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Abstract Multi-instance Multi-label learning is a learning framework, where every

object is represented by a bag of instances and associated with multiple labels simul-

taneously. The existing degeneration strategy based methods often suffer from some

common drawbacks: (1) the user-specific parameter for the number of clusters may

incur the effective problem; (2) utilizing SVM as the classifiers builder may bring

the high computational cost. In this paper, we propose an algorithm, namely MIML-

ELM, to address the problems. To our best knowledge, we are the first utilizing ELM

in MIML problem and conducting the comparison of ELM and SVM on MIML.

Extensive experiments are conducted on the real datasets and the synthetic datasets.

The results show that MIML-ELM tends to achieve better generalization perfor-

mance at a higher learning speed.

Keywords Multi-instance multi-label ⋅ Extreme learning machine

1 Introduction

When utilizing machine learning to solve the practical problems, we often consider

an object as a feature vector. Then, we get an instance of the object. Further, asso-

ciating the instance with a specific class label of the object, we obtain an example.

Given a large collection of examples, the task is to get a function mapping from the

instance space to the label space. We expect that the learned function can predict

the labels of unseen instances correctly. However, in some applications, a real-world

object is often of ambiguity, which consists of multiple instances and corresponds

to multiple different labels simultaneously.

For example, an image usually contains multiple patches each represented by an

instance, while in image classification such an image can belong to several classes

C. Li ⋅ Y. Yin (✉) ⋅ Y. Zhao ⋅ G. Chen ⋅ L. Qin

College of Information Science and Engineering, Northeastern University,

Shenyang 110819, China

e-mail: yinying@ise.neu.edu.cn

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_28

325



326 C. Li et al.

simultaneously, e.g. an image can belong to mountains as well as Africa [1]; Another

example is text categorization [1], where a document usually contains multiple sec-

tions each of which can be represented as an instance, and the document can be

regarded as belonging to different categories if it was viewed from different aspects,

e.g. a document can be categorized as scientific novel, Jules Verne’s writing or even

books on travelling; The MIML problem also arises in the protein function pre-

diction task [2]. A domain is a distinct functional and structural unit of a protein.

A multi-functional protein often consists of several domains, each fulfilling its own

function independently. Taking a protein as an object, a domain as an instance and

each biological function as a label, the protein function prediction problem exactly

matches the MIML learning task.

In this context, Multi-instance Multi-label learning was proposed [1]. Similar to

two another multi-learning frameworks, i.e. Multi-instance learning (MIL) [3] and

Multi-label learning (MLL) [4], the MIML learning framework also results from the

ambiguity in representing the real-world objects. Differently, more difficult than two

another multi-learning frameworks, MIML studies the ambiguity in terms of both the

input space (i.e. instance space) and the output space (i.e. label space) while MIL just

studies the ambiguity in the input space and MLL just studies the ambiguity in the

output space, respectively. In [1], Zhou et al. proposed a degeneration strategy based

framework for MIML, which consists of two phases. First, the MIML problem is

degenerated into the single-instance multi-label (SIML) problem through a specific

clustering process; Second, the SIML problem is decomposed into multiple inde-

pendent binary classification (i.e. single-instance single-label) problem using SVM

as the classifiers builder. This two-phase framework has been successfully applied

to many real-world applications and has been shown effective [5]. However, it could

be further improved if the following drawbacks are tackled. On one hand, the clus-

tering process in the first phase requires a user-specific parameter for the number of

clusters. Unfortunately, it is often trouble to determine the correct number of clusters

in advance. The incorrect number of clusters may affect the accuracy of the learning

algorithm; On the other hand, SIML is degenerated into SISL (i.e. single instance

single label) in the second phase, as will increase the volume of data to be handled

and thus burden the classifier building. Utilizing SVM as the classifiers builder in

this phase may suffer from the high computational cost and require much number of

parameters to be optimized.

In this paper, we propose to enhance the two-phase framework by tackling the two

above issues and make the following contributions: (1) we utilize Extreme Learn-

ing Machine (ELM) [6] instead of SVM to improve the efficiency of the two-phase

framework. To our best knowledge, we are the first utilizing ELM in MIML prob-

lem and conducting the comparison of ELM and SVM on MIML; (2) we design a

method of theoretical guarantee to determine the number of clusters automatically

while incorporating it into the improved two-phase framework for effectiveness.

The remainder of this paper is organized as follows. In Sect. 2, we give a brief

introduction to MIML and ELM; Sect. 3 details the improvements of the two-phase

framework; Finally, Sect. 5 concludes this paper.
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2 The Preliminaries

This research is related to some previous work on multi-instance multi-label (MIML)

learning and extreme learning machine (ELM). In what follows, we briefly review

some preliminaries of the two related work in Sects. 2.1 and 2.2, respectively.

2.1 Multi-instance Multi-label Learning

In the traditional supervised learning, the relationships between an object and its

description and its label are always one-to-one correspondence. That is, an object

is represented by a single instance and associated with a single class label. In this

sense, we refer to it as single-instance single-label learning (SISL for short). For-

mally, let X be the instance space (or say feature space) and Y the set of class

labels. The goal of SISL is to learn a function fSISL:X → Y from a given data set

{(x1,Y1), (x2,Y2),… , (xm,Ym)}, where xi ∈ X is a instance and yi ∈ Y is the label of

xi. This formalization is prevailing and successful. However, as mentioned in Sect. 1,

a lot of real-world objects are complicated and ambiguous in their semantics. Rep-

resenting these ambiguous objects with SISL may lose some important informa-

tion and make the learning task problematic [1]. Thus, many real-world complicated

objects do not fit in this framework well.

In order to deal with this problem, several multi-learning frameworks have been

proposed, e.g. Multi-Instance Learning (MIL), Multi-Label Learning (MLL) and

Multi-Instance Multi-Label Learning (MIML). MIL studies the problem where a

real-world object described by a number of instances is associated with a single class

label. Multi-instance learning techniques have been successfully applied to diverse

applications including image categorization [7], image retrieval [8], text categoriza-

tion [9], web mining [10], computer-aided medical diagnosis [11], etc. Differently,

MLL studies the problem where a real-world object is described by one instance

but associated with a number of class labels. The existing work of MLL falls into

two major categories. The one attempts to divide multi-label learning to a number

of two class classification problems [12] or transform it into a label ranking prob-

lem [13]; the other tries to exploit the correlation between the labels [14]. MLL has

been found useful in many tasks, such as text categorization [15], scene classifica-

tion [16], image and video annotation [17, 18], bioinformatics [19, 20] and even

association rule mining [21, 22]. MIML is a generalization of traditional supervised

learning, multi-instance learning and multi-label learning, where a real-world object

may be associated with a number of instances and a number of labels simultaneously.

MIML is more reasonable than (single-instance) multi-label learning in many cases.

In some cases, understanding why a particular object has a certain class label is even

more important than simply making an accurate prediction while MIML offers a

possibility for this purpose.
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2.2 A Brief Introduction to ELM

Extreme Learning Machine (ELM for short) is a generalized Single Hidden-layer

Feedforward Network. In ELM, the hidden-layer node parameter is mathematically

calculated instead of being iteratively tuned, thus it provides good generalization per-

formance at thousands of times faster speed than traditional popular learning algo-

rithms for feedforward neural networks [23].

As a powerful classification model, ELM has been widely applied in many fields,

such as protein sequences classification in bioinformatics [24, 25], online social net-

work prediction [26], XML document classification [23], Graph classification [27]

and so on. How to classify the data quickly and correctly is an important thing. For

example, in [28], ELM was applied for plain text classification by using the one-

against-one (OAO) and one-against-all (OAA) decomposition scheme. In [23], an

ELM based XML document classification framework was proposed to improve clas-

sification accuracy by exploiting two different voting strategies. A protein secondary

prediction framework based on ELM was proposed in [29] to provide good perfor-

mance at extremely high speed. Wang et al. [30] implemented the protein-protein

interaction prediction on multi-chain sets and on single-chain sets using ELM and

SVM for a comparable study. In both cases, ELM tends to obtain higher Recall val-

ues than SVM and shows a remarkable advantage in the computational speed. Zhang

et al. [31] evaluated the multicategory classification performance of ELM on three

microarray data sets. The results indicate that ELM produces comparable or better

classification accuracies with reduced training time and implementation complexity

compared to artificial neural networks methods and Support Vector Machine meth-

ods. In [32], the use of ELM for multiresolution access of terrain height informa-

tion was proposed. Optimization method based ELM for classification was studied

in [33].

Given N arbitrary distinct samples (xi, ti), where xi =
[
xi1, xi2,… , xin

]T ∈ 𝐑n
and

ti =
[
ti1, ti2,… , tim

]T ∈ 𝐑m
, standard SLFNs with L hidden nodes and activation

function g(x) are mathematically modeled as

f (x) =
L∑

i=1
𝛽ig

(
𝐚i, bi, 𝐱

)
(1)

where ai and bi are the learning parameters of hidden nodes and 𝛽i is the weight

connecting the ith hidden node to the output node. g
(
𝐚i, bi, 𝐱

)
is the output of the ith

hidden node with respect to the input x. In our case, sigmoid type of additive hidden

nodes are used. Thus, Eq. (1) is given by

f (x) =
L∑

i=1
𝛽ig

(
𝐚i, bi, 𝐱

)
=

L∑

i=1
𝛽ig

(
𝐰i ⋅ 𝐱j + bi

)
= 𝐨j, (j = 1, ...,N) (2)
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where 𝐰i =
[
wi1,wi2, ...,win

]T
is the weight vector connecting the i-th hidden node

and the input nodes, 𝛽i =
[
𝛽i1, 𝛽i2, ..., 𝛽im

]T
is the weight vector connecting the ith

hidden node and the output nodes, bi is the bias of the ith hidden node, and oj is the

output of the jth node [34].

If an SLFN with activation function g(x) can approximate the N given samples

with zero error that 𝛴
L
j=1

‖‖‖oj − tj
‖‖‖ = 0, there exist 𝛽i, ai and bi such that

L∑

i=1
𝛽ig

(
𝐰i ⋅ 𝐱j + bi

)
= 𝐭j, j = 1,… ,N (3)

Equation (3) can be expressed compactly as follows

𝐇𝛽 = 𝐓 (4)

where

𝐇
(
𝐰1,… ,𝐰L, b1,… , bL, 𝐱1,… , 𝐱N

)
=
⎡
⎢
⎢
⎣

g
(
𝐰1 ⋅ 𝐱1 + b1

)
… g

(
𝐰L ⋅ 𝐱1 + bL

)

⋮ … ⋮
g
(
𝐰1 ⋅ 𝐱N + b1

)
… g

(
𝐰L ⋅ 𝐱N + bL

)

⎤
⎥
⎥
⎦N×L

,

𝛽 =
[
𝛽

T
1 ,… , 𝛽

T
L

]T
m×L , and 𝐓 =

[
𝐭T1 ,… , 𝐭TL

]T
m×N

𝐇 is called the hidden layer output matrix of the network. The ith column of 𝐇
is the ith hidden nodes output vector with respect to inputs x1, x2, …, xN and the jth
row of 𝐇 is the output vector of the hidden layer with respect to input xj.

For the binary classification applications, the decision function of ELM [33] is

f (x) = sign

( L∑

i=1
𝛽ig(𝐚i, bi, 𝐱)

)

= sign(𝛽 ⋅ h(x)) (5)

h(𝐱) =
[
g
(
𝐚𝟏, b1, 𝐱

)
,… , g

(
𝐚𝐋, bL, 𝐱

)]T
is the output vector of the hidden layer with

respect to the input 𝐱. h(𝐱) actually maps the data from the d-dimensional input space

to the L-dimensional hidden layer feature space 𝐇.

Algorithm 1: ELM

Input: DB:dataset, HN: Number of Hidden Layer nodes, AF: ActivationFunction

Output: Results

for i=1 to L do1
randomly assign input weight wi;2
randomly assign bias bi;3

end4
calculate 𝐇;5
calculate 𝛽 = 𝐇†𝐓6
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In ELM, the parameters of hidden layer nodes, i.e. wi and bi, can be chosen ran-

domly without knowing the training data sets. The output weight 𝐋 is then calcu-

lated with matrix computation formula 𝐋 = 𝐇†𝐓, where 𝐇†
is the Moore-Penrose

Inverse of 𝐇. ELM not only tends to reach the smallest training error but also the

smallest norm of weights [6]. Given a training set ℵ = {(𝐱i, 𝐭i)|𝐱i ∈ 𝐑n
, 𝐭i ∈ 𝐑m

, i =
1,… ,N}, activation function g(x) and hidden node number L, the pseudo code of

ELM [34] is given in Algorithm 1.

3 The Proposed Two-Phase MIMLELM Framework

MIMLSVM is a representative two-phase MIML algorithm successfully applied in

many real-world tasks [2]. It was first proposed by Zhou et al. in [1], and recently

improved by Li et al. in [5]. MIMLSVM solves the MIML problem by first degenerat-

ing it into single-instance multi-label problems through a specific clustering process

and then decomposing the learning of multiple labels into a series of binary clas-

sification tasks using SVM. However, as ever mentioned, MIMLSVM may suffer

from some drawbacks in either of the two phases. For example, in the first phase,

the user-specific parameter for the number of clusters may incur the effective prob-

lem; in the second phase, utilizing SVM as the classifiers builder may bring the high

computational cost and require much number of parameters to be optimized.

Algorithm 2: The MIMLELM Algorithm

Input: DB:dataset, HN: Number of Hidden Layer nodes, AF: ActivationFunction

Output: Results

DB = {(X1,Y1), (X2,Y2),… , (Xm,Ym)}, 𝛤 = X1,X2,… ,Xm;1
Determine the number of clusters, k, using AIC;2
randomly select k elements from 𝛤 to initialize the k medoids {M1,M2,… ,Mk};3
repeat4

𝛤t={Mt}(t = 1, 2,… , k);5
foreach Xu∈(𝛤−{Mt}) do6

index=argmint∈{1,2,…,k} dH(Xu,Mt);7
𝛤index=𝛤index∪{Xu}8

end9
Mt=argmin

A∈𝛤t

∑

B∈𝛤t

dH(A,B)(t = 1, 2,… , k);
10

Transform (Xu,Yu) into into an SIML example (zu,Yu), where11
zu=(dH(Xu,M1), dH(Xu,M2),… , dH(Xu,Mk));

until Mt (t = 1, 2,… , k) don’t change;12
foreach zu (u ∈ {1, 2,… ,m}) do13

foreach y∈Yu do14
decompose (zu,Yu) into |Yu| SISL examples15

end16
end17
Train ELMy for every class y18
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In this paper, we present another algorithm, namely MIMLELM, to make

MIMLSVM more efficient and effective. The MIMLELM algorithm is outlined in

Algorithm 2. It consists of four major elements: (1) determination of the number

of clusters (line 2); (2) transformation from MIML to SIML (line 3–12); (3) trans-

formation from SIML to SISL (line 13–17); (4) multi-label learning based on ELM

(line 18).

4 Performance Evaluation

In this section, we study the performance of the proposed MIMLELM algorithm in

terms of both efficiency and effectiveness. The experiments are conducted on a HP

PC with 2.33 GHz Intel Core 2 CPU, 2 GB main memory running Windows 7 and

all algorithms are implemented in MATLAB 2013.

Fig. 1 The efficiency

comparison on Image data

set. a The comparison of

training time, b the

comparison of testing time
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Four real datasets are utilized in our experiments. The data set is Image [1], which

comprises 2000 natural scene images and 5 classes. The percent of images of more

than one class is over 22 %. On average, each image is of 1.24 ± 0.46 class labels

and 1.36 ± 0.54 instances.

In the next experiments, we study the efficiency of MIMLELM by testing its scala-

bility. That is, the data set is replicated different number of times, and then we observe

how the training time and the testing time vary with the data size increasing. Again,

MIMLSVM+ is utilized as the competitor. Similarly, the MIMLSVM+ algorithm

is implemented with a Gaussian kernel while the penalty factor Cost is set to be 1,

2, 3, 4 and 5, respectively. The experimental results are given in Figs. 1. The Image

data set is replicated 0.5–2 times with step size set to be 0.5. When the number of

copies is 2, the efficiency improvement could be up to one 92.5 % (from about 41.2 s

down to about 21.4 s). As we observed, as the data size increasing, the superiority

of MIMLELM becomes more and more significant.

5 Conclusion

MIML is a framework for learning with complicated objects, and has been proved to

be effective in many applications. However, the existing two-phase MIML

approaches may suffer from the effectiveness problem arising from the user-specific

clusters number and the efficiency problem arising from the high computational cost.

In this paper, we propose the MIMLELM approach to learn with MIML examples

fast. On one hand, the efficiency is highly improved by integrating Extreme Learn-

ing Machine into the MIML learning framework. To our best knowledge, we are the

first utilizing ELM in MIML problem and conducting the comparison of ELM and

SVM on MIML. On the other hand, we develop a method of theoretical guarantee

to determine the number of clusters automatically and exploit a genetic algorithm

based ELM ensemble to further improve the effectiveness.
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