
Dynamic Adjustment of Hidden Layer
Structure for Convex Incremental
Extreme Learning Machine

Yongjiao Sun, Yuangen Chen, Ye Yuan and Guoren Wang

Abstract Extreme Learning Machine (ELM) is a learning algorithm based on

generalized single-hidden-layer feed-forward neural network. Since ELM has an

excellent performance on regression and classification problems, it has been paid

more and more attention recently. The determination of structure of ELM plays a

vital role in ELM applications. Essentially, determination of the structure of ELM

is equivalent to the determination of the hidden layer structure. Utilizing a smaller

scale of the hidden layer structure can promote faster running speed. In this paper,

we propose algorithm PCI-ELM (Pruned-Convex Incremental Extreme Learning

Machine) based on CI-ELM (Convex Incremental Extreme Learning Machine). Fur-

thermore, we also present an improved PCI-ELM algorithm, EPCI-ELM (Enhanced

Pruned-Convex Incremental Extreme Learning Machine), which introduces a filter-

ing strategy for PCI-ELM during the neurons adding process. In order to adjust the

single-hidden-layer feed-forward neural network more flexibly and achieve the most

compact form of the hidden layer structure, in this paper, we propose a algorithm

which can dynamically determine hidden layer structure, DCI-ELM (Dynamic Con-

vex Incremental Extreme Learning Machine). At the end of this paper, we verify

the performance of PCI-ELM, EPCI-ELM and DCI-ELM. The results show that

PCI-ELM, EPCI-ELM and DCI-ELM control hidden layer structure very well and

construct the more compact single-hidden-layer feed-forward neural network.

Keywords Extreme learning machine ⋅Dynamic adjustment ⋅ Feed-forward neural

network ⋅ Convex optimal increment

1 Introduction

ELM [1], which is now an important branch of neural networks, gains high test-

ing accuracy, extremely fast learning speed and good generalization performance.

Increasing attention has been drawn to ELM in both industrial and academic fields.

Y. Sun (✉) ⋅ Y. Chen ⋅ Y. Yuan ⋅ G. Wang

Northeastern University, Shenyang 110819, Liaoning, China

e-mail: sunyongjiao@ise.neu.edu.cn

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_30

345



346 Y. Sun et al.

In the computing theory of ELM, the input weights and bias are generated randomly.

The output weights are calculated using input data matrix, input weights and bias.

Then the whole structure of neural networks are generated. From this point of view,

we draw a conclusion that the calculation cost are directly related to the structure of

the neural network. Researchers have done some work trying to simplify the structure

of ELM on the premise of keeping the advantages of extremely fast learning speed

and generalization performance, so that the overfitting problem can be avoided.

Many researchers focused on improvement of the testing accuracy, generaliza-

tion performance and training speed. Hai-Jun Rong et al. proposed P-ELM (Pruned

Extreme Learning Machine) [2, 7–9], which analyzes the relativity of neurons with

mathematical statistics methods and eliminates the neurons insensitive of class

labels. P-ELM reduces the calculation cost and is capable of real-time structure

adjustment. Yoan Miche et al. focused on the influence of the incorrect training data

and proposed OP-ELM (Optimally Pruned Extreme Learning Machine) [3]. Differ-

ent from P-ELM, OP-ELM takes the influence of irrelative training data into consid-

eration and increases the generalization performance and robustness using pruning

strategies. Guorui Feng et al. proposed E-ELM (Error Minimized Extreme Learning

Machine) [4] to realize increment of single or multiple neurons by minimizing error.

Rui Zhang et al. analyzed the weights of the hidden layer nodes and proposed D-ELM

(Dynamic Extreme Learning Machine) [5] to further evaluate the changes after the

increment of neurons. Guorui Feng et al. proposed DA-ELM [6] (Dynamic Adjust-

ment Extreme Learning Machine) based on theory of application circle expectation

minimization to reduce errors.

Given a specific application, how to determine the structure of the neural network

remains an open question. In this paper, we try to solve the problem in the following

aspects.

∙ Generate appropriate neural network structures automatically for various applica-

tions. Increasing strategies of hidden layer neurons have to be proposed to mini-

mize training errors.

∙ Evaluate neurons to organize hidden layer with higher performance. Neurons with

less contribution have to be eliminated to generate a reduced but efficient neural

network.

∙ Alter the complexity of the hidden layer structure. Adjustment strategies of hidden

layer make the alteration more reasonable.

2 Improved Convex Incremental ELM

During the adjustment of the ELM structure, the increment of hidden layer nodes

without consideration of the effectiveness will cause the redundant of the ELM struc-

ture. Furthermore, the additive node will also affect the effectiveness of the neurons



Dynamic Adjustment of Hidden Layer Structure . . . 347

already added into the hidden layer. Therefore, when eliminating the neurons with

low effectiveness, the measure of neurons faces great challenges.

2.1 Pruned Convex Incremental Extreme Learning Machine

The pruning ELMs usually measure and sort the neurons by some criteria to elimi-

nate the neurons with low effectiveness. Based on the same idea, we propose Pruned

Convex Incremental Extreme Learning Machine (PCI-ELM), which measures the

neurons by the output weights. In the case of multiple output nodes, PCI-ELM mea-

sures the neurons by the norm of the output weights:

‖
‖𝛽i

‖
‖ =

√

𝛽2i1 +⋯ + 𝛽2im (1)

where 𝛽i = [𝛽i1,… , 𝛽im]T is the output weights of the ith neurons; m is the number

of output nodes. However, even if the output weight is not small, but the output of

the activation function, taking sigmoid as example, is small, thus, in this case, the

output weight cannot represent the importance of the neuron. In CI-ELM [10], the

weights are updated as

𝛽i = (1 − 𝛽L)𝛽i (2)

If we view 𝛽i as the function of additive weights 𝛽L, 𝛽i is a monotonical decreasing

function. o = [o1,… , om]T is the output of ELM, hi(xj) is the output of the jth sample

on the ith neuron:

oi = h1(xi)𝛽1 +⋯ + hL(xi)𝛽L (3)

Since the parameters of the existing neurons do not change, the outputs of hidden

layer neurons h(x) do not change either. Given any training sample x, the influence of

the existing neurons hi(x)𝛽i, i ∈ (1,L − 1) will change due to the Lth additive node.

Therefore, in CI-ELM, the output weights indicate the effectiveness of hidden layer

nodes very well. According to the output weights, we sort the hidden layer nodes

and eliminate the ones with little effectiveness. A threshold of the weights 𝛾 is set,

which is initiated as

𝛾 ′ = 𝛾 = 1
L
∑L

i=1
|
|
𝛽i
|
|

(4)

The elimination is determined by the training accuracy: if the training accuracy

𝜀′ < 𝜀 after the elimination, the neurons have to be kept in the network; if 𝜀′ > 𝜀

after the elimination, the network has to be pruned.



348 Y. Sun et al.

In order to provide better adjustment, PCI-ELM eliminates the neurons with low

effectiveness to construct a neural network with simplest structure.

2.2 Enhanced Pruned Convex Incremental Extreme
Learning Machine

The pruning after the construction of the ELM simplifies the network structure. How-

ever, the calculation of the effectiveness of the neurons and the performance vari-

ation lead to much more calculation cost. Therefore, a better way is to verify the

effectiveness of the neurons before they are added into the network.

Since the smaller the norm of the output weights is, the better generalization per-

formance the network gains [11], we also use the norm of the output weights ‖𝜷‖ as

a criterion to choose additive neurons. After the output weights are updated as 𝛽i =
(1 − 𝛽L)𝛽i, the neuron with smaller ‖𝜷‖ will be added into the network. The selec-

tion is summarized as ΨL+1 =
⎧

⎪

⎨

⎪
⎩

Ψ(1)
L+1

Ψ(2)
L+1if ∥ E

(

Ψ(2)
L+1

)

∥<∥ E
(

Ψ(1)
L+1

)

∥ and ∥ 𝛽
Ψ(2)
L+1 ∥<∥ 𝛽

Ψ(1)
L+1 ∥

where Ψ(L+1) is the network with L+1 hidden layer neurons. The output weight of

the Lth neuron is calculated as:

‖
‖
‖
𝛽L−1

‖
‖
‖
=
√

𝛽21 +⋯ + 𝛽2L−1 (5)

When the Lth neuron is added, the output weights is calculated as:

‖
‖𝛽

L‖
‖ =

√
(

1 − 𝛽L
)2

⋅
(

𝛽21 +⋯ + 𝛽2L−1

)

+ 𝛽2L

=
√

(

1 − 𝛽L
)2
‖
‖𝛽

L−1‖
‖

2 + 𝛽2L

≥

√
√
√
√

‖
‖𝛽

L−1‖
‖

2

‖
‖𝛽

L−1‖
‖

2 + 1
=

‖
‖𝛽

L−1‖
‖

√

‖
‖𝛽

L−1‖
‖

2 + 1
(6)

As to ‖
‖𝛽

L‖
‖, ‖‖𝛽

L−1‖
‖ is a constant, thus, ‖‖𝛽

L‖
‖ can be viewed as a dependent vari-

able, 𝛽L as an independent variable. Equation 6 can be viewed as function f (x) =
√

(1 − x)2a2 + x2, where a is a constant, x ∈ R, thus, f (x) is monotonic decreasing

in the interval

[

−∞,
a2

1+a2

]

, monotonic increasing in the interval

[
a2

1+a2
,+∞

]

.

Note that the method mentioned above only tries to guarantee that the existing

neurons have certain effectiveness. Although in each step we try to make ‖𝜷‖ as

small as possible, the output weight ‖𝜷‖ is not smaller than ‖𝜷‖ in CI-ELM for sure.



Dynamic Adjustment of Hidden Layer Structure . . . 349

The redundancy of the network cannot be avoided, which is because the remaining

training error is calculated as:

Δ = ‖
‖eL−1‖‖

2 − ‖
‖eL‖‖

2

= ‖
‖eL−1‖‖

2 − ‖
‖
‖
eL−1 − 𝛽L

(H − FL−1
)‖
‖
‖

2

= 2𝛽L ⟨eL−1,HL − FL−1⟩ − 𝛽2L
‖
‖HL − FL−1

‖
‖

2

= ‖
‖HL − FL−1

‖
‖

2
⎛

⎜

⎜
⎝

⟨eL−1,HL − FL−1⟩
2

‖
‖HL − FL−1

‖
‖

4 −

(

𝛽L −
⟨eL−1,HL − FL−1⟩

‖
‖HL − FL−1

‖
‖

2

)2
⎞

⎟

⎟
⎠

(7)

When 𝛽L = ⟨eL−1,HL−FL−1⟩

‖HL−FL−1‖
2 , Δ is maximum, Δmax =

⟨eL−1,HL−FL−1⟩
2

‖HL−FL−1‖
2 . The greater 𝛽L is,

the greater Δmax is.

From Eq. 6 we can see that, if the output weight of the additive node is 𝛽L =
‖𝛽

L−1
‖

2

‖𝛽L−1‖
2+1

, the norm ‖𝜷‖ is minimum. Therefore, we try to choose larger 𝛽L =

‖𝛽
L−1
‖

2

‖𝛽L−1‖
2+1

, which means larger ‖‖𝛽
L−1‖

‖.

If a large enough ‖
‖𝛽

1‖
‖ is set in the neural network, the output of the additive

node can also be large. In the initiate phase, K neurons are generated randomly as

h1,… , hK , 𝛽i =
𝐄⋅[𝐄−(𝐅−𝐇i)]T

[𝐄−(𝐅−𝐇i)]⋅[𝐄−(𝐅−𝐇)i]T
, i = 1,. . . , K, larger 𝛽 will be chosen as the

initiate neuron.

Based on the random search strategy, the probability of finding a neuron with

output weight
‖𝛽

L−1
‖

2

‖𝛽L−1‖
2+1

is nearly zero. Thus, it is not necessary to pursue the min-

imum ‖
‖𝛽

L‖
‖. Like the random search in EI-ELM, a maximum search time k is set,

the neurons with more training error decrement and the least norm is added into

the network. In other words, these neurons must exists in the circle with the center

located as 𝛽L = ‖𝛽
L−1
‖

2

‖𝛽L−1‖
2+1

, 𝛾 as the radius. In most cases, the output weights near

center
‖𝛽

L−1
‖

2

‖𝛽L−1‖
2+1

are more likely to be chosen.

3 Dynamic Convex Incremental Extreme Learning
Machine

In this section, we introduce the Convex Incremental Extreme Learning Machine

(DCI-ELM). We merge the pruning of useless neurons into the process of adding new

neurons. So we can delete the useless or inefficient neurons from the ELM network



350 Y. Sun et al.

earlier, simplify the neuron network structure as early as possible, and make the most

effort to get the most compact and efficient ELM hidden structure.

The less error the new added neurons using CI-ELM bring to the ELM network

training process, the more efficient the network will be. But this may lead to the

decrease of the effectiveness of other neurons in the hidden layer. Meanwhile, the

method that CI-ELM construct the front-feedback single hidden layer network can be

treated as ordering a sequence of neurons in the hidden layer. So trying some kinds of

ordering method for each new added neuron can maximally mining its effectiveness.

Thus, for the ELM network with i neurons in the hidden layer, there would exist a

set Φi with size Vmax recording the network hidden layers with currently smallest

training error for the i neurons in the hidden layer.

Before the processing of DCI-ELM, all the sets can be treated as not existing. At

this time, no ELM network with any size of hidden layer is constructed. The first step

of DCI-ELM is to construct an ELM network Ψ(1)
1 with only one neuron in its hidden

layer. Using the same training method of the first neuron with CI-ELM, we get its

corresponding weight in the output layer. Then, Ψ(1)
1 is treated as an element and add

to the set Φ1. We update the set Φ1 with the maximal training error ‖‖E(Φ1)‖‖max and

size V1 = 1.

If the constructed single-hidden-layer feed-forward neural network Ψ(1)
1 cannot

satisfy the given training target, then DCI-ELM randomly generate a neuron H2,

H2 = [G(a2, b2, x1),G(a2, b2, x2),… ,G(a2, b2, xN)]T . At this time, for the neuron

H2, there exist two choices: (1) construct a new ELM network Ψ(2)
1 containing only

H2; (2) add H2 into ELM Ψ(1)
1 and construct a new network Ψ(1)

2 containing two

neurons in the hidden layer. To mostly utilize the generated neurons to construct the

optimal ELM network, and mine the effectiveness of each neuron in the hidden layer,

H2 will conduct these two processes. At the same time, to make each set full faster

and drive the compete among them to select preferable middle networks, the update

strategy of the sets is bottom up, i.e., the adding order of the new generated neurons

is Φ1, Φ2,. . .Then, when there is an ELM network reaches the training accuracy, the

algorithm halts. This ensures that the simpler and efficient ELM networks are cho-

sen in prior. Thus, h2 firstly constructs the ELM network, and then is added to the

set Φ1:

Ψ(2)
1 ∈ Φ1,V1 = V1 + 1 (8)

where, Φ1 = {Ψ(1)
1 ,Ψ(2)

1 }. If ∃Ψ1 ∈ Φ1, makes ∥ 𝐄(𝚿𝟏) ∥< 𝜀, then it means we have

constructed an appropriate ELM network, and the algorithm halts. Otherwise, based

on the elements in Φ1, we add neuron H2 to these ELM networks. We use the follow-

ing equations to calculate the corresponding output weight 𝛽2 of H2, and the training

error E of each new generated network:

𝛽2 =
𝐄 ⋅ [𝐄 −

(

𝐅 −𝐇2
)

]T

[

𝐄 −
(

𝐅 −𝐇2
)]

⋅
[

𝐄 − (𝐅 −𝐇)2
]T (9)



Dynamic Adjustment of Hidden Layer Structure . . . 351

E = (1 − 𝛽2)E + 𝛽2(F −H2) (10)

Thus, we can obtain two more complex networks Ψ(1)
2 = Ψ(1)

1 + 𝛽
(1)
2 H2 and Ψ(2)

2 =
Ψ(2)

1 + 𝛽
(2)
2 H2, and add them to the set Φ2, Φ2 = {Ψ(1)

2 ,Ψ(2)
2 }.

When the Lth neurons are generated if the volume of each set Vmax < L, all the

sets are full, and the set containing the most complex ELM network is ΦL−1, in which

the hidden layer of each network has L-1 neurons. For the sets Φ1, Φ2,. . . , ΦL−1, the

neuron HL are added to the middle network of these sets in order. Thus, compared to

the original network, in the new generated middle network, the more accurate net-

work remains in the set and continue to be increased, and the ones with less accuracy

are pruned. Thus, for each time we add neurons and generate a new single-hidden-

layer feed-forward neural network, it has the following comparison process with the

existing sets that contain the same size of neurons in the hidden layer:

If Vi = Vmax, i < L, and let k=1, when k ≤ Vmax,

Ψmax
i =

⎧

⎪

⎨

⎪
⎩

Ψ̃(k)
i , if ‖‖

‖
E (

Ψmax
i

)‖
‖
‖
>
‖
‖
‖
‖

E
(

Ψ̃(k)
i

)
‖
‖
‖
‖

Ψmax
i , if ‖‖

‖
E (

Ψmax
i

)‖
‖
‖
≤
‖
‖
‖
‖

E
(

Ψ̃(k)
i

)
‖
‖
‖
‖

(11)

Here, Ψmax
i presents the element whose training error is the largest in the set Φi; Ψ̃

(k)
i

presents the kth result in the single-hidden-layer feed-forward neural network. Thus,

this kind of comparison or competition makes the accuracy of any neuron in each

set keeps increasing, so that we can obtain the network meeting the training target as

soon as possible. When the Lth neuron is added to the set ΦL−1, the set ΦL is empty.

So after adding a neuron to the set ΦL−1, all the generated VL−1 single-hidden-layer

feed-forward neural networks will be added to the set ΦL.

Therefore, when any single-hidden-layer feed-forward neural network added into

any set will active the comparison with the training target 𝜀. If the ones whose train-

ing error is smaller than the training target 𝜀 have existed in the set, the algorithm

halts. To consolidate the generalization ability of ELM, for the situation in which

more than one single-hidden-layer feed-forward neural networks reach the target,

we will choose the one in which ‖𝛽‖ is the smallest. In order words, the final chosen

structure of ELM is as follows:

Ψ = Ψi, if ‖‖E(Ψi)‖‖ ≤ 𝜀 and ∀Ψ ∈ Φi,min‖𝜷‖ (12)



352 Y. Sun et al.

4 Performance Evaluation

In this Section, we test the algorithms proposed in the former using extensive exper-

iments. The tests focus on three targets: proceeding time, generalization ability, and

the number of neurons in the hidden layer. Meanwhile, we compare the algorithms,

PCI-ELMEPCI-ELM, and DCI-ELM, introduced in the former, with the existing

typical ELM algorithms, such as I-ELMEI-ELM and CI-ELM. All the evaluations

were carried out in MATLAB R2009a in a Intel Core i3 processor with 3.3 GHz and

4GB RAM. A group of real datasets [12] about the regression problem are used to

test the performance the PCI-ELM, EPCI-ELM, and DCI-ELM algorithms.

To ensure the effectiveness of the training results, each dataset is separated in to

training data and testing data using a proportion of 2:1, so that the training data and

testing data are independent and not repeated. At the same time, before using these

data to train the networks, the input data in all dimensions are normalized into a

range of [–1,1] according to the following equation.

Input (∶, i) =
Input (∶, i) − min (Input (∶, i))

max (Input (∶, i)) − min (Input (∶, i))
× 2 − 1 (13)

Here, Input means the matrix of the input data, and Input(∶, i) means a line of the

input matrix, i.e., all the input data in the same attribute or dimension.

We will analyze the experiment results of I-ELM, CI-ELM, PCI-ELM, and DCI-

ELM algorithms. We compare the training time of different algorithms over the same

dataset, predicting time, and the number of neurons in the hidden layer w.r.t the

learning problems.

To avoid the occasionality of a single experiment result, in this paper, all our

experiments over each dataset are conducted 30 times and calculate the average value

as the final result. Moreover, for each algorithm, the number of neurons is counted

from 0 to 1000. Meanwhile, when EI-ELM and EPCI-ELM searching for prior neu-

rons, we set the maximal searching times and the size of sets both as 5. Thus, for the

given training target, if the training result cannot reach , the result is also recorded

when the number of neurons in the hidden layer reaches 1000.

Figures 1 and 2 show the results of using sigmoid function and RBF function in

different algorithms respectively. Even though the effect would be somehow different

when using different excitation function, in general, the training time has obvious

similarity between the two experiments. As we delete useless or inefficient neurons

during the process of training, the training time of PCI-ELM is longer than that of

CI-ELM conducted over the same dataset. As EPCI-ELM as to PCI-ELM is just

like EI-ELM as to I-ELM, there exists a more strategy to select the neurons, and

thus the training time of EPCI-ELM is longer than that of PCI-ELM. However, this

is not absolutely. Because the searching of neurons can speed up the convergence

of algorithm, there exists such situation that EPCI-ELM is faster than PCI-ELM or

even CI-ELM. For the same reason, similar situation also happen in the process of

EI-ELM and I-ELM.



Dynamic Adjustment of Hidden Layer Structure . . . 353

Fig. 1 Comparison chart of training time by using sigmoid function. aWithout insurance company

bench-mark. b Insurance company benchmark

Fig. 2 Comparison chart of training time by using RBF function. a Without housing. b Housing

Fig. 3 Comparison chart of predicted results. a Sigmoid function. b RBF function

From the experiment results, we can see that the training time has similarity when

using sigmoid or RBF function. Usually, EI-ELM and EPCI-ELM enhance the selec-

tion of neurons in the hidden layer, so it will spend more training time. But this is

not absolute. As EI-ELM and EPCI-ELM speed up the convergence of algorithms,

they may be faster sometimes. So as to DCI-ELM, even though training more than

one networks spends more training time, it also speed up the convergence when con-

structing the hidden layer structures.

Figure 3 shows the predicting results of the algorithms conducted over different

datasets. Firstly, we can see that the pruning of hidden layer structures in CI-ELM

influences little in the approximate ability. Secondly, as optimization methods for

generalization ability exist in EPCI-ELM and DCI-ELM, the predicting results of

these two algorithms is not worse or even better than those of CI-ELM.



354 Y. Sun et al.

Fig. 4 Comparison chart of hidden layer scale. a Sigmoid function. b Sigmoid function

From Fig. 4, we can see that the pruning that PCI-ELM providing to CI-ELM

largely decrease the redundancy when constructing the networks suing CI-ELM, so

that the hidden layer is more compact. EPCI-ELM improves the searching strategy of

the neurons in the hidden layer, so that it further avoiding the attendance of redundant

neurons. In other words, it optimize the constructed single-hidden-layer feed-forward

neural networks from the very beginning. The DCI-ELM makes an adjustment to the

network construction in a largest degree. In other words, it mines the most compact

structure constructed by the generated neurons in a largest degree, so that the needed

neurons is fewer and make the ELM predicting efficient.

5 Conclusion

In this paper, we firstly introduce the ELM theory and its typical dynamic construc-

tion algorithms, and analyze the corresponding idea of structure selection. Then, we

propose two hidden layer structure optimization algorithms: PCI-ELM and EPCI-

ELM. We further adjust the hidden layer structure constructed by CI-ELM to make

it more compact and efficient. After this, we propose a DCI-ELM algorithm, and

provide a more dynamic hidden layer structure adjustment algorithm, so that it

can allocate the pruning to the process of adding neurons. Finally, we take exten-

sive experiments over real datasets and analyze the effectiveness of our proposed

algorithms.

References

1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.

Neurocomputing 70(1), 489–501 (2006)

2. Rong, H.J., Ong, Y.S., et al.: A fast pruned-extreme learning machine for classification prob-

lem. Neurocomputing 72(1), 359–366 (2008)



Dynamic Adjustment of Hidden Layer Structure . . . 355

3. Miche, Y., Sorjamaa, A., et al.: OP-ELM: optimally pruned extreme learning machine. Neural

Netw. 21(1), 158–162 (2010)

4. Feng, G., Huang, G.B., et al.: Error minimized extreme learning machine with growth of hidden

nodes and incremental learning. Neural Netw. 20(8), 1352–1357 (2009)

5. Zhang, R., Lan, Y., Huang, G.B., et al.: Dynamic extreme learning machine and its approxi-

mation capability. Cybernetics 43(6), 2054–2065 (2013)

6. Feng, G., Lan, Y., et al.: Dynamic adjustment of hidden node parameters for extreme learning

machine. Cybernetics 45(2), 279–288 (2015)

7. Huang, G.B., Zhou, H., et al.: Extreme learning machine for regression and multiclass classi-

fication. Cybernetics 42(2), 513–529 (2012)

8. Liang, N.Y., Huang, G.B., et al.: A fast and accurate online sequential learning algorithm for

feedforward networks. Neural Netw. 17(6), 1411–1423 (2006)

9. Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine.

Neurocomputing 71(16), 3460–3468 (2008)

10. Huang, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing

70(16), 3056–3062 (2007)

11. Bartlett, P.L.: The sample complexity of pattern classification with neural networks: the size

of the weights is more important than the size of the network. Inform. Theory 44(2), 525–536

(1998)

12. Blake, C., Merz, C.: UCI Repository of Machine Learning Databases, Department of Informa-

tion and Computer Sciences, University of California, Irvine, USA, 1998. http://archive.ics.

uci.edu/ml/datasets.html

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html

	Dynamic Adjustment of Hidden Layer Structure for Convex Incremental Extreme Learning Machine
	1 Introduction
	2 Improved Convex Incremental ELM
	2.1 Pruned Convex Incremental Extreme Learning Machine
	2.2 Enhanced Pruned Convex Incremental Extreme Learning Machine

	3 Dynamic Convex Incremental Extreme Learning Machine
	4 Performance Evaluation
	5 Conclusion
	References


