likeli-
hoods for learning strategy l and dataset d. Each �d,li term comprises Nd

10 · nd

terms. In total, the sum in the numerator includes Nd · nd terms, each of which
corresponds to the log probability of one variable of one record from the test set.
Consequently, the denominator serves as a normalizing constant, and �d,lpp is the
average log probability of each prediction.

In order to compare learning strategies, we normalize the �d,lpp values for each
dataset between 0 and 1 to obtain

�̂d,lpp = 1 − �d,lpp − minl′{�d,l
′

pp }
maxl′{�d,l

′
pp } − minl′{�d,l

′
pp } (5)

where l′ ranges over all learning strategies. Note that, after normalization, the
learning strategy with the best �d,lpp has �̂d,lpp = 0 while the worst learning strategy
has �̂d,lpp = 1.

It is important to note that �d,lpp and �̂d,lpp consider all variables equally. In
particular, they do not consider a special “class” variable.

5.2 Impact of Restricting Parent Set Size

We study question Q1 by comparing the �̂d,lpp among datasets when using k = 2
and k = 8 as the maximum number of parents for each learning algorithm.
The BDeu score implicitly restricts the maximum number of selected parents as
a soft constraint by integrating over all parameterizations of parent instantia-
tions. Other scores, such as MDL, explicitly incorporate a complexity penalty to
discourage large parent sets. In both cases, though, this restriction is a soft con-
straint. Here, we consider the maximum number of parents as a hard constraint.

Optimal. Figure 1 (left) shows the performance (in terms of �̂d,lpp ) of generaliza-
tion using optk for parent limits k = 2, 8. The (left, top) and (left, bottom)
plots show distinctly different patterns. Figure 1 (left, top) clearly shows that
opt2 results in better generalization for sampled datasets with 100 records.
However, as the number of records increases, opt8 yields better performance. In
contrast, for UCI datasets, opt8 is almost always better.
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Fig. 1. The �̂d,lppvalues for opt (left), tabu (center) and MMHC (right) with a hard
limit of k = 2 and k = 8 for sampled (top) and UCI (bottom) datasets. The datasets
are sorted in ascending number of records. Lighter colors indicate better performance.
Close inspection of the MMHC strategies show some slight difference; however, they
are difficult to discern in the scaled image.

Tabu. In contrast to the results for opt, Fig. 1 (center, bottom) shows that
tabu2 generalizes better than tabu8 for UCI datasets. One possible explana-
tion for this difference is that the greedy strategy of tabu8 favors structures
which improve the likelihood while increasing the complexity of the learned
structures. Thus, the learned structure overfits the training data and does not
generalize well to testing data. In contrast, as opt is guaranteed to find the
best-scoring structure, it finds structures which better balance training set like-
lihood and complexity. The hard constraints on the number of parents for tabu2

forbid it from selecting the complex structures. Both tabu2 and tabu8 typically
generalize well on sampled datasets.

MMHC. Figure 1 (right) shows that the hard parent limit has little effect on
�̂d,lpp for MMHC. The first phase of MMHC uses a set of statistical independence
tests to restrict the learned network structures. For many of the datasets, the
relatively small number of records restricts the power of these tests and leads to
a very small search space in the second phase, despite initially allowing many
more structures for the 8-parent space.

In summary, the answer to Q1 clearly depends both on the training datasets
and learning algorithm; the global guarantees of opt allow it to fully take advan-
tage of the larger k = 8 search space, but the local search strategy of tabu per-
forms better in the more restricted k = 2 space.

More data is required to accurately estimate the conditional probability dis-
tributions for complex structures (with more parameters). This may explain why
opt2 generalizes better than opt8 for datasets with a small number of records.
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Fig. 2. The �̂d,lpp values for using the opt8 (left), tabu2 (center), and CL (right) learn-
ing strategies as the number of records increases. The top row is for the carpo dataset
(sampled); the bottom row is for the agaricus dataset (UCI). Note the different
y-axes for the plots. Lower values and smaller boxes are better.

5.3 Impact of Amount of Training Data

To investigate the impact of the amount of available training data, to answer Q2
we compared how �d,lpp of opt8, tabu2 and CL behave as the number of records
available for training increases. Figure 2 shows that for all algorithms on both
sampled and UCI datasets, more records lead to better �d,lpp . Furthermore, the
plots also show that with more records, the variance of �d,lpp decreases. Interest-
ingly, the plot also shows that CL performs better than opt8 and tabu2 on
carpo, a sampled dataset, when only 100 records are available. This again high-
lights that restricted model classes can generalize better than those which allow
more parameters, especially when little data is available to estimate the para-
meter values. Despite the differences in guarantees, opt8, tabu2 and cl perform
similarly for carpo1 000 and carpo10 000.

As with carpo, for the UCIagaricus dataset, the likelihood improves and
variance decreases as the number of records increases. However, opt8 improves
from �d,lpp ≈ 0.7 for 81 records to �d,lpp ≈ 0.48 with 812 records. In contrast,
tabu2 only improves from �d,lpp ≈ 0.7 to about �d,lpp ≈ 0.55, and CL exhibits even
less improvement. For agaricus, opt8 using only 812 records results in better
generalization than tabu2 or CL with all 8 123 records.

We observed similar behavior on other sampled and UCI datasets as the
amount of training data was varied. The same general trends hold for all
algorithms and datasets with respect to Q3. Namely, the predictive likelihood
improves and variance decreases as the size of the training set increases.



114 B. Malone

w
at
er

10
0

m
ild

ew
10
0

al
ar
m

10
0

ca
rp
o

10
0

ha
ilfi

nd
er

10
0

m
ild

ew
1
00
0

al
ar
m

1
00
0

ha
ilfi

nd
er

1
00
0

ca
rp
o

1
00
0

co
nn
ec
t
6
00
0

in
su
ra
nc
e

10
00
0

al
ar
m

10
00
0

ca
rp
o

10
00
0

empty

mmhc 8

cl

tabu 2

opt 8
L
ea
rn
in
g
St
ra
te
gy

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

lu
ng zo
o

ly
m
ph

sp
ec
t

fla
g

so
yb

ea
n

tu
m
or

de
rm

at
ol
og
y

vo
te
s

an
ne
al

cr
ed
it

kr
ed
it

kr
-v
s-
kp

hy
po
th
yr
oi
d

ag
ar
ic
us

le
tte
r

empty

mmhc 8

cl

tabu 2

opt 8

L
ea
rn
in
g
St
ra
te
gy

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fig. 3. The �̂d,lpp values for the best learning strategies. The empty network is included
as a baseline. The sampled datasets are shown in the left heatmap, and UCI datasets
are in the right. The datasets are sorted in ascending number of records. Lighter colors
indicate better performance (Color figure online).

5.4 Comparison Across Learning Strategies

Finally, based on the previous results, we studied Q3 by choosing the best learn-
ing strategies and comparing their �̂d,lpp across all of the datasets. In essence, we fix
the training set while varying the learning strategy. Additionally, empty (with
no edges) was included as a baseline. The results in Fig. 3 show several expected
trends and a few surprises. As expected, empty is the worst on almost all of the
datasets. For the reasons mentioned in Sect. 5.2, MMHC8 was typically worse
than the other strategies. These trends are consistent for both sampled and
UCI datasets. For sampled datasets, tabu2 and opt8 have very similar �̂d,lpp for
most datasets; the �̂d,lpp of CL is also surprisingly similar to that of the two more
“sophisticated” strategies.

For UCI datasets, opt8 continues to consistently have good �̂d,lpp . On the other
hand, CL and tabu2 exhibit much more inconsistency in their generalization
relative to opt8. For some datasets, such as dermatology and kredit, they match
opt8; on others, such as credit and tumor,CL and tabu2 do not generalize well.
Surprisingly, CL exhibits the best �̂d,lpp for letter, the UCI dataset with the most
records.

For Q3, opt guarantees consistently translate into networks with good gener-
alization. Algorithms with weaker guarantees produce networks with inconsistent
generalization.

Comments on Datasets. Besides the behavior of the learning algorithms, these
results also suggest differences in the datasets themselves. In particular, it seems
that sampled datasets are “easier,” in the sense that many learning strategies
find networks which generalize well. On the other hand, only the strategy with
strong guarantees consistently generalizes well on UCI datasets. In some sense,
this result is not surprising. The sampled data is by construction accurately
modeled by a BN, while it is very unlikely that UCI datasets are faithful to any
BN. These caveats are important for future evaluations.
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Fig. 4. Comparison of two state-of-the-art algorithms for finding an optimal Bayesian
network. Runtimes below 1 or above 7200 s are rounded to 1 and 7200, respectively.
See Sect. 5 for descriptions of the solvers and the datasets.

6 Exact Solver Empirical Hardness Models

As shown in Sect. 5, exact algorithms often lead to networks which generalize
better than those found with approximation algorithms. Due to the intrinsic
differences between the algorithmic approaches underlying the solvers, it is not
surprising that their relative efficiency varies on a per-instance basis. To exem-
plify this, a comparison of the runtimes of ILP and A∗ec is illustrated in Fig. 4
using typical benchmark datasets. Evidently, neither of these two solvers domi-
nates the other, as there clearly are instances on which one solver is much more
efficient than the other.

To explain the observed orthogonal performance characteristics shown in
Fig. 4, it has been suggested, roughly, that typical instances can be solved to opti-
mum by A∗ if the number of variables n is at most around 50 (Fan et al. 2014),
and by ILP if the number of candidate parent sets m is not very large (Bartlett
and Cussens 2015).

Unfortunately, beyond this rough characterization, the practical time com-
plexity of the fastest algorithms is currently poorly understood. The gap
between the analytic worst-case and best-case bounds is very large, and typ-
ical instances fall somewhere in between. Moreover, the sophisticated search
heuristics employed by the algorithms are quite sensitive to small variations in
the instances, which results in somewhat chaotic looking behavior of runtimes.
Even the following basic questions are open:

Q4 Are the simple features, the number of variables n and the number of candi-
date parent sets m, sufficient for determining which of the available solvers
is fastest for a given instance?

Q5 Are there other efficiently computable features that capture the hardness of
the problem significantly more accurately than n and m alone?

In this section, we answer both these questions in the affirmative. We answer
Q4 by learning a simple, yet nontrivial, model that accurately predicts the fastest
solver for a given instance based on n and m only. We show how this yields an
algorithm portfolio that almost always runs as fast as the fastest algorithm, thus
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significantly outperforming any fixed algorithm on a large collection of instances.
To address this issue and answer Q5, we introduce and study several additional
features that potentially capture the hardness of the problem more accurately
for a given solver. In particular, we show that learning models with a much wider
variety of features yields significant improvement in the prediction accuracy.

Related Work. The idea of learning to predict an algorithm’s runtime from
empirical data is not new. Rice (1976) proposed feature-based modeling to
facilitate the selection of the best-performing algorithm for a given problem
instance, considering various example problems. More recently, machine learn-
ing and empirical hardness models (Leyton-Brown et al. 2002) have been used
for solver portfolios in several domains.

6.1 Capturing Hardness

The hardness of a BNSL instance, relative to a given solver, is the runtime
of the solver on the instance. We aim to find a model that approximates the
hardness and is efficient to evaluate for any given instance from a small set
of efficiently computable features of BNSL instances. We can then learn the
model by computing the feature values and collecting empirical runtime data
from a set of BNSL instances. We first introduce several candidate features that
are potentially informative about the hardness of BNSL instances for one or
more solvers. We then explain how we learn a hardness model and estimate its
prediction accuracy.

Features for BNSL. We consider several features which naturally fall into four
categories, explained next, based on the strategy used to compute them: Basic,
Basic extended, Lower bounding, and Probing. Due to space constraints,
please refer to the original paper for the complete list of features.

The Basic features include the number of variables n and the mean number
of candidate parent sets per variable, m/n. The features in Basic extended
summarize the size distribution of the collections Pi and the parent sets PAi

in each Pi. In the Lower bounding category, the features reflect statistics
from a directed graph that is an optimal solution to a relaxation of the original
BNSL problem. In the Simple LB subcategory, a graph is obtained by letting
each variable select its best parent set according to the scores. Many solvers
use this lower bounding technique. In the Pattern database LB subcategory,
the features are the same but the graph is obtained from a more sophisticated
relaxation using pattern databases (Yuan and Malone 2013).

Probing refers to running a solver for several seconds and collecting statistics
about its behavior during the run. We consider three probing strategies: tabu, an
anytime variant of A∗ (Malone and Yuan 2013), and ILP (Cussens et al. 2013).
Probing is implemented by running each algorithm for 5 s and collecting several
features of the learned structure.

Model Training and Evaluation. Based on the features discussed in the pre-
vious section, we trained reduced error pruning trees (REP trees) (Quinlan 1987)
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to predict the runtime of an instance of BNSL for each solver. We chose these
decision tree models because of their interpretability, compared to techniques
such as neural networks or support vector machines, and because of their flexi-
bility, compared to linear regression and less expressive model classes.

6.2 Experiment Setup

We used all of the datasets mentioned in Sect. 4. We considered 5 different scoring
functions3: BDeu with the Equivalent Sample Size selected from {0.1, 1, 10, 100}
and BIC. For each dataset and scoring function, we generated scores with parent
limits ranging from 2 to up to 6. The size of the datasets ranged from about
100 records to over 60, 000 records. For portfolio construction we removed very
easy instances (solved within 5 s by all solvers) as uninteresting, and instances
on which all solvers failed, leaving 586 instances. We evaluated the portfolios
using 10-fold cross-validation.

6.3 Portfolios for BNSL

This section focuses on the construction of practical BNSL solver portfolios in
order to address question Q4. Optimal portfolio behavior is to always select the
best-performing solver for a given instance. As the main results, we will show
that, perhaps somewhat surprisingly, it is possible to construct a practical BNSL
solver portfolio that is close-to-optimal using only the Basic features.

As the basis of this work, we ran all the solvers and their parameterizations
on all the benchmark instances. Figure 5 (left) shows the number of instances for
which each solver was the fastest. The performance of BnB is in general inferior
to the other solvers; in the following we will focus on ILP and A∗ec. However,
recall Fig. 4: while ILP is clearly best measured in the number of instances
solved the fastest, the performance of ILP on a per-instance basis is very much
orthogonal to that of A∗. We now show that a simple BNSL solver portfolio can
capture the best-case performance of both of these approaches.

A Very Simple Solver Portfolio. We found that using only the Basic fea-
tures are enough to construct a highly efficient BNSL solver portfolio. While on
an intuitive level the importance of these two features may be to some extent
unsurprising, such intuition does not directly translate into an actual predictor
that would close-to-optimally predict the best-performing solver.

Figure 5 (right) shows the performance of each individual solver variant, as
well as the Virtual Best Solver (VBS), which is the theoretically optimal portfolio
which always selects the best algorithm, constructed by selecting a posteriori
the fastest solver for each input instance. “portfolio” is our simple portfolio
which uses only the Basic features. As the figure shows, the performance of our
simple portfolio is very close to the theoretically optimal performance of VBS
and greatly outperforms the individual solvers.
3 Our results were not very sensitive to the scoring function, except its effect on the

number of CPSs, so our results generalize to other decomposable scores.
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Fig. 5. (left) VBS contributions of each solver, i.e., the number of instances for which
a solver was fastest. Several variants of ILP and A∗ were used. Please see the original
paper for more details. (right) Solver performance: VBS, our simple portfolio, ILP,
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6.4 Predicting Runtimes

To address Q5, we investigate the effect of the feature sets on prediction accuracy.
As just shown, the Basic features can effectively distinguish between solvers

to use on a particular instance of BNSL. However, notable improvements in
runtime prediction accuracy are gained by employing a much wider range of
features. Figure 6 (left) compares the actual runtimes for A∗ec to the predictions
made by the REP tree model trained using only the Basic features. The model
clearly splits the instances into only a few bins and predicts the same runtime
for all instances in the bin. The actual runtime ranges are quite wide within each
bin. For example, for the bin with predictions near 80 s, the actual runtimes span
from around 5 s to about an hour. Even though these predictions allow for good
portfolio behavior, they are not useful to estimate actual runtime.

On the other hand, Fig. 6 (right) shows the same comparison for models
learned using A∗ probing features (1–38, 51–62). Many more of the predictions
fall along or near the main diagonal. That is, the larger, more sophisticated
feature set results in more accurate runtime predictions. We observed similar,
though less pronounced, trends for ILP.

6.5 REP Tree Characteristics

For additional insight, we considered how often specific features were selected
(Table 1). A feature is rarely selected for predicting both solvers. This further
confirms that the solver runtimes are influenced by different structural properties
of instances. Nevertheless, Simple LB features were helpful for both algorithms.
Somewhat surprisingly, the Pattern database LB features were more useful
for ILP, even though A∗ec directly uses the pattern database in its search. For
all of the graph-based features (node degree and non-trivial SCCs), the standard
deviation was always selected over the maximum and mean. This suggests that
systematic variations between nodes are important for determining the hardness
of an instance. The table also shows that a small number of features were con-
sistently selected for most of the cross-validation folds for any particular solver.
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Fig. 6. Predicted vs. actual runtimes for A∗ec using Basic features only (left) and all
features up to A∗ probing (right).

Qualitatively, this implies that most of the trees were based on the same small
set of features. Developing a more in-depth understanding of these instance char-
acteristics in light of solver performance is an important aspect of future work.

Table 1. Features used for A∗ec and ILP in more than 5 of the 10 cross-validation
folds. For each solver, the set of possible features consisted of non-probing features
(1–38) and the relevant probing features.

Feature A∗-ec ILP

(1) Number of variables, n 10 0

(2) Number of CPS, mean 0 7

(3) Number of CPS, sum, m 2 10

(4) Number of CPS, max 0 7

(8) CPS cardinalities, sd 0 8

(11) Simple LB, Node in-degree, sd 0 7

(14) Simple LB, Node out-degree, sd 8 0

(17) Simple LB, Node degree, sd 10 0

(26) Pd LB, Node in-degree, sd 1 9

(38) Pd LB, Size of non-trivial SCCs, sd 0 8

(62) A∗ probing, Error bound 10 0

(68) ILP probing, Node out-degree, sd 0 10

(74) ILP probing, Error bound 0 10

7 Discussion

Bayesian network structure learning (BNSL) continues to be an area of very
active research. In this review, we have presented two orthogonal studies of
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BNSL algorithms. The first demonstrated that, whenever possible, exact learning
algorithms should be used for finding structures. The second study showed that
it is typically possible to not only select the best exact learning algorithm for a
given dataset but also predict how long it will take to find the optimal structure.

These studies suggest a variety of future investigations. For example, the most
“Bayesian” approach to generalization should be a model averaging strategy, but
the current work considers only a single structure. In light of the generalization
results, empirical hardness models could be built for different dataset categories.
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Gustaf Hällströmin katu 2b, 00014 Helsinki, Finland

{yuan.zou,teemu.roos}@hiit.fi
http://www.hiit.fi/cosco/promo

Abstract. We study BIC-like model selection criteria and in particular,
their refinements that include a constant term involving the Fisher infor-
mation matrix. We observe that for complex Bayesian network models,
the constant term is a negative number with a very large absolute value
that dominates the other terms for small and moderate sample sizes. We
show that including the constant term degrades model selection accuracy
dramatically compared to the standard BIC criterion where the term is
omitted. On the other hand, we demonstrate that exact formulas such
as Bayes factors or the normalized maximum likelihood (NML), or their
approximations that are not based on Taylor expansions, perform well.
A conclusion is that in lack of an exact formula, one should use either
BIC, which is a very rough approximation, or a very close approximation
but not an approximation that is truncated after the constant term.

1 Introduction

A Bayesian network encodes joint probability distributions of a set of random
variables via a directed acyclic graph (DAG). Since Bayesian networks with
different network topologies form a lattice-like hierarchy with both nested and
non-nested relations, it becomes imperative to regularize model complexity when
learning the structure from finite data. In this paper we study BIC-like model
selection criteria that can be derived via a Laplace approximation, and their
properties in the case of Bayesian networks. Our main focus is on complexity
regularization and in particular, the lower-order terms such as the constant term,
log

∫
Θ

√
det I(θ) dθ, involving the Fisher information, I(θ), which are omitted in

the standard BIC formula.
An approximation of the Bayes factor (or the marginal likelihood) [5] under

Jeffreys’ prior, where the constant term is retained, results in a so called Fisher
information approximation (FIA). We show that contrary to what might be
expected, namely that a more refined approximation such as FIA should be
better than a rough approximation such as BIC, FIA tends to be extremely
inaccurate for small and moderate sample sizes. In particular, we observe that
for complex Bayesian network models (with thousands or tens of thousands of
independent parameters), the constant term is a negative number with a very
c© Springer International Publishing Switzerland 2015
J. Suzuki and M. Ueno (Eds.): AMBN 2015, LNAI 9505, pp. 122–135, 2015.
DOI: 10.1007/978-3-319-28379-1 9
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large absolute value that dominates all the other terms in FIA unless the sample
size is greater than the number of parameters. The absolute value of the term
grows rapidly with increasing model order, which makes the FIA criterion favor
complex models unless the sample size is extremely large. Similar results have
been reported for other model families such as the exponential model [9] and
Markov sources [15].1

In this paper, we first review the FIA approximation and discuss its relation
to certain other model selection criteria. Because there is no closed form formula
for the Fisher information integral under most model families, including Bayesian
networks, we illustrate how to estimate it with arbitrarily fine precision using
Monte Carlo techniques. We carry out model selection experiments where we
highlight the complexity regularization performance by the various criteria in
order to determine which of the criteria are safe and which should be avoided
under given conditions.

2 The Fisher Information Approximation

In this section, we discuss what we call the Fisher information approxima-
tion (FIA), and relate it to other model selection criteria. First, let’s con-
sider the Bayes factor criterion before investigating asymptotic approximations.
The Bayes factor measures the ratio of marginal likelihoods between competing
models.

BF12 =
p(xn ; M1)
p(xn ; M2)

=

∫
ΘM1

p(xn ; θ1,M1) p(θ1) dθ1
∫

ΘM2
p(xn ; θ2,M2) p(θ2) dθ2

, (1)

where p(θ1) and p(θ2) denote the parameter priors under the two models, M1

and M2, respectively.
The marginal likelihood has a built-in, implicit penalty for model complex-

ity, see [10]. A closed form solution for the marginal likelihood is only available
for a limited set of model families when conjugate priors exist. For other model
families, we usually need to resort to sampling methods such as MCMC meth-
ods [3]. Furthermore, even when an efficient formula for calculating Bayes factors
is available, like in the case of Bayesian networks discussed in this work, model
selection performance may be highly sensitive to the choice of the associated
parameter priors [18].

2.1 Approximation of Marginal Likelihood

To avoid the selection of a specific prior and to obtain a more objective method
for model selection, we can use asymptotic (large-sample) approximations of the
1 Our earlier paper on this topic appeared as an invited paper at the ITA-2013 work-

shop. Hence, no prior peer-reviewed publication of this material exists beyond the
basic Monte Carlo approximation proposed in [13]. In particular, this is the first
study where the lower-order terms of information criteria are discussed in con-
junction with a model class for which model selection criteria are being intensively
developed.
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Bayes factor or the marginal likelihood such as the classic BIC criterion [16].
The BIC can be obtained via Laplace approximation, which involves a Taylor
expansion of the log-likelihood function around its maximum. For instance, if we
have a model M with dM free parameters, jointly denoted by θ ∈ ΘM, and a
data set xn with sample size n, the Laplace approximation of the log-marginal
likelihood is given by

log p(xn ; M) = log
∫

ΘM
p(xn ; θ,M) p(θ) dθ

= log p(xn ; θ̂(xn)) + log p(θ̂(xn))

+
dM
2

log(2π) − 1
2

log det Î(θ̂(xn)) + o(1),

(2)

where p(θ) is the parameter prior, the maximum likelihood parameters are
denoted by θ̂(xn), and Î(θ) is the empirical Fisher information matrix at θ. If
the distributions of model M are independent and identically distributed (i.i.d.),
by the law of large numbers, we have the average per-symbol empirical Fisher
information converging to its expectation I(θ̂(x)):

n−1Î(θ̂(xn)) → I(θ̂(xn)), where I(θ) = Eθ Î(θ). (3)

Then by simple manipulation, the fourth term in Eq. (2) can be approximated
as

1
2

log det Î(θ̂(xn)) =
dM
2

log n +
1
2

log det I(θ̂(xn)) + o(1). (4)

Finally, we can obtain the approximation of log marginal likelihood as

log p(xn ; M) = log p(xn ; θ̂(xn)) − dM
2

log n

+ log p(θ̂(xn)) +
dM
2

log (2π) − 1
2

log det I(θ̂(xn)) + o(1).
(5)

When the sample size n increases, lower order terms that are independent of n
will eventually be dominated by the terms that grow with n. Therefore, for very
large sample sizes, we can omit the last four terms in Eq. (5) and change the
sign to obtain the familiar BIC criterion:

BIC(xn ; M) = − log p(xn ; θ̂M(xn)) +
dM
2

log n, (6)

To get a more precise approximation, we would need to include the lower-
order terms as well. However, they depend on the chosen prior. An often quoted
objective choice is the Jeffreys prior. The Jeffreys prior was initially proposed
to acquire an invariance property under reparameterization [4]. Later, studies
have shown that the Jeffreys prior also has several minimax properties [1,11].
For example, it achieves the asymptotic minimax risk for model families with
smooth finite-dimensional parameters. This requirement is met in most of the
cases for Bayesian networks. However, when the maximum likelihood parameters
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lie on the boundary of the parameter space, Jeffreys prior may fail to achieve the
asymptotic minimax property. In this work, for the sake of simplicity, we assume
that the necessary conditions are satisfied and ignore the boundary issues.

The Jeffreys prior is proportional to the square root of the determinant of
the Fisher information matrix:

p(θ) = FII(M)−1
√

det I(θ). (7)

The normalizing term, which we call the Fisher information integral (FII), is
given by

FII(M) =
∫

ΘM

√
det I(θ) dθ.

Plugging Eq. (7) in Eq. (5), we get the Fisher information approximation:

FIA(xn ; M) = log p(xn ; θ̂M(xn)) − dM
2

log
n

2π
− log FII(M) + o(1). (8)

For Bayesian networks, which is the model class studied in this work, the
Jeffreys prior has been derived in [7]. Unfortunately, as the authors showed,
evaluating it is NP-hard. Therefore, it is unlikely that an efficient formula for
FII could be obtained for Bayesian networks. To get around this difficulty, we
introduce a way to approximate FII by first linking the marginal likelihood to
another model selection criterion via the FIA formula.

2.2 Approximation of Normalized Maximum Likelihood

The FIA formula is important not only because it approximates the Bayesian
marginal likelihood. It also coincides with the asymptotic form of the normal-
ized maximum likelihood (NML) model selection criterion [17]. NML is a modern
form of the minimum description length (MDL) principle, which is an informa-
tion theoretic approach to select the model that has the shortest code length for
describing the information in the data [2,12].

The NML model is defined as:

NML(xn ; M) =
p(xn ; θ̂M(xn))

CM
n

, (9)

where the normalizing factor CM
n is the sum of the maximum likelihoods over

all potential data sets:

CM
n =

∑

xn

p(xn ; θ̂M(xn)). (10)

NML provides a unique solution to minimize the worst case regret under log
loss for all possible distributions, and the constant log CM

n is the minimax and
maximin regret, see [17,20].

As stated above, the logarithm of the NML probability shares the same
asymptotic expansion as the marginal likelihood under Jeffreys prior, given by
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FIA. The regularity conditions required for this to hold are discussed in [11].
Therefore, we can combine Eq. (8) with Eq. (9) and obtain an estimate of
log FII(M) by:

log FII(M) = log CM
n − dM

2
log

n

2π
+ o(1), (11)

However, the normalizing constant, CM
n also lacks a closed form solution for most

of model families and therefore, its value can be calculated efficiently only for
a restricted set of model families such as the Bernoulli and multinomial models
[6]. For other cases, one possible solution is to use factorized variants of NML
[14], which approximate the formula by factorizing it as a product of locally
minimax optimal models. The study in [19] proves that for Bayesian networks,
the factorized NML (fNML) is asymptotically equivalent to BIC but leads to
improved model selection accuracy for finite samples. In this work, we provide
further evidence about the behavior of fNML.

However, instead of resorting to factorized NML variants, where no numeri-
cal guarantees about the approximation error are known, we estimate NML by
Monte Carlo sampling in the same fashion as in [13]. The obtained estimates can
be shown to be consistent as the number of simulated samples is increased. Hence
they provide a sound approach for approximating NML and thereby also the FII
constant: once we have obtained an estimate of the NML normalizing term, we
deduct other terms as in Eq. (8) to approximate log FII(M). After that, by plug-
ging in the approximated value of log FII(M) in Eq. (11), we can calculate FIA
for any sample size without having to repeat the sampling procedure.

3 Monte Carlo Approximation of NML

For Bayesian networks, there is no efficient way to compute the exact value of
log CM

n . We need to consider other approximate methods such as the Monte
Carlo sampling method introduced in [13]. Based on the law of large numbers,
the sample average is guaranteed to converge to the mean if the sampling size
is large. By sampling m data sets {xn

1 , . . . , xn
m} from distribution q(·), we have

a consistent importance sampling estimator for CM
n as:

1
m

m∑

t=1

p(xn
t ; θ̂M(xn

t ))
q(xn

t )
a.s.−→ CM

n as m → ∞. (12)

Ideally, any proposal distribution q with full support will guarantee convergence.
However, the shape of q significantly affects the rate of convergence and the

variance of the estimator. We need to choose a sampling distribution q that is
similar to the target distribution. Following [13], we use the sampling distrib-
ution by drawing each set of the parameters independently from the Dirichlet
distribution Dir(12 , 1

2 , . . . , 1
2 ), which results in the Krichevsky-Trofimov universal

model (K-T model) [8]. It has been proved that the K-T model is asymptotically
equivalent to NML as long as the parameters are not on the boundary.
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4 Numerical Results Concerning the Lower-Order Terms

In this section we present some properties of log FII(M) that are important to
the model selection behavior of the FIA formula.

4.1 Numerical Values of logCM
n and log FII(M)

Firstly, for each combination of maximum indegree, number of nodes, and alpha-
bet size, which together determine the number of parameters, we generate 100
Bayesian networks randomly. We estimate the log CM

n under different sample
sizes to show how the log CM

n curve relates to the BIC curve and its upper
bound. Note that while the main determinant of the model complexity, as mea-
sured by log CM

n , is the number of parameters, these different Bayesian network
models usually have somewhat different complexities. As we will see, however,
the variance among networks with a fixed number of parameters is relatively
small compared to the differences between networks with a different number of
parameters.2

As an example, we show the results of Bayesian networks with l = 20 nodes,
alphabet size |X | = 4, and indegree (number of parents) of each node k = 5, . . . , 8
subject to the acyclicity condition. All estimates of log CM

n under each sample
size are calculated separately for 100 different Bayesian networks to obtain the
mean and the standard deviation. (The variance is due to both the aforemen-
tioned differences between different model structures as well as the noise inherent
to the Monte Carlo technique.)

Because CM
n is defined as the sum of maximized likelihoods over all possible

data sets, and because in the discrete case the likelihood is always at most one,
a trivial upper bound for log CM

n is defined as

log CM
n ≤ nl log |X |. (13)

Figure 1 shows that for small sample sizes, this upper bound tightly squeezes
log CM

n towards zero. On the other hand, up to constant terms, log CM
n shares

the same asymptotic form with the BIC (Eqs. (6) and (11)). As the sample size
increases, the slope of the log CM

n curve will tend to the slope of dM
2 log n. In

terms of the graph, where the sample size is shown on a logarithmic scale, the
log CM

n curve becomes a straight line that is parallel to the corresponding BIC
curve. The difference between the curves tends to the constant log FII(M) −
dM
2 log 2π. The figure suggests that the constant grows rapidly as the model

order is increased.
If the sample size is small, the sum of lower-order terms may be a very

important part that should not be ignored. For example, Fig. 1 shows that for
Bayesian networks with 20 nodes, alphabet size |X | = 4 and maximum indegree
k = 6, when the sample size is n = 1000, the sum of lower terms amount to a
2 An interesting line of future research will be to zoom in into the differences in model

complexity within classes of networks with a fixed number of parameters by the
techniques we use here.
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Fig. 1. Estimates of logCM
n by Monte Carlo sampling for Bayesian networks with

l = 20 nodes, |X | = 4 and k = {3, . . . , 6} with increasing sample sizes n from 1 to 108

(shown in log-scale). The red line shows the upper bound nl log |X |. The blue curves
are the BIC complexity penalties over different k respectively. The black lines link the
means of logCM

n at increasing sample sizes with the same k. The error bars showing
the standard deviations for each estimates (Color figure online).

number less than −800, 000. This is because log CM
n is restricted by its upper

bound to almost zero but the term dM
2 log n is larger than 800, 000.

4.2 Accuracy of FIA for Small Sample Sizes

Secondly, we look into the accuracy of FIA as an approximation of log CM
n when

the sample size is small. Here we estimate log CM
n by the Monte Carlo sampling

method for both small and large sample sizes. We show the estimated values for
a set of nested Bayesian networks of 20 nodes. The models are nested in the sense
that simpler (less edges) Bayesian networks are obtained by removing edges from
a complex (k = 8), randomly generated Bayesian network. We simulate m = 100
data sets in each case and take the average to estimate the log CM

n value. On
the other hand, we also estimate the constant term log FII(M) (by Eq. (11)) for
the same networks using a sample size of 109 to make sure that the term o(1)
becomes negligible, and plug in the resulting constant into the FIA formula for
the smaller sample sizes. Table 1 lists related quantities for Bayesian networks
with 20 nodes and alphabet size |X | ∈ {2, 4}, when sample sizes are 103 or 105

and maximum indegrees are from one to eight.
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Based on Table 1, a significant observation is that when the model is very
complex, for instance, when |X | = 4 and k ≥ 6, the log FII(M) is a negative
number with very large absolute value (less than −106). However, the absolute
values of the term dM

2 log n
2π , as shown in the third row of Table 1 are much

smaller than log FII(M) for small sample sizes. Therefore, the term dM
2 log n

2π
is dominated by log FII(M), which results in negative values of the sum. For
example, as shown in the fourth row of Table 1, for sample size n = 103, this
is the case for alphabet size |X | = 4, with maximum indegree k ≥ 4; and for
alphabet size |X | = 2, with maximum indegree k = 8. When the sample size
increases to n = 105, for some simpler networks like |X | = 2, and k ≤ 5, the
values of log CM

n and the sum are fairly close to each other. But for the most
complex networks when |X | = 4 and k ≥ 7, sample sizes as large as 105 are still
far from enough to even make the sum positive. The more complex the model,
the larger sample size that we need to get sensible complexity penalties.

Due to the properties discussed above, the model selection by FIA fails under
several conditions. For example, with |X | = 2 and sample size n = 103, the FIA
penalty for Bayesian networks with maximum indegree k = 6 is larger than for
k = 7. Because the simpler network is a subset of the more complex one, the
maximum likelihood value for the network with k = 7 is always higher or equal
to that for the model with k = 7. Therefore, the FIA criterion will select the
Bayesian network with k = 7 rather than the one with k = 6, no matter what
the data are. For sample size n = 105 the problem does not occur when the
alphabet size of |X | = 2 but with |X | = 4, the same problem occurs for k ≥ 7
even with sample size n = 105. The rule of thumb that one should have more
samples than there are free parameters in the model seems to hold quite well in
these situations.

The above observations underline the importance of paying attention to the
potential problems due to the o(1) terms involved in the approximations for
small and moderate sample sizes. Curiously enough, the BIC formula, which is
based on omitting all O(1) terms does not have a similar problem; we will return
to this issue below.

5 Model Selection Simulations

In the above, we already made some remarks on the likely consequences of the
identified properties of FIA to model selection performance. In this section, we
perform a set of simulation experiments to investigate them in detail. We focus
in particular on complexity regularization in Bayesian networks. We consider
networks with l = 20 and l = 40 discrete-valued nodes. The alphabet size of
each node is varied to be |X | = 2 or |X | = 4.

In each simulation, we restrict the model comparison to a set of eight network
topologies that are obtained by constructing a random DAG with each node’s
indegree k = 8 (subject to the acyclicity condition) and removing edges from
it to obtain DAGs with maximum indegrees k = 7, . . . , 1. Such a comparison is
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Table 1. The logCM
n estimates based on FIA (the fourth row) or Monte Carlo sam-

pling (the fifth row), the Fisher information integral log FII and the higher order term
d
2

log n
2π

for Bayesian networks of k = {1, . . . , 8}, alphabet size |X | = {2, 4} with num-
ber of nodes l = 20 and sample size n ∈ {103, 105}. Values that are based on Monte
Carlo approximation are reported with four significant digits

|X | = 2,n = 103

k 1 2 3 4 5 6 7 8

log FII -22.88 -37.57 -96.27 -349.9 -1004 -2565 -6488 -14330
dM 39 75 143 271 511 959 1791 3327

dM
2

log n
2π

142.6 274.3 523.0 991.1 1869 3507 6550 12167
sum 119.8 236.7 426.7 641.2 864.1 941.7 61.45∗∗ -2163∗

logCn 179.5 298.9 481.2 711.0 1092 1565 2056 2698

|X | = 2, n = 105

k 1 2 3 4 5 6 7 8

log FII -22.88 -37.57 -96.27 -349.9 -1004 -2565 -6488 -14330
dM 39 75 143 271 511 959 1791 3327

dM
2

log n
2π

272.2 523.4 998.0 1891 3566 6693 12500 23219
sum 249.3 485.9 901.7 1541 2562 4128 6011 8889

logCn 308.0 542.4 941.8 1545 2608 4204 6390 10270

|X | = 4, n = 103

k 1 2 3 4 5 6 7 8

log FII -86.96 -1123 -8211 -48710 -239000 -1135000 -5105000 -21230000
dM 231 879 3327 12543 47103 176127 655359 2424831

dM
2

log n
2π

844.8 3215 12167 45872 172263 644122 2396742 8867956
sum 757.8 2092 3956 -2840∗ -66720∗ -490700∗ -2709000∗ -12360000∗

logCn 832.4 2289 5522 10300 16880 21070 23050 24500

|X | = 4, n = 105

k 1 2 3 4 5 6 7 8

log FII -86.96 -1123 -8211 -48710 -239000 -1135000 -5105000 -21230000
dM 231 879 3327 12543 47103 176127 655359 2424831

dM
2

log n
2π

1612 6135 23219 87539 328735 1229203 4573798 16923071
sum 1525 5012 15010 38830 89750 94330 -531500∗ -4308000∗

logCn 1582 5059 15310 4137 112500 261100 494000 858900

*) logCM
n approximations by FIA with negative values

**) logCM
n approximations by FIA with a changing order
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Fig. 2. Model selection experiments for selecting Bayesian networks with 20 nodes and
maximum indegree k = {1, . . . , 8}. Bars show percentages of correctly identified models
by four different criteria as a function of sample size n = {10, 102, . . . , 106}. For the
left plots, we have alphabet size |X | = 2, and for the right ones we have |X | = 4. Four
criteria are FIA (Fisher information approximation) by Eq. (8), BIC by Eq. (6), fsNML
(factorized sequential NML) [19], and BF (Bayes factor with “true” prior) (Color figure
online).
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Fig. 3. Model selection experiments with the same settings for Bayesian networks with
40 nodes. (cont’d from Fig. 2) (Color figure online)

admittedly atypical since most practical scenarios involve several possible net-
work topologies with the same maximum indegree, whereas we only consider one
topology for each value of k. We adopt the present methodology for the purpose
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of highlighting the complexity regularization aspect and in order to be able to
estimate the FII term accurately for each individual Bayesian network model.3

Within each group of Bayesian networks, we compare FIA with other model
selection criteria of varying levels of approximation, including BIC [16], and
fNML [19]. To obtain a measure of the ideal performance, we also include the
Bayes factor based on the “true” prior. In practice, the true prior is obviously
not known in advance, and therefore, the Bayes factor criterion should be taken
simply as a yardstick against which to compare the other methods. The effect
of using different priors in Bayes factors has been studied in [18].

We perform the comparison for sample sizes 10, 100, . . . , 106. For each sample
size we draw 100 random data sets from the true network, and apply the different
criteria to select one of the eight possible network structures. We show the results
as percentages of correctly identified models in Figs. 2 and 3. For the Bayesian
networks with alphabet size |X | = 2 (for both l = 20 and l = 40), sample size
104 is enough for FIA to achieve nearly 100% accuracy. But for the cases when
|X | = 4, FIA needs n ≥ 106 to achieve good performance. Most of the failures are
caused by selecting the most complex models with maximum indegree k = 8: see
the bottom panels of each figure to verify that when the true model is k = 8, FIA
achieves 100% accuracy just because it always favors the most complex model
available unless the sample size is large enough to avoid the reversed complexity
penalty phenomenon discussed in the previous section.

On the contrary, the BIC criterion works better than FIA except when the
true model is the most complex one. Its accuracy decreases when the maximum
indegree of the true model increases. For networks with |X | = 4 and k = 8, the
BIC criterion fails even when the sample size reaches 106. Based on Table 1, we
can see that BIC puts unnecessary large penalties to complex models. Therefore,
it tends to select simple models. On the other hand, we note that the fNML
criterion performs almost as well as the Bayes factor criterion with the true
prior.

6 Conclusions

The simulation experiment verifies that whenever the sample size is not suffi-
cient, the FIA model selection criterion is unreliable for Bayesian network model
selection. We emphasize that none of the above suggests that NML or Bayes fac-
tors have similar issues for small sample sizes. Indeed, the experiments also show
that another kind of (non-asymptotic) approximation of NML, the fNML crite-
rion, behaves almost as well as Bayes factor with the true prior. A remarkable
fact is that a very rough approximation (of the Bayes factor as well as the NML),
namely the classic BIC criterion where all O(1) terms are ignored, was in our
experiments actually never worse and often much better than the FIA criterion
where the asymptotic formula is truncated only at the o(1) term.
3 Unlike in the numerical studies in the previous section, here we want to take into

account the fine-grained differences between FII values between different Bayesian
network models with a fixed number of parameters.
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Comparing FIA penalties with log CM
n makes it clear that the o(1) term

in Eq. (8) is also an essential part when the sample size is small, which leads
to huge differences between the FIA penalty and log CM

n . Similar results are
also reported in the early work in [9] for an exponential model and in [15] for
Markov sources. Based on the simulation experiment, we suggest that including
the constant term alone may actually be dangerous, and in case useful asymptotic
formulas are sought after, one should consider more refined approximations that
also include o(1) terms.

It is important to note that our goal in this study was not the evaluate
the model selection performance of a criterion where the constant FII term is
obtained by Monte Carlo techniques. Such a criterion may not be very practical
since for complex networks, the sample size at which the o(1) term becomes
negligible can be enormous and drawing a sufficient number of random data
sets would be time consuming. Instead, we wanted to illustrate the performance
of the FIA criterion, independently of the method by which the FII term is
obtained. In other words, we wanted to find out whether evaluating the FII
term via an approximate analytic formula, for example, would lead to a useful
model selection criterion. The answer turns out to be negative. Hence, studying
analytic approximations without paying close attention to the o(1) terms is likely
to be of limited interest.

In the future, we can extend the study to other model classes such as gen-
eralized linear models with continuous parameters to see if the problem of FIA
for small sample sizes also applies to them. To address the small sample issues
related to FIA, we may also try to analytically break down the o(1) term to
obtain more reliable approximations. A closer study for the performance of FIA
in general can then be done in these two directions.
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Abstract. The introduction of temporal dimension makes it difficult
and complex to learn dynamic Bayesian network (DBN) structure for
huge search space, hence many studies focus on some particular types of
DBN, such as dynamic Naive Bayesian Classifier (DNBC). In order to
overcome the limited applicability of DBN structure learning methods,
this paper proposes an unsupervised evolutionary algorithm in which the
selection of initial population has been implemented by means of mutual
information to reduce the search space. Furthermore, in view of the poor
performance of traditional encoding scheme and the recount of Bayesian
information criterion (BIC) score when calculating the individual fitness,
we provide a new structure representation without a necessity of the
acyclicity test and an updating algorithm for BIC scores with the help
of family inheritance to improve the efficiency. Simulations on synthetic
data demonstrate that the proposed unsupervised evolutionary algorithm
is effective in DBN structure learning.

Keywords: Dynamic Bayesian networks · Structure learning · Genetic
algorithm · Mutual information · Family BIC score

1 Introduction

Bayesian network (BN) is a multivariate statistical model based on probability
and graph theory to describe the uncertain relationships among a given set of
variables. Because BN uses a directed acyclic graph (DAG) to visually complete
the acquisition and representation of knowledge, it has become an important tool
in the fields of data mining and artificial intelligence [1–3]. Structure learning lays
the groundwork for BN studies, especially when there is no prior model. However,
it is known that BN structure learning from data is an NP-hard problem [4].
Many methods have been proposed to deal with this difficult situation, leading
to three different schemes: model selection by search and score [5,6], and by
conditional independency tests [7,8], and hybrid approaches combining the above
two schemes [9,10].
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As an extension of BN, dynamic Bayesian network (DBN) that takes the tem-
poral characteristic into account has attracted the attention of many researchers
in recent years [11–13]. This kind of model has shown better performance than
static BN when the stochastic time-varying evolution of a set of variables should
be considered [14]. Because of adding the temporal dimension, it becomes more
difficult and complex to explore DBN structure learning approaches. More-
over, many mature structure learning methods for static BN cannot be directly
applied to dynamic systems. Therefore, some researchers have dedicated to DBN
structure learning techniques. Migual et al. [14] presented an evolutionary opti-
mization algorithm to learn the structure of dynamic naive Bayesian classifier
(DNBC), this approach effectively acquired the dependencies and eliminated
irrelevant attributes to get higher classification accuracy. Another interesting
method proposed by Wu et al. [15] used Gaussian assumption to explore a new
model, termed Gaussian DBN. It included temporal information and did not
require discrete data. However, all of these above structure learning methods
only aimed at some certain types of DBNs, i.e., they cannot be applied to other
models since much stronger assumptions were required to reduce the solution
space, resulting from the exponentially growing dimensionality of the search
space with the increasing number of variables.

There are many score-based heuristic algorithms used in the current struc-
ture learning researches, including K2 algorithm [16], genetic algorithm [17], ant
colony optimization [18], and simulated annealing algorithm [19]. And K2 algo-
rithm is one of the most popular and typical structure learning methods, but
its effectiveness depends on the order of nodes, which is the necessary input
when researchers search for the parents set. However, it is always difficult to
acquire correct priori information in many practical applications, which prob-
ably lead to wrong node ordering, and as a result, there may be an incorrect
network structure. Compared with K2 algorithm that relies on the prior knowl-
edge, genetic algorithm only uses the fitness function based on data to evaluate
each individual, and it has a strong ability of universal search [20] because of
many advantages, such as large search range and high search efficiency. How-
ever, we found that most of the existing genetic methods have several obvious
drawbacks. On one hand, in the procedure of individual coding, it always uses
adjacency matrixes that cause low generating probability of feasible solutions
and decrease the optimization efficiency since it needs to repeatedly examine
the new individual and ensure its acyclicity [19,21], thus increasing the time
cost. On the other hand, in the previous studies, it had to recalculate the score
of the whole network structure when the researchers attempted to obtain the
fitness of the new individual [22]. In fact, there is usually no change for the local
structure in the evolutionary process, hence in order to further improve the
learning efficiency, it is necessary to consider the local stability of the network.
Therefore, aiming at these above problems, this paper proposes an unsupervised
evolutionary method inspired from genetic algorithm to complete DBN struc-
ture learning. Firstly, in order to reduce the search space, we introduce mutual
information to the population initialization for dependency analysis; Secondly,
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Fig. 1. An example of a three-node DBN. (a) gives an initial model, and (b) shows a
transition model, including connections both within and across time slots.

we provide a special encoding scheme and new corresponding genetic operators
to generate new individual without acyclicity test so as to decrease the time cost;
Finally, with respect to the inheritability of Bayesian information criterion (BIC)
score for new individual, we concentrate on the estimate whether the scores of
the offspring can be inherited from the parent generation.

The rest of this paper is organized as follows. Section 2 gives a brief intro-
duction of DBN and presents the problems of DBN structure learning using
genetic algorithms in the previous studies. Section 3 describes the improvement
of the previous approaches, including the new coding scheme and corresponding
genetic operators. In Sect. 4, the experimental results are reported. Finally, we
conclude the paper and discuss the potential extension for future work in Sect. 5.

2 The Problem

At the beginning of this section, some basic concepts need to be introduced first,
and then we give the description of shortcomings for DBN structure learning
approaches based on genetic algorithm in the previous researches.

2.1 Dynamic Bayesian Network

A DBN is a probabilistic graphical model that combines BN with time informa-
tion to deal with the temporal data, it is actually made of BN as base structure
which is extended to temporal domain. Therefore, we define a group of n random
processes as X = {Xi}i=1,2,...,n and Xi[t] is the random variable of process Xi

at discrete time t. An example of DBN is illustrated graphically in Fig. 1. We
can see that a DBN is consisted of two kinds of networks, i.e., G = (G0, G→),
where G0, which is a static BN, defines the probability distribution at the initial
time; G→ denotes the connections within and across time slots. Because of the
Markovian property, the parents of nodes in G→ are only allowed to be from the
same or previous time slot, i.e., pa(Xi[t]) ⊂ {X[t − 1],X[t]}.

The process of building a DBN can be separated into two phases: structure
learning and parameter learning. Due to the fact that parameter learning is
based on the known network structure, it is essential to explore the techniques
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Fig. 2. Several possible transition structures of a two-node DBN.

Table 1. Number of structures for BN and DBN with n nodes

n BN DBN

1 1 1

2 3 33

3 25 10591

for structure learning. And usually, the initial structure G0 of DBN has been
already given by the prior knowledge from the start, so in this article, we devote
to developing an unsupervised evolutionary algorithm without training data to
learn the transition structure G→ of a DBN.

2.2 The Solution Space

BN structure learning is a modeling process to find the causal dependencies
between variables from sample data. Robinson [23] has proved that the size of
the solution space with n nodes for BN is given by the following equation:

f(n) =

⎧
⎨

⎩

1, n = 0;
n∑

i=1

(−1)i+1
(
n
i

)
2i(n−i)f(n − i), n > 0.

(1)

It is no hard to see that the number of BN structures grows exponentially
with the increasing number of nodes. Furthermore, because of the addition of
temporal dimension, it is more intractable to learn DBN structure directly and
precisely from a huge solution space. More vividly, we plot part of all possible
transition structures for DBN with two nodes in Fig. 2, and it can be seen that
though they are two-node DBN models, we have to take relationships among
four nodes into consideration, including two adjacent time slots, thus it greatly
increases the number of possible networks.

Table 1 shows the number of BN and DBN structures, respectively. And it is
clear that the number of DBN structures is significantly more than that of BN
structures in case of the same number of nodes. Therefore, in order to improve the
search efficiency of the proposed evolutionary method, we need to take effective
measures to reduce the search space.
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Table 2. Rate of randomly generated adjacent matrixes without loop circuit

n f(n) F (n) r(n)

1 1 2 50.000 %

2 3 16 18.750 %

3 25 512 4.883 %

4 543 65536 0.829 %

2.3 The Encoding Scheme

For BN, it usually uses 0 and 1 to represent whether there is an arc between
two nodes. For example, when a BN has n nodes, there will be an adjacent
matrix (eij)n×n. If Xi points to Xj , eij = 1, i.e., Xi is a parent of Xj ; otherwise,
eij = 0. Then, this above matrix will be rewritten as a vector in the previ-
ous coding scheme, i.e., (e11, e12, . . . , e1n, e21, e22, . . . , e2n, . . . , en1, en2, . . . , enn),
which is regarded as the individual coding for BN. As an extension of BN, DBN
can also employ this encoding scheme for the nodes in the same time slot as
a part of its individual coding. However, the possibility of obtaining a directed
acyclic graph is not high by using the above traditional coding scheme. And
taking static BN as an example, in Table 2, F (n) = 2n×n is the total number
of two-dimensional n × n matrixes, f(n) is given in Sect. 2.2, and r(n) = f(n)

F (n)

denotes the rate of randomly generated adjacent matrixes without loop circuit.
We can see from Table 2 that the rate of randomly generated adjacent

matrixes which satisfy the acyclicity feature decreases promptly with the growth
of the number of nodes, that is, when employing an arbitrary adjacent matrix
to act as an individual, we have to examine its acyclicity, and its possibility of
containing loop circuit grows fast, leading to high time complexity. Hence, it is
necessary to provide an alternative encoding scheme to improve code efficiency
of the evolutionary algorithm.

2.4 BIC Scoring Function

In regard to the evaluation of the relative merits for different network structures,
there are many metrics. And BIC score-based approach is one of the most pop-
ular strategies [15] to pick out the optimal solution from the space of possible
network structures, according to the rankings. The formula for BIC is given by
the following expression:

scoreBIC =
n∑

i=1

qi∑

j=1

ri∑

k=1

mijk log
mijk

mij∗
−

n∑

i=1

qi(ri − 1)
2

log m. (2)

where n is the number of nodes, qi defines the count of the possible configurations
for pa(Xi), ri is the number of states for Xi, and mijk corresponds to the sample
count of the kth possible value of Xi given the j th possible configuration of

pa(Xi). Besides, mij∗ =
ri∑

k=1

mijk, m is the total sample count.
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BIC makes a tradeoff between the accuracy and complexity of the model, thus
it searches for the best DBN structure that not only has high degree of fitting
to the data, but also avoids overfitting owing to a penalty in (2). Moreover, the
above formula for BIC can be rewritten as follows:

scoreBIC =
n∑

i=1

scoreBIC(i). (3)

where

scoreBIC(i) =
qi∑

i=1

ri∑

k=1

mijk log
mijk

mij∗
− qi(ri − 1)

2
log m. (4)

In (4), scoreBIC(i) is defined as the family BIC score of Xi.
The score of the DBN structure is usually recalculated when the new individ-

uals have been generated in the previous algorithms. However, in the evolution-
ary process, the difference between parent population and offspring is not big,
and it is likely that the parents of only one or two nodes have changed. Hence,
there is the reiteration calculation problem using the previous methods, resulting
in high time cost. From this perspective, we contribute to the adaptation of the
traditional scoring approach by means of family inheritance to greatly simplify
the computation of scoring for DBN structures.

3 The Proposed Approach

Due to the drawbacks of previous evolutionary methods presented above, DBN
structure learning has usually been limited to few nodes, and has taken high
time cost. Therefore, corresponding to the evolutionary process, we give our
unsupervised evolutionary algorithm in this section.

3.1 The Representation

At the beginning of the evolution, we have to design an encoding scheme to
represent an individual, which is also called chromosome. Allow for the ineffi-
ciency of the previous coding scheme mentioned in Sect. 2.3, this paper provides
a novel way based on the fact that a BN can at least correspond to one sequence
of nodes [24]. In this new scheme, a chromosome consists of three sections: the
order of nodes at discrete time t, the linkages across time slots, and the linkages
at discrete time t based on the order of nodes given in the first section of the
chromosome. The detailed design is given as follows:

(i1, i2, . . . , in, a11, a12, . . . , a1n, a21, a22, . . . , a2n, an1, . . . , ann,

e12, e13, e23, e14, e24, e34, . . . , e1ne2n, . . . , e(n−1)n)
(5)

where there are n nodes within the same time slot for a DBN, ik denotes the kth
node in the order, ajk describes whether there is an arc directed from Xj [t− 1] to
Xk[t], when it is true, ajk = 1; otherwise ajk = 0, and ejk represents if there is



142 J. Dai and J. Ren

Fig. 3. Representation of an individual corresponding to a DBN transition structure
depicted in Fig. 1

an edge directed from j th node to kth node based on the order in the first section
of the chromosome, when it is true, ejk = 1; otherwise ejk = 0. Notice that in
the same time slot, we only allow the preceding nodes to direct to the posterior
nodes according to the sequence that is given by the first part of the individual so
as to guarantee the acyclicity of the network. Figure 3 shows the encoding of an
individual corresponding to a DBN transition structure depicted in Fig. 1.

We can see that X2[t] only has one parent X3[t] at discrete time t, and at the
same time, X3[t] has X1[t] as its parent, so in the first section of the chromosome,
X1[t] should be placed in the first position, while X2[t] must come last. Besides, the
adjacent matrix of these three nodes at discrete time t can be defined as follows:

intranet = (eij)3×3 =

⎡

⎣
0 0 1
0 0 0
0 1 0

⎤

⎦

Hence, corresponding to the order given by the first section obtained above, the
third section which describes the conditional dependencies of nodes at discrete
time t should be written as 101. The second section of the chromosome can be
easily presented by the adjacent matrix that defines the connections across the
time slots given by the following expression:

internet = (aij)3×3 =

⎡

⎣
1 0 0
0 1 1
1 0 0

⎤

⎦

It is evident that each individual generated with the above scheme has one
and only one directed acyclic graph to correspond to. Additionally, this design
is not only timesaving for no need to test the acyclicity, but also effective in
reducing the encoding length, since using the traditional scheme, when there
are n nodes within the same time slot, the length of the third section of the
chromosome is l(n) = n2, while by means of the proposed approach, it should
be l′(n) = n(n + 1) ÷ 2 ≤ l(n) = n2. Therefore, we claim that the new coding
scheme has obvious superiority with the growth of nodes.

3.2 The Initial Population

Before the crossover and mutation operators, an initial population needs to be
defined, which is the base of the evolution. And if this initial population gets
closer to the optimal solution, we will spend less time finding out the true net-
work. However, since the scale of a DBN structure becomes extremely large with
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the increase of the number of nodes and the introduction of temporal relations, it is
troublesome for us to select a proper initial population in the exponentially grow-
ing search space. Therefore, to filter useless network structures with the computer
in this section, we employ mutual information which is an excellent means of the
interpretation of the dependence between nodes to establish initial population.

Given two random variables X and Y, their mutual information can be
defined as follows:

I(X;Y ) =
r∑

i=1

s∑

j=1

p(ai, bj) log
p(ai, bj)

p(ai)p(bj)
(6)

where r and s are the number of possible values of X and Y, respectively. ai is
the ith possible value of X, bj is the j th possible value of Y . It can be seen that
if X is completely unrelated to Y, I(X;Y ) = 0, and the higher value of mutual
information indicates the stronger relationship between variables. Consequently,
we take advantage of this property to find out one edge for each node, which
corresponds to the highest mutual information. And the next step is to search the
solution space to locate the network structures containing these edges given by
the previous step, and save the number of these networks as n info. Then, there
will be three kinds of situations: when n info equals pop size that denotes the
size of the population, the individuals transformed from the networks obtained
in the second step will directly serve as the initial population. While if n info >
pop size, we need to sort these n info individuals by BIC scores and choose
the first pop size ones as the initial population. The final situation is n info <
pop size, and then the initial population should be formed of two parts: these
n info individuals and pop size − n info arbitrarily selected individuals.

3.3 The Genetic Operators

After obtaining the initial population based on the new encoding scheme
designed in Sect. 3.1, we provide the corresponding genetic operators in the fol-
lowing section, including the principles of crossover, mutation and selection.

Crossover. In the crossover operator, only one randomly selected position is
defined on each individual. Provided that this position appears on the second
or third section of the chromosome, the latter part from this locus is directly
exchanged. While in case it presents to the first section which is the sequence of
nodes, we need to first exchange the following two sections of the chromosome,
and then implement the crossover for the code of the order. In order to explain
the principle of the crossover for the first section of the chromosome, we take
two sequences containing 4 nodes as an example. There are two arrays: S1 =
(2, 3, 1, 4), S2 = (3, 1, 2, 4). When the crossover site is 3, we should first translate
S1 and S2 into S′

1 = (2, 3, 2, 4, 1, 4) and S′
2 = (3, 1, 1, 4, 2, 4), respectively. Then,

each node of S′
1 and S′

2 will be scanned from left to right. Supposing that one
node has emerged in the left-side substring, it has to be eliminated. Therefore,
two new sequences has finally been formed: S′

1 = (2, 3, 4, 1) and S′
2 = (3, 1, 4, 2).
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Fig. 4. Mutation operator. When the mutation position lies on the section of the nodes
order, there are three stages. Stage 1: select one nutation point. Stage 2: randomly
choose a node. Stage 3: exchange two nodes.

Mutation. In this case we give an example in Fig. 4 to clarify how the mutation
operator works. There are two kinds of situations. One is that the mutation
position locates in the latter two sections of the individual, we have to transfer
the figure in this position from 0 to 1 or from 1 to 0. Another circumstance is
that selected site lies on the section of the nodes order, and then it should be
exchanged with another randomly chosen node for the same chromosome. Hence,
we have three options in the mutation operator: insertion or deletion of an arc,
or exchange of two nodes. Notice that if there is an illegal network generated
after the insertion or deletion, i.e., producing loop circuit within the same time
slot, the mutation is not allowed to be executed.

Selection. The selection operator is a strategy used in the population updating
process to determine the outstanding individuals from the previous generation
as the new offspring. Usually, we make decisions according to the rank of the
individual fitness values. In this paper, roulette algorithm is employed to choose
excellent individuals, that is, the selected probability of each chromosome is
proportional to its fitness value. However, since this choice is random, it has
potential for the loss of better individuals. Hence, we introduce the elite mecha-
nism to guarantee the best individual from the previous population has directly
been selected to the next generation.

The Fitness Function Based on Family Inheritance. Finally, in order to
evaluate the given chromosome, we compute the fitness value of each individual,
which is obtained by mapping the BIC score to the closed interval [0, 1], and the
fitness value of ith individual is given by the following expression:

fit(i) =
scorei − min

1≤j≤n
(scorej)

max
1≤j≤n

(scorej) − min
1≤j≤n

(scorej)
(7)
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where scorei represents the BIC score of ith individual, n is the size of the popu-
lation. As we mentioned in Sect. 2.4, it is inefficient to use previous genetic algo-
rithm for the recalculation of BIC score for each individual when the new popu-
lation has been generated. As a result, we adopt two matrixes called old parents
and old famS to respectively store the parents and family BIC score of each
node for the previous population. In particular, old parents = {paij}n×m, where
n is the size of the population, m denotes the number of nodes in the net-
work, and paij defines the parents set of j th node for ith individual. Note
that if j th node has no parent in ith individual, we record it as paij = {0}.
old famS = (scoreij)n×m, where scoreij represents the family BIC score of
j th node for ith individual, thereby computing the score of ith individual by
summing the ith row of old famS.

In case of obtaining the family score of ith node, we should first take a com-
parison between ith node of the offspring and ith node of the parent generation,
confirming whether its parents set stays the same during the period of evolu-
tion. If it is true, the family score of ith node is able to inherit from the previous
population. While supposing that there is no same parents set for ith node,
we have to scan sample set again to calculate the score. And the pseudocode
for the above updating algorithm of old parents and old famS is described in
Algorithm 1.

Algorithm 1. pa_famS_update
Input: the parents set of the previous population(old_parents);

the family score of each node for the previous
population(old_famS); the new population(population);
the test data(data); the number of states for each
node(node_size)

Output: new parents set(new_pa), new family score of each node
for new population(new_famS)

1. Get the size of the population:pop_size
2. Get new parents of each node for new population
3. for i = 1:pop_size
4. for j = 1:n nodes
5. Make the sign of the family inheritance:tag_inherit=false
6. for k = 1:pop_size
7. if new_pa{i,j}==old_parents{k,j}
8. new_famS(i,j)=old_famS(k,j)
9. tag_inherit=true
10. break
11. end if
12. end for
13. if tag_inherit==false
14. Scan the data set to calculate new_famS(i,j)
15. end if
16. end for
17. end for
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4 Experimental Results

We have implemented several experiments based on a set of simulated data to
validate the effectiveness of the proposed algorithm in this section, including
the accuracy and the efficiency. And all experiments were carried out on a PC
with AMD Athlon 3.10 Ghz, 32 bits architecture, 4 GB RAM memory and under
Windows 7, we used the Matlab software release 7.14.

In the following simulations, we consider a three-node DBN transition model
as shown in Fig. 1, which is our target structure. Each node is discrete and
observable. X1[t], X2[t] and X3[t] have 2, 3, and 2 states, respectively. Our test
data set used as observations consists of 500 sample sequences of X[t] drawn
from the target structure, and the parameters of the network is given as follows:

θ1[t] =

⎡

⎢⎢⎣

0.3 0.7
0.9 0.1
0.8 0.2
0.4 0.6

⎤

⎥⎥⎦ θ2[t] =

⎡

⎢⎢⎢⎢⎢⎢⎣

0.2 0.1 0.7
0.3 0.4 0.3
0.3 0.3 0.4
0.2 0.5 0.3
0.5 0.1 0.4
0.6 0.1 0.3

⎤

⎥⎥⎥⎥⎥⎥⎦
θ3[t] =

⎡

⎢⎢⎢⎢⎢⎢⎣

0.2 0.8
0.3 0.7
0.3 0.7
0.2 0.8
0.5 0.5
0.6 0.4

⎤

⎥⎥⎥⎥⎥⎥⎦

In all experiments the crossover and mutation rates are set to cross rate =
0.65 and mutate rate = 0.001, respectively. pop size = 30, generation size =
200, and the sign of elite mechanism: elitism = true. In order to measure the
effectiveness of the proposed algorithm, in Sects. 4.2 and 4.3, we have made
a comparison of four methods, including unsupervised evolutionary algorithm
proposed in this paper (UEA), an evolutionary method using randomly selected
initial population (RIEA), an approach without utilizing family inheritance to
compute the fitness (NIEA), and K2 algorithm using BIC score-based approach
presented in Bayesian toolbox (K2A). These four methods are run ten times. And
in all experiments we have achieved unsupervised learning adaptation, which is
a key advantage of UEA. Therefore, in order to ensure fair comparison, the order
of nodes as input in K2A is given stochastically without the priori information.

4.1 The Search Space

Due to the rapid growth of the dimension for DBN structures with the increasing
number of nodes, the size of the search space becomes completely huge, and it
limits the extension of DBN when the number of nodes is high. Therefore, one
of the contributions for this paper is to reduce the size of the search space with
the help of dependency analysis approach by excluding networks which do not
contain the connections that have the maximum mutual information. And on this
basis, we can select the initial population from a smaller space at the beginning
of the unsupervised evolutionary algorithm. In order to measure the efficiency
of the proposed method in compressing search space, we use the normalized rate
given by:

r =
n total struct − n info struct

n total struct
(8)
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Table 3. Number of structures using mutual information

n n total struct n info struct r

2 33 12 63.636 %

3 10591 960 90.836 %

where n total struct denotes the total number of all possible structures for a
three-node DBN, and n info struct represents the number of structures con-
taining the connections that have the maximum mutual information. It is shown
in Table 3 that when the number of nodes is 2 or 3, the corresponding total
number of networks is 33 and 10591, respectively. But after using mutual infor-
mation to filter the networks, the size of the space has a sharp drop to 12 and
960, respectively.

We can see from the fourth column of Table 3 that the size of the search space
has significantly shrunk when the number of nodes increases, and this operation
is able to accelerate the speed of locating the target, i.e., find the optimal solution
more quickly for the limitation to a small range.

4.2 The Accuracy

We first examine the accuracy of four algorithms mentioned above by means of
the Structural Hamming Distance (SHD), which is a principled measurement on
how well the estimated network matches the target structure, and this value is
defined as follows:

s(i) = A(i) + D(i) + T (i) (9)

where s(i) is the SHD between the estimated optimal structure and target net-
work in ith time, so 1 ≤ i ≤ 10; A(i), D(i), and T (i) denotes the number of
mistakenly added arcs, deleted arcs and reversed arcs, respectively, compared
with target structure in ith time. From this perspective, the smaller value of
SHD implies that the evaluated structure is more similar with true network
and indicates the better learning ability. The resultant divergences of SHD in
ten-time experiments for 4 methods have been listed in Table 4.

It is seen from Table 4 that there are two algorithms which achieve the lowest
divergences from target structure, including UEA and NIEA. Both of these two
methods have taken advantage of mutual information when selecting the initial
population. While when we try to complete the initialization with stochastic
individuals, large estimation error is always incurred, i.e., the phenomenon of
adding redundant arcs happens every time. Because there is no guarantee that
random synthetic networks reflect real-structure data, it is usually difficult to
converge to correct structure at the end of the evolutionary process. Furthermore,
we can see that there are always errors with target structure when we employ
K2A method. This is because this algorithm requires the initial order of nodes as
input, which is strongly dependent on prior knowledge, and in our simulations,
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Table 4. Resultant divergences of SHD in ten-time experiments for 4 methods

UEA RIEA NIEA K2A

A(i) D(i) T (i) s(i) A(i) D(i) T (i) s(i) A(i) D(i) T (i) s(i) A(i) D(i) T (i) s(i)

0 0 0 0 2 1 1 4 0 0 0 0 0 0 2 2

0 0 0 0 2 2 0 6 0 0 0 0 0 0 1 1

0 0 0 0 2 1 1 4 0 0 0 0 0 1 1 2

0 0 0 0 2 1 0 3 0 0 0 0 0 0 2 2

0 0 0 0 1 1 2 4 0 0 0 0 0 1 1 2

0 0 0 0 1 1 2 4 0 0 0 0 0 1 1 2

0 0 0 0 2 2 0 4 0 0 0 0 0 1 1 2

0 0 0 0 3 3 0 6 0 0 0 0 0 1 1 2

0 0 0 0 1 2 1 4 0 0 0 0 0 1 1 2

0 0 0 0 2 3 0 5 0 0 0 0 0 0 1 1

we run ten times with random order that is probably not correct, then it is easy
to converge to a wrong mode with deletion or reverse of some arcs.

4.3 The Efficiency

To validate the efficiency of unsupervised evolutionary algorithm proposed in
this paper, we have carried out an experiment under the conditions described at
the beginning of Sect. 4 to measure the running time (in seconds). Four different
methods are compared in Table 5.

Table 5. Running time of ten-time experiments for 4 methods

UEA RIEA NIEA K2A

5.1894 3.2423 11.5464 0.1644

5.1507 3.1699 11.4676 0.1702

5.1511 3.2564 11.6401 0.1689

4.9878 3.1201 11.4841 0.1706

5.2007 3.0384 11.9823 0.1688

4.9331 2.9512 11.5268 0.1820

4.9261 2.9232 11.2611 0.1738

4.8871 2.9306 11.2592 0.1735

4.9020 2.8843 11.4429 0.1757

4.8894 2.8582 11.1807 0.1900

According to the resultant data listed Table 5, we can compute the aver-
age running time of these four methods. As a result, RIEA using randomly
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selected initial population obtains results in the second least average running
time because there is no filter process in this method and it employs the family
inheritance to evaluate new individuals for saving time. While NIEA without
utilizing family inheritance to compute the fitness spends the most time get-
ting results, since it has to recalculate BIC score of each individual for new
generation, and it adds a filter process using mutual information. Furthermore,
we can see that the computation time of the proposed algorithm UEA is much
lower than that of NIEA. This is because family inheritance takes the decom-
posable property of BIC into consideration so as to avoid the recalculation in
the evolutionary process.

In combination with the accuracy experiments in Sect. 4.2, it also can be seen
that though two approaches, including RIEA without utilizing mutual informa-
tion and K2A using K2 algorithm based on BIC, take less running time than
UEA, it is usually divergent or easy to converge to a wrong structure which
has been validated in the previous section, since in RIEA initial population is
arbitrarily selected from a large solution space without a filter process, and K2A
method performs poorly when given wrong initial node ordering, moreover the
time costs will be bound to increase if it needs the correct order as input [24].

Given that a DBN model contains not just three variables, we carry out
several experiments based on UEA proposed in this paper for multiple nodes,
including four, six and ten nodes. However, before the filter process to complete
the initialization, the computer runs out of memory frequently when we calculate
the solution space under the current computing environment. We think that this
is because original search space grows so large with the increasing number of
nodes that it consumes too much memory, resulting in a program crash. For
example, the total number of possible transition structures for a four-node DBN
is 32382465. As future work we plan to explore alternative initialization in the
evolutionary process to adapt to multiple nodes.

5 Conclusion and Perspectives

In this paper an unsupervised evolutionary algorithm to tackle with the struc-
tural learning problems for DBN transition network is proposed. According to
the analysis of previous studies, we found that many researchers only focus on
one particular type of DBN, such as DNBC and Gaussian DBN, due to the
disadvantage of exponential growth of search space for DBN structures with
the increasing number of nodes. Therefore, to deal with this problem we make
use of mutual information to design initial population in a small search space.
Moreover, a novel encoding scheme and its corresponding adapted operators are
employed in the proposed algorithm since there is no need to test the acyclicity
of new individuals formed in the evolutionary process. Additionally, the family
inheritance is introduced to update the BIC score of each individual for a new
generation in order to avoid the recalculation. We have validated the effectiveness
of the proposed method compared with other three approaches without using
these above techniques. The experimental results demonstrate the superiority of
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our method which has excellent performance in accuracy and efficiency. Further-
more, it is worth mentioning that the proposed algorithm in this paper is able to
apply to many types of DBN for its fewer assumptions than other methods, and
the key advantage of the proposed method is its unsupervised character, i.e., it
does not rely heavily on priori information but be based on data.

Future work is aimed at adapting our method to learn time-varying DBN
models which have a DBN as base structure for the sake of modeling nonsta-
tionary sequences. Additional experiments are planned to extend the proposed
method to multiple nodes and analyze the robustness of the proposed algorithm
when some part of the data set is missing or wrong as well as to analyze this
approach in small sample size problem.
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Abstract. The junction tree algorithm is currently the most popular
algorithm for exact inference on Bayesian networks. To improve the time
and space complexity of the junction tree algorithm, we must find an
optimal total table size triangulations. For this purpose, Ottosen and
Vomlel proposed a depth-first search (DFS) algorithm for optimal tri-
angulation. They also introduced several techniques for improvement of
the DFS algorithm, including dynamic clique maintenance and coalescing
map pruning. However, their dynamic clique maintenance might compute
some duplicate cliques. In this paper, we propose a new dynamic clique
maintenance that only computes the cliques that contain a new edge.
The new approach explores less search space and runs faster than the
Ottosen and Vomlel method does. Some simulation experiments show
that the new dynamic clique maintenance improved the running time of
the optimal triangulation algorithm.

Keywords: Optimal triangulation · Junction tree algorithm · Dynamic
clique maintenance

1 Introduction

Bayesian networks are graphical models that encode probabilistic relations
among variables [1]. A Bayesian network is a directed acyclic graph in which
vertices represent random variables, and the arcs represent conditional depen-
dencies. Two vertices that are not connected by an arc represent the two variables
that are conditionally independent of each other. Each variable is associated with
a conditional probability table conditioning on its parents. Bayesian networks
provide a neat and compact representation of joint probability distributions.

Probabilistic inference is an extremely common task that is conducted on
Bayesian networks. However, probabilistic inference using Bayesian network is
known to be NP-hard [2]. The network size limitation of the inference algorithm
obstructs the more widespread application of Bayesian Networks. Many studies
have been undertaken to improve inference algorithms in the past two decades.
The most influential exact inference algorithm is the junction tree propagation
algorithm [3–5]. In this algorithm, a Bayesian network is first converted into a
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special data structure called junction tree; then belief is propagated on that tree.
A junction tree can be formed if and only if the moral graph of the Bayesian
network is triangulated. If the graph is not triangulated, then it is necessary to
add extra edges to it until it becomes so. This process is called triangulation.
A Bayesian network allows several different triangulations. The triangulation
is expected to affect the structure of the junction tree and the performance of
subsequent belief propagation. In this paper, we especially focus on the optimal
triangulation of Bayesian networks. Unfortunately, finding an optimal triangula-
tion is NP-hard [6]. However, this defect is not crucially important because the
triangulation can often be done off-line and can be saved for inference algorithms.

Previous investigations of triangulation problems have been conducted by
researchers from various fields for different purposes. Their triangulation algo-
rithms are designed to optimize various criteria. The commonly used criteria are
the fill-in, the treewidth, and the total table size. Of all these criteria, the total
table size criterion yields the most exact bounds of the memory and time require-
ments of probabilistic inference. Thus, for inference on a Bayesian network, a
triangulation is optimal if the triangulation has the minimum total table size.
Finding an optimal triangulation is important because the junction algorithm
provides the best performance from optimal triangulation. Moreover, optimal
triangulation is required for an embedded system that is often with real-time
computing constraints and with limited memory usage. We solve the optimal
triangulation problem by searching the space of all possible triangulations. This
search is conducted by enumerating all possible elimination orders to find the
order that has the minimum total table size.

To obtain an optimal triangulation for total table size criterion, Ottosen
and Vomlel investigated depth-first search and best-first search algorithms [7].
They claimed that the depth-first search uses less memory than the best-first
search does. Moreover, they demonstrated that the two methods have almost
equal run time in computational experiments. The best-first search with theo-
retically better order does not necessarily run faster than the depth-first search
in practice. Although the depth-first search expands more search nodes than the
best-first search does, the best-first search has heavy overhead costs for main-
taining a priority queue (In this paper, the term “node” is used exclusively for
a point in the search space for the optimal triangulation algorithm. The term
“vertex” is used exclusively for a point in the graph being triangulated.). For
optimal triangulation algorithms, it is necessary to make the overhead as low as
possible when reducing the search space. To reduce the overhead cost, Ottosen
and Vomlel introduced dynamic clique maintenance. In the optimal triangula-
tion algorithm, it is necessary to compute total table size of each search node,
which is a lower bound of the node. Therefore, we must also ascertain the set
of cliques of each node. It is necessary to maintain a set of cliques in a dynamic
graph. The dynamic graph means that the edges can be removed and added but
the set of vertices is invariant. To compute the cliques of the updated graph, a
simple approach is to run the Bron–Kerbosch (BK) algorithm [8] on the graph.
However, the BK algorithm suffers from heavy computational costs. For a graph
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with n vertices, the worst-case running time of the BK algorithm is O(3n/3) [9].
To resolve this problem, Ottosen and Vomlel proposed a dynamic clique mainte-
nance [7], which runs the BK algorithm on a smaller subgraph where all the new
cliques can be found and all the existing cliques are removed. The dynamic clique
maintenance reduced the overhead of each node and made the optimal triangu-
lation algorithm faster. However, the dynamic clique maintenance proposed by
Ottosen and Vomlel might compute some duplicate cliques. The method presents
shortcomings in computational costs as the number of duplicate cliques becomes
large. In the elimination process for triangulating a graph, it is well know that a
new fill-in edge cannot connect to the vertex that has been eliminated. Based on
this observation, Li and Ueno [10] proposed an improved dynamic clique mainte-
nance. The Li and Ueno method reduced the search range of the BK algorithm
by removing eliminated vertices from the graph that the Ottosen and Vomlel
method explores. However, the method still computes many duplicated cliques.
A new clique in the updated graph must include a new edge. However, these
methods might compute some cliques that do not contain a new edge. Those
cliques are computed both in the original graph and in the updated graph.

In this paper, we propose a new dynamic clique maintenance algorithm for
optimal triangulation of a Bayesian network. When some new edges are inserted
in a graph for triangulation purpose, we must update the set of cliques. A new
clique in the updated graph must contain a new edge. The idea of our method
is to avoid recomputing the cliques that do not contain a new edge. We only
explore an even smaller subgraph than the graph that the Ottosen and Vomlel
method explores. The subgraph only contains the new edges and their neigh-
boring vertices. We run the BK algorithm on the subgraph where all the new
cliques can be found. The new algorithm explores less search space and runs
faster than the Ottosen and Vomlel method does. The computational cost of
dynamic clique maintenance is inherent in the calculation of the lower bound
at each node. Thereby, the improvement of the dynamic clique maintenance
algorithm can decrease the overhead of each node. Some simulation experiments
show that the new dynamic clique maintenance improved the running time of
the optimal triangulation algorithm.

The remainder of this paper is organized as follows. Section 2 presents the
triangulation problem and describes the formulation of the search space of the
optimal triangulation algorithm. Section 3 reviews the depth-first search algo-
rithm presented in [7]. In Sect. 4, we propose a new dynamic clique maintenance
algorithm. Section 5 provides some experiments that are useful to evaluate the
proposed method. Section 6 concludes the paper.

2 Triangulation Problem

We first introduce some notations and definitions for description of triangula-
tion problem. Then we formulate the search space of the optimal triangulation
algorithm.
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2.1 Notation and Definitions

Let G = (V, E) be an undirected graph with vertex set V and edge set E. For
a set of vertices W ⊆ V, G[W ] = (W, {(v, w) ∈ E|v, w ∈ W}) is the subgraph
of G induced by W. For a set of edges F, V(F) denotes the set of vertices
{v,w|(v,w) ∈ F}.

Two vertices v and w are said to be adjacent if (v, w)∈ E. The neighbors
N (v, G) of a vertex v is the set W⊆ V such that each u ∈W is adjacent to v. The
family FA(W, G) of a set of vertices W is defined as the set (∪w∈W N (w,G))∪W .
Let e = (v,w) ∈ E be an edge, we define the neighbors N (e, G) of an edge e as
the set of vertices U ⊆ V such that each u ∈U is adjacent to v and w. The family
FA(F, G) of a set of edges F is defined as the set (∪f∈F N (f,G) )∪ V(F). Note
the family FA(F, G) of a set of edges F is a subset of the family FA(V(F),
G) of a set of vertices V(F). For example, see the left graph of Fig. 1, we have
F = {(a,c),(b,c)}, and V(F) = {a,b,c}, then FA(F, G) = {a,b,c} is a subset of
FA(V(F), G) = V.

A graph G is complete if all pairs of vertices (u,v) (u �= v) are adjacent in
G. A set of vertices W ⊆ V is complete in G if G[W] is a complete graph. If
W is a complete set and no complete set U exists such that W ⊂ U, then W
is a clique. (Remark: Any complete set is called a clique in some literatures.
In that case, what we have defined as a clique is called a maximal clique.)
The set of all cliques of graph G is denoted as C(G). For a set of vertices
W ⊆ V, C(W, G) denotes the set of cliques that intersects W. Let G’= (V,
E ∪F) (F ∩E = ∅) be the right graph obtained by adding a set of new edges F
to G = (V, E), RC(G,G’) = C(G)\C(G’) denotes the set of removed cliques, and
NC(G,G’) = C(G)\C(G) denotes the set of new cliques. For example, in Fig. 1,
let G be the graph on the left, and G’ be the graph obtained by adding edge (c,d)
to G, then in this example, we can compute C(G)= {{a,b,c},{b,d},{d,e},{c,e}}
and C(G’) = {{a,b,c},{b,c,d},{c,d,e}}. Therefore, we have RC(G,G’) = {{b,d},
{d,e},{c,e}} and NC(G,G’) = {{b,c,d},{c,d,e}}.

Fig. 1. Left: Initial graph G= (V, E). Right: Updated graph G’ obtained by adding
one edge (c,d) to G.
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The table size of a clique C is defined as ts(C) =
∏

(v∈C) |sp(v)|, where
sp(v) denotes the state space of the variable corresponding to v in the
Bayesian network. The total table size (TTS) of a graph G is defined as
tts(G) =

∑
C∈C(G) ts(C).

A undirected graph G is said to be triangulated if every cycle of length greater
than 3 has a chord, that is an edge connecting two nonconsecutive vertices in the
cycle. A triangulation of G is defined as a set of edges T such that T∩E = ∅ and
graph H = (V, E∪T) is triangulated. For example, in Fig. 1, the graph on the left
is not triangulated because a chord-less cycle {b,c,e,d} exists. The graph on the
right is triangulated because the edge (c, d) is added, which is a triangulation
for the graph on the left.

Elimination of a vertex v∈V from graph G = (V, E) is the process of adding
necessary edges F to make the set N (v, G) complete, then removing v and all
the incident edges from G. The edges F that are added during the elimination
process are called fill-in edges. If F = ∅, then v is called a simplicial vertex of
G. An elimination order for graph G is a total ordering π of the vertices of
G, where π(i) denotes the i-th vertex in the ordering. Let τ be the partial
elimination order, which is a sequence of vertices. Let V(τ) denotes the set of
vertices presented in τ . Let T be all the fill-in edges that result from eliminating
vertices from graph G according to order π. We will then use Gπ to denote the
graph that results from adding these fill-in edges T to G = (V, E) and write
Gπ = (V, E∪T). Given any elimination order π, if all vertices are eliminated
sequentially from G according to π, then the union of all the fill-in edges is a
triangulation of G and Gπ is a triangulated graph.

We present one example for elimination of vertices from a moral graph of
Asia [4] Bayesian network in Fig. 2. Consider an elimination order starting with
the sequence 〈D,S〉. Because eliminating vertex D does not add fill-in edge, D is
a simplicial vertex. This process induces two associated graphs (filled-in graph
and remaining graph). Let τ = 〈X〉 denote the partial elimination order, We also
refer to the filled-in graph Gτ as partially triangulated graph, which is shown in
Fig. 2(a). The remaining graph Gτ [V/V(τ)] (V(τ) = {D}) is shown in Fig. 2(b).
Then we eliminate vertex S. Eliminating vertex S adds a fill-in edge (L,B). This
process also induces two associated graphs. Let partial order τ ′ be the vertex
sequence 〈D,S〉, F = {(L,B)} be all fill-in edges when we eliminated along τ ′. The
corresponding partially triangulated graph Gτ ′

= (V, E∪ F) is shown in Fig. 2(c).
The corresponding remaining graph Gτ ′

[V/V(τ ′)] (V(τ ′) = {D,S} ) is shown in
Fig. 2(d). If we continue to eliminate vertices until no vertex was left. The final
partially triangulated graph (also called filled-in graph) is a correct triangulated
graph such that there is no chordless cycle on it. Therefore, triangulation using
vertex elimination is simple, but the determination of a good elimination order
is the most important step. In this paper, we try to find the order π that induces
a triangulated graph with minimum total table size.
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Fig. 2. Example of eliminating vertices from the moral graph of Asia network.

2.2 Search Space of the Optimal Triangulation Algorithm

To find the optimal triangulation, we can conduct a search in the space of all
possible elimination orders of the moralized graph of Bayesian network [7]. For
this purpose, we generate a search graph that includes all elimination orders for
a Bayesian network. Figure 3 depicts the search graph for a network with five
vertices. The search graph is a tree with root node corresponding to the start
search node and leaf nodes corresponding to all distinct elimination orders. In
this search tree, each node is labeled using a partial elimination order τ . We also
associate the intermediate partially triangulated graph with each node for rea-
sons of computational convenience in the optimal triangulation algorithm. Each
leaf node is labeled using a complete order and is associated with a triangulated
graph. For a node labeled τ , the successor node can be generated by the elimi-
nation of a vertex from remaining graph Gτ [V/V(τ)]. Given the search tree, we
can explore all possible elimination orders to find the order that has minimum
total table size.

3 The Optimal Triangulation Algorithm

This section presents a review of the depth-first search algorithm for optimal
triangulation presented by Ottosen and Vomlel [7].

3.1 The Depth-First Search Algorithm for Optimal Triangulation

The naive depth-first branch and bound algorithm for optimal triangulation
operates as follows. First, we initialize the upper bound (UB) on total table size
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Fig. 3. Search tree of the optimal triangulation algorithm for a graph of five vertices.

(TTS) with the triangulation using minimum fill-in heuristic, which greedily
selects the next vertex to eliminate if the vertex leads to add the minimum fill-
in edges. Next, it traverses all search tree nodes in a depth-first manner. For each
tree node, we calculate the TTS of the partially triangulated corresponding to
the node. The TTS is a lower bound of a search node because by adding an edge
to graph G, the TTS of G cannot decrease [7]. If we find a node of which TTS
is greater than the TTS of UB, then we prune all the successors from the node.
On the other hand, if we find a leaf node (labeled using a complete ordering)
that is better than UB, we update the UB by replacing the leaf node to UB.
The search continues until all nodes have been explored. It is noteworthy that
the algorithm performs a search in the space of all elimination orders.

We intend to use the TTS upper bound for pruning nodes in depth-first
search triangulations. Therefore, we must compute the TTS of each node in
the search tree. The TTS is easy to compute if we know the cliques of the
partially triangulated graph corresponding to the node. Therefore, we must also
associate the set of cliques with each node. In the Ottosen and Vomlel algorithm
[7], for computing the TTS lower bound, each node t is represented as a tuple
(τ ,H,C,tts,R).

– t.τ : an ordered list of vertices representing the partial elimination order.
– t.H = (V, E∪ F): partially triangulated graph obtained by adding all fill-in

edges accumulated along the τ to the original moral graph.
– t.C: A set of cliques for H, C(H).
– t.tts: Total table size of graph H, which is a lower bound for node t.
– t.R: The remaining graph, R = H[V\V(τ)], where V(τ) denotes the set of ver-

tices that lie in τ .

To compute t.tts, we must calculate all the cliques t.C first. For this purpose,
we can use a standard clique enumeration algorithm such as the well-known



Optimal Triangulation of Bayesian Networks 159

Fig. 4. Example of the vertex elimination and partially triangulated graphs induced
by an elimination order that starts with sequence {a,b}. Left: Initial graph. Middle
left: Partially triangulated graphs correspond to elimination partial order {a}. Middle
right: Partially triangulated graphs correspond to the elimination partial order {a,b}.
Right: Final triangulated graph.

Bron–Kerbosch algorithm (BK algorithm) [8]. Below, we present an example to
explain the lower bound and related computations.

Example 1. Fig. 4 depicts the vertex elimination process according to the left-
most path in Fig. 3. The path corresponds to sequential elimination of vertices a
and then b. The root node r corresponds to the graph on the left in Fig. 4(initial
graph), where no vertex has been eliminated. We can compute the cliques of the
root node’s graph r.C = {{a,b,c},{b,d},{d,e},{c,e}} using the BK algorithm. In
this case, the TTS (assuming all binary variables) is 3· 22+23 = 20, which is a
lower estimate of TTS of optimal triangulation.

The successor node t of r (induced by elimination of vertex a) corresponds
to the graph on the middle-left in Fig. 4. The partially triangulated graph t.H is
the same as the initial one. Therefore, we can derive t.tts = 20.

We expand the successor node t’ of t (corresponding to the elimination of ver-
tex b). The induced partially triangulated graph t’.H corresponds to the middle-
right graph in Fig. 4, which includes the fill-in edge (c, d). This process continues
until the graph is triangulated. The resulting triangulated graph corresponds to
the right graph in Fig. 4, which is the same as t’.H. Finally, the cliques of the
triangulated graph are t’.C = {{a,b,c},{b,c,d},{c,d,e}}. Their t’.tts is 3· 23 = 24.
In this example, we can see that the TTS of a node is never higher than the TTS
of its successor nodes. This key property makes sure the correctness of applying
branch and bound technique in the optimal triangulation algorithm.

However, the BK algorithm suffers from heavy computational cost. For a
graph with n vertices, the worst-case running time of the BK algorithm is
O(3n/3). Indeed, the BK algorithm engenders many redundant computations.
To tackle this problem, Ottosen and Vomlel [7] proposed a more efficient algo-
rithm for computation of the set of cliques C in a dynamic graph. We will explain
the dynamic clique maintenance algorithm in Sect. 3.2.

We explained the search tree of depth-first search and how to compute a lower
bound for each node. The depth-first search algorithm presented by Ottosen and



160 C. Li and M. Ueno

Algorithm 1. Depth-first search with coalescing and upper-bound pruning.
1: function TriangulationByDFS(G)
2: Let s= (G,C(G),tts(G),V)
3: EliminateSimplicial(s) � Simplicial vertex rule
4: if |V(s.R)|=0 then
5: return s
6: Let best=MinFill(s) � Best path
7: Let map= ∅ � Coalescing map
8: ExpandNode(s,best,map) � Start recursive call return best

9: procedure ExpandNode(n,&best,&map)
10: for all v∈ V(n.R) do
11: Let m=Copy(n)
12: EliminateVertex(m, v) � Update graph, cliques and TTS
13: EliminateSimplicial(m) � Simplicial vertex rule
14: if |V(m.R)|=0 then
15: if m.tts<best.tts then
16: Set best=m
17: else
18: if m.tts≥best.tts then
19: continue � Branch and bound
20: if map[m.R].tts≤m.tts then
21: continue
22: Set map[m.R]=m
23: ExpandNode(m,best,map)

Vomlel can be implemented in O(|V|) space and O(|V|!) time. A pseudo code
of the Ottosen and Vomlel algorithm is shown in Algorithm1. The Eliminate
Vertex(m,v) procedure eliminates vertex v from the remaining graph of node m.
To prune unnecessary search nodes further, Ottosen and Vomlel also introduced
the following pruning rules: (1) Graph reduction techniques called the simplicial
vertex rule [11,12], and (2) pruning based on a coalescing map. The procedure
EliminateSimplicial(m,v) sequentially removes all simplicial vertices from the
remaining graph of node m. Coalescing map uses O(n2) memory space to prune
unnecessary search nodes; see [13] for details. Although it is well known that
the depth-first search runs in O(|V|!) time, the algorithm combined with these
techniques described above merely hits the upper bound. Ottosen and Vomlel
[7] claimed that their algorithm runs in O(2|V |) time in practice.

3.2 Previous Works on Dynamic Clique Maintenance

Ottosen and Vomlel [7] observed that recomputing all cliques of a graph using the
BK algorithm is unnecessary. Then they proposed the following dynamic clique
maintenance algorithm. The main idea behind the algorithm is the following.
Instead of searching for all cliques in the whole graph, as the BK algorithm
does, their algorithm runs a clique enumeration algorithm simply on a smaller
subgraph on which all the new cliques can be found and all the existing cliques are
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Algorithm 2. Dynamic clique maintenance proposed by Ottosen and Vomlel.
1: procedure CliqueUpdate(G, C(G), F)
2: Let G’= (V, E∪F)
3: C(G’)= C(G)
4: Let U=V(F)
5: for each clique C∈ C(G) do � Remove old cliques
6: if C∩U �= ∅ then
7: Set C(G’)= C(G’)\{C}
8: let Cnew =BKalgorithm(G’[FA(U, G’)])
9: for each clique C∈ Cnew do � Add new cliques
10: if C∩U �= ∅ then
11: Set C(G’)= C(G’)∪ {C}

removed. This dynamic clique maintenance is presented in Algorithm 2, where G
is the initial graph, C(G) is the set of cliques of G, F signifies the fill-in edges, and
G’ is derived by adding F to G. BKalgorithm(G) returns a set of cliques of the
graph G. The Ottosen and Vomlel algorithm is derived based on the following
theorem:

Theorem 1 ([7]). Let G= (V, E) be an undirected graph, and let G’= (V,
E∪F) be the graph result from adding a set of new edges F to G. Let U=V(F),
and let C(G’)= C(G). We remove the cliques of C(U,G) from C(G’) and add
cliques of C(U,FA(U, G’)]) to C(G’) ,then C(G’) is the set of all cliques of G’.

Fig. 5. A sequence of graphs corresponding to eliminating of vertices D and S. (L,B)
is the fill-in edge.

Next, we provide an example to trace Algorithm 2.

Example 2. Consider the left graph G in Fig. 5. C(G) is the set of cliques of G,
{{A,T}, {T,L,E}, {E,X}, {S,L}, {S,B}, {B,D,E}}. We add fill-in edges F = {(L,
B)} to graph G, resulting in new graph G’(corresponding to the right graph in
Fig. 5). The set U = {L,B} and we let C(G’) = C(G).

First, we iterate through the cliques in C(G’) to remove the cliques that
intersect with U, which is the set of cliques {{T,L,E}, {S,L}, {S,B}, {B,D,E}}.



162 C. Li and M. Ueno

Next, we run the BK algorithm on a subgraph G’[FA(U, G’)]. Thereby, we
obtain Cnew = {{T,L,E}, {S,L,B}, {L,B,E}, {B,D,E}}.

Finally, we add to C(G’) all the cliques found in the subgraph G’[FA(U,
G’)] that intersect with U. Now the C(G’) = {{A,T}, {E,X},{T,L,E}, {S,L,B},
{L,B,E}, {B,D,E}}, which is the cliques of new graph G’.

Algorithm 3. Dynamic clique maintenance proposed by Li and Ueno (2012).
1: procedure CliqueUpdate1(G, C(G), F, W)
2: Let G’= (V, E∪F)
3: C(G’)= C(G)
4: Let U=V(F)
5: for each clique C∈ C(G) do � Remove old cliques
6: if C∩U �= ∅ then
7: if C∩W= ∅ then
8: Set C(G’)= C(G’)\{C}
9: let Cnew =BKalgorithm(G’[FA(U, G’)\W])
10: for each clique C∈ Cnew do � Add new cliques
11: if C∩U �= ∅ then
12: Set C(G’)= C(G’)∪ {C}

The example shows that the algorithm sometimes removes and adds the same
cliques again. Although the Ottosen and Vomlel method reduces the search range
of the BK algorithm from the whole graph to a small subgraph G’[FA(U, G’)],
the method might present shortcomings in performance when the number of
duplicated cliques becomes large. In this example, we observed that vertex D
has been eliminated. It is well known that a new fill-in edge cannot connect to the
vertex that has been eliminated. The neighbors of D are invariant in G and G’.
Therefore, any clique containing D in the initial graph should remain a clique
in the updated graph. Generally, no clique containing one of the eliminated
vertices should be calculated again. Based on this observation, Li and Ueno
[10] proposed an improved dynamic clique maintenance. The improved dynamic
clique maintenance is shown in Algorithm 3, where G, C(G), F are defined in the
same manner as presented in Algorithm 2, and W is the set of vertices that have
been eliminated before. The improved dynamic clique maintenance runs BK
algorithm on the graph G’[FA(U, G’)\W], which is a subgraph of G’[FA(U,
G’)] which the Ottosen and Vomlel method explores. As the BK algorithm is
the most time consuming part in the dynamic clique maintenance procedure.
For a graph with n vertices, the worst-case running time of the BK algorithm is
O(3n/3). Therefore, this reduction of the search range is important to improve
the performance of the dynamic clique maintenance. In the Li and Ueno method,
when we remove an old clique C, one more conditional check is necessary to
ascertain whether clique C is disjoint W. This check is usually not a problem
because the complexity of comparison of cliques is constant if we store a clique
using BitSet Object in JAVA programming language.
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4 Proposed Dynamic Clique Maintenance

In the depth-first search triangulation algorithm, it is necessary to compute the
TTS lower bound of each search node. Therefore, the computational cost of
dynamic clique maintenance is inherent in calculation of the lower bound at
each node. To lower the overhead cost in the triangulation algorithm, we must
compute the cliques of each graph efficiently.

Algorithm 4. Proposed dynamic clique maintenance.
1: procedure CliqueUpdate2(G, C(G), F)
2: Let G’= (V, E∪F)
3: C(G’)= C(G)
4: Let W=FA(F, G’)
5: for each clique C∈ C(G) do � Remove old cliques
6: if C ⊆ W then
7: Set C(G’)= C(G’)\{C}
8: C(G’)= C(G’)∪BKalgorithm(G’[W]) � Add new cliques

In Sect. 3.2, we have demonstrated by example that the Ottosen and Vomlel
approach might compute some duplicated clique. To resolve this problem, we
propose a new dynamic clique maintenance algorithm. The main idea of our
method is to avoid recomputing the cliques that do not contain a new edge.
When some new edges are inserted to a graph, a new clique must contain a
new edge. We find that all new cliques and removed cliques are included in the
vertex set FA(F, G’), where F is the set of new edges. Therefore, we can only
run the BK algorithm on the subgraph G[FA(F, G’)]. The proposed dynamic
clique maintenance algorithm is shown in Algorithm4, where U, G, F, C(G)
are defined in the same manner as presented in Algorithm2, and W = G[FA(F,
G’)] denotes the family of a set of edges F. The new algorithm is based on the
following Theorem:

Theorem 2. Let G= (V, E) be an undirected graph, and let G’= (V, E∪F) be
the graph resulting from adding a set of new edges F to G. Let U=V(F), and let
C(G’)= C(G). We remove all the cliques included in FA(F, G’) from C(G’) and
add cliques of C(G’[FA(F, G’)]) to C(G’), then C(G’) is the set of all cliques
of G’.

Proof. If a clique C is a new clique in G’, C∈ NC(G,G’), then C must contain
at least one new edge f ∈F; otherwise C is not a new clique. Because C contains
a new edge, any vertex v ∈C must be a neighbor of one of the new edges. For
any vertex v∈C, v must in the set FA(F, G’). Therefore, C⊆ FA(F, G’). That
is to say, all the new cliques can be found on the subgraph G[FA(F, G’)].

If a clique C is a removed clique, C ∈ RC(G,G’), then there exists a new clique
K such that C⊆ K. Because the only way we remove a clique is by replacing the
old clique by a new clique K such that C⊆ K. From the result presented above,
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a new clique K⊆ FA(F, G’). Therefore, each removed clique C is included in
FA(F, G’).

We remove all the old cliques by removing all the cliques included in FA(F,
G’) from C(G’), and then add all the new cliques which can be found on the
subgraph G[FA(F, G’)] to C(G’). Then, C(G’) is the set of all cliques of G’.

The following example explains the algorithm:

Example 3. Consider the graph G and updated graph G’ in Fig. 5. C(G) is
the set of cliques of G, {{A,T}, {T,L,E}, {E,X}, {S,L}, {S,B}, {B,D,E}}. We
let C(G’) = C(G). We first compute a family of edge set F, W =FA(F, G’),
W = {S,E,L,B}. Next, we remove from C(G’) all the cliques that are included in
W, which is the set of cliques {{S,L}, {S,B}}.

Then, we run the BK algorithm on a subgraph G’[W]. We obtain
Cnew = {{S,L,B}, {L,B,E}}. In the Ottosen and Vomlel method, we run the
BK algorithm on G’[FA(U, G’)], where FA(U, G’) = {S,T,E,D,L,B}. However,
in our new method, we run the BK algorithm on G’[W], where W = {S,E,L,B}.
It can be easily proved that vertex set W =FA(F, G’) is always a subset of
FA(V(F), G’) that is used in Ottosen and Vomlel algorithm. Our method makes
the BK algorithm explore less search space for updating cliques than the Ottosen
and Vomlel method does. The BK algorithm is the most time-consuming part for
the dynamic clique maintenance. Therefore, this reduction of the search range
is important to improve the performance of the dynamic clique maintenance.

Finally, we simply add all new cliques Cnew to C(G’). In the Ottosen and
Vomlel approach, it is necessary to check each clique in G’[FA(U, G’)] to ascer-
tain whether it intersects with U, or not. However, we relax this conditional check
in our algorithm. In this example, we only remove cliques RC(G,G’) and add
cliques NC(G,G’). On the other hand, the Ottosen and Vomlel method removes
some duplicated cliques and adds those again.

The new dynamic clique maintenance algorithm performs the BK algorithm
on W = G[FA(F, G’)], which is a subgraph of G’[FA(U, G’)] on which the
Ottosen and Vomlel method does. The clique enumeration algorithm (BK algo-
rithm) entails exponential costs with the number of vertices. In the dynamic
clique maintenance algorithm, the running of BK algorithm is the most time
consuming part. Therefore, the reduction of search range is effective to reduce
calculation costs of dynamic clique maintenance. In the Ottosen and Vomlel app-
roach, a newly found clique has to be check whether it intersects U, or not. Our
method relaxes this conditional check and simply adds the all new cliques found
in W. To conclude, the new algorithm explores less search space and runs faster
than the Ottosen and Vomlel method does. We demonstrate the performance
superiority of the new algorithm by simulation experiments in Sect. 6.

5 Experiments

We conducted computational experiments to evaluate the performance of our
proposed dynamic clique maintenance. We also compared our algorithm with the
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Fig. 6. Comparison of the running times of the Ottosen and Vomlel method (OandV),
the Li and Ueno method (LandU2012) and the proposed method for dynamic clique
maintenance.

Ottosen and Vomlel method (OandV)[7], and the Li and Ueno (LandU2012)[10].
All algorithms described in this paper were implemented in the Java language
in the same manner. All experiments were conducted on a 3.0 GHz processor
(Xeon-5675; Intel Corp.) with 12 GB of RAM.

5.1 Dynamic Clique Maintenance

This section presents a comparison of several dynamic clique maintenance meth-
ods. For this purpose, we generated 40 random Bayesian networks each for 20,
30, 40, and 50 vertices with various density using BNGenerator1. For each graph
in the dataset, we triangulated the graph 1,000 times by sequentially eliminat-
ing all vertices (with different random elimination order on each run). The set
of cliques of the graph is updated after each vertex is eliminated. We chose this
experimental scenario because it shows the expected speedup of our proposed
method for the triangulation problem. Figure 6 shows the total running time of
1,000 times triangulation for all random Bayesian networks in the dataset. It is
clear that the proposed dynamic clique maintenance is faster than OandV and
LandU2012.

5.2 Optimal Triangulation

This section describes the experimentally obtained results for the optimal trian-
gulation algorithm for total table size criteria. To examine the effectiveness of our
1 http://sites.poli.usp.br/pmr/ltd/Software/BNGenerator/.

http://sites.poli.usp.br/pmr/ltd/Software/BNGenerator/
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Table 1. Comparison of depth-first search triangulation algorithms among various
dynamic clique maintenance methods.

Bayesian networks DFS DFS-1 DFS-2

Name V Time (s) Time (s) Time (s)

Insurance 27 1.656 1.134 0.776

Water 32 10.415 6.247 4.767

Mildew 35 13.285 8.193 5.246

Alarm 37 0.013 0.010 0.006

Hailfinder 56 8.869 7.493 4.337

WIN95PTS 76 60.082 44.122 27.146

proposed dynamic clique maintenance in the optimal triangulation algorithms,
we implemented the following algorithm:

DFS: depth-first search (DFS) optimal triangulation algorithm obtained by
introducing OandV dynamic clique maintenance.

DFS-1: improved DFS obtained by introducing LandU2012 dynamic clique
maintenance.

DFS-2: improved DFS obtained by introducing the proposed dynamic clique
maintenance.

We used six well-known graphs in the Bayesian network repository2. The run-
ning times of optimal triangulation algorithms are presented in Table 1. Results
show that our proposed dynamic clique maintenance dramatically improves the
running time of triangulation. This result suggests that the proposed method
can extend the available network size of Bayesian network inference.

6 Conclusion

In this paper, we proposed a fast clique maintenance algorithm for optimal tri-
angulation of Bayesian Networks. The performance of the proposed algorithm
was compared with the state-of-the-art, the Ottosen and Vomlel method, and
the Li and Ueno method. Theoretically analysis and experiments reveal that the
new method is superior to the previous proposed method.

Given graph G, new edges F, and eliminated vertex set W, consider the
problem of updating cliques of new graph. The Ottosen and Vomlel method
runs BK algorithm on G’[FA(V(F ), G’)]. The Li and Ueno method runs BK
algorithm on G’[FA(V(F ), G’)\W]. The proposed method runs BK algorithm on
G’[FA(F, G’)]. The proposed method is faster than the Li and Ueno method. The
Li and Ueno method is faster than the Ottosen and Vomlel method. The main
reason for the results is that the BK algorithm suffers from heavy computational
cost and the proposed method reduces search space for BK algorithm because
G’[FA(V(F ), G’)] ⊇ G’[FA(V(F ), G’)\W] ⊇ G′[FA(F,G′)].
2 http://compbio.cs.huji.ac.il/Repository/networks.html.

http://compbio.cs.huji.ac.il/Repository/networks.html
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The Li and Ueno method (2012) assumes eliminating processes in which
some edges are added in a step-by-step manner. Application of the method in
other areas such as protein interaction network is expected to create a problem.
However, the proposed method does not assume this eliminating process. The
proposed dynamic clique maintenance is more generally applicable.
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Abstract. Multi-Linear Functions (MLFs) is a well known way of prob-
ability calculation based on Bayesian Networks (BNs). For a given BN,
we can calculate the probability in a linear time to the size of MLF.
However, the size of MLF grows exponentially with the size of BN,
so the computation requires exponential time and space. Minato et al.
have shown an efficient method of calculating the probability by using
Zero-Suppressed BDDs (ZDDs). This method is more effective than the
conventional approach of Darwiche et al. which encodes BNs into Con-
junctive Normal Forms (CNFs) and then translates CNFs into factored
MLFs. In this article, we present an improvement of Minato’s method by
factoring ZDDs of MLFs into more factored form utilizing weak divison
operation based on d-separation structure of BNs.

Keywords: Bayesian Network · Multi-Linear Functions · ZDD ·
d-separation

1 Introduction

Basyesian networks (BNs) [1] are directed acyclic graphs and used for repre-
senting uncertain knowledge across a number of fields. Recently, compiling BNs
becomes a hot topic within probabilistic modeling and processing. Algorithms
of compiling BNs enable propagation of probability calculation and inference in
networks with a reasonable number of variables. However, the Bayesian propa-
gation computations, even for an small example, are very complex and cannot be
calculate manually. How to compile a BN into a condensed form has been attract-
ing much attention. One of the approaches is known as Multi-Linear Functions
(MLFs) [2], which represent a BN as a polynomial and probabilistic queries are
answered by evaluating the polynomial. However, the MLFs itself is exponential
in size, it can not be represented explicitly. Minato et al. [3] have shown an
efficient method of compiling BNs into factored forms of MLFs based on Zero-
suppressed Binary Decision Diagrams [4], which is a graph-based representation
first used for VLSI logic design applications. In that method, they produce a set
of ZDDs each of which represents MLF of each BN nodes and shows this method
c© Springer International Publishing Switzerland 2015
J. Suzuki and M. Ueno (Eds.): AMBN 2015, LNAI 9505, pp. 168–183, 2015.
DOI: 10.1007/978-3-319-28379-1 12
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is more effective than conventional approach [2] in some cases. However, since
ZDDs are still too large for the realistic BNs. There is a need for more compact
representation of MLFs.

In this paper, we present an improvement of Minato’s methods of compiling
MLFs into more factored forms based on ZDDs to accelerate calculation and
inference in BNs since Minato et al. [3] have shown that these operations can
be executed in a time almost linear with the ZDD size. We first introduce the
weak division algorithm [5] the most successful and prevalent technique of logic
synthesis and optimization and show that if we treat MLFs as logic polynomi-
als, we can use this algorithm to factor MLFs into compressed forms. Then we
explain that for this algorithm, finding a good divisor to factor MLFs is the
key to success. Finally, we illustrate that the structure of d-separation used to
check some conditional independence in BNs is also effective to help us find a
good divisor to execute this factoring. We show the details of our method and
experiments results in Sects. 4 and 5.

2 Preliminaries

2.1 Bayesian Networks and MLFs

BayesianNetwork (BN) is a directed acyclic graph which defines a joint distrib-
ution over a set of random variables [1]. BNs are used for representing uncertain
knowledge across a number of fields. For a given BN and observed data, we
calculate the probability distribution of the entire network by substituting the
observed data into a portion of the BN.

Each BN node has a network variable X whose domain is a discrete set
of values. Each BN node also has a Conditional Probability Table (CPT) to
describe the conditional probabilities of the value of X given the values of its
parent BN nodes. We can use the CPT to represent the probability distribution
of the random variable and to predict the likelihood of uncertain events. Figure 1
shows a small example of a BN with its CPTs. In this BN, it has four nodes
resulting to 24 different variable instantiations. If want to know the probability
of D = d1 given A = a1 (we call A = a1 as evidence). First we need to calculate
the probability of all cases of B and C. Then using the result to multiply the
addition of items in CPT(D) that satisfies D = d1. Although we can use CPT
to answer queries, it is usually prohibitive if a BN is huge enough since the size
of CPT grows exponentially with the number of variables.

Multi-Linear Functions (MLFs) are well known way of probability calculation
based on BNs [2]. An MLF consists of two types of variables, an indicator variable
λx for each value X = x, and a parameter variable θx|u for each CPT parameter
Prb(x|u). The MLF contains a term for each instantiation of the BN variables,
and the term is the product of all indicators and parameters that are consistent
with the instantiation. For the example in Fig. 1, the MLF has the following
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Fig. 1. An example of BN

form:
λa1λb1λc1λd1θa1θb1|a1θc1|a1θd1|b1c1

+ λa1λb1λc1λd2θa1θb1|a1θc1|a1θd2|b1c1
+ λa1λb1λc1λd3θa1θb1|a1θc1|a1θd3|b1c1
. . .

+ λa2λb2λc2λd3θa2θb2|a2θc2|a2θd3|b2c2
Once we have generated the MLF for a given BN, the probability of instanti-

ation e can be calculated by setting indicators that contradict e to 0 and other
indicators to 1. Namely, we can calculate the probability in time linear in the
size of MLF. Apparently, the size of MLF grows exponentially with the size of
BN, the calculation is quite time consuming. However, if we factor the MLF
into a compact arithmetic expression, it is possible to speed up the probability
calculation. One way to do this factorization using Zero-suppressed BDDs has
been proposed by Minato at [3].

2.2 Zero-Suppressed BDDs

A Binay Decision Diagram (BDD) is a directed graph representation of a
Boolean function, as shown in Fig. 2(a). BDDs have two terminal nodes, which
we call 0-terminal node and 1-terminal node, and many decision nodes with two
edges, called 0-edge and 1-edge. A BDD is derived by reducing a binary tree
graph as shown in Fig. 2(b). The reduction is based on the two rules shown in
Fig. 3.
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Fig. 3. Reduction Rules on BDDs.

BDDs were originally developed for handling Boolean function data, however,
they can also be used for implicit representation of combinatorial itemset. A
combinatorial item set consists of elements each of which is a combination of a
number of items. There are 2n possible combinations of n items, so we have 22

n

possible combinatorial itemset. For example, for a domain of five items a, b, c,
d, and e, some combinatorial item sets are:

{ab, e}, {abc, cde, bd, acde, e}, {1, cd}, ∅.

Here “1” denotes a combination of no items, and ∅ means the empty set.
A combinatorial itemset can be mapped into Boolean space of n input vari-

ables. For the truth table of the Boolean function F = (abc̄) ∨ (b̄c), it also
represents the combinatorial itemset S = {ab, ac, c}, which is the set of input
combinations for which F is 1. Using BDDs for the corresponding Boolean func-
tions, we can implicitly represent and manipulate combinatorial itemset.

Zero-suppressed BDDs (ZDDs) [4] are variant of BDDs for efficient manipu-
lations of combinatorial itemset. An example of a ZDD is shown in Fig. 4 on the
left. ZDDs are based on the following special reduction rules.

– Delete all nodes whose 1-edge directly points to a 0-terminal node, and jump
through to the 0-edge’s destination, as shown in Fig. 4 on the right.

– Share equivalent nodes as in ordinary BDDs.
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Fig. 4. An example of a ZDD and ZDD reduction rules

According to the reduction rules, nodes of irrelevant items (never chosen in
any combination) are automatically deleted. So ZDD can be much more efficient
in dealing with combinatorial itemset than BDD. Furthermore, The basic set
operations such as intersection and union can be carried out efficiently in ZDDs
(the details of algorithms in Minato et al. [3] are omitted). The calculation can
be performed in the time approximately proportional to the compressed ZDD
size but not the number of terms of the combinatorial itemset.

2.3 ZDD-Based MLF Representation

An MLF is a polynomial in the indicator and parameter variables. It can be
regarded as a combinatorial itemset. Since each term is simply a combination of
variables, it can be represented compactly by a ZDD. For example, the MLF at
node B in Fig. 1 can be written as follows:

MLFB = λa1λb1θa1θb1|a1 + λa1λb2θa1θb2|a1

+λa2λb1θa2θb1|a2 + λa2λb2θa2θb2|a2 .

Here, we rename the parameter variables with actual number of probability
in the CPT of Fig. 1 so that equal parameters share the same variable.

MLFB = λa1λb1θa(0.4)θb(0.2) + λa1λb2θa(0.4)θb(0.8)

+λa2λb1θa(0.6)θb(0.8) + λa2λb2θa(0.6)θb(0.2).

The ZDD for MLFB is shown in Fig. 5. In this example, there are four paths
from the root node to the 1-terminal node, each of which corresponds to a term
of the MLF. It is an implicit factored representation of the MLF. At the same
time, it accelerates probability calculation by using the structure of ZDD of
sharing nodes because the calculation is performed in the time proportional to
the ZDD size [3].

A ZDD for the entire network in Fig. 1 are shown in Fig. 6 and the experiment
results of their approach are shown in Table 1. In this table, the first three
columns show the network specifications such as BN name, the number of BN
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nodes, literals and items. The last four columns presents the ZDD size, literals,
items and time consumption when compiling MLFs to ZDDs. Since the size of
ZDD changes a lot along with different orders of ZDD node, we use the numbers
of literals and items of MLFs, which do not change along with different orders of
ZDD nodes, to show upper limits of the calculate and inference consumption as
we know that the if we use no technique to condense MLFs size, the consumption
is in time linear in the size of literals and items. As the results shown in Minato
et al. [3], their method is more effective than conventional approach in some
cases.

Although using shared ZDDs we can condense the size of ZDDs to some
extent, in some cases the size of ZDDs are still too large. Therefore we consider
to factor ZDDs into more condensed size to represent BNs.

Fig. 5. An example of a ZDD for the MLFB .

Fig. 6. ZDD construction procedure for BN
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Table 1. Original MLFs and ZDDs before factorization.

Dataset BN specifications Before factorization

BN nodes Indicators Parameters ZDD size Total terms Total literals Time of

generating

ZDD from LF

alarmN36 37 105 187 4,551 >100 billion >500 billion 0.647 s

hailfinder43 56 223 835 73,700 >2 billion >210million 45.902 s

insuranceN5 27 – – 6,182 628,992 >10million 11.768 s

insuranceN14 27 – – 56,490 >70million >2 billion 11.603 s

insuranceN19 27 – – 17,893 >500million >2 billion 11.613 s

MildewN14 35 616 6,709 80,248 >2 billion >2 billion 946.35 s

MildewN20 35 616 6,709 107,828 >2 billion >2 billion 947.73 s

3 ZDD Factorization for MLF Representation

3.1 Basic Method of ZDD Factorization

Weak divison algorithm [5] is the most successful and prevalent technique of
logic synthesis and optimization. For optimizing a two-level logic (a form of the
Boolean expressions with the AND-OR two level structure), we first generate
multi-level logics from it and then apply weak divison algorithm to factor the
two-level logics. When we determine a good intermediate logic, we make a new
variable to present it and regard it as a divisor. Then we reduce the other
existing logics by factoring them with the divisor. Eventually, we construct a
multi-level logic that consists of a number of small two-level logics.

The weak division algorithm is executed to computing the common part
of quotients for respective items in the divisor. For example, suppose the two
expressions are

f = abd + abe + abg + cd + ce + ch, and p = ab + c.

If we write f as:
f = ab(d + e + g) + c(d + e + h).

We factor f by divisor p and the quotient (f/p) can then be computed as

(f/p) = (f/(ab)) ∩ (f/c) = (d + e + g) ∩ (d + e + h) = d + e.

The remainder (f%p) is computed using the quotient:

(f%p) = f − p(f/p) = abg + ch.

Using the quotient and the remainder, we can rewrite f as follows:

f = p (p/f) + (f%p) = pd + pe + abg + ch.

In this example, f = abd + abe+ abg + cd + ce+ ch with 15 literals is reduced to
12 literals (f = pd + pe + abg + ch has 9 literals and p = ab + c has 3 literals).
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Fig. 7. Fast weak division algorithm [5].

Then if we have divisor like d + e, we can continue factorization as above to
condense the size of f furthermore.

Minato [5] has proposed a fast weak division algorithm to refine this algo-
rithm as described in Fig. 7. They implicitly represent logics using ZDDs and
manipulate them using ZDD operations. The fast weak division algorithm is
computed in a time almost proportional to the number of nodes in ZDDs, which
are usually much smaller than the number of literals in logics, and is much faster
than conventional methods [5]. Thus if we have a proper divisor, we can quickly
condense the size of a given polynomial by using this fast weak division algo-
rithm. So we consider to use this approach to factor a given MLF and the main
problem now is how to find a proper divisor for a MLF.

3.2 Problem in Factoring MLFs

For an MLF of a given BN, if we consider it as a polynomail, we can extract
repeatedly appeared variables by using the fast weak division algorithm to con-
dense its size. Here we use MLFB in Fig. 1 as an example.

MLFB = λa1λb1θa1θb1|a1 + λa1λb2θa1θb2|a1

+λa2λb1θa2θb1|a2 + λa2λb2θa2θb2|a2 .
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If we use λb1θb1|a1 +λb2θb2|a1 as a divisor P , according to the algorithm, MLFB

can be factored as follows:

MLFB/(λb1θb1|a1 + λb2θb2|a1)
= (MLFB/(λb1θb1|a1) ∩ (MLFB/λb2θb2|a1)
= (λa1θa1) ∩ (λa1θa1)
= λa1θa1

Finally, MLFB can be rewritten as

MLFB = λa1θa1 ∗ P + λa2λb1θa2θb1|a2 + λa2λb2θa2θb2|a2

However, if we factor MLFB using factor P = λa1θa1 +λa2θa2 , the quotient will
be the empty set so MLFB can not be rewritten by divisor P . Therefore, the
quality of the results of this algorithm greatly depends on the choice of divisors.

3.3 Divisor Extraction Based on BN Nodes

The MLF of a node in a given BN is based on its parents nodes. For the node
B in Fig. 1, MLFB contains information about node A. Here we refer to this
information with parameters a1 and a2. Also, if the number of parameters of
node A and B are given, we can forecast the size of MLFB and the frequency of
characters λ and θ. Therefore, we consider factoring an MLF of a node with the
MLF of its parents directly. But, this fails when we implement MLFB/MLFA.
We give the details next.

MLFB/MLFA

= MLFB/(MLF a1 + MLF a2)
= (MLFB/(MLF a1) ∩ (MLFB/(MLF a2)
= {(λa1λb1θa1θb1|a1 + λa1λb2θa1θb2|a1)/λa1θa1} ∩

{(λa1λb1θa1θb1|a1 + λa1λb2θa1θb2|a1)/λa2θa2}
=

(
λb1θb1|a1 + λb2θb2|a1

) ∩ (
λb1θb1|a2 + λb2θb2|a2

)

= ∅.

We refer to the division of MLFB/MLFA as blotting out information about
node A. Why we get the empty set is that though we try to blot out a1 by
MLFB/MLF a1 , a1 is still left in θb1|a1 and θb2|a1 . The same applies to a2.
When we intersect the quotients, which are obtained by factoring MLFB with
MLF a1 and MLF a2 , a1 and a2 are contrary, hence we obtain the empty set.
But, if we omit the intersection, which means we perform the factorization as
MLFB/MLF a1 , MLFB/MLF a2 , MLFB can be rewritten as

MLFB = MLF a1(λb1θb1|a1 + λb2θb2|a1) + MLF a2(λb1θb1|a2 + λb2θb2|a2)

However, even this works only in the case of a node which has only one
parent node like node B. If it has more than one parent node, for example, node
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C in Fig. 1, the representations of MLF b1 , MLF b2 are not capable of factoring
MLFC .

MLFD/MLF b1

= (λa1λb1λc1λd1θa1θb1|a1θc1|a1θd1|b1c1+
λa1λb1λc1λd2θa1θb1|a1θc1|a1θd2|b1c1+
λa1λb1λc1λd3θa1θb1|a1θc1|a1θd3|b1c1+
. . .

λa2λb2λc2λd3θa2θb2|a2θc2|a2θd3|b2c2)
/(λa1λb1θa1θb1|a1 + λa2λb1θa2θb1|a2)

= (λc1λd1θc1|a1θd1|b1c1 + . . . + λc2λd3θc2|a1θd3|b1c2) ∩
(λc1λd1θc1|a2θd1|b1c1 + . . . + λc2λd3θc2|a2θd3|b1c2)

= ∅
The reason we get the empty set is since MLFB is based on node A, when we

try to blot out the information about MLF b1 by MLFC/MLF b1 , we are also
blotting out information about a1 and a2 contained in MLFD. The blotting
out is inadequate because for a1 and a2 are also contained in MLFC and they
contradict to each other when we intersect the quotients. Thus, this motivates
us to find a node set that can separate node A and node D as independent nodes
so that after we factoring MLFD, the information about node A can be cleared
up thoroughly.

In this paper, we propose an idea of factoring MLFs using the combinations
of variables of d-separation node sets so solve the problems mentioned above.

4 Divisor Extraction Based on d-Separations

4.1 d-Separations

The structure of d-separation is used to check conditional independence between
variables in Bayesian Networks. It can be presented as three graph patterns
[6] in Fig. 8. The d-separation has an important property that if we substitute
the observed values to the d-separation nodes, nodes in both sides cut by the
d-separation become independent so the calculation of probability inference is
simplified. The approach we propose is based on d-separation of serial pattern.

For a given MLF to be factored which is represented by ZDD, first we try to
find suitable d-separation node set and multiply their MLFs of these nodes. Then
we consider the result of multiplication as a divisor to factor the MLF using fast
weak algorithm. We first try from the most simple d-separation which consists of
only one node (one-node d-separation). Since the one d-separations not always
exist in BNs, we use d-separations which consist of two or three nodes (multi-
node d-separations). However, the multi-node d-separations are found manually
in this paper.
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A B C 

B C E 

B C E 

A 

A 

(a) serial pattern  (b) diverging pattern  (c) converging pattern  

Fig. 8. An example of d-separation.

A B C
1 2{ , }a a 1 2{ , }b b 1 2{ , }c c

Fig. 9. An example of simple-node d-separation.

4.2 Divisor Selection by One-Node d-Separations

For an MLF to be factored by one-node d-separation, we use the MLF of every
variable of this node as its divisor. For the example in Fig. 9, the MLF of node
C is:

MLFC = λa1λb1λc1θa1θb1|a1θc1|b1 + λa1λb1λc2θa1θb1|a1θc2|b1
+ λa1λb2λc1θa1θb2|a1θc1|b2 + λa1λb2λc2θa1θb2|a1θc2|b2
+ λa2λb1λc1θa2θb1|a2θc1|b1 + λa2λb1λc2θa2θb1|a2θc2|b1
+ λa2λb2λc1θa2θb2|a2θc1|b2 + λa2λb2λc2θa2θb2|a2θc2|b2

The MLFs of variables of node B are:

MLF b1 = λa1λb1θa1θb1|a1 + λa2λb1θa2θb1|a2

MLF b2 = λa1λb2θa1θb2|a1 + λa2λb2θa2θb2|a2

We can factor MLFC using MLF b2and MLF b1 because B is the single node
that separates node A and C.

MLFC/MLF b1 =(λa1λb1λc1θa1θb1|a1θc1|b1 + . . . λa2λb2λc2θb2θb2|a2θc2|b2)
/(λa1λb1θa1θb1|a1 + λa2λb1θa2θb1|a2)
=(λc1θc1|b1 + λc2θc2|b1) ∩ (λc1θc1|b1 + λc2θc2|b1)
=λc1θc1|b1 + λc2θc2|b1

MLFC/MLF b2 =(λa1λb1λc1θa1θb1|a1θc1|b1 + . . . λa2λb2λc2θb2θb2|a2θc2|b2)
/(λa1λb2θa1θb2|a1 + λa2λb2θa2θb2|a2)
=(λc1θc1|b2 + λc2θc2|b2) ∩ (λc1θc1|b2 + λc2θc2|b2)
=λc1θc1|b2 + λc2θc2|b2

Finally, we rewrite MLFC as follows:

MLFC = MLF b1(λc1θc1|b1 + λc2θc2|b1) + MLF b2(λc1θc1|b2 + λc2θc2|b2)
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4.3 Divisor Selection by Multi-Node d-Separations

We use the BN of Fig. 1 to show how to perform the factorization based on multi-
node d-separation. For nodes A and D, nodes B and C are the d-separation node
set that separates them as independent nodes. Since both node B and C have
two values, there are four combinations of their information b1c1, b1c2, b2c1 and
b2c2. According to [3], we multiply their MLFs as follows. There are two terms
in each of these MLFs, so the number of terms after multiplication should be
2 ∗ 2 = 4. But since the parameters λ are eliminated if they contradict each
other, only two of the four terms are left. Following shows the details of the
multiplication.

MLF b1MLF c1

= (λb1λa1θa1θb1|a1 + λb1λa2θa2θb1|a2)
(λc1λa1θa1θc1|a1 + λc1λa2θa2θc1|a2)

= λb1λc1λa1θa1θb1|a1θc1|a1 + λb1λc1λa2θa1θb1|a2θc1|a2 .

MLF b1MLF c2

= (λb1λa1θa1θb1|a1 + λb1λa2θa2θb1|a2)
(λc2λa1θa1θc2|a1 + λc2λa2θa2θc2|a2)

= λb1λc2λa1θa1θb1|a1θc2|a1 + λb1λc2λa2θa1θb1|a2θc2|a2 .

MLF b2MLF c1

= (λb2λa1θa1θb2|a1 + λb2λa2θa2θb2|a2)
(λc1λa1θa1θc1|a1 + λc1λa2θa2θc1|a2)

= λb2λc1λa1θa1θb2|a1θc1|a1 + λb2λc1λa2θa1θb2|a2θc1|a2 .

MLF b2MLF c2

= (λb2λa1θa1θb2|a1 + λb2λa2θa2θb2|a2)
(λc2λa1θa1θc2|a1 + λc2λa2θa2θc2|a2)

= λb2λc2λa1θa1θb2|a1θc2|a1 + λb2λc2λa2θa1θb2|a2θc2|a2 .

After these multiplication, we factor the MLFD with the four combinations
respectively. We give an example of MLFD/MLF b1MLF c1 in details.

MLFD/MLF b1MLF c1

= MLFD/(λb1λc1λa1θa1θb1|a1θc1|a1+
λb1λc1λa2θa1θb1|a2θc1|a2)

= MLFD/(λb1λc1λa1θa1θb1|a1θc1|a1)∩
MLFD/(λb1λc1λa2θa1θb1|a2θc1|a2)

= λd1θd1|b1c1 + λd2θd2|b1c1 + λd3θd3|b1c1 .
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Finally, we can rewrite MLFD as follows.

MLFD =MLF b1MLF c1(λd1θd1|b1c1 + λd2θd2|b1c1 + λd3θd3|b1c1)+
MLF b1MLF c2(λd1θd1|b1c2 + λd2θd2|b1c2 + λd3θd3|b1c2 .)+
MLF b2MLF c1(λd1θd1|b2c1 + λd2θd2|b2c1 + λd3θd3|b2c1 .)+
MLF b2MLF c2(λd1θd1|b2c2 + λd2θd2|b2c2 + λd3θd3|b2c1 .).

5 Experiments and Results

To show how our method works to condense the size of ZDDs representing MLFs
[3], we implement our experiments on the platform of a Intel Core Quad CPU
Q9550@2.83 GHz * 4 PC with Ubuntu 12.04 LTS and 3.8 GiB of main mem-
ory. We manipulate up to 40,000,000 nodes of ZBDDs. We use data set of BN
Benchmark [8] alarm, hailfinder, insurance and Mildew to implement our
experiment.

Fig. 10. the example of alarmN36(n14n33)

In our experiment, we compile nodes to ZDDs which we concern to avoid
unnecessary calculation of redundant terms. However, to compare with the
method in [3] which compile a whole BN, we try to choose the nodes which
have the biggest size of ZDD in alarm and hailfinder. For insurance and
Mildew. considering time consumption, we do not use the nodes with biggest
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ZDD size but choose the nodes which seem to have suitable d-separation node
sets. To compare with our method, we use a simple criterion to extract divisors
from MLFs, that is abstracting variables that appear more than twice in the
MLFs. The experiment results are shown in Table 2. The first column shows the
number of node we choose as our data, for example, alarmN36 means we factor
the MLFs of node 36 in alarm. The other columns show the ZDD specifica-
tions after factoring and time consumption with the simple divisor extracting
algorithm to show the upper limits of consumption of calculation and inference
based on MLFs without any compression techniques.

For the nodes we use in Table 2, we use algorithm to find one-node
d-separation and manually find multi-node d-separation and use our method
to factor the MLFs. The experiment results are shown in Table 3. The first col-
umn in Table 3 lists the number of node and d-separation set we choose in BN.
For instance, alarmN36(n14n33) means factoring the MLF of node 36 with
d-separation set MLFs of node 14 and node 33 (Fig. 10). According to Table 3,
we could always achieve quite smaller ZDDs and condense MLFs quite efficiently
using our method comparing to Tables 1 and 2. However, we get a bigger ZDDs
due to the factorization in ‘AlarmN36’. This is because the number of newly
introduces variables to represent divisors are more than the reduction of ZDD
nodes. Since the size of ZDD is depended on the structure of BN itself and the
probability of every instance, we can not precisely tell how much we can condense
MLFs. We hope to find the d-separation node sets with minimum number of com-
binations of variables to reduce the newly introduces variables. This is the reason
why we just use one or two nodes d-separations but not more. For alarmN36 and
hailfinderN43, we get different results with different d-separation sets. That is
to say, if we can find suitable d-separation, we will further condense ZDD size
which is important because it determines the time and space requirements for
online inference which is linear in this size [2].

6 Related Work

Darwiche et al. [9] have shown a different efficient approach to factor MLFs of
BN based on an arithmetic circuit called Conjunctive Normal Forms (CNFs). In
their method, they compile MLFs into CNFs and show an efficient way to eval-
uate and differentiate CNFs in time and space which is linear in their size. They
also prove their effectivity in calculation and inference in BNs because CNFs
subsume the famous structure jointree, one of the most influential methods for
inference in BNs. Since the efficiency of algorithms using jointree algorithm for
probabilistic inference in BNs can be improved by a careful exploitation of the
d-separation properties, in our method, we introduce the idea of using one pat-
tern of d-separation into ZDDs. We want to try to make full use of the three pat-
terns of d-separation to explore the relationship between factorization of MLFs
using ZDDs and jointrees. We hope this will bring a significant improvement
to ZDD-based methods in compiling BNs as well as Darwiche’s method.
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Table 2. Experimental results without d-separation.

Dataset and node ID Factorization without d-separation

ZDD size Total terms Total literals Time of factorization

alarmN36 6,784 3,500 13,512 1969.77 s

hailfinderN43 Overflow – – –

insuranceN5 5,256 3,026 10,483 2.169 s

insuranceN14 Overflow – – –

MildewN14 Overflow – – –

MildewN20 Overflow – – –

Table 3. Experimental results with d-separation.

Dataset and node ID and
d-separation node set

After factorization based on d-separation

ZDD size Total terms Total literals Time of fac-
torization

alarmN36(n14n33) 5,178 2662 9,796 51.425 s

alarmN36(n20n32) 4,247 2,423 8,776 4.825 s

alarmN36(n14n33/n20n32) 4,133 2,342 8,422 3.427 s

hailfinderN43(n14n20) 24,353 >2 G >2 G 391.648 s

hailfinderN43(n14n20/n4n12) 22,833 14,512 50,113 303.641 s

insuranceN5(n4n8n9) 1,985 1,359 3,924 0.24 s

insuranceN14(n2n3n9) 34,222 22,088 72,882 2427.79 s

MildewN14(n11n12) 14,727 11,785 33,355 619.391 s

MildewN20(n17n18) 22,356 16,784 51,242 754.577 s

MildewN20(n17n24) Overflow – – –

7 Conclusion and Future Work

We represented an improvement of compiling MLFs using ZDDs by combin-
ing weak division algorithm with d-separation. In our method, we use the
d-separation structure in BN to quickly find a good divisor to factor MLFs
into compact representations and we get much more compact MLFs than the
method in Minato et al. [3].

In our method, we first generate ZDDs for the whole given BN, and then
factor the ZDDs using d-separation nodes. The process of factoring costs too
much time and sometime the ZDD for a BN is too large to factor, such
as MildewN20(n17n24) in Table 3, though we could find proper d-separation
nodes. For future work, we want to improve our method by developing simple
and fast heuristic algorithms to find d-separation sets as divisors instead of find-
ing d-separation sets manually. For example, using the jointree algorithm, or
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straightly use the formula recursively constructed in Minato et al. [3] by con-
trolling its trade-off. Also we want to consider not to generate the ZDD for
the whole network but just generate the ZDD for the newfound divisor, we
may avoid the time consumption and get quite compact ZDDs. For example,
alarmN36(n14n33/n20n32) shows that if we first factor node 36 with set of
node 14 and 33, then factor the result with set of node 20 and 32, we can get
a smaller ZDD using this two-level d-separations. It gives us a hint that in the
process of generating the ZDD from the MLF of alarm, we can first generate a
ZDD for divisor of node 20 and 32, then using this ZDD to generate a ZDD of
divisor node 14 and 33. Finally, we use the two ZDDs to generate the ZDD of
the whole network so that we avoid the time consumption of factoring and also
reduce the ZDD.
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Abstract. This paper applies graph based causal inference procedures
for recovering information from missing data. We establish conditions
that permit and prohibit recoverability. In the event of theoretical imped-
iments to recoverability, we develop graph based procedures using aux-
iliary variables and external data to overcome such impediments. We
demonstrate the perils of model-blind recovery procedures both in deter-
mining whether or not a query is recoverable and in choosing an estima-
tion procedure when recoverability holds.

Keywords: Graphical models · Causal inference · Missing data

1 Introduction

The missing data (or incomplete data) problem, characterized by the absence
of values for one or more variables in a dataset is a major impediment to both
theoretical and empirical research and leaves no branch of experimental science
untouched. The vast amount of literature on missing data problems in such
diverse fields as computer science, geology, archeology, biology, statistics and
epidemiology attests to both its extent and pervasiveness [8,12,15,32]. Simply
ignoring the problem by deleting all tuples with missing values will, in most
cases, significantly distort the outcome of a study, regardless of the size of the
dataset [1,6].

Existing methods of dealing with missing data such as Expectation Maxi-
mization Algorithm and Multiple Imputation are based on the theoretical work
of Rubin [27] and Little and Rubin [28] who formulated conditions under which
the damage of missingness would be minimized. However, theoretical guarantees
are provided only for a subset of problems falling into the Missing At Random
(MAR) category thereby leaving the vast space of MNAR problems relatively
unexplored.

In this paper we view missingness from a causal perspective and take the
following steps to answer questions pertaining to consistent estimation of queries
of interest. Given an incomplete dataset our first step is to postulate a model
based on causal assumptions of the underlying data generation process. Our
second step is to determine whether the data rejects the postulated model by
identifiable testable implications of that model. Our third and final step, which
c© Springer International Publishing Switzerland 2015
J. Suzuki and M. Ueno (Eds.): AMBN 2015, LNAI 9505, pp. 184–195, 2015.
DOI: 10.1007/978-3-319-28379-1 13
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is also the primary focus of this paper, is to determine from the postulated
model if any method exists that produces consistent estimates of the queries of
interest? A negative answer confirms the presence of a theoretical impediment
to estimation. In other words, a bias is inevitable.

2 Missingness Graphs

Missingness graphs as discussed below was first defined in [17] and we adopt the
same notations. Let G(V, E) be the causal DAG where V = V ∪ U ∪ V ∗ ∪ R. V
is the set of observable nodes. Nodes in the graph correspond to variables in the
data set. U is the set of unobserved nodes (also called latent variables). E is the
set of edges in the DAG. We use bi-directed edges as a shorthand notation to
denote the existence of a U variable as common parent of two variables in V ∪R.
V is partitioned into Vo and Vm such that Vo ⊆ V is the set of variables that
are observed in all records in the population and Vm ⊆ V is the set of variables
that are missing in at least one record. Variable X is termed as fully observed if
X ∈ Vo, partially observed if X ∈ Vm and substantive if X ∈ Vo∪Vm. Associated
with every partially observed variable Vi ∈ Vm are two other variables Rvi

and
V ∗
i , where V ∗

i is a proxy variable that is actually observed, and Rvi
represents the

status of the causal mechanism responsible for the missingness of V ∗
i ; formally,

v∗
i = f(rvi

, vi) =
{
vi if rvi

= 0
m if rvi

= 1 (1)

V ∗ is the set of all proxy variables and R is the set of all causal mechanisms that
are responsible for missingness. R variables may not be parents of variables in
V ∪U . We call this graphical representation Missingness Graph (or m-graph).
An example of an m-graph is given in Fig. 1. We use the following shorthand. For
any variable X, let X ′ be a shorthand for X = 0. For any set W ⊆ Vm∪Vo∪R, let
Wr, Wo and Wm be the shorthand for W ∩R, W ∩Vo and W ∩Vm respectively.
Let Rw be a shorthand for RVm∩W i.e. Rw is the set containing missingness
mechanisms of all partially observed variables in W . Note that Rw and Wr are
not the same. GX and GX represent graphs formed by removing from G all
edges leaving and entering X, respectively.

A manifest distribution P (Vo, V
∗, R) is the distribution that governs the

available dataset. An underlying distribution P (Vo, Vm, R) is said to be compat-
ible with a given manifest distribution P (Vo, V

∗, R) if the latter can be obtained
from the former using Eq. 1. Manifest distribution Pm is compatible with a given
underlying distribution Pu if ∀X, X ⊆ Vm and Y = Vm\X, the following equality
holds true.

Pm(R′
x, Ry,X

∗, Y ∗, Vo) = Pu(R′
x, Ry,X, Vo)

where R′
x denotes Rx = 0 and Ry denotes Ry = 1.
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3 Recoverability

Given a manifest distribution P (V ∗, Vo, R) and an m-graph G that depicts the
missingness process, query Q is recoverable if we can compute a consistent esti-
mate of Q as if no data were missing. Formally,

Definition 1 (Recoverability). Given a m-graph G, and a target relation Q
defined on the variables in V , Q is said to be recoverable in G if there exists an
algorithm that produces a consistent estimate of Q for every dataset D such that
P (D) is (1) compatible with G and (2) strictly positive i.e. P (Vo, V

∗,R) > 0.

For an introduction to the notion of recoverability see, [17,20].

3.1 Recovering from MCAR and MAR Data

Examine the m-graph in Fig. 1, X is the treatment and Y is the outcome. Let
us assume that some patients who underwent treatment are not likely to report
the outcome, and hence the arrow X → Ry. Under these circumstances, can we
recover P (X,Y )?

From the manifest distribution, we can compute P (X,Y ∗, Ry). From the
m-graph G, we see that Y ∗ is a collider and X is a fork. Hence by d-separation,
Y ⊥⊥Ry|X. Thus

P (X,Y ) = P (Y |X)P (X)
= P (Y |X,Ry = 0)P (X) (usingY ⊥⊥Ry|X)
= P (Y ∗|X,Ry = 0)P (X) (using Eq. 1)

Since both factors in the estimand are estimable from the manifest distribution,
P (X,Y ) is recoverable.

The scenario discussed above is a typical instance of Missing At Random
(MAR). When data are Missing At Random (MAR), we have R⊥⊥Vm|Vo. There-
fore P (V ) = P (Vm|Vo)P (Vo) = P (Vm|Vo, R = 0)P (Vo). In other words, the joint
distribution P (V ) is recoverable given MAR data. Estimation methods applica-
ble to MAR are applicable to MCAR as well because by the weak union axiom of
graphoids, Missing Completely at Random (MCAR: (Vm, Vo)⊥⊥R) implies Miss-
ing At Random (MAR: Vm⊥⊥R|Vo). Therefore, it implicitly follows that queries
(such as joint distribution and (identifiable) causal effects) that are recoverable
given MAR datasets are recoverable given MCAR datasets as well.

X

RY

Y

Y*

Fig. 1. An m-graph depicting MAR category missingness
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4 Recoverability Procedures for MNAR Data

Data that are neither MAR nor MCAR fall into the Missing Not At Random
(MNAR) category. In this section we will detail with examples three distinct
recovery procedures.

4.1 Sequential Factorization

Consider an observational study that measured the variables X,Y,W and Z
where we wish to estimate the effect of treatment (X) on outcome (Y). The
interactions between the variables and the underlying missingness process are
depicted in Fig. 2. We notice that all variables are corrupted by missing values.
The least bothersome missingness is that of Y which is caused by a random
process such as an accidental deletion of cases while the most troubling missing-
ness is that of W which is caused by its own underlying value- a typical example
is the case of very rich and very poor people being reluctant to reveal their
income.

Z

X

W RW

RX

Y

RZ RY

Fig. 2. MNAR model in which P (Y |do(x)) is recoverable by sequential factorization

Recovering Causal Effect of X on Y: By backdoor criterion [19], we have two
admissible sets, {Z} and {W} which yield the following estimands, respectively:

P (y|do(x)) =
∑

z

P (y|xz)P (z)

=
∑

w

P (y|xw)P (w)

We choose the first estimand over the second because the latter contains P (W )
which we know to be non-recoverable [17].1 Therefore, to recover the causal effect
we have to recover both P (y|xz) and P (z).

1 The presence of a non-recoverable factor in a summand does not always imply the
non-recoverability of the summand. See Example-3 in [18].
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Recovering P(z) In order to d-separate Z from Rz, one needs to condition of X
and to d-separate X from Rx one needs to condition on Y . Therefore, we can
write:

P (z) =
∑

x,y

P (z, x, y)

=
∑

x,y

P (z|x, y)P (x|y)P (y) (2)

=
∑

x,y

P (z|x, y,Rx = 0, Ry = 0, Rz = 0)P (x|y,Rx = 0, Ry = 0)P (y|Ry = 0)

(Using Z⊥⊥(Rz , Rx, Ry)|(X,Y ), X⊥⊥(Rx, Ry)|Y and Y ⊥⊥Ry , respectively)

=
∑

x,y

P (z∗|x∗, y∗, Rx = 0, Ry = 0, Rz = 0)P (x∗|y∗, Rx = 0, Ry = 0)P (y∗|Ry = 0)

In the process of recovering P (z) we have in fact recovered P (x, y, z). There-
fore it follows that P (y|x, z) is recoverable. Finally, the causal effect may be
recovered as:

P (y|do(x)) =
∑

z

P (z∗|x∗, y∗, Rx = 0, Ry = 0, Rz = 0)P (x∗|y∗, Rx = 0, Ry = 0)P (y∗|Ry = 0)
∑

y P (z∗|x∗, y∗, Rx = 0, Ry = 0, Rz = 0)P (x∗|y∗, Rx = 0, Ry = 0)P (y∗|Ry = 0)

×
∑

x,y

P (z
∗|x∗

, y
∗
, Rx = 0, Ry = 0, Rz = 0)P (x

∗|y∗
, Rx = 0, Ry = 0)P (y

∗|Ry = 0)

Recovery Procedure: Given an m-graph with no edges between R variables, a
sufficient condition for recoverability of query Q is that it be decomposable into
sub-queries of the form P (Y |X) such that Y ⊥⊥(Rx, Ry)|X. This recovery proce-
dure called as seuential factorization (generalized in Theorem1 below) is sensitive
to the ordering of variables in the factorization, which in turn is dictated by the
graph. For instance, in Eq. 2 had we factorized P (x, y, z) as P (y|x, z)P (x|z)P (z),
we would not have had the permission to insert the R terms in any factor.
Recovering in the presence of edges between R variables: A quick inspection
reveals that the factorization in Eq. 2 guarantees recoverability even when an
edge Rx → Rz is added. However, addition of the (reversed) edge Rz → Rx

would require conditioning on Rz and Y to d-separate X from Rx. The procedure
for recovering the marginal distribution P (Z) is presented below:

P (z) =
∑

x,y,rz

P (z, x, y, rz)

=
∑

x,y,rz

P (z|x, y, rz)P (x|y, rz)P (y|rz)P (rz) (3)

=
∑

x,y

P (z|x, y, Rx = 0, Ry = 0, rz = 0)
∑

rz

P (x|y,Rx = 0, Ry = 0, rz)P (y|Ry = 0, rz)P (rz)

(Using Z⊥⊥(Rz, Rx, Ry)|(X,Y ), X⊥⊥(Rx, Ry)|(Y,Rz) and Y ⊥⊥Ry|Rz , respectively)

The following definition and theorem in [18] formalizes the preceding recovery
procedure.

Definition 2 (General Ordered factorization). Given a graph G and a set
O of ordered V ∪ R variables Y1 < Y2 < . . . < Yk, a general ordered factor-
ization relative to G, denoted by f(O), is a product of conditional probabilities
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X Y

RY RX

X Z
Y

RZ RX RY

(a) (b)

Fig. 3. MNAR Model in which P (Y,X) and P (X,Y, Z) are recoverable

f(O) =
∏

i P (Yi|Xi) where Xi ⊆ {Yi+1, . . . , Yn} is a minimal set such that
Yi⊥⊥({Yi+1, . . . , Yn}\Xi)|Xi holds in G.

Theorem 1 (Sequential Factorization). A sufficient condition for recover-
ability of a relation Q defined over substantive variables is that Q be decompos-
able into a general ordered factorization, or a sum of such factorizations, such
that every factor Qi = P (Yi|Xi) satisfies, (1) Yi⊥⊥(Ryi

, Rxi
)|Xi\{Ryi

, Rxi
}, if

Yi ∈ (Vo ∪ Vm) and (2) Rz⊥⊥RXi
|Xi if Yi = Rz for any Z ∈ Vm, Z /∈ Xi and

Xr ∩ RXm
= ∅.

4.2 R-Factorization

Consider the model in Fig. 3(a) in which missingness in X is caused by Y
and vice-versa. This type of missingness model is called entangled because
in order to d-separate any variable from its missingness mechanism one needs to
condition on the other. Factorizing P (x, y) as P (x|y)P (y) or P (y|x)P (x) does
not satisfy sequential factorization criterion since neither X⊥⊥(Rx, Ry)|Y nor
Y ⊥⊥(Rx, Ry)|X holds in the graph. This deadlock can however be disentangled
by the following method:

P (X,Y ) = P (X,Y )
P (Rx = 0, Ry = 0|X,Y )
P (Rx = 0, Ry = 0|X,Y )

=
P (Rx = 0, Ry = 0)P (X,Y |Rx = 0, Ry = 0)

P (Rx = 0, Ry = 0|X,Y )

=
P (Rx = 0, Ry = 0)P (X,Y |Rx = 0, Ry = 0)
P (Rx = 0|Y,Ry = 0)P (Ry = 0|X,Rx = 0)

(using Rx⊥⊥(Ry,X)|Y and Ry⊥⊥(Rx, Y )|X)

=
P (Rx = 0, Ry = 0)P (X∗, Y ∗|Rx = 0, Ry = 0)
P (Rx = 0|Y ∗, Ry = 0)P (Ry = 0|X∗, Rx = 0)

The following theorem generalizes this recovery procedure:
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Theorem 2 (R-factorization). Given a m-graph G with no edges between the
R variables and no latent variables as parents of R variables, a necessary and
sufficient condition for recovering the joint distribution P (V ) is that no variable
X be a parent of its missingness mechanism RX . Moreover, when recoverable,
P (V ) is given by

P (v) =
P (R = 0, v)∏

i P (Ri = 0|paori , pamri , RPam
ri

= 0)
, (4)

where Paori ⊆ Vo and Pamri ⊆ Vm are the parents of Ri.

Interestingly, given a model in which R variables are connected by an edge some-
times we have to use a combination of sequential and R factorization. Examine
the model in Fig. 3(b). The query of interest is the joint distribution P (x, y, z)
and the recovery procedure inspired by Theorem2 follows:

P (x, y, z) =
P (x, y, z, rx = 0, ry = 0, rz = 0)

P (rx = 0|y)P (rz = 0|x, rx = 0)P (ry = 0|z, rx = 0, rz = 0)

In order to recover P (rx = 0|y) we rely on sequential factorization as shown
below:

P (y, rx) =
∑

x,z

P (x, y, z, rx)

=
∑

x,z

P (x, y, , z, rx, rz = 0, ry = 0)
P (rz = 0|x, rx = 0)P (ry = 0|z, rx, rz = 0)

=
∑

x,z

P (x|y, z, rx = 0, rz = 0, ry = 0)P (y, z, rx, rz = 0, ry = 0)
P (rz = 0|x, rx = 0)P (ry = 0|z, rx, rz = 0)

(using X⊥⊥Rx|(Y,Z,Ry, Rz) i.e. sequential factorization)

Recoverability of P (y, rx) implies that P (rx = 0|y) is recoverable. Hence joint
distribution P (x, y, z) is recoverable given Fig. 3(b).

4.3 Interventional Factorization

Consider the model in Fig. 4. Let the query of interest be P (w, x, y, z). We will
first factorize P (w, x, y, z) in a manner similar to R factorization:

P (w, x, y, z) =
P (w, x, y, z, rx = 0, ry = 0)

P (rx = 0|ry = 0, y, z)P (ry = 0|x, z)
The recovery of the joint distribution depends on the recovery of P (ry = 0|x, z).
We notice that

P (Ry|do(Z = z),X) = P (Ry|Z = z,X)(using rule-2 of do-calculus)
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X Y
W

RY

Z

RX

X Y
W

RY

Z

RX

(a) (b)

Fig. 4. (a) MNAR model in which joint distribution is recoverable, (b) mutilated model
corresponding to (a) obtained by intervening on Z

The interventional distribution can be computed as given below:

P (x∗, y∗, w, rx, ry|do(z)) =
P (x∗, y∗, w, rx, ry, z

P (z|w)

P (ry, x∗, rx|do(z)) =
∑

w,y∗

P (x∗, y∗, w, rx, ry|do(z))
P (z|w)

(5)

In order to recover P (ry = 0|x, z), we will recover P (x, ry|do(z)) and express it
in terms of proxy variables.

P (x, ry|do(z)) = P (x|ry, rx = 0, do(z))P (ry|do(z))
= P (x∗|ry, rx = 0, do(z))P (ry|do(z)) (6)

Each factor in Eq. 6 can be computed from the intervential distribution derived
in Eq. 5.

A general algorithm incorporating all these three recovery procedures in a
slightly more relaxed setting is discussed in [26].

5 Recourses to Non-recoverability

Joint distribution is not recoverable given the m-graphs in Fig. 5 [18]. In this
section we will show how auxiliary variables and external data can be utilized
to aid recoverability.

Y RX

X

L1

X RX

Y

L2

ZRX

L1

X

L2

Y
(a) (b) (c)

Fig. 5. MNAR models in which the joint distribution is not recoverable. Variables
denoted by L serve as candidates for auxiliary variables.
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Auxiliary variables are variables that are anciliary to the substantive research
questions but are potential correlates of missingness mechanisms or partially
observed variables [6]. However as noted in [29], not all variables satisfying this
criterion may be used as auxiliary variables.
Selection Criteria For Auxiliary Variables: Firstly an auxiliary variable should
not be a collider or a descendant of a collider on the path from a partially
observed variable to its missingness mechanism. For example in Fig. 5(b) neither
Y nor its descendants may serve as auxiliary variables while recovering P (X).
Secondly, in the presence of an inducing path between X and Rx as shown in
Fig. 5(c), the ideal auxiliary variables are latent variables L1 or L2. Conditioning
on either of these will d-separate X from Rx and facilitate the recovery of P (X).
Recovery Aided By External Data: It is often the case that incorporating data
from external sources can aid recovery. For example, consider a manifest distri-
bution in which age is a partially observed variable. Distribution of age for a
given population may be easily available from an external agency such as the
census bureau. The question we ask is how can this data be combined with the
existing missing data set to recover a query of interest.

Consider the Fig. 5(a), suppose the query of interest is P (X,Y ). P (Y |X)
is recoverable by sequential factorization. If from an external source we obtain
P (X), then P (y, x) may be recovered as P (y|x∗, rx = 0)P (x). In Fig. 5(b) how-
ever, P (Y ) and P (X) are recoverable. If we can obtain either P (y|x) or P (x|y)
from an external source, then P (x, y) can be recovered.

6 Perils of Model Blind Recovery Procedures

Model-blind algorithms are algorithms that attempt to handle missing-data
problems on the basis of the data alone, without making any assumptions about
the structure of the missingness process. We unveil a fundamental limitation of
model-blind algorithms by presenting two statistically indistinguishable models
such that a given query is recoverable in one and non-recoverable in the other.

The two graphs in Fig. 6(a) and (b) cannot be distinguished by any statistical
means, since Fig. 6(a) has no testable implications [16] and Fig. 6(b) is a complete
graph. However in Fig. 6(a) P (X,Y ) = P (X∗|Y,Rx)P (Y ) is recoverable while
in Fig. 6(b) P (X,Y ) is not recoverable (by Theorem 2 in [17]).

RX

(b)

RX

YX

)c()a(

RX

YX YX

Fig. 6. Statistically indistinguishable graphs. (a) P (X,Y ) is recoverable (b) P (X,Y )
is not recoverable (c) P (X) is recoverable
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An even stronger limitation is demonstrated below. We show that no model-
blind algorithm exists even in those cases where recoverability is feasible. We
exemplify our claim below by constructing two statistically indistinguishable
models, G1 and G2, dictating different estimation procedure E1 and E2 respec-
tively; yet Q is not recoverable in G1 by S2 or in G2 by S1.

Consider the graphs in Fig. 6(a) and (c); they are statistically indistinguish-
able since neither has testable implications. Let the target relation of interest
be Q = P (X). In Fig. 6(a), Q may be estimated as P (X) =

∑
y P (X|Y,Rx =

0)P (Y ) since X⊥⊥Rx|Y and in Fig. 6(b), Q can be derived as P (X) = P (X|Rx =
0) since X⊥⊥Rx.

7 Related Work

Deletion based methods such as listwise deletion that are easy to understand
as well as implement, guarantee consistent estimates only for certain categories
of missingness such as MCAR [24]. Maximum Likelihood method is known to
yield consistent estimates under MAR assumption; expectation maximization
algorithm and gradient based algorithms are widely used for searching for ML
estimates under incomplete data [4,5,10,11]. Most work in machine learning
assumes MAR and proceeds with ML or Bayesian inference. However, there
are exceptions such as recent work on collaborative filtering and recommender
systems which develop probabilistic models that explicitly incorporate missing
data mechanism [13–15].

Other methods for handling missing data can be classified into two: (a)
Inverse Probability Weighted Methods and (b) Imputation based methods [23].
Inverse Probability Weighing methods analyze and assign weights to complete
records based on estimated probabilities of completeness [22,32]. Imputation
based methods substitute a reasonable guess in the place of a missing value [1]
and Multiple Imputation [12] is an imputation method that is less sensitive to a
bad starting point.

Missing data is a special case of coarsened data and data are said to be
coarsened at random (CAR) if the coarsening mechanism is only a function of
the observed data [9]. [21] introduced a methodology for parameter estimation
from data structures for which full data has a non-zero probability of being fully
observed and their methodology was later extended to deal with censored data
in which complete data on subjects are never observed [31].

The use of graphical models for handling missing data is a relatively new
development. [3] used graphical models for analyzing missing information in
the form of missing cases (due to sample selection bias). Attrition is a com-
mon occurrence in longitudinal studies and arises when subjects drop out of the
study [7,25,30] analysed the problem of attrition using causal graphs. [27,28]
cautioned the practitioner that contrary to popular belief (as stated in [2,6]),
not all auxiliary variables reduce bias. Both [7,28] associate missingness with
a single variable and interactions among several missingness mechanisms are
unexplored.
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[17] employed a formal representation called Missingness Graphs to depict
the missingness process, defined the notion of recoverability and derived condi-
tions under which queries would be recoverable when datasets are categorized
as Missing Not At Random (MNAR). Tests to detect misspecifications in the
m-graph are discussed in [16].

8 Conclusions

This chapter presents the missing data problem from a causal perspective and
provided procedures for estimating queries of interest for datasets falling into
the MNAR (Missing Not At Random) Category. We demonstrated how auxil-
iary variables and data from external sources can be used to circumvent theoret-
ical impediments to recoverability. Finally we showed that model-blind recovery
techniques such as Multiple Imputation are prone to error and are insufficient
to guarantee consistent estimates.
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Abstract. Discovering causal models hidden in the background of
observational data has been a difficult issue. It is often necessary to deal
with latent common causes and selection bias for constructing causal
models in real data. Ancestral graph models are effective and useful for
representing causal models with latent variables. The causal faithfulness
condition, which is usually assumed for determining the models, is sta-
tistically known to often be weakly violated for finite data. One of the
authors developed a constraint-based causal learning algorithm that is
robust against the violations while assuming no latent variables. In this
study, we applied and extended the thoughts of the algorithm to the
inference of ancestral graphs. The practical validity and effectiveness of
the algorithm are also confirmed by using some standard datasets in
comparison with FCI and RFCI algorithms.

Keywords: Causal discovery · Latent variables · Maximal ancestral
graphs · Causal faithfulness condition · Robust inference

1 Introduction

For many complex systems, appropriate interventions are expected or needed
in order to improve their current situations. The following examples are often
regarded as such systems: manufacturing processes, business marketing, health-
care, and global economics. The cause-effect relationships around objective
variables must be known to perform effective interventions. However, in such sys-
tems, controlled experiments for clarifying cause-effect relationships often can-
not be performed because of various reasons such as the complexity of systems
and moral issues. Therefore, we have few choices but to infer causal relations
from observational data. However, observing all related variables is probably
impossible in practice, so some representations and techniques for dealing with
unobserved variables are necessary. Common causal latent variables (i.e., latent
confounders) and selection bias are particularly important for distinguishing
direct and indirect correlations that arise from causations in real data. Directed
c© Springer International Publishing Switzerland 2015
J. Suzuki and M. Ueno (Eds.): AMBN 2015, LNAI 9505, pp. 196–208, 2015.
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Acyclic Graphs (DAGs) [9], which are assumed to represent hidden true causal
relations in the background of observational data, are extended as ancestral
graph representations [13], which can provide information about latent common
causes and selection bias.

In the inference of ancestral graphs, the constraint-based (CB) approach [14]
using conditional independence tests is often used because the approach is based
on the relationships between causality and probability, first found by Reichen-
bach via a research of the direction of time [12]. However, the causal faithfulness
condition [14], an assumption necessary for perfect correspondence of a graphical
representation to conditional independence relations, is statistically pointed out
to be weakly violated for finite data [11,18]. Ramsey et al. proposed a conser-
vative method of orientations and showed the effectiveness of decreasing false
positive errors [11].

Isozaki considered that statistical errors due to violations could be decreased
by reducing the number of unnecessary conditional independence tests per-
formed, and he proposed an algorithm that avoids doing such tests without a loss
of theoretical correctness. The effectiveness of his algorithm was experimentally
shown for both Bayesian networks and causal structural equation models by
using some standard datasets in comparison with representative algorithms [6].
In this study, we extend the algorithm to one that is applicable to the inference
of ancestral graph models.

This paper is organized as follows. In the next section, we provide a back-
ground of causal discovery with and without latent common causes and selec-
tion bias. In Sect. 3, the Minimal Blocker Condition introduced by Isozaki [6]
is described and extended for the inference of ancestral graphs. An extended
algorithm is also provided. In Sect. 4, practical effectiveness is shown by exper-
imental comparison with well known FCI [14] and recently proposed RFCI [5]
algorithms with some standard datasets.

2 Background

When we infer causal relationships hidden in the background of observational
data that we use for the purpose of understanding and utilizing such relation-
ships, we may need an infinite number of unobserved variables. At a minimum,
inferring causal models while assuming no latent common causes and selection
bias is probably difficult unless we carefully choose variables to sufficiently con-
struct causal models. However, it is not advantageous to explicitly represent so
many latent variables. Thus, representing causal models that explicitly use only
observed variables and indicating the existence of unobserved variables neces-
sary for consideration is preferable [13]. In correlational patterns that emerge
from causal relations, for variables X, Y , and Z, direct causation as X → Y and
indirect causation between X and Z as X → Y → Z are both represented by the
usual DAG models with probability distributions. The systems that DAGs can
represent only with observed variables are called causal sufficiency systems [14].
Meanwhile, latent common causal variables and selection bias generate pseudo
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correlations, which cannot be represented by the usual DAG model only with
observed variables. Such systems are called causally insufficient. Ancestral graph
models [13] are suitable for representing the causal models in insufficient systems,
and we thereby focus on these models. Ancestral graph models are a natural
extension of DAG models.

We define graph theoretical notions for representing causal models with
ancestral graphs [13,17]. A graph consists of a set of vertices and edges. A mixed
graph G can have at most one of three kinds of edges: directed (→), bi-directed
(↔), and undirected (−), between two vertices. For two vertices X and Y in G ,
if X → Y , we call X a parent of Y and Y a child of X; if X ↔ Y , we call X
and Y a spouse of each other; if X − Y , we call X and Y a neighbor of each
other; if there is any kind of edge, we call X and Y adjacent. For a sequence of
adjacent vertices 〈X1,X2, · · · ,Xn+1〉 in G , a path is the sequence, that is, Xi

and Xi+1 are adjacent for i = 1, 2, · · · , n, and a directed path in G is a path
such that Xi is a parent of Xi+1 for i = 1, 2, · · · , n. If there is a directed path
from X to Y , X is called an ancestor of Y , and Y is called a descendant of X.
Let the set of ancestors of X in G be denoted by AnG (X). For three variable
sets 〈X,Z, Y 〉, when two directed edges exist from both X and Y to Z, Z is
called a collider, otherwise a non-collider, and when X and Y are adjacent, the
triple is called a shielded triple, otherwise called an unshielded triple and also a
v-structure. When X is an ancestor of Y , and a directed edge Y → X exists in G ,
it is called a directed cycle in G . When X is an ancestor of Y , and a bi-directed
edge Y ↔ X exists in G , it is called an almost directed cycle. A mixed graph
is ancestral if the following conditions hold: (i) there are no directed cycles, (ii)
there are no almost directed cycles, and (iii) for any pairs such that there is an
undirected edge between them, both variables have no parents or spouses.

Next, we should define the cause-effect relationships that are inferable from
observational data. The causal Markov condition (CMC) plays a role. We use
vertices and variables interchangeably hereafter. CMC is defined as follows: each
variable in an ancestral graph is probabilistically independent of non-descendants
given its parent sets [14]. The validity of CMC is due to the following: CMC can
be regarded as an extension of Reichenbach’s principle found in the domain
of physics [12], which first connects (conditional) independences in probability
distributions with causal relationships. In this respect, inferable causation from
observational data should have the form of DAG models with CMC, and then we
focus on the models. D-separation criterion describes in more detail the condi-
tional independences on DAGs. We thus assume that hidden true causal models
have DAG-forms, but some variables are not observed. M-separation in ancestral
graph models is an extension of d-separation in DAG models [13]. The definition
is as follows:

Definition 1. In an ancestral graph G , a path p between two vertices X and Y
is called blocked if the following conditions hold about a vertex set Z (X,Y /∈ Z)
that has the possibility of being the empty set in G : (i) each non-collider is in
Z on p, and (ii) each collider and its descendants are not in Z on p. If all the
paths between X and Y are blocked, X and Y are m-separated by Z.
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We call the set which m-separates a pair of vertices m-separators. As seen in the
definition of m-separations, colliders (or v-structures) have critical information
from the perspective of learning causal models because we are able to identify
causal directions if we are able to detect colliders (or v-structures).

An ancestral graph is called maximal if each non-adjacent pair is m-separated
by a vertex set. DAGs are maximal in this respect, and we focus on the maximal
ancestral graphs (MAGs). The causal faithfulness condition (CFC) is defined as
follows: all conditional independence relationships are involved by the CMC in
a MAG G . A Markov equivalence class in MAGs is defined for a graphical group
which has the same set of m-separators as in DAGs with d-separations [13].
There are cases in which the end-mark of an edge is undecidable due to Markov
equivalence. We denote the end-mark as a circle (◦). The Markov equivalence
class graphs for MAGs are called partial ancestral graphs (PAGs), which are
output forms of learning algorithms such as FCI, RFCI, and our algorithm. We
denote a conditional independence relationship between two vertices X and Y
given a conditioning set S as X⊥⊥Y |S.

3 Robust Algorithm for Violations of Faithfulness

We usually use conditional independence (CI) tests for determining the CMC or
m-separation relations from data. As usual in recognizing CI relationships, we
follow the way that an edge between two variables is removed if the corresponding
test fails to reject the null hypothesis of CI relations and not removed if the test
rejects the null. Due to the statistical limitations of detecting small dependencies
between variables in finite sizes of samples, errors concerning missing edges that
should not be removed often happen. These kinds of errors were pointed out [11],
and we call them statistical violations of the CFC.

3.1 Minimal Blocker Conditions and Outline of CS* Algorithm

If we can detect CI tests that are unnecessary to perform and avoid them, an
increase in inference accuracy for finding causal models is expected because the
influence of violations of the CFC is expected to decrease. Isozaki proposed a
new algorithm along with that thought. This algorithm combines two stages for
detecting unnecessary CI tests: adjacency and (partial) orientation identification
stages-the Combining Stage (CS) algorithm [6]. CS algorithm uses the Minimal
Blocker Condition (MBC) defined by Isozaki [6], and then we extend it for MAGs.
In Definition 1, if Z blocks a path between two vertices X and Y , Z is called a
blocker of the path. Then, among the set of blockers of a path, the minimal size
set of blockers is called the minimal blockers.

Definition 2. In a MAG, a vertex set S satisfies the Minimal Blocker Condition
for a pair of vertices X and Y if there is a path between X and Y that contains
a vertex in S and no colliders.

The following two properties are valid in MAGs as in DAGs.
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Property 1. A collider on path u between two vertices X and Y in a MAG is
not a blocker on the path for the pair.

Proof 1. The proof immediately follows from Definition 1. 	

Property 2. If path u between two vertices X and Y in a MAG has colliders,
any vertex Z on u is not the minimal blocker on u for the pair.

Proof 2. The proof immediately follows from the proof of Property 2 in [6] with
replacing the definition of d-separation by that of m-separation. 	

The following designation is used in this paper. Given conditioning set S, m-th
order CI tests mean that |S| = m. When we use the definitions of colliders and
m-separations in a MAG, the following theorem is valid as in a DAG.

Theorem 1. Suppose that an algorithm searches for a MAG consisting of a
vertex set V , and the algorithm starts from a complete graph1, performs CI tests
in ascending order of conditioning sets S starting from |S| = 0 for any currently
connecting pair X,Y ∈ V , and removes the edge between X and Y if it detects
a set S such that X⊥⊥Y |S. In such an algorithm, if a conditioning set S has a
condition |S| > 0, and S does not satisfy MBC, S is not a m-separator candidate
at the order of CI tests in the algorithm.

Proof 3. In a CI test for two vertices X,Y ∈ V given conditioning set S ∈
V \ {X,Y }, if each path between X and Y , which has vertex Z ∈ S, contains
a v-structure, the common minimal blocker is the empty set due to Property 2.
Thus, if (X⊥⊥Y |S \Z) is true, this relationship should be found in lower order
CI tests rather than in the current order tests. So, we can skip the CI test in the
algorithm. The v-structures are temporal, and thus those may be removed in the
processing. However, if a vertex Z ∈ S that is not on a path between X and Y
in the true graph, Z cannot be a member of m-separators due to Definition 1,
and thus we can still skip the tests in that case. 	

We can extend CS algorithm for learning causal DAGs to for MAGs by using
Theorem 1 as the property of MBC for MAGs, and then we call the algorithm
CS*. CS* algorithm combines two stages as CS does: adjacency identification
and v-structure identification. CS* algorithm starts from a complete graph where
each edge forms ◦−◦. First, 0th order CI tests are performed, and then v-structure
identification is immediately done from the results of the 0th order CI tests.
Then, the procedure for higher order in ascending order is repeated. The algo-
rithm can avoid a part of CI tests using Theorem 1. The temporal v-structures
may be removed by higher order CI tests, but those do not bring present prob-
lems as described in Theorem 1, and the algorithm keeps theoretical soundness
as FCI algorithm does.
1 A complete graph is a graph that has edges for any pairs.
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3.2 Lower Reliable Directions

Isozaki pointed out that learning causal models using CI tests has another infer-
ence accuracy issue, which is related to contradictory directions in inference
models [6]. This issue is due to the locality of CI tests. In a MAG G that
consists of a vertex set V , suppose that the following three relationships of
independence/dependence among a set of four vertices {X,Y,Z,W} ∈ V : (i)
(X⊥⊥W |S1) ∧ (Z /∈ S1), (ii) (Y ⊥⊥W |S2) ∧ (Z /∈ S2), and (iii) (X⊥⊥Y |S3) ∧
(Z ∈ S3), where S1,S2,S3 ⊂ V . When we perform CI tests in ascending order,
we obtain the following relations in an inferred PAG: X∗→ Z,W∗→ Z, and
Y ∗→ Z, where the asterisk denotes the wildcard. However, the three relations
are prohibited in an inferred PAG, and it means that contradictory directional
errors occur. When adjacency faithfulness is defined as: adjacency of a pair of
vertices means that the pair is dependent conditional on any subset [11], the
following property is valid:

Property 3. When the adjacency faithfulness is valid, and one of the above
three conditions (i), (ii), and (iii) does not hold, W ∗→Z always holds.

Proof 4. It can easily be confirmed. 	

We define these kinds of errors as lower reliable directions as follows. When
we assume the adjacency faithfulness and that a directional error occurs in the
above three conditions, the edges between X and Z and Y and Z are lower
reliable. We disorient these edges into Z to ∗−◦Z. This procedure is expected to
reduce successive errors of orientation due to the use of the orientation rules.

We show the CS* algorithm in 12, where ADJX denotes an adjacency set
of vertex X, and the output graph is represented by a maximal informative
PAG [14].

3.3 Related Work

FCI algorithm [14] is known for inference of MAG models, but it is not actually
sufficiently accurate in inference; nor is PC, although FCI and PC are proven
to have soundness assuming statistical correctness under the CFC. MBCS*
algorithm has the same level of accuracy as FCI but with much better time
efficiency [10]. Meanwhile, computation for inference is a hard task for large
variable systems, so RFCI algorithm was proposed for reducing such time com-
plexity with an approximation [5]. BCCD algorithm achieves better inference
results due to using Bayesian statistics [4]. In a DAG learning context, the
Recursively Autonomy Identification (RAI) algorithm decomposes a DAG into
subgraphs for reducing the number of large order CI tests [16] and thus seems
effective for large DAG models. A similar recursive algorithm was also proposed
by Xie and Geng [15].

Ramsey et al. decomposed the CFC into the adjacency and orientation
faithfulness, assumed the former condition holds, and proposed a conservative
2 About Possible-D-Sep, refer Spirtes et al. [14].
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Algorithm 1. CS* Algorithm
Input: V : a set of observed variables
Output: G : a maximally informative PAG
1: form a complete graph G over V with edges ◦−◦ ;
2: make empty sets for any pair of X,Y ∈ V denoted by Sepset(X,Y );
3: set n = 0;
4: repeat
5: for each X ∈ V do
6: for each Y ∈ ADJX do
7: for each subset S ⊆ {ADJX \Y } such that |S| = n do
8: set m = 0
9: for each Z ∈ S do

10: if a path containing Z between X and Y does not contain a v-structure
then

11: set m = 1
12: break
13: end if
14: end for
15: if m = 0 then
16: continue
17: else if X ⊥⊥Y |S then
18: remove the edge X ∗−∗Y from G
19: add S to Sepset(X,Y )
20: end if
21: end for
22: end for
23: end for
24: for each unshielded triple 〈X,Z, Y 〉 in G do
25: orient it as X ∗→Z ←∗Y iff Z is not in Sepset(X,Y )
26: add them to Vstr(X,Z, Y )
27: end for
28: set n = n + 1
29: until |ADJX | ≤ n for all X ∈ V
30: detect non-adjacencies due to Possible-D-Sep.
31: find all unreliable directions and disorient those edges
32: orient edges using the orientation rules
33: return G

PC algorithm for violations of the latter condition [11]. The algorithm prac-
tically reduces false positive errors of orientations. Isozaki proposed the CS
algorithm from a more aggressive perspective of improving accuracy even for
edge-identification inference and showed that the aim was actually achieved for
five standard datasets with a wide range of sample sizes [6].

4 Experimental Evaluation

CS* algorithm also has the soundness of accuracy for learning MAGs the same
as FCI does. In this section, we demonstrate practical performance with finite
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Table 1. Numbers of parameters in each DAG used in the experiments.

Database Variables Edges Conditional probabilities

Alarm 37 46 509

Carpo 60 74 342

Hailfinder 56 66 2656

Insurance 27 52 1008

Water 32 66 10083

Fig. 1. PAG representation of Alarm network.

data of some standard datasets in comparison with well-known FCI and recently
proposed RFCI algorithms. We used R package, pcalg, for performing FCI and
RFCI [8]. All three algorithms used the orientation rules by Zhang [17]. The
datasets we used here are sampled from well-known Alarm [2], Hailfinder [1],
Insurance [3], Water [7], and Carpo datasets, which have known DAG-structures
and discrete conditional probability distributions. Numbers of parameters of the
DAGs (variables, edges, and conditional probabilities) are shown in Table 1. Then
we sampled from the distributions with a sample size of 1000, 2000, 5000, and
10000. G2 tests [14] with a significance level of 0.01 are used for all algorithms
since the threshold value was best for all algorithms in pre-experiments. The
maximum degree of conditioning sets in CI tests was set as 5. We evaluate
inference accuracy by performing recovery of causal structures in averaged values
with 10 runs for each dataset and sample size. The known structures are DAGs,
so we transformed the DAGs to PAGs when evaluating accuracy because all of
the algorithms provide inference results as PAGs. As examples, PAGs of Alarm
and Insurance are shown in Figs. 1 and 2, where the edges with definite direction
are denoted by bold lines for visual clarity. The structural Hamming Distance
(SHD) was used for the evaluations [6]. SHD, which consists of extra/missing
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Fig. 2. PAG representation of Insurance network.

edge errors and directional errors, is usually used for DAG-evaluations. We used
SHD for PAG-evaluations, where SHD is defined to have the same extra/missing
errors and errors of marks of both sides of edges.

Fig. 3. Averaged and normalized SHD results for inferred PAGs from Alarm dataset
by CS*, FCI, and RFCI.

The results of SHDs are shown in Figs. 3, 4, 5, 6, and 7, where the values
are normalized by averaged values of CS* and the error bars denote the stan-
dard deviations. As smaller values than 1 indicate better results than CS*, CS*
outperforms FCI/RFCI in terms of the averaged values for all sample sizes in
Alarm, Carpo, Hailfinder, and Insurance, although the results of CS* for Water
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Fig. 4. Averaged and normalized SHD results for inferred PAGs from Carpo dataset
by CS*, FCI, and RFCI.

performed slightly lower against FCI/RFCI. These results show that CS* algo-
rithm is practically effective on average in addition to its theoretical soundness.

Fig. 5. Averaged and normalized SHD results for inferred PAGs from Hailfinder dataset
by CS*, FCI, and RFCI.
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Fig. 6. Averaged and normalized SHD results for inferred PAGs from Insurance dataset
by CS*, FCI, and RFCI.

Fig. 7. Averaged and normalized SHD results for inferred PAGs from Water dataset
by CS*, FCI, and RFCI.
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5 Conclusion

In realistic observational data without careful design on obtaining the data,
causal learning seems intractable due to latent variables that generate pseudo
correlations, leading to a misunderstanding of the systems. Those variables are
known to latent common causes and selection bias. Maximal ancestral graph-
ical (MAG) representations are a natural extension of directed acyclic graphs
(DAGs) and are suitable for such causal learning tasks, which can indicate the
existence or absence of the latent variables. The causal faithfulness condition
(CFC) is necessary for a perfect correspondence of conditional independence
relations, which is assumed even in MAG learning, to the background causal
graphical structures. However, the CFC is statistically recognized to often be
weakly violated for finite samples. These situations naturally occur in MAG
inference the same as in DAG. The CS algorithm was proposed for robust DAG
inference against weak violations while keeping theoretical soundness.

In this study, we extend the CS to that which is applicable to MAG infer-
ence: the Minimal Blocker Condition and lower reliable directions are extended
for latent variable systems that can be represented by MAGs, and we call the
extended algorithm CS*. In experimental evaluations with five standard datasets
in comparison with FCI/RFCI algorithms, CS* outperformed them in four out
of the five datasets on a wide range of sample sizes, 1000–10000. The results
shows the effectiveness of CS* algorithm for learning MAGs on average.

Acknowledgments. The authors thank Tomohide Haruguchi for assisting with the
experiments. Isozaki thanks Hiroaki Kitano of Sony Computer Science Laboratories,
Inc. for his support.
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Abstract. Having knowledge about the real underlying causal struc-
ture of a data generation process has various implications for different
machine learning problems. We address the idea of causal and anticausal
learning with respect to a comparison of discriminative and generative
models. In particular, we conjecture the hypothesis that generative mod-
els perform better in anticausal problems than in causal problems. We
empirical evaluate our hypothesis with different real-world data sets.

Keywords: Causality · Causal and anticausal learning · Discriminative
and generative models · Logistic regression · Naive bayes

1 Introduction

Choosing a suitable machine learning algorithm for a given problem can be
a difficult task. In order to achieve the highest possible accuracy, the choice
normally bases on the properties of the data including the number, variance or
sparsity of the variables, as well as whether the prediction variable is a continuous
number (regression) or a category (classification). Schölkopf et al. [1] proposed
that, under certain assumptions, the underlying causal directions of variables
have important implications for the prediction by differing between predicting
in a causal and anticausal direction.

In order to explain our ideas, we will only regard two variable cases, but the
ideas seem to be extendable to any number of variables. Therefore, there is only
an input X, an output Y and we want to predict Y by X. In the underlying
causal structure of a data generation process exists a cause C and an effect E.
Between cause and effect is an unknown function or mechanism E = ϕ(C,NE)
which transforms the cause into the effect given some noise NE . The typical goal
of a machine learning algorithm is to learn this mechanism in order to make new
predictions. The term “mechanism” will be used for the function ϕ and for the
conditional P (E|C) in the following.

Schölkopf et al. proposed that differing between predicting the effect by the
cause (causal direction) and predicting the cause by the effect (anticausal direc-
tion) leads to some interesting theoretical implications for different machine
learning scenarios. One of the most important assumptions in this context is
the independence between mechanism and input. Following this assumption,
c© Springer International Publishing Switzerland 2015
J. Suzuki and M. Ueno (Eds.): AMBN 2015, LNAI 9505, pp. 209–221, 2015.
DOI: 10.1007/978-3-319-28379-1 15



210 P. Blöbaum et al.

the cause distribution P (C) has no task relevant information about the under-
lying mechanism P (E|C) and vice versa. Regarding this assumption, Schölkopf
et al. particularly formulated the hypothesis that semi-supervised learning works
better in anticausal or confounded problems than in causal problems, because
additional information about the input does not help for predicting in causal
direction. To support their claim, they provided some empirical results (see [1,2]
for more details).

Inspired by their ideas, we investigate a further hypothesis regarding gener-
ative models. We hypothesize that generative models are more likely to perform
better in anticausal or confounded problems than in causal problems. Gener-
ative models, in particular, try to model P (X|Y ) and using Bayes’ rule for
making predictions. Under the independence assumption, P (X) has no task rel-
evant information for modeling P (Y |X) in causal problems, but it has relevant
information in anticausal/confounded problems. Therefore, we conjecture that
generative models are more likely to perform better in anticausal/confounded
problems than in causal problems.

This is in particular interesting regarding the general belief that discrimina-
tive models outperform generative models in many application domains (e.g. in
[3–5]). Due to some inaccurate modeling assumptions often made by generative
models, the asymptotic error of generative models is greater than the asymp-
totic error of discriminative models [6], but since there is rarely enough data
for a problem to generally say that the choice of a discriminative model is to
be preferred, the underlying causal structure of a problem can give some good
advice as to what kind of model may fit better. In our evaluations we compare
the performances of generative and discriminative models in artificial and real-
world datasets. In our future work we aim to provide a proof of the hypothesis
supported by these results. In the following, we will call confounded problems
also as anticausal problems, since the relevant properties of anticausal problems
for our hypothesis are also valid for confounded problems. Regarding the nota-
tion, we will often differentiate between a cause C and an effect E. To denote if
either the input X or the output Y is the cause or effect, we accordingly use C
or E as index. For instance, if X is the cause, it is denoted as XC and the effect
Y as YE .

1.1 Causal Problems

In causal problems, we predict the effect by the cause. In general, there is an input
XC (cause C) and an output YE (effect E) and we aim to learn the mechanism
ϕ (see Fig. 1). An example for a causal problem would be the “pole balancing”
problem. In this problem, a pole is affixed to a cart via a joint and the cart is
only allowed to move to the left or right. The classification task here is to predict
which direction the cart should move in order to balance the pole. The classifier
input is the current angle of the pole. In this case, we could think of some simple
threshold rules as classification mechanism.
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Fig. 1. An illustration on the difference between predicting in the causal and anticausal
direction. Note the difference in the direction of ϕ. Causal direction: The input XC

causes the output YE . Therefore, we aim to predict the effect E by the cause C. Anti-
causal direction: The output YC causes the input XE . Here, the cause C is predicted
by the effect E.

1.2 Anticausal Problems

More interesting are anticausal problems, where we predict the cause by the
effect (see Fig. 1). Thus, the output YC causes the input XE , but we want to
predict YC based on XE . In fact, it seems that most classification problems have
a similar structure and are therefore anticausal problems. The “MNIST” data
set, for instance, is an anticausal problem. This data set consists of images of
handwritten digits from 0 to 9 and the task is to classify these images. The
underlying causal structure is anticausal, because the class label YC causes a
motor pattern (mechanism ϕ) in our head to produce the image XE .

In many cases, it can be easier to predict the effect by the cause. For example,
given a regression problem with a causal structure like XE = YC + NE with
uniformly distributed error noise NE . Here, we want to predict the cause YC by
the effect XE , but taking a look at Fig. 2 shows that predicting the effect XE by
the cause YC is a simpler task. Since this is a regression problem, it is possible
to predict XE by YC with a simple linear function, but predicting YC by XE

would require a non-linear function which is more difficult to fit [1]. Hence, in
this respect it is easier to model P (XE |YC) first and then use Bayes’ rule for
modeling P (YC |XE) in order to predict YC .

These kinds of properties are also valid for confounded data [1].
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Fig. 2. Example for predicting the effect and predicting the cause: The causal struc-
ture of the underlying data generation process is XE = YC + NE , where YC and NE

are uniformly distributed. Note that XE here is the effect and YC the cause. For a
proper prediction of YC by XE (right) a non-linear prediction is necessary. Since this
is a regression problem, it is a much easier task to predict XE by YC (left) with a sim-
ple linear function first and then using Bayes’ rule for inferring YC . In this instance,
knowledge about the underlying causal structure can be helpful for the prediction task.
This figure is reproduced from [1].

1.3 Independence of Mechanism and Input

The independence of mechanism and input [7] is the most important assump-
tion concerning our hypothesis and is similar to the autonomous data generation
process [8]. Here, the definition of independence is different from the classi-
cal statistical definition (see [9] for more details). It is assumed that the cause
distribution P (C) is independent of the mechanism P (E|C) and therefore has
no information about it. In particular, changing P (C) has no influence on the
mechanism. This seems plausible taking a look at the “pole balancing” problem
mentioned in Sect. 1.1. If the distribution of the angles has been changed to be
gaussian instead of uniform, the threshold when the car should drive to the left or
right would still be the same. On the other hand, P (E) and P (C|E) are depen-
dent, because both have information about P (E|C) and P (C). As in the case
of the “MNIST” data, an accurate estimation of P (X) already reveals possible
class boundaries and can help in the classification task. Therefore, there exists
an asymmetry between cause and effect. To summarize the important properties
of this assumption:

• P (C) has no information about P (E|C)
• P (E) has information about P (E|C)
• Changing P (C) has no influence on P (E|C) and vice versa

⇒ P (XC) has no information about P (YE |XC) in the causal case
⇒ P (XE) does have information about P (YC |XE) in the anticausal case
⇒ There is an asymmetry between cause and effect.
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1.4 Discriminative and Generative Models

Machine learning algorithms can generally be categorized as either a discrimina-
tive or generative model. There also exist hybrid models which try to combine
the advantages of both, but we will not consider them further.

Discriminative models try to directly model P (Y |X) by discriminating Y
for any input X. Examples are Logistic Regression, Support Vector Machines
or Perceptrons. On the other hand, generative models try to model the data
generation P (X,Y ). This is done by estimating P (X|Y ), P (Y ) and particularly
by taking P (X) into account. The Bayes’ rule is then applied for getting P (Y |X).
Typical examples are Naive Bayes, RBF Networks or Hidden Markov Models.

Every generative model addresses the problem of estimating P (X,Y ) dif-
ferently. Several assumptions are necessary, such as the dependencies between
variables and how to estimate the underlying distribution. In this work, we use
the Naive Bayes (NB) classifier for our evaluations. In case for NB, the joint
probability P (X,Y ) has the form

P (X,Y ) = P (X|Y )P (Y ).

In a multivariable case, the conditional P (X|Y ) is replaced by the product over
all input variables conditioned by Y . Here, NB assumes that the variables are
independent, which rarely holds true. Inferences for Y can then be made by
conditioning P (X,Y ) on X, which leads to the Bayes’ rule

P (Y |X) =
P (X|Y )P (Y )

P (X)
.

Besides modeling assumptions regarding the variable dependencies, further
assumptions are necessary for estimating P (X|Y ). NB, for instance, assumes
that the conditional(s) P (X|Y ) is gaussian distributed. As soon as one of these
conditions are violated, the generative model becomes inaccurate. Note that NB
actually does not utilize P (X), only the conditional P (X|Y ) and the prior P (Y )
due to the maximum a posteriori estimation for inferring Y.

There exist many comparisons between discriminative and generative models
such as in [6,10]. It is often pointed out that wrong modeling assumptions in
generative models lead to higher asymptotic errors as compared to discriminative
models even though generative models need less training data [6,10]. Therefore,
the general belief in the machine learning community is that a discriminative
model normally outperforms a generative model and is therefore preferred. We
discuss this comparison under the aspect of causal and anticausal problems and
especially point out that generative models can be a good choice in anticausal
problems.

2 Hypothesis

Differing between causal and anticausal problems under the independence
assumption leads to some interesting implications. Schölkopf et al. explicitly
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brought this to the context of semi-supervised learning [1,2]. They argued that
additional input data sampled from P (XC) do not increase the performance
in causal problems, because P (XC) has no information about the mechanism
P (YE |XC) with respect to the independence assumption. On the contrary, addi-
tional samples can improve the performance in anticausal data seeing that
P (XE) is the effect in this case and therefore has information about the mech-
anism.

As already mentioned, in most application tasks, the modeling assumptions
by generative models are inaccurate with respect to the real underlying process.
However, the assumptions are often still sufficient enough for predictions in sev-
eral problems, but insufficient in others. We presume that these inaccurate mod-
eling assumptions have a higher negative impact in causal data than in anticausal
data. Therefore, we hypothesize that generative models in general perform better
in anticausal problems than in causal problems.

Since generative models try to estimate P (X), the encoded task relevant
structures in anticausal problems can be utilized for making inferences based
on P (XE |YC). We suppose that the modeling assumptions are more likely to
be sufficient enough in anticausal data to exploit information based on P (XE).
The distribution P (XE) depends on P (YC), hence modeling the conditional
P (XE |YC) reflect the actual causal relationship between cause and effect in a
two variable case.

On the other side, under the independence assumption, XC is independent
of YE in causal problems. P (XC) provides no relevant information, hence no
encoded information in P (XC) can be exploited for a proper estimation of
P (XC |YE). The conditional P (XC |YE) here reflects a wrong causal relationship
between cause and effect. Regarding this, it becomes even more difficult to find
a proper model to explain (or estimate) P (XC |YE). Therefore, it is more likely
that wrong modeling assumptions lead to an inaccurate estimation of P (YE |XC).

Note that we only conjecture that generative models tend to perform better in
anticausal problems. This does not imply that they are better than discriminative
models. However, it could be additionally argued that discriminative models are
normally the better choice in causal problems, since the estimated P (YE |XC)
is not negatively influenced by inaccurate estimations based on P (XC |YE) and
P (XC) such as in generative models.

The idea of utilizing task relevant information based on P (X) is also highly
related to the following semi-supervised learning assumptions [11]:

Smoothness assumption: Two data points which are close to each other are
more likely to share the same output.

Cluster assumption and low density separation: Points in the same cluster
are more likely to be of the same class. This can be seen as a special case of the
smoothness assumption. The cluster assumption can equivalently be formulated
as low density separation which states that the decision boundary should lie in
a region where the density P (X) is low.



Discriminative and Generative Models in Causal and Anticausal Settings 215

Manifold assumption: The (high-dimensional) data lie on a low-dimensional
manifold. If we assume that the manifold is embedded in a high-dimensional
data space, accurate density estimations of the input space can be useful for the
classification or regression task.

These assumptions imply that there are task relevant information encoded in
P (X) and therefore an accurate estimation of P (X) can be helpful for a proper
estimation of P (Y |X). In particular, we suppose that anticausal problems tend
to fulfill these assumptions due to the property of P (X) having information
about P (Y |X).

In order to clarify our idea, we once again bring in the context of the two
examples for causal and anticausal problems given in Fig. 1. Having uniformly
distributed input data in the “pole balancing” example, modeling the input dis-
tribution gives us no useful information about the mechanism (threshold) as to
when the car should change direction. Therefore, P (XC) has no useful informa-
tion. On the contrary, there are some clear clusters in the “MNIST” example.
Even without seeing any class labels, we could already suppose that these clus-
ters represent different classes. The input distribution has useful information
here and taking P (XE) into account may be useful for the classification task.

Since P (XC) has absolutely no information about P (YE |XC) in the “pole
balancing” example and “MNIST” fulfill all aforementioned assumptions, these
two examples would be perfect cases which are rarely realistic. Nevertheless, we
compared different input distributions of causal and anticausal real-world data
sets (see Sect. 3 (Real-world data sets)) and noticed that the distributions seem
tending to have these kind of properties.

3 Empirical Evaluations

For the investigation of our hypothesis we used Logistic Regression (LR) as
discriminative model and NB as generative model in real-world and artificial
data sets. Since NB is the generative counterpart of LR [10], these two classifiers
offer the most fair comparison. If the intra-class variances are equal and the
modeling assumption made by NB holds true, both models even converge to
the same linear classifier [10]. In practice this rarely holds true, therefore the
behavior is different. Even though NB does not take variable dependencies of
the input into account, it still regards the data distribution and models the causal
relationship between cause and effect. We also performed the comparison with
more powerful classifiers and got the same tendency, therefore, we only present
LR and NB.

We first utilized the same real-world data sets as mentioned in [1] and added
a few additional. A proper categorization of a data set into causal or anticausal
requires a precise documentation of how the data were acquired and neverthe-
less a clear categorization is often difficult. For example, it can be argued that
the “MNIST” data set is anticausal because the drawer had the number in mind
before drawing it or, on the contrary, it can be argued that the image was labeled
based on the number that was recognized and is therefore causal. In this case, if
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we just focus on the process when the images were created, then the former seems
more plausible. The categorization of data sets is another difficult topic, but a
detailed discussion falls out of the scope of this work. Therefore, we followed the
same categorization as that of Schölkopf et al. (see [1] for more details). Note
that we are not interested in achieving a high classification performance. Instead
we want to empirically evaluate our claim that generative models generally per-
form better in anticausal data than in causal data by providing a comparison of
discriminative and generative models in causal and anticausal data.

Real-World Data Sets. The utilized real-world data sets are taken from the
UCI repository and from the benchmark set in [11]. For the purpose of obtain-
ing a fair comparison of discriminative and generative models in causal and
anticausal data, we compared the average accuracy of LR and NB in 10 causal
data sets and 18 anticausal data sets. We further provide an overview of the
input spaces of each data set after applying the t-distributed stochastic neigh-
bor embedding unsupervised dimensionality reduction algorithm [12]. This algo-
rithm is especially suitable to get a proper two dimensional representation of high
dimensional data. By this, we want to show that the properties of causal and
anticausal data mentioned in Sect. 2 can be found in most real-world problems,
though not in every one. Note that this dimensionality reduction algorithm is
unsupervised so the resulting manifold tries to preserve as much relevant struc-
ture of the high dimensional space as possible without regarding discriminative
information. An overview of all utilized real-world data sets with their according
input space can be found in Fig. 3. Data sets “g241c” and “g241n” are artificial
data sets, but we added them to the list since they were also used by Schölkopf
et al. for their evaluations.

Each data set was evaluated with a 10-fold cross validation and averaged
over 10 runs. The results are shown in Table 1. There is a clear performance
gap between causal and anticausal data sets for NB. The average performance
is around 14 % higher in anticausal data sets. Furthermore, NB even performed
slightly better than LR in many cases. On the other hand, although NB per-
formed better in some causal data sets, the performance differences between LR
and NB is quite big for some data sets, such as in “chess”, “TicTacToe”, “User-
Modeling” or “wine”. Besides NB, the performance of LR is in general also better
in the anticausal data sets, which may indicate that anticausal problems can be
easier than causal problems. However, the performance gap between causal and
anticausal data set seems to be higher for NB than for LR. Note that a fair
empirical comparison between discriminative and generative models is difficult
due to the fundamental model differences. Furthermore, we only had 10 causal
data sets available, hence the low accuracy of “UserModeling” has a big impact
on the overall average accuracy of NB in causal data sets. Despite that, these
results at least seem to support our hypothesis and do not contradict it.

Discussion About the Input Spaces. Aside from a performance evaluation,
we are also interested in the actual input distribution of the different data sets
so as to check how realistic the made assumptions are and to explain some
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Fig. 3. An overview of the utilized real-world data sets with their according two dimen-
sional inputs space after a unsupervised dimensionality reduction. Each color represents
one class.
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Table 1. A performance comparison of the average accuracy of Logistic Regression
and Naive Bayes in causal and anticausal data.

Causal data sets Logistic Regression Naive Bayes

balance-scale 89.44 % 91.44%

car 93.28% 85.46 %

chess 97.61% 87.71 %

connect 82.53 % 84.75%

poker 49.95% 46.19 %

SecStr 57.87 % 65.84%

TicTacToe 98.22% 69.91 %

UserModeling 50.77% 15.57 %

wine 53.83% 48.79 %

splice 90.56 % 95.42%

76.41% 69.11 %

Anticausal data sets Logistic Regression Naive Bayes

breast-w 96.48 % 97.57%

COIL 83.37 % 86.49%

diabetes 77.19% 75.22 %

digit 94.81 % 95.61%

g241c 82.15 % 87.06%

g241n 82.66 % 86.76%

heart-c 83.31 % 83.41%

hepatitis 82.55 % 84.15%

iris 95.82 % 96.59%

labor 94.07% 93.57 %

letter 77.27% 73.96 %

MNIST 90.74 % 92.04%

sonar 72.51 % 72.85%

USPS 84.54% 82.22 %

vehicle 79.72% 59.87 %

vote 94.93% 89.69 %

vowel 68.02 % 73.13%

waveform 86.65% 80.01 %

84.82% 83.9 %
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of the results. Therefore, we further provide an overview of the various input
spaces after an unsupervised dimensionality reduction in Fig. 3. Even though
the dimensionality reduction can probably not capture all relevant structures,
it offers a good insight of the data distributions of real-world problems. The
performance evaluations are based on the raw data, therefore, not all results can
be explained by the low dimensional representation.

For the causal data sets, except for “splice”, each data set requires a complex
model for a proper estimation of P (XC |YE). In particular, “connect”, “poker”,
“SecStr” and “UserModeling” seem to have no meaningful structures at all. Since
NB is making inferences based on P (XC |YE) the individual class distributions
are very important. Note that the classical NB is limited to model the class
distribution only by a simple gaussian. Therefore, NB can be especially helpful
in cases such as “splice” where the class distributions seem to be gaussian. In
fact, the performance of NB in “splice” is significantly better than that of LR.
On the other hand, modeling a class distribution by a simple gaussian in the
other cases would not be particularly helpful. Nonetheless, e.g. for “TicTacToe”,
a more complex model such as a mixture of gaussians could reveal more helpful
structures for the classification. The reason why NB performs significantly better
than LR in “SecStr” is possibly due to a more meaningful class structure in the
higher dimensional space.

In the anticausal data sets are more cases where a simple model for the
estimation of a class distribution can already be sufficient, such as in “breast-
w”, “digit”, “iris”, “labor”, “MNIST”, “vote” or “waveform”. In general, taking
P (XE |YC) into account can be helpful in nearly every data set besides “diabetes”
and “g241c”. The better performance of NB in “g241c” can be again explained
by the structures in the high dimensional space.

The comparison of the input spaces also seem to support the supposition that
anticausal data tend to fulfill the smoothness, cluster and/or manifold assump-
tion, since most of the anticausal data sets have these properties. This gener-
ally implies a more accurate estimation of P (Y |X). For the causal data sets it
looks like these assumptions are mostly violated. Further, it seems that more
often a simple model for P (X|Y ) is sufficient in anticausal data than in causal
data. Therefore, the drawbacks of generative models regarding wrong modeling
assumptions are less crucial in anticausal data.

4 Conclusion

Having knowledge about the underlying causal structure of a problem can give
helpful information for predicting a variable. We are interested in comparing dis-
criminative and generative models in causal and anticausal settings and partic-
ularly formulate the hypothesis that generative models generally perform better
in anticausal problems than in causal problems. In our empirical evaluations, we
use Logistic Regression as a discriminative model and Naive Bayes as a gener-
ative model. The results seem to support our hypothesis. We further compare
various input spaces of causal and anticausal real-world data sets in order to
support our conjectures. The results are as follow:
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• Discriminative and generative models perform better in anticausal problems.
• The performance gap between causal and anticausal problems is higher for

generative models.
• Generative models even outperform discriminative models in some anticausal

problems.

⇒ The performance gap between discriminative models and generative models
is smaller in anticausal problems.

• Class distributions seem to be more complex in causal data.

⇒ Wrong modeling assumptions made by generative models have a higher
negative impact in causal problems.

• It seems more likely that anticausal problems tend fulfill the smoothness,
cluster and/or manifold assumption.

⇒ Anticausal problems tend to have simple and less overlapping class struc-
tures.

⇒ Simpler models for estimating P (XE |YC) are sufficient in anticausal prob-
lems.

⇒ Wrong modeling assumptions made by generative models have a smaller
negative impact in anticausal problems.

Our results can give a new insight with respect to the general belief of pre-
ferring a discriminative over a generative model in most application domains.

In our future work, we are interested in additional evaluations, since we could
only utilize a few real-world data sets in our experiments. Moreover, performing
the same evaluations with more complex generative models could substantiate
our hypothesis. If our claim holds true, we are also particularly interested in
developing a mathematical proof by considering a deterministic causal process
under the independence assumption.
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Abstract. We discuss the problem of estimating the causal direction
between two observed variables in the presence of hidden common causes.
Managing hidden common causes is essential when studying causal rela-
tions based on observational data. We previously proposed a Bayesian
estimation method for estimating the causal direction using the non-
Gaussianity of data. This method does not require us to explicitly model
hidden common causes. The experiments on artificial data presented in
this paper imply that Bayes factors could be useful for selecting a better
causal direction when using a non-Gaussian method.

Keywords: Causal discovery · Hidden common causes · Structural
equation models · Non-Gaussianity

1 Introduction

We consider the problem of estimating causal relations based on observational
data [2,22,33]. Assume that we are interested in the causal relations between two
observed random variables x1 and x2. We are particularly interested in the causal
direction between these two variables assuming one-way causation. We use the
framework of structural causal models [22] to represent their causal relations.
We want to estimate which of the following two models (Models 1 and 2) is
better than the other by using a dataset of x1 and x2 randomly sampled from
either of these two models:

Model 1 :
{

x1 = e1
x2 = b21x1 + e2

, (1)

Model 2 :
{

x1 = b12x2 + e1
x2 = e2

, (2)

where e1 and e2 are unobserved or hidden random variables, typically called
error variables, exogenous variables, or external influences. b21 and b12 are con-
stants that represent the magnitude of causation from x1 to x2 and from x2 to
x1, respectively. For simplicity, here we assume that b21 and b12 are non-zero.
c© Springer International Publishing Switzerland 2015
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In Model 1, x1 causes x2 and the causal direction is x1 → x2, whereas in Model 2,
x2 causes x1 and the causal direction is x2 → x1.

Note that these two models describe the data-generating process of x1 and
x2 rather than simply defining the probability distribution of x1 and x2. For
example, Model 1 states that the values of e1 and e2 are first generated and
that the value of x1 is observed as that of x1 as it is; hence, the value of x2 is
generated as a linear combination of those of x1 and e2.

The major difficulty with estimating causal directions based on observational
data is that the error variables e1 and e2 are dependent in general. Then, even
if we know that the right causal direction is x1 → x2, we cannot obtain the
right estimate of the coefficient b21 by using the regression coefficient obtained
when regressing x2 on x1. Such dependency between the error variables e1 and
e2 is typically introduced by the unobserved variables that cause both x1 and
x2. These unobserved variables are known as hidden common causes.

Assume that we have a single hidden common cause f1 that makes e1 and
e2 dependent. Then, we rewrite Models 1 and 2 as follows:

Model 1′ :

⎧
⎪⎪⎨

⎪⎪⎩

x1 = λ11f1 + e′
1︸ ︷︷ ︸

e1

x2 = b21x1 + λ21f1 + e′
2︸ ︷︷ ︸

e2

, (3)

Model 2′ :

⎧
⎪⎪⎨

⎪⎪⎩

x1 = b12x2 + λ11f1 + e′
1︸ ︷︷ ︸

e1

x2 = λ21f1 + e′
2︸ ︷︷ ︸

e2

, (4)

where λ11 and λ21 are constants that represent the magnitudes of causation.
Now, the new error variables e′

1 and e′
2 are statistically independent. A well-

known guideline [21,24] is to observe the hidden common cause f1, incorporate
it into the model, and carry out three-variable analysis so that the error variables
are independent. Although we should certainly follow this guideline, doing so can
be hard since a large number of hidden common causes may exist and we often
have no idea what they are.

In this paper, we discuss the problem of estimating the causal direction
between two observed variables in the presence of hidden common causes. We
use structural causal models [22] to represent causal relations and make causal
inferences. We assume linear functional relations, acyclic causal relations, and
the non-Gaussianity of the error variables. Further, we assume that the number
of hidden common causes is unknown. Under these assumptions, we previously
proposed a method for estimating the causal direction between two observed
variables [26]. This method compares two models of two observed variables with
opposite causal directions in a Bayesian model selection framework. The method
does not require us to explicitly model hidden common causes and makes the
number of hidden common causes remain unspecified. In the remainder of this
paper, we first briefly review the method. Second, we consider using a set of prior
distributions for cases with observed variables being standardized. Finally, we
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conduct experiments on artificial data. This paper thus supplements our previous
work [26].

2 A non-Gaussian Causal Model with Hidden Common
Cause Cases

We previously developed a linear structural causal model for causal discovery in
the presence of hidden common causes [11]. This model is an extension of a linear
non-Gaussian acyclic structural equation model known as LiNGAM [28,31]. Let
us denote by x1, · · · , xp the observed variables, by f1, · · · , fQ the hidden common
causes, and by e1, · · · , ep the error variables. All these are continuous variables.
Then, we write the model as follows:

xi = μi +
∑

j �=i

bijxj +
Q∑

q=1

λiqfq + ei, (5)

where bij and λiq are constants that represent the magnitudes of causation and
μi are intercepts. We assume that the causal relations are acyclic, i.e., there
is no feedback relation. We further assume that the hidden common causes fq

(q = 1, · · · , Q) and error variables ei (i = 1, · · · , p) are non-Gaussian and inde-
pendent. Although the independence assumption on hidden common causes fq

looks strong, we can make this assumption without loss of generality under some
common assumptions including linearity. See [11] for the details of the indepen-
dence assumption on hidden common causes.

By using the model in Eq. (5), we compare the following two models with
opposite directions of causation:

Model 3 :

{
x1 = μ1 +

∑Q
q=1 λ1qfq + e1

x2 = μ2 + b21x1 +
∑Q

q=1 λ2qfq + e2
, (6)

Model 4 :

{
x1 = μ1 + b12x2 +

∑Q
q=1 λ1qfq + e1

x2 = μ2 +
∑Q

q=1 λ2qfq + e2,
. (7)

Fig. 1 presents graphical representations of these two models. Note that we
assume the number of hidden common causes Q to be unknown.

In [26], we related the model in Eq. (5) to a model having individual-specific
intercepts instead of explicitly having hidden common causes. A major advantage
of this approach is that we do not estimate the number of hidden common causes
Q. To explain the idea, we first rewrite the model in Eq. (5) for observation l as
follows:

x
(l)
i = μi +

Q∑

q=1

λiqf
(l)
q +

∑

j �=i

bijx
(l)
j + e

(l)
i (8)
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Fig. 1. Models 3 and 4: Two models with different causal directions in the presence of
three hidden common causes

Now, let us denote the sums of the hidden common causes by μ̃
(l)
i =

∑Q
q=1 λiqf

(l)
q .

Then, we have the following model with individual-specific intercepts:

x
(l)
i = μi + μ̃

(l)
i︸︷︷︸

∑Q
q=1 λiqf

(l)
q

+
∑

j �=i

bijx
(l)
j + e

(l)
i , (9)

where μi are the intercepts common to all the observations and μ̃
(l)
i are the

individual-specific intercepts. The distributions of e
(l)
i (l = 1, · · · , n) are assumed

to be identical for every i. In this model, the observations are generated from the
model with no hidden common causes, possibly with different parameter values
of the means μi + μ̃

(l)
i . This model has the intercepts μi and bij that are common

to all the observations as well as the individual-specific intercepts μ̃
(l)
i . This is

similar to mixed models [5]. Thus, we call this a mixed-LiNGAM.
Now, the problem of comparing Models 3 and 4 in Eqs. (6) and (7) becomes

that of comparing Models 3’ and 4’:

Model 3′ :

{
x
(l)
1 = μ1 + μ̃

(l)
1 + e

(l)
1

x
(l)
2 = μ2 + μ̃

(l)
2 + b21x

(l)
1 + e

(l)
2

, (10)

Model 4′ :

{
x
(l)
1 = μ1 + μ̃

(l)
1 + b12x

(l)
2 + e

(l)
1

x
(l)
2 = μ2 + μ̃

(l)
2 + e

(l)
2

, (11)

where μ̃
(l)
1 =

∑Q
q=1 λ1qf

(l)
q and μ̃

(l)
2 =

∑Q
q=1 λ2qf

(l)
q (l = 1, · · · , n).

We apply a Bayesian approach to compare Models 3’ and 4’ and estimate
the possible causal direction between the two observed variables x1 and x2. We
assume that the prior probabilities of the two candidate models are uniform.
Then, we may simply compare the log-marginal likelihoods of the two models
to assess their plausibility. The model with the larger log-marginal likelihood is
considered as the closest to the true model [15].
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3 Likelihood

Let D be the observed data set [x (1)T , · · · ,x (n)T ]T , where x (l) = [x(l)
1 , x

(l)
2 ]T .

Denote Models 3’ and 4’ by M3′ and M4′ and their log-marginal likelihoods by
log p(D|θr,Mr) (r = 3′, 4′). Then, their log-marginal likelihoods are given by

log p(D|θr,Mr) = log
n∏

l=1

p(x (l)|θr,Mr) (12)

=

n∑
l=1

log p(x (l)|θr,Mr) (13)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑n
l=1 log p

e
(l)
1

(x
(l)
1 − µ1 − µ̃

(l)
1 |θ3′ ,M3′)

+
∑n

l=1 log p
e
(l)
2

(x
(l)
2 − µ2 − µ̃

(l)
2 − b21x

(l)
1 |θ3′ ,M3′) for M3′∑n

l=1 log p
e
(l)
1

(x
(l)
1 − µ1 − µ̃

(l)
1 − b12x

(l)
2 |θ4′ ,M4′)

+
∑n

l=1 log p
e
(l)
2

(x
(l)
2 − µ2 − µ̃

(l)
2 |θ4′ ,M4′) for M4′

.(14)

The distributions of the error variables e
(l)
1 and e

(l)
2 are modeled by Laplace

distributions with zero mean and variances of var(e(l)1 ) = h2
1 and var(e(l)2 ) = h2

2

(h1, h2 > 0) as follows:

p
e
(l)
1

= Laplace(0, h1/
√

2), (15)

p
e
(l)
2

= Laplace(0, h2/
√

2). (16)

Here, we simply use a super-Gaussian distribution, the Laplace distribution, to
model p

e
(l)
1

and p
e
(l)
2

. Super-Gaussian distributions have often been reported to
work well in non-Gaussian estimation methods including independent component
analysis [12] and linear non-Gaussian structural causal models if the actual error
distributions are super-Gaussian [12,13].

4 Prior Distributions

The parameter vectors θ3′ and θ4′ in Eq. (14) are written as follows:

θ3′ = [μi, b21, hi, μ̃
(l)
i ]T (i = 1, 2; l = 1, · · · , n), (17)

θ4′ = [μi, b12, hi, μ̃
(l)
i ]T (i = 1, 2; l = 1, · · · , n). (18)

We first standardize the two observed variables x1 and x2 to have their means
and variances zeros and ones before computing the log-marginal likelihoods. We
prefer that the inference is not sensitive to the means and scales of the observed
variables. Then, following [9], we model the prior distributions of the parameters
common to all the observations as follows:

b12 ∼ N(0, 1)
b21 ∼ N(0, 1)
h1 ∼ lnN(0, 1)
h2 ∼ lnN(0, 1).
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Further, we set the intercepts μi (i = 1, 2) to be zeros following [9] since the
observed variables have been standardized.

Next, we use an informative prior distribution for the individual-specific
intercepts μ̃

(l)
i (i = 1, 2; l = 1, · · · , n). Those individual-specific intercepts μ̃

(l)
i

are the sums of many non-Gaussian independent hidden common causes fq

and are dependent. The central limit theorem states that the sum of indepen-
dent variables becomes increasingly close to the Gaussian [1]. Motivated by this
observation, we approximate the non-Gaussian distributions of the individual-
specific intercepts μ̃

(l)
i that are the sums of many non-Gaussian independent hid-

den common causes by using a bell-shaped curve distribution. We here model
the prior distribution of the individual-specific intercepts by the multivariate
t-distribution as follows:

[
μ̃
(l)
1

μ̃
(l)
2 ,

]
= diag

([√
τ indvdl
1 ,

√
τ indvdl
2

]T
)
C−1/2u (19)

where τ indvdl
1 and τ indvdl

2 are constants, u ∼ tν(0,Σ), and Σ = [σab] is a
symmetric scale matrix whose diagonal elements are 1s. C is a diagonal matrix
whose diagonal elements give the variance of elements of u , i.e., C = ν

ν−2diag(Σ)
for ν > 2. The degree of freedom ν is here taken to be eight.

The hyper-parameters are τ indvdl
1 , τ indvdl

2 , and σ21. We take an empir-
ical Bayesian approach to select the hyper-parameters. We test τ indvdl

i =
0, 0.22, ..., 0.82, 1.02 (i = 1, 2) and σ12 = 0,±0.3,±0.5,±0.7,±0.9. We take the
ordinary Monte Carlo sampling approach to compute the log-marginal likeli-
hoods with 10,000 samples for the parameter vectors θr (r = 3′, 4′).

5 Experiments on Artificial Data

We generated data using the following non-Gaussian model with three hidden
common causes:

x1 = 5 + f1 + f2 + 1.5f3 + e1

x2 = 10 + f1 + 2f2 + 0.5f3 + 3x2 + e2.

We tested three distributions of the error variables e1, e2, and hidden common
causes f1, f2, f3: the Laplace distribution, the exponential distribution with
the parameter value 1/

√
2, and the uniform distribution. The Laplace distribu-

tion and exponential distribution have positive kurtoses and are super-Gaussian
distributions, whereas the uniform distribution has negative kurtosis and is a
sub-Gaussian distribution. The Laplace and uniform distributions are symmet-
ric, whereas the exponential is asymmetric. The variances of e1 and e2 were set
to 9 and those of fq were ones. We permuted the variables according to a random
ordering to hide the true orderings. We conducted 200 trials with sample sizes
of 50, 100, 200, and 500.

We counted the numbers of successful discoveries of the causal directions
and computed precisions. We also computed the Bayes factor. Let us denote by
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K the Bayes factor of the two models compared, M3′ and M4′ . For notational
simplicity, we assume that we compute K so that the larger likelihood comes to
the numerator and the smaller to the denominator. In [15], Kass and Raftery
proposed that if 2 log K is 0 to 2, the evidence is not worth more than a bare
mention, if 2 log K is 2 to 6, it is positive, if 2 log K is 6 to 10, it is strong, and
if 2 log K is more than 10, it is very strong.

Tables 1, 2, 3 show the results when the actual error variables follow the
Laplace, exponential, and uniform distributions, respectively. Table 4 shows the
result when the actual distribution of each error variable was randomly selected
from the three distributions for every trial. Overall, if the sample size increased
or the Bayes factors rose, the numbers of successful discoveries and precisions
improved. This finding implies that considering Bayes factors is useful when
selecting a better model by using our method.

When the actual distribution was the Laplace or exponential, the perfor-
mance seemed to be satisfactory (see Tables 1 and 2) because the Laplace and
exponential distributions are super-Gaussian, as is the postulated distribution,
the Laplace.

Table 1. Numbers of successful discoveries and precisions when the actual distributions
are the Laplace. K is the Bayes factor.

N. successes N. findings Precisions

n = 50

2logK > 0 143 200 0.71

2logK > 2 11 13 0.85

2logK > 6 0 0 N/A

2logK > 10 0 0 N/A

n = 100

2logK > 0 142 200 0.71

2logK > 2 52 60 0.87

2logK > 6 0 0 N/A

2logK > 10 0 0 N/A

n = 200

2logK > 0 161 200 0.81

2logK > 2 114 127 0.90

2logK > 6 20 21 0.95

2logK > 10 1 1 1.00

n = 500

2logK > 0 167 200 0.83

2logK > 2 144 164 0.88

2logK > 6 108 114 0.95

2logK > 10 56 57 0.98
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When the actual distribution was the uniform, the performance (Table 3)
was much worse than the cases with the actual distribution being the Laplace
and exponential, because the uniform distribution is sub-Gaussian, unlike the
Laplace.

When each of the actual error distributions was randomly selected, the per-
formance again became worse than the Laplace and exponential distribution
cases (but performance was not terrible). This finding occurs because two of
the three distributions used in this experiment were super-Gaussian, as was the
postulated error distribution.

6 Related Work

For the past 10 years, many semi-parametric methods for estimating causal
directions under the assumption of no hidden common causes have been devel-
oped [4,6,10,13,14,23,27–30,35]. In contrast to non-parametric methods [22,33],
semi-parametric methods make some assumptions on the function forms of

Table 2. Numbers of successful discoveries and precisions when the actual distributions
are the exponential. K is the Bayes factor.

N. successes N. findings Precisions

n = 50

2logK > 0 137 200 0.69

2logK > 2 16 20 0.85

2logK > 6 0 0 N/A

2logK > 10 0 0 N/A

n = 100

2logK > 0 151 200 0.76

2logK > 2 56 64 0.88

2logK > 6 0 0 N/A

2logK > 10 0 0 N/A

n = 200

2logK > 0 161 200 0.81

2logK > 2 120 136 0.88

2logK > 6 32 33 0.97

2logK > 10 3 3 1.00

n = 500

2logK > 0 165 200 0.82

2logK > 2 152 174 0.87

2logK > 6 106 111 0.95

2logK > 10 78 78 1.00
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causal relations and/or the error distributions to make the models identifiable.
Those semi-parametric methods have recently been applied to empirical research
including economics [16,20], neuroscience [18,19], epidemiology [25], and chem-
istry [3]. See [31] for a review of semi-parametric methods and [32,34] for recent
reviews of non-parametric methods. Links to most of the papers related to semi-
parametric methods are available on the web.1

In practice, those methods assuming no hidden common causes seem to work
well in those papers. However, what distinguishes observational studies from
experimental studies is the existence of hidden common causes. Therefore, in
some applications, empirical researchers hesitate to accept the estimation results
of those methods that assume no hidden common causes.

We could take a non-Gaussian approach [11] that uses an extension of inde-
pendent component analysis with more latent independent components than
observed variables (overcomplete ICA [17]) to formally consider hidden common
causes in semi-parametric methods. Unfortunately, however, current versions of

Table 3. Numbers of successful discoveries and precisions when the actual distributions
are the uniform. K is the Bayes factor.

N. successes N. findings Precisions

n = 50

2logK > 0 77 200 0.39

2logK > 2 0 1 0.00

2logK > 6 0 0 N/A

2logK > 10 0 0 N/A

n = 100

2logK > 0 65 200 0.33

2logK > 2 3 24 0.13

2logK > 6 0 0 N/A

2logK > 10 0 0 N/A

n = 200

2logK > 0 60 200 0.30

2logK > 2 10 74 0.14

2logK > 6 0 3 0.00

2logK > 10 0 0 N/A

n = 500

2logK > 0 54 200 0.27

2logK > 2 29 144 0.20

2logK > 6 6 47 0.13

2logK > 10 0 10 0.00

1 https://sites.google.com/site/sshimizu06/home/lingampapers.

https://sites.google.com/site/sshimizu06/home/lingampapers
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Table 4. Numbers of successful discoveries and precisions when the actual distributions
are randomly selected from the Laplace, exponential, and uniform distributions. K is
the Bayes factor.

N. successes N. findings Precisions

n = 50

2logK > 0 119 200 0.60

2logK > 2 12 14 0.86

2logK > 6 0 0 N/A

2logK > 10 0 0 N/A

n = 100

2logK > 0 118 200 0.59

2logK > 2 48 63 0.76

2logK > 6 4 4 1.00

2logK > 10 0 0 N/A

n = 200

2logK > 0 122 200 0.61

2logK > 2 71 109 0.65

2logK > 6 18 22 0.82

2logK > 10 1 1 1.00

n = 500

2logK > 0 136 200 0.68

2logK > 2 123 168 0.73

2logK > 6 80 102 0.78

2logK > 10 41 45 0.91

the overcomplete ICA algorithms are computationally unreliable since they often
suffer from local optima [7]. In [8], Henao and Winther proposed a Bayesian app-
roach to estimate the model. Their method seems to work for larger numbers of
variables than the overcomplete ICA-based method. However, both these meth-
ods need to explicitly model all the hidden common causes. This approach could
sometimes be computationally tough since the number of hidden common causes
can be large, while specifying the exact number of hidden common causes might
also be challenging.

Thus, in [26], we proposed an alternative approach that does not require us
to specify the number of hidden common causes or explicitly model them.

7 Conclusions

In this paper, we discussed a non-Gaussian approach for estimating causal direc-
tions in the presence of hidden common causes. The experiments on artificial
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data implied that looking at Bayes factors could be useful for selecting a bet-
ter causal direction. We distribute the Python codes under the MIT license at
https://sites.google.com/site/sshimizu06/mixedlingamcode.
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Abstract. This paper proposes a new mutual information estimator
for discrete and continuous variables, and constructs a forest based on
the Chow-Liu algorithm. The state-of-art method assumes Gaussian
and ANOVA for continuous and discrete/continuous cases, respectively.
Given data, the proposed algorithm constructs several pairs of quantizers
for X and Y such that each interval of the both axes contains the equal
number of samples, and estimate the mutual information values based
on the discrete data for the histograms. Among the mutual information
values, we choose the maximum one, which is validated in terms of the
minimum description length principle. Although strong consistency is not
proved mathematically, the proposed method does not distinguish dis-
crete and continuous values when dealing with data, and independence
is detected correctly with probability one as the sample size grows. The
obtained forest construction procedure is applied to genome differen-
tial analysis in which a discrete variable (wild and mutant phenotypes)
affects gene expression values.

Keywords: Mutual information · Chow-Liu algorithm · Consistency ·
Forest graphical model · Gene differential analysis

1 Introduction

Let X(1), · · · ,X(N) be discrete random variables (N ≥ 1). In 1968, Chow and
Liu [3] considered to approximate a given distribution by some tree expressed as

P (X(j))
∏

k∈V \{j}
P (X(k)|X(π(k))) (1)

when we choose j ∈ V := {1, · · · , N} as its root, where π(k) is the parent of
k ∈ V \{j}. For example, suppose N = 4. The distributions

P (X(1))P (X(2)|X(1))P (X(3)|X(1))P (X(4)|X(1))

P (X(1))P (X(2)|X(1))P (X(3)|X(1))P (X(4)|X(2))
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Fig. 1. Undirected graphs
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Fig. 2. The Chow-Liu algorithm: when I(1, 2) > I(1, 3) > I(2, 3) > I(1, 4) > I(3, 4) >
I(2, 4).

P (X(1))P (X(2)|X(1))P (X(3)|X(1))P (X(4)|X(3))

are expressed by Fig. 1(a)–(c) using an undirected tree. We define the edge set
E by the set of pairs {j, k} if each of {j, k} ∈ E is connected in the undirected
tree. For examples, the edge sets of Fig. 1(a)–(c) are E = {{1, 2}, {1, 3}, {1, 4}},
E = {{1, 2}, {1, 3}, {2, 4}}, and E = {{1, 2}, {1, 3}, {3, 4}}, respectively.

Let I(j, k) be the mutual information between X(j) and X(k) (j �= k). Chow
and Liu [3] constructed a tree as follows: starting with E = {} and E = {{i, j}|i �=
j}, repeatedly choose a pair {j, k} such that I(j, k) is the largest among I(j′, k′)
with {j′, k′} ∈ E , delete it from E , and add it to E only if adding it to E does
not cause to generate a loop. The procedure is repeated until E is empty. For
example, suppose N = 4 and I(1, 2) and I(1, 3) are the largest and the second
largest mutual information values, respectively. Then, {2, 3} cannot be joined
in the edge set E because loop {1, 2, 3} will be generated. If I(1, 4) is the third
largest, Fig. 2(a) is obtained through the procedure as in Fig. 2.

They proved that the obtained edge set E minimizes the Kullback-Leibler
divergence from the original distribution P (X(1), · · · ,X(N)) among the distrib-
utions in the form of (1).

The same idea is applied to finding probabilistic relations among the N
variables when the true distribution is not known and only a data set with n
observations of them is available. In particular, they considered to obtain the
maximum likelihood value of (1) given n examples

(X(1) = xi,1, · · · ,X(N) = xi,N )n
i=1,

by replacing the mutual information I(j, k) by its likelihood, where each example
consists of N variable values, and proved that the obtained edge set E maximizes
the likelihood among the distributions in the form of (1).

In 1993, Suzuki [15] considered the problem in terms of the minimum descrip-
tion length (MDL) principle, and showed that the obtained graph should be a
forest rather than a spanning tree when a subset of the variables is independent
of another subset. Then, several authors revisited the same formula (6) such
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as P. Liang and N. Srebro (2004) [8], K. Panayidou (2010) [10], Edwards et al.
(2010), [4].

In this paper, we propose a novel estimator of mutual information and apply
it to the Chow-Liu algorithm. Thus far, the same problem has been considered
by many authors, but we mainly deal with the case that discrete and continuous
data are mixed.

This paper is constructed as follows. Section 2 explains the background and
previous works on the problem, in Sect. 3, we propose a novel estimator of mutual
information, and in Sect. 4, we show several data on experiments. In particular,
in Sect. 4.2, we consider an application of the proposed method to genome dif-
ferential analysis. In Sect. 5, we summarizes the result in this paper and state
future tasks.

2 Background

2.1 Suzuki (1993)

Suppose we have two sequences xn and yn of length n that have been emitted
by random variables X and Y (i.i.d.), respectively.

The maximum likelihood estimation of the mutual information of X and Y
is obtained as follows: count the frequencies cX(x), cY (y), cXY (x, y) of X = x,
Y = y, and (X,Y ) = (x, y) in xn and yn, and plug-in them to the formula of
mutual information:

I(X,Y ) =
∑

x

∑

y

PXY (x, y) log2
PXY (x, y)

PX(x)PY (y)
.

More precisely, the estimation can be expressed by

In =
∑

x

∑

y

cXY (x, y)
n

log2

cXY (x, y)
n

cX(x)
n

· cY (y)
n

. (2)

However, we observe that the quantity is positive for any n even if X and Y are
independent (note that mutual information between X and Y is zero if and only
if X and Y are independent).

In 1993, Suzuki [15] considered another estimation based on the minimum
description length (MDL) principle [12]. Given examples, the MDL chooses a rule
that minimizes the total description length when the examples are described in
terms of a rule and its exceptions. In this case, there are two candidate rules:
whether X and Y are independent or not. When they are independent, for each
of X and Y , we first describe the independent conditional probability values,
and using them, the examples can be described. The total length will be

Ln(xn) := −
∑

x

cX(x) log2
cX(x)

n
+

α − 1
2

log2 n (3)
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plus

Ln(yn) := −
∑

y

cY (y) log2
cY (y)

n
+

β − 1
2

log2 n (4)

bits up to constants, where α and β are the cardinalities of X and Y , respectively.
When they are not independent, we write the examples in

Ln(xn, yn) := −
∑

x

∑

y

cXY (x, y) log2
cXY (x, y)

n
+

αβ − 1
2

log2 n (5)

bits up to constants. Hence, the difference (3) + (4) − (5) divided by n is

Jn = In − (α − 1)(β − 1)
2n

log2 n. (6)

It is known that Jn ≤ 0 if and only if X and Y are independent for large n [16].
Figure 3 depicted a box plot of 1000 trials for the two estimations for n = 100
and α = β = 2 for each of when X and Y are independent and when they are
not independent. Suzuki [15] considered its modification to the AIC [1] (Akaike’s
Information Criterion) by replacing the second term in (6) by (α − 1)(β − 1)/n.

When we apply (6) rather than (2) to the Chow-Liu algorithm, only {j, k}
with positive Jn(j, k) are the candidates of the elements in E because otherwise
the total

∑
{j,k}∈E Jn(j, k) would not be maximized. Thus, we can obtain a forest

(more than one root may exist) rather than a spanning tree: if two subtrees are
independent, they will not be connected for (6) while (2) seeks only a spanning
tree regardless of whether one part of the tree is independent from the other. We
should also notice that the orders of {In(j, k)} and {Jn(j, k)} may be different,

Fig. 3. The MDL computes the correct values while the maximum likelihood shows
larger values than the correct ones.

D B S L E

X

T A T E

X

L

A

S B D

Fig. 4. The spanning tree and forest obtained by the maximum likelihood (Left) and
the MDL (Right) for the Asia data set in the bnlearn R package [13].
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where In(j, k) and Jn(j, k) are the values of In and Jn when X = X(j) and
Y = X(k), respectively, so that the edge set E obtained by {Jn(j, k)} may not
be a subset of the one obtained by {In(j, k)}.

Figure 4 depicts the obtained spanning tree and forest when using (2) and
(6), respectively, for the Asia data set of the R bnlearn package [13].

More than ten years later after Suzuki [15], several authors revisited the same
formula (6) such as P. Liang and N. Srebro (2004) [8], K. Panayidou (2010) [10],
Edwards et al. (2010), [4].

2.2 Edwords et al’s (2010)

Edwords et al’s [4] considered the case such that some variables are discrete and
others Gaussian.

Suppose the variables X and Y are Gaussian, and that examples xn =
(x1, · · · , xn) and yn = (y1, · · · , yn) have been emitted from random variables
X and Y , respectively. Then, the maximum likelihood estimation is given by

In = −n

2
log2(1 − ρ̂2), (7)

where ρ̂ is the maximum likelihood estimation of the correlation coefficient. If we
connect X and Y , one additional parameter will be required, so that Edwords
et al. [4] proposed the quantity to estimate the mutual information

Jn = In − 1
2

log2 n. (8)

Next, suppose the variables X and Y are Gaussian and discrete, respectively,
and that examples xn and yn have been emitted from random variables X and
Y , respectively. Then, the maximum log-likelihood of the conditional probability
of X given Y = y is

1
2
ny log2(2πeσ̂2

y),

where ny is the number of occurrences of Y = y in yn, and

x̄y =
1
ny

∑

i

xi, σ̂2
y =

1
ny

∑

i

(xi − x̄y)2,

where the summand is over i = 1, · · · , n such that yi = y, so that the resulting
maximum likelihood estimator of mutual information is

x̄0 =
1
n

n∑

i=1

xi, σ̂2
0 =

1
n

n∑

i=1

(xi − x̄0)2, In =
∑

y

ny

n
log2

σ̂2
0

σ̂2
y

(ANOVA). If we connect X and Y , additional 2(β − 1) parameters will be
required, so that Edwords et al’s [4] proposed the quantity

Jn = In − (β − 1) log2 n,
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X Y Z X Y
Gaussian discrete discrete Gaussian discrete

Fig. 5. It is easy to obtain the likelihood for Gaussian and discrete variables X,Y
(Left). But, how can we calculate it when a Gaussian variable X is between discrete
variables Y, Z (Right)?

where β is the cardinality of the set in which Y takes values.
However, suppose that the Gaussian X is further connected to discrete Z as in

Fig. 5, How can we obtain the maximum likelihood estimation as analyzed for the
other cases? So, in order to avoid such an inconvenience of the proposed method,
Edwords et al’s [4] proposed to deal with the probability models such that no
Gaussian variable is between any two discrete variables in the connected subtree
of the forest. However, this assumption (they called such forests SD) avoids the
challenging problem but makes the model selection much more restrictive.: for
each of the connected subtrees, the discrete and Gaussian variables should be in
upper and lower parts of the connected subtree, respectively.

2.3 Suzuki (2012)

Suzuki considered that the Eqs. (3), (4) and (5) have been obtained by the fol-
lowing procedure. For length (3), since the probability θ(x) of X = x is unknown,
we consider to weight the probability θ(x) using some weight w(θ) with θ = θ(x)
such as Direchlet distribution [6]. Then, given examples xn = (x1, · · · , xn) emit-
ted from X, we have a quantity defined by

Qn(xn) :=
∫

θ

n∏

i=1

θ(xi)w(θ)dθ =
∫

θ

∏

x

θ(x)cn(x)w(θ)dθ,

where ci(x) is the number of occurrences of x in (x1, · · · , xi). It is known that (3)
was obtained by expanding − log2 Qn(xn) using Stirling’s formula and neglecting
its higher order terms.

We may assume that we have chosen w(·) such that

Qn(xn) = 2−Ln(xn) , Qn(yn) = 2−Ln(yn) , and Qn(xn, yn) = 2−Ln(xn,yn)

based on (3), (4), and (5), respectively, then we have

Jn =
1
n

log2
Qn(xn, yn)

Qn(xn)Qn(yn)
. (9)

However, in this paper, for discrete data, we use the following exact formula with
w(θ) ∝ ∏

x θ(x)−0.5 [6] because the sample sizes are small and approximations
are not appropriate in many cases.

For variable X and its examples (x1, · · · , xn) of length n, Suzuki [16] gener-
ated a sequence of histograms, and obtained a quantized sequence for each his-
togram: (x1, · · · , xn) �→ (a(s)

1 , · · · , a
(s)
n ), where a

(s)
i ∈ {1, · · · , 2s} is the bin into
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which xi falls for the s-th histogram. Because an
s = (a(s)

1 , · · · , a
(s)
n ) is a sequence

each of which takes a finite number of values, we can define its Bayesian measure
Qn

s (an
s ) for each histogram s and its quantized sequence an

s . Suzuki [16] approxi-
mated the density at x ∈ R by dividing the probability of the bin including x by
the width of the bin to obtain gn

s (xn) that replaces Q(xn), and weighted them
over weights ws > 0 s.t.

∑
s ws = 1. Suzuki [16] showed that the obtained the

Bayesian measure gn(xn) :=
∑

s wsg
n
s (xn) satisfies consistency [16].

However, this method assumes an infinite number of histograms, and we are
not certain how many histograms are required to obtain a level of correctness.
Furthermore, compared with Silva, the variance of the sample size in each cluster
is large. Sometimes, many clusters may have no sample, and it is hard to adjust
the parameters.

3 Results

This paper solves the aforementioned problems by extending the MDL approach
[15] to the continuous cases, and by improving the previous works by Silva et al.
(2010) [14] and Suzuki (2012) [16].

3.1 Proposed Estimator of Mutual Information

The proposed estimation consists of the three steps:

1. prepare nested histograms based on Gessaman’s construction,
2. compute the Bayesian estimator of mutual information for each histogram,

and
3. choose the maximum value among the estimations w.r.t. the histograms.

Suppose we are given examples xn = (x1, · · · , xn) and yn = (y1, · · · , yn),
and that they have been sorted as

x̃1 ≤ x̃2 ≤ · · · ≤ x̃n and ỹ1 ≤ ỹ2 ≤ · · · ≤ ỹn. (10)

First of all, we assume that no consecutive values are equal in each of the two
sequences (10), which is true with probability one as n → ∞ when the density
function exists. Let s := 
0.5 ∗ log2 n�, and for each u = 1, · · · , s, we prepare
histograms with 2u bins for X, Y , and (X,Y ). Let t := n/2u. The sequences
(10) are divided into clusters such as

(x̃1, · · · , x̃�t�), · · · (x̃�(j−1)t�+1, · · · , x̃�jt�), · · · , (x̃�(2u−1)t�+1, · · · , x̃n)

and

(ỹ1, · · · , ỹ�t�), · · · (ỹ�(k−1)t�+1, · · · , ỹ�kt�), · · · , (x̃�(2u−1)t�+1, · · · , ỹn).

Thus, we have quantized sequences xn �→ an
u = (a(u)

1 , · · · , a
(u)
n ) and yn �→

bn
u = (b(u)1 , · · · , b

(u)
n ) with u = 1, · · · , s using the clusters. For example, suppose

we generate n = 1000 standard Gaussian random sequences xn and yn with
correlation coefficient 0.8. The frequency distribution tables of an, bn for u = 3
are both
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1 2 3 4 5 6 7 8
125 125 125 125 125 125 125 125

and that of (an, bn) for u = 3 looks like

1 2 3 4 5 6 7 8

1 75 32 12 5 1 0 0 0

2 25 41 25 18 9 7 0 0

3 15 23 32 27 14 11 1 2

4 5 17 24 22 27 19 11 0

5 5 9 19 24 23 23 17 5

6 0 3 7 18 26 26 28 17

7 0 0 6 9 19 21 45 25

8 0 0 0 2 6 18 23 76

Thus, the distributions of an and bn are uniform if n is a power of two.
Compared with Suzuki (2012) [16], because enough samples are given to each
cluster at least for one-dimensional X,Y if n is large, and the estimations are
more robust.

Because the obtained sequences an
u and bn

u are discrete, we can compute their
Bayesian measures Qn

u(an
u), Qu(bn

u), and Qu(an
u, bn

u) similar to Suzuki (2012) [16].

J (u)
n :=

1
n

log2
Qn

u(an
u, bn

u)
Qn

u(an
u)Qn

u(bn
u)

. (11)

Let (Xu, Yu) and (Xv, Yv) be the random variables for histograms u and v
such that u ≤ v. Suppose that given examples an

v and bn
v emitted from (Xv, Yv),

we wish to know whether (Xv, Yv) are conditionally independent given (Xu, Yu)
based on the MDL principle. Then, we can answer the question affirmatively if
we compare the values of description length and

− log
Qn

v (an
v )

Qn
u(an

u)
− log

Qn
v (bn

v )
Qn

u(bn
u)

≤ − log
Qn

v (an
v , bn

v )
Qn

u(an
u, bn

u)
,

which is equivalent to J
(v)
n ≤ J

(u)
n . This means that according to the MDL

principle, we can use the decision that (Xv, Yv) are conditionally independent
given (Xu, Yu) if and only if J

(v)
n ≤ J

(u)
n . Hence, if u gives the maximum value

of J
(u)
n , then we choose the histogram u. Thus, we propose the estimation given

by Jn := max
1≤u≤s

J (u)
n .

Another interpretation is that if the sample size in each bin is too small, then
the estimation is not robust. On the other hand, if the number of bins is too
small, the approximation of the histogram is not appropriate. The two factors
are balanced by the MDL principle.

For example, for n = 1000, the size will be s = 
0.5∗ log2(n)� = 4. If we have
the following four values:

u J(u)
1 0.2664842
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2 0.5077115
3 0.5731657
4 0.4601272

then the final estimation will be 0.5731657 (u = 3). Notice that there are other
methods to find the maximum mutual information. For example, s = 0.5 ∗

loga(n)� and au clusters for each of (X,Y ) works if a > 1 (the smaller a, the
larger s). For a = 1.5, we experimentally find (Fig. 6) that the value of J(u)
depicts a concave curve, i.e. the maximum value is obtained at the point u = 5
that the sample size of each bin (robustness of the estimation) and the number
of bins (approximation of the histogram) are balanced.

Fig. 6. The values of J
(u)
n with 1 ≤ u ≤ s: the maximum value is obtained at the point

that the sample size of each bin and the number of bins are balanced.

Next, we consider the case that two values at consecutive locations are the
same in one of the two sequences (10). Formally, we divide each cluster half at
each stage u = 1, 2, · · · , s, and if two values at consecutive locatios are equal
and they need to be divided, then we choose another border: suppose k values
are equal from the (j + 1)-th location:

x̃j < x̃j+1 = · · · = x̃j+k < x̃j+k+1.

and that we need to divide (j+i)-th and (j+i+1)-th positions (1 ≤ i ≤ k−1), we
instead divide either between j-th and (j +1)-th positions or between (j +k)-th
and (j+k+1)-th positions, depending on whether i < j+k/2 or i ≥ j+k/2. For
example, if n = 8 and x8 = (2, 4, 1, 2, 3, 4, 3, 3), the cluster generating process
for (x̃1, · · · , x̃8) = (1, 2, 2, 3, 3, 3, 4, 4) is as follows:

{(1, 2, 2, 3, 3, 3, 4, 4)} → {(1, 2, 2), (3, 3, 3, 4, 4)} → {(1), (2, 2), (3, 3, 3), (4, 4)}
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In this way, even when the sequence xn is discrete, we can obtain the quan-
tization xn �→ an

u = (a(u)
1 , · · · , a

(u)
n ). In particular, we have an

u = xn if u is not
too small. The proposed scheme does not distinguish whether each of given two
sequences is either discrete or continuous.

3.2 Theoretical Properties of the Proposed Estimator

In this subsection, we prove two fundamental claims:

1. For large n, the mutual information estimation of each histogram converges
to the correct approximated value.

2. For large n, the estimation is either zero or negative if and only if X and Y
are independent.

First of all, we have the following lemma from the law of large numbers:

Lemma 1. The 2u − 1 breaking points of histograms u = 1, 2, · · · , converge
to the correct values (100 × j/2u percentile points, j = 1, · · · , 2u − 1) with
probability one as the sample size n (hence its maximum depth s) grows. where
we have assumed the value of a to be two for simplicity.

Let I(Xu, Yu) be the true mutual information w.r.t. the correct breaking
points of the histogram u = 1, · · · , s.

Lemma 2. The mutual information is monotonic w.r.t. the histograms: if u ≤ v,

I(Xu, Yu) ≤ I(Xv, Yv).

Proof. The difference from the right to the left is non-negative:
∑

Xv

∑

Yv

P (Xu, Yu)P (Xv, Yv|Xu, Yu) log2
P (Xv, Yv|Xu, Yu)

P (Xv|Xu)P (Yv|Yu)
≥ 0.

This completes the proof.

Theorem 1. For large n, the mutual information estimation of each histogram
converges to the correct approximated value.

Proof. Since each boundary converges to the true value in each histogram
(Lemma 1), and the number of samples in each bin increases as n grows. There-
fore, the estimation in histogram u = 1, 2, · · · converges to the correct mutual
information value I(Xu, Yu).

Theorem 2. Suppose that J
(u)
n is convex w.r.t. u = 1, 2, · · · . With probability

one as n → ∞, Jn ≤ 0 if and only if X and Y are independent.

Proof. Suppose X and Y are independent. this means I(X,Y ) = 0 and
I(Xu, Yu) = 0 for all u = 1, · · · (Lemma 2). Then, for all u = 1, 2, · · · , J

(u)
n = 0

with probability one as n → ∞ (Theorem 1). On the other hand, suppose that
X and Y are not independent. Since I(X,Y ) > 0, we have I(Xu, Yu) > 0 for at
least one u. Thus, J

(u)
n for some u is positive mutual information I(X,Y ) with

probability one as n → ∞ (Theorem 1), and J
(u)
n > 0. This completes the proof.
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4 Experiments

4.1 Preliminary Experiments

Before constructing forests given examples, we estimated the value of mutual
information.

If the random variables are known to be Gaussian a prior, it is considered to
be easer to estimate the correlation coefficient and to compute the estimation
based on (7) and (8) than the proposed method that works for every random
variables, We compared the proposed algorithm with the Gaussian method.

1. X and Y obey the negative binomial distribution with parameters (P,wx)
and (P,wy) such that X and Y are the numbers of occurrences before an
event with probability P occurs wx and wy (wx ≤ wy) times, respectively. In
particular, we set P = 0.5, wx = 3, wy = 4, and n = 200, 500, 2, 000.

2. X ∼ N (0, σ2) with σ2 > 0, W ∈ {−1, 1} with probability 0.5, Y = X + W ,
and n = 100.

3. X ∈ {−1, 1} with probability 0.5, W ∼ N (0, σ2) with σ2 > 0, Y = X + W ,
and n = 100.

For the first experiment, the proposed method outperformed the Gaussian
method, in particular for large n (Fig. 7). The negative binomial (NB) distribu-
tion extends the Poisson distribution in that the number of occurrences of the
encountered event is not restricted to one. The NB is used as count data for
modeling the RNA-sequence in the genome analysis [11,17]: how many times
each gene is mapped from the sequence. The data is actually discrete but the
number of values is not bounded, so no existing data processing can be applied.
The proposed method does not distinguish discrete and continuous data and
executes the same process.

For the second experiment, the proposed method outperformed the Gaussian
method as well (Fig. 8(a)). This process could not realized in Edwards et al’s
result.

On the other hand, for the ANOVA case (Experiment 3), the values of mutual
information obtained by the proposed mathod is closer to the true value than

Fig. 7. Experiment 1
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Fig. 8. Experiments 2 and 3

those obtained by the Gaussian (Fig. 8(b)). However, the difference is not so
large compared with Experiment 2, which is due to the fact that the noise is
Gaussian, and the Gaussian method is designed to deal with Gaussian noise.

4.2 Main Experiment

The first dataset comes from a gene expression study [9], whose purpose was to
compare the gene expression profiles in tumours taken from two groups of breast
cancer patient, those with and those without a mutation in the p53 tumour sup-
pression gene. A dataset containing a subset of the study data is supplied along
with the R library gRbase. The dataset has n = 250 observations and N = 1001
variables, comprising 1000 continuous variables and the class variable. There are
58 cases (with a p53 mutation) and 192 controls (without the mutation). They
have been standardized to zero mean and unit variance.

Then, we installed the R limma package to execute the results standard
difference analysis. Below are the top 10 genes that distinguish 250 samples
with and those without a mutation in the p53 tumour suppression gene.

logFC AveExpr t P.Value adj.P.Val B

A.202870_s_at 1.409476 0.00147564 10.226102 1.532066e-24 1.532066e-21 44.85602

A.209408_at 1.381635 0.00075120 10.024111 1.206754e-23 6.033771e-21 42.83468

A.212949_at 1.362423 -0.00143776 9.884723 4.897057e-23 1.362643e-20 41.46333

A.204822_at 1.360944 0.00180988 9.873987 5.450573e-23 1.362643e-20 41.35851

B.224428_s_at 1.348424 0.00102028 9.783154 1.342591e-22 2.685181e-20 40.47616

B.226936_at 1.343134 0.00235960 9.744770 1.960282e-22 3.267136e-20 40.10575

B.228069_at 1.337237 0.00107060 9.701992 2.983765e-22 4.262522e-20 39.69465

B.222958_s_at 1.319032 0.00087500 9.569904 1.079336e-21 1.349170e-19 38.43669

B.236641_at 1.305614 0.00194204 9.472556 2.753517e-21 3.059463e-19 37.52063

A.209642_at 1.301011 0.00238816 9.439162 3.788577e-21 3.788577e-19 37.20854

Figure 9 shows the distribution of the estimated mutual information values
between the class variable and each of the gene expression data for the top 50
genes and for all of the 1000 genes, respectively. We see a significant difference
of the estimated mutual information values between the top 50 and the others.

We executed the Chow-Liu algorithm for the two cases: for the top 50 genes
(Fig. 10), and for all the 1000 genes (Fig. 11), and obtained two observations:

1. the top gene A.202870 s at (108) was not connected to the class variable in
the forest of the top 50 genes; and

2. only eight top 50 genes were selected in the neighbor of four from the class
node in the forest of all the genes.
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Fig. 9. The box plots of the estimated mutual information values between the class
variable and each of the gene expression data for the least 50 p-value genes and for all
of the 1000 genes.

Fig. 10. The forest consisting of expression data of the top 50 genes and the class,
marked by red. The class node is connected only to one gene A.202580 x at (94) (Color
figure online).

For the first observation, note that the mutual information of continuous
variables (gene expression) is in many cases higher than that between discrete
(class) and continuous (gene expression) variables as for the current data set. In
particular, the mutual information is at most one bit for the latter case. As a
result, the class variable has only one connection with the continuous variables.
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Fig. 11. The forest consisting of expression data of all the 1000 genes and the class
(the subgraph consisting of genes within diameter four from the class node is shown,
and (the class and top 50 genes are marked by “red” and “yellow”, respectively)). The
class node is connected only to A.215303 at (486) (Color figure online).

On the other hand, intuitively, the more mutual information, the less p-value
as we have seen in Fig. 9. However, the two criteria are essentially different: in
order to obtain the p-value, we assume a linear model such that y = β0 + xβ1

with constants β0 and β1, where x and y are one of the gene expression variables
and the class variable, respectively, and do hypothesis testing such that the null
hypothesis is H0 : β1 = 0. The p-value is obtained assuming such a setting. On
the other hand, the exact value of mutual information between two variables
always exists, and the proposed and Edwards et al’s [4] methods estimate the
correct value.

In reality, the gene A.202580 x at (# 94 in Fig. 10) has the largest mutual
information 0.259614 and p-value 2.243162e-19 while the top gene A.202870 s at
(# 108 in Fig. 10) has the least p-value 1.532066e-24 and mutual information
0.229024. On the other hand, in Fig. 11, the gene A.202580 x at (# 9 in Fig. 11)
with a relatively large p-value 2.748447e-06 has the largest mutual information
0.259614 that is larger than that of the top gene A.202870 s at (# 108 in Fig. 11).

In this sense, if one binary and other continuous variables exist, it seems that
regression from the continuous to the binary may be more appropriate than the
forest model although we followed Edwards et al’s [4] and examined the validity
of the approach.
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5 Discussion

We proposed the Bayesian mutual information estimator to deal with both dis-
crete and continous data. The estimator seeks the optimal balance between the
number of samples in each bin and the approximation of the histogram in the
sense of the MDL principle.

Then, we compared the proposed method with the Gaussian method that
estimates the correlation coefficient between the two variables. In reality, if the
difference between X and Y obeys the Gaussian, the existing method still shows
better performance.

Finally, we tried to deal with genome differential analysis using the Chow-
Liu algorithm based on the proposed mutual information estimator. The same
problem was approached by Edwards et al. [4]. However, the mutual informa-
tion estimators are different. As we tested in Sect. 4.2, the genome data are not
Gaussian, and we condidered a different approach was required.

Compared with Edwards et al. [4] The proposed method has another merit
that continuous variables may be between discrete variables when more than one
discrete variable exis. We need to make experiments to verify the merit in the
genome analysis.

The ultimate goal of this work is to propose a Markov network structure
estimation based on maximizing the posterior probability (for example, Lee and
Hastie [7], Cheng et al. [2]).

Acknowlegements. This work was partially supported by Advanced Research Net-
works A, Japan Society for the Promotion of Science (Takashi Suzuki, Osaka
University).
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Abstract. Game-based assessments produce multiple, dependent obser-
vations from student game play. Bayesian networks can model the depen-
dence, but, typically, only a small amount of pilot data are available at
the time the network is constructed. This paper examines the process of
creating Bayesian network scoring models, focusing on several practical
techniques that have been used in the construction of models for Physics
Playground. In particular, the following techniques are helpful: (1) The
use of evidence-centered assessment design to define latent competency
variables and observable indicator variables. (2) The use of correlation
matrixes to uncover and validate the conditional independence structure
of the Bayes net. (3) The use of discrete IRT models to create large
portion of the Bayesian networks from a single spreadsheet. (4) Adjust-
ing the Bayes net parameters using both hand tuning and a generalized
EM algorithm, creating networks which are a mixture of expert opinion
and data. (5) Using expected classification accuracy matrixes to judge
assessment validity and reliability. (6) Using evidence balance sheets to
identify unusual subjects and observable indicators.

Keywords: Bayesian networks · Evidence-centered assessment design ·
Prior information · Weight of evidence · Classification consistency

1 Introduction

One measurement model frequently used in educational assessments is item
response theory (IRT) [12]. In its usual form, IRT is a naive Bayes model with
the observable outcome variables (the responses to the test items) taken as con-
ditionally independent given a single latent proficiency variable. In high-stakes
assessments, test construction process ensures that this conditional independence
assumption is approximately true.

As computers, tablets and smart phones become increasingly common in the
classroom, assessments are being built around simulations and games [11,26].
These technology platforms allow for a richer environment to gather evidence
about complex 21st century skills [16,23,25]. In these assessments, tasks mea-
sure multiple latent proficiency variables using multiple dependent observations.
Therefore, a new class of measurement models is needed to draw inferences
c© Springer International Publishing Switzerland 2015
J. Suzuki and M. Ueno (Eds.): AMBN 2015, LNAI 9505, pp. 250–263, 2015.
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about the latent proficiencies. Bayesian networks provide a coherent framework
for constructing these measurement models [10].

Building Bayesian networks to score complex assessments is challenging. Typ-
ically, the size of the pilot samples is small (several hundred students at best)
and does not approach the 1500 sample size required to estimate a binomial
proportion with a margin of error of 3 percentage points. Thus, a successful
Bayesian network will be a mixture of expert opinion and limited data.

This paper explores some techniques that facilitate that process, emphasizing
work that I did with Val Shute, Yoon Jeon Kim, Mathew Ventura and others in
designing a scoring model for the game Physics Playground [8,15,16,25]. Physics
Playground is a two-dimensional physics game, inspired by the commercial game
Crayon Physics Deluxe. In each level of the game, players try to move a ball to
a target (a balloon) using simple machines (i.e., ramps, levers, pendulums and
springboards) that they draw on the screen. All objects in the two dimensional
world obey the laws of physics. The goal of the project was to use the game to
assess three different aspects of proficiency: qualitative physics [22], persistence,
and creativity.

2 Evidence-Centered Assessment Design

Almond and Mislevy [9] noticed that a Bayesian network model for an assess-
ment can be divided into two parts. One part was a complete Bayesian network
which described knowledge about the status (on several proficiency variables) of
the student, which they called the student model. The second part was a collec-
tion of Bayesian network fragments which related observable outcome variables
associated with a particular assessment task (or item) to the proficiency vari-
ables, which they called evidence models. The evidence models were fragments
because they contained pointers to the proficiency variables rather than the vari-
ables themselves. Inference in this collection of networks consisted of a series of
steps:

1. The evidence model for the task the student just completed was retrieved
from a database and adjoined to the student model.

2. The observable outcome variables were instantiated to certain values based
on the student’s performance on the task and the evidence propagated to the
student model variables.

3. The variables unique to the evidence model were removed after their evidence
had been absorbed.

Evidence-centered assessment design (ECD) [10,19] expands on this idea
giving these models more context. In this system, the conceptual assessment
framework for an assessment consists of a collection of design object (called
models). The main ECD design objects are:

Student Proficiency Model. A statistical model (e.g., a Bayesian network)
describing the proficiency variables, their relationships, and how to calculate
scores given the proficiency variables.
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Task Models. A description of a class of tasks that could be presented to an
examinee to assess knowledge about some aspect of proficiency. This includes
a description of the work products an examinee produces by interacting with
the task.

Evidence Models. A description of how to update the proficiency model given
the work product from a particular task model. This consists of two pieces:
rules of evidence, which describe how to set the values for observable vari-
ables given the work product, and a statistical model (e.g., a Bayesian net-
work fragment) which describes how the proficiency model should be updated
given the observable values.

Assembly Model. A description of how many tasks or how much evidence is
required to make well grounded (valid) inferences about an examinee. Part
of this model is ensuring that there is a sufficient mixture of tasks that the
latent construct is well defined.

Because the proficiency variables are latent, they must be carefully defined by
the design team. One tool that has proved useful for this task is a construct map
[14,30]. In a construct map the variable representing the construct of interest is
drawn on a vertical axis and the designer describes characteristics of an examinee
or a performance at high, moderate and low levels of the construct.

Fig. 1. Construct maps for Physics and Persistence

Figure 1 present construct maps for Physics Playground (for a more complete
description see [25]). Note that levels of the construct can be defined by charac-
teristics of the task (e.g., whether or not the task has a certain feature) or the
performance (e.g., whether or not a certain method was used to solve the prob-
lem). It is important to consider both possibilities as often the characteristics of
the tasks need to be manipulated so that the resulting instrument will have the
desired psychometric properties [2].
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Note that moving from any level on the construct map to a higher level
involves an additional claim that can be made about the student. The central
feature of evidence-center design is that at this stage is critical to think about
what would constitute evidence that those claims do or do not hold. In partic-
ular, the design team needs to define observable outcome variables which will
provide evidence for or against the claim when observed in certain contexts (i.e.,
within a given task). Providing operation definitions for the variables is a criti-
cally important step in Bayesian network construction when the network will be
embedded in another application.

Consider the claim “Understands angular momentum” which is associated
with high levels of the Physics construct. One possible piece of evidence is that
the player used a pendulum in the solution to a problem. This induces a sub-
problem: how to identify an object drawn on the screen as a pendulum. The
design team then needed to work out logic to identify features of objects so that
Physics Playground could log when student used a pendulum, lever, springboard
or ramp.

3 Inverse Correlation Matrix

The construct map is useful for defining a single proficiency variable, but not the
relationship between variables. In education, a typical source of knowledge about
the relationship among proficiency variables is factor analytic studies [4]. While
factor analyses produce correlation matrixes for the latent variables, Bayesian
networks focus on modeling the inverse correlation matrix [29]. In particular,
zeros in the inverse correlation matrix correspond to conditional independen-
cies. The R package CPTtools [5] contains code to assist in building network
structures from correlation matrixes.

If the design team has access to data which measures the desired proficiency
variables (either a pilot sample, or a prior study using similar variables), then
a factor analysis can be used to generate a covariance matrix. Similarly, if only
the loadings from the factor analysis are available, then factor scores can be
computed for each latent variable. The design team can then directly assess
conditional independence or calculate the correlation matrix and proceed as
before.

The design team needs to be cautious about the inclusion of latent vari-
ables for which it is impossible to compute a factor score because there are
no observable variables connected to them. These situations can lead to multi-
modal likelihood surfaces which can makee identification of the latent variable
from data difficult [3].

Figure 2 shows the initial Bayesian network for the Physics portion of the
Physics Playground, with four observable outcome variables at the bottom. In
this configuration, information is available the four lowest level proficiency vari-
ables, corresponding to knowledge of the four simple machines (ramps, levers,
pendulums and springboards). Note however, that there are no directly observ-
able nodes connected to the three higher level nodes representing knowledge of
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Fig. 2. Physics proficiency model and generic observables

Newton’s three laws, potential/kinetic energy and angular momentum. In the
case of the highest level node, an external physics test (used to gather validity
evidence) provides information about the state of knowledge of students in the
sample. This can be used in model checking and parameter estimation.

The two mezzanine level nodes (energy and angular momentum) present a
problem. There is no direct evidence available about them within the system,
nor is there an external measure available to establish their value for model
validation or parameter estimation. As reporting the value of these nodes was
not a firm requirement, the nodes were dropped. Figure 3 shows the result. Note
that without the external post-test data, there still might be difficulty identifying
the highest level node from data alone.

Fig. 3. Simplified physics proficiency model and generic observables
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4 Discrete Item Response Theory

Assessment designs task models describe a family of related tasks and not just a
single task. In other words, a task model describes a class of tasks, and individual
tasks are instances of that task model. Correspondingly, the evidence model also
describes a class of task-specific link models [10]. The link models usually inherit
the graphical structure from the evidence model, but have task-specific values
for the conditional probability tables (CPTs).

In Physics Playground all the tasks corresponded to game levels. The work
product in each case was identical, a transcript of the objects that the player
had creating in the process of coming to a solution as well as information about
the final status (e.g., whether the level was solved, how much time was spent,
which simple machines were used). Thus, each task supported the same list of
observables and the same general evidence model could be used for each task.
However, the tasks varied in both which agents could be used in a solution as
well as other characteristics that made the harder or easier [2].

As the graphical structure for each level was identical, and there were over
70 levels, the easiest way to manage the work was not to use a graphical repre-
sentation, but rather a Q-matrix [4,28]. Rows is a Q-matrix represent observable
variables (or sometimes tasks) and columns represent proficiency variables. An
element qjk is one if Proficiency k is thought to influence performance on Observ-
able j, in other works, if there is an edge between the two variables in a Bayesian
network. Looking at the pattern of ones and zeros in the Q-matrix yields infor-
mation about how much evidence is available to determine the value of each of
the latent proficiency variables.

The Q-matrix together with the proficiency model gives the graphical struc-
ture of the Bayesian network. To complete the evidence models, a CPT needs
to be constructed for each observable variable. As the pilot tests typically have
small sample sizes, a mixture of data and expert opinion is needed. Further-
more, in most cases the CPT should be monotonic: increasing the proficiency
level should increase the probability of better responses.

IRT [12] offers a class of models that are monotonic in the latent variable.
Mapping each level of the proficiency variables onto a point on a continuous scale
allows IRT models to be pressed into service as parametric models for CPTs [7].
As the scale of the latent variable in IRT is usually taken to be a unit normal,
assigning values to the levels of the proficiency variables based on quantiles of
the unit normal [10] puts the parameters of the model on the same scale used
in IRT.

The software packages CPTtools [5] and Peanut [1,6] lay out a general frame-
work for parameterized CPTs where both child and parent variables describe
ordered categories. Let Y be the child variable, and let its states be y0, . . . , yS .
Assume that there are K parent variables, X1, . . . , XK , and let i′ be an index
over the possible configurations of the parent variables (i.e., the rows of the
CPT).
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Mapping. For each configuration, i′, let θ̃k(i′) be the effective theta, that is a
real number, corresponding to the state that Variable Xi takes on in Con-
figuration i′. This defines a mapping between the configurations and real
vectors of effective thetas, θ(i′) = (θ̃1(i′), . . . , θ̃K(i′)).

Combination Rule. A combination function is applied to each row of the CPT
to produce a table of effective thetas, zi′s = Zs(θ̃(i′)). Note that there is one
combination function for each column (although Z0(·) is usually a constant).

Link. A link function, gs(zi′0, . . . , zi′S), is evaluated at each row to produce the
conditional probabilities for Row i′ of the CPT for Variable Y .

The combination functions, Zs(·), are usually chosen to reflect a design pat-
tern representing cognitive experts thoughts on how the referenced proficiencies
impact performance [1,7,10]. The two most commonly used design patterns are
the compensatory and conjunctive patterns. In the compensatory pattern, more
of one skill compensates for lack of the other. The compensatory rule resembles
a linear regression:

Zs(θ̃(i′)) =
1√
K

∑

k

αskθ̃k(i′) − βs.

In the IRT language, the slope parameters, αsk are known as discriminations and
the intercept is known as a difficulty (note the negative sign). In the conjunctive
design pattern, all skills are thought to be necessary for the solution, so the
examinee’s performance quality is driven by the weakest skill. The conjunctive
combination rule is thus a minimum, and it makes more sense to have a separate
difficulty (effective demand) for each skill and a common discrimination (slope):

Zs(θ̃(i′)) = αs min
k

(θ̃k(i′) − βsk).

If Y only has two states, then a natural link function is the inverse logistic
function

Pr(Y = y1|pa(Y )) = logit−1
(
1.7Z1(θ̃(i ′))

)
=

exp
(
1.7Z1(θ̃(i ′))

)

1 + exp
(
1.7Z1(θ̃(i ′))

) , (1)

where the factor of 1.7 is used to make the logistic curve approximate the normal
ogive.

There are several possible generalizations of the basic IRT model to poly-
tomous responses. The generalized partial credit link function [20] is the most
flexible [1]. Assume that the task assigned to the examinee is one that requires
several steps, and that Y represents how many of the necessary steps the exami-
nee completed. If Y has S steps, then the possible scores are 0, . . . , S. For s > 0,
let Ps|s−1(θ̃(i′)) = Pr(Y ≥ ys|Y ≥ ys−1, θ̃(i′)) = logit−1(1.7Zs(θ̃(i ′))); that is,
let Ps|s−1(θ̃(i′)) be the probability that the examinee completes Step s, given
that the examinee has completed steps 0, . . . , s − 1. Note that Pr(Y ≥ y0) = 1,
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and so let P0|−1 = 1, and Z0(θ̃(i′)) = 0. The probability that an examinee whose
configuration of parent variables is i′ will achieve Score s on the item is then:

Pr(Y = s|θ̃(i′)) =
∏s

r=0 Pr|r−1(θ̃(i′))
C

,

where C is a normalization constant, which collapses to:

Pr(Xj = s|θ̃(i′)) =
exp

(
1.7

∑s
r=0 Zjr(θ̃(i′)[qjr])

)

∑Sj

R=0 exp
(
1.7

∑R
r=0 Zjr(θ̃(i′)[qjr])

) . (2)

Because the generalized partial credit link places no restrictions on the com-
bination functions Zs(·), it is extremely flexible. In particular, it allows different
functional forms and different combinations of parent variables to be selected
for each state transition.

The other advantage of this discrete IRT modeling approach is that it can
be described a relatively small number of parameters: a combination rule, a link
function, plus discrimination and difficulty parameters as appropriate for the
number of parent variables and the number of states of the child variables [1,4].
These can be placed in spreadsheet, which is basically the Q-matrix described
earlier with discrimination parameters replacing the ones, and extra columns
added to describe which combination rules and which link function should be
used as well as the difficulties.

This was how the model construction was done for Physics Playground.
A spreadsheet was used to capture the relevant proficiencies, difficulties and
discriminations for each game level. Code in the R language [24] using the
CPTtools package was used to generate conditional probabilities which were
put into a network for testing. The networks using the “expert” numbers were
first used for scores on the pilot testing. Later, the expert numbers were used to
generate priors for learning the CPTs from data.

5 Hybrid Learning Algorithms

A commonly used parameterization for Bayesian networks is the hyper-Dirichlet
law [27]. In this law, each row of each CPT is given an independent Dirichlet
distribution. Each variable, Y , has as its parameter a matrix AY , whose rows
correspond to the possible configurations of pa(Y) and whose columns corre-
spond to the possible states of Y . Again, let i′ index the configurations of pa(Y)
and s index the states of Y . Then ai′s is the parameter for Configuration i′ and
State s.

Assume that both Y and pa(Y) are fully observed in the pilot data. Let XY

be a table of counts where xi′s indicates the number of times that Y = ys when
pa(Y ) = i ′. In this circumstance, the posterior distribution for the CPT will also
be a hyper-Dirichlet distribution with parameters ãi′s = ai′s + xi′s. Multiplying
the “expert” CPTs produced in the previous section by a set of weights, wi′ , one
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for each row of the CPT, produces prior distributions for the CPTs. In Physics
Playground weights of around 10 seemed to work well.

In educational testing, the parent variables are often correlated in the pop-
ulation of interest. For example, if there are two parent variables representing
two skills which are moderately correlated in the population, then individuals
who are high on Skill 1 and low on Skill 2 will be rare. That means that there
will be less data available for the corresponding row of the CPT.

The solution is to turn once again to the parametric models of the previ-
ous section. These should smooth the distribution, using information from rows
with more observations to inform the distribution of rows with fewer observa-
tions. Note that the matrix of counts, XY , is a sufficient statistic for the CPT.
Therefore, the parametric form can be fit to a table of counts using a simple gra-
dient decent algorithm. This is implemented in CPTtools [5]. A quasi-Bayesian
estimate can be formed by using the posterior pseudo-counts, ÃY in place of the
actual counts.

The preceeding ignores the fact that the proficiency variables are latent. If
all of the CPTs are parameterized using the hyper-Dirichlet law, then there is a
fairly straightforward EM algorithm which will estimate the parameters [27]. It
alternates between calculating the expected values for the latent variables and
pulling them into tables of pseudo-counts which are used to perform the conju-
gate updating for the Dirichlet distributions. This algorithm is implemented in
many commercial Bayesian network tools.

Note that the hyper-Dirichlet EM algorithm produces a table of pseudo
counts, A∗

Y for each variable, Y [1]. This table of pseudo-counts can be input into
the gradient decent algorithm to get new parameters for the parametric model.
Alternating these two steps creates a higher level EM algorithm. Note that in
this circumstance, the inner hyper-Dirichlet EM algorithm only needs to be run
for a few steps. The Peanut package implements this algorithm [6].

6 Evidence Balance Sheets

Game-based assessments are complex systems, and consequently when they are
first deployed they are likely to produce unexpected behaviors. These unexpected
behaviors could be a result of problems with the scoring models, or the designs
of the game tasks. One challenge in the development of such systems is isolating
the cause of anomalous behavior, often called debugging the system.

One tool that is useful for debugging is the evidence balance sheet [8,18].
The evidence balance sheet is a graphical display that tracks the evidence pro-
vided by each source for some hypothesis of interest. The hypothesis can be any
binary proposition of interest; for example, “The student’s proficiency is above
a threshold.” The weight of evidence is described as the change in the log odds
for the hypothesis after learning the evidence. If H is the hypothesis of interest
and Et is the observed evidence from Task t, then the weight of evidence is:

WOE(H : Et) = log
P(H |Et)
P(¬H |Et)

− log
P(H )
P(¬H )

. (3)
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Let E1, . . . , ET be the evidence from a sequence of tasks. The conditional weight
of evidence from the last task in the sequence is defined as:

WOE(H : ET |E1, . . . ,ET−1) = log
P(H |E1, . . . ,ET)

P(¬H |E1, . . . ,ET)
− log

P(H |E1, . . . ,ET−1)

P(¬H |E1, . . . ,ET−1)
.

These add together in the obvious way, that is:

W (H : E1 , . . . ,ET) = WOE(H : ET |E1, . . . ,Et−1) + WOE(H : ET−1|E1 , . . . ,ET−2)

+ · · · + WOE(H : E2|E1) + WOE(H : E1)

To form the evidence balance sheet plot the conditional weight of evidence for
each task in sequence. The evidence should be stronger in the beginning and then
tail off. Sudden jumps in evidence mean that something unexpected happened
and they are worth pursuing.

After the Physics Playground pilot test, the design team constructed weight
of evidence balance sheets for each student and used them to screen for game
levels with unexpected behaviors [8]. Figure 4 shows the balance sheet for one
student, the two problematic game levels are “jar of coins” and “Jurassic park”.
Examining the replay videos revealed that the player, rather than using knowl-
edge of physics to solve the problem, simply created objects to move the ball
around the screen into position. As a consequence, the design team added object
limits to discourage this kind of solution.

7 Reliability and Validity

Reliability and validity are two of the big ideas from the field of psychological
measurement [10,13]. To the extent that a Bayesian network is built to measure
a latent construct, the designers need to think about the reliability and validity
of the system they have built.

Reliability comes from classical test theory, and can be explained through
the simple classical test theory model:

X = T + E (4)

Here X is the observed score, T is the true score and E is measurement error.
Reliability is the fraction of the variance of the observed score that is explained by
variation in the true score. In other words, high reliability means the instrument
has low measurement error.

Something similar to reliability can be calculated through a simple simulation
experiment [10]. First, use the Bayesian network to generate random data for
both proficiency and observable variables. Second, mask the proficiency variables
and estimate the proficiency variables from the observables. The true proficiency
variables together with the Bayesian network output produce a confusion matrix
for each proficiency variable. (Alternatively, if the Bayes net output consists of
marginal distributions over the proficiency variables, this produces an expected
confusion matrix).
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***BASELINE***
downhill
lead the ball
on the upswing
scale
sunny day
through the cracks
yippie!.level
diving board.level
dog bone
spider web
spinning arms
golfing
jelly beans
wavy
wedge
move the rocks
pirate ship
support
boulder
roller coaster
shark
tricky
annoying lever
around the tree
catepillar
cramped
crazy seesaw
double bounce
flower power
gravity
heavy blocks
heavy bounce
jar of coins
stiff curtains
work it up
avalanche
diving board world.level
hammer
jurassic park
platforms
smiley
St. Augustine
stairs
starry night
swamp people
swingset
tetherball
timing is everything
attic
ballistic pendulum
can opener
catch it
cog wheels
cosmic cave
cyclops
double hoppy
fez
freefall
hexagon
lightening
maze
Mr Green
need more coffee
perfect bounce
perfect pendulum
rollerball
top spin

Ramp Silver
No Trophy

Pendulum Silver
Pendulum Silver
Pendulum Gold

Ramp Silver
Springboard Silver

Pendulum Silver
Pendulum Silver

No Trophy
Pendulum Silver
Pendulum Silver

No Trophy
No Trophy
No Trophy
No Trophy

Lever Silver
No Trophy

Pendulum Silver
No Trophy

Lever Silver
No Trophy

Lever Silver
Ramp Silver

No Trophy
No Trophy
No Trophy
No Trophy
No Trophy
No Trophy
No Trophy
No Trophy

Pendulum Silver
No Trophy
No Trophy
No Trophy
No Trophy
No Trophy

Springboard Silver
No Trophy
No Trophy

Ramp Silver
No Trophy
No Trophy

Ramp Silver
No Trophy
No Trophy

Pendulum Silver
No Trophy
No Trophy
No Trophy
No Trophy
No Trophy
No Trophy
No Trophy
No Trophy

Lever Silver
No Trophy
No Trophy
No Trophy
No Trophy
No Trophy
No Trophy
No Trophy
No Trophy

Pendulum Silver
No Trophy

Probabilities

0.0 0.2 0.4 0.6 0.8 1.0

WOE for  1,2  vs  3

−20 0 20 40 60 80

WOE for student S259 , PhysicsUnderstanding > Low

Fig. 4. Weight of evidence balance sheet for student S259 [8]

Although there are several different ways of summarizing a confusion matrix
[10], I prefer to use Goodman and Kruskal’s lambda:

λ =
∑

n an,n − maxn an,+

1 − maxn an,+
, (5)

where an,n an element of the confusion matrix (in probability form) and
maxn an,+ is the probability of the modal category. Thus, lambda compares the
observed agreement with the agreement that would be expected if all individuals
were simply classified at the modal category, a likely alternative procedure if the
assessment was not used.

What can be done if a system has low reliability? According to classical
test theory, two factors drive reliability: test length and evidence quality. In
the Bayesian network context, increasing the test length means increasing the
number of observable variables. In the game context, this would mean adding
game levels or letting the players play longer. Improving the evidence quality
means controlling factors that otherwise would allow the observable variables to
vary. For example, making it harder for the player to use solutions that don’t
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require the targeted proficiencies. ([2] shows other ways to increase the eviden-
tiary strength in the context of game based assessments).

While reliability is a measure of the internal self-consistency of the assessment
system, validity is a measure of how well the assessment measures the constructs
it was designed to measure. There are many ways to approach validity [13]. The
most commonly used methods can be divided into two groups: methods that
document the evidentiary argument of the assessment, and methods that look
at the relationship between a new measure and other existing measures of the
same construct.

For the documentation approach, evidence-centered assessment design has
a clear advantage. In particular, it forces the design team to explicate the evi-
dentiary argument as they are building the assessment. The task of building a
validity argument then consists of editing already gathered information rather
than going out and gathering new information. Furthermore, making sure that
all tasks have an evidentiary rationale early on in the design process makes it less
likely that the tasks will need to be removed later because they do not provide
adequate evidence.

External validity measures are harder because they require that some group
of examinees be given both the new assessment and the comparison measure.
As the Bayesian network is often a classification system, this means that the
validity study must come up with a gold standard classification. This is often
quite expensive. The set of labeled cases can then be used to build a confusion
matrix or expected confusion matrix [10]. As the goal now is to compare two
rating systems (the gold standard and the assessment system), Cohen’s kappa
is the preferred statistic.

In Physics Playground, the external measure was a test of intuitive Physics
given as both pretest and posttest and created by the design team. The cor-
relation between the expected Physics proficiency level from the game and the
combined pretest and posttest score was disappointingly low (around .4) even
when the network was calibrated using the pretest and posttest items to mea-
sure the latent variables. The problem was that the pretest and posttest were
too hard for the target population (middle school students). A new study was
planned with a new posttest.

8 Concluding Remarks

It has been over 25 years since the landmark works of Pearl [21] and Lauritzen
and Spiegelhalter [17] established Bayesian networks as a field in the intersection
of Statistics and Computer Science. Although much progress has been made since
then on both representational and algorithmic issues, there is still no well defined
approach to model construction. This papers surveys some of the methods which
were useful in one application area, designing scoring models for game-based
assessments, in hopes that the techniques would translate easily to other areas
of application.

Unfortunately, there has not been enough space to provide complete descrip-
tions of all of the techniques. Hopefully the references will be sufficient to allow
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interested readers to follow up on the details. In particular, the new book [10]
summarizes many of the details, and the software packages CPTtools and Peanut
implement many of the algorithms. The software is freely available at http://
pluto.coe.fsu.edu/RNetica/.

While there are many reasons people build Bayesian networks, they are often
variations of the theme of trying to make inferences about something unobserved
from something that is observed. Here, I think the field of psychological measure-
ment has a lot to say to Bayesian network designers. In particular, the concepts
of reliability and validity should be explored any time one is building a mea-
surement system. Hopefully this work will encourage other Bayesian network
designers to consider those issues more carefully in their work.
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Assessment. Any opinions expressed are solely those of the author.

References

1. Almond, R.: An irt-based parameterization for conditional probability tables. In:
Agosta, J.M., Carvalho, R.N. (eds.) Bayesian Modelling Application Workshop
at the Uncertainty in Artificial Intelligence (UAI) Conference, Amsterdam, The
Netherlands, July 2015. Additional material available at http://pluto.coe.fsu.edu/
RNetica/

2. Almond, R.G., Kim, Y.J., Velasquez, G., Shute, V.J.: How task features impact
evidence from assessments embedded in simulations and games. Meas. Interdisc.
Res. Perspect. 12(1–2), 1–33 (2014). with Discussion

3. Almond, R.G., Yan, D., Hemat, L.A.: Parameter recovery studies with a diagnostic
Bayesian network model. Behaviormetrika 35(2), 159–185 (2008)

4. Almond, R.G.: I can name that Bayesian network in two matrixes. Int. J. Approx-
imate Reasoning 51, 167–178 (2010)

5. Almond, R.G.: CPTtools: R code for Constructing Bayesian Networks. Florida
State University, College of Education, 0–3.2 edition, June 2015. Open source soft-
ware package

6. Almond, R.G.: Peanut: an object-oriented framekwork for parameterized Bayesian
Networks. Florida State University, College of Education, 0–1.3 edition, July 2015.
Open source software package

7. Almond, R.G., DiBello, L., Jenkins, F., Mislevy, R.J., Senturk, D., Steinberg, L.S.,
Yan, D.: Models for conditional probability tables in educational assessment. In:
Jaakkola, T., Richardson, T. (eds.) Artificial Intelligence and Statistics 2001, pp.
137–143. Morgan Kaufmann (2001)

8. Almond, R.G., Kim, Y.J., Shute, V.J., Ventura, M.: Debugging the evidence chain.
In: Almond, R.G., Mengshoel, O. (eds.) Proceedings of the 2013 UAI Application
Workshops: Big Data meet Complex Models and Models for Spatial, Temporal and
Network Data (UAI2013AW). CEUR Workshop Proceedings, Aachen, vol. 1024,
pp. 1–10 (2013)

http://pluto.coe.fsu.edu/RNetica/
http://pluto.coe.fsu.edu/RNetica/
http://pluto.coe.fsu.edu/RNetica/
http://pluto.coe.fsu.edu/RNetica/


Tips and Tricks for Game-Based Assessments 263

9. Almond, R.G., Mislevy, R.J.: Graphical models and computerized adaptive testing.
Appl. Psychol. Meas. 23, 223–238 (1999)

10. Almond, R.G., Mislevy, R.J., Steinberg, L.S., Yan, D., Williamson, D.M.: Bayesian
Networks in Educational Assessment. Springer, New York (2015)

11. DiCerbo, K.E., Behrens, J.T.: Implications of the digital ocean on current and
future assessment. In: Lissitz, R.L., Jiao, H. (eds.) Computers and their Impact on
State Assessment, pp. 273–306. Lawrence Erlbaum Associates (2012)

12. Hambleton, R.K., Swaminathan, H., Rogers, H.J.: Fundamentals of Item Response
Theory. Sage, Newbury Park (1991)

13. Kane, M.T.: Validation. In: Brennan, R.L. (ed.) Educational Measurement, 4th
edn. pp. 17–64. American Council on Education/Praeger (2006)

14. Kennedy, C.A., Wilson, M.: Using progress variables to map intellectual develop-
ment. Paper Presented at MARCES Conference, October 2006

15. Kim, Y.J., Almond, R.G., Shute, V.J.: Applying evidence-centered design for devel-
opment of game-based assessments in Physics Playground. Int. J. Test. (in press).
Special issue on cogntive diagnostic modeling

16. Kim, Y.J., Shute, V.J.: Opportunities and challenges in assessing and supporting
creativity in video games. In: Green, G., Kaufmann, J. (eds.) Video Games and
Creativity. Elsevier, (to appear, in press)

17. Lauritzen, S.L., Spiegelhalter, D.J.: Local computation with probabilities on graph-
ical structures and their application to expert systems (with discussion). J. Roy.
Stat. Soc. Ser. B 50, 205–247 (1988). Reprinted in Shafer and Pearl (1990)

18. Madigan, D., Mosurski, K., Almond, R.G.: Graphical explanation in belief net-
works. J. Comput. Graph. Stat. 6(2), 160–181 (1997)

19. Mislevy, R.J., Steinberg, L.S., Almond, R.G.: On the structure of educational
assessment (with discussion). Meas. Interdisc. Res. Perspect. 1(1), 3–62 (2003)

20. Muraki, E.: A generalized partial credit model: application of an em algorithm.
Appl. Psychol. Meas. 16, 159–176 (1992)

21. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo (1988)

22. Ploetzner, R., VanLehn, K.: The acquisition of informal physics knowledge during
formal physics training. Cogn. Instruction 15(2), 169–205 (1997)

23. Quellmalz, E.S., Davenport, J., Timms, M.J., Buckley, B.C.: Quality science simu-
lations for formative and summative assessments. Technical report, WestEd (2009)

24. R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2014)

25. Shute, V.J., Ventura, M.: Stealth Assessment in Digital Games. MIT, Cambridge
(2013)

26. Shute, V.J., Ventura, M., Bauer, M.I., Zapata-Rivera, D.: Melding the power of
serious games and embedded assessment to monitor and foster learning: Flow and
grow. In: Ritterfeld, U., Cody, M.J., Vorderer, P. (eds.) Serious Games: Mechanisms
and Effects, pp. 295–321. Routledge, Taylor and Francis, Mahwah (2009)

27. Spiegelhalter, D.J., Lauritzen, S.L.: Sequential updating of conditional probabili-
ties on directed graphical structures. Networks 20, 579–605 (1990)

28. Tatsuoka, K.K.: Rule space: an approach for dealing with misconceptions based on
item response theory. J. Educ. Meas. 20, 345–354 (1983)

29. Whittaker, J.: Graphical Models in Applied Multivariate Statistics. Wiley,
New York (1990)

30. Wilson, M.: Constructing Measures: An Item Response Modeling Approach. Psy-
chology Press, New York (2005)



Author Index

Almond, Russell G. 250

Benavoli, Alessio 76
Bishop, J. Mark 93
Blöbaum, Patrick 209

Dai, Jingguo 136
Danicic, Sebastian 93
de Campos, Cassio P. 76
Di, Ruo-hai 32

Gao, Shan 168
Gao, Xiao-guang 32
Guo, Zhi-gao 32

Howroyd, John 93

Isozaki, Takashi 196

Jahnsson, Niklas 46

Kawano, Shuichi 15
Kita, Eisuke 61
Kuroki, Manabu 196

Li, Chao 152

Malone, Brandon 46, 105
Minato, Shin-Ichi 168
Mohan, Karthika 184
Myllymäki, Petri 46

Natori, Kazuki 15
Nishiyama, Yu 15

Pearl, Judea 184

Ren, Jia 136
Roos, Teemu 122

Shimizu, Shohei 209, 222
Suzuki, Joe 1, 234

Ueno, Maomi 15, 152
Uto, Masaki 15

Washio, Takashi 209

Yada, Katsutoshi 61
Yang, Yu 32

Zhou, Yun 93
Zou, Yuan 122
Zuo, Yi 61


	Preface
	Organization
	Invited Paper Abstract
	Advanced Search Algorithms for LearningOptimal Bayesian Network Structures
	Empirical Behavior of Bayesian NetworkStructure Learning Algorithms
	An Entropic Approach to Causal Discoveryin Non-Gaussian and Non-linear Models
	A Non-Gaussian Approach for CausalDiscovery in the Presence of HiddenCommon Causes
	Learning Bayesian Networkswith Biomedical Applications
	Tips and Tricks for Building BayesianNetworks for Scoring Game-BasedAssessments

	Contents
	Efficiently Learning Bayesian Network Structures Based on the B&B Strategy: A Theoretical Analysis
	1 Introduction
	2 Background
	2.1 Bayesian Network
	2.2 Learning Bayesian Network Structures
	2.3 Efficiency of Learning Bayesian Network Structures w.r.t. MDL
	2.4 Efficiency of Learning Bayesian Network Structures w.r.t. Maximizing the Posterior Probability

	3 Contributions
	3.1 A General Lower Bound for the Score
	3.2 Main Result

	4 Concluding Remarks
	References

	Constraint-Based Learning Bayesian Networks Using Bayes Factor
	1 Introduction
	2 Learning Bayesian Networks
	3 CI Tests
	4 Bayes Factor for CI Test
	5 Theoretical Analyses
	6 Recursive Autonomy Identification Algorithm
	7 Numerical Experiments
	7.1 Experimental Design
	7.2 Experimentation with Small Network
	7.3 Experimentally Obtained Result with the Alarm Network
	7.4 Experimentally Obtained Results with the Win95pts Network

	8 Conclusion
	References

	Learning Bayesian Network Parameters from Small Data Set: A Spatially Maximum a Posteriori Method
	1 Introduction
	2 Preliminaries
	2.1 Bayesian Network
	2.2 Parameters Learning in Bayesian Network
	2.3 The Sample Complexity of Parameters Learning in Fixed-Structure Bayesian Networks
	2.4 Common Parameter Constraints

	3 Principle of the Proposed Method
	4 Spatially Maximum a Posteriori Method
	4.1 Border Parameter Calculation
	4.2 Center Parameter Calculation
	4.3 Spatially Maximum a Posteriori Parameter Calculation

	5 Experiments
	5.1 Parameter Learning with Different Sample Sizes
	5.2 Parameter Learning to Achieve Certain KL Divergences
	5.3 Time Consumption Analysis

	6 Conclusions
	References

	Hashing-Based Hybrid Duplicate Detection for Bayesian Network Structure Learning
	1 Introduction
	2 Background
	2.1 Bayesian Networks
	2.2 State Space Search for BNSL
	2.3 Hybrid Duplicate Detection

	3 Hashing-Based HDD for BNSL
	3.1 Dividing Nodes into Families
	3.2 Optimizing Family Size
	3.3 Distributing Families to Files
	3.4 Packing Families into Files

	4 Experiments
	4.1 Datasets and Environment
	4.2 Bin Packing Performance
	4.3 Locality, Fixed Hash Table Size
	4.4 Locality, Fixed Maximum Memory
	4.5 Locality and Memory Correlation

	5 Discussion
	References

	A Bayesian Network Approach for Predicting Purchase Behavior via Direct Observation of In-store Behavior
	1 Introduction
	2 System Overview of RIFD Data
	2.1 Collection of RFID Data
	2.2 Measuring Stay Time in Small Region

	3 Method
	3.1 Bayesian Network
	3.2 Graph Structure and Probabilistic Reasoning

	4 Experiment
	4.1 Initialization of Variables
	4.2 Optimization of Cluster Number
	4.3 Comparison of Accuracy
	4.4 ROC Analysis
	4.5 Discussion and Business Implication

	5 Conclusions
	References

	Statistical Tests for Joint Analysis of Performance Measures
	1 Introduction
	2 Joint Analysis of Performance Criteria
	3 Generalized Likelihood Ratio Test
	4 Bayesian Test
	5 Bayesian Network
	6 Experiments
	6.1 Accuracy and FPR-TPR
	6.2 Accuracy, F-Measure and Weighted-AUC
	6.3 Comparison Using Six Measures
	6.4 Simulation Study

	7 Conclusions
	References

	Extending Naive Bayes Classifier with Hierarchy Feature Level Information for Record Linkage
	1 Introduction
	2 Probabilistic Record Linkage
	2.1 PRL-FS and PRL-W
	2.2 The E-M Estimation of Parameters

	3 Bayesian Network Classifiers for Record Linkage
	3.1 The Naive Bayes Classifier
	3.2 The Tree Augmented Naive Bayes Classifier
	3.3 The Extended TAN Classifier
	3.4 Hierarchy Restrictions Between Features

	4 Experiments
	4.1 Settings
	4.2 Results

	5 Conclusions
	References

	Empirical Behavior of Bayesian Network Structure Learning Algorithms
	1 Introduction
	2 Background
	3 Solvers
	4 Datasets
	5 Generalization of Learned Networks
	5.1 Experimental Setup
	5.2 Impact of Restricting Parent Set Size
	5.3 Impact of Amount of Training Data
	5.4 Comparison Across Learning Strategies

	6 Exact Solver Empirical Hardness Models
	6.1 Capturing Hardness
	6.2 Experiment Setup
	6.3 Portfolios for BNSL
	6.4 Predicting Runtimes
	6.5 REP Tree Characteristics

	7 Discussion
	References

	On Model Selection, Bayesian Networks, and the Fisher Information Integral
	1 Introduction
	2 The Fisher Information Approximation
	2.1 Approximation of Marginal Likelihood
	2.2 Approximation of Normalized Maximum Likelihood

	3 Monte Carlo Approximation of NML
	4 Numerical Results Concerning the Lower-Order Terms
	4.1 Numerical Values of logCMn and logFII(M)
	4.2 Accuracy of FIA for Small Sample Sizes

	5 Model Selection Simulations
	6 Conclusions
	References

	Unsupervised Evolutionary Algorithm for Dynamic Bayesian Network Structure Learning
	1 Introduction
	2 The Problem
	2.1 Dynamic Bayesian Network
	2.2 The Solution Space
	2.3 The Encoding Scheme
	2.4 BIC Scoring Function

	3 The Proposed Approach
	3.1 The Representation
	3.2 The Initial Population
	3.3 The Genetic Operators

	4 Experimental Results
	4.1 The Search Space
	4.2 The Accuracy
	4.3 The Efficiency

	5 Conclusion and Perspectives
	References

	A Fast Clique Maintenance Algorithm for Optimal Triangulation of Bayesian Networks
	1 Introduction
	2 Triangulation Problem
	2.1 Notation and Definitions
	2.2 Search Space of the Optimal Triangulation Algorithm

	3 The Optimal Triangulation Algorithm
	3.1 The Depth-First Search Algorithm for Optimal Triangulation
	3.2 Previous Works on Dynamic Clique Maintenance

	4 Proposed Dynamic Clique Maintenance
	5 Experiments
	5.1 Dynamic Clique Maintenance
	5.2 Optimal Triangulation

	6 Conclusion
	References

	Factorization of ZDDs for Representing Bayesian Networks Based on d-Separations
	1 Introduction
	2 Preliminaries
	2.1 Bayesian Networks and MLFs
	2.2 Zero-Suppressed BDDs
	2.3 ZDD-Based MLF Representation

	3 ZDD Factorization for MLF Representation
	3.1  Basic Method of ZDD Factorization
	3.2 Problem in Factoring MLFs
	3.3 Divisor Extraction Based on BN Nodes

	4 Divisor Extraction Based on d-Separations
	4.1 d-Separations
	4.2 Divisor Selection by One-Node d-Separations
	4.3 Divisor Selection by Multi-Node d-Separations

	5 Experiments and Results
	6 Related Work
	7 Conclusion and Future Work
	References

	Missing Data from a Causal Perspective
	1 Introduction
	2 Missingness Graphs
	3 Recoverability
	3.1 Recovering from MCAR and MAR Data

	4 Recoverability Procedures for MNAR Data
	4.1 Sequential Factorization
	4.2 R-Factorization
	4.3 Interventional Factorization

	5 Recourses to Non-recoverability
	6 Perils of Model Blind Recovery Procedures
	7 Related Work
	8 Conclusions
	References

	Learning Maximal Ancestral Graphs with Robustness for Faithfulness Violations
	1 Introduction
	2 Background
	3 Robust Algorithm for Violations of Faithfulness
	3.1 Minimal Blocker Conditions and Outline of CS* Algorithm
	3.2 Lower Reliable Directions
	3.3 Related Work

	4 Experimental Evaluation
	5 Conclusion
	References

	Discriminative and Generative Models in Causal and Anticausal Settings
	1 Introduction
	1.1 Causal Problems
	1.2 Anticausal Problems
	1.3 Independence of Mechanism and Input
	1.4 Discriminative and Generative Models

	2 Hypothesis
	3 Empirical Evaluations
	4 Conclusion
	References

	A Non-Gaussian Approach for Causal Discovery in the Presence of Hidden Common Causes
	1 Introduction
	2 A non-Gaussian Causal Model with Hidden Common Cause Cases
	3 Likelihood
	4 Prior Distributions
	5 Experiments on Artificial Data
	6 Related Work
	7 Conclusions
	References

	Forest Learning Based on the Chow-Liu Algorithm and Its Application to Genome Differential Analysis: A Novel Mutual Information Estimation
	1 Introduction
	2 Background
	2.1 Suzuki (1993)
	2.2 Edwords et al's (2010)
	2.3 Suzuki (2012)

	3 Results
	3.1 Proposed Estimator of Mutual Information
	3.2 Theoretical Properties of the Proposed Estimator

	4 Experiments
	4.1 Preliminary Experiments
	4.2 Main Experiment

	5 Discussion
	References

	Tips and Tricks for Building Bayesian Networks for Scoring Game-Based Assessments
	1 Introduction
	2 Evidence-Centered Assessment Design
	3 Inverse Correlation Matrix
	4 Discrete Item Response Theory
	5 Hybrid Learning Algorithms
	6 Evidence Balance Sheets
	7 Reliability and Validity
	8 Concluding Remarks
	References

	Author Index



