
Proceedings in Adaptation, Learning and Optimization 7

Proceedings
of ELM-2015
Volume 2

Jiuwen Cao
Kezhi Mao
Jonathan Wu
Amaury Lendasse Editors

Theory, Algorithms and Applications (II)

Proceedings in Adaptation, Learning
and Optimization

Volume 7

Series editors

Yew Soon Ong, Nanyang Technological University, Singapore
e-mail: asysong@ntu.edu.sg

Meng-Hiot Lim, Nanyang Technological University, Singapore
e-mail: emhlim@ntu.edu.sg

Board of editors

Hussain Abbas, University of New South Wales, Australia
Giovanni Acampora, Nottingham Trent University, Nottingham, UK
Enrique Alba, University of Málaga, Málaga, Spain
Jonathan Chan, King Mongkut’s University of Technology Thonburi (KMUTT),
Bangkok, Thailand

Sung-Bae Cho, Yonsei University, Seoul, Korea
Hisao Ishibuchi, Osaka Prefecture University, Osaka, Japan
Wilfried Jakob, Institute for Applied Computer Science (IAI), Germany
Jose A. Lozano, University of the Basque Country UPV/EHU, Spain
Zhang Mengjie, Victoria University of Wellington, Wellington, New Zealand
Jim Smith, University of the West of England, Bristol, UK
Kay-Chen Tan, National University of Singapore, Singapore
Ke Tang, School of Computer Science and Technology, China
Chuang-Kang Ting, National Chung Cheng University, Taiwan
Donald C. Wunsch, Missouri University of Science & Technology, USA
Jin Yaochu, University of Surrey, UK

About this Series

The role of adaptation, learning and optimization are becoming increasingly
essential and intertwined. The capability of a system to adapt either through
modification of its physiological structure or via some revalidation process of
internal mechanisms that directly dictate the response or behavior is crucial in many
real world applications. Optimization lies at the heart of most machine learning
approaches while learning and optimization are two primary means to effect
adaptation in various forms. They usually involve computational processes
incorporated within the system that trigger parametric updating and knowledge
or model enhancement, giving rise to progressive improvement. This book series
serves as a channel to consolidate work related to topics linked to adaptation,
learning and optimization in systems and structures. Topics covered under this
series include:

• complex adaptive systems including evolutionary computation, memetic com-
puting, swarm intelligence, neural networks, fuzzy systems, tabu search, sim-
ulated annealing, etc.

• machine learning, data mining & mathematical programming
• hybridization of techniques that span across artificial intelligence and compu-

tational intelligence for synergistic alliance of strategies for problem-solving
• aspects of adaptation in robotics
• agent-based computing
• autonomic/pervasive computing
• dynamic optimization/learning in noisy and uncertain environment
• systemic alliance of stochastic and conventional search techniques
• all aspects of adaptations in man-machine systems.

This book series bridges the dichotomy of modern and conventional mathematical
and heuristic/meta-heuristics approaches to bring about effective adaptation,
learning and optimization. It propels the maxim that the old and the new can
come together and be combined synergistically to scale new heights in
problem-solving. To reach such a level, numerous research issues will emerge
and researchers will find the book series a convenient medium to track the
progresses made.

More information about this series at http://www.springer.com/series/13543

http://www.springer.com/series/13543

Jiuwen Cao ⋅ Kezhi Mao
Jonathan Wu ⋅ Amaury Lendasse
Editors

Proceedings of ELM-2015
Volume 2
Theory, Algorithms and Applications (II)

123

Editors
Jiuwen Cao
Institute of Information and Control
Hangzhou Dianzi University
Hangzhou, Zhejiang
China

Kezhi Mao
School of Electrical and Electronic
Engineering

Nanyang Technological University
Singapore
Singapore

Jonathan Wu
Department of Electrical and Computer
Engineering

University of Windsor
Windsor, ON
Canada

Amaury Lendasse
Department of Mechanical and Industrial
Engineering

University of Iowa
Iowa City, IA
USA

ISSN 2363-6084 ISSN 2363-6092 (electronic)
Proceedings in Adaptation, Learning and Optimization
ISBN 978-3-319-28372-2 ISBN 978-3-319-28373-9 (eBook)
DOI 10.1007/978-3-319-28373-9

Library of Congress Control Number: 2015958845

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Contents

Large-Scale Scene Recognition Based on Extreme
Learning Machines . 1
Yuanlong Yu, Lingying Wu, Kai Sun and Jason Gu

Partially Connected ELM for Fast and Effective
Scene Classification . 19
Dongzhe Wang, Rui Zhao and Kezhi Mao

Two-Layer Extreme Learning Machine for Dimension Reduction 31
Yimin Yang and Q.M. Jonathan Wu

Distributed Extreme Learning Machine with Alternating
Direction Method of Multiplier. 43
Minnan Luo, Qinghua Zheng and Jun Liu

An Adaptive Online Sequential Extreme Learning Machine
for Real-Time Tidal Level Prediction . 55
Jianchuan Yin, Lianbo Li, Yuchi Cao and Jian Zhao

Optimization of Outsourcing ELM Problems in Cloud Computing
from Multi-parties . 67
Jiarun Lin, Tianhang Liu, Zhiping Cai, Xinwang Liu and Jianping Yin

H-MRST: A Novel Framework for Support Uncertain Data Range
Query Using ELM . 77
Bin Wang, Rui Zhu and Guoren Wang

The SVM-ELM Model Based on Particle Swarm Optimization 93
Miao-miao Wang and Shi-fei Ding

v

http://dx.doi.org/10.1007/978-3-319-28373-9_1
http://dx.doi.org/10.1007/978-3-319-28373-9_1
http://dx.doi.org/10.1007/978-3-319-28373-9_2
http://dx.doi.org/10.1007/978-3-319-28373-9_2
http://dx.doi.org/10.1007/978-3-319-28373-9_3
http://dx.doi.org/10.1007/978-3-319-28373-9_4
http://dx.doi.org/10.1007/978-3-319-28373-9_4
http://dx.doi.org/10.1007/978-3-319-28373-9_5
http://dx.doi.org/10.1007/978-3-319-28373-9_5
http://dx.doi.org/10.1007/978-3-319-28373-9_6
http://dx.doi.org/10.1007/978-3-319-28373-9_6
http://dx.doi.org/10.1007/978-3-319-28373-9_7
http://dx.doi.org/10.1007/978-3-319-28373-9_7
http://dx.doi.org/10.1007/978-3-319-28373-9_8

ELM-ML: Study on Multi-label Classification Using Extreme
Learning Machine . 107
Xia Sun, Jiarong Wang, Changmeng Jiang, Jingting Xu, Jun Feng,
Su-Shing Chen and Feijuan He

Sentiment Analysis of Chinese Micro Blog Based on DNN
and ELM and Vector Space Model . 117
Huilin Liu, Shan Li, Chunfeng Jiang and He Liu

Self Forward and Information Dissemination Prediction Research
in SINA Microblog Using ELM . 131
Huilin Liu, Yao Li and He Liu

Sparse Coding Extreme Learning Machine for Classification. 143
Zhenzhen Sun and Yuanlong Yu

Continuous Top-K Remarkable Comments over Textual Streaming
Data Using ELM . 155
Rui Zhu, Bin Wang and Guoren Wang

ELM Based Representational Learning for Fault Diagnosis
of Wind Turbine Equipment . 169
Zhixin Yang, Xianbo Wang, Pak Kin Wong and Jianhua Zhong

Prediction of Pulp Concentration Using Extreme
Learning Machine . 179
Changwei Jiang, Xiong Luo, Xiaona Yang, Huan Wang
and Dezheng Zhang

Rational and Self-adaptive Evolutionary Extreme Learning
Machine for Electricity Price Forecast . 189
Chixin Xiao, Zhaoyang Dong, Yan Xu, Ke Meng, Xun Zhou
and Xin Zhang

Contractive ML-ELM for Invariance Robust Feature Extraction 203
Xibin Jia and Hua Du

Automated Human Facial Expression Recognition
Using Extreme Learning Machines . 209
Abhilasha Ravichander, Supriya Vijay, Varshini Ramaseshan
and S. Natarajan

vi Contents

http://dx.doi.org/10.1007/978-3-319-28373-9_9
http://dx.doi.org/10.1007/978-3-319-28373-9_9
http://dx.doi.org/10.1007/978-3-319-28373-9_10
http://dx.doi.org/10.1007/978-3-319-28373-9_10
http://dx.doi.org/10.1007/978-3-319-28373-9_11
http://dx.doi.org/10.1007/978-3-319-28373-9_11
http://dx.doi.org/10.1007/978-3-319-28373-9_12
http://dx.doi.org/10.1007/978-3-319-28373-9_13
http://dx.doi.org/10.1007/978-3-319-28373-9_13
http://dx.doi.org/10.1007/978-3-319-28373-9_14
http://dx.doi.org/10.1007/978-3-319-28373-9_14
http://dx.doi.org/10.1007/978-3-319-28373-9_15
http://dx.doi.org/10.1007/978-3-319-28373-9_15
http://dx.doi.org/10.1007/978-3-319-28373-9_16
http://dx.doi.org/10.1007/978-3-319-28373-9_16
http://dx.doi.org/10.1007/978-3-319-28373-9_17
http://dx.doi.org/10.1007/978-3-319-28373-9_18
http://dx.doi.org/10.1007/978-3-319-28373-9_18

Multi-modal Deep Extreme Learning Machine for Robotic
Grasping Recognition . 223
Jie Wei, Huaping Liu, Gaowei Yan and Fuchun Sun

Denoising Deep Extreme Learning Machines
for Sparse Representation . 235
Xiangyi Cheng, Huaping Liu, Xinying Xu and Fuchun Sun

Extreme Learning Machine Based Point-of-Interest Recommendation
in Location-Based Social Networks . 249
Mo Chen, Feng Li, Ge Yu and Dan Yang

The Granule-Based Interval Forecast for Wind Speed 263
Songjian Chai, Youwei Jia, Zhao Xu and Zhaoyang Dong

KELMC: An Improved K-Means Clustering Method
Using Extreme Learning Machine . 273
Lijuan Duan, Bin Yuan, Song Cui, Jun Miao and Wentao Zhu

Wind Power Ramp Events Classification Using Extreme
Learning Machines . 285
Sujay Choubey, Anubhav Barsaiyan, Nitin Anand Shrivastava,
Bijaya Ketan Panigrahi and Meng-Hiot Lim

Facial Expression Recognition Based on Ensemble Extreme
Learning Machine with Eye Movements Information 295
Bo Lu, Xiaodong Duan and Ye Yuan

Correlation Between Extreme Learning Machine
and Entorhinal Hippocampal System . 307
Lijuan Su, Min Yao, Nenggan Zheng and Zhaohui Wu

RNA Secondary Structure Prediction Using Extreme Learning
Machine with Clustering Under-Sampling Technique 317
Tianhang Liu, Jiarun Lin, Chengkun Wu and Jianping Yin

Multi-instance Multi-label Learning by Extreme Learning Machine . . . 325
Chenguang Li, Ying Yin, Yuhai Zhao, Guang Chen and Libo Qin

A Randomly Weighted Gabor Network for Visual-Thermal
Infrared Face Recognition . 335
Beom-Seok Oh, Kangrok Oh, Andrew Beng Jin Teoh,
Zhiping Lin and Kar-Ann Toh

Contents vii

http://dx.doi.org/10.1007/978-3-319-28373-9_19
http://dx.doi.org/10.1007/978-3-319-28373-9_19
http://dx.doi.org/10.1007/978-3-319-28373-9_20
http://dx.doi.org/10.1007/978-3-319-28373-9_20
http://dx.doi.org/10.1007/978-3-319-28373-9_21
http://dx.doi.org/10.1007/978-3-319-28373-9_21
http://dx.doi.org/10.1007/978-3-319-28373-9_22
http://dx.doi.org/10.1007/978-3-319-28373-9_23
http://dx.doi.org/10.1007/978-3-319-28373-9_23
http://dx.doi.org/10.1007/978-3-319-28373-9_24
http://dx.doi.org/10.1007/978-3-319-28373-9_24
http://dx.doi.org/10.1007/978-3-319-28373-9_25
http://dx.doi.org/10.1007/978-3-319-28373-9_25
http://dx.doi.org/10.1007/978-3-319-28373-9_26
http://dx.doi.org/10.1007/978-3-319-28373-9_26
http://dx.doi.org/10.1007/978-3-319-28373-9_27
http://dx.doi.org/10.1007/978-3-319-28373-9_27
http://dx.doi.org/10.1007/978-3-319-28373-9_28
http://dx.doi.org/10.1007/978-3-319-28373-9_29
http://dx.doi.org/10.1007/978-3-319-28373-9_29

Dynamic Adjustment of Hidden Layer Structure for Convex
Incremental Extreme Learning Machine . 345
Yongjiao Sun, Yuangen Chen, Ye Yuan and Guoren Wang

ELMVIS+: Improved Nonlinear Visualization Technique
Using Cosine Distance and Extreme Learning Machines 357
Anton Akusok, Yoan Miche, Kaj-Mikael Björk, Rui Nian,
Paula Lauren and Amaury Lendasse

On Mutual Information over Non-Euclidean Spaces, Data Mining
and Data Privacy Levels . 371
Yoan Miche, Ian Oliver, Silke Holtmanns, Anton Akusok,
Amaury Lendasse and Kaj-Mikael Björk

Probabilistic Methods for Multiclass Classification Problems 385
Andrey Gritsenko, Emil Eirola, Daniel Schupp, Edward Ratner
and Amaury Lendasse

A Pruning Ensemble Model of Extreme Learning Machine
with L1/2 Regularizer . 399
Bo He, Tingting Sun, Tianhong Yan, Yue Shen and Rui Nian

Evaluating Confidence Intervals for ELM Predictions 413
Anton Akusok, Yoan Miche, Kaj-Mikael Björk, Rui Nian,
Paula Lauren and Amaury Lendasse

Real-Time Driver Fatigue Detection Based on ELM 423
Hengyu Liu, Tiancheng Zhang, Haibin Xie, Hongbiao Chen
and Fangfang Li

A High Speed Multi-label Classifier Based on Extreme
Learning Machines . 437
Meng Joo Er, Rajasekar Venkatesan and Ning Wang

Image Super-Resolution by PSOSEN of Local Receptive Fields
Based Extreme Learning Machine . 455
Yan Song, Bo He, Yue Shen, Rui Nian and Tianhong Yan

viii Contents

http://dx.doi.org/10.1007/978-3-319-28373-9_30
http://dx.doi.org/10.1007/978-3-319-28373-9_30
http://dx.doi.org/10.1007/978-3-319-28373-9_31
http://dx.doi.org/10.1007/978-3-319-28373-9_31
http://dx.doi.org/10.1007/978-3-319-28373-9_32
http://dx.doi.org/10.1007/978-3-319-28373-9_32
http://dx.doi.org/10.1007/978-3-319-28373-9_33
http://dx.doi.org/10.1007/978-3-319-28373-9_34
http://dx.doi.org/10.1007/978-3-319-28373-9_34
http://dx.doi.org/10.1007/978-3-319-28373-9_34
http://dx.doi.org/10.1007/978-3-319-28373-9_35
http://dx.doi.org/10.1007/978-3-319-28373-9_36
http://dx.doi.org/10.1007/978-3-319-28373-9_37
http://dx.doi.org/10.1007/978-3-319-28373-9_37
http://dx.doi.org/10.1007/978-3-319-28373-9_38
http://dx.doi.org/10.1007/978-3-319-28373-9_38

Sparse Extreme Learning Machine for Regression 471
Zuo Bai, Guang-Bin Huang and Danwei Wang

WELM: Extreme Learning Machine with Wavelet Dynamic
Co-Movement Analysis in High-Dimensional Time Series 491
Heng-Guo Zhang, Rui Nian, Yan Song, Yang Liu,
Xuefei Liu and Amaury Lendasse

Imbalanced Extreme Learning Machine for Classification
with Imbalanced Data Distributions . 503
Wendong Xiao, Jie Zhang, Yanjiao Li and Weidong Yang

Author Index . 515

Contents ix

http://dx.doi.org/10.1007/978-3-319-28373-9_39
http://dx.doi.org/10.1007/978-3-319-28373-9_40
http://dx.doi.org/10.1007/978-3-319-28373-9_40
http://dx.doi.org/10.1007/978-3-319-28373-9_41
http://dx.doi.org/10.1007/978-3-319-28373-9_41

Large-Scale Scene Recognition Based
on Extreme Learning Machines

Yuanlong Yu, Lingying Wu, Kai Sun and Jason Gu

Abstract For intelligent robots, scene recognition aims to find a semantic expla-

nation of a scene, i.e., it helps the robots to know where they are. It can be widely

applied into various robotic tasks, e.g, topological localization, simultaneous local-

ization and mapping and autonomous navigation. Many of existing methods for scene

recognition focused on how to build scene features, such as holistic representations

and bags of visual words. However, less attention is put on the classification. Due to

the huge number of scene classes in the real world, the variances within each class

and the shared features between classes, the classification becomes a challenging

issue for scene recognition. This paper proposes an ensemble method for large-scale

scene recognition. This proposed method builds a three-level hierarchy for recogniz-

ing 397 classes of scenes in the real world. At each level, an ensemble-based classifier

is built by using 13 types of features. Extreme learning machine is employed as the

basic classifier in each ensemble-based classifier. Experimental results have shown

that this proposed method outperforms other state-of-the-art methods in terms of

recognition accuracy.

This work is supported by National Natural Science Foundation of China (NSFC) under grant

61473089.

Y. Yu (✉) ⋅ L. Wu ⋅ K. Sun ⋅ J. Gu

College of Mathematics and Computer Science, Fuzhou University,

Fuzhou 350116, Fujian, China

e-mail: yu.yuanlong@fzu.edu.cn

Y. Yu ⋅ L. Wu ⋅ K. Sun ⋅ J. Gu

Department of Electrical and Computer Engineering, Dalhousie University,

Halifax, NS, Canada

J. Gu

e-mail: jgu@dal.ca

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_1

1

2 Y. Yu et al.

1 Introduction

Scene recognition is a fundamental problem in cognitive science, computer vision

and robotics. It can be widely applied into computer vision tasks, e.g., object retrieval

[1] and 3D reconstruction [2], and robotic tasks, e.g, topological localization, simul-

taneous localization and mapping (SLAM) [3, 4] and autonomous navigation [5].

During the past decades, the community of robotics proposed several methods,

which can recognize where the robot is by identifying landmark objects [6, 7] or

segmented regions [5, 8] in the scene. This type of methods is partially inspired

by original psychological assumption that scene recognition is a progressive recon-

struction of the input from local measurements [9].

But recent psychological experiments suggest that humans have an ability to

instantly summarize the characteristics of the whole scene prior to attentional selec-

tion [10–14], i.e., local information might be spontaneously ignored during a rapid

categorization of scenes. This fact indicates that object variations have less influence

on scene recognition even when these variations affect meaningful parts of the scene

[15–17]. Inspired by these cognitive findings, a number of holistic representations

(e.g., gist [18–21] and bags of features [22–24]) based methods have been proposed

for scene recognition in the community of computer vision.

However, less attention is put on the classification issues. The first issue is caused

by the large scale of scenes. Large scale indicates that not only the number of scene

classes but also the number of training samples are very large. Currently, the 15-

categories scene database [25] is widely used for evaluation. But the number of

scenes in real environment is very far from 15, e.g., the SUN database [24] used

in this paper contains 397 scene classes, as shown in Fig. 1. This fact imposes

large burden on classifier design. Some hierarchical methods [24, 25] has been pro-

posed for scene classification, but the ability at identifying multiple classes is still

required for each base classifier, especially in large scale cases. Unfortunately, most

of existing methods employ one-to-all support vector machine (SVM) [22, 24] or

back-propagation based neural network (BP-NN) [21] as base classifiers. Although

one-to-all strategy can accommodate multi-class cases, it has to face the problem of

serious unbalance between the numbers of positive and negative training samples,

especially when the number of negative classes is very large. Although BP-NN is

theoretically capable of learning any types of nonlinear classification boundary, it is

likely to go into a local optimum and the computational burden for training is also

unaffordable.

The third issue is about the inter-class similarity, i.e., different classes share some

features. For example, the spatial layouts and contained instruments (e.g., shelves)

are similar between bookstore and archive scenes as shown in Fig. 2a, the trees

and their layouts are similar between forest path and forest road scenes as shown in

Fig. 2c. This issue would lead to serious ambiguity for classification.

This paper attempts to propose a new method for scene classification by solving

the above three issues such that recognition accuracy and computational efficiency

Large-Scale Scene Recognition Based on Extreme Learning Machines 3

Fig. 1 Examples of large-scale scenes in real environment. This images are from the SUN database

for large-scale cases are both improved. This proposed method builds a three-level

hierarchy for recognizing 397 types of scenes.

The first contribution of this proposed method is to use extreme learning machine

(ELM) [26] as the basic classifier in the hierarchy to address the first issue. ELM has

shown great ability to fit nonlinear classification boundaries such that each basic

classifier has better predictive performance on multi-class identification compared

against SVM based one-to-all strategy. Furthermore, ELM can theoretically obtain

a global optimum such that it is unlikely to fall into a local optimum. In terms of

computation, the training cost of ELM is much lower compared with BP-NN.

The second contribution is to use the ensemble-based classification strategy [27]

to address the second issue. In order to delineate various facets of each scene, a set of

training samples obtained in terms of various types of features (e.g., denseSIFT [22]

and sparseSIFT based on Hessian-affine interest points [28]) are required. Based on

these sets of samples with various features, this proposed method trains ensemble

classifiers by using the bagging strategy [29].

Furthermore, the combination of a set of distinct features (totally 13 features used

in this proposed method) with ensemble classifiers can also address the inter-class

similarity issue (i.e., the third issue) in the sense that the ensemble-based training

process favorites those features which can improve classification power.

The remainder of this paper is organized as follows. The details of this proposed

method are presented in Sect. 2 and experimental results are given in Sect. 3.

4 Y. Yu et al.

Fig. 2 Inter-class similarity between scenes. Columns 1 and 2 represent a scene and columns

3 and 4 represent another scene in each row. a Bookstore and archive. b Golf course and baseball

field. c Forest path and forest road. d Cafeteria and Bistro

2 Exposition of the Proposed Scene Recognition

2.1 Hierarchy of the Scene Recognition

The proposed scene recognition method has a three-level hierarchy as shown in

Fig. 3. The underlying idea of building this hierarchy includes two facets: First, the

relationship between levels and definition of categories are both based on semantic

understanding; Secondly, this hierarchy is organized in an ascending order in terms

of classification accuracy. SUN database [24] is used as data source to build the

hierarchy presented as follows.

Large-Scale Scene Recognition Based on Extreme Learning Machines 5

Fig. 3 Three-level

hierarchy of the proposed

scene recognition method

The first level only includes one ensemble-based classifier which identifies the test

sample to one of three categories, i.e., indoor, outdoor nature or outdoor manmade

category.

The second level is composed of three ensemble-based classifiers, respectively

named indoor, outdoor-nature and outdoor-manmade classifiers, each of which cor-

responds to an output category at the first level. That is, the test sample is sent to the

corresponding classifier according to the output at the first level. The indoor classi-

fier assigns the test sample to one of 6 subcategories, the outdoor-nature classifier

assigns the test sample to one of 3 subcategories, and the outdoor-manmade clas-

sifier assigns the test sample to one of 6 subcategories. Thus the number of output

subcategories at the second level is 15.

The third level consists of fifteen ensemble-based classifiers, each of which cor-

responds to an output subcategory at the second level. Each classifier at this level

determines the final label to indicate which scene class the test sample belongs to.

6 Y. Yu et al.

Fig. 4 Bagging strategy for

the ensemble-based scene

classification

2.2 Ensemble-Based Classifier

In the proposed hierarchy, the structure of each ensemble-based classifier is shown

in Fig. 4. This ensemble consists of a set of basic classifier, called feature-based
classifiers, each of which corresponds to a feature type. Each feature-based classifier

is implemented by an ELM. The training and recognition processes of an ELM-based

basic classifier can be seen in Sect. 2.3. The number of feature types is denoted as T .

For each ensemble-based classifier, the training process is to learn all of its basic

classifiers. All types of T features are extracted for each training image. Then each

set of training samples in terms of feature t, denoted as {𝐱𝐬,𝐭}s=1,...S,t=1,...T , is used to

train the corresponding basic classifier.

During the recognition process, bagging strategy [29] is used to achieve the final

classification label for each ensemble-based classifier, as shown in Fig. 4. Given

a testing scene image I, all types of features {𝐱t}t=1,...,T are extracted. Each fea-

ture sample 𝐱t is first sent to the corresponding basic classifier belonging to feature

t to achieve output label. Once all feature samples {𝐱t}t=1,...,T get their own labels,

these labels ranging from feature-1 to feature-T are voted to get a final label which

indicates the classification output of the ensemble-based classifier for the testing

image I.

2.3 ELM based Basic Classifiers

2.3.1 Structure of an ELM-Based Classifier

ELM is a machine learning algorithm for training single-hidden-layer feed-forward

neural networks whose structure is shown in Fig. 5.

The input layer is connected to the input feature vector 𝐱 of a scene image. At

the hidden layer, the number of hidden nodes is denoted as L. The activation func-

tion of each hidden node i is denoted as g(𝐱;𝐰i, bi), where 𝐰i is the input weight
vector between this hidden node and all input nodes, bi is the bias of this node

and i = 1, ...,L. At the output layer, the number of output nodes is denoted as M.

For classification application, M also indicates the number of classes. The output
weight between the i-th hidden node and the j-th output node is denoted as 𝛽i,j, where

Large-Scale Scene Recognition Based on Extreme Learning Machines 7

Fig. 5 Structure of an

ELM-based classifier

j = 1, ...,M. The value of an output node is calculated as shown in (1). Each output

node represents a class.

fj(𝐱) =
L∑

i=1
𝛽i,j × g(𝐱;𝐰i, bi) (1)

2.3.2 Training Process of an ELM-based Classifier

The supervised training requires N training sample pairs, each of which consists

of a feature vector 𝐱k and its binary class label vector (i.e., ground truth) 𝐝k =
[dk,1,… , dk,M], where k = 1, ...,N. In the label vector, each entry indicates whether

or not the sample 𝐱k belongs to the corresponding class. All labels can form a matrix

denoted as 𝐃 = [𝐝1,… ,𝐝N]T .

It can be seen that the training parameters for an ELM include the input weights

and biases {𝐰i, bi}i=1,…,L as well as the output weight vector 𝜷 as shown in (4). In

the ELM algorithm, the input weights and biases are randomly assigned. Therefore

only 𝜷 is trained.

Let 𝐲k denote the actual output vector for the input 𝐱k. Taking all training samples

{xk} into (1) can form a linear representation:

𝐇𝜷 = 𝐘 (2)

where

𝐇 =
⎡
⎢
⎢⎣

𝐡(𝐱1)
⋮

𝐡(𝐱N)

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

g(𝐱1;𝐰1, b1) ⋯ g(𝐱1;𝐰L, bL)
⋮ ⋮ ⋮

g(𝐱N ;𝐰1, b1) ⋯ g(𝐱N ;𝐰L, bL)

⎤
⎥
⎥⎦

(3)

8 Y. Yu et al.

𝜷 =
⎡
⎢
⎢⎣

𝜷1
⋮
𝜷L

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

𝛽1,1 ⋯ 𝛽1,M
⋮ ⋮ ⋮
𝛽L,1 ⋯ 𝛽L,M

⎤
⎥
⎥⎦

(4)

and

𝐘 =
⎡
⎢
⎢⎣

𝐲1
⋮
𝐲N

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

y1,1 ⋯ y1,M
⋮ ⋱ ⋮

yN,1 ⋯ yN,M

⎤
⎥
⎥⎦

(5)

The training process aims to minimize the training error ‖𝐃 −𝐇𝜷‖2 and the

norm of output weight ‖𝜷‖ [26]. So the training process can be represented as a

constrained-optimization problem:

Minimize: 𝛹 (𝜷, 𝝃) = 1
2
‖𝜷‖2 + C

2
‖𝝃‖2

Subject to: 𝐇𝜷 = 𝐃 − 𝝃
(6)

where a constant C is used as a regulation factor to control the trade-off between the

closeness to the training data and the smoothness of the decision function such that

generalization performance is improved.

Lagrange multiplier technique is used to solve the above optimization problem by

construct the lagrangian:

Lp(𝜷, 𝝃,𝜶) =
1
2
‖𝜷‖2 + C

2
‖𝝃‖2 − 𝜶 ⋅ (𝐇𝜷 − 𝐃 + 𝝃) (7)

where 𝜶 is a Lagrange multiplier matrix with dimensions of N ×M. Since the con-

straints in (6) are all equalities, 𝜶 can be either positive or negative.

Based on KKT optimization conditions, gradients of Lp with respect to 𝜷, 𝝃 and

𝜶 can be obtained as follows:

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝜕Lp
𝜕𝜷

= 0 → 𝜷 = 𝐇T𝜶 (8a)

𝜕Lp
𝜕𝝃

= 0 → 𝜶 = C𝝃 (8b)

𝜕Lp
𝜕𝜶

= 0 → 𝝃 = 𝐃 −𝐇𝜷 (8c)

By substituting (8b) and (8c) into (8a), the above equations can be written as

(𝐈
C

+𝐇T𝐇)𝜷 = 𝐇T𝐃 (9)

Large-Scale Scene Recognition Based on Extreme Learning Machines 9

If matrix (𝐈
C
+𝐇T𝐇) is not singular, solution ̂𝜷 can be obtained as

̂𝜷 = (𝐈
C

+𝐇T𝐇)−1𝐇T𝐃 (10)

By substituting (8a) and (8b) into (8c), the above equations can be also written as

(𝐈
C

+𝐇𝐇T)𝜶 = 𝐃 (11)

If matrix (𝐈
C
+𝐇𝐇T) is not singular, solution ̂𝜷 can be obtained by substituting

(11) into (8a)

̂𝜷 = 𝐇T (𝐈
C

+𝐇𝐇T)−1𝐃 (12)

It can be seen that the dimensions of (𝐈
C
+𝐇T𝐇) is L × L while (𝐈

C
+𝐇𝐇T) is

N × N. Therefore, if the number of training samples is huge, the solution in (10) can

be used to decrease computational cost; Otherwise, the solution in (12) can be used.

It has been proved that the universal approximation can be satisfied if the acti-

vation function g is a nonlinear piecewise continuous function [30–32]. This paper

uses sigmoid function as shown in (13).

g(𝐱;𝐰i, bi) =
1

1 + exp[−(𝐰i ⋅ 𝐱 + bi)]
(13)

Algorithm 1 Training routine of an ELM-based classifier

1: Given a set of training samples {(𝐱k, 𝐲k)k=1,...,N}, activation function g and

hidden node number L:

2: Step 1: Randomly assign input weight vector 𝐰i and bias bi, where i = 1, ...,L,

using uniform distribution;

3: Step 2: Normalize values of {𝐱k} into the range [0, 1] and calculate matrix 𝐇;

4: Step 3: Estimate the output weight ̂𝜷 by using (10) or (12).

The training routine for the ELM-based classifier used in this proposed method

is shown in Algorithm 1.

Compared with other learning algorithms, e.g. BP algorithm, for neural networks,

ELM randomly sets input weights and biases at the hidden layer without training such

that the output weights can be quickly estimated based on the least-squares strategy.

It can be seen that there are only two tuning parameters: One is the number of hidden

nodes (i.e., L) and the other is the regularization factor (i.e., C).

10 Y. Yu et al.

2.3.3 Recognition Process of an ELM-based Classifier

Given the trained output weight ̂𝜷, the output label vector 𝐅(𝐱) for a test sample 𝐱 is

obtained by using (14).

𝐅(𝐱) =
⎡
⎢
⎢⎣

f1(𝐱)
⋮

fM(𝐱)

⎤
⎥
⎥⎦
= ̂𝜷

T
𝐆(𝐱) (14)

where

𝐆(𝐱) =
⎡
⎢
⎢⎣

g(𝐱;𝐰1, b1)
⋮

g(𝐱;𝐰L, bL)

⎤
⎥
⎥⎦

(15)

The class label of 𝐱 is determined as

label(𝐱) = argj=1,...,M max fj(𝐱) (16)

3 Experiments

3.1 Experimental Setup

The proposed scene recognition method is tested over the SUN database [24]. This

data set has collected 130519 images which cover 397 classes of scenes. The image

size ranges from 174 × 193 to 3648 × 2736. The images are divided into 10 sets per

class and there are 50 images for training and 50 images for test per set. The average

recognition rate among these 10 sets is used for performance evaluation.

There are 13 types of features extracted for each image, i.e., the feature num-

ber T as shown in Fig. 4 is 13 in our experiments. These features include dense

SIFT [22], sparse SIFT [33], histogram of oriented gradients (HOG) [34], gist [18,

21], local binary patterns (LBP) [35], LBP histogram Fourier (LBPHF) [36], self-

similarity (SSIM) [23], texton histogram [19], geometry texton histogram [24], geo-

metric classification map [37], geometry color histogram [24], tiny image [38], and

line histogram [39].

The performance of this proposed method is compared against SVM based method

[24] (as a representative of one-to-all strategy) and BP-NN with two hidden layers

(as a representative of nonlinear multi-class identification strategy).

Large-Scale Scene Recognition Based on Extreme Learning Machines 11

Fig. 6 Average recognition

rate curves with respect to

parameter L in terms of

individual features at each

level. a Level 1. b Level 2.

c Level 3

12 Y. Yu et al.

Fig. 7 Average recognition

rate curves with respect to

parameter C in terms of

individual features at each

level. a Level 1. b Level 2.

c Level 3

Large-Scale Scene Recognition Based on Extreme Learning Machines 13

3.2 Tuning Parameters

The ELM based classifier has only two tuning parameters, including number of hid-

den nodes L and regulation factor C. Our experiments first evaluate performance of

each feature-based classifier at individual levels. The average recognition rate curves

at three levels with respect to L and C are shown in Figs. 6 and 7 respectively. These

two figures illustrate the effects of L and C:

1. With the increase of the number of hidden nodes L, recognition rate goes up for

all features. But it becomes stable when L reaches a certain level for most features.

The optimal settings of L are dependent on the number of training samples and

the number of classes of each basic classifier.

2. With the increase of the regulation factor C, recognition rate goes up for all fea-

tures. But it goes down slowly or dramatically after C passes over a threshold.

The optimal settings of C are very different between features due to the variety

in terms of sparsity, data type and value ranges.

Optimal settings of these two tuning parameters for individual features at each

level are shown in Tables 1 and 2 respectively.

3.3 Overall Recognition Performance

The overall average recognition rates for 397 classes in terms of individual features

and by combination of all features are shown in Table 3. The recognition rates by

Table 1 Optimal setting of tuning parameter L for individual features at each level

L Level 1 Level 2 Level 3

Gist 7500 15000 4000

LBP 7500 7500 2000

HOG 20000 7500 7500

Dense SIFT 20000 7500 750

Sparse SIFT 5000 25000 10000

Texton histogram 10000 25000 3000

Geometry classification map 5000 20000 5000

LBPHF 25000 25000 3000

Geometry texton histogram 5000 20000 10000

Tiny images 5000 25000 10000

SSIM 25000 5000 1000

Straight line histogram 7500 25000 10000

Geometry color histogram 5000 20000 10000

14 Y. Yu et al.

Table 2 Optimal setting of tuning parameter C for individual features at each level

C Level 1 Level 2 Level 3

Gist 100 100 100

LBP 10 10 10

HOG 1000 1 1

Dense SIFT 1000 1 10

Sparse SIFT 0.001 0.01 0.001

Texton histogram 100 100 100

Geometry classification map 0.1 0.1 1

LBPHF 10 10 10

Geometry texton histogram 0.001 0.01 0.01

Tiny images 0.001 0.01 0.01

SSIM 1000 10 10

Straight line histogram 0.001 0.01 0.01

Geometry color histogram 0.001 0.001 0.01

Table 3 Overall average recognition rates for 397 classes

ELM based (%) SVM based (%) BP-NN (%)

All features 42.2 38.0 8.8

Gist 31.7 16.3 1.8

LBP 31.3 18.0 1.7

HOG 30.2 27.2 0.4

Dense SIFT 30.2 21.5 0.3

Sparse SIFT 29.6 11.5 0.8

Texton histogram 29.2 17.6 0.4

Geometry

classification map

28.9 6.1 2.4

LBPHF 28.2 12.8 1.1

Geometry texton

histogram

28.0 23.5 1.9

Tiny image 28.0 5.5 7.9

SSIM 27.8 22.5 0.7

Straight line histogram 27.5 5.7 1.2

Geometry color

histogram

25.5 9.2 0.4

using SVM based method [24] and BP-NN based method are also shown in this table.

It can be seen that the average recognition rate of this proposed ELM-based method

by using all features reaches to 42.2 %. It is 4.2 % higher than SVM-based method

and much higher than BP-NN based method.

Large-Scale Scene Recognition Based on Extreme Learning Machines 15

Fig. 8 Patterns of confusion across 397 classes. a This proposed ELM based method. b SVM

based method (obtained from [24])

Figure 8 shows the patterns of confusion across classes obtained by this proposed

method and SVM based method. The coordinates in X-axis and Y-axis denote 397

classes. The color at a point with coordinates (x, y) represents the number of test

samples whose ground truth label is x while the recognized label is y. It can be seen

that SVM based method shows more points in the non-diagonal region while less

16 Y. Yu et al.

points along the diagonal line compared with this proposed method. It indicates that

there are more true positives while less false positives and false negatives of this

proposed method.

4 Conclusion

This paper proposes an ensemble method for large-scale scene recognition. This pro-

posed method builds a three-level hierarchy for recognizing 397 classes of scenes

in the real world. At each level, an ensemble-based classifier is built by using 13

types of features. Extreme learning machine is employed as the basic classifier in

each ensemble-based classifier. Experimental results have shown that this proposed

method outperforms other state-of-the-art methods in terms of recognition accuracy.

Future work includes the use of deep neural networks to evaluate the classification

performance for the large-scale scenes.

References

1. Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve object

retrieval. In: Proceedings of IEEE International Conference on Computer Vision and Pattern

Recognition, pp. 1–5 (2012)

2. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building room in a day. In: Pro-

ceedings of International Conference on Computer Vision, pp. 1–5 (2010)

3. Johns, E., Yang, G.Z.: Dynamic scene models for incremental, long-term, appearance-based

localization. In: Proceedings of International Conference on Robotics and Automation, pp. 1–5

(2011)

4. Cummins, M., Newman, P.: Highly scalable appearance-only slam-fab-map 2.0. In: Proceed-

ings of International Conference on Robotics: Science and Systems, pp. 1–5 (2009)

5. Katsura, H., Miura, J., Hild, M., Shirai, Y.: A view-based outdoor navigation using object

recognition robust to changes of weather and seasons. In: Proceedings of IEEE/RSJ Interna-

tional Conference of Inteligent Robots and Systems (IROS), pp. 2974–2979 (2003)

6. Abe, Y., Shikano, M., Fukuda, T., Arai, F., Tanaka, Y.: Vision based navigation system for

autonomous mobile robot with global matching. In: Proceedings of International Conference

of Robotics and Automation, pp. 1299–1304 (1999)

7. Thrun, S.: Finding landmarks for mobile robot navigation. In: Proceedings of International

Conference of Robotics and Automation, pp. 958–963 (1998)

8. Matsumoto, Y., Inaba, M., Inoue, H.: View-based approach to robot navigation. In: Proceedings

of IEEE/RSJ International Conference of Inteligent Robots and Systems (IROS), pp. 1702–

1708 (2000)

9. Barrow, H.G., Tannenbaum, J.M.: Recovering intrinsic scene characteristics from images. In:

Hanson, A., Riseman, E. (eds.) Computer Vision Systems, pp. 3–26. Academic Press, New

York (1978)

10. Potter, M.C.: Meaning in visual search. Science 187(4180), 965–966 (1975)

11. Biederman, I.: Aspects and extension of a theory of human image understanding. In: Pylyshyn,

Z. (ed.) Computational Processes in Human Vision: An Interdisciplinary Perspective. Ablex

Publishing Corporation, New Jersey (1988)

Large-Scale Scene Recognition Based on Extreme Learning Machines 17

12. Tversky, B., Hemenway, K.: Categories of the environmental scenes. Cogn. Psychol. 15, 121–

149 (1983)

13. Rensink, R.A., O’Regan, J.K., Clark, J.J.: To see or not to see: the need for attention to perceive

changes in scenes. Psychol. Sci. 8, 368–373 (1997)

14. Sanocki, T., Epstein, W.: Priming spatial layout of scenes. Psychol. Sci. 8, 374–378 (1997)

15. Oliva, A., Schyns, P.: Colored diagnostic blobs mediate scene recognition. Cogn. Psychol. 41,

176–210 (2000)

16. O’Regan, J.K., Rensink, R.A., Clark, J.J.: Change-blindness as a result of ’mudsplashes. Nature

398, 34 (1999)

17. Rensink, R.A.: The dynamic representation of scenes. Vis. Cogn. 7, 17–42 (2000)

18. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial

envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

19. Renninger, L., Malik, J.: When is scene identification just texture recognition? Vis. Res. 44(19),

2301–2311 (2004)

20. Torralba, A.: Contextual priming for object detection. Int. J. Comput. Vis. 53(2), 153–167

(2003)

21. Siagian, C., Itti, L.: Rapid biologically-inspired scene classification using features shared with

visual attention. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 300–312 (2007)

22. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for

recognizing natural scene categories. In: Proceedings of International Conference on Computer

Vision and Pattern Recognition, pp. 2169–2178 (2006)

23. Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: Pro-

ceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp.

1–8 (2007)

24. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recog-

nition from abbey to zoo. In: Proceedings of IEEE International Conference on Computer

Vision and Pattern Recognition, pp. 1–5 (2010)

25. Li, F.-F., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In:

Proceedings of International Conference on Computer Vision and Pattern Recognition, pp. 1–6

(2005)

26. Huang, H.-G., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and

multiclass classification. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(2), 513–529

(2012)

27. Rokach, L.: Ensemble-based classifier. Artif. Intell. Rev. 33, 1–39 (2010)

28. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable

extremal regions. In: Proceedings of International Conference on Computer Vision and Pattern

Recognition, pp. 1–6 (2006)

29. Breiman, L.: Bagging predictor. University of California, Berkeley. Technical Report 421

(1994)

30. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental constructive

feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892

(2006)

31. Huang, G.-B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing

70(16–18), 3056–3062 (2007)

32. Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learning

machine. Neurocomputing 71(16–18), 3460–3468 (2007)

33. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput.

Vis. 60(1), 63–86 (2004)

34. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of

IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2005)

35. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant tex-

ture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7),

971–987 (2002)

18 Y. Yu et al.

36. Ahonen, T., Matas, J., He, C., Pietikainen, M.: Rotation invariant image description with local

binary pattern histogram fourier features. Image Anal. Lect. Notes Comput. Sci. 5575, 61–70

(2009)

37. Hoiem, D., Efros, A.A., Hebert, M.: Recovering surface layout from an image. Int. J. Comput.

Vis. 75(1), 151–172 (2007)

38. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data set for nonpara-

metric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–

1970 (2008)

39. Kosecka, J., Zhang, W.: Video compass. In: Proceedings of European Conference on Computer

Vision, pp. 476–490 (2002)

Partially Connected ELM for Fast
and Effective Scene Classification

Dongzhe Wang, Rui Zhao and Kezhi Mao

Abstract Scene classification is often solved as a machine learning problem, where

a classifier is first learned from training data, and class labels are then assigned

to unlabelled testing data based on the outputs of the classifier. Generally, image

descriptors are represented in high-dimensional space, where classifiers such as

support vector machine (SVM) show good performance. However, SVM classi-

fiers demand high computational power during model training. Extreme learning

machine (ELM), whose synaptic weight matrix from the input layer to the hidden

layer are randomly generated, has demonstrated superior computational efficiency.

But the weights thus generated may not yield enough discriminative power for hid-

den layer nodes. Our recent study shows that the random mapping from the input

layer to the hidden layer in ELM can be replaced by semi-random projection (SRP)

to achieve a good balance between computational complexity and discriminative

power of the hidden nodes. The application of SRP to ELM yields the so-called

partially connected ELM (PC-ELM) algorithm. In this study, we apply PC-ELM

to multi-class scene classification. Experimental results show that PC-ELM outper-

forms ELM in high-dimensional feature space at the cost of slightly higher compu-

tational complexity.

Keywords Scene classification ⋅ Extreme learning machine ⋅ Support vector

machine ⋅ Partially connected extreme learning machine

D. Wang (✉) ⋅ R. Zhao ⋅ K. Mao

School of Electrical and Electronic Engineering, Nanyang Technological University,

50 Nanyang Avenue, Singapore, Singapore

e-mail: DWANG015@e.ntu.edu.sg

R. Zhao

e-mail: RZHAO001@e.ntu.edu.sg

K. Mao

e-mail: EKZMAO@ntu.edu.sg

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_2

19

20 D. Wang et al.

1 Introduction

In this paper, we consider the problem of scene classification, which is an impor-

tant issue in many fields such as robotics and Unmanned Aerial Vehicle (UAV).

Scene classification is often solved as a machine learning problem. A machine

learning-based scene classification system consists of two main components, namely

feature extraction and pattern classification. In computer vision studies, a number of

feature extraction methods based on bag-of-features (BoF) [1] have been proposed

(e.g., SIFT [2], GIST [3], etc.). In scene classification tasks, SVM [5, 6] classifiers

are widely used.

One common but intractable problem in scene classification is that there are lim-

ited number of labeled image data for training while the dimensionality of image fea-

ture space is usually very high. Because of the so called “curse of dimensionality”

[4], a low ratio of training sample size to feature dimension may lead to classifier

over-fitting. To alleviate the over-fitting problem, support vector machine (SVM)

attempts to find a discriminant function that maximizes the margin of separation,

i.e., the shortest distance of training samples to the decision boundary. Although

SVM has achieved high compatibility and robust performance in high-dimensional

domains, it is often complained of its high computational complexity, especially for

kernel SVMs.

Recently, a unified single-hidden-layer feedforward neural network namely

extreme learning machine (ELM) [7] has been proposed. It has rapidly drawn atten-

tions because of its much faster learning speed than SVMs, expecially in high-

dimensional space. This is because the synaptic weights from the input layer to the

hidden layer in ELM are randomly generated, without involving any learning proce-

cure. The synaptic weights from the input layer to the hidden layer plays the role of a

linear mapping. Thus, the random weights in ELM can be interpreted as the matrix

of a random projection (RP).

Inspired by the idea of random projection (RP), Zhao et al. [8] have proposed a

Semi-Random Projection (SRP) framework, which takes the advantage of random

feature sampling of RP, but employs learning mechanism in the determination of the

mapping matrix. The SRP method was applied to ELM architecture to yield the so

called “partially connected ELM” (PC-ELM). The supervised learning mechanism

within SRP framework is able to find a latent space with large discriminative power

and meanwhile to keep the computational complexity low because the semi-random

projection is obtained through supervised learning in low dimensional space. Hence,

PC-ELM can generates hidden layer nodes with more discriminative power than the

original ELM. The main merit of PC-ELM is that it achieves a good balance between

computational complexity and generalization performance.

In this work, we present a study of PC-ELM for the scene classification prob-

lem. Most image feature extraction methods generate high-dimensional image rep-

resentations. Regardless of the consistent high learning speed of ELM and robust

performance of SVM, the balance of classification performance and computational

Partially Connected ELM for Fast and Effective Scene Classification 21

simplicity is our major concern, especially when the feature space dimensionality is

very high. In a sense, PC-ELM manages to achieve this balance by taking the merits

of random feature sub-sampling of the SRP algorithm.

2 Semi-random Projection for Extreme Learning Machine

In this section, we first briefly review Extreme Learning Machine (ELM) and the

connection between random projection (RP) and ELM. We then discuss the SRP

method proposed in [8] and the SRP-based partially connected ELM (PC-ELM).

2.1 Extreme Learning Machine (ELM)

ELM is originally proposed as a generalized single-hidden-layer feedforward neural

network whose hidden layer nodes need not be tuned [7]. Given a set of training data

𝐗 = [𝐱𝟏, 𝐱𝟐,… , 𝐱𝐍], where 𝐱i ∈ ℝd
with class label yi ∈ {1, 2,… ,Nc}, the output

of ELM is given as follows:

f (𝐱) =
M∑

i=1
𝛽ihi(𝐱) = 𝐡(𝐱)𝜷 (1)

where 𝐡(𝐱) = [h1(𝐱),… , hM(𝐱)] represents the output of the M hidden layer nodes

with respect to the input sample 𝐱, and 𝜷 = [𝛽1,… , 𝛽M]T denotes the weights con-

necting the hidden layer and the output layer. By minimizing the training error and

the norm of vector 𝜷, the output weights 𝜷 can be found as follows:

𝜷 = 𝐇T
(

I
C

+𝐇𝐇T
)−1

𝐲 (2)

where C is the cost parameter, and 𝐇 is the hidden-layer output matrix:

𝐇 =
⎡
⎢
⎢⎣

𝐡(𝐱1)
⋮

𝐡(𝐱N)

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

h1(𝐱1) ⋯ hM(𝐱1)
⋮ ⋱ ⋮

h1(𝐱N) ⋯ hM(𝐱N)

⎤
⎥
⎥⎦

. (3)

Since the hidden nodes perform nonlinear piecewise continuous activation func-

tions, the output of hidden layer is given as:

𝐡(𝐱) = [G(𝐰1, b1, 𝐱),… ,G(𝐰M , bM , 𝐱)] (4)

22 D. Wang et al.

where G denotes the activation function. One of the most popular activation func-

tions is the sigmoid function:

G(𝐰i, bi, 𝐱) =
1

1 + exp(−z)
(5)

z = 𝐰i𝐱 + bi (6)

where {(𝐰i, bi)}Mi=1 are randomly sampled according to any continuous probability

distribution.

ELM can be interpreted as the integration of three parts: linear random mapping;

nonlinear activation; and linear model learning. The linear random mapping is a kind

of random projection (RP). Similar discussions on the relationship between RP and

ELM can be found in [12], which combines ELM with RP. Unlike the RP which

aims to reduce dimensionality, the linear random mapping in ELM often maps data

to even higher dimension. Usually the number of hidden nodes for RP in ELM is

larger than the data dimension.

2.2 Random Projection (RP)

Given a set of training data denoted by matrix 𝐗 ∈ ℝN×d
, where N and d are the data

dimension and the sample number of data. We can simply transform the data 𝐗 by

mapping from the original space to a new space:

𝐇 = 𝐗𝐖 (7)

where 𝐖 ∈ ℝd×r
is the linear transformation matrix, and 𝐇 ∈ ℝN×r

denotes the new

data representation.

In [9, 10], RP has been proposed as a dimensionality reduction method. RP

method is effective to address the computational complexity issue because the trans-

formation matrix 𝐖 in RP is generated randomly. However, the randomly generated

mapping matrix has some limitations. Without any supervised parameter learning or

tuning, RP may not capture the information underlying the data.

The above mentioned limitation of RP is illustrated in Fig. 1. The figure shows

samples from two classes in a two-dimensional feature space, which are depicted in

red and blue, respectively. As the RP method project the data points onto randomly

defined directions, two cases are demonstrated in Fig. 1. We provide an optimal case

2 (separable case), where the projection onto the dash dot line will result in good

class separability. However, it is more likely to obtain a result as shown in case 1

(inseparable case) if the data points are projected on the dash line. After all, it is

hard to yield ideal projections by solely relying on random projection without using

any learning algorithms. The random operation shared by RP and linear random

mapping in ELM inspires Zhao et al. [8] to introduce the semi-random projection

(SRP) to ELM.

Partially Connected ELM for Fast and Effective Scene Classification 23

Fig. 1 Illustrations of two possible cases of RP

2.3 Semi-random Projection (SRP)

To address the limitation of RP analysed above, Ref. [8] proposed a novel dimension-

ality transformation framework called Semi-Random Projection (SRP). In contrast

to RP, the main idea of SRP is to learn a latent space where the task-related infor-

mation can be preserved and meanwhile the learning speed would not drop much.

The SRP consists of two parts: random sampling of features (random process) and

the transformation matrix learning (non-random process).

Suppose we are given training data 𝐗 ∈ ℝN×d
, a subset of ds (ds is an integer

close to

√
d) features is randomly selected. Then the original data matrix is reduced

to a sub-matrix ̂𝐗i with a smaller size of N × ds in the ith iteration. The iterative

transformation matrix 𝐰i ∈ ℝds×r maps data ̂𝐗i into the r-dimensional space as

follows:

𝐡i = ̂𝐗i𝐰i (8)

where 𝐡i ∈ ℝN×r
is the data representation in ith iteration, in which column is the

projection of a sample on the new dimension. 𝐰i can be learned by using the linear

discriminant analysis (LDA). The optimization solution for LDA can be derived as

follows:

𝐖∗ = argmax
𝐖∈ℝd×r

Tr
(
𝐖T𝐋𝐖
𝐖T𝐁𝐖

)
(9)

where Tr denotes the trace of a matrix. According to the fraction relation in Eq. (9),

𝐋 represents the quantity need to be enhanced and𝐁 denotes that need to be suppress.

In particular, matrices 𝐋 and 𝐁 in SRP can be calculated as:

24 D. Wang et al.

SRP ∶

⎧
⎪
⎪
⎨
⎪
⎪⎩

𝐋 =
Nc∑
c=1

nc(̂𝐱
c − ̂𝐱)(̂𝐱c − ̂𝐱)T

𝐁 =
N∑
i=1

(̂𝐱i − ̂𝐱ci)(̂𝐱i − ̂𝐱ci)T + 𝜂𝐈𝐝𝐬

(10)

where ci denotes the class label of the ith sample, 𝐱 represents the mean vector of

the all samples, 𝐱c represents the mean vector of the cth class, Nc and nc denote

the number of classes and the number of samples in the cth class, respectively. ∗̂
means the corresponding value calculated on the randomly selected feature subset

from the original high dimension space. The second term in 𝐁 of Eq. (10) represents

a regularization term. 𝐈ds denotes an identity matrix with a size of ds × ds and 𝜂

represents the regularization weight.

In a Nc-class LDA model, the optimization problem in Eq. (9) can be solved by

formulating the following generalized eigenvalue problem:

𝐋𝝋 = 𝜆𝐁𝝋 (11)

where 𝝋 = [𝝋1,𝝋2,… ,𝝋r] and 𝜆 = [𝜆1, 𝜆2,… , 𝜆r] are the eigenvectors and their

corresponding eigenvalues. Here, r can be an arbitrary integer from 1 to Nc −1. The

optimal transformation matrix can be calculated based on the eigenvectors 𝝋 with

the eigenvalues 𝜆 as 𝐰i = [
√
𝜆1𝝋1,

√
𝜆2𝝋2,… ,

√
𝜆Nc

𝝋r].
Next, 𝐰i can be extended to the original data dimension 𝐰i ∈ ℝd×r

by interpolat-

ing zeros on the unselected positions in every column of 𝐰i (recall that 𝐰i is corre-

sponding to the randomly selected feature subset of original d features). This process

are repeated o times and a set of transformation sub-matrices will be obtained. Thus,

the final transformation matrix 𝐖 ∈ ℝd×(r⋅o)
can be denoted as:

𝐖 = [𝐰1|𝐰2|… |𝐰o] (12)

The difference between RP and SRP is that learning is used in SRP for transformation

matrix, while random assignment is used in RP.

2.4 Partially Connected ELM (PC-ELM)

Although ELM has achieved success in many applications, its performance in high

dimensional space may not as great as in relatively low dimensional data. The lim-

itation of randomised feature mapping from the input layer to the hidden layer has

been demonstrated in Sect. 2.2. Inspired by the SRP as depicted in Sect. 2.3, Ref. [8]

has implemented parameter-based model learning algorithm associated with linear

random mapping in ELM. Specifically, the parameters {(𝐰i)}Mi=1 are learned based

Partially Connected ELM for Fast and Effective Scene Classification 25

Random
Projection

Linear
Classifier

Semi-Random
Projection

ELM

PCELM
Input
Data

Nonlinear Activation

Fig. 2 An overview of ELM and PC-ELM

on SRP instead of random assignment. The application of SRP to ELM yields the

so-called partially connected ELM (PC-ELM) as every new dimension of SRP uses

a subset of the original feature set. Figure 2 compares the PC-ELM with ELM.

The major difference between ELM and PC-ELM is that ELM assigns random

values to the linear feature mapping, while PC-ELM learns {(𝐰i)}Mi=1 using SRP.

The degree of randomness is thereby suppressed in PC-ELM in contrast to ELM.

According to the experimental results in [8], PC-ELM outperforms ELM at the cost

of a slight higher computational complexity.

3 Experiments

In this section, we evaluate the application of PC-ELM for scene classification using

the benchmark UIUC-Sport events dataset [13]. In order to verify the effectiveness

of PC-ELM, we measure the experimental results and compare the classification

performance with other state-of-the-art methods including ELM and rbf-SVM.

3.1 Dataset and Experimental Setup

The UIUC-Sport dataset contains 8 sports event categories: rock climbing, bad-

minton, bocce, croquet, polo, rowing, sailing, and snowboarding. The image number

in each class ranges from 137 to 250, and there are 1579 images in total. It is noted

that the difficulty levels of classification within a category are varying with the dis-

tance of the foreground objects. Figure 3 shows some example images in the dataset.

The event recognition task is an 8-class classification problem. Following the

experiment setting of [13], 70 local images are randomly selected for training and we

test on 60 images. In order to achieve statistically significant experimental results,

26 D. Wang et al.

Fig. 3 Example images for the UIUC-Sport dataset

we repeat 50 times of the training/ test data random split process and present the

averaged results. For evaluation, we perform rbf-SVM, ELM and PC-ELM as the

multi-class classifiers on the UIUC-Sports dataset. We measure the experimental

results and compare the generalization performance of them in three state-of-the-art

image representations including GIST, PHOW [15] (fast dense SIFT). We implement

rbf-SVM using LIBSVM [14] with fixed parameter settings, where the hyperpara-

meter C and 𝛾 is set to 2 and 0.1, respectively. In order to achieve good performance

for ELM/ PC-ELM, we adjust their parameters for individual image representations.

Experimental setup is as follows:

∙ GIST descriptors. We resize the images into 256 × 256; the number of filters is

4; the number of orientations per scale is [8 8 8 8]. For ELM, the cost coefficient

C and the number of hidden neurons are set as 1 and 2000, respectively. For PC-

ELM, the penalty coefficient C is set to 1, and we define 4 sub-sections LDA (new

projection dimension mentioned in Sect. 2.3) with 500 hidden neurons (iteration

of feature random selection for each sub-section).

∙ PHOW descriptors. We perform the PHOW descriptors via VLFeat toolbox [16].

Image is resized to 640×480 pixels; regular grids spacing [4 6 8 10]; SIFT descrip-

tors of 6×6 pixels; pyramid level L=3; visual vocabulary size M=200. For ELM,

the cost coefficient C and the number of hidden neurons are set as 0.01 and 4200,

respectively. For PC-ELM, the penalty coefficient C is set to 0.01, and we define

7 sub-sections LDA with 600 hidden neurons for each sub-section.

3.2 Results

The first experiment uses the GIST descriptors. We obtain 512-dimension of features

for each image samples. We show and compare the average classification perfor-

mance of rbf-SVM, ELM, and PC-ELM in Fig. 4a, b. As shown in Fig. 4a, PC-ELM

outperforms SVM and ELM. Note that the GIST image descriptors present relatively

Partially Connected ELM for Fast and Effective Scene Classification 27

Fig. 4 Performance results

of GIST. The x-axis indicates

the number of engaged

features applied for the

experiments. The y-axis

denotes the average test set

classification accuracy

results in (a). The y-axis

indicates the training time

in (b)

0 100 200 300 400 500 600
45

50

55

60

65

70

75

num. of features

pe
rf

or
m

an
ce

 (
%

)

SVM
ELM
PCELM

0 100 200 300 400 500 600
0

2

4

6

8

10

12

num. of features

tim
e

(s
)

SVM
ELM
PCELM

(a) The average accuracy of 50 trails classification experiments.

(b) The average training time of three classification algorithms.

low-dimensional feature space, where the learning speed of PC-ELM is inferior to

rbf-SVM and PC-ELM, as depicted in Fig. 4b.

The second experiment uses the dense SIFT image descriptors (PHOW). We

obtain 12,600-dimensional feature representation for each image. The second

experiment is able to evaluate the performance of the three multi-class classifiers

to high-dimensional domain. In Fig. 5a, b, we compare and analyze the average clas-

sification performance of rbf-SVM, ELM, and PC-ELM. We observe that PC-ELM

produces robust performance and achieves remarkable improvements over ELM and

rbf-SVM in Fig. 5a. Meanwhile, the difference of learning speed between the origi-

nal ELM and PC-ELM is not much. Both ELM and PC-ELM run much faster than

the SVM method as the feature dimensionality increases, as illustrated in Fig. 5b.

28 D. Wang et al.

Fig. 5 Performance results

of PHOW. The x-axis

indicates the number of

engaged features applied for

the experiments. The y-axis

denotes the average test set

classification accuracy

results in (a). In b, the y-axis

indicates the training time.

Note that this figure is

represented in

semi-logarithmic coordinates

10
2

10
3

10
4

10
5

66

68

70

72

74

76

78

80

82

84

86

num. of features

pe
rf

or
m

an
ce

 (
%

)

SVM
ELM
PCELM

102 103 104 105
0

20

40

60

80

100

120

140

160

180

200

num. of features

tim
e

(s
)

SVM
ELM
PCELM

(a) The average accuracy of 50 trails classification experiments.

(b) The average training time of three classification algorithms.

4 Conclusion

In this paper, we have presented the SRP-based PC-ELM for scene classification.

Experimental results on the benchmark dataset show that the PC-ELM network

achieves a good balance between learning speed and generalization performance.

Experimental results also show that PC-ELM has strong immunity to high-

dimensional feature space, which often results in over-fitting to other classifiers.

Exploration of the PC-ELM in other applications is undergoing, and results will be

reported in our future publications.

Partially Connected ELM for Fast and Effective Scene Classification 29

References

1. Csurka, Gabriella, et al. “Visual categorization with bags of keypoints.” Workshop on statistical

learning in computer vision, ECCV. Vol. 1. No. 1–22 (2004)

2. Lowe, David G. “Object recognition from local scale-invariant features.” Computer vision,

1999. The proceedings of the seventh IEEE international conference on. Vol. 2, (1999)

3. Oliva, Aude, Torralba, Antonio: Modeling the shape of the scene: A holistic representation of

the spatial envelope. International journal of computer vision 42(3), 145–175 (2001)

4. Trunk, G.V.: A problem of dimensionality: A simple example. Pattern Analysis and Machine

Intelligence, IEEE Transactions on 3, 306–307 (1979)

5. Boser, Bernhard E., Isabelle M. Guyon, and Vladimir N. Vapnik. “A training algorithm for opti-

mal margin classifiers.” Proceedings of the fifth annual workshop on Computational learning

theory (1992)

6. Joachims, Thorsten: Text categorization with support vector machines: Learning with many

relevant features. Springer, Berlin Heidelberg (1998)

7. Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. “Extreme learning machine: a new

learning scheme of feedforward neural networks.” Neural Networks, 2004. Proceedings. 2004

IEEE International Joint Conference on. Vol. 2 (2004)

8. Zhao, Rui, Mao, Kezhi: Semi-Random Projection for Dimensionality Reduction and Extreme

Learning Machine in High-Dimensional Space. Computational Intelligence Magazine, IEEE

10(3), 30–41 (2015)

9. Bingham E. and Mannila H., Random projection in dimensionality reduction: Applications to

image and text data, in Proc. 7th ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining,

pp. 245250 (2001)

10. Li, P, Hastie, T. J., and Church, K. W. Very sparse random projections, in Proc. 12th ACM

SIGKDD Int. Conf. Knowledge Discovery Data Mining, pp. 287296 (2006)

11. Huang, Guang-Bin, et al. “Extreme learning machine for regression and multiclass classifi-

cation.” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 42.2 pp.

513–529 (2012)

12. Cambria, E., Huang, G. B., Kasun, L. L. C., Zhou, H., Vong, C. M., Lin, J., ..., Liu, J. Extreme

learning machines [trends & controversies]. Intelligent Systems, IEEE (2013)

13. Li, J-L. and Li, F-F. What, where and who? Classifying event by scene and object recognition.

IEEE Intern. Conf. in Computer Vision (2007)

14. Chang, C-C., and Lin, C-J. LIBSVM : a library for support vector machines. ACM Transactions

on Intelligent Systems and Technology, 2:27:1–27:27. Software available at http://www.csie.

ntu.edu.tw/~cjlin/libsvm (2011)

15. Bosch, A., Zisserman, A., Munoz, X.: Image classifcation using random forests and ferns. In

Proc, ICCV (2007)

16. Vedaldi, A., Fulkerson, B. VLFeat: An open and portable library of computer vision algo-

rithms, http://www.vlfeat.org/ (2008)

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.vlfeat.org/

Two-Layer Extreme Learning Machine
for Dimension Reduction

Yimin Yang and Q.M. Jonathan Wu

Abstract The extreme learning machine (ELM), which was originally proposed for

“generalized” single-hidden layer feedforward neural networks (SLFNs), provides

efficient unified learning solutions for the applications of regression and classifica-

tion. It presents competitive accuracy with superb efficiency in many applications.

However, due to its single-layer architecture, feature selection using ELM may not be

effective for natural signals. To address this issue, this paper proposes a new ELM-

based multi-layer learning framework for dimension reduction. The novelties of this

work are as follows: (1) Unlike the existing multi-layer ELM methods in which all

hidden nodes are generated randomly, in this paper some hidden layers are calcu-

lated by replacement technologies. By doing so, more important information can be

exploited for feature learning, which lead to a better generalization performance. (2)

Unlike the existing multi-layer ELM methods which only work for sparse representa-

tion, the proposed method is designed for dimension reduction. Experimental results

on several classification datsets show that, compared to other feature selection meth-

ods, the proposed method performs competitively or much better than other feature

selection methods with fast learning speed.

Keywords Extreme learning machine ⋅ Dimension reduction ⋅ Feature selection ⋅
Multi-layer perceptron ⋅ Deep neural network

1 Introduction

During the past years, extreme learning machine (ELM) has been becoming an

increasingly significant research topic for machine learning and artificial intelli-

gence, due to its unique characteristics, i.e., extremely fast training, good

generalization and universal approximation capability. ELM provide a unified

Y. Yang ⋅ Q. M. J. Wu (✉)

Department of Electrical and Computer Engineering, University of Windsor,

Windsor, ON N9B 3P4, Canada

e-mail: jwu@uwindsor.ca

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_3

31

32 Y. Yang and Q.M.J. Wu

learning framework for “generalized” single-hidden layer feedforward neural net-

works (SLFNs), including but not limited to sigmoid networks, RBF networks,

threshold networks, trigonometric networks, fuzzy inference systems, high-order

networks wavelet networks, etc. According to conventional neural network (NN)

theories, SLFNs are universal approximators when all parameters of the networks

(a, b, 𝛽) are allowed to be adjustable [1]. But unlike these learning methods, the ELM

[2–6] is a full-random learning method that differs from the usual understanding of

learning.

But the original ELM or its variants mainly focuses on regression or/and clas-

sifications. Recently multi-layer networks has been becoming an increasingly sig-

nificant research topic as recent research developments show that multi-layer net-

works with a suitable learning method can be used for feature extraction. Feature

selection (extraction) techniques are designed to reduce dimensionality by finding

a meaningful feature subset or feature combinations, because high dimensionality

significantly increases the time and space requirements for processing the data [7–

9]. Hinton [10] and Vincent [11] show that multi-layer networks with BP learning

method (called deep learning (DL), or deep belief netework (DBN)) can be used to

reduce the dimensionality of data. The DL considers multi-layer as a whole with

unsupervised initialization, and after such initialization the entire network will be

trained by BP-based NNs, and all of the layers are “hard coded” together. Meanwhile,

another leading trend for multi-layer NN learning is based on the ELM. Charama et

al. attempts to develop a multi-layer learning architecture using ELM based autoen-

coder as its building block. The original inputs are decomposed into multiple hidden

layers, and the outputs of the previous layer are used as the inputs of the current

one. Tang et al. [12] proposed a new ELM-based hierarchical learning framework

for multi-layer perceptron. Different from [13], this new learning system is divided

into two main components: unsupervised feature extraction followed by supervised

feature classification, and they are bridged by random initialized hidden weights.

In existing ELM based multi-layers method, all the nodes in the feature map-

ping layer are randomly generated. But if doing so, the “optimize information” may

not pass through the purely random hidden layers and the useful features may be

destroyed by this purely random layer. In this paper we extend the ELM and propose

a new two-layer ELM framework for dimension reduction. Different from current

ELM-based multi-layers methods which only work for sparse representation learn-

ing, the proposed method is designed for dimension reduction. The learning speed of

the proposed method can be several to tens times faster compared to deep networks

such as deep belief networks and stacked auto-encoders. Furthermore, our method

can provide a much better generalization performance than other feature selection

methods such as SNE, SPE, t-SNE, SSNE, DBN, SAE, LGE, etc.

Two-Layer Extreme Learning Machine for Dimension Reduction 33

2 Preliminaries and Problem Statement

2.1 Notations

The sets of real numbers is denoted byR. ForM arbitrary distinct samples {(xi, yi)}Mi=1
(xi ∈ Rn

, yi ∈ Rm
), x denotes the input data and y denotes the desired output data.

g is a sigmoid or sine activation function. Other notations are defined in Table 1.

2.2 Basic-ELM

For M arbitrary distinct samples (xi, ti), where xi = [xi1, xi2,… , xin]T ∈ Rm
and ti ∈

R. ELM is proposed for SLFNs and output function of ELM for SLFNs is

fl(x) =
L∑

i=1
𝛽ig(ai ⋅ xj + bi) = H ⋅ 𝛽𝛽𝛽 (1)

where 𝛽𝛽𝛽 is the output weight matrix connecting hidden nodes to output nodes, g
represents an activation function. ELM theory aims to reach the smallest training

error but also the smallest norm of output weights:

Minimize ∶ ‖𝛽𝛽𝛽‖2 + C‖H𝛽𝛽𝛽 − t‖2 (2)

Table 1 Notations to be used in the proposed method

Notation Meaning

(a, b) A hidden node

af Input weights in entrance feature mapping layer af ∈ Rd×m

bf Bias in entrance feature mapping layer bf ∈ R
(ajf , b

j
f) Hidden nodes in the jth entrance feature mapping layer

(afi, bf) The ith hidden node in entrance feature mapping layer

(an, bn) Hidden nodes in exit feature mapping layer and an ∈ Rm×d

uj Normalized function in the jth general node, uj(⋅) ∶ R → (0, 1], u−1j represent

its reverse function

Hf Feature data generated by a entrance feature mapping layer

Hi
f Feature data generated by the ith feature mapping layer

M Number of training samples

m Input data dimension, i.e., y ∈ Rm×N

d Feature data dimension

34 Y. Yang and Q.M.J. Wu

For L hidden nodes, H is referred to as ELM feature mapping or Huang’s transform:

H =
⎡
⎢
⎢⎣

g(x1)
⋮

g(xM)

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

g1(x1) ⋯ gL(x1)
⋮ ⋯ ⋮

g1(xM) ⋯ gL(xM)

⎤
⎥
⎥⎦

(3)

and t is the training data target matrix:

t =
⎡
⎢
⎢⎣

tT1
⋮
tTM

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

t11 ⋯ t1m
⋮ ⋯ ⋮
tM1 ⋯ tMm

⎤
⎥
⎥⎦

(4)

Huang et al. have proved the following lemma.

Lemma 1. ([2]) Given any bounded nonconstant piecewise continuous function g ∶
R → R, if span {G(a, b, x) ∶ (a, b) ∈ {Rd × R} is dense in L2, for any target function
f and any function sequence randomly generated based on any continuous sampling
distribution, limn→∞ ‖f − fn‖ = 0 holds with probability one if the output weight 𝛽i
are determined by ordinary least square to minimize ‖f (x) −∑L

i=1 𝛽igi(x)‖.

The lemma above [14] shows that randomly generated networks with the outputs

being solved by least mean square are able to maintain the universal approximation

capability, if and only if the activation function g is nonconstant piecewise. Thus the

ELM training algorithm can be summarized as follow:

(1) Randomly assign the hidden node parameters, e.g., the input weights ai and

biases bi for additive hidden nodes, i = 1,… ,L.

(2) Calculate the hidden layer output matrix H.

(3) Obtain the output weight vector.

𝛽𝛽𝛽 = H† ⋅ t (5)

where H†
is the Moore-Penrose generalized inverse of matrix H.

3 The Proposed Method

In this section, we propose a new multi-layer ELM autoencoder. The network archi-

tecture of the proposed method is to be introduced, and a new learning multi-layer

ELM method is also presented.

Two-Layer Extreme Learning Machine for Dimension Reduction 35

3.1 The Proposed Framework

The proposed framework is build in a multi-layer mode, as is shown in Fig. 1. Unlike

the greedy layer-wise training of the traditional Deep Learning architecture [10, 15],

one can see that the proposed method can be divided into two separate phases: unsu-

pervised feature representation and supervised classification. For the former phase,

a new ELM-based autoencoder is developed to extract multi-layer related-data fea-

tures; while for the latter one, the original ELM classifier is implemented for super-

vised classification.

In the following, we will provide a detailed framework of the proposed method, as

well as its advantages against the existing DL and other multi-layer ELM algorithms.

The input data first should be transformed into an ELM random feature space, then

a replacement learning method is used to update the ELM feature space. Finally

after all the parameter in the ELM feature space are fixed, the input raw data will

be converted into a low-dimension compact features. There are several steps in this

proposed method.

Step 1: Given M arbitrary distinct training samples {(xk, yk}Mk=1, xk ∈ Rn
, which

is sampled from a continuous system. Because autoencoder tries to approximate the

input data to make the reconstructed outputs being similar to the inputs, here x = y,

then the initial general input weights and biases of the feature mapping layer are

generated randomly as:

Hf = g(af ⋅ x + bf)
(af)T ⋅ af = I, (bf)T ⋅ bf = 1

(6)

Fig. 1 The structure of our proposed method with two-layer network

36 Y. Yang and Q.M.J. Wu

where af ∈ Rd×n
, bf ∈ R is the orthogonal random weight and bias of feature map-

ping layer. Hf is current feature data.

Step 2: Given a sigmoid or sine activation function g, for any continuous desired

outputs y, the optimal parameters of hidden-layer {âh, ̂bh} are obtained as

ah = g−1(un(y)) ⋅ (Hf)−1, ah ∈ Rd×m

bh =
√

mse(ah ⋅Hf − g−1(un(y))) , bn ∈ R

g−1(⋅)
⎧
⎪
⎨
⎪⎩

arcsin(⋅) if g(⋅) = sin(⋅)

− log(1
(⋅)

− 1) if g(⋅) = 1∕(1 + e−(⋅))

(7)

where H−1 = HT (CI +HHT)−1; C is a positive value; un is a normalized function

un(y) ∶ R → (0, 1]; g−1 and u−1n represent their reverse function.

Step 3: update af , bf by

af = (ah)T

bf =
√

mse(af ⋅ x − y) , bf ∈ R
(8)

and update the feature data Hf = g(af ⋅ x + bf).
Step 4: Repeat steps 2–3 L times. The parameters af , bf , an, bn are obtained and

the feature data Hf equal g(x, af , bf).
The above four steps constitute the proposed method, as shown in Algorithm 1 and

Fig. 2. The proposed framework is developed based upon random feature mapping

and fully exploits the universal approximation capability of ELM, both in feature

learning and feature classification. There are three differences between our method

and other mutli-layer network feature selection method.

(1) This is completely different from the existing DL frameworks, where all the hid-

den layers are put together as a whole system, with unsupervised initialization.

The whole system need to be retrained iteratively using BP-based NNs. Thus,

the training of our method would be much faster than that of the DL.

(2) According to Huang’s Transform [16], the randomness in ELM are two folds.

First, hidden nodes may be randomly generated. Second, some nodes are ran-

domly generated and some are not, but none of them are tuned. Different from

existing ELM methods which hidden nodes in each layer are generated ran-

domly, here we thank that it is impossible to have all the layers randomly gen-

erated. If feature mapping layer are randomly generated, the “optimize infor-

mation” may not pass through the purely random hidden layers or this useful

information may be destroyed by the purely random hidden nodes. Thus in our

method, hidden nodes are highly correlated with the input data by pulling back

the desired output to hidden layers.

Two-Layer Extreme Learning Machine for Dimension Reduction 37

Fig. 2 The learning steps of our proposed method. Input data come from Olive face dataset

38 Y. Yang and Q.M.J. Wu

Algorithm 1 The proposed method

Initialization: Given a training set {(xi, yi)}Mi=1 ⊂ Rm × Rm
, a sine or sigmoid function g(⋅),

maximum loop number L, and j = 1.

Learning step:

Step 1) Generate the initial general node af and bf according to Eq. (6).

while j < L do
Step 2) Calculate ah and bh according to Eq. (7).

step 3) Set j = j + 1, update nodes af ,bf according to Eq. (8), and update Hf .

end while
Obtain feature data Hf .

4 Experimental Verification

In this section, aimed at examining the performance of our proposed learning method,

we test the proposed method on 9 classification problems. The experiments are con-

ducted in Matlab 2013a with 32 GB of memory and an I7-4770 (3.4G) processor.

And we compare the generalization performance of the proposed method with some

unsupervised learning methods for dimensionality reduction. The six unsupervised

feature selection methods are:

(1) Our proposed algorithm

(2) Deep Belief Network (DBN) [10, 15]

(3) Stacked Auto-Encoders (SAE) [11]

(4) Linear Graph Embedding (LGE) [17]

(5) Orthogonal Linear Graph Embedding (OLGE) [18]

(6) Unsupervised Locality Preserving Projection (LPP) [19]

All databases are preprocessed in the same way (held-out method). Table 2 shows

the training and testing data of the corresponding datasets. Permutations of the whole

dataset are taken with replacement randomly, and #train (shown in Table 2) of them

are used to create the training set. The remaining dataset is used for the test set (#test

in Table 2).

The average results are obtained over 10 trials for all problems. For our

proposed method, parameter C is selected from C ∈ {2−4,… , 28}. For DBN, we set

epoch at 10 and select the parameter batch size from [10, #(Train)∕10,
#(Train)∕9,… , #(Train)], and the parameter momentum 𝛾 from [0.01, 0.02,⋯ , 0.1].
The parameter 𝛼 equals 1 − 𝛾 . For SAE, the learning rate equals 1; the parameter

batch size is selected from [10, #(Train)∕20, #(Train)∕18,… , #(Train)∕2]; and the

parameter masked fraction rate 𝛿 is selected from [0.45, 0.46,… , 0.55].1
All the testing accuracy is obtained following the same steps: first we use these

methods to obtain data features, and then an SLFN classifier is used to generate

testing accuracy. For DBN and SAE, we first reduce or increase the dimensions of

1
For DBN and SAE, it is impossible for us to set the parameter range too widely as the computational

cost of these two methods is very high. If we select these parameters from a wide range, only one

trial is needed in more than 10 h.

Two-Layer Extreme Learning Machine for Dimension Reduction 39

Table 2 Specification of 15 benchmark datasets

Datasets #features #Train # Test

Acoustic 51 40000 58000

USPS 256 7291 2007

Hill Valley 101 606 606

Protein 357 17766 6621

Gisette 5000 6000 1000

Leu 7129 38 34

Duke 7129 29 15

DNA 180 1046 1186

Satimage 36 4435 2000

S15 43008 1500 2985

Olive Face 4096 320 80

the testing datasets, and then BP and Fuzzy NN networks are used to generate test-

ing accuracy, respectively. For the other methods, we first reduce the dimensions of

the dataset, and then a 1000-hidden-nodes ELM network is used to obtain testing

accuracy.

To indicate the advantage of the proposed method for unsupervised dimension

reduction performance, tests have been conducted of the accuracy of the proposed

method compared to other unsupervised dimension reduction methods. For LPP,

LGE, OLGE, DBN, SAE, these compared methods can provide mapping function

for testing data, i.e., techniques that learn an explicit function between the data space

and the low-dimensional latent space. Thus in Table 3 and Fig. 3, training data are

firstly used and then low-dimensional testing data are generated by these mapping

functions. Table 3 displays the performance comparison of LPP, LGE, OLGE, DBN,

SAE, and the proposed method. As we can see, our proposed algorithm consistently

outperforms most of the compared feature selection algorithms on these classifi-

cation problems and image datasets. As seen from these experimental results, the

advantage of the proposed method for generalization performance is obvious. Con-

sider Olive face (small number of samples with large input dimensions), and Scene15

(medium number of samples with large input dimensions).

(1) For the Olive face dataset, the testing error of the proposed method is about 4,

3, 14, 16, and 15 times lower than that of LPP, LGE, OLGE, DBN, and SAE,

respectively.

(2) For the Scene15 dataset, the testing accuracy of the proposed method is about

2.5, 2, 2.5, 8, and 7 times higher than that of LPP, LGE, OLGE, DBN, and SAE,

respectively.

40 Y. Yang and Q.M.J. Wu

Ta
bl
e
3

G
e
n
e
r
a
li

z
a
ti

o
n

P
e
r
fo

r
m

a
n
c
e

C
o
m

p
a
r
is

o
n

(
m

e
a
n
:

a
v
e
r
a
g
e

te
s
ti

n
g

a
c
c
u
r
a
c
y
)

D
a
ta

s
e
ts

#
D

im
e
n
s
io

n
a
li

ty
L

P
P

L
G

E
O

L
G

E
D

B
N

S
A

E
O

u
r
s

M
e
a
n

(
%

)

T
im

e
M

e
a
n

(
%

)

T
im

e
M

e
a
n

(
%

)

T
im

e
M

e
a
n

(
%

)

T
im

e
M

e
a
n

(
%

)

T
im

e
M

e
a
n

(
%

)

T
im

e

G
is

s
tl

e
4

0
0

0
⟶

2
70

.0
4

8
3

.8
8

5
9

.1
6

7
8

.1
1

5
7

.0
0

1
0

0
.4

2
5

0
.7

1
1

0
8

8
.5

0
5

0
.2

1
8

3
.7

6
6

6
.3

2
9.
46

H
il

l
1

0
1
⟶

2
5

0
.5

2
0

.0
7

5
1

.1
1

0
.0

5
5

0
.2

3
0

.0
7

5
0

.2
3

7
.4

0
8

8
.9

3
5

.4
0

91
.0
6

0.
05

U
S

P
S

2
5

6
⟶

1
0

9
0

.5
6

5
.3

6
8

7
.1

2
5

.8
8

4
3

.7
5

4
.5

7
94

.3
1

8
0

.4
7

8
8

.7
5

4
9

.8
2

9
1

.0
7

0.
74

S
a
ti

m
a
g
e

3
6
⟶

6
88

.4
1

1
.3

4
8

8
.2

0
2

9
9

.1
5

8
6

.6
1

0
.6

2
7

1
.9

3
2

3
.0

7
8

0
.9

5
1

2
.3

1
8

5
.1

0
0.
05

D
u
k
e

7
1

2
9
⟶

2
4

5
.4

5
0.
02

4
7

.2
7

0
.0

6
5

4
.4

5
0

.0
3

5
6

.6
7

9
.2

0
5

0
.0

0
1

.1
9

60
.5
5

0
.1

1

L
e
u

7
1

2
9
⟶

1
0

5
2

.9
4

0.
03

7
0

.5
9

0
.0

3
6

0
.0

0
0

.0
4

5
0

.0
1

1
5

.8
9

5
6

.2
5

2
.4

8
78

.8
6

0
.1

8

D
N

A
1

8
0
⟶

2
7

3
.7

4
0

.2
2

6
2

.9
0

0
.2

9
5

9
.1

6
0

.1
8

5
6

.4
7

1
6

.2
0

7
0

.7
0

6
.5

8
74

.1
5

0.
14

S
c
e
n
e
1
5

2
1

5
0

4
⟶

1
5

2
8

.1
1

1
7

.5
6

3
0

.3
8

2
.0

4
2

7
.3

9
1

.3
2

9
.3

6
3

0
8

4
.3

0
1

0
.7

9
3

7
2

6
.4

1
71

.0
5

14
.4
7

A
c
o

u
s
ti

c
5

0
⟶

2
5

4
.6

1
4

0
1

.5
3

5
7

.9
6

4
1

2
.8

4
5

7
.4

5
3

6
8

.3
2

6
2

.2
4

5
2

1
.6

7
6

2
.4

4
3

9
1

.7
7

64
.0
3

1.
51

P
ro

te
in

3
5

7
⟶

2
4

7
.2

6
3

2
.1

7
4

7
.6

7
3

2
.1

3
4

6
.3

6
1

7
.0

0
4

6
.1

6
2

6
4

.6
7

4
4

.0
3

8
3

.2
2

49
.2
3

2.
60

O
li

v
e

F
a
c
e

4
0

9
6
⟶

4
0

7
3

.0
0

0.
12

8
0

.2
5

0
.1

3
9

.5
0

0
.3

5
1

.2
4

3
.6

5
2

.5
0

2
3

.0
8

95
.1
0

0
.4

5

Two-Layer Extreme Learning Machine for Dimension Reduction 41

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Number of Features

A
cc

ur
ac

y
(%

)
LGE
OLGE
LPP
SAE
DBN
Proposed

0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
0

10

20

30

40

50

60

70

80

90

100

Number of Features

A
cc

ur
ac

y
(%

)

LPP
SAE
OLGE
LGE
DBN
Proposed

0 2 4 6 8 10 12 14 16 18 20
20

30

40

50

60

70

80

90

100

Number of Features

A
cc

ur
ac

y
(%

)

LPP
LGE
OLGE
DBN
SAE
proposed

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

Number of Features

A
cc

ur
ac

y
(%

)

LPP
SAE
LGE
OLGE
DBN
Proposed

(a) (b)

(d)(c)

Fig. 3 Average testing accuracy by using LPP, LGE, OLGE, SAE, DBN and the proposed method

on S15, Olive face, USPS and Yale face, where the x- and y-axes show the number of features and

average testing accuracy, respectively

5 Conclusion

In this paper, we have proposed a novel multi-layer network training scheme, which

is based on the universal approximation capability of the original ELM. The pro-

posed method achieve high low-dimensional representation with layer-wise encod-

ing. Moreover, compared with other feature selection methods, the training of our

method is much faster and achieve higher learning accuracy. In these applications,

our method functions as a feature extractor and a classier, and it achieve competi-

tively or more better performance than relevant state-of-the-art methods.

References

1. Zhang, R., Lan, Y., Huang, G.-B., Zong-Ben, X.: Universal approximation of extreme learning

machine with adaptive growth of hidden nodes. IEEE Trans. Neural Netw. Learn. Syst. 23(2),

365–371 (2012)

2. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive

feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892

(2006)

42 Y. Yang and Q.M.J. Wu

3. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neu-

rocomputing 70, 489–501 (2006)

4. Luo, J.H., Vong, C.M., Wong, P.K.: Sparse bayesian extreme learning machine for multi-

classification. IEEE Trans. Neural Netw. Learn. Syst. 25(4), 836–843 (2014)

5. Suresh, S., Dong, K., Kim, H.J.: A sequential learning algorithm for self-adaptive resource

allocation network classifier. Neurocomputing 73(16–18), 3012–3019 (2010)

6. Wang, X.Z., Chen, A.X., Feng, H.M.: Upper integral network with extreme learning mecha-

nism. Neurocomputing 74(16), 2520–2525 (2011)

7. He, X.F., Ji, M., Zhang, C.Y., Bao, H.J.: A variance minimization criterion to feature selection

using laplacian regularization. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 2013–2025

(2011)

8. Zhang, B., Li, W., Qing, P., Zhang, D.: Palm-print classification by global features. IEEE Trans.

Syst. Man Cybern.: Syst. 43(2), 370–378 (2013)

9. Bhatnagar, G., Wu, Q.M.J., Senior Member. Biometric inspired multimedia encryption based

on dual parameter fractional fourier transform. IEEE Trans. Syst. Man Cybern.: Syst. 44(9),

1234–1247 (2014)

10. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks.

Science 313(5786), 504–507 (2006). [2, 4, 8]

11. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoen-

coders: learning useful representations in a deep network with a local denoising criterion. J.

Mach. Learn. Res. 11, 3371–3408 (2010)

12. Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE

Trans. Neural Netw. Learn. Syst. (2015)

13. Huang, G.B., Kasun, L.L.C., Zhou, H., Vong, C.M.: Representational learning with extreme

learning machine for big data. IEEE Intell. Syst. 28(6), 31–34 (2013)

14. Huang, G.B., Zhou, H.M., Ding, X.J., Zhang, R.: Extreme learning machine for regression

and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(2), 513–529

(2012)

15. Salakhutdinov, R., Hinton, G.: An efficient learning procedure for deep Boltzmann machines.

Neural Comput. 24(8), 1967–2006 (2012)

16. Huang, G.-B.: What are extreme learning machines? Filling the gap between Frank Rosen-

blatt’s dream and John von Neumann’s Puzzle. Cogn. Comput. 7(3), 263–278 (2015)

17. Cai, D., He, X.F., Han, J.W.: Spectral regression for efficient regularized subspace learning.

In: IEEE 11th International Conference on Computer Vision, vol. 1-6, pp. 214–221 (2007)

18. Cai, D., He, X.F., Han, J.W., Zhang, H.J.: Orthogonal laplacianfaces for face recognition. IEEE

Trans. Image Process. 15(11), 3608–3614 (2006)

19. He, X.F., Niyogi, P.: Locality preserving projections. Adv. Neural Inf. Process. Syst. 16(16),

153–160 (2004)

Distributed Extreme Learning Machine
with Alternating Direction Method
of Multiplier

Minnan Luo, Qinghua Zheng and Jun Liu

Abstract Extreme learning machine, as a generalized single-hidden-layer feedfor-

ward networks has achieved much attention for its extremely fast learning speed

and good generalization performance. However, big data often makes a challenge

in large scale learning of ELM due to the limitation of memory of single machine

as well as the distributed manner of large scale data storage and collection in many

applications. For the purpose of relieving the limitation of memory with big data,

in this paper, we exploit a novel distributed extreme learning machine to implement

the extreme learning machine algorithm in parallel for large-scale data set. A corre-

sponding distributed algorithm is also developed on the basis of alternating direction

method of multipliers which shows effectiveness in distributed convex optimization.

Finally, some numerical experiments on well-known benchmark data sets are car-

ried out to illustrate the effectiveness of the proposed DELM method and provide an

analysis on the performance of speedup, scaleup and sizeup.

Keywords Extreme learning machine ⋅ Neurone work ⋅ Alternating direction

method of multiplier

1 Introduction

Extreme learning machine (ELM) is a generalized single-hidden-layer feedforward

networks, where the parameters of hidden layer feature mapping are generated

randomly according to any continuous probability distribution [1] rather than are

M. Luo (✉) ⋅ Q. Zheng ⋅ J. Liu

SPKLSTN Lab, Department of Computer Science, Xi’an Jiaotong University,

Shaanxi 710049, China

e-mail: minnluo@mail.xjtu.edu.cn

Q. Zheng

e-mail: qhzheng@mail.xjtu.edu.cn

J. Liu

e-mail: liukeen@mail.xjtu.edu.cn

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_4

43

44 M. Luo et al.

tuned by gradient descent based algorithms. In this case, ELM algorithm achieves

extremely fast learning speed and better performance of generalization. The ELM

technique has been applied to many applications and performs effectively [2].

It is noteworthy that traditional ELM algorithm is often implemented on a single

machine, and therefore it is inevitable to suffer from the limitation of memory with

large scale data set. In particular in the era of big data, the data set scale are usually

extremely large and the data is often very high-dimensional for detailed informa-

tion [3]. On the other hand, it is actually necessary to deal with data sets in different

machines due to the following two reasons: (1) The data set are stored and collected

in a distributed manner because of the large scale of many application; (2) It is impos-

sible to collect all of data together for the reason of confidentiality and the data set

can be only accessed on their own machine. Based on the analysis above, how to

implement algorithm of ELM with respect to data sets which located in different

machines become a key problems.

In previous work, some parallel or distributed ELM algorithms have been imple-

mented to meet the challenge of large-scale data set. For example, Q. He and et.

al take advantages of the distributed environment provided by MapReduce [4] and

propose an parallel ELM for regression on the basis of MapReduce by designing the

proper ⟨key, value⟩ pairs [5]. X. Wang and et. al did some research on the issue of

parallel ELM on the basis of Min-Max Modular network (M
3
), namely as M

3
-ELM

[6]. This approach decomposes the classification problems into small subproblems,

then trains an ELM for each subproblem, and in the end ensembles the ELMs with

M
3
-network. Besides the distributed framework utilized above, the alternating direc-

tion method of multipliers (ADMM) that aims to find a solution to a global problem

by solving local subproblems coordinately, is also an effective optimization method,

and in particular to distributed convex optimization [3]. It is noteworthy that C.

Zhang and et. al investigate a large-scale distributed linear classification algorithms

on the basis of ADMM framework and achieve a significant speedup over some other

classifier [7].

Motivated by the advantages of ADMM in distributed optimization problem,

in this paper, we exploit a novel distributed extreme learning machine (DELM) to

implement the ELM algorithm on multiple machines in parallel in order to relieve

the limitation of memory with large scale data set. It is different from the traditional

ELM where all of data are loaded onto one processor and share a common out-

put weight vector of hidden layer. The proposed DELM method allows large-scale

data set to been stored in distributed manner; moreover, each processor is associated

with one output weight vector 𝛽i, where i = 1, 2,… ,m and m denotes the number

of processors. Each output weight vector can be determined in parallel, because it

depends only on the corresponding sub-dataset. In the framework of ADMM, the

shared output weight vector 𝛽 across all processors is derived by combining all of

output weight vectors 𝛽i (i = 1, 2,… ,m) with an included regularization vector.

The remainder of this paper is organized as follows. In Sect. 2, notations and pre-

liminaries about ELM are reviewed. Section 3 focuses on the formulated optimiza-

tion problems of distributed extreme learning machine. A corresponding distributed

convex optimization algorithm is developed for the proposed DELM via alternating

Distributed Extreme Learning Machine … 45

direction of method of multipliers in Sect. 4. Section 5 presents some experiments

on well-known benchmark data sets to illustrate the effectiveness of the proposed

DELM method. Conclusions are given in Sect. 6.

2 Principles of Extreme Learning Machine

Extreme learning machine (ELM) refer in particular to a kind of single-hidden-layer

feedforward neural networks, where the hidden layer need not be tuned. In this case,

the output function of ELM is formulated as

fL(𝐱) =
L∑

j=1
𝛽jhj (𝐱) = 𝐡 (𝐱) 𝛽, (1)

where 𝛽 =
(
𝛽

1
, 𝛽

2
,… , 𝛽

L)⊺ ∈ ℝL
is the output weights vector of the hidden

layer with L nodes, which needs to be estimated analytically; Feature mapping

𝐡∶ℝn → ℝL
maps input variable 𝐱 ∈ ℝn

to L-dimensional hidden-layer feature

space and 𝐡 (𝐱) =
(
h1 (𝐱) , h2 (𝐱) ,… , hL (𝐱)

)
denotes the hidden layer output (row)

vector, where the component hj(𝐱) = G(𝐚j, bj, 𝐱) (j = 1, 2,… ,L), as the output func-

tion of j-th hidden node, is known to users by generating the parameters {
(
𝐚j, bj

)
∶

j = 1, 2,… ,L} randomly according to any continuous probability distribution [8].

In general, Sigmoid function

G (𝐚, b, 𝐱) = 1
1 + exp (− (𝐚⊺𝐱 + b))

,

Gaussian function

G (𝐚, b, 𝐱) = exp
(
−b ‖𝐱 − 𝐚‖2

)

and some other nonlinear activation function are usually used in the framework of

ELM.

Given a data set D =
{(

𝐱⊺k , tk
)
∶ 𝐱k ∈ ℝn

, tk ∈ ℝ, k = 1, 2,… ,N
}

, ELM ran-

domly generate the input weights and estimate the output weights vector 𝛽 by

minimizing the training error as well as the norm of output weight for better gen-

eralization, i.e.,

𝛽 = argmin
𝛽

1
2
‖𝛽‖22 +

C
2

N∑

k=1

(
𝐡(𝐱k)𝛽 − tk

)2

= argmin
𝛽

1
2
‖𝛽‖22 +

C
2
‖H𝛽 − T‖22 (2)

46 M. Luo et al.

where C is the trade-off between the training error and the regularization; T =(
t1, t2,… , tN

)⊺ ∈ ℝN
denotes the actual output vector; H represents the hidden layer

output matrix, i.e.,

H =
⎛
⎜
⎜
⎜⎝

𝐡
(
𝐱1
)

𝐡
(
𝐱2
)

⋮
𝐡
(
𝐱N

)

⎞
⎟
⎟
⎟⎠

=
⎛
⎜
⎜
⎜⎝

h1
(
𝐱1
)
h2

(
𝐱1
)
… hL

(
𝐱1
)

h1
(
𝐱2
)
h2

(
𝐱2
)
… hL

(
𝐱2
)

⋮ ⋮ ⋮ ⋮
h1

(
𝐱N

)
h2

(
𝐱N

)
… hL

(
𝐱N

)

⎞
⎟
⎟
⎟⎠

∈ ℝN×L
.

It is evident that the closed solution of optimization (2) can be derived as 𝛽 =

H⊺
(

I
C
+ HH⊺

)−1
T and the output of ELM satisfy

fL(𝐱) = 𝐡 (𝐱)H⊺
(I
C

+ HH⊺
)−1

T . (3)

Moreover, if the feature mapping 𝐡 is not known to users, a kernel matrix

𝛺 =
(
𝛺i,j

)
∈ ℝN×N

with respect to data set D can be defined as

𝛺i,j = h
(
𝐱i
)
⋅ h

(
𝐱j
)
= K

(
𝐱i, 𝐱j

)
,

where kernel function K∶ℝn ×ℝn → ℝ is usually used as Gaussian function

K
(
𝐱i, 𝐱j

)
= G

(
𝐱, 𝐱j, 𝜎

)
= exp

⎛
⎜
⎜
⎜⎝

−
‖‖‖𝐱 − 𝐱j

‖‖‖
2

𝜎
2

⎞
⎟
⎟
⎟⎠

.

By Eq. (3), the output of ELM with kernel function K is formulated as

fK(𝐱) = 𝐡 (𝐱)H⊺
(I
C

+ HH⊺
)−1

T

=
(
K
(
𝐱, 𝐱1

)
,K

(
𝐱, 𝐱2

)
,… ,K

(
𝐱, 𝐱N

)) (I
C

+𝛺

)−1
T . (4)

It is noteworthy that the traditional ELM algorithm is often implemented on a

single machine, and therefore it is inevitable to suffer from the limitation of mem-

ory with large scale data set. In particular in the era of big data, the data set scale

are usually extremely large and the data is often very high-dimensional for detailed

information. On the other hand, it is actually necessary to deal with data sets in

different machines for the following two reasons: (1) The data set are stored and col-

lected in a distributed manner because of the large scale of many application; (2) It is

impossible to collect all of data together for the reason of confidentiality and the data

set can be only accessed on their own machine. Based on the analysis above, how

to implement algorithm of ELM with respect to data sets which located in different

machines become a key problems.

Distributed Extreme Learning Machine … 47

In addition, traditional ELM is computation-intensive with large scale set as well

as large number of nodes in hidden layer because of the high complexity for inverse

conversion of the large hidden layer output matrix H (see (3)). This situation will be

worse in the case of kernel matrix 𝛺 ∈ RN×N
since the number of nodes is equal to

the number of samples with large scale data set.

3 Distributed Extreme Learning Machine (DELM)

In this section, we extend the traditional ELM algorithm and propose a new distrib-

uted extreme learning machine (DELM) on the basis of alternating direction method

of multipliers (ADMM) [3], where the data sets to be processed are located in differ-

ent machines. Subsequently, we first introduce the optimization problem formulated

for DELM, and then exploit an distributed algorithm for the proposed optimization

problem on the basis of ADMM in the next section.

Given a dataset D =
{(

𝐱⊺k , tk
)
∶ 𝐱k ∈ ℝn

, tk ∈ ℝ, k = 1, 2,… ,N
}

, we let

{D1,D2, … ,Dm} be a partition of all data indices {1, 2,… ,N} and each data set

Di (i = 1, 2,… ,m) is located in different machines. Then, the optimization problem

of DELM is formulated as

min
𝛽1, 𝛽2, …, 𝛽m, 𝐳

1
2
‖𝐳‖22 +

C
2

m∑

i=1

∑

j∈Di

(
h(𝐱j)𝛽i − tj

)2
(5)

subject to 𝛽i = 𝐳 (i = 1, 2,… ,m)

where, different from the traditional ELM where all of samples in data set D share a

common output weight vector, we associate each data set Di with a local variable

𝛽i = (𝛽i1, 𝛽i2,… , 𝛽iL)⊺ ∈ ℝL (i = 1, 2,… ,m) which represents the corresponding

output weight vector. It is noteworthy that the samples in data set Di are just

processed in the i-th processor, and therefore the output weight vector 𝛽i can be

determined in parallel. Moreover, a common global variable 𝐳 is included in the opti-

mization of DELM to integrate all of the output weight vectors 𝛽i (i = 1, 2,… ,m).
In this case, it guarantees to learn a shared output weight vector with respect to data

set D (see Fig. 1).

In addition, similar to the traditional ELM, the parameters of hidden node output

function shared by all of data set Di (i = 1, 2,… ,m) are generated randomly accord-

ing to any continuous probability distribution in the framework of DELM. For better

representation, optimization (5) can be reformulated as

min
𝛽1, 𝛽2, …, 𝛽m, 𝐳

1
2
‖𝐳‖22 +

C
2

m∑

i=1

‖‖Hi𝛽i − Ti‖‖
2
2 (6)

subject to 𝛽i = 𝐳 (i = 1, 2,… ,m)

48 M. Luo et al.

Fig. 1 Distributed extreme

learning machine

where Hi is the hidden-layer output matrix with respect to the data set Di, i.e.,

Hi =
⎛
⎜
⎜
⎜⎝

𝐡
(
𝐱1
)

𝐡
(
𝐱2
)

⋮
𝐡
(
𝐱Ni

)

⎞
⎟
⎟
⎟⎠

=
⎛
⎜
⎜
⎜⎝

h1
(
𝐱1
)

h2
(
𝐱1
)
… hL

(
𝐱1
)

h1
(
𝐱2
)

h2
(
𝐱2
)
… hL

(
𝐱2
)

⋮ ⋮ ⋮ ⋮
h1

(
𝐱Ni

)
h2

(
𝐱Ni

)
… hL

(
𝐱Ni

)

⎞
⎟
⎟
⎟⎠

∈ ℝNi×L; (7)

Ti ∈ ℝNi denotes the actual output of data set Di and Ni refers to the number of

samples in data set Di, i.e.,
∑m

i=1 Ni = N with ||Di
|| = Ni for i = 1, 2,… ,m.

Associated with the sub-datasetsDi (i = 1, 2,… ,m), the correspondingm hidden-

layer output matrixes Hi ∈ ℝNi×L (i = 1, 2,… ,m) are utilized instead of H with

respect to the whole data setD in traditional ELM. In this case, the problem of inverse

conversion for large matrix H is avoided to some extent. At the same time, the pro-

posed DELM method makes it possible to implement ELM algorithm in parallel.

4 ADMM Based Algorithm for DELM

In this section, we first introduce the notations and preliminaries of ADMM, and

then exploit an ADMM based distributed algorithm for the formulated optimization

problem of DELM.

4.1 ADMM

ADMM is an effective optimization method to solve the following composite opti-

mization problem [3]

min f (𝐱) + g(𝐳) (8)

s.t. A𝐱 + B𝐳 = 𝐜

Distributed Extreme Learning Machine … 49

where functions f and g are all convex. With the augmented Lagrangian for (8),

L
𝜌

(𝐱, 𝐳, 𝜆) = f (𝐱) + g(𝐳) + 𝜆

T (A𝐱 + B𝐳 − 𝐜) + 𝜌

2
‖A𝐱 + B𝐳 − 𝐜‖22 ,

the algorithm of ADMM consists of iterations

𝐱k+1 = argmin
𝐱

L
𝜌

(𝐱, 𝐳k, 𝜆k) (9)

𝐳k+1 = argmin
𝐳

L
𝜌

(𝐱k+1, 𝐳, 𝜆k)) (10)

𝜆

k+1 = 𝜆

k + 𝜌

(
A𝐱k+1 + B𝐳k+1 − 𝐜

)
(11)

where 𝜌 > 0 and k denotes the iteration time. Moreover, this algorithm iterates satisfy

the following theoretical guarantees of convergence:

1. 𝐫k = A𝐱k + B𝐳k − 𝐜 → 0 as k → +∞;

2. f (𝐱k) + g(𝐳k) converges to the optimal objective function as k → +∞.

It is evident that ADMM is a simple but powerful algorithm that aims to find a

solution to a global problem by solving local subproblems coordinately [3].

Remark 1 Under the framework of ADMM, 𝐱k+1 is often added with the previous

value of 𝐳k in optimizations (10) and (11) for fast convergence, i.e.,

𝐱̂k+1 = t𝐱k+1 + (1 − t)𝐳k

where t ∈ [1.5, 1.8] is usually used [9]. This technique makes a further improvement

and affect efficiency of ADMM significantly.

4.2 Algorithms for DELM

For the optimization problem (6), let 𝛽 ∶=
{
𝛽1, 𝛽2,… , 𝛽m

}
and 𝜆 ∶= {𝜆1, 𝜆2,… ,

𝜆m} with 𝜆i ∈ ℝL
for i = 1, 2,… ,m. We consider the corresponding augmented

Lagrangian function given by

L
𝜌

(𝛽, 𝐳, 𝜆) = 1
2
‖𝐳‖22 +

C
2

m∑

i=1

‖‖Hi𝛽i − Ti‖‖
2
2 +

m∑

i=1

(
𝜆

⊺
i

(
𝛽i − 𝐳

)
+ 𝜌

2
‖‖𝛽i − 𝐳‖‖

2
2

)

(12)

Starting from some initial vector 𝛽
0 =

{
𝛽

0
1 , 𝛽

0
2 ,… , 𝛽

0
m
}
, 𝜆

0 =
{
𝜆

0
1, 𝜆

0
2,… , 𝜆

0
m
}
, 𝐳0,

the variables at iteration k ≥ 0 are updated in the framework of ADMM as

50 M. Luo et al.

𝛽

k+1 = argmin
𝛽

L
𝜌

(
𝛽, 𝐳k, 𝜆k

)
(13)

𝐳k+1 = argmin
𝐳

L
𝜌

(
𝛽

k+1
, 𝐳, 𝜆k

)
(14)

𝜆

k+1
i =𝜆ki + 𝜌

(
𝛽

k+1
i − 𝐳k+1

)
i = 1, 2,… ,m. (15)

Moreover, because the Lagrangian L
𝜌

is separable in 𝛽i, we can solve the opti-

mization problem (13) in parallel, i.e.,

𝛽

k+1
i = argmin

𝛽i

C
2
‖‖Hi𝛽i − Ti‖‖

2
2 + (𝜆ki)

⊺ (
𝛽i − 𝐳k

)
+ 𝜌

2
‖‖‖𝛽i − 𝐳k‖‖‖

2

2
(16)

for i = 1, 2,… ,m. Let 𝜆i = 𝜌𝐮i (i = 1, 2,… ,m) for better representation, we write

down an equivalent problem of optimization (16) as

𝛽

k+1
i = argmin

𝛽i
Ai =

C
2
‖‖Hi𝛽i − Ti‖‖

2
2 +

𝜌

2
‖‖‖𝛽i − 𝐳k + 𝐮ki

‖‖‖
2

2
, (17)

The necessary condition for the minimum of optimization problem (17) is derived

by setting the partial derivatives with respect to 𝛽i to zero, i.e.,

𝜕Ai

𝜕𝛽i
= CH⊺

i

(
Hi𝛽i − Ti

)
+ 𝜌

(
𝛽i − 𝐳k + 𝐮ki

)
= 0. (18)

Therefore, we have

𝛽

k+1
i =

(
𝜌

C
I + H⊺

i Hi

)−1 [
𝜌

C
(
𝐳k − 𝐮ki

)
+ H⊺

i Ti
]
.

On the other hand, with 𝜆i = 𝜌𝐮i (i = 1, 2,… ,m), the optimization problem (14)

is rewritten as

𝐳k+1 = argmin
𝐳

B = 1
2
‖𝐳‖22 +

m∑

i=1

𝜌

2
‖‖‖𝛽

k+1
i − 𝐳‖‖‖ + 𝜌

(
𝐮ki
)⊺ (

𝛽

k+1
i − 𝐳

)
. (19)

Thus, the closed form solution for optimization problem (19) is obtained by setting

the partial derivatives with respect to 𝐳 to zero; and we have

𝐳k+1 =
∑m

i=1
(
𝛽

k+1
i + 𝐮ki

)

m + 1∕𝜌
.

It is evident that the update of 𝐳k+1 is indeed an averaging step over the present local

output weight vectors 𝛽i and 𝐮i (i = 1, 2,… ,m) to some extent [3].

Based on the analysis above, we summarize the algorithm for DELM on the basis

of ADMM in Algorithm 1 which is also visualized by Fig. 2 for better understanding.

Distributed Extreme Learning Machine … 51

Fig. 2 Distributed extreme

learning machine with

ADMM

Algorithm 1 Distributed extreme learning machine with ADMM

Input: Data set D =
{(

𝐱⊺j , tj
)
∶ 𝐱j ∈ ℝn

, tj ∈ ℝ, j = 1, 2,… ,N
}

with a partition of all data

indices
{
D1,D2,… ,Dm

}
.

Initialization: 𝐳0 = 0,𝐮0i = 0 (i = 1, 2,… ,m), 𝜌,t.
1: for k = 0, 1, 2,… do
2: Update 𝛽k+1i in parallel:

𝛽

k+1
i =

(
𝜌

C
I + H⊺

i Hi

)−1 [
𝜌

C
(
𝐳k − 𝐮ki

)
+ H⊺

i Ti
]

̂
𝛽

k+1
j = t𝛽k+1i + (1 − t) 𝐳k

(i = 1, 2,… ,m).
3: Update 𝐳k+1: 𝐳k+1 =

∑m
i=1(̂𝛽k+1i +𝐮ki)
m+1∕𝜌

;
4: Update 𝐮k+1i : 𝐮k+1i = 𝐮ki + ̂

𝛽

k+1
i − 𝐳k+1 (i = 1, 2,… ,m).

5: end for
Output: Output weights vector 𝐳 with respect to data set D.

5 Experiments

In this section, some numerical experiments on well-known benchmark data sets are

carried out to illustrate the effectiveness of the proposed DELM method. We first

demonstrate a significant comparable (even better) performance over the traditional

ELM with single processor. We then show that the proposed DELM algorithm is

effective to handle optimization problem with a large scale data set and provide an

analysis on the performance of speedup.

In order to illustrate regression accuracy of the proposed DELM, the data sets of

sinc − train and sinc − test stock from the home page of Extreme Learning Machine

(http://www.ntu.edu.sg/home/egbhuang) are utilized in this experiments to compare

with the traditional ELM. Each of data set sinc − train and sinc − test composes of

5000 instances with one dependent variable and one independent variable.

For fair comparison, let the number of hidden nodes be 20, the output function

of each hidden node be “Sigmoid” and the value of parameter C be 1 in the frame-

work of both traditional ELM and the proposed DELM. Besides, we assign the value

of parameter 𝜌 = 1 and t = 1.6 in DELM. In the conditions above, the number of

http://www.ntu.edu.sg/home/egbhuang

52 M. Luo et al.

Fig. 3 The objective

function of DELM with

respect to different number

of processors

0 5 10 15 20

60

70

80

90

100

110

120

130

140

150

160

Iterations

O
bj

ec
tiv

e
of

 D
E

LM

m=2
m=4
m=8
m=16
m=32
m=64

processors m = 2, 4, 8, 16, 32, 64 are respectively utilized in DELM and the training

data are split and distributed evenly among the processors. With respect to these dif-

ferent number of processors, we plot the corresponding values of objective function

in Fig. 3 as the increase of iteration times. It indicates that the objective functions for

different number of processors converges within no more than 10 times of iteration

though slightly more number of iteration are required with respect to more number

of processors. Therefore, the proposed DELM achieves fast convergence on the basis

of ADMM. We also show the values of root mean square error (RMSE) associated

with training data and testing data as the increase of iteration times in Fig. 4(a) and

Fig. 4(b), respectively; moreover, the corresponding exact values of RMSE after 20

times iteration are written down in Table 1. It indicates that, on one hand, the result

of DELM is comparable with the results of the traditional ELM (training RMSE

0 5 10 15 20

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Iterations

T
ra

in
in

g
R

M
S

E

m=2
m=4
m=8
m=16
m=32
m=64

0 5 10 15 20

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Iterations

T
es

tin
g

R
M

S
E

m=2
m=4
m=8
m=16
m=32
m=64

(a) (b)

Fig. 4 The values of RMSE with respect to different number of processors. a Training. b Testing

Distributed Extreme Learning Machine … 53

Table 1 The values of RMSE with 20 times iteration

Number of processors 2 4 8 16 32 64

Training RMSE 0.1409 0.1419 0.1420 0.1421 0.1425 0.1432

Testing RMSE 0.0813 0.0813 0.0814 0.0817 0.0824 0.0836

0.1424 and testing RMSE 0.0824); on the other hand, it is evident that the proposed

DELM has better robustness on regression accuracy with respect to different number

of processors.

6 Conclusion

In this paper, we develop an effective distributed extreme learning machine to imple-

ment the traditional ELM algorithm in parallel for large-scale data set. This method

takes advantage of ADMM algorithm and find a solution to a global problem by solv-

ing local subproblems coordinately. In this case, the problem of inverse conversion

for large matrix in traditional ELM is avoided to some extent by implementing the

corresponding sub-problem in parallel.

Acknowledgments This work was supported in part by National Science Foundation of China

(Grant No. 91118005, 91218301, 61502377, 61221063, 61428206), Ministry of Education Inno-

vation Research Team (IRT13035), Key Projects in the National Science and Technology Pillar

Program of China (2013BAK09B01) and the National Science Foundation (NSF) under grant CCF-

1500365.

References

1. Huang, G.-B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive

feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892

(2006)

2. Huang, G.-B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neu-

rocomputing 70(1), 489–501 (2006)

3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical

learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1),

1–122 (2010)

4. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: Sixth Sym-

posium on Operating System Design and Implementation (2004)

5. Wang, X., Chen, Y., Zhao, H., Lu, B.: Parallel extreme learning machine for regression based

on mapreduce, Neurocomputing 102
6. He, Q., Shang, T., Zhuang, F., Shi, Z.: Parallelized extreme learning machine ensemble based

on min-max modular network, Neurocomputing 128
7. Zhang, C., Lee, H., Shin, K.G.: Efficient distributed linear classification algorithms via the alter-

nating direction method of multipliers. In: The 15th International Conference on Aritificial Intel-

lienge and Statistics (AISTATS)

54 M. Luo et al.

8. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and

multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(2), 513–529 (2012)

9. Eckstein, J.: Parallel altrenating direction multiplier decomposition of convex programs. J.

Optim. Theory Appl. 80(1), 39–62 (1994)

An Adaptive Online Sequential Extreme
Learning Machine for Real-Time Tidal
Level Prediction

Jianchuan Yin, Lianbo Li, Yuchi Cao and Jian Zhao

Abstract An adaptive variable-structure online sequential extreme learning

machine (OS-ELM) is proposed by incorporating a hidden nodes pruning strat-

egy. As conventional OS-ELM increases network dimensionality by adding newly-

received data samples, the resulted dimension would expand dramatically and result

in phenomenon of “dimensionality curse” finally. As the measurement samples may

come endlessly, there is a practical need to adjust the dimension of OS-ELM not

only by adding hidden units but also by pruning superfluous units simultaneously.

To evaluate the contribution of existing hidden units and locate the superfluous units,

an index is implemented referred to as normalized error reduction ratio. As the OS-

ELM adds new samples in hidden units, those existing units contribute less to cur-

rent dynamics would be deleted from network, thus the resulted parsimonious net-

work can represent current system dynamics more efficiently. This online dimension

adjustment approach can handle samples which are presented one-by-one or chuck-

by-chuck with variable chuck size. The adaptive variable-structure OS-ELM was

implemented for online tidal level prediction purpose. To evaluate the efficiency of

the adaptive variable structure OS-ELM, tidal prediction simulations was conducted

based on the actual measured tidal data and meteorological data of Old Port Tampa

in the United States. Simulation results reveal that the proposed variable-structure

OS-ELM demonstrates its effectiveness in short term tidal predictions in respect of

accuracy and rapidness.

Keywords Online sequential extreme learning machine ⋅ Pruning strategy ⋅ Tidal

prediction

J. Yin (✉) ⋅ L. Li ⋅ Y. Cao ⋅ J. Zhao

Navigation College, Dalian Maritime University, Dalian 116026, China

e-mail: yinjianchuan@gmail.com

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_5

55

56 J. Yin et al.

1 Introduction

Tidal prediction is an important issue in areas of oceanographic and coastal engi-

neering. It also concerns much to the tidal energy utilization as well as marine safety

and efficiency. Precise tidal prediction can be a vital issue for navigational safety

when a ship sails through shallow waters; it is also can be used for ships to carry

more cargo with extra water depth brought by tide. Tidal level changes periodically

under the forces caused by the movements of celestial bodies such as moon, earth

and sun. Its dynamics is also influenced by environmental factors such as barometer

pressure, water temperature, wind, current, rainfall and ice, etc. [1]. Therefore, the

dynamic changes of tidal level is a complex time-varying process which is hard to be

predicted precisely in practice. The conventional harmonic analysis method is still

the most widely used one and is still the basis for long-term tidal prediction [2]. The

harmonic method is able to represent the influences on tide caused by celestial bodies

and coastal topography. However, changes of tidal level are not only influenced by

periodical celestial movements, but also by time-varying meteorological factors [3].

The changes of these factors and their influences on tidal change are complex and

hard to be represented by strictly constructed model. Therefore, to generate precise

tidal predictions in real time, there is a practical need to construct an adaptive model

to consider the influences of above-mentioned time-varying environmental changes.

The development of intelligent computation techniques such as neural network,

fuzzy logic and evolutionary computations have been widely applied in vast areas [3,

4]. In recent years, a novel sampling and learning scheme is presented for neural net-

works referred to as sequential learning scheme. Sequential learning is an adaptive

learning strategy which processes samples sequentially and tunes network accord-

ingly [5, 6]. Sequential learning is initiated by Platt [5]; Lu developed RAN by incor-

porating pruning strategy in RAN, and the resulted minimal RAN (MRAN) is more

parsimonious than RAN and demonstrate more computational efficiency [6]. How-

ever, there are too much parameters in MRAN which increases the manual work bur-

den. Another type of sequential learning mode is online sequential extreme learning

machine (OS-ELM) [7, 8], which is derived from the theory of extreme learning

machine (ELM) [9, 10]. OS-ELM improved ELM from batch learning to be able

to handle data which arrives one-by-one or chunk-by-chunk [7], facilitate its online

applications.

In this paper, a pruning strategy is incorporated in OS-ELM by deleting the obso-

lete hidden units. Contributions of each unit are evaluated adaptively and those units

contribute less to the output would be deleted from network. The resulted variable-

structure OS-ELM is implemented for online tidal level prediction. The increasing

and deleting of hidden units are conducted during identification process and the

achieved network can be implemented simultaneously. The identification and pre-

diction processes are performed in one step. To evaluated the effectiveness of the

proposed method, tidal prediction simulations are conducted based on the measure-

ment data of Old Port Tampa in the United States.

An Adaptive Online Sequential Extreme Learning . . . 57

2 Online Sequential Extreme Learning Machine (OS-ELM)

In this part, we skip the rigorous proof for ELM [9, 11, 12]. The main idea of ELM is

that for N arbitrary distinct samples (𝐱k, tk), in order to obtain arbitrarily small non-

zero training error, one may randomly generate ̃N(≤ N) hidden nodes (with random

parameters 𝐚i and bi). Under this assumption, 𝐇 is completely defined. Then, Eq. (9)

becomes a linear mapping and the output weights 𝝎 are estimated as

𝝎̂ = 𝐇†𝐓 =
(
𝐇T𝐇

)−1 𝐇T𝐓, (1)

where 𝐇†
is the Moore-Penrose generalized inverse of the hidden layer output matrix

𝐇. Calculation of the output weights can be done in a single step. This avoids any

lengthy training procedure to choose control parameters (learning rate and learn-

ing epochs, etc.), thus enables its extreme processing speed. Universal approxima-

tion capability of ELM has been analyzed in [9], which indicated that SLFNs with

randomly generated additive or radial basis function (RBF) nodes can universally

approximate any continuous target function on any compact subspace of 𝐑n.

As training data may be presented one-by-one or chunk-by-chunk in real-time

applications, the ELM is modified so as to make it suitable for online sequential

computation [7]. Suppose a new chunk of data is given, it results in a problem of

minimizing

‖‖‖‖‖

[
𝐇0
𝐇1

]
𝜔 −

[
𝐓0
𝐓1

] ‖‖‖‖‖
. (2)

When a new sample arrives or a chunk of samples arrive, the connecting weight

𝜔 becomes

𝜔

(1) = 𝐊−1
1

[
𝐇0
𝐇1

]T [𝐓0
𝐓1

]
, (3)

where 𝐊1 =
[
𝐇0
𝐇1

]T [𝐇0
𝐇1

]
= 𝐊0 +𝐇T

1𝐇1.

For the efficiency of sequential learning, it is reasonable to express 𝜔
(1)

as a func-

tion of 𝜔
(0)

, 𝐊1, 𝐇1 and 𝐓1, which is independent of the original data set.

[
𝐇0
𝐇1

]T [𝐓0
𝐓1

]
= 𝐇T

0𝐓0 +𝐇T
1𝐓1 (4)

= 𝐊1𝜔
(0) −𝐇T

1𝐇1𝜔
(0) +𝐇T

1𝐓1

𝜔

(1)
can be expressed as follows by combining (3) and (4):

𝜔

(1) = 𝐊−1
1

[
𝐇0
𝐇1

]T [𝐓0
𝐓1

]
= 𝜔

(0) +𝐊−1
1 𝐇T

1
(
𝐓1 −𝐇1𝜔

(0))
. (5)

58 J. Yin et al.

Iteratively, when the (k+1)th new chunk of data arrives, the recursive method is

implemented for acquiring the updated solution. 𝜔
(k+1)

can be updated by

𝜔

(k+1) = 𝜔

(k) +𝐊−1
k+1𝐊

T
k+1

(
𝐓k+1 −𝐇k+1𝜔

(k))
. (6)

with

𝐊−1
k+1 = 𝐊−1

k −𝐊−1
k 𝐇T

k+1
(
I +𝐇k+1𝐊−1

k 𝐇T
k+1

)−1 ×𝐇k+1𝐊−1
k . (7)

The detailed statement of the recursive least square method can be found in [7]

and will not be repeated here.

3 Dimension Adjustment Strategy for OS-ELM

To achieve an OS-ELM with adaptive variable structure, the pruning strategy is

incorporated in this study. The pruning operation is conducted to those hidden units

which possess less representing ability to current system dynamics by contributing

less to the current input-output mapping. The current dynamics is embodied by a

sliding data window, and the contribution of the existing hidden units is measured

by an index referred to as normalized error reduction ratio (nerr). We employ in the

pruning strategy based on a sliding data window [13, 14]. When sample is received

one by one, the sliding window is updated accordingly by adding the new one in

the hidden layer and discarding the foremost one. When the samples are presented

in chuck-by-chuck way, assume that the chuck comprise of l samples, the foremost l
samples would be removed from network. Under extreme conditions, when a large

amount of samples are received at a time, or the number of received samples exceed

the size of sliding data window, l samples are selected from the samples randomly,

with l ≤ N.

A sliding data window is expressed by incorporating input and output pairs:

WSD = [(xt−N+1, yt−N+1),… , (xt, yt)], (8)

where N denotes the width of WSD, that is the number of sample pairs included in

the window; t is the index of time and in this study t denotes the index of the newest

sample, whether it is presented one-by-one or chuck-by-chuck. The determination of

N is based on the change rates of dynamics systems. Theoretically a complete cycle

of system changes is needed.

Sliding data window is composed by input matrix X and output matrix Y for rep-

resent system mapping, where X ∈ Rn×N
is the input of sliding data window, and n is

the dimension of input variables, Y ∈ RN×m
is the output of the sliding data window,

and m is the dimension of output variables.

By incorporating the subset selection scheme of orthogonal least squares (OLS)

algorithm [15] into a sequential learning mode, we can adjust dimension of OS-

ELM by adding new sample as a hidden unit directly, as well as pruning units which

An Adaptive Online Sequential Extreme Learning . . . 59

consecutively contribute little to output. For implementing pruning strategy, the con-

tribution of each existing hidden units is calculated based on an index referred to

normalized error reduction ratio, which is a generalization form of error reduction

ratio (err) [15, 16].

The learning procedure begins with random allocation of hidden units in OS-

ELM and increase the dimension of OS-ELM by allocating newly received samples

in hidden layer. When a new observation arrives, the observation xi is added as a new

hidden unit directly as the new sample conveys more information on current system

dynamics. The hidden layer is constructed by the new hidden units and the original

units together. The dimension of constructed hidden units is Rn×M
, where M is the

number of hidden units, n is the dimension of the candidate hidden units, which is

the same as the the dimension of input variables.

We choose the Gaussian functions as the active functions of the hidden units.

The response matrix is expressed by 𝛷 ∈ RN×M
, with the individual element is

expressed as:

𝜙j,k = exp

(
−
‖xj − ck‖2

2𝜎2

)
1 ≤ j ≤ N, 1 ≤ k ≤ M, (9)

where ck is the center location of kth hidden unit, 𝜎 is a width constant, and ‖ ⋅ ‖
denotes the Euclidean norm. It should be noticed that the dimension of 𝛷 is N ×M,

which is different from the square response matrix in OLS algorithm.

As the time series samples of a practical system is usually correlated and the

response matrix is highly coupled, the orthogonal method is utilized to distinguish

the contribution of each hidden units [15]. By utilizing Gram-Schmidt method, the

set of basis vectors 𝛷 can be translated into orthogonal basis vectors by 𝛷 = WA.

The space spanned by the set of wk is the same as that spanned by set of

𝜙k. W is composed by orthogonal columns. According to vector space theory,∑M
k=1 cos

2
𝜃k,i = 1 hold valid only in single-output conditions. Different from square

response matrix generated in OLS algorithm, the response matrix in this condition

is generally not square as the number of hidden units and the number of samples in

the sliding data window is usually not coincide.

As the result of
∑M

k=1[err]k ≠ 1, it is impossible to set a criterion for subset selec-

tion. To evaluate the contribution of existing hidden units by one same criterion, the

index of normalized error reduction ratio (nerr) is designed by:

[nerr]k =
[err]k

∑M
k=1[err]k

. (10)

The summation of nerr is then normalized and
∑M

k=1[nerr]k = 1, thus the nerr
can be directly used as a criterion for evaluating the contribution of each existing

hidden unit.

To realize the pruning of hidden units, those units whose summation of error

reduction ratio falls below the preset accuracy threshold 𝜌 are selected at each step.

60 J. Yin et al.

The units with smallest nerr is firstly selected whose [nerr]k1 = min{[nerr]k, 1 ≤

k ≤ M}. After the first unit, the second unit is selected: [nerr]k2 = min{[nerr]k, 1 ≤

k ≤ M, k ≠ k1} if [nerr]k1 ≤ 𝜌. Similar selection procedure continues until their sum

reaches an accuracy threshold
∑k=kS+1

k=k1
[nerr]k > 𝜌.

Thus k1,… , kS and corresponding hidden units are selected. Similar selection pro-

cedure is conducted at each step. If certain hidden units are selected for p consecutive

observations, the units can be considered as obsolete for current system dynamics

and would be pruned from the network. That is, units in the intersection I will be

eliminated from the network.

I =
{
Sk

⋂
Sk−1

⋂
…

⋂
Sk+p−1

}
(11)

This operation of consecutive selection avoid the misdeletion of useful units and

guarantee the stability of the resulted variable OS-ELM consequently. After hidden

units being added or pruned at each step, the existing parameters of the network are

adjusted. Under condition that no hidden units are incorporated in I and none was

pruned, as the new sample or new chuck of samples still be added into the hidden

layer, the connecting parameters are updated using the conventional recursive least

square method in conventional OS-ELM method:

𝜔

(k+1) = 𝜔

(k) +𝐊−1
k+1𝐊

T
k+1

(
𝐓k+1 −𝐇k+1𝜔

(k))
. (12)

Under conditions where both the number of hidden units and the number of exist-

ing hidden units are not very large, the parameters are determined by linear least

mean squares estimation (LLSE) method. Comparing with other sequential learning

algorithms, the VS-OSELM is featured by its adaptive learning scheme and small

number of tuning parameters. At each step, VS-OSELM adds new sample directly

as a hidden unit, and remove units consecutively align poor with output. This learn-

ing scheme highly reduces the computational burden of sequential learning. And

there are only 3 parameters (N, 𝜌 and p), which is much less than sequential learning

algorithms of RAN and MRAN. These features facilitate its practical identification

and prediction applications.

4 Simulation of Tidal Level Prediction Based
on Variable-Structure OS-ELM

4.1 Structure of Online Tidal Prediction Scheme

The change of tidal level is a complex process which is affected not only by move-

ment of celestial bodies but also by environmental changes. These factors made it a

difficult task to generate precise tidal level predictions by a strictly founded model.

An Adaptive Online Sequential Extreme Learning . . . 61

OS-ELM has demonstrated its efficiency in describing nonlinear processes. By incor-

porating the pruning strategy in OS-ELM, the achieved VS-OSELM possesses com-

pact network structure. In this study, the VS-OSELM is implemented in tidal level

prediction simulation.

The OS-ELM-based prediction is a kind of sequential learning scheme whose hid-

den units are added and pruned sequentially in this study. During the simulation, both

processes of identification and prediction are conducted at each step. The prediction

is performed once the hidden units and connecting parameters are determined.

The tidal level y is considered as the effects of periodical movement of celes-

tial bodies as well as time-varying environmental influences of u and other unmod-

eled factors. As the OS-ELM is suitable for representing the nonlinear time-varying

dynamics of tidal changes, in this study, OS-ELM is used for online tidal prediction

of y based on nonlinear autoregressive with exogenous inputs (NARX) model:

y(t) = f (y(t − 1),… , y(t − ny), u(t − 1),… , u(t − nu)), (13)

where the y and u are system output and input, with ny and nu denote orders of y
and u, respectively. In this study, u in (13) contains environmental factors including

water temperature T and air pressure P. That is, u(t − 1),… , u(t − nu) contains

T(t − 1),… ,T(t − nT),P(t − 1),… ,P(t − nP), (14)

where nT and nP are orders of the T and P in prediction model, respectively.

The 1-step-ahead prediction is realized by replacing the t in (13) with t + 1:

y(t + 1) = f (y(t),… , y(t − ny + 1), u(t),… , u(t − nu + 1)), (15)

After the VS-OSELM is online adjusted by learning data pairs of yR in current

sampling pool of sliding data window, it is applied for tidal level prediction imme-

diately.

For m-steps-ahead prediction, the processes of identification and prediction are

expressed as follows:

y(t) = f (yR(t − m),… , y(t − m − ny + 1), u(t − m),… , u(t − m − nu + 1)), (16)

and

y(t + m) = f (yR(t),… , y(t − ny + 1), u(t − m),… , u(t − m − nu + 1)). (17)

Once the identification process is completed, currently available information of y,

P and T are then set as input according to (17) and the y(t + m) is the m-steps-ahead

prediction of the tidal level.

62 J. Yin et al.

4.2 Real-Time Tidal Prediction Simulation

Simulation of online tidal level prediction was conducted to verify the feasibility and

efficiency of the proposed VS-OSELM. The simulation was conducted based on the

measured hourly tidal data of Old Port Tampa in Florida, USA. The hourly tidal level

samples are measured from GMT0000 January 1 to GMT2300 June 30, 2015, 4344

samples in total. To evaluate the efficiency of the proposed online prediction method,

4000 steps of prediction was conducted. All the measurements of tidal level, air pres-

sure, water temperature and the parameters of harmonic constants in this study are

achieved from web site of American National Oceanic and Atmospheric Adminis-

tration: http://co-ops.nos.noaa.gov. In the online tidal prediction simulations, both

the identification and prediction processes are performed in each step. Simulations

are processed in MATLAB 7.4 environment running at 2.40 GHz (CPU) and 1.92

GB memory (RAM).

The measured tidal data of Port of Old Port Tampa is shown in Fig. 1. The pre-

diction result achieved by using conventional harmonic method is also shown in the

figure.

The coefficient of the measured tidal level and the predicted value by Harmonic

method is 0.879529. As the harmonic method only takes consider of the period influ-

ences of celestial bodies and ignores the influences of the environmental changes,

there exist time-varying errors in the prediction results. It can be noticed that the pre-

diction error are large in January to March. It reach its highest to 0.6710 m at 1355-

th hour. Ship voyage plan stipulated based on such prediction may cause accidents

of grounding or collision when ship sails through shallow water or under bridge.

Therefore, there is a practical need to reduce predictive tidal error and give accurate

predictions.

In this study, the index of root mean square error (RMSE) is utilized to evaluate

the performances of prediction. Based on the measured data, the RMSEP of tidal

prediction using harmonic method is 0.149933 m. These diverges are mostly caused

0 500 1000 1500 2000 2500 3000 3500 4000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (h)

tid
al

 le
ve

l (
m

)

predicted
measured

Fig. 1 Measured tidal level and the predicted results by using harmonic method (king point)

http://co-ops.nos.noaa.gov

An Adaptive Online Sequential Extreme Learning . . . 63

0 500 1000 1500 2000 2500 3000 3500 4000
1000

1010

1020

1030

1040

time (h)

ai
r

pr
es

su
re

 (
m

b)

0 500 1000 1500 2000 2500 3000 3500 4000
10

20

30

40

time (h)

ai
r

te
m

pe
ra

tu
re

 (
° C

)

Fig. 2 Changes of air pressure and water temperature

by environmental factors such as air pressure and water temperature, which is shown

in Fig. 2.

It can be notice by comparing Fig. 2 that the rising of water temperature coincides

with the increase of mean sea level; and the variations of the air pressure corresponds

to the fluctuations of tidal level from January to March, 2015. The VS-OSELM was

implemented for tidal prediction based on the measurement data of Old Port Tampa.

In the study, the running step is set as 4000, and the parameters for NARX model

are set as ny = 12, nP = 1 and nT = 1. For VS-OSELM, the first 72 samples are set

as sample pool for ELM to select and the number of hidden neurons assigned to the

ELM is 18, Gaussian function was selected as activation function. The parameters

for the pruning strategy are set as N = 72, 𝜌 = 0.0001 and p = 2. The prediction

error of 1-step-ahead tidal level prediction is shown in Fig. 3.

It can be noticed that the predicted tidal levels track the real ones well even when

the tidal level fluctuates form January to March, 2015. It is shown that the errors

0 500 1000 1500 2000 2500 3000 3500 4000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (h)

pr
ed

ic
tio

n
er

ro
r

(m
)

predicted
measured

Fig. 3 Prediction result for 1-step-ahead tidal prediction by VS-OSELM

64 J. Yin et al.

0 500 1000 1500 2000 2500 3000 3500 4000
6

8

10

12

14

16

18

20

22

24

26

time (h)

hi
dd

en
 u

ni
ts

 n
um

be
r

Fig. 4 Scatter diagram of measured tidal level and prediction result by VS-OSELM

are round zero, which is different from the result acquired by the harmonic method.

The RMSE of prediction by using VS-OSELM is 0.0364727 m, which is much less

than the result achieved by the harmonic method.

The corresponding correlation coefficient is 0.995032, which is higher than that

achieved by harmonic method. As the hidden units in VS-OSELM is adjustable by

adding received new ones and discarding the obsolete ones, the number of hidden

units is variable. The evolution of the number of hidden units is depicted in Fig. 4.

It is noticed by Fig. 4 that the employed hidden units number is quite small in

contrast to the conventional OS-ELM which expands its dimension gradually and

would reach a considerably large number. As the adjustment of hidden units is a

dynamic process, the hidden units number changes almost in every step. So that we

can only measure the dimension of the network by an index referred to as average

hidden units number (AHUN). The larger AHUN means a relatively big dimension

and a smaller one implies a compact network structure. The overall processing time

for the VS-OSELM is 17.898055 s, which enable it for online applications such as

online prediction and control.

For comparison purpose, the conventional OS-ELM is also conducted and the

prediction result is shown in Fig. 5. The samples are presented to OS-ELM sequen-

tially, and the models of identification and prediction are the same as that of the

VS-OSELM. For conventional OS-ELM, the first 72 samples are set as sample pool

for ELM to select and the number of hidden neurons assigned to the ELM is set

as 24 to get optimal prediction accuracy. Altogether 50 times of simulation is con-

ducted and the average prediction result is depicted in Fig. 5 together with the actual

measured ones.

It is noted by comparing Figs. 3 and 5 that the prediction results coincide with the

actual ones better than that by using conventional OS-ELM, especially in tracking of

the fluctuant tidal levels. It is noticed that error level is higher than that by using VS-

OSELM and the prediction result depicts more fluctuations even abrupt changes of.

The maximum prediction error reaches 0.5, which is too large for practical naviga-

tional applications. The predictive RMSE for OS-ELM prediction is 0.0503m, which

An Adaptive Online Sequential Extreme Learning . . . 65

0 500 1000 1500 2000 2500 3000 3500 4000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (h)

tid
al

 le
ve

l (
m

)

measured
predicted

Fig. 5 Prediction result for 1-step-ahead tidal prediction by conventional OS-ELM

is larger than the 0.0365 m by using VS-OSELM. Both the predictive RMSE of OS-

ELM and VS-OSELM are smaller than 0.149933 m by using harmonic method. The

correlation coefficient between the actual levels and predicted ones is 0.9791.

It can be noticed from above simulation results that for short-term prediction, the

VS-OSELM performs superior to conventional OS-ELM both in predictive accu-

racy and processing speed. By incorporating the pruning strategy in OS-ELM, the

resulted VS-OSELM demonstrate better prediction accuracy and faster processing

time than conventional OS-ELM. As the resulted network possesses parsimonious

structure, the processing burden for matrix calculation is drastically released and

the processing speed is highly accelerated accordingly. Notwithstanding the reduced

network dimension, the generalization ability of the achieved VS-OSELM is not

deteriorated much because the scattered hidden units with limited number can rep-

resent the current system dynamics well. Especially for time-varying systems, the

redundant network will deteriorate the adaptive ability of network instead. The con-

clusion is based on the prediction simulation setting that the system is a time-varying

system whose dynamics changes quickly with variations of environmental changes.

5 Conclusions

A variable structure OS-ELM is proposed based by incorporating the pruning strat-

egy in the adjustment of hidden units. The computational burden is alleviated by

reducing the dimension of hidden layer. Furthermore, the adaptive adjustment strat-

egy for hidden units enable the existing hidden units represent current system dynam-

ics, which facilitate its online application for short-term prediction of time-varying

dynamics. The hidden units adjustment strategy for controlling the dimension of hid-

den layer should be further studied to ensure the stability of the achieved network.

The variable structure OS-ELM can also be implemented to other online applications

such as online identification, prediction and control of time-varying systems.

66 J. Yin et al.

Acknowledgments This work is supported by National Natural Science Foundation of China

(Grant No. 51279106), the Applied Basic Research Fund of the Chinese Ministry of Transport

(Grant No. 2014329225010) and Fundamental Research Funds for the Central Universities (Grant

No. 3132014028).

References

1. Fang, G.H., Zheng, W.Z., Chen, Z.Y.: Analysis and Prediction of Tide and Tidal Current. Ocean

Press, Beijing (1986)

2. Lee, T.: Back-propagation neural network for long-term tidal predictions. Ocean Eng. 31, 225–

238 (2004)

3. Liang, S., Li, M., Sun, Z.: Prediction models for tidal level including strong meteorologic

effects using a neural network. Ocean Eng. 35, 666–675 (2008)

4. Lee, T., Jeng, D.: Application of artificial neural networks in tide-forecasting. Ocean Eng. 29,

1003–1022 (2002)

5. Platt, J.: A resource allocating network for function interpolation. Neur. Comput. 3(2), 213–225

(1991)

6. Lu, Y.W., Sundararajan, N., Saratchandran, P.: A sequential learning scheme for function

approximation using minimal radial basis function neural networks. Neur. Comput. 9, 461–

478 (1997)

7. Liang, N.Y., Huang, G.B., Saratchandran, P., Sundararajan, N.: A fast and accurate online

sequential learning algorithm for feedforward networks. IEEE Trans. Neur. Netw. 17(6), 1411–

1423 (2006)

8. Sun, Y.J., Yuan, Y., Wang, G.R.: An OS-ELM based distributed ensemble classification frame-

work in P2P networks. Neurocomputing 74(16), 2438–2443 (2011)

9. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neu-

rocomputing 70, 489–501 (2006)

10. Huang, G., Huang, G.B., Song, S.J., You, K.Y.: Trends in extreme learning machines: a review.

Neural Networks 61, 32–48 (2015)

11. Huang, G.B., Ding, X.J., Zhou, H.M.: Optimization method based extreme learning machine

for classification. Neurocomputing 74, 155–163 (2010)

12. Huang, G.B., Zhou, H.M., Ding, X.J., Zhang, R.: Extreme learning machine for regression and

multiclass classification. IEEE Trans. Syst. Man Cy. B 42(2), 513–529 (2012)

13. Li, J.M., Chen, X.F., He, Z.J.: Adaptive stochastic resonance method for impact signal detection

based on sliding window. Mech. Syst. Signal Pr. 36, 240–255 (2013)

14. Chen, C.Y., Li, T.H.S., Yeh, Y.C., Chang, C.C.: Design and implementation of an adaptive

sliding-mode dynamic controller for wheeled mobile robots. Mechatronics 19(2), 156–166

(2009)

15. Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal least squares learning algorithm for radial

basis function networks. IEEE Trans. Neural Netw. 2(2), 302–309 (1991)

16. Yin, J.C., Wang, L.D., Wang, N.N.: A variable-structure gradient RBF network with its appli-

cation to predictive ship motion control. Asian J. Contr. 14(3), 716–725 (2012)

Optimization of Outsourcing ELM Problems
in Cloud Computing from Multi-parties

Jiarun Lin, Tianhang Liu, Zhiping Cai, Xinwang Liu and Jianping Yin

Abstract In this letter, we introduce a secure and practical multi-parties cooperat-

ing mechanism of outsourcing extreme learning machines (ELM) in Cloud Comput-

ing. This outsourcing mechanism enables original ELM to perform over large-scale

dataset in which multi-parties are involved. We propose a optimized partition pol-

icy in Cloud Computing to significantly improve the training speed and dramatically

reduce the communication overhead. According to the partition policy, cloud servers

are mainly responsible for calculating the inverse of an intermediate matrix derived

from the hidden layer output matrix, which is the heaviest computation. Although

most of the computation is outsourced in Cloud Computing, the confidentiality of the

input/output is assured because the randomness of the hidden layer is fully exploited.

Theoretical analysis and experiments have shown that the proposed multi-parties

cooperating mechanism for outsourcing ELM can effectively release customers from

heavy computations.

1 Introduction

In the era of Big Data and Cloud Computing, computation outsourcing has drawn

considerable attention in both academic and industry community. Traditional machine

learning can no longer efficiently process big data which is giant-volume, fast-

velocity and intensely various. Fortunately, Extreme Learning Machines (ELM),

provides some tips upon how to effectively address the challenges.

ELM was originally proposed by G-B Huang et al. [1–3], as a fast learning algo-

rithm for Single-hidden Layer Feedforward Neural Networks (SLFNs), in which the

input weights and bias attached with the hidden layer are randomly assigned and

The authors are with the College of Computer Science, National University of Defense Technology,

410073, Changsha, P.R. China.

J. Lin (✉) ⋅ T. Liu ⋅ Z. Cai ⋅ X. Liu ⋅ J. Yin

College of Computer, National University of Defense Technology, Changsha,

People’s Republic of China

e-mail: nudtjrlin@gmail.com

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_6

67

68 J. Lin et al.

the output weights are analytically determined. ELMs have been extended for “gen-

eralized” SLFNs which may not be neuron alike. To improve the training speed,

especially over large-scale datasets, researchers have proposed many enhanced ELM

variants [4], such as Parallel ELM [5] based on MapReduce, GPU-accelerated and

parallelized ELM ensembles for large scale regression.

To avoid committing any large capital expenditures, users would like to outsource

the ELM tasks into Cloud Computing in a pay-per-use manner at relatively low price.

However, Outsourcing is also giving up users’ direct control of their data and appli-

cation, in which sensitive information might be involved [6], such as business finan-

cial records, proprietary research data, etc. To ensure the data security and fight

against unauthorized information leakage, sensitive data is frequently desired to be

encrypted in advance so as to provide end-to-end data confidentiality assurance in the

cloud and beyond. Moreover, the requirements of security are indispensable juristi-

cally in some practical application systems, such as the protection of Personal Health

Information (PHI) according to the Health Insurance Portability and Accountability

Act (HIPAA) [7].

In our previous work [4], we proposed a secure and practical mechanism, named

Partitioned ELM, to outsource ELM in Cloud Computing to enable ELM to be

applied in big data applications. As the parameters of the hidden nodes need not

be tuned but can be randomly assigned, they claimed that ELM is well suited to

be outsourced for improving training speed. The mechanism explicitly decomposes

ELM algorithm into a public part and a private part. The assignments of random

nodes and the calculation of the hidden layer’s output matrix is kept locally in pri-

vate part. Only the output matrix and its pseudo inverse are transmitted between users

and cloud. The public part is executed in the cloud and is mainly responsible for the

calculation of pseudo inverse. The pseudo inverse also serves as the correctness and

soundness proof for result verification. Cloud servers cannot mine out sensitive infor-

mation from the hidden layer’s output matrix. Therefore, the customer can perform

the ELM tasks with improved training speed while preserving the confidentiality of

the input and the output.

However, our previous work focused on outsourcing original ELM in Cloud

Computing from a very single party, and the partition policy is based on that the

pseudo inverse was calculated through Singular Value Decomposition (SVD), which

is native and extreme expensive computationally. In this paper, we will discuss out-

sourcing ELM in Cloud Computing from multiple parties while preserving the pri-

vacy and discuss another efficient partition policy for outsourcing ELM in Cloud

Computing. Besides, we discuss the optimization of outsourcing batches of ELM

problems in cloud computing through pipelien and parallelization. To the best of

our knowledge, we are the first to outsource ELM in Cloud Computing from mul-

tiple parties to improve the training speed while assuring the confidentiality of the

input/output.

Optimization of Outsourcing ELM Problems in Cloud Computing from Multi-parties 69

2 Preliminary

Given a set of training data (𝐗,𝐓), in which 𝐱𝐢 = [xi1, xi2, ..., xin]T ∈ 𝐑n
and 𝐭𝐢 =

[ti1, ti2 , ..., tim]
T ∈ 𝐑m

, i = 1, 2, ...,N, ELM can train the SLFN at an extremely fast

speed thanks to one of the salient feature of ELM - the hidden layer need not be

tuned. ELM trains SLFNs with randomly assigned hidden nodes, i.e., the bias and

weights between the input layer and hidden layer (𝐰,𝐛) are assigned randomly, given

the activation functions are infinitely differentiable. wi = [wi1,wi2,… ,win]T ∈ Rn
is

the input weight vector connecting the ith hidden node with the input nodes [3].

From the other perspective, we can reform the input weights matrix. We use 𝐚𝐣i =
[aj1, aj2, ..., ajM] to denote the weight vector (row) between jth input node and the M
hidden nodes. The input weights 𝐰 can be also expressed as 𝐰 = [𝐚𝟏, 𝐚𝟐, ..., 𝐚𝐧], i.e.,

wij = aji. After the hidden nodes are assigned, the hidden layer output matrix H of

the neural network is determined.

The architecture of SLFNs trained by ELM is shown in Fig. 1. It can be mathe-

matically modeled as

M∑

i=1
𝛽ihi(x) = h(x)𝜷, (1)

where H = h(x) = [h1(x), h2(x), ..., hM(x)] is the output (row) vectors of the hidden

layer with respect to the input x and 𝜷 = [𝛽1, 𝛽2, ..., 𝛽M] is the output weights vector

between M hidden nodes and m output nodes. The pseudo inverse of H is denoted

as H†
. 𝜷 can be determined analytically by

𝜷 = H†T . (2)

Fig. 1 Training SLFN with

ELM

70 J. Lin et al.

3 Multi-parties Cooperating Outsourcing of ELM

3.1 Threat Model of Cloud Computing

There are two kinds of entities involved in the mechanism of outsourcing ELMs in

Cloud Computing: cloud customers and cloud servers. The former entity has sev-

eral computationally expensive large scale ELM problems to outsource in Cloud

Computing, and the latter one has literally unlimited resources and provides utility

computing services.

The threats of security and privacy mainly stem from the cloud servers who may

behave in “honest-but-curious” model, which is also called semi-honest model that

was assumed in many previous researches. The cloud servers would persistently be

interested in analyzing the data to mine more information, either because it is com-

promised or it intends to do so. More worse, the cloud servers may behave beyond

semi-honest model, i.e., they may cheat the customer to save power or reduce exe-

cuting time while expecting not to be caught at the same time. In this paper, we

firstly assume that the cloud server performs the computation honestly and discuss

the correctness and soundness in the later subsection.

To focus on outsourcing ELM in Cloud Computing, we omit the authentication

processes, assuming that communication channels are reliably authenticated and

encrypted, which can be achieved in practice with little overhead [8].

3.2 Outsourcing ELM from Multi-parties Cooperating
in Different Ways

Different parties may cooperate in different ways. The basic architecture is shown

in Fig. 2. Mainly, there are two ways of cooperation among multi-parties. The first

one is that different parties will contribute different samples with the same features.

For example, the same sensors are deployed at different spots to collect same kinds

Fig. 2 Architecture of outsourcing multi-parities ELM

Optimization of Outsourcing ELM Problems in Cloud Computing from Multi-parties 71

of data for different subjects. The second one is that each party contributes different

features of a very sample, i.e., different functions are featured in different parties.

We model each sample as a column vector. From the perspective of the aggre-

gated training data across different paries, the data contributed in the first way is

horizontally partitioned while that of the second way is vertically partitioned. So we

will discuss different outsourcing mechanisms over horizontally partitioned data and

vertically partitioned data in the following two subsections, respectively.

3.2.1 Horizontally Partitioned Data

In this case, we firstly delegate a trusted third-party or vote a party as the Primary

Party according the power of CPU, memory, network bandwidth, etc. The details

of how to delegate or vote a primary party and how to authenticate different parties

are out of the focus of this paper. While most of public cloud servers are out of the

trust domain, the trusted party could be a trusted third-party or be voted among the

involved parties, which are probably in the same trust domain. So it is acceptable to

delegate a trusted party for generating parameters. The primary party will take the

responsibility of generating and distributing the hidden layer’s parameters. As soon

as the lth party Pl receives them, it begins to calculate the corresponding part 𝐇l of

the hidden layer’s output matrix with its own data records. Thereafter, 𝐇l is sent to

the cloud servers. After the cloud servers calculate and feedback the pseudo inverse

𝐇†
, each participated party can calculate the desired output weights 𝜷 according to

Eq. 1, as well as perform the testing of the trained SLFNs with the trained parameters.

Furthermore, there is another way of calculating the output weights. The cloud

servers only send it to the primary party. The primary party is in charge of calculating

and distributing the output weights, as well as the testing of trained SLFNs.

3.2.2 Vertically Partitioned Data

Assuming that, there are L parties and kl features contributed by lth party Pl. n is

the number of features for the aggregated samples,
∑L

l=1 kl = n. The input weights

between input layer and the hidden layer can be partitioned according to the feature

distribution among different parities. To outsource ELM from multiple parties in

Cloud Computing without leaking information to the other parties, different parts of

the hidden layer parameters are randomly assigned by related parties, i.e., ith party is

responsible for 𝐚j if jth feature is contributed by party Pi. When the data is vertically

partitioned, there is no need to delegate a primary party as long as the testing data is

previously collected.

Worth noting that, different parties are responsible for corresponding parts of

output matrix of the hidden layer, and then send them to cloud server. In this

way, cloud servers can know how many features of the data record are contributed

by corresponding parties, i.e., the distribution of features among different parties.

72 J. Lin et al.

To avoid the leakage of information of the distribution, the same way with the hori-

zontally partitioned data can be employed, in which the primary party firstly assem-

bles the different parts of 𝐡(𝐱) from corresponding parties, and interacts with the

cloud servers.

3.3 Improved Partitioned Policy for Outsourcing ELM

In this subsection, we will discuss an improved partitioned policy for outsourcing

ELM in Cloud Computing based on the architecture shown in Fig. 2.

As shown in [4], the heaviest computation of ELM is the calculation of pseudo

inverse of the hidden layer’s output matrix 𝐇. And the matrices transmitted between

customers and cloud servers are𝐇 and𝐇†
, whose size areN ×M andM × N, respec-

tively. Assuming that the bandwidth between the cloud customer and the cloud

servers is B bytes per second. We use Td to denote the communication delay, it would

be Td = 2 × 8×N×M
B

if each data of the matrix is a double.

In big data applications, N is usually pretty huge and great larger than M. The

communication overhead would be a horrible disaster and the time saving from com-

putation outsourcing would be killed. Therefore, we would like to find another parti-

tioned policy so that the outsourcing mechanism cannot only improve training speed

but also reduce communication overhead.

Different methods can be used to calculate pseudo inverse of a matrix: orthogonal

projection method, orthogonalization method, iterative method, and singular value

decomposition (SVD), etc. We further discuss using orthogonal projection method

to calculate pseudo inverse in this paper. To improve generalization performance and

make the solution more robust, we add a regularization term as shown elsewhere [3],

𝜷 =
(
𝐈∕C +𝐇𝐓𝐇

)−1 𝐇𝐓𝐓 (3)

We define an intermediate matrix𝛀 = 𝐈∕C +𝐇T𝐇firstly. Then the output weights

of trained neural network are

𝜷 = 𝛀−1𝐇T𝐓 (4)

We observe that the size of 𝛀 and 𝛀 is only M ×M, which is significantly smaller

than that of 𝐇 due to the fact that in most of cases N ≥ M. More specifically, the cal-

culation of𝛀’s inverse (O(M3)) is the heaviest operation. Therefore, we would like to

outsource the inverse calculation in Cloud Computing. The communication delay is

changed to Td = 2 × 8×M×M
B

. Through outsourcing, the training speed is significantly

improved and the communication overhead is dramatically reduced.

As 𝛀 is directly derived from 𝐇, it is impossible to calculate it without the whole

knowledge of 𝐇. The confidentiality of input and output is still guaranteed as cloud

servers cannot dig out information from𝛀. However, a primary party should be voted

Optimization of Outsourcing ELM Problems in Cloud Computing from Multi-parties 73

or delegated to take charge of calculating both 𝐇 and 𝛀, over either horizontally

partitioned data or vertically partitioned data.

To further improve the speedup of the training of SLFNs using ELM, we multiply

𝐇T𝐓 firstly, and then multiply it with𝛀−𝟏
when determine the desired output weights

𝜷 analytically.

3.4 Security Analysis and Result Verifications

The ELM is instinctively suitable to be outsourced in Cloud Computing while assur-

ing the confidentiality of the training samples and the desired parameters of neural

networks. In the private part, the parameters (𝐰,𝐛) are assigned randomly which are

a part of the desired parameters of the training SLFNs. These parameters must be

assigned by the cloud customer but not the cloud server. The feature mapping h(x) is

also unknown to the cloud servers. Without any knowledge of the feature mapping

functions and the randomly generated parameters, cloud servers cannot obtain any

knowledge about the exact X or (𝐰,𝐛) from 𝐇 or 𝜴.

Till now, we have been assuming that the server is honestly performing the com-

putation, while being interested in learning information. However, the cloud server

might behave unfaithfully. Therefore, the customer must be enabled to verify the

correctness and soundness of the results.

In our mechanism, the pseudo inverse itself from the cloud server can also serve

as the verification proof. It is plainly easy to verify the result through the definition of

matrix inverse. Therefore, the correctness and soundness of the results can be verified

while incurring few computation overhead and no extra communication overhead.

4 Performance Evaluation

We test the new mechanism over a large-scale dataset named CIFAR-10 [9] which

consists of 50000 training color images (32 × 32) and 10000 testing images in 10

classes. To reduce the attribute number, we firstly transform the color images into

gray images. We conduct 5 trials for each M, and randomly choose two classes as the

training samples and testing samples. The customer computations are conducted on a

common workstation (Intel Core i5-3210M CPU, 2.50GHz, 4GB RAM). To evaluate

the overall speedup, the cloud server computations are separately conducted on two

workstations with different resources: a workstation with an Intel Core i5-3470 CPU

(3.20GHz, 6GB RAM) and a more powerful workstation with an Intel Core i7-4770

CPU (3.40GHz, 16GB RAM).

Through outsourcing the calculation of the pseudo inverse from a common work-

station to another workstation with much more computing power, we can evaluate the

training speedup of the proposed mechanism without a real cloud environment. Our

74 J. Lin et al.

proposed mechanism focuses on improving the training speed through outsourcing

while the training accuracy and testing accuracy are not affected.

We use t0 to denote the training time of the original ELM in which the pseudo

inverse is calculated using orthogonal projection method. In the new Partitioned

ELM, the time cost at the local customer side and at the cloud server side are

denoted as tl and tc, respectively. Then, we define the asymmetric speedup of the

proposed mechanism as 𝜆 = t0∕tl, which physically means the savings of the com-

puting resources for the customer and is independent on how resourceful the cloud

server is and directly related with the size of ELM problems. The overall speedup
is defined as 𝜂 = t0∕(tl + tc). Obviously, the more powerful the cloud server is, the

higher the overall speedup.

The results are listed in Table 1. tc1 and 𝜂1 means the time cost and overall

speedup at the first cloud, respectively. Memory is becoming the dominant com-

puting resource when solving the ELM problem with the increasing M. Therefore,

different with experiments in [4], a powerful enough laptop with large enough mem-

ory serves as a client so that ELM would not terminate due to memory limit.

As illustrated in Table 1, 𝜆 is increasing along M, which means the larger the

problems’ overall size, the larger speedups the proposed mechanism can achieve. In

[4], 𝜆 of the original Partitioned ELM would increase to greater than 50 when the

number of hidden nodes is larger than 3000. However, in the new proposed mech-

anism, it increases steadily with the increase of M, slower than that of the original

Partitioned ELM. The reason is that SVD was used to calculate the pseudo inverse of

the 𝐇 in [4], while we use the orthogonal projection method in this paper, which is

much faster and requires much less memory. 𝜆 is independent with the cloud server,

while 𝜂 is directly related, which higher when the destination cloud server is more

powerful.

Over two random classes of CIFAR-10 dataset, the training accuracy (from 83 to

95 %) and testing accuracy (from 80 to 84 %) is also increasing steadily from with

the number of hidden nodes. It is worth noting that, the experiment is conducted

Table 1 Performance over 2 random classes of CIFAR-10 dataset

M t0(s) tl(s) tc1(s) tc2(s) 𝜆 𝜂1 𝜂2

1000 3.84 3.56 0.19 0.12 1.08 1.03 1.04

2000 11.65 8.50 1.31 1.12 1.37 1.19 1.21

3000 21.39 12.48 3.95 3.00 1.71 1.30 1.38

4000 47.64 24.57 7.86 6.74 1.94 1.47 1.52

5000 72.18 29.87 15.13 13.12 2.42 1.60 1.68

6000 103.55 37.38 26.21 20.62 2.77 1.63 1.79

7000 152.15 48.38 40.61 30.97 3.15 1.71 1.92

8000 210.88 59.94 57.75 46.52 3.52 1.79 1.98

9000 293.25 77.63 78.59 65.41 3.78 1.88 2.05

10000 385.17 92.40 105.82 85.44 4.17 1.94 2.17

Optimization of Outsourcing ELM Problems in Cloud Computing from Multi-parties 75

on gray images without feature extraction in purpose of evaluating the efficiency of

the proposed outsourcing mechanism and optimization policy only. The accuracy of

Extreme Learning Machine is not affected after outsourcing in cloud computing.

5 Conclusion

In this paper, we improve Partitioned ELM which was proposed in [4] by different

partition policy and extend it to multiple parties. Different parties may contribute

the training samples in vertical way or horizontal way which is more common in

practice. Through outsourcing the calculation of inverse of a intermediate matrix

which is derived from the hidden layer’s output matrix, the computation time cost

at customer side would be significantly reduced and the communication between

customers and cloud servers can be dramatically reduced while the confidentiality

of input/output is still guaranteed. The high physical saving of customers’ computing

resources and the literally unlimited resources in Cloud Computing enable ELM to

be applied to big data applications, even when sensitive data is involved.

Acknowledgments This work was supported by the National Natural Science Foundation of China

(Project No.61379145, 61170287, 61232016, 61070198, 61402508, 61303189).

References

1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of

feedforward neural networks. In: Proceedings of International Joint Conference on Neural Net-

works (IJCNN2004), pp. 985–990. Budapest, Hungary, 25–29 July 2004

2. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neu-

rocomputing 70, 489–501 (2006)

3. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and

multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(2), 513–529 (2012)

4. Lin, J., Yin, J., Cai, Z., Liu, Q., Li, K., Leung, V.C.: A secure and practical mechanism for

outsourcing elms in cloud computing. IEEE Intel. Syst. 28(6), 35–38 (2013)

5. He, Q., Shang, T., Zhuang, F., Shi, Z.: Parallel extreme learning machine for regression based

on MapReduce. Neurocomputing (2012)

6. Wang, C., Ren, K., Wang, J.: Secure and practical outsourcing of linear programming in cloud

computing. In: INFOCOM2011, pp. 820–828. (2011)

7. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access

control in cloud computing. In: 2010 Proceedings IEEE INFOCOM, IEEE, pp. 1–9. (2010)

8. Cheng, Y., Ren, J.C., Mei, S., Zhou, J.: Keys distributing optimization of cp-abe based access

control in cryptographic cloud storage. In: IEICE Transactions on Information Systems, vol.

95-D, pp. 3088–3091. (2012)

9. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Master’s

thesis, Department of Computer Science, University of Toronto (2009)

H-MRST: A Novel Framework for Support
Uncertain Data Range Query Using ELM

Bin Wang, Rui Zhu and Guoren Wang

Abstract Probabilistic range query is a typical problem in the domain of probabilis-

tic database management system. There exist many efforts for supporting such query.

However, the state of arts approaches can not efficiently index uncertain data when

their probability density function are discrete. In this paper, we propose a general

framework to construct summary for uncertain data with any type of PDF. Espe-

cially, if the PDF of uncertain data is discrete, we employ a novel machine learning

technique named ELM to learn its distribution type and fit the specific function. If

this method does not work, we propose a hybrid algorithm to construct its summary.

Besides the hybrid summary construction algorithm, we propose a bitwise-based

accessing algorithm to speed up the query. Theoretical analysis and extensive exper-

imental results demonstrate the effectiveness of the proposed algorithms.

1 Introduction

Query processing over uncertain data has become increasingly important due to the

ubiquitous data uncertainty in many real-world applications such as sensor data mon-

itoring, location-based services (LBS), biometric databases, moving object search,

to name but a few.

For instance, an intelligent transportation system monitors the traffic volume and

the average vehicle speed on every road section. As a tradeoff between communi-

cation cost and the data accuracy, the statistics are transmitted to a central database

B. Wang (✉) ⋅ R. Zhu ⋅ G. Wang

College of Information Science and Engineering, Northeastern University,

Shenyang, China

e-mail: binwang@ise.neu.edu.cn

R. Zhu

e-mail: neuruizhu@gmail.com

G. Wang

e-mail: wanggr@ise.neu.edu.cn

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_7

77

78 B. Wang et al.

periodically (e.g., every 10 min). The database content may not exactly reflect the

current value, since the actual value may have changed since it was last measured.

A similar query in the intelligent transportation system may “identify” the road

section whose traffic volume in [30, 50 V/h], average vehicle speed in [40, 55 km/h]

with a with at least 0.8 likelihood.

Many researchers employ probabilistic model to manage such data. They often

combine a set of data into a tuple < o.r, o.pdf > (named uncertain data), where o.r
denotes the region these objects could appear, and o.pdf denotes their distribution. In

order to manage and retrieve uncertain data, many probability queries are proposed.

In this paper, we study the problem of probability range query over uncertain data.

Corresponding to uncertain data, it is expressed by a tuple q < r, 𝜃 >, where q returns

the objects that are located in region with the probability at least 𝜃.

A straightforward approach for evaluating probabilistic range query is to examine

the appearance probability of each object that lies in the query region by calculus.

Obviously, the cost of such calculus approach might be expensive because of the

calculation of the complex function. Therefore, the filter-refinement framework is

more prevailing, which tries to filter those probabilistic objects that are (or not) able

to become the query results. Thus, the key of optimizing a prob-range query is to

provide, as tighter as possible, a bound for pruning/vaildating with a relatively small

cost.

Several indexes have been proposed to answer the queries over uncertain data.

Their key idea is to pre-compute the summary [1] of each object’s PDF. Among

these works, Tao et al. [2] introduces PCR (short for probabilistically constrained

regions) as the summary of an object. Zhang et al. [1] develops a U-Quardtree,

which employ the partition technique to summary the PDF of uncertain data. Aim-

ing to their defects, Zhu et al. [3]. propose 𝖱-𝖬𝖱𝖲𝖳 to approximately capture the

PDF of uncertain data, with strong pruning power and lower space cost. However,

𝖱-𝖬𝖱𝖲𝖳 only works when the PDF of uncertain data is a continuous function. When

the PDF is discrete,𝖱-𝖬𝖱𝖲𝖳 can not be used. Unfortunately, in most real applications,

the PDF of uncertain data are usually represented by a group of sampling points.

Therefore, although 𝖱-𝖬𝖱𝖲𝖳 could provides uncertain data with tight boundary, its

applicability is limited.

In this paper, we propose the 𝖧-𝖬𝖱𝖲𝖳 (short for hybrid 𝖬𝖱𝖲𝖳) framework to

extend 𝖱-𝖬𝖱𝖲𝖳. It could construct summary for uncertain data with any types of

PDF (e.g., continuous or discrete). Achieving this goal, we employ a classic learning

method named ELM(short for Extreme Learning Machine) to solve this problem. As

far as we know, ELM is an outstanding machine learning method which is widely used

in the domain of text classification [4], multimedia recognition [5–7], bioinformatics

[8], mobile objects [9], etc. It could both fast and accurate employ the classification.

In this way, it helps us to identify every type of PDF (e.g., normal, uniform, binomial

H-MRST: A Novel Framework for Support Uncertain Data Range Query Using ELM 79

distribution, and so on). And then, we further study the characteristics of 𝖬𝖱𝖲𝖳 and

propose a bitwise-based algorithm for computing the probabilistic lower-bound(and

upper-bound) of objects lying in the query region. Above all, the contributions are

as follows:

A PDF-aware summary construction framework The PDF-aware could be

reflected from the following two facets: (i) type-aware. According to the type of PDF,

we develop a group of algorithms for constructing the summary of uncertain data.

Specifically, if the PDF of uncertain data is continuous, we employ the algorithm pro-

posed in [3] for summary construction. If the PDF of uncertain data is discreet, we

propose a ELM-based algorithm for summary construction. (ii) distribution-aware. If

the type of PDF is discreet, we employ ELM for identifying the distribution type of

PDF. In this way, we could find a suitable function for fitting.

A Self-verification algorithm Through using ELM, we could obtain the distrib-

ution type of uncertain data. However, it could not achieve 100 % accuracy rate for

one thing. For another, we could not obtain the coefficients of PDF. Aiming to this

problem, we propose ELM-LSE. It combines the ELM and least squares estimation. It

has two functions:(i)verifying whether the classification is accurate; (ii) compute the

coefficients of PDF. Accordingly, the above issues could be effectively solved.

A Bitwise-based Summary accessing algorithm In order to speed up the query,

we propose a bitwise-based algorithm for summary accessing. Specifically, via

deeply study the characteristic of summary, we find that we could use a few bit oper-

ations to compute the topological relationship between query region and uncertain

data region. It leads the following benefits. (i) fully usage the superiority of CPU;

(ii)reducing the computing times(e.g., from 4 times to 2 times).

The rest of this paper is organized as follows: Sect. 2 gives related work and the

problem definition. Section 3 proposes the H-MRST. Section 4 evaluates the pro-

posed methods with extensive experiments. Section 5 is the conclusion and the future

work.

2 Background

In Sect. 2.1, we explain the state of arts approaches. In Sect. 2.2, we briefly gives an

overview of ELM. Last of this section, we formally define the problem of probabilistic

range query on uncertain data.

2.1 Related Work

The 𝐌𝐑𝐒𝐓 Zhu et al. [3] propose 𝖬𝖱𝖲𝖳 to capture approximately the PDF of an

uncertain object, with strong pruning power and lower space cost. The 𝖬𝖱𝖲𝖳 is a

80 B. Wang et al.

data structure that can be regarded as an extension of gird file. It could capture the

PDF of uncertain data via self-adaptively adjusting the resolution the partition. Given

an uncertain data o, after constructing, the region of uncertain data is partitioned into

a group of subregions. For each subregion o(i) of o, if opdf in o(i) changes dramat-

ically, we use a fine resolution to partition o(i). On the contrary, we use a coarse

resolution to partition it.

At the same time, we associate each subregion o(i) with plentiful probabilistic

information. They are app(o, i), lb(o, i), and (ub(o, i)) respectively. They represent

the likelihood of o falling in o(i), the maximal (or minimal) probability density in

o(i). Based on these information, we could compute the lower-bound and upper-

bound of o lying in qr ∩ o(i)r via Eqs. 1 and 2.

lbapp(q, i) = lb(o, i) × (max(0, S(q, i) − ZS(o, i))) (1)

ubapp(q, i) = min(ub(o, i) × S(q, i), app(o, i)) (2)

Recalling the summary construction strategy, ∀i, 𝖬𝖱𝖲𝖳 could guarantee

ubapp(q, i) − lbapp(q, i) may be small enough. Accordingly, as is explained in

Lemma 1, the 𝖬𝖱𝖲𝖳 of o could provide it with a tighter probabilistic boundary.

Its issue is it only works when the PDF of uncertain data is continuous.

Lemma 1 Given an object o and a query q, when qr overlaps with o’s subregion⋃i=n1
i=1 o(i), the lbapp(o, q) =

∑i=n1
i=1 lbapp(q, i) and ubapp(o, q) is

∑i=n1
i=1 ubapp(q, i).

The Other Indexes In recent years, many effective indexes have been proposed

to answer prob-range query over the uncertain data. Given a set  of uncertain data,

a range region , and a probabilistic threshold 𝜃, a probabilistic range query returns

uncertain data o ∈  with the probability 𝜃. Among all these works, Cheng et al.

[10] first address probabilistic range queries on one-dimensional uncertain data. And

then, Tao et al. [2] proposed a U-tree which derives from R-Tree. It uses a finite set

of probabilistically constrained regions(short for 𝖯𝖢𝖱) as the summary of uncertain

data. Accordingly, the pruning rules of U-tree lie on the topological relationship

between 𝖯𝖢𝖱 and query region. However, as is depicted in [11], its pruning ability

is weak. Zhang et al. proposed UI-Tree and UD-Tree. It is based on the partition

technique. Specifically, given an object o, it partitions or into a group of subregions,

pre-computes the probability of o lying in each subregion and store them. In this way,

they can employ the probabilistic pruning between topological relationship between

these subregion and query region. Its issue is the space cost is high,which leads a high

I/O cost. Kalashnikov et al. [12] proposed grid-based index named U-grid for index-

ing probabilistic objects. U-grid is a 2-layers index. The 1st-layer index provides the

query with spatial information, probability summarizations and a pointer to an entry

with detailed probability information. The summary probability information stored

H-MRST: A Novel Framework for Support Uncertain Data Range Query Using ELM 81

in 2nd-layer is base on a “virtual grid" and the 2nd-layer index uses these aggregate

information for pruning. However, the U-grid does not provide a lower-bound for

the query and its storage cost is also very high. The others, Aggarwal and Yu [13]

show how to construct an effective index structure in order to handle uncertain range

queries in high dimensionality.

2.2 Extreme Learning Machine

Extreme learning machine (𝖤𝖫𝖬) [14, 15] has been originally developed based

on single-hidden layer feed-forward neural networks (SLFNs). Also, it has many

variants [10, 13, 16–18]. As is discussed in [19], it provides a unified learning plat-

form with a widespread type of feature mappings. Also, it get better performance due

to its universal approximation capability [13, 17, 20] and classification capability
[19].

It randomly assigns the input weights and hidden layer biases of SLFNs and ana-

lytically determines the output weights of SLFNs. In ELM, the input weight and

the bias of the hidden node are randomly generated, and the output weight could

avoid iterative tuning. The output function of SLFNs with L hidden nodes can be

represented by

fL(x) =
L∑

i=1
𝛽igi(x) =

L∑

i=1
𝛽iG(ai, bi, x), x ∈ Rd

, 𝛽i ∈ Rm
(3)

where gi denotes the output function G(ai, bi, x) of the i-th hidden node,

𝛽i = [𝛽i1,… , 𝛽iL]T denotes the vector of the output weights between the hidden layer

of L nodes, h(x) = [G(a1, b1, x),… ,G(aL, bL, x)]T is the output vector of the hidden

layer with respect to the input x.

To approximate these samples with zero errors means that
∑L

j=1 ||oj − tj||=0,

where 𝛽i, wi, and bi satisfy Eq. 4.

L∑

i=1
𝛽ig(wixj + bi) = tj, j = 1,… ,N (4)

Equation 4 is equivalent to H𝛽 = T , where T = [tT1 ,… , tTN]
T
M×N , 𝛽 = [𝛽T1 ,… , 𝛽

T
L]

L
m×L.

2.3 Problem Definition

Given a multidimensional probabilistic object o in the d-dimension space, it is

described either continuously or discretely. In the continuous case, an object has

two attributes: or and o.PDF(x). The or is a d-dimension uncertainty region, where

82 B. Wang et al.

Algorithm 1: ELM

for i to 1 to ̃N do1
randomly assign input weight wi;2
randomly assign bias bi;3

compute H;4
compute 𝛽 = H†T;5
return ;6

o may appear at any locations with certain probabilities. The o.PDF(x) is the prob-

ability of o appearing at location x. In the discrete case, o is represented by a set of

sampled points x1, x2, …, xm, and o occurs at location xi with probability xi.p. Given

a query region qr, we use app(o,q) to represent the likelihood of o falling in the query

region qr. app(o,q) is also calculated by two cases. In the continuous case:

app(o, q) =
∫

or∩qro ⋅ PDF(x)dx (5)

where or ∩ qr denotes the intersection of or and qr, and o is a result if papp(o,q)≥𝜃

(query probability threshold). In the discrete case:

app(o, q) =
n2∑

i=1
o.PDF(xi)∕

n1∑

i=1
o.PDF(xi) (6)

where n1 is amount of the sampled points in or, and n2 is the amount of the sampled

points falling into or ∩ qr.

Definition 1 (Probabilistic Range Query). Given a set of probabilistic objects O
and a range query q, the probabilistic range query retrieves all probabilistic objects

o ∈ O with app(o, q) ≥ 𝜃, where 𝜃 is the probabilistic threshold and 0≤ 𝜃 ≤1.

3 Effectively Summarizing Uncertain Data

In this section, we propose a novel framework named 𝖧-𝖬𝖱𝖲𝖳 to capture the PDF of

uncertain data. It could handle the uncertain data with different types of PDF (e.g.,

discrete or not).

H-MRST: A Novel Framework for Support Uncertain Data Range Query Using ELM 83

Fig. 1 The 𝖧-𝖬𝖱𝖲𝖳
Framework

3.1 The 𝗛-𝗠𝗥𝗦𝗧 Overview

As is shown in Fig. 1, the framework could be divided into two parts. The first part is

to construct summary for uncertain data. The second part is to index uncertain data

and its summary.

For a set of N uncertain objects, the 𝖧-𝖬𝖱𝖲𝖳 is constructed as follows. Firstly, for

every probabilistic object, we firstly checks the PDF type of uncertain data. If the PDF
is continuous, we employ the algorithm discussed in [3] for summary construction.

On the contrary, we firstly employ a novel machine learning algorithm called ELM
for PDF classifying. And then we propose a novel algorithm named ELM-LSE for

fitting the PDF of uncertain data and verifying whether the classification is right.

After fitting all the PDF of uncertain data, we employ the algorithm discussed in [3]

for index construction and accessing.

In the following part, we firstly discuss the summary construction under different

kind of uncertain data. And then, we propose a novel bitwise algorithm for speeding

up the summary accessing.

3.2 The Summary Construction Algorithms

As is discussed before, if the PDF type of uncertain data is discrete, the superior

properties of 𝖱-𝖬𝖱𝖲𝖳 could not be used. To address this issue, we employ 𝖤𝖫𝖬 and

least squares estimation for fitting the PDF if it is discrete.

The ELM-Based Classification Algorithm ELM is an outstanding machine learn-

ing method that is suitable for classification. In this paper, we employ ELM for iden-

tifying the distribution type of PDF(normal distribution, geometric distribution, and

etc.). In order to make 𝖤𝖫𝖬 works, we build a vector for each uncertain data, where

the elements in the vector are the coordinates of sampling points. Based on this vec-

tor, we apply ELM for classification. In this way, we can determine the PDF’s type of

uncertain data. As shown in Algorithm 2, given an uncertain data o and its sampling

point , we firstly generate the vector v. And then, we input the vector to the classi-

fier. Note that, the classifier is generated by the training set, for limitation of space,

we skip the details of training.

84 B. Wang et al.

Algorithm 2: PDF classification Using ELM

Input: Uncertain Data  {o1, o2,… , on}
Output: PDF Type t
Vector v ← build-Vector();1
Type t ← ELM-Classifier(v);2
Function f ← fitting-Function(, t);3
if Verification(f , )> 𝜆 then4

Return;5

else6
BDTree() ;7

return ;8

The Self-Verification Algorithm A natural question is ELM only could obtain the

distribution type of uncertain data. In addition, if the classification is error, the

summary construction may also be not suitable. Aiming to these problems, we pro-

pose the ELM-LSE algorithm. It could both compute the accurate coefficient of PDF.

For another, it could verify whether the classification is right.

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝜕S
𝜕a0

= −2
∑i=m

i=1 (si − aj
∑j=n

j=0 x
j
i)x

𝜕S
𝜕a1

= −2
∑i=m

i=1 xi(si − aj
∑j=n

j=0 x
j
i)

…
𝜕S
𝜕an

= −2
∑i=m

i=1 xni (si − aj
∑j=n

j=0 x
j
i)x

k

(7)

Specifically, we employ least squares estimation for computing its coefficients. For

simplicity, we use the n degree polynomial as the example to show our solution. Let

the function Ffit(x) be
∑i=n

i=1 aix
i
and the sampling set be the candidate set. According

to least squares estimation, our aim is to make
∑j=|C|

j=0 (
∑i=n

i=1 aix
i − s(xj))2 as small as

possible. Accordingly, we could obtain a0 to an through solving Eq. 7.

After fitting, we verify whether the fitting function could be used. Specially, let

 be the sampling points, F be the actual PDF of , and Ffit be the fitting function. If

non-equation 8 is satisfied, we alert that the current fitting function is suitable. On the

contrary, it indicates the predicted result may be wrong. In this case, we use the key

idea of BD-Tree [21] for summary construction. After constructing, the sampling

points in each subregion are roughly the same. For the limitation of space, we skip

the details.

As shown in Algorithm 2, after classifying, we firstly apply the function fitting.

Under this step, we could decide whether the classification is suitable. If so, we do

nothing. Otherwise, we apply BD-Tree for summary construction.

∑

x∈||
Ffit(x) − F(x) < 𝜆 (8)

H-MRST: A Novel Framework for Support Uncertain Data Range Query Using ELM 85

3.3 Accessing the Summary of Uncertain Data

After extending the summary construction algorithms, in this section, we develop

a novel Algorithm 1 named priority-based to access the summary of uncertain data.

Algorithm 1 shows the details. It employs the key idea of greedy algorithm for

accessing. Specifically, it uses a field called d(q, i) to determine the accessing order

of the nodes in MRST so as to early terminating the accessing of MRST as much as

possible.

Given a query q, an object o and a subregion o(i), if q.r overlaps with o.MBR, we

access the MRST of o to check whether o is a result of q. The d(q, i) is computed

through Eq. 9. Obviously, the larger the d(q, i) is, the greater it contributes to

ubapp(o, i)-lbapp(o, i), and the corresponding o(i) should be prior accessed. Compared

with the traditional accessing method such as preorder traversal and inorder traver-

sal, introducing this field to control the nodes accessing order is more efficiently to

compute the bound. After accessing the MRST of an object, o is validated if the

lower-bound of app(o, q) is more than qp. Also, o is pruned if the upper-bound of

app(o, q) is less than qp.

d(i, q) = min(u(i, o) × S(q, i), app(o, i)) − lb(i, o) × (max(0, S(q, i) − ZS(o, i))) (9)

4 Experimental Evaluation

4.1 Experimental Setting

This section experimentally evaluates the efficiency of the proposed techniques. We

compare H-MRST with both U-Tree and UD-Tree. They are the classic technique

and an advanced index respectively.

Data set. In this paper, we use two real spatial data sets that are LB and CA, where

they contain 62 and 53 kb respectively. In these two sets, the elements are used as the

center of probabilistic regions. Then, we generate sampling points for each object

according to a given probability density function. Similarly, we generate another

three synthetic data sets. They contain 128 k/256 k/512 k two-dimension points.

Sampling Points Generation. In this paper, we use rectangle to bound sampling

points of objects. The side-length varies from 100 to 500 with the default with 500.

There exist four types of PBF that are poisson distribution, normal distribution, geo-

metric distribution, Heavy-tailed distribution. For each object, we randomly select a

distribution and generate samplings for it.

Experimental methods. Our experiments mainly evaluate the following two

aspects: (i) the accuracy of classification, where we compare our proposed algo-

rithms with varying size of the training data in different datasets. (ii) the efficiency

of H-MRST. In this setting, a workload contains 100 queries in our experiment. The

86 B. Wang et al.

Fig. 2 Training time

evaluation. a CA. b
Synthesis

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300

T
ra

in
ni

ng
 ti

m
e

(s
.)

Trainning Set Size

SVM
ELM

 0

 10

 20

 30

 40

 50

 60

 50 100 150 200 250 300

T
ra

in
ni

ng
 ti

m
e

(s
.)

Trainning Set Size

SVM
ELM

(a)

(b)

region of the queries are a rectangular with rq varying from 500 to 1500. In our exper-

iments, we randomly choose the probabilistic threshold 𝜃∈(0,1] for each query.

4.2 Classification Evaluation

In this subsection, we are going to evaluate the effect of the classifiers based on the

ELM and SVM under different data set. We firstly evaluate the training time against

different training set.

From Fig. 2a, b, with the increasing of the training set size, the training time under

ELM and SVM are all increasing. However, compared with SVM, the training time of

ELM increases slowly. The reason behind is ELM has better performance than SVM.

Next, we evaluate the classifying accuracy rate. We also compare ELM with SVM. The

difference is we add another two algorithms for comparison. Recalling Sect. 3.2, we

use least squares estimation for computing its coefficients. Its another function is to

do the verification. We call this algorithm as LSE-ELM. Also, under SVM, we use least
squares estimation for verification. We call this algorithm as LSE-SVM.

From Fig. 3a, b, the accuracy ratio of LSE-ELM is highest of all. For one thing,

using LSE-SVM, we could find some mis-claiming classification. For another, ELM
has better classifying ability.

H-MRST: A Novel Framework for Support Uncertain Data Range Query Using ELM 87

Fig. 3 Accuracy ratio

evaluation. a CA.

b Synthesis

 70

 75

 80

 85

 90

 95

 100

 50 100 150 200 250 300

A
cc

ur
ac

y
R

at
io

(%
)

Trainning Set Size

LSE-ELM
LSE-SVM

ELM
SVM

 70

 75

 80

 85

 90

 95

 100

 50 100 150 200 250 300

A
cc

ur
ac

y
R

at
io

(%
)

Trainning Set Size

LSE-ELM
LSE-SVM

ELM
SVM

(b)

(a)

Last of this subsection, we evaluate the classifying time. We also compare LSE-
ELM with LSE-ELM. From Table 1, the classifying time of LSE-ELM is shortest of all.

The main reason is the classifying efficiency is higher than the SVM algorithms.

4.3 Query Performance

In this section, we evaluate the query performance. First of all, we compare H-MRST

with the other state of arts indexes(e.g., UD-Tree and UD-Tree). In this group, we set

the probabilistic threshold to the default value(e.g., 0.5), and vary the query region

from 500× 500 to 1500× 1500. Our aim is to evaluate the impaction of query region

to the algorithm performance. We show two results that are CPU time and candi-

date set. They evaluate the ability of pruning/validating and algorithm performance

respectively. From Fig. 4a, the candidate size of H-MRST is smaller than the other

indexes. The reason behind is MRST could more effectively reflect the feature of

PDF. From Fig. 4b, the CPU time of H-MRST is shortest of all (Fig. 5).

Secondly, we set the query region to 1000× 1000, and vary probabilistic threshold

from 0.1 to 0.9. Our aim is to evaluate the impaction of probabilistic threshold to

the algorithm performance. Similarly, we still compare H-MRST with UD-Tree and

U-Tree. In addition, we still evaluate the ability of pruning/validating and algorithm

88 B. Wang et al.

Table 1 Classification time

Data set LSE-SVM LSE-ELM

Classifying

time (s)

Class Classifying

time (s)

Class

CA 38.2 4 6.3 4

LB 36.7 4 5.5 4

64 kb 40.7 4 6.7 4

128 kb 83.1 4 11.3 4

256 kb 126.2 4 23.9 4

Fig. 4 Cost versus diff Ru.

a CPU time. b Candidate

size

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 500 750 1000 1250 1500

R
un

ni
ng

in
g

tim
e

(m
s.

)

Query Radius

H-MRST
U-Tree

UD-Tree

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 750 1000 1250 1500

C
an

di
da

te
 S

et
 S

iz
e(

K
B

)

Query Radius

H-MRST
U-Tree

UD-Tree

(a)

(b)

performance. As the same as the first group of evaluation, H-MRST performs best

of all (Table 2).

In the last experiments, we compare the performance of H-MRST, UD-Tree, and

U-Tree by different data sets. Five data sets (LB and three synthesize) are employed.

The number of data points of each data set is 53 k, 64 k, 128 kb and 256 kb. We use

default parameters in these experiments. As expected, H-MRST performs best of all.

H-MRST: A Novel Framework for Support Uncertain Data Range Query Using ELM 89

Fig. 5 Cost versus diff 𝜃.

a Candidate size. b CPU

time

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0.2 0.4 0.6 0.8

R
un

ni
ng

 T
im

e(
S)

Probabilistic Threshold

H-MRST
U-Tree

UD-Tree

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.2 0.4 0.6 0.8

C
an

di
da

te
 S

et
 S

iz
e(

K
B

)

Probabilistic Threshold

H-MRST
U-Tree

UD-Tree

(a)

(b)

Table 2 Algorithm performance

Data set H-MRST UD-Tree U-Tree

Running

time

Candidate

set

Running

time

Candidate

set

Running

time

Candidate

set

LB 1 0.92 1.2 1.08 2.21 2.36

64 kb 1.3 1.11 1.7 1.39 2.26 2.99

128 kb 2.1 1.23 3.3 3.9 5.74

256 kb 4.5 1.59 6.9 3.03 4.8 8.28

5 Conclusions

In this paper, we studied the problem of range query on probabilistic data. Through

deep analysis, we proposed an effective indexing technique named E-MRST to man-

age uncertain data. E-MRST could provided a very tight bound for pruning/validating

the objects that overlap(or non-overlap) with the query region in a lower cost. Our

experiments convincingly demonstrated the efficiency of our indexing techniques.

In the future, we will further study other indexes which are suitable for high-

dimensional uncertain data and support probabilistic data update frequently.

90 B. Wang et al.

Acknowledgments The work is partially supported by the National Natural Science Foundation

of China for Outstanding Young Scholars (No. 61322208), the National Basic Research Program of

China (973 Program) (No. 2012CB316201), the Joint Research Fund for Overseas Natural Science

of China (No. 61129002), the National Natural Science Foundation of China for Key Program (No.

61572122), the National Natural Science Foundation of China (Nos. 61272178, 61572122).

References

1. Zhang, Y., Zhang, W., Lin, Q., Lin, X.: Effectively indexing the multi-dimensional uncertain

objects for range searching. In: EDBT, pp. 504–515 (2012)

2. Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing multi-dimensional

uncertain data with arbitrary probability density functions. In: VLDB. pp. 922–933 (2005)

3. Zhu, R., Wang, B., Wang, G.: Indexing uncertain data for supporting range queries. In: Web-

Age Information Management—15th International Conference, WAIM 2014, Macau, China,

Proceedings, 16–18 June 2014, pp. 72–83 (2014)

4. Zhao, X.-G., Wang, G., Bi, X., Gong, P., Zhao, Y.: XML document classification based on

ELM. Neurocomputing 74, 2444–2451 (2011)

5. Lan, Y., Hu, Z., Soh, Y., Huang, G.B.: An extreme learning machine approach for speaker

recognition. Neural Comput. Appl. 22(3–4), 417–425 (2013)

6. Lu, B., Wang, G., Yuan, Y., Han, D.: Semantic concept detection for video based on extreme

learning machine. Neurocomputing 102, 176–183 (2013)

7. Zong, W., Huang, G.B.: Face recognition based on extreme learning machine. Neurocomputing

74, 2541–2551 (2011)

8. Wang, G., Zhao, Y., Wang, D.: A protein secondary structure prediction framework based on

the Extreme Learning Machine. Neurocomputing 72, 262–268 (2008)

9. Wang, B., Wang, G., Li, J., Wang, B.: Update strategy based on region classification using elm

for mobile object index. Soft Comput. 16(9), 1607–1615 (2012)

10. Rong, H.J., Huang, G.B., Sundararajan, N., Saratchandran, P.: Online sequential fuzzy extreme

learning machine for function approximation and classification problems. IEEE Trans. Syst.

Man Cybern. 39, 1067–1072 (2009)

11. Zhang, Y., Lin, X., Zhang, W., Wang, J., Lin, Q.: Effectively indexing the uncertain space.

IEEE Trans. Knowl. Data Eng. 22(9), 1247–1261 (2010)

12. Kalashnikov, D.V., Ma, Y., Mehrotra, S., Hariharan, R.: Index for fast retrieval of uncertain

spatial point data. In: GIS, pp. 195–202 (2006)

13. Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine.

Neurocomputing 71, 3460–3468 (2008)

14. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of

feedforward neural networks. In: International Symposium on Neural Networks. vol. 2 (2004)

15. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neu-

rocomputing 70, 489–501 (2006)

16. Feng, G., Huang, G.B., Lin, Q., Gay, R.K.L.: Error minimized extreme learning machine with

growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 20, 1352–1357

(2009)

17. Huang, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70,

3056–3062 (2007)

18. Huang, G.B., Zhu, Q.Y., Mao, K.Z., Siew, C.K., Saratchandran, P., Sundararajan, N.: Can

threshold networks be trained directly? IEEE Trans. Circuits Syst. Ii: Analog Digital Signal

Process. 53, 187–191 (2006)

19. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and

multiclass classification. IEEE Trans. Syst. Man Cybern. 42, 513–529 (2012)

H-MRST: A Novel Framework for Support Uncertain Data Range Query Using ELM 91

20. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive

feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17, 879–892

(2006)

21. Ohsawa, Y., Sakauchi, M.: The bd-tree—a new n-dimensional data structure with highly effi-

cient dynamic characteristics. In: IFIP Congress, pp. 539–544 (1983)

The SVM-ELM Model Based on Particle
Swarm Optimization

Miao-miao Wang and Shi-fei Ding

Abstract Extreme learning machine (ELM) is a simple and effective SLFNs single

hidden layer feedforward neural network learning algorithm, in recent years, it has

become one of the hot areas in machine learning research. But single hidden layer

node lacks of judgement ability, to some extent the classification accuracy depends

on the number of hidden layer nodes. In order to improve the judgement ability of

single hidden layer node, Support Vector Machine (SVM) is combined with ELM,

and a simplified SVM-ELM model is established. At the same time, in order to avoid

the subjectivity of human to choose parameters, the SVM-ELM model uses Particle

Swarm Optimization (PSO) algorithm to automatically select the parameters, finally

PSO-SVM-ELM model is proposed. Experiments show that classification accuracy

of the model is higher than the SVM-ELM and ELM, and it also has good robustness

and adaptive generation ability.

Keywords Particle swarm optimization (PSO) ⋅ Support Vector Machine (SVM) ⋅
Extreme learning machine (ELM) ⋅ SVM-ELM

1 Introduction

Extreme learning machine (ELM) is a simple and effective SLFNs single hidden

layer feedforward neural network learning algorithm [1]. In the process of algorithm

execution, only need to set the number of hidden layer nodes of networks, input

M. Wang—Project supported by the National Natural Science Foundation of China

(No.61379101), Postgraduate Cultivation Innovation project of Jiangsu Province in 2014 (No.

No.SJLX_0636).

M. Wang ⋅ S. Ding (✉)

School of Computer Science and Technology, China University of Mining and Technology,

Xuzhou 221116, China

e-mail: dingsf@cumt.edu.cn

M. Wang ⋅ S. Ding

Key Laboratory of Intelligent Information Processing, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing 100190, China

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_8

93

94 M. Wang and S. Ding

weight and the bias of hidden layer take random assignment. Output layer weight

is obtained the unique solution by the least squares method. Therefore classification

accuracy of ELM depends on the number of hidden layer nodes. To some extent,

there are more hidden layer nodes, and the classification accuracy of ELM will be

higher. Since ELM is based on empirical risk minimization principle, random section

of input weight and hidden layer bias are likely to lead to unnecessary input weight

and hidden layer bias. Compared with the traditional learning algorithm, which is

based on gradient descent algorithm, ELM may require more hidden layer neurons,

but more hidden layer neurons will reduce the operating rate and training effect. So

many algorithms are put forward to improve ELM.

Huang et al. put forward online sequential extreme learning machine (OS-ELM)

algorithm based on the recursive least square (RLS) algorithm [2]. After that, online

sequential fuzzy extreme learning machine (OS-fuzzy-ELM) model is proposed to

solve the problem of function approximation and classification [3]. Rong et al. put

forward pruned extreme learning machine (pruned-ELM) as systematic and auto-

mated approach of ELM classification network, due to structural design of original

ELM’s classification network results in under or overfitting problems [4]. Group

search optimization strategy is proposed by Silva et al. to select the input weight

and hidden layer bias of ELM algorithm, shorten by GSO-ELM. Silva et al. used

this method to improve ELM [5]. Compared with ELM, these optimization methods

have gotten very good classification effect [6].

Support Vector Machine (SVM) is a new machine learning method and has devel-

oped in recent years [7], it is based on Statistic Learning Theory, and its theoretical

basis is structural risk minimization principle. Compare with neural network, SVM

is more suitable for small sample to classify, and its generation performance is excel-

lent [8]. SVM has achieved remarkable advances in pattern recognition, regression

analysis, function estimation, time series prediction, etc. It also has been widely used

in handwriting recognition, face detection, gene classification and many other fields

[9]. SVM transforms linearly non-separable problems of low dimensional space into

linearly separable problems of high dimensional by kernel function, and constructs

optimal separating hyperplane to realize classification of data samples.

Classification accuracy of ELM depends on the number of hidden layer nodes,

but large numbers of hidden layer nodes cause the structure of ELM overstaffing,

also easily lead to insufficient memory. In order to improve the learning and judge-

ment ability of single hidden layer node, this paper optimizes ELM by SVM, then

establishes SVM-ELM model. In the SVM-ELM model, the leaning and judgement

ability of single node are highly improved. Traditionally, the selection of parame-

ter relies on experience value, and requires repeated trials, so the selection is very

subjective. If the parameters are chosen by cross validation, it will consume a lot of

time. Particle swarm optimization (PSO) is a new evolutionary algorithm developed

in recent years, it is easily to implement, rapid convergence rate, high precision, and

has been successfully applied to function optimization, pattern recognition, etc. In

order to make the SVM-ELM model obtain better classification accuracy, this paper

optimizes the SVM-ELM model by PSO, and realizes the classification target [10].

The SVM-ELM Model Based on Particle Swarm Optimization 95

2 SVM-ELMModel

Extreme Learning Machine (ELM) was proposed by Guangbin Huang in 2004, a

professor at Nanyang Technological University, and it is a kind of single hidden

layer feedforward neural network (SLFN) [11]. Traditional ELM algorithm randomly

determines weight and bias of hidden layer nodes, according to the experimental

results, this method greatly saves the learning time of the system. But if higher clas-

sification accuracy is required, the network needs a lot of hidden layer nodes, while

fewer nodes lead to poorer classification results. This indicates that the learning and

judgement ability of single hidden layer node are insufficient and need more nodes to

compensate. For a single node, insufficient learning ability is due to weight and bias

of linear decision function randomly selected, and this causes the node under-fitting

[12]. If the learning ability of the single hidden layer node in ELM network is greatly

improved, then fewer hidden layer nodes are needed and ELM network can obtain

better learning ability. Compared with original ELM, the network structure will be

optimized.

In this paper, SVM is used to improve the judgement ability of the single node,

to simplify the structure of ELM network, and to improve the generalization per-

formance of ELM. Specific optimization method is as follows. According to the

categories of data, the number of hidden layer nodes is determined. Changing the

traditional way to determine the number of hidden layer nodes which adopts random

value and requires repeated trials to find the best value, SVM is used to determine

weight and bias of each hidden layer node [13], improve the learning ability and gen-

eralization ability of each node. In the case of k kinds of data to classify, the number

of hidden layer nodes in the SVM-ELM model is k, the task of the ith node is to use

SVM to separate the ith class data from the other k − 1 classes. On the basis of upper

training result, weight and bias of each hidden layer node will be obtained.

If the data set is S =
⋃k

i=1 Si, Si is the set of the ith class input vector xij, x
i
j =

[xij1, x
i
j2,… , xijn]

T
𝜖Rn

, the class label of xij is y
i
j = [yij1, y

i
j2,… , yijm]

T
𝜖Rm

. The linear

decision function of the ith node is fi
(
xij
)
= wi ⋅ 𝜙

(
xij
)
+ bi, wi is the pending

weight and bi is the pending bias, xij𝜖Si or xij𝜖S − Si, and 𝜙 (⋅) is the implicit function

to mapping the sample in the low dimensional space to high dimension space. For

the ith node, the weight and bias of the linear decision function 𝜙 (⋅) can be identified

by solving the following SVM optimization problem.

minLp =
1
2
‖‖wi

‖‖
2 + Ci

|S|∑

j=1
𝜉

i
j (1)

s.t.yij
(
wi ⋅ f

(
xij
)
+ bi

)
⩾ 1 − 𝜉

i
j , (j = 1, 2,… , |S|) , 𝜉ij ⩾ 0 (j = 1, 2,… , |S|)

yij = 1,
(
xij𝜀Si

)
, yij = −1,

(
xij𝜀S − Si

)

96 M. Wang and S. Ding

In formula (1), xij is the jth input vector of the ith class, y
i
j is its label to classify,

Ci
is the penalty parameter of the ith class, 𝜉

i
j is the relaxation factor of xij. Lagrange

objective function of the formula (1) as follows:

L
(
wi, bi, 𝛼i) = 1

2
‖‖wi

‖‖
2 −

|S|∑

p=1
𝛼

i
p[y

i
p

(
wT
i x

i
p + bi

)
− 1] (2)

The dual problem of the formula (1) is:

maxLD =
|S|∑

p=1
𝛼

i
p −

1
2

|S|∑

p=1

|S|∑

q=1
yipy

i
q𝛼

i
p𝛼

i
q ⋅ 𝜙

(
xip
)
⋅ 𝜙

(
xiq
)

(3)

s.t.
|S|∑

p=1
yip𝛼

i
p = 0.yip = 1,

(
xip𝜖Si

)
, yip = −1,

(
xip𝜖S − Si

)

0 ⩽ 𝛼

i
p ⩽ Ci, (p = 1, 2,… , |S|)

In formula (3), the support vector is xip that is corresponding to the nonzero

Lagrange multiplier 𝛼
i
p, yip is the label of xip. If yip = 1, xip𝜖Si, otherwise xip𝜖S − Si.

The weight wi
p can be expressed as:

wi
p =

1
Ni
j

Ni
j∑

j=1
𝛼

i
jy

i
j𝜙

(
xij
)

(4)

In formula (4), Ni
j is the number of the support vector xij, y

i
j is the label of the

support vector. According to formula (4), bring the value of the weight wi
p into linear

decision function f (⋅), then

fi (x) =
1
Ni
j

Ni
j∑

j=1
𝛼

i
jy

i
j𝜙

(
xij
)
𝜙 (x) + bi (5)

The input matrix of hidden layer can be expressed as:

Hk
(
w1,w2,… ,wk; b1, b2,… , bk; x1, x2,… , x|S|

)
= [g1, g2,… , g|S|]T|S|∗k

and

g1 = g
(
w1 ⋅ 𝜙

(
x1
)
+ b1

)
… g

(
wk ⋅ 𝜙

(
x1
)
+ bk

)

g2 = g
(
w1 ⋅ 𝜙

(
x2
)
+ b1

)
… g

(
wk ⋅ 𝜙

(
x2
)
+ bk

)

⋮ ⋱ ⋮
g|S| = g

(
w1 ⋅ 𝜙

(
x|S|

)
+ b1

)
… g

(
wk ⋅ 𝜙

(
x|S|

)
+ bk

)

The SVM-ELM Model Based on Particle Swarm Optimization 97

so

Hk =
⎡
⎢
⎢
⎢⎣

g
(
f1
(
x1
))

g
(
f2
(
x1
))

… g
(
fk
(
x1
))

g
(
f1
(
x2
))

g
(
f2
(
x2
))

… g
(
fk
(
x2
))

⋮ ⋮ ⋱ ⋮
g
(
f1
(
x|S|

))
g
(
f2
(
x|S|

))
… g

(
fk
(
x|S|

))

⎤
⎥
⎥
⎥⎦|S|∗k

g (x) is the activation function of ELM. The commonly used activation functions are

Sigmoid function, Sine function, RBF function, etc. In this paper, we choose the

Sigmoid function as the activation function because it has better effect. From these

considerations, the number of hidden layer nodes is k, the activation function is g (x),
so the SLFN model is:

k∑

i=1
𝛽igi

(
xij
)
=

k∑

i=1
𝛽ig

(
wi ⋅ xij + bi

)
= yij, (j = 1, 2,… , |S|) (6)

The learning system is Hk𝛽k = Y , learning parameter 𝛽k can be expressed as

follows:

𝛽k =
[
𝛽

T
1 𝛽

T
2 … 𝛽

T
k
]T
k∗m =

⎡
⎢
⎢
⎢⎣

𝛽11 𝛽12 … 𝛽1m
𝛽21 𝛽22 … 𝛽2m
⋮ ⋮ ⋱ ⋮
𝛽k1 𝛽k2 … 𝛽km

⎤
⎥
⎥
⎥⎦

The goal of the SVM-ELM model is to obtain the learning parameter ̂
𝛽k in the

following formula:

‖‖‖‖
Hk

∧
𝛽k −Y

‖‖‖‖
= min

𝛽k

‖‖Hk𝛽k − Y‖‖ (7)

The solution of the formula (7) is the minimum norm least-squares solution ̂
𝛽k,

̂
𝛽k = H+

KY , H+
k is Moore-Penrose generalized inverse of Hk.

3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithm is a kind of evolutionary computation

technology, and is derived from the behavior of the birds and proposed by Eberhart

et al. in 1995 [14]. The algorithm was originally inspired by the regularity of birds

cluster activity, and then a simplified model is established through the swarm intelli-

gence [15]. On the basis of observing the animals’ cluster activity behavior, particle

swarm optimization algorithm uses the information that the individual sharing in the

group to make the movement of the population from disorder to order in the solution

space of the problem, so as to obtain the optimal solution. Particle Swarm Optimiza-

tion algorithm images every potential solution of the optimizing problem as a point

of the D-dimensional search space, and the point is called ‘particle’. Particle flies

98 M. Wang and S. Ding

at a certain speed in the search space. According to its own flight experience and

companion’s flight experience, the speed is adjusted dynamically. All the particles

have a fitness value that determined by the optimized objective function, the parti-

cles also records the best position (particle best, shorten as pbest) that found as far

and current position of the particle, and these are seen as the particle’s flying expe-

rience. At the same time, each particle also records the best position of the entire

group (global best, shorten as gbest). Apparently gbest is the best value of pbest, and

this is companion’s flight experience.

The size of population is m, and the position of the ith particle in D-dimension

space can be expressed as: xi =
(
xi1, xi2,… , xid

)
, (i = 1, 2,… ,m), the speed vi =(

vi1, vi2,… , vid
)
, (i = 1, 2,… ,m) determines the displacement of the particle’s iter-

ation times in the search space, d represents the number of the independent vari-

ables in the problem that to be solved, the fitness function is determined by the

optimized function in the practical problems. In each iteration, the particle updates

its own speed and position by tracking two ‘extremum’. One is the best solution

that the particle itself has found so far, namely particle best, shorten as pbest,

pbesti =
(
pi1, pi2,… , pid

)
, the other is the best solution that the entire population

have found so far, namely global best, shorten as gbest, gbesti =
(
g1, g2,… , gd

)
[16].

vij (t + 1) = vij (t) + c1 ⋅ r1 ⋅
(
pj (t) − xij (t)

)
+ c2 ⋅ r2 ⋅

(
gj (t) − xij (t)

)
(8)

xij (t + 1) = xij (t) + vij (t + 1) , (i = 1, 2,… ,m) (j = 1, 2,∴… , d) (9)

In formulas (8) and (9), t is the iteration times, r1 and r2 is a random number in

the (0,1) interval, c1 and c2 is acceleration factor, and commonly c1 = c2 = 2.

Fig. 1 The flow chart of PSO algorithm

The SVM-ELM Model Based on Particle Swarm Optimization 99

Particle’s speed of each dimension can’t exceed the maximum speed vmax that set

by the algorithm. If vmax is big, the global search ability is stronger, otherwise partial

searching ability is stronger. In PSO algorithm, the termination condition for iteration

is generally the maximum number of iterations or the global optimal position to meet

the minimum limit [17, 18]. The flow chart of PSO algorithm is shown in Fig. 1.

In this paper, particle swam optimization algorithm is used to automatically select

the parameters of SVM-ELM model [19]. It overcomes the subjectivity of artificial

selection and avoids consuming too much time on artificial attempts. At the same

time, the aim to control the direction of parameter selection can be realized through

setting the fitness function of particles [20, 21].

4 Experimental Analysis

In order to verify the validity of the PSO-SVM-ELM model, four data sets are

selected from UCI machine learning repository. These data sets are used for clas-

sification, and the description of these data sets is shown in Table 1.

In the SVM-ELM model, when using the result of SVM to optimize the weight

and bias of hidden layer nodes, the kernel function of SVM is multiple, such as

radial basis function which is namely RBF kernel, polynomial kernel function.

According to the experimental results, select RBF kernel function which has better

effect. Expression of RBF kernel function is K (x, y) = exp
[
−‖x − y‖2

/
2𝜎2]

. Sig-

moid function is chosen as the activation function of ELM which has better perfor-

mance, and its expression is g (x) = 1∕ (1 + e−x). In the SVM-ELM model based on

particle swarm optimization algorithm, the parameters that to be optimized are the

width parameter 𝜎 of RBF kernel function and penalty parameter C. The population

size and the search range of the parameters are shown in Table 2.

Table 1 The description of data sets

Data sets Number of

samples

Number of

categories

Number of

attributes

Training data

(%)

Testing data

(%)

Wine 178 3 13 70 30

Seeds 210 3 7 60 40

Balance Scale 625 3 4 70 30

CNAE-9 1080 9 856 70 30

Table 2 The parameters search range of PSO-SVM-ELM model

Data sets 𝜎 search range C search range Population size

Wine [100, 10000] [1, 10] 20

Seeds [1, 1000] [1, 10] 20

Balance Scale [1, 100] [1, 10] 20

CNAE-9 [1, 1000] [1, 10] 20

100 M. Wang and S. Ding

Table 3 The parameters value of PSO-SVM-ELM model

Wine Seeds Balance Scale CNAE-9

𝜎 5247.37 37.1443 9.81278 724.485

C 8.190191 5.79651 2.65891 2.19863

Fig. 2 Traces flight of

Wine’s global best

The accelerated factors c1 and c1 of the particle swarm are equal to 2, namely

c1 = c2 = 2, the population size m = 20, inertia weight w = 0.9, and the maxi-

mum iteration number is 2000. Experimental environment: the processor is Intel(R)

Xeon(R) CPU E3-1225 V2 @ 3.20 GHz, RAM is 4 GB, the operating system is 32-

bit, and the main software is MATLAB R2012b. After several iterations, the para-

meters 𝜎 and C of each data set are shown in Table 3.

The flight path of gbest in Wine, Seeds, Balance Scale, CNAE-9 data sets are

respectively shown in Figs. 2, 3, 4 and 5.

The classification results of the SVM-ELM model based on particle swarm opti-

mization algorithm are shown in Table 4.

If PSO algorithm isn’t used to optimize the SVM-ELM model, the parameters

of the SVM-ELM model are determined by continuous attempts and experiments.

Wine, Seeds and Balance Scale data sets have 3 kinds of data, so in the SVM-ELM

model, the number of hidden layer nodes is 3. However CNAE-9 data set has 9 kinds

of data, so its number of hidden layer nodes is 9. The classification results of SVM-

ELM model without PSO algorithm are shown in Table 5. In the table, the parameters

are the best of all the continuous attempts and experiments.

In the case of setting different number of hidden layer nodes, the classification

results of ELM are shown in Table 6. In Table 6, the testing accuracy is the maximum

of 10 times experiments, when the number of hidden layer nodes is the same.

The SVM-ELM Model Based on Particle Swarm Optimization 101

Fig. 3 Traces flight of

Seeds’s global best

Fig. 4 Traces flight of

Balance Scale’s global best

From Table 6, the testing accuracy of ELM is continuously improved with the

number of hidden layer nodes increasing on Wine data set. On Seeds and CNAE-9

data sets, with the number of hidden layer nodes increasing, even though the testing

accuracy of ELM appears partial fluctuations, the testing accuracy is still increas-

ing as a whole. This phenomenon suggests that the learning effect of ELM has a

great relationship with the number of hidden layer nodes. If a good learning effect

is required, there must be enough hidden layer nodes. But large numbers of hidden

layer nodes lead to the network bloated. On Balance scale data set, with the number

of hidden layer nodes increasing, the testing accuracy of ELM is increasing at first

and then decreasing. This suggests that the stability of the ELM is poorer and ELM

easily appears overfitting phenomenon.

102 M. Wang and S. Ding

Fig. 5 Traces flight of

CNAE-9’s global best

Table 4 The classification results of PSO-SVM-ELM model

Data sets Number of hidden

layer nodes

Training accuracy (%) Testing accuracy (%)

Wine 3 92.00 98.11

Seeds 3 86.51 90.48

Balance Scale 3 86.51 90.48

CNAE-9 9 97.49 95.68

Table 5 The classification results of SVM-ELM model

Data sets Number of

hidden layer

nodes

𝜎 C Training

accuracy (%)
Testing

accuracy (%)

Wine 3 2000 2 89.60 96.00

Seeds 3 1000 5 90.48 86.90

Balance Scale 3 25 1 87.87 87.23

CNAE-9 9 500 2 97.35 94.75

Comparing Table 4 with Tables 5 and 6, we can find that the SVM-ELM model

based on particle swarm optimization algorithm has a higher testing accuracy on the

4 data sets than SVM-ELM model and ELM. On Wine data set, the testing accuracy

of the SVM-ELM model based on particle swarm optimization algorithm is 2.11 %

higher than SVM-ELM model, and 5.66 % higher than ELM. On Seeds data set,

the testing accuracy of the SVM-ELM model based on particle swarm optimization

algorithm is 3.58 % higher than SVM-ELM model, and 5.96 % higher than ELM.

The comparison about the classification accuracy of the SVM-ELM model based on

particle swarm optimization algorithm, SVM-ELM and ELM on the selected data

sets is shown in Table 7.

The SVM-ELM Model Based on Particle Swarm Optimization 103

Table 6 The classification results of ELM

Data sets Number of hidden

layer nodes

Training accuracy (%) Testing accuracy (%)

Wine 3 40.00 39.62

100 69.60 71.70

1000 96.80 83.02

5000 100.00 92.45

Seeds 3 65.87 63.10

10 90.48 83.33

100 100.00 78.57

1000 100.00 84.52

5000 100.00 82.14

Balance Scale 3 76.20 72.87

20 91.76 89.36

50 94.28 81.91

100 95.88 73.94

1000 100.00 27.66

CNAE-9 9 51.46 54.96

200 98.28 92.28

300 100.00 92.59

10000 100.00 91.98

20000 100.00 91.36

Table 7 The comparison about the classification accuracy (%)

Wine Seeds Balance Scale CNAE-9

ELM 92.45 84.52 89.36 92.59

SVM-ELM 96.00 86.90 87.23 94.75

PSO-SVM-ELM 98.11 90.48 90.43 95.68

After many attempts, the parameters of SVM-ELM model are determined, but it

consumes a lot of time and fails to find the optimal value. And on these data sets,

when ELM achieves the highest testing accuracy through countless attempts, the

number of hidden layer nodes respectively are 5000, 1000, 20 and 300, also the clas-

sification result of ELM is very unstable and prone to overfitting phenomenon. The

number of hidden layer nodes in the SVM-ELM model based on particle swarm

optimization algorithm is only equal to the number of categories. Its network is sta-

bility and there is no overfitting phenomenon, more important it is easily to find the

optimal value.

104 M. Wang and S. Ding

5 Conclusion

This paper proposes the SVM-ELM model based on particle swarm optimization

algorithm, namely PSO-SVM-ELM. The weight and bias of hidden layer nodes are

determined by SVM, and then the parameters of the SVM-ELM model are opti-

mized by particle swarm optimization algorithm. PSO-SVM-ELM model not only

improves the generation ability of ELM, but also simplifies ELM. So when the num-

ber of hidden layer nodes is equal to the number of categories, the classification result

is good. The experiments are enough to show that the SVM-ELM model based on

particle swarm optimization algorithm is ideal in data classification.

References

1. Huang, G.B., Zhou, H., Ding, X.: Extreme learning machine for regression and multiclass

classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(2), 513–529 (2012)

2. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of

feedforward neural networks. In: IEEE International Joint Conference on Neural Networks,

vols. 1–4, pp. 985–990 (2004)

3. Huang, G.B., Liang, N.Y., Rong, H.J., et al.: On-line sequential extreme learning machine. In:

The IASTED International Conference on Computational Intelligence, pp. 232–237 (2005)

4. Rong, H.J., Ong, Y.S., Tan, A.H., et al.: A fast pruned-extreme learning machine for classifi-

cation problem. Neurocomputing 72(1–3), 359–366 (2008)

5. Silva, D.N.G., Pacifico, L.D.S., Ludermir, T.B.: An evolutionary extreme learning machine

based on group search optimization. In: IEEE Congress on Evolutionary Computation, pp.

574–580 (2011)

6. Zhang, Y., Ding, S.: Research on Extreme Learning Machines Optimization Methods. China

University of Mining Technology, Xu Zhou (2014)

7. Pradhan, B.: A comparative study on the predictive ability of the decision tree, support vec-

tor machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput.

Geosci. 51, 350–365 (2013)

8. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other

Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

9. Ding, S., Qi, B., Tan, H.: An overview on theory and algorithm of support vector machines. J.

Univ. Electron. Sci. Technol. China 40(1), 2–8 (2011)

10. Liu, B., Hou, D., Huang, P., et al.: An improved PSO-SVM model for online recognition defects

in eddy current testing. Nondestr. Test. Eval. 28(4), 367–385 (2013)

11. Deng, W., Zheng, Q., Chen, L., et al.: Research on extreme learning of neural networks. Chin.

J. Comput. 33(2), 279–287 (2010)

12. Gang, M.A., Ding, S., Shi, Z.: Rough RBF neural network based on extreme learning. Micro-

electron. Comput. 29(8), 9–14 (2012)

13. Shen, F., Wang, L., Zhang, J.: Reduced extreme learning machine employing SVM technique.

J. Huazhong Univ. Sci. Technol. 42(6), 107–110 (2014) (Nature Science Edition)

14. Rini, D.P., Shamsuddin, S.M., Yuhaniz, S.S.: Particle swarm optimization: technique, system

and challenges. Int. J. Comput. Appl. 14(1), 19–26 (2011)

15. Rabinovich, M., Kainga, P., Johnson, D., et al.: Particle swarm optimization on a GPU. In:

2012 IEEE International Conference on Electro/Information Technology (EIT), pp. 1–6. IEEE

(2012)

16. Subasi, A.: Classification of EMG signals using PSO optimized SVM for diagnosis of neuro-

muscular disorders. Comput. Biol. Med. 43(5), 576–586 (2013)

The SVM-ELM Model Based on Particle Swarm Optimization 105

17. Huang, C.L., Dun, J.F.: A distributed PSOSVM hybrid system with feature selection and para-

meter optimization. Appl. Soft Comput. 8(4), 1381–1391 (2008)

18. Bazi, Y., Melgani, F.: Semisupervised PSO-SVM regression for biophysical parameter estima-

tion. IEEE Trans. Geosci. Remote Sens. 45(6), 1887–1895 (2007)

19. Xu, X., Ding, S., Shi, Z.-Z., et al.: A self-adaptive method for optimizing the parameters of

pulse coupled neural network based on QPSO algorithm. Pattern Recogn. Artif. Intell. 25(6),

909–915 (2012)

20. Chen, W.N., Zhang, J., Lin, Y., et al.: Particle swarm optimization with an aging leader and

challengers. IEEE Trans. Evol. Comput. 17(2), 241–258 (2013)

21. Shawe-Taylor, J., Sun, S.: A review of optimization methodologies in support vector machines.

Neurocomputing 74(17), 3609–3618 (2011)

ELM-ML: Study on Multi-label
Classification Using Extreme Learning
Machine

Xia Sun, Jiarong Wang, Changmeng Jiang, Jingting Xu, Jun Feng,
Su-Shing Chen and Feijuan He

Abstract Extreme learning machine (ELM) techniques have received considerable
attention in computational intelligence and machine learning communities, because
of the significantly low computational time. ELM provides solutions to regression,
clustering, binary classification, multiclass classifications and so on, but not to
multi-label learning. A thresholding method based ELM is proposed in this paper to
adapted ELM for multi-label classification, called extreme learning machine for
multi-label classification (ELM-ML). In comparison with other multi-label classi-
fication methods, ELM-ML outperforms them in several standard data sets in most
cases, especially for applications which only have small labeled data set.

X. Sun (✉) ⋅ C. Jiang ⋅ J. Xu ⋅ J. Feng
School of Information Science and Technology, Northwest University, Xi’an 710069, China
e-mail: raindy@nwu.edu.cn

C. Jiang
e-mail: 526107208@qq.com

J. Xu
e-mail: 1476622348@qq.com

J. Feng
e-mail: fengjun@nwu.edu.cn

J. Wang
Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100190, China
e-mail: jiarongrongg@gmail.com

S.-S. Chen
Systems Biology Lab, University of Florida, Gainesville, FL 32608, USA
e-mail: suchen@cise.ufl.edu

S.-S. Chen
Computer Information Science and Engineering, University of Florida, Gainesville,
Florida 32608, USA

F. He
Department of Computer Science, Xi’an Jiaotong University City College,
Xi’an 710069, China
e-mail: hfj@mail.xjtu.edu.cn

© Springer International Publishing Switzerland 2016
J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,
Proceedings in Adaptation, Learning and Optimization 7,
DOI 10.1007/978-3-319-28373-9_9

107

Keywords Extreme learning machine ⋅ Multi-label classification ⋅ Thresholding
strategy

1 Introduction

Multi-label classification deals with one object which possibly belongs to multiple
labels simultaneously, which widely exist in real-world applications, such as text
categorization, scene and video annotation, bioinformatics, and music emotion
classification [1]. Multi-label classification has attracted a lot of attention in the past
few years [2–5]. Nowadays, there mainly exist two ways to construct various
discriminative multi-label classification algorithms: problem transformation and
algorithm adaptation. The key philosophy of problem transformation methods is to
fit data to algorithm, while the key philosophy of algorithm adaptation methods is to
fit algorithm to data [6].

Problem transformation strategy tackles multi-label learning problem by trans-
forming it into multiple independent binary or multi-class sub-problems, constructs
a sub-classifier for each sub-problem using an existing technique, and then
assembles all sub-classifiers into an entire multi-label classifier. It is convenient and
fast to implement a problem transformation method due to lots of existing tech-
niques and their free software. Representative algorithms include Binary Relevance
[7], AdaBoost.MH [8], Calibrated Label Ranking [2], Random k-labelsets [9], and
etc.

Algorithm adaptation strategy tackles multi-label learning problem by adapting
popular learning techniques to deal with multi-label data. Representative algorithms
include ML-kNN [10], ML-DT [11], Rank-SVM [12], BP-MLL [13] and etc. The
basic idea of ML-kNN is to adapt k-nearest neighbor techniques to deal with
multi-label data, where maximum a posteriori (MAP) rule is utilized to make
prediction by reasoning with the labeling information embodied in the neighbors.
The basic idea of BP-MLL is to adapt feed-forward neural networks to deal with
multi-label data, where the error back propagation strategy is employed to minimize
a global error function capturing label correlations.

In the multi-labeled setting, classes belonging to one instance are often related to
each other. The performance of the multi-label learning system is poor if it ignores
the relationships between the different labels of each instance. Therefore, the
famous Rank-SVM defines the margin over hyperplanes for relevant-irrelevant
label pairs, which explicitly characterizes label correlations of individual instance.
Rank-SVM achieves great accurateness. Unfortunately, Rank-SVM has high
computational cost. It is necessary to build novel efficient multi-label algorithms.

Recently, Huang et al. [14, 15] proposed a novel learning algorithm for
single-hidden layer feedforward neural networks called extreme learning machine
(ELM). ELM represents one of the recent successful approaches in machine learn-
ing. Compared with those traditional computational intelligence techniques, ELM is

108 X. Sun et al.

better generalization performance at a much faster learning speed and with least
human intervenes. ELM techniques have received considerable attention in com-
putational intelligence and machine learning communities, in both theoretic study
and applications [16–21]. ELM provides solutions to regression, clustering, feature
learning, binary classification and multiclass classifications, but not to multi-label
learning. Therefore, a thresholding method based ELM is proposed in this paper to
adapted ELM for multi-label classification, called ELM-ML (Extreme Learning
Machine for Multi-Label classification). Experiments on 3 multi-label datasets show
that the performance of ELM-ML is superior to some other well-established
multi-label learning algorithms including Rank-SVM and BP-MLL in most cases,
especially for applications which only have small labeled data set.

2 ELM-ML

In this section, we will describe our multi-label classification algorithm, called
ex-treme learning machine for multi-label classification (ELM-ML).

From the standard optimization method point of view [15], ELM with
multi-output nodes can be formulated as

Minimize:
1
2

β2
�
�

�
�+C

1
2
∑
N

i=1
ξik k2

s.t. h xið Þβ= tTi − ξTi

ð1Þ

Formula (1) tends to reach not only the smallest training error but also the
smallest norm of output weights. Where, 1≤ i≤N. N is the number of training
samples. ξi = ½ξi, 1, . . . , ξi,m�T is the training error vector of the m output nodes with
respect to the training sample xi. C is a user-specified parameter and provides a
tradeoff between the distance of the separating margin and the training error. The
predicted class label of a given testing sample is the index number of the output
node which has the highest output value. Formula (1) provides a solution to
multi-class classifications.

Multi-label learning is a harder task than traditional multi-class problems, which
is a special case of multi-label classification. One sample belongs to several related
labels simultaneously, so we cannot simply regard the index number of the highest
output value as predicted class for a given testing sample. A proper thresholding
function th xð Þ should be set. Naturally, the predicted class labels for a given testing
sample are those index numbers of output nodes which have higher output value
than the predefined thresholding.

We believe that thresholding function th xð Þ should be learned from instances.
That is to say, different instances should correspond to different thresholdings in
multi-label learning model. A naive method would be to consider the thresholding

ELM-ML: Study on Multi-label Classification Using Extreme … 109

function th xð Þ as a regression problem on the training data. In this paper, we use
ELM algorithm with single output node to solve this regression problem. Overall,
the proposed ELM-ML algorithm has two phases: multi-class classifier based
ELM with multi-outputs and thresholding function learning based ELM. The
pseudo-code of ELM-ML is summarized in Fig. 1.

Fig. 1 The pseudo-code of ELM-ML

110 X. Sun et al.

3 Experiments

In order to compare the proposed thresholding strategy in this paper with strategy in
Rank-SVM [12], we performed several experiments. We also compare the per-
formance of different multi-label classification algorithms, including our algorithm
ELM-ML, Rank-SVM, BP-MLL [13] on 3 multi-label classification data sets.

3.1 Datasets

In order to verify the performance of thresholding strategy and different multi-label
classification algorithms, 3 data sets have been tested in our simulations (http://
computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html).

Table 1 describes these 3 benchmark data sets, in which, LC and LD denote the
label cardinality and density respectively. LC measures the degree of
multi-labeledness. Accordingly, LD normalizes label cardinality by the number of
possible labels in the label space.

As shown in Table 1, the data sets cover different range of cases whose char-
acteristics are diversified. #Training and #Test means the numbers of training
examples and test examples respectively.

3.2 Evaluation Measures

In this paper, we choose four evaluation criterias suitable for classification: Subset
Accuracy, Hamming loss, Precision and Recall. These measures are defined as
follows.

Assume a test data set of size n to be S= fðx1,Y1Þg, . . . , ðxi,YiÞ, . . . , ðxn,YnÞg
and hð ⋅ Þ be the learned multi-label classifier. A common practice in multi-label
learning is to return a real-valued function f x, yð Þ. For a unseen instance x, the
real-valued output f x, yð Þ on each label should be calibrated against the thresholding
function output th xð Þ.

Table 1 Information of 3 benchmark data sets

Dataset Domain #Training #Test Attributes Labels LC LD

Genbase Biology 463 191 1185 27 1.35 0.05
Emotions Music 391 202 72 6 1.87 0.31
Enron Text 1123 579 1001 53 3.38 0.06

ELM-ML: Study on Multi-label Classification Using Extreme … 111

http://computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html
http://computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html

• Hamming Loss
The hamming loss evaluates the fraction of misclassified instance-label pairs,
i.e. a relevant label is missed or an irrelevant is predicted.

hammingloss hð Þ= 1
n
∑
N

i=1
jhðxiÞΔYij ð2Þ

here, Δ stands for the symmetric difference between two sets.
• Subset Accuracy

The subset accuracy evaluates the fraction of correctly classified examples, i.e. the
predicted label set is identical to the ground-truth label set. Intuitively, subset
accuracy can be regarded as a multi-label counterpart of the traditional accuracy
metric, and tends to be overly strict especially when the size of label space is large.

subsetacc hð Þ= 1
n
∑
N

i=1
jh xið Þ=Yij ð3Þ

• Precision, Recall

Precison hð Þ= 1
n
∑
N

i=1

Yi ∩ hðxiÞj j
hðxiÞj j ð4Þ

Here, Yi and hðxiÞ correspond to the ground-truth and predicted label set for xi
respectively.

Obviously, except for the first metrics, the larger the metric value the better
the system’s performance is.

3.3 Results

3.3.1 Thresholding Function

We compare two thresholding strategies: the proposed thresholding strategy in
ELM-ML and thresholding strategy in Rank-SVM. Rank-SVM employs the
stacking-style procedure to set the thresholding function th(x) [12]. We apply
multi-class ELM algorithm providing scores for each sample then use two
thresholding strategies, called ELM-ML and ELM-Rank-SVM to predict labels for
test data. All results are detailed in Tables 2, 3 and 4. In experiments, our com-
putational platform is a HP workstation with Intel 2.67 GHz CPU.

As seen in Tables 2, 3 and 4, the proposed thresholding strategy in ELM-ML
achieves the highest performance among the other, whatever hamming loss or
subset accuracy. Training time and testing time are list in Table 4. We compare
running time of thresholding strategy in ELM-ML and thresholding strategy in
Rank-SVM. Obviously, ELM-ML achieves overwhelming performance. In con-
clusion, the proposed thresholding strategy in ELM-ML is effective and efficient.

112 X. Sun et al.

3.3.2 Multi-label Algorithms

We also compare the performances of different multi-label classification algorithms,
including ELM-ML, Rank-SVM, BP-MLL on 3 multi-label classification data sets.
We downloaded Matlab code of BP-MLL (http://cse.seu.edu.cn/people/zhangml/
Publication.htm). We accept their recommended parameter settings. The best
parameters of BP-ML reported in the literatures [13] is used. For BP-MLL, the
learning rate is fixed at 0.05, the number of hidden neurons is 20 % of the number of
input neurons, the training epochs is set to be 100 and the regularization constant is
fixed to be 0.1. For Rank-SVM developed in Matlab, Gaussian kernel is tested,
which kernel parameter γ and cost parameter C need to be chosen appropriately for
each data set. In our experiments, the Hamming Loss measure is regarded as a
criterion to tune these parameters. To achieve an optimal parameter combination
(γ, C), we use similar tuning procedure as in [9]. The optimal parameters on each
data set are shown in Tables 5, 6 and 7. We develop ELM-ML algorithm in Matlab
and choose sigmoid activation function. Set hidden nodes N ̃=1000. The detailed
experimental results are shown in Tables 5, 6, 7 and 8.

From Table 5, 6, 7 and 8, our ELM-ML obtains the best performances in all
three criterions on Genbase data set and Emotions data set. However, ELM-ML is

Table 2 Hamming Loss for two thresholding strategies on 3 data sets (hamming loss ↓)

Datasets Algorithms
ELM-ML ELM-Rank-SVM

Genbase 9.3058e-04 0.9544
Emotions 0.2087 0.2145
Enron 0.0851 0.9290
Bold value denotes the best results

Table 3 Subset accuracy for three thresholding strategies on 3 data sets (subset accuracy ↑)

Datasets Algorithms
ELM-ML ELM-Rank-SVM

Genbase 0.9749 0
Emtions 0.2673 0.2426
Enron 0.0708 0
Bold value denotes the best results

Table 4 Computation time of thresholding strategies

Datasets ELM-ML ELM-Rank-SVM
Train time(s) Test time(s) Train time(s) Test time(s)

Genbase 1.0739 0.0212 4.6656 0.0673
Emotions 0.5016 0.0064 0.7916 0.0190
Enron 3.3922 0.0504 19.6976 0.2460
Bold value denotes the best results

ELM-ML: Study on Multi-label Classification Using Extreme … 113

http://cse.seu.edu.cn/people/zhangml/Publication.htm
http://cse.seu.edu.cn/people/zhangml/Publication.htm

inferior to others on Enron data set. Genbase data set and Emotions data are all
small size of training data whatever size of labels and feature dimensions. That is to
say, the proposed ELM-ML is more suitable to solve those applications that a large
among of labeled data is difficult to obtain. ELM-ML achieves better results in a
small among of labeled data. Whereas BP-MLL works well when a large number of
labeled data are obtained easily. Training time and testing time are list in Table 8.
ELM-ML achieves the best in testing time (Table 9).

Table 5 Hamming loss for
3 algorithms on 3 data sets
(hamming loss ↓)

Datasets Algorithms

ELM-ML BP-MLL Rank-SVM

Genbase 9.3058e-04 0.0037 0.0865 (γ, C= − 3, 0.25)

Emotions 0.2087 0.2252 0.3317 (γ, C= − 3, 0.125)

Enron 0.0851 0.0532 0.0560 (γ, C= − 2, 8)

Bold value denotes the best results

Table 6 Subset accuracy for
3 algorithms on 3 sata sets
(subset accuracy ↑)

Datasets Algorithms
ELM-ML BP-MLL Rank-SVM

Genbase 0.9749 0.9045 0.0000(γ, C = − 3, 0.125)
Emotions 0.2673 0.2327 0.0000(γ, C = − 3, 0.125)
Enron 0.0708 0.1002 0.0397(γ, C = − 2, 8)
Bold value denotes the best results

Table 7 Precision for 3
algorithms on 3 data sets
(precision ↑)

Datasets Algorithms
ELM-ML BP-MLL Rank-SVM

Genbase 0.9965 0.9724 0.9875(γ, C = − 3, 0.125)
Emotions 0.8083 0.6625 0.7005(γ, C = − 3, 0.125)
Enron 0.5762 0.6933 0.5949(γ, C = − 2, 8)
Bold value denotes the best results

Table 8 Recall for 3
algorithms on 3 data set
(recall ↑)

Datasets Algorithms
ELM-ML BP-MLL Rank-SVM

Genbase 0.9918 0.9761 0.9749(γ, C = − 3, 0.125)
Emotions 0.6491 0.6370 0.6436(γ, C = − 3, 0.125)
Enron 0.5187 0.6422 0.5664(γ, C = − 2, 8)
Bold value denotes the best results

114 X. Sun et al.

4 Conclusion

In this paper, we present ELM-ML algorithm to solve multi-label classification.
ELM has been regarded as one of the recent successful approaches in machine
learning, because ELM is the significantly low computational time required for
training a learning model and provides better generalization performance with least
human intervenes. However, ELM does not provide a solution to multi-label
classifications. A post-processing step, threshold calibration strategies, should be
used to predict label set of a given sample. A naive method would be to consider the
thresholding function th xð Þ as a regression problem on the training data with class
labels. In this paper, we first use ELM algorithm with multi-output nodes to train a
learning model returning real-valued function, then use ELM algorithm with single
output node to learn thresholding function. Experiments on 3 diverse benchmark
multi-label datasets show that the performance of ELM-ML is effective and
efficient.

Acknowledgements The authors wish to thank the anonymous reviewers for their helpful
comments and suggestions. The author also thanks Prof. Zhihua Zhou, Mingling Zhang and
Jianhua Xu, whose software and data have been used in our experiments. The authors also thank
Changmeng Jiang and Jingting Xu for doing some related experiments. This work was supported
by NSFc 61202184 and Scientific research plan projects 2015JQ6240 and 2013JK1152.

References

1. Xu, J.: Multi-label core vector machine with a zero label. Pattern Recogn. 47(7), 2542–2557
(2014)

2. Fürnkranz, J., Hüllermeier, E., Mencía, E.L., Brinker, K.: Multilabel classification via
calibrated label ranking. Mach. Learn. 73(2), 133–153 (2008)

3. Ji, S., Sun, L., Jin, R., Ye, J.: Multi-label multiple kernel learning. In: Koller D.,
Schuurmans D., Bengio Y., Bott L., Schuurmans D., Bengio Y., Bottou L. (eds.) Advances in
Neural Information Processing Systems 21, pp. 777–784. MIT Press, Cambridge (2009)

4. Guo, Y., Schuurmans, D.: Adaptive large margin training for multilabel classification. In:
Proceedings of the 25th AAAI Conference on Artificial Intelligence, pp. 374–379. San
Francico, CA (2011)

5. Quevedo, J.R., Luaces, O., Bahamonde, A.: Multilabel classifiers with a probabilistic
thresholding strategy. Pattern Recogn. 45(2), 876–883 (2012)

Table 9 Computation time
of multi-label classification
algorithms

ELM-ML BP-MLL
Train(s) Test(s) Train(s) Test(s)

Genbase 1.0739 0.0212 1.0138e + 04 5.9486
Emotions 0.5016 0.0064 2.6062e + 03 1.6248
Enron 3.3922 0.0504 2.0979e + 04 22.513
Bold value denotes the best results

ELM-ML: Study on Multi-label Classification Using Extreme … 115

6. Zhang, M.-L., Zhou, Z.-H.: A review on multi-label learning algorithms. IEEE Trans. Knowl.
Data Eng. 26(8), 1819–1837 (2014)

7. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification.
Pattern Recogn. 37(9), 1757–1771 (2004)

8. Schapire, R.E., Singer, Y.: Boostexter: a boosting-based system for text categorization. Mach.
Learn. 39(2/3), 135–168 (2000)

9. Xu, J.: An efficient multi-label support vector machine with a zero label. Expert Syst. Appl. 39,
2894–4796 (2012)

10. Zhang, Min-Ling, Zhou, Zhi-Hua: ML-KNN: a lazy learning approach to multi-label learning.
Pattern Recogn. 40(7), 2038–2048 (2007)

11. Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: De Raedt L.,
Siebes A. (eds.) Lecture Notes in Computer Science, pp. 42–53. Springer, Berlin (2001)

12. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Dietterich T.G.,
Becker S., Ghahramani Z. (eds.) Advances in Neural Information Processing Systems 14,
pp. 681–687. MIT Press, Cambridge (2002)

13. Zhang, M.-L., Zhou, Z.-H.: Multilabel neural networks with applications to functional
genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)

14. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.
Neurocomputing 70(1–3), 489–501 (2006)

15. Huang, G.-B., et al.: Extreme learning machine for regression and multiclass classification.
IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(2), 513–529 (2012)

16. Rong, Hai-Jun, Ong, Yew-Soon, Tan, Ah-Hwee, Zhu, Zexuan: A fast pruned-extreme learning
machine for classification problem. Neurocomputing 72(1–3), 359–366 (2008)

17. Mohammed, A.A., Minhas, R., Jonathan Wu, Q.M., Sid-Ahmed, M.A: Human face
recognition based on multidimensional PCA and extreme learning machine. Pattern Recogn.
44(10–11), 2588–2597 (2011)

18. Wang, Yuguang, Cao, Feilong, Yuan, Yubo: A study on effectiveness of extreme learning
machine. Neurocomputing 74(16), 2483–2490 (2011)

19. Xia, Min, Zhang, Yingchao, Weng, Liguo, Ye, Xiaoling: Fashion retailing forecasting based
on extreme learning machine with adaptive metrics of inputs. Knowl. Based Syst. 36, 253–259
(2012)

20. Mishra, A., Goel, A., Singh, R., Chetty, G., Singh, L.: A novel image watermarking scheme
using extreme learning machine. In: The 2012 International Joint Conference on IEEE Neural
Networks (IJCNN), pp. 1–6 (2012)

21. Horata, Punyaphol, Chiewchanwattana, Sirapat, Sunat, Khamron: Robust extreme learning
machine. Neurocomputing 102, 31–44 (2013)

116 X. Sun et al.

Sentiment Analysis of Chinese Micro Blog
Based on DNN and ELM and Vector Space
Model

Huilin Liu, Shan Li, Chunfeng Jiang and He Liu

Abstract Analysis of Chinese micro blog has great commercial value and social

value. Based on the depth analysis of the language style of the Chinese micro blog,

this paper makes a deep research on the sentiment analysis of Chinese microblog

based on and DNN ELM and vector space model. First of all, the micro blog Abstract

sentiment feature extraction technology is studied in depth. Based on the traditional

text representation model, DNN algorithm is used to extract the feature of the abstract

emotion. Combined with the characteristics of the short text of micro blog, this paper

uses SAE to construct the DNN. In the construction process of vector space, in order

to fully and effectively said microblogging text emotional information, in this paper,

we introduce the emotional factor and structure factor of information gain feature

selection method is improved and introduced the location information of the feature

words of TF-IDF weighting calculation method to improve. Then, the sentiment clas-

sification of micro blog is deeply studied. In this paper, we use the concept model to

express the emotion category of micro blog, and propose the spatial expansion algo-

rithm based on the concept model (ESA). The experimental results show that the

presented in this paper, based on DNN microblogging Abstract emotional feature

extraction algorithm and the algorithm of conceptual model of spatial development

based on the microblogging text emotional other identification is effective.

Keywords Sparse coding ⋅ Vector space model ⋅ ELM ⋅ Emotion factor

1 Introduction

Text sentiment analysis and opinion mining is the process of analyzing and process-

ing the text with emotion color. Text sentiment analysis method [1] can be divided

into machine learning, dictionary based and language based text sentiment analysis

H. Liu (✉) ⋅ S. Li ⋅ C. Jiang ⋅ H. Liu

College of Information Science and Engineering, Northeastern University,

Shenyang 110819, Liaoning, China

e-mail: liuhuilin@mail.neu.edu.cn

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_10

117

118 H. Liu et al.

method. Pand B [2] the first to use machine learning methods to text for sentiment

analysis and reviews data as the evaluation corpus, respectively, using three kinds of

machine learning naive Bayes method, maximum entropy and SVM to the evalua-

tion corpus emotion category forecast. [3–6] is based on the SVM classifier for text

classification, can be used in different areas of the classification of the emotional

analysis.

When we analyze the sentiment of the micro blog, we need to use the spatial vector

model to express the text. Because the micro blog text information has the word

limit, the use of the low level of the emotional characteristics of the construction

of the microblogging vector space model has a sparse problem. Deep learning can

use low-level features to extract high-level abstraction features, which can be used

to express the text of a higher level of abstraction. The main research contents are as

follows:

(a) based on the traditional text representation model, DNN algorithm is used to

extract the feature of the abstract emotion.For the emotional feature vector appear

sparseness problem, in microblogging emotional features automatically, the SAE of

DNN is constructed, reducing the due to the sparsity of the microblogging feature

vector of the training error.

(b) According to the characteristics of micro blog, this paper carries on the trans-

formation to the feature selection and weight calculation method of the traditional

text processing, so that the vector representation of the text is more effective and

effective.

(c) using the relationship between the spatial vector and the concept model, the

spatial expansion algorithm based on the concept model is proposed.

2 Related Work

2.1 ELM

ELM [7] is a kind of single hidden layer feedforward neural network proposed by

Professor Huang Guangbin in 2006, which is composed of three layers of neurons

in the input layer, hidden layer and output layer. When the training classifier, for a

given sample vector set T =
{
(xi, ti)|xi ∈ Rn

, ti ∈ Rm
, i = 1, 2,… ,N

}
, ti sample vec-

tors belonging to the category, ELM and traditional neural network is different, just

determine the implicit bias of hidden layer node number and the input layer weights

were randomly assigned. Standard ELM expression as shown in formula (1).

fL (x) =
L∑

i=1
𝛽iG

(
wi, bi, x

)
(1)

Sentiment Analysis of Chinese Micro Blog Based on DNN … 119

where l denotes the number of neuron node,wi denotes hidden layer nodes I and input

layer nodes of the weight vector, bi represents the hidden layer node i corresponds

to the offset value, G
(
wi, bi, x

)
represents the hidden layer neuron node i output,

its activation value, 𝛽i indicates the weight vector of the hidden layer node i to the

output layer neuron node. The activation function of the hidden layer node is g(x),

then the output I expression of the hidden layer node I is shown in type (2).

G
(
wi, bi, x

)
= g

(
wi ⋅ x + bi

)
bi ⊆ R+

(2)

H
(
w1,… ,wL, b1,… , bL, x1,… , xN

)
=
⎡
⎢
⎢⎣

G
(
w1, b1, x1

)
G
(
w2, b2, x1

)
⋯ G

(
wL, bL, x1

)

⋮ ⋯ ⋮
G
(
w1, b1, xN

)
G
(
w2, b2, xN

)
⋯ G

(
wL, bL, xN

)
⎤
⎥
⎥⎦

=
⎡
⎢
⎢⎣

G
(
w1 ⋅ x1 + b1

)
G
(
w2 ⋅ x1 + b2

)
⋯ G

(
wL ⋅ x1 + bL

)

⋮ ⋯ ⋮
G
(
w1 ⋅ xN + b1

)
G
(
w2 ⋅ xN + b2

)
⋯ G

(
wL ⋅ xN + bL

)
⎤
⎥
⎥⎦

(3)

The weight matrix of the hidden layer and the output layer is solved according to

the output matrix of the hidden layer ̂
𝛽.

̂
𝛽 =

(
HTH

)−1HTT (4)

where T represents the microblog emotion vector category, according to the error

minimization and structural risk minimization principle, solving the hidden layer

and the output layer between the weight matrix ̂
𝛽 need to satisfy such as (5) shown

in the goal programming:

min (‖H𝛽 − T‖ + 𝜆 ‖𝛽‖) (5)

Among them,

𝛽 =
⎡
⎢
⎢⎣

𝛽

T
1
⋮
𝛽

T
L

⎤
⎥
⎥⎦L×M

,T =
⎡
⎢
⎢⎣

tT1
⋮
tTN

⎤
⎥
⎥⎦N×M

(6)

𝜆 represents the proportion of structured risk.

120 H. Liu et al.

2.2 Vector Space Model

Vector space model [8] is a text representation model proposed by Salton in 1975.

The main idea is: the text as a collection of feature items, for each feature item,

according to the degree of its representation of the text to give a weight. Thus the

text is represented as a collection of weighted feature items.

2.3 Information Gain

Information gain [9] is an important concept in information theory, the text classifi-

cation commonly used feature selection algorithms, the feature of the difference in

before and after the emergence of the information entropy in the text to represent

the information gain feature. Information entropy H represents the average amount

of information contained in the received message.

2.4 Weight Calculation Method TF-IDF

Frequency distribution of TF-IDF [10] inverse document frequency is proposed by

McGill and Gerald Salton a used to represent text feature method, text mining in

common a weighting technique for computing text in each characteristic of the text

indicates that the degree of, namely feature of the text weights. According to TF

(term frequency) that for a given feature item T, it appears in the text D frequency,

the main purpose is to normalize the words, to prevent it in favor of the length of

the text.

3 Research Content

3.1 Feature Selection

We introduce one of the two factors, one is the emotional factor, the other is the

structural factor. In order to obtain the emotional words and its affective factors, it is

needed to calculate the concentration of emotion, that is, the intensity of emotional

words. Specific feature selection process, such as algorithm 3.1 description.

Sentiment Analysis of Chinese Micro Blog Based on DNN … 121

Algorithm 1 Feature selection based on improved information gain

Require: a micro blog corpus, a collection of candidate feature words, S, and structure candidate

feature set C;

Ensure: emotional feature word set S1 and structure feature word set C1;

1: the character of the word t to meet the t ∈ S or t ∈ C, computing the traditional information

gain value of the word t;

2: e existence of T is not ergodic, t ∈ S or t ∈ C , if t ∈ C the implementation of step 6, otherwise

the implementation of step 3;

3: the emotional factors of the T;

4: combined with the emotional factors and the corresponding information gain to calculate the

emotional value of the emotional characteristics;

5: according to the intensity of the emotional characteristics of the words of the intensity of the

sort, select the first Ns emotional words in the collection S1, the implementation of 2;

6: structural factors of the structure of T;

7: combined with the emotional factors and the corresponding information gain to calculate the

emotional value of the structural characteristics of the structure;

8: according to the structure of the strength of the strength of the structure of the word order,

select the first Nc feature words into the collection C1, the implementation of 2;

1. Emotion concentration calculation

The basic idea is: first artificial selection for a number of positive and negative

emotional words as benchmark words, then calculate the similarity between emo-

tional words and benchmark words as the degree of emotion. According to the related

strategies to obtain the value of the concentration.

2. Based on the logic function of the emotional factor structure (Fig. 1)

In sentiment analysis on Weibo, emotional words fierce early and weak late effects

of text sentiment Co., emotional words of the intense emotion for interim distribu-

tion, influence of the weak change of sentiment is intense. Due to the minimal emo-

tional concentration greater than 0, so the need of curve of translational processing,

considering the late processing, also need gentle handling on the dotted line trend,

by image analysis, this paper take 𝛼 = 0.5, 𝛽 = 6, X in the range of [0, 24]. After

Fig. 1 Relation between Emotional Concentration x and Emotional factors SI

122 H. Liu et al.

Fig. 2 Relation between

Emotional Concentration x

and Emotional factors SI

translation, gentle treatment after, emotional factors and emotional concentration

trend curve as shown in Fig. 2.

Through the above analysis, the relationship between the emotional factors and

the concentration of emotion is shown in the formula (23).

x =
{ 1

1+e−𝛼x+𝛽
𝜃1 ⩾ x ⩾ 𝜃2

1 𝜃1 < 𝜒

(7)

𝜃1 indicates that the threshold limit, when x is greater than 𝜃1, SI (x) value is 1,

when x expressed emotion concentration, its value range is w, SI (x) value range is

(0,1].

3. Structure factor based on position information

Structure factor is used to measure the information of text structure. In order to

measure the value of continuous string sequence structure information, this paper

on the basis of traditional information gain increased factor structure, to measure

the size of the information structure. In view of the characteristics of the struc-

ture character sequences, the expression of the structure factor is shown in the

formula (24).

CI (x) = e−|x−0.5| 1 ⩾ x ⩾ 0 (8)

Sentiment Analysis of Chinese Micro Blog Based on DNN … 123

Where X represents the relative position of the structural word, the structure factor

of the relative position of CI (x) is x, the value of X is [0,1]. Can be seen from the

expression of the emotion factor, when the relative position is 0.5, CI (x) takes the

maximum value 1. The minimum value of CI (x) is more than 0.

4. Micro blog feature selection algorithm

In this paper, based on the traditional information gain feature selection method,

the effect of emotion and structure is enhanced by the introduction of emotion factor

and structure factor.

Emotional words feature selection expression, as shown in formula (25).

IGS (t) = SI (SO (t)) IG (t) = SI (SO (t)) [H (C) − H (C|t)] (9)

= SI (SO (t)) p (t)

{ i=n∑

i=1
p
(
Ci|t

)
log

[
p
(
Ci|t

)]
}

+ SI (SO (t)) p
(
t
)
{ i=n∑

i=1
p
(
Ci|t

)
log

[
p
(
Ci|t

)]
}

− SI (SO (t))
i=n∑

i=1
p
(
Ci
)
log

[
p
(
Ci
)]

where T represents a feature word character sequence, SO (t) expresses the emotional

concentration of characteristic words, SI (SO (t)) is a feature word emotion factor,

IGS (t) representation of feature words t, IG [t] represents the information gain of

the feature word t.

From the formula (26) can be seen in emotional feature selection, considers not

only the emotional words t distribution, also contains the emotional words t itself the

emotion factor, IGS (t) value is greater, t is chosen as emotional feature words the

possibility of more.

Structural word feature selection expression, as shown in formula (26)

IGC (t) = CI (t) IG (t) = CI (t) [H (C) − H (C|t)] (10)

= CI (x) p (t)

{ i=n∑

i=1
p
(
Ci|t

)
log

[
p
(
Ci|t

)]
}

+ CI (x) p
(
t
)
{ i=n∑

i=1
p
(
Ci|t

)
log

[
p
(
Ci|t

)]
}

− CI (x)
i=n∑

i=1
p
(
Ci
)
log

[
p
(
Ci
)]

124 H. Liu et al.

3.2 Weight Calculation

Traditional TF-IDF computation influence of feature weight method which only con-

siders the frequency distribution of its value and neglects factors of feature words in

position effects to the weights. In order to describe the influence of position factor

on the weight of its weight, the position coefficient is introduced in this paper.

The position coefficient expression is shown in the formula (27).

x =
{ 1

1+e−𝛼x+𝛽
𝜃 ⩾ x ⩾ 0

1 𝜃 < x
(11)

The 𝜃 indicates that the threshold limit, when the x is greater than 𝜃, the structure

coefficient SP (x) value is 1, when x is the relative position of the feature words, its

value range is (0,1), the SI (x) value range is (0,1]. 𝛼 𝛽 for the corresponding coeffi-

cient, can be adjusted according to the actual situation. Improved TFIDF expression

as shown in formula (28).

tfidfSP (t, d) = SP (x) tfidf (t, d) = SP (x)
nt
nd

log
(
N
Nt

)
(12)

Where t denotes the feature words, d denotes a text message, tfidfSP (t, d) denotes

feature words in text D weights x says that features t in text D in the relative position,

SP (x) t in d in the position of the coefficients and nt the number of feature item

t appear in the text d and nd to denote the d text in a word frequency count, Nt
contains the number of text feature item t, n denotes the total number of text.

3.3 Space Expansion Algorithm Based on Concept Model

This paper presents an efficient spatial expansion algorithm Expand (ESA) Spatial

Algorithm, extended by the concept of class and its calculation model the distance

of space.

In the vector space model, the similarity between samples is usually measured

by Euclidean distance or angle cosine. For any two text and the sample space, the

similarity of the two text vector is given by the angle cosine.

sim
(
di, dj

)
= cos 𝜃 =

di ⋅ dj
||di|| ⋅

|||dj
|||
=

∑n
k=1 wik ⋅ wjk

√∑n
k=1 wik

2 ⋅
∑n

k=1 wjk
2⋅

(13)

Sentiment Analysis of Chinese Micro Blog Based on DNN … 125

where sim
(
di, dj

)
expresses the similarity between dj and di, and 𝜃 indicates that the

angle between di and dj, di =
(
w1i,w2i,… ,wni

)
n is the vector dimension of text d.

The spatial expansion algorithm based on concept model ESA is shown in 2.

Algorithm 2 Expand Spatial Algorithm Based on Conceptual Model

Require: feature vector space x,
{
X1,X2, ...,Xn

}
,X =

{
x1, x2, ..., xd

}
∈
{
X1,X2, ...,Xn

}

representation of the feature vector space in any vector, d representation of the dimension of

the feature vector, n vector space in the number of feature vector;

Ensure:
{
X′

1,X′
2, ...,X′

n
}
,X′ =

{
x1, x2, ..., xd , xd+1, xd+2, ..., xd+m

}
, m is a number of vector

categories, which is extended after the expansion;

1: from the concept set M =
{
M1,M2, ...,Mm

}
, select the m of

{
Xm1,Xm2, ...,Xmm

}
as the basis

of the category. This point, the category of basic point Xmi and the concept of the model

Mi meet the conditions Xmi ∈ Mi;

2: traversal feature vector space
{
X1,X2, ...,Xn

}
,X =

{
x1, x2, ..., xd

}
∈
{
X1,X2, ...,Xn

}
, execu-

tive line step 3, after the completion of the implementation steps 6;

3: calculate the distance between x and
{
Xm1,Xm2, ...,Xmm

}
, the value of i, dis

(
X,Xmi

)
Surround

i=1,2,3... m, executive step 4;

4: combined with the emotional factors and the corresponding information gain to calculate the

emotional value of the emotional characteristics;

5: the dis
(
X,Xmi

)
is normalized to calculate the basic points corresponding to the Xmi eigenvalue,

the implementation of step 5;

6: output expansion feature vector, X′ =
{
x1, x2, ..., xd , xd+1, xd+2, ..., xd+m

}
the implementation of

step 2;

7: output extended feature vector space
{
X′

1,X′
2, ...,X′

n
}

;

The space vector Q mapping relation is shown in Fig. 2.

4 Experiments and Results

4.1 Space Expansion Algorithm Based on Concept Model

Experiment 1 Verify the effectiveness of the algorithm based on DNN for the auto-

matic extraction of micro blog sentiment

(A) using the traditional information gain feature selection algorithm and the tra-

ditional TF-IDF feature weight calculation method to generate the feature vector to

train the classifier to predict the sample.

(B) the feature vector is used to train the classifier to predict the sample using the

DNN method.

Table 1 by numerical form the emotional feature automatic extraction of senti-

ment classification effect, Fig. 3a through the form of histogram, and gives the emo-

tional feature automatic extraction of the emotion categories estimate the influence

degree. In the sentiment analysis, negative to the recognition of emotional informa-

tion is the most important, through a combination of Table 1 and Fig. 3a, from an

126 H. Liu et al.

Table 1 Effect of emotional features of automatic extraction for emotional classification

a Positive (%) Negative (%) Objective (%) Average (%)

Recall b–a −1.76 12.94 −8.24 0.98

Accurate b–a 2.29 −2.64 9.27 2.98

F-value b–a 0.25 3.25 −2.47 0.34

Fig. 3 Recognition performance of each emotional category under Test ab

average value of see the recall rate of promotion is most obvious, enhance the 2.98 %,

F value of promotion effect is limited only 0.34 % of ascension.

Experiment 2 Verify the effectiveness of the algorithm based on the improved

information gain feature selection algorithm and the improved TF-IDF algorithm to

construct the original emotion feature space.

(A) using the traditional information gain feature selection algorithm and the tra-

ditional TF-IDF feature weight calculation method to generate the original feature

vector.

(B) the improved information gain feature selection algorithm and the improved

TF-IDF feature weight calculation method is generated feature vector.

2 the numerical form of the improved method of feature selection and weighting

calculation method of sentiment classification effect, Fig. 3b through the form of

histogram, are given to improve the characteristics of the choice of weighting method

and calculation method of the emotion categories estimate the influence degree.

Combined with Table 2 and Fig. 3b, the effect of the method of improving feature

selection and weight calculation is analyzed. From Fig. 3b it can be seen that the

recall rate, accuracy rate and F-value of the difference in the emotional category are

significantly improved, which is worth F Enhance the effect of the most obvious,

improved by 4.60 %.

Sentiment Analysis of Chinese Micro Blog Based on DNN … 127

Table 2 Effect of improved feature selection and weight calculation method for emotional

classification

a Positive (%) Negative (%) Objective (%) Average (%)

Recall b–a 4.71 0.00 8.24 4.31

Average b–a 1.05 8.507 −1.58 2.66

F-value b–a 2.90 5.55 5.35 4.60

Table 3 Effects of different classifier for emotional classification

a Positive (%) Negative (%) Objective (%) Average (%)

Recall b–a 19.91 15.82 6.53 14.09

Accurate b–a 3.65 22.23 9.01 11.63

F-value b–a 12.65 20.43 7.57 13.55

4.2 Micro Blog Sentiment Classification Experiment

Experiment 3 Verify the validity of ELM classifier

(A) select ELM as the micro blog text sentiment classification

(B) select SVM as the micro blog text sentiment classification

Table 3 by numerical are given in the form of the effect of different classifiers to

classify emotions, Fig. 3c by the form of histogram, given the different classifiers

for each emotion category forecast the influence degree. Analysis of the prediction

effect of different classifiers based on the combination of Table 3 and Fig. 3c. From

Fig. 3c it can be seen that the recall rate, accuracy rate and F-value of the difference

in the different emotional categories are significantly improved, the recall rate of the

most obvious effect, improve 11.63 %.

Experiment 4 To verify the effectiveness of the EFA based on the concept model

of spatial expansion algorithm.

(A) the ELM model is trained and predicted by using the feature vector generated

by the above steps a.

(B) the feature vector generated by the above steps is expanded by EFA algo-

rithm, and the new features are generated. Table 4 through numerical are given in

the form of conceptual model based spatial expansion algorithm to classify emotions

influence, Fig. 3d through the form of histogram is given based on the conceptual

model of spatial expansion algorithm of the emotion categories estimate the influ-

ence degree.

Based on the combination of Table 4 and Fig. 3d, the prediction effect of spatial

expansion algorithm based on conceptual model is analyzed. From Fig. 3d it can be

seen that the recall rate, accuracy rate and F-value of the difference in the different

emotional categories of the average value have been improved to a certain extent.

128 H. Liu et al.

5 Summary

Research on the automatic extraction technology of emotion feature of micro blog.

Based on the traditional text representation model, DNN algorithm is used to extract

the feature of the abstract emotion. Combined with the characteristics of micro blog

text, this paper uses SAE to construct the DNN, and reduces the training error due

to the sparsity of the feature vectors. In the word feature selection, the traditional

information gain method only consider frequency and distribution characteristics,

the lack of distinguishing the difference between emotional words and word struc-

ture.In this paper, we introduce the affective factors and structural factors from two

different perspectives to measure the emotional words and the structure of words,

so that the selection of the word features is effective.The in addition to considering

the distribution of word frequency, will also consider the location information of

the feature words, will use the traditional TF-IDF computation of weights and word

feature location information acquired by the weight coefficient is weighted, to adjust

the traditional TF-IDF calculation method of the.Neglect the influence of the fea-

ture words on the emotional value. The in addition to considering the distribution

of word frequency, will also consider the location information of the feature words,

will use the traditional TF-IDF computation of weights and word feature location

information acquired by the weight coefficient is weighted, to adjust the traditional

TF-IDF calculation method of the.

Research on the emotion classification of micro blog. As the relationship between

the micro blog text and the specific emotion category plays a key role in the process

of micro blog emotion classification. First, we give a conceptual model for represent-

ing text categories, and propose a conceptual model selection method based on the

spatial density and mutual exclusion. Secondly, based on the relationship between

the space vector and the concept model, the spatial expansion algorithm based on

the concept model is proposed. In this paper, ELM is used as a classifier to prove the

effectiveness of the spatial expansion algorithm.

Table 4 Effects of Spatial Expansion Algorithm (ESA) for emotional classification

a Positive (%) Negative (%) Objective (%) Average (%)

Recall b–a 0.00 1.18 1.18 0.78

Accurate b–a 2.35 1.31 −2.48 0.39

F-value b–a 1.17 1.27 −0.14 0.77

Sentiment Analysis of Chinese Micro Blog Based on DNN … 129

References

1. Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment in Twitter events. J. Am. Soc. Inf. Sci.

Technol. 62(2), 406C418 (2011)

2. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine

learning techniques. Proc. EMNLP, 79–86 (2002)

3. Haddi, E., Liu, X., Shi, Y.: The role of text pre-processing in sentiment analysis. Procedia

Comput. Sci., 26C32 (2013)

4. Wu, D.D., Zheng, L., Olson, D.L.: A decision support approach for online stock forum senti-

ment analysis. IEEE Trans. Syst. Man Cybern. Syst. 44(8), 1077–1087 (2014)

5. Kranjc, J., Smailovi, J., Podpean, V., et al.: Active learning for sentiment analysis on

data streams: Methodology and workflow implementation in the ClowdFlows platform. Inf.

Process. Manag. 51(2), 187C203 (2014)

6. Balahur, A., Turchi, M.: Comparative experiments using supervised learning and machine

translation for multilingual sentiment analysis. Comput. Speech Lang. 28(1), 56C75 (2014)

7. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.

Neurocomputing 70, 489C501 (2006)

8. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun.

ACM 18(10), 613–620 (1974)

9. Ouyang, C., Yang, X., Lei, L., et al.: Multi-strategy approach for fine-grained sentiment analy-

sis of Chinese microblogy. Acta Scientiarum Naturalium Universitatis Pekinensis (2014)

10. Zhang, W., Yoshida, T., Tang, X.: A comparative study of TF*IDF, LSI and multi-words for

text classification. Expert Syst. Appl. 38(3), 2758–2765 (2011)

Self Forward and Information Dissemination
Prediction Research in SINA Microblog
Using ELM

Huilin Liu, Yao Li and He Liu

Abstract With the popularity of social network, information propagation

prediction based on social network is also becoming popular. As far as we know,

people do not concern the user who forwards its own microblog in information propa-

gation prediction. In our investigation the self forward behavior can cause the further

spreading of the information. Thus in this paper we propose a self forward predic-

tion model to predict the self forward behavior. We use ELM to train and predict

self forward behavior. Based on this model we proposed an algorithm to predict the

information dissemination. The experiment results show that our algorithm is real

and effective and it significantly improves the forecast accuracy. It also can be seen

in the experimental results that the results of ELM has a better performance than

SVM.

Keywords Self forward ⋅ Information dissemination prediction ⋅ ELM ⋅ SINA

microblog

1 Introduction

The development of social network not only brought more convenient communica-

tion pattern, but also brought more efficient information transfer mode. For example,

the earthquake information will be shown in the SINA microblog by the user the

China earthquake networks studies after it happened 1 min. There is no doubt that

researches on social network information dissemination have vital significance.

The information dissemination in social networks is based on the user behav-

ior, especially the forward behavior. There are many studies about the information

dissemination in social network. For example, Ye et al. [1] measured the message

propagation in Twitter and evaluated the different social influences. Cao et al. [2]

H. Liu (✉) ⋅ Y. Li ⋅ H. Liu

College of Information Science and Engineering, Northeastern University,

Shenyang 110819, Liaoning, China

e-mail: liuhuilin@mail.neu.edu.cn

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_11

131

132 H. Liu et al.

Fig. 1 A simple

information propagation

prediction tree

found some features that influence the user behavior, and based on the user behav-

ior predict model they studied the information propagation prediction. However, all

these investigations are based on the follower-friends relationship without concern-

ing the condition that users forward the microblogs published by the users them-

selves.

There are not much forward limits in social networks. Thus, in the individual

perspective, people may want to add some information and forward the microblogs

published by themselves. This behavior may cause the increasing in information

dissemination.

We use Peking University PKUVIS Microblog visual analysis tools [3] to ana-

lyze those two conditions. Figure 1 is the visualization of the condition. In Fig. 1 the

yellow points represent the publisher, and we can see directly that the self forward

behavior causes the diffusing of the microblog.

To our best knowledge, we do not find any work about the condition that users

forward the microblogs published by themselves. Thus based on the existing work,

we study the influence of self forward behavior to the information dissemination in

social network. We choose SINA microblog as the research object and using ELM

as training and predicting algorithm. The main contributions of this paper are shown

as below:

(1) We extracted the user self forward behavior features and build a model to

predict the self forward behavior based on the features.

(2) We change the microblog propagation prediction algorithm based on the self

forward behavior. The experiment results shows that the change improves the pre-

diction accuracy of the algorithm.

(3) We use ELM to train and predict the data. The experiment results shows that

using ELM has a better performance.

Self Forward and Information Dissemination Prediction Research . . . 133

The rest of this paper is organized as follows. Section 2 briefly introduces the

related work about information dissemination in social networks and ELM In Sect. 3,

we give the features we extracted. The information dissemination model is also intro-

duced in this section. In Sect. 4 we described the experiments and their results. The

conclusions and future work will be shown in Sect. 5.

2 Related Work

2.1 Information Dissemination in Social Networks

There are many researches about the internet social networks. In the early time, peo-

ple studied the marketing function [4], the popularity degree [5], the response of

users to the news [6] and many other things in online social networks. In the further

studies, researchers focus on the user features and analyzed the influence of users.

They promoted the PageRank algorithm [7], TwitterRank algorithm [8], TURank

algorithm [9] and many other variants of these algorithm. In the user behavior analy-

sis, the influence of users was seen as a feature, and was used in user behavior pre-

diction combining with other features. For example, the studies of Song et al. [10],

Luo et al. [11], Cha et al. [12] and Suh et al. [13]. All these models are different.

Beside the above achievements, some people investigate information propagation

from a statistical standpoint and give some conclusion [1].

Along with the deepening of the information propagation in online social net-

works, some publishers want to know the approximate transmission range of the

microblog before they publish it. Cao et al. [2] considered the user behavior and

predicted the information propagation based on it. Petrovic et al. [15] did the infor-

mation propagation prediction in the same way with [2], but used different model.

In addition to the user behavior prediction model used by [2] and [15], other model

in [10–13] can also be used in this pattern. Bandari [14] did not pay attention to the

user behavior and think the content feature is more important. In [14], he proposed a

new algorithm to predict the forward quantity of news which were shared to Twitter.

In all the research above, whether the information dissemination is based on user

behavior or content, they did not concern the influence of the condition in which

people forward the microblog published by themselves.

Considering the above situation, we put forward an improved information propa-

gation prediction model in online social networks based on user behavior prediction.

This model can enhance information dissemination forecasting accuracy in online

social networks.

134 H. Liu et al.

2.2 ELM

Extreme Learning Machine (ELM) is a more simple and effective algorithm of sin-

gle hidden layer feed forward network (SLFNs) algorithm [16]. It provides the best

generalization ability and very fast learning speed. At the first time ELM is the full

supervision machine learning algorithm, but now it has semi-supervised and unsu-

pervised version [17]. According to studies [18, 19], the principle of ELM has been

summarized below.

For different N samples (xi, ti), xi =
[
xi1, xi2,… , xim

]T ∈ Rn
, ti =

[
ti1, ti2,… , tim

]T
∈ Rm

. The mathematical model of standard single hidden layer feed forward neural

network (SLFN) which has L hidden node and activation function g(x) is shown as

function (1).

L∑

i=1
𝛽igi

(
xi
)
=

L∑

i=1
𝛽ig

(
wixj + bi

)
= oj (j = 1, 2,… ,N) (1)

The SLFNs which have L hidden node and activation function g(x) can infinitely

close to the samples with the 0 error. That is
∑L

j=1
‖‖‖oj − tj

‖‖‖ = 0. Thus there are $𝛽i,
wi and bi that makes function (2) tenable.

L∑

i=1
𝛽ig

(
wixj + bi

)
= tj (j = 1, 2,… ,N) (2)

The above function can use the function H𝛽 = T to express in brief. H is the sin-

gle hidden layer output matrix of the neural network. The jth list of H is the output

of the jth hidden node whose input is xi1, xi2,… , xin. The least-square solutions to

the optimal solution of the above linear system is ̂
𝛽 = H†T . H†

is the Moore-Penrose

generalized inverse matrix of H. Thus output sample function of ELM is the func-

tion (3).

f (x) = h (x) 𝛽 = h (x)H†T (3)

The machine learning-based algorithm without iterative tuning can be divided

into three steps. The specific process of ELM is summarized as follows:

Step 1: Randomly assign input weight wi and bias bi, i = 1; 2;… ;N′
.

Step 2: Calculate the hidden layer output matrix H.

Step 3: Calculate the output weight 𝛽, where 𝛽 = H†T .

In professor Huang Guangbin Extreme Learning Machine for Regression and

Multiclass Classification study, he has proved that the SVM obtains sub-optimal

solution and needs higher computational complexity [20]. Thus in this paper ELM

is a better choice and we only need full supervision ELM in this paper.

Self Forward and Information Dissemination Prediction Research . . . 135

3 Self Forward Model and Information Dissemination
Prediction

Before we start the investigation, we first introduce the definition we use. According

to the Sect. 1, for the publishers who want to make some supplement, or want to

expand the influence of microblog through further forwarding. We give the following

definition.

Definition 1 If user u forward the microblog m which he has published or forwarded

before, we call the u self forward m. The forward behavior is called self forward.

Then, we give the dataset description.

3.1 Dataset Description

We use SINA microblog API to get the data, and finally we got 89377 users in the

dataset. Then we crawl all Microblogs of these users which published between May

1, 2015 and June 30, 2015 and get 857647 Microblogs.

Then we counted the quantity of the microblogs generated by direct self forward

behavior. In all these microblogs, only 5.36 % of them are caused by direct self for-

ward behavior. These microblogs are considered forward samples and put into for-

ward dataset. The rest microblogs are ignore samples. In the actual experiments, due

to the user relationship graph, we selected 35 % of ignore samples as ignore dataset.

Our study is based on the above data. In the next section, we will introduce the

features we use and the corresponding evaluation index.

3.2 Direct Self Forward Prediction

Direct self forward behavior belongs to the forward behavior, so the feature in for-

ward behavior prediction can also be used in direct self forward behavior prediction.

The direct self forward behavior is in the individual perspective. Thus, the features

about the interpersonal things are irrelevant to the direct self forward behavior.

According to the researcher in Sect. 2.1, we choose the following features.

(1) Microblog content importance

The microblog content importance is widely used in the existing work. Based

computing weight of TF-IDF (term frequency inversed document frequency) algo-

rithm on the text classification field, we calculate the importance of microblog [21].

We can use Formula 4 to calculate the importance.

f (d) = n
𝜔

× log N
nd

(4)

http://dx.doi.org/10.1007/978-3-319-28373-9_2

136 H. Liu et al.

In this formula, d represents the word d in the microblog 𝜔, n
𝜔

represents the

number of d appears in 𝜔, N represents the number of microblog that microbolg set

W contains, nd represents the number of microblogs contain d in the microblog set

W. The TFIDF of microblog 𝜔 can be computed by adding the TF-IDF of all the

word in 𝜔.

tf (𝜔) =
∑

j
tf
(
dj
)

(5)

(2) User activity

We use the following formula to compute the activity of user.

PA = n
t

(6)

The PA in the Formula 6 represents the microblog number published over a period

of time, n is the total number of microblogs (including the original microblog an the

forwarding microblog), t is the unit time. In general, we set t to 1 day.

(3) User forward activity

The forward activity is percentage of users forwarding microblog account for all

published microblogs in 1 day. We use Formula 7 to compute it.

RA =

∑
i∈t

ri
∑
i∈t

pi
(7)

The t in this formula is represent the days. ri is the number of users forwarding

microblog in ith day, pi is the number of users releasing microblog in ith day and RA

represents the forward activity.

(4) The influence of user

People always use PageRank to compute the influence of user [7]. The PageRank

formula they use is shown as Formula 8.

pri =
1 − q
N

+ q
∑

j∈Follower(i)

prj
|Friend (j)| (8)

In this formula, pri represent the PageRank value of user i, Follower (i) represents

the fans list of user i, Friend (j) represents the collection of users that user j pays

attention to, q is the damping coefficient, N is the total number of users.

(5) The status of user

In SINA microblog user has two states, one is certified and the other is noncerti-

fied. The status of user influence the behavior of user. We use status to represent it.

(6) The follower number and the friend number

These two feature were used in the works before which study the user behavior.

We think they may also influence the self forward behavior.

Self Forward and Information Dissemination Prediction Research . . . 137

Table 1 Features to predict

self forward
Symbol Description

tf (𝜔) The microblog content importance

PA The publish activeness of user

RA The forward activeness of user

FA The self forward activeness of user

pri The influence of user

Status The status of user

Follower_num The follower number of user

Friend_num The friends number of user

FN The direct self forward times

From the statistical conclusion we found that some people always do the direct self

forward while some of them never. We think the direct self forward behavior related

to this user habit. Thus, in addition to the above features, we proposed following

feature.

(7) User self forward activity

The self forward activity is the percentage of users self forwarding microblog

account for all published microblogs in 1 day. We use Formula 9 to compute it.

FA =

∑
i∈t

fi
∑
i∈t

pi
(9)

The t in this formula is represent the days. fi is the number of users self forwarding

microblog in ith day, pi is the number of users releasing microblog in ith day and FA

represents the self forward activity.

(8) Forwarding numbers

Direct self forward behavior is limited. Although people can do direct self forward

discretionarily, hardly anyone do it forever. People always end it in finitely time. Thus

we consider direct self forward numbers as an important feature.

Thus in this paper we use 9 feature to predict the self forward behavior. The fea-

tures we used in this paper are summarized in Table 1.

3.3 Information Dissemination Prediction

Based on the above, we use ELM to predict the self forward behavior. Because the

user forward behavior prediction is not the emphasis of this paper, we use the model

in the existing work to predict forward behavior. According to the self forward pre-

diction and the forward prediction, we determine the spread scope of the microblog

eventually.

138 H. Liu et al.

Fig. 2 A simple

information propagation

prediction tree

Fig. 3 The percentage of

each self forward numbers

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10

Pe
rc

en
ta

ge

Self forward numbers

Percentage

When we forecast the microblog transmission range, first of all, we predict the

direct self forward behavior of one user, and then we predict the forwarding state of

the user. In order to introduce our model in details, we give a simple model in Fig. 2.

In figure the dark grey point U1 is the publisher of the microblog. It has the direct

self forward behavior and the U′
1 sub tree is the predicting tree after self forwarding.

U2 and U3 are the follower of U1 (Fig. 2). The black points represent the forward

behavior. In figure U3 is predicted forwarding. Then we calculate the self forward

state of U3. U3 do not self forward, so we do not add the subtree.

There is an end for forwarding behavior. From the existing work [23] we can

know, after 5 jump, the percent of forward microblogs approach to 0. So when we

calculate the information propagation, we only concern the first five jump. For the

self forward behavior, Fig. 3 shows the average percent of self forward times.

From the Fig. 3 we can see, the percentage of self forward behavior close to 0

after 4. So when we calculate the information propagation, the self forward behavior

we predict 3 times.

Self Forward and Information Dissemination Prediction Research . . . 139

Thus, based on the above, the information propagation prediction algorithm is

shown in Algorithm 1.

Algorithm 1 Forward_quantity_forecast(U)

Require: Microblog publisher U0.

Ensure: Forwarded number C.

1: Predict direct self forward behavior;

2: if (U direct self forward and direct self forward number < 3) then
3: Add U0 into forward queue;

4: C = C + 1;

5: end if
6: for (i = 0; i < N; i++) do
7: ∕∕ N is the number of fans, N ⩾ 0
8: Predict the forward behavior;

9: if user forward the microbblog then
10: C = C + 1;

11: Add user into forward queue;

12: end if
13: end for
14: Get a user U’ from forward queue;

15: Forward_quantity_forecast(U’);

4 Experiments and Results

In this section we introduce the experiments and results. We compared the results

which are got by using ELM and SVM. We predicted the amount ofinformation dis-

semination, and tested the both accuracy between we concerned self forward behav-

ior and not.

4.1 Self Forward Prediction

We use ELM to train and predict the data. The source code of ELM can be obtained

from the website.
1

To prove the results are effective, we also use SVM to train and

predict the data. We can get the lib-SVM tool from the website.
2

In order to guarantee

the stability and effectiveness of the experiment, we use 10 times of cross validation

method validation algorithm.

In order to further compare the results of ELM and SVM, we choose the eval-

uation index of information retrieval, including accuracy, recall and the value of

F1. Table 2 shows the comparison of the self forward behavior prediction results.

1
ELM Source Codes: ELM Source Codes: http://www.ntu.edu.sg/home/egbhuang/.

2
Data set: http://www.csie.ntu.edu.tw/cjlin/libsvm/.

http://www.ntu.edu.sg/home/egbhuang/
http://www.csie.ntu.edu.tw/cjlin/libsvm/

140 H. Liu et al.

Table 2 The results comparison of ELM and SVM

Recall Accuracy F_scall Training time (s) Testing time (s)

ELM 1 0.8349 0.91 2.8704 3.5256

SVM 0.9735 0.8241 0.8926 9.6565 66.9556

Because ELM has a better performance in processing time, we also compare the

processing time of ELM and SVM (including training time and testing time).

We can see in Table 2 all the results get by using ELM is better than by using

SVM. The training time and the testing time of ELM are much shorter than SVM.

Especially in the testing time aspect, the testing time of ELM is 3.5256 s and the

testing time of SVM is 66.9556 s. This is because we use 10 times of cross vali-

dation method validation algorithm, and each time we test the data by using SVM

costs much. All the data proves that using ELM algorithm is better than using SVM

algorithm. ELM algorithm has good performance.

4.2 Information Dissemination Prediction

In this section we predict the information dissemination based on the user behavior.

The user behavior is predict by ELM. We use the model in our previous study [23].

In order to determine the scale of information dissemination, we divide the scale

according to the
1
2
× 10n order of magnitudes. If the information dissemination scale

we predicted is in the same order of magnitude which is the actual information dis-

semination scale, we can say the prediction is right. We calculated the average predict

information dissemination scale accuracy of 20000 microblogs.

We calculated the average predict information dissemination scale accuracy of

20000 microblogs. The figure shows the comparison of considering self forward

behavior and not considering it. In figure, each column represents the average accu-

racy of different microblogs in different condition. Before represents that the exper-

iments have nothing concerned. DSF represents that the experiments consider self

forward behavior. For example, the first black column represents the average accu-

racy of 100 microblogs without considering self forward behavior. The first slash

column represents the average accuracy of 100 microblogs considering direct self

forward behavior.

In figure we can see considering self forward behavior can significantly enhance

prediction accuracy (Fig. 4). The bigger the number of microblogs is, the more stable

the accuracy is. When the microblogs over 10000, the accuracy stabilize at about

80 %. In contrast, the results that nothing has been concern approach to DSF only

at 100. In other conditions it is much lower than DSF. This is because in 100, the

sample is too small and cannot represent all of the situation.

Self Forward and Information Dissemination Prediction Research . . . 141

Fig. 4 Average prediction

accuracy comparison

between considering self

forward behavior and not

 0

 20

 40

 60

 80

 100

100 500 1000 2000 5000 10000 15000 20000

A
cc

ur
ac

y

Microblog number

Before
DSF

5 Conclusions

Information propagation prediction based on social network is becoming popular in

nowadays. In this paper, we study the condition that user forward the microblog of

itself and based on this we change the information propagation prediction algorithm.

We extracted 9 features to predict the direct self forward behavior. The features

are microblog content importance, user activity, user forward activity, user self for-

ward activity, the influence of user, the status of user, the follower number, the friend

number and the direct self forward times. We use ELM to train and predict the SINA

microblog data to predict whether user self forward a microblog. Our experiment

results show ELM has a better performance than SVM. Based on self forward behav-

ior we proposed an algorithm to predict the information dissemination. The experi-

ment results show that our algorithm has a good accuracy in information dissemina-

tion prediction.

Our model and algorithm in this paper can help the businesses and government to

spread information in the social network. There is still something we need to improve

in this paper. For example, the features we concerned in this paper is not integrated

and some features may be repeated. We will take it into consideration in the future.

Acknowledgments This research was partially supported by the National Natural Science Foun-

dation of China under Grant Nos. 61332006 and 61100022; the National BasicResearch Program

of China under Grant No. 2011CB302200-G; the 863 Program under Grant No. 2012AA011004.

The researcher claims noconflicts of interests.

References

1. Ye, S., Wu, S.F.: Measuring Message Propagation and Social Influence on Twitter.com[C].

SocInfo, pp. 223–228 (2010)

2. Cao, J., Wu, J., Wei, S., et al.: SINA microblog information diffusion analyse and prediction

[J]. Chin. J. Comput. 37(4), 779–790 (2014)

142 H. Liu et al.

3. Ren, D., Zhang, X., Wang, Z., et al.: WeiboEvents: a crowd sourcing weibo visual analytic

system [C]. In: Pacific Visualization Symposium (PacificVis), 2014 IEEE, Yokohama, pp. 330–

334 (2014)

4. Jansen, B.J., Zhang, M., Sobel, K., Chowdhury, A.: [J] Twitter power: tweets as electronic

word of mouth. J. Am. Soc. Inf. Sci. Technol. (2009)

5. Szabo, G., Huberman, B.A.: Predicting the popularity of online content [C]. Commun. ACM

80–88 (2010)

6. Lerman, K., Hogg, T.: Using a model of social dynamics to predict popularity of news [J]. In:

Proceedings of International Conference on World Wide Web, pp. 621–630 (2010)

7. Page, L., Brin, S., Motwani, R. et al.: The PageRank citation ranking: bringing order to the

Web [J]. Stanford University: Technical Report SIDL-WP, pp. 99–120 (1999)

8. Weng, J., Lim, E.P., Jiang, J. et al.: TwitterRank: finding topic-sensitive influential twitter-

ers[C]. In: Proceedings of the Third ACM International Conference on Web search and Data

Mining. ACM, pp. 261–270 (2010)

9. Yamaguchi, Y. et al.: TURank: Twitter user ranking based on user-tweet graph analysis [C].

WISE 243–246 (2010)

10. Song, G., Li, Z., Tu, H.: Forward or ignore: user behavior analysis and prediction on microblog-

ging [C]. In: 2012 IEEE 16th International Conference on Computer Supported Cooperative

Work in Design (CSCWD). IEEE, pp. 678–684 (2012)

11. Luo, Z., Osborne, M., Tang, J. et al.: Who will retweet me? Finding retweeters in Twitter [C]. In:

Proceedings of the 36th International ACM SIGIR Conference on Research and Development

in Information Retrieval. ACM (2013)

12. Cha, M., Haddadi, H., Benevenuto, F. et al.: Measuring user influence in Twitter: the million

follower fallacy. In: Proceedings of the 4th International AAAI Conference on Weblogs and

Social Media, Washington, pp. 10–17 (2010)

13. Suh, B., Hong, L., Pirolli, P. et al.: Want to be retweeted? Large scale analytics on factors

impacting retweet in Twitter network [C]. In: IEEE International Conference on Social Com-

puting/IEEE International Conference on Privacy, Security, Risk and Trust. IEEE, pp. 177–184

(2010)

14. Bandari, R., Asur, S., Huberman, B.: The pulse of news in social media: forecasting popularity

[A]. In: Proceedings of Association of the Advancement of Artificial Intelligence (AAAI-12)

[C], Toronto, pp. 26–33 (2012)

15. Petrovic, S., Osborne, M., Lavrenko, V.: RT to Win! Predicting message propagation in Twitter.

ICWSM 586–589 (2011)

16. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme

of feedforward neural networks [C]. In: International Joint Conference on Neural Networks

(IJCNN2004), Budapest, Hungary, pp. 985–990 (2004)

17. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications [J].

Neurocomputing 70(1), 489–501 (2006)

18. Huang, G., Song, S. Wu, C., You, K.: Semi-supervised and unsupervised extreme learning

machines. IEEE Trans. Syst. Man Cybern. 44, 2405–2417 (2014)

19. Huang, G.B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey [J]. Int. J. Mach.

Learn. Cybern. 2(2), 107–122 (2011)

20. Huang, G.B., Zhou, H., Ding, X., et al.: Extreme learning machine for regression and multiclass

classification [J]. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(2), 513–529 (2012)

21. Shi, C., Xu, C., Yang, X.: Study of TFIDF algorithm [J]. J. Comput. Appl. 6(29), 167–170

(2009)

22. Lin, X., Wang, W.: Set and string similarity queries: a survey [J]. Chin. J. Comput. 34(10),

1853–1862 (2011)

23. Liu, H., Li, Y.: Weibo information propagation dissemination based on user behavior using

ELM. Math. Probl. Eng. (2015)

Sparse Coding Extreme Learning Machine
for Classification

Zhenzhen Sun and Yuanlong Yu

Abstract As one of supervised learning algorithms, extreme learning machine

(ELM) has been proposed for single-hidden-layer feedforward neural networks

(SLFN) and shown great generalization performance. ELM randomly assigns the

weights and biases between the input and hidden layers and trains the weights

between hidden and output layers. Physiological research has shown that neurons

at the same layer are laterally inhibited to each other such that the output of each

layer is a type of sparse codings. However, it is difficult to accommodate the lateral

inhibition by directly using random feature mapping in ELM. Therefore, this paper

proposes a sparse coding ELM (ScELM) algorithm, which can map the input fea-

ture vector into a sparse representation such that the mapped feature is sparse. In this

proposed ScELM algorithm, an unsupervised way is used for sparse coding in the

sense that dictionary is randomly assigned rather than learned. Gradient projection

(GP) based method is used for the sparse coding. The output weights are trained in

the same supervised way which ELM presents. Experimental results on benchmark

databases have shown that this proposed ScELM algorithm can outperform other

state-of-the art methods in terms of classification accuracy.

Keywords Sparse coding ⋅ Extreme learning machine ⋅ Gradient projection

1 Introduction

During the past decades, neural network is widely studied in the areas of machine

learning, pattern recognition and robotics since it is able to approximate complex

nonlinear functions so as to provide much higher classification accuracy. Many

This work is supported by National Natural Science Foundation of China (NSFC) under grant

61473089.

Z. Sun ⋅ Y. Yu (✉)

College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, Fujian,

China

e-mail: yu.yuanlong@fzu.edu.cn

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_12

143

144 Z. Sun and Y. Yu

learning algorithms have been proposed for training neural networks, for exam-

ple, support vector machine (SVM) [1, 2] for single-hidden-layer neural networks

(SLNN), back-propagation (BP) algorithm and deep learning algorithms [3–5] for

multiple-hidden-layer neural networks (MLNN).

SVM can be seen as a training method for SLNN based on standard optimiza-

tion method by maximizing the margin between two classes. However, it is difficult

for SVM to deal with large-scale data since the quadratic programming required to

obtain the optimal solution is computationally expensive when the number of train-

ing samples is too large.

Further efforts have also been put on training MLNNs. BP algorithm is a pioneer

for this type of efforts. It minimizes the training errors based on gradient descent

method and the errors are back-propagated from the output layer to previous hidden

layers. However, in real applications, BP algorithm has not shown great performance

for neural networks with much more hidden layers. This is because that the gradients

become smaller and smaller with the back-propagation process from the top to lower

layers such that the updates are weak at lower layers. Recently, several deep learn-

ing algorithms have been proposed, e.g., deep Boltzmann machine (DBM) [5–7],

deep belief network (DBN) [4], convolutional neural network (CNN) [3], stacked

denoise autoencoder (SDAE) [8–10] and stacked sparse autoencoder (SSAE) [11,

12]. The underlying idea of deep learning is that feature extraction and classification

are combined together in a unified MLNN architecture. In these algorithms, learn-

ing of connection weights is basically divided into two processes. The first one is

bottom-up layer-wise pre-training through unsupervised ways with a common objec-

tive function that output and input are as close as possible between two neighboring

layers. For example, DBM performs Gibbs sampling to maximize the log-likelihood

of training data and SSAE performs self-taught sparse coding. The second one is

top-down fine-tuning of connection weight through a supervised way mainly based

on gradient descent strategy. However, the gradient descent based pre-training and

fine-tuning is likely to converge to a local optimum.

Recently, extreme learning machine (ELM) was proposed for training SLNNs

[13]. One contribution of ELM is that the weights and bias between input and hidden

layers are randomly generated such that only the weights between hidden and output

layers require training. The other contribution of ELM is that it obtains an optimal

output weights by minimizing not only the training errors but also the norm of output

weights such that better generalization performance is achieved [14]. This objective

function is solved by using Lagrange multiplier method. Theoretically, ELM can

obtain a global optimum [15] and therefore it is unlikely to fall into a local optimum.

In terms of computation, the training cost of ELM is much lower than other state-

of-the-art learning methods.

However, it is difficult to accommodate the lateral inhibition between neurons by

directly using random feature mapping in ELM. Physiological research has shown

Sparse Coding Extreme Learning Machine for Classification 145

that neurons at the same layer are laterally inhibited to each other such that the out-

put of each layer is a type of sparse codings [16]. Therefore, this paper proposes a

sparse coding ELM (ScELM) algorithm which uses sparse coding technique to map

the inputs to the hidden layer instead of the random mapping used in ELM. The

gradient projection (GP) based method [17] is used in the encoding stage and the

output weights between hidden and output layers are learned using ELM algorithm.

The mapped feature representation captures more salient properties such that it can

contribute more for classification.

The remainder of this paper is organized as follows. Section 2 reviews some

related work on sparse coding. Section 3 presents details of this proposed ScELM

algorithm. The experiment results are shown in Sect. 4.

1.1 Related Work on Sparse Coding

In 1959, Hubel and Wiesel studied the receptive fields of simple neurons in the visual

stripe cortex of cats and posited that the receptive field of primary visual cortex V1

neurons can produce a sparse representation for visual perception signals [18]. Then

the electrophysiological experiments on primate and cats shown that the expression

of complex stimuli in the visual cortex adopt the sparse coding principle [19].

Sparse coding technique has been used for feature extraction in recent years. A

face recognition algorithm using sparse representation coding (SRC) [20]. The SRC

algorithm doesn’t need to do dictionary learning but sets all training samples as

atoms of the dictionary. Any new (test) sample will approximately lie in the linear

span of the training samples from the same class. So the coefficient is sparse (most

of the coefficients are zero). The paper [20] shown that, ever the face images have as

much as 80 % of random noise, the SRC algorithm can also get a high recognition

accuracy. Another advantage of SRC algorithm is that for the occlusion and corrup-

tion cases, it still be able to get a higher recognition performance. What’s more, the

SRC is more robust than other face recognition methods that the precise choice of

feature space is no longer critical. The training time of SRC is much faster than other

face recognition methods.

Another feature extraction method for image classification called sparse coding

spatial pyramid matching (ScSPM) [21] was also proposed. It is an extension of

the spatial pyramid matching (SPM) algorithm by generalizing vector quantization

to sparse coding. Then it uses a linear SVM classifier to implement classification.

The ScSPM method remarkably reduces the complexity of SVMs to O(n) in training

and a constant in testing. The experimental results of the ScSPM have shown that

the sparse coding of features always significantly outperforms other types of feature

mapping.

146 Z. Sun and Y. Yu

Sparse coding is also integrated into the deep neural networks, e.g., SSAE [11].

SSAE uses an unsupervised learning algorithm for feature extraction by imposing a

sparsity constraint on the hidden units so that it can discover interesting structure in

the data.

2 The Proposed ScELM Algorithm

As Fig. 1 shows, this proposed ScELM is a method for learning single hidden neural

network which contains one input layer, one hidden layer and one output layer.

Between the input layer and hidden layer, it uses sparse coding technique to do feature

mapping for the input data, the outputs of the hidden layer are the sparse representa-

tions of input data. In the encoding stage, it uses the GP algorithm [17] to calculated

the sparse representations of input data. The output weights between the hidden layer

and output layer are solved by a optimization problem which aim to minimize the

training error as well as the output weights norm.

Fig. 1 The framework of

ScELM

Sparse Coding Extreme Learning Machine for Classification 147

2.1 Encoding Stage

In this stage, the ScELM uses the GP algorithm to compute the sparse representa-

tions of input data since the GP algorithm is much faster than other state-of-the-art

approaches, e.g., IST [22, 23] and the recent l1_ls package [24]. The GP aims to min-

imize the reconstruction error as well as the l1-norm of the sparse representation:

Minimize: 1
2
||x − Dh||2 + 𝜆||h||1 (1)

where x ∈ Rn
is the input signal, D = [d1, d2,… , dm] ∈ Rn×m(m >> n) is the over-

complete dictionary, h ∈ Rm
is the sparse representation of x.

The first key of GP algorithm is to express (1) as a quadratic program, this is done

by splitting the variable h into its positive and negative parts.

h = u − v, u ≥ 0, v ≥ 0 (2)

These relationship are satisfied by ui = (hi)+ and vi = (−hi)+ for all i = 1, 2,… , n,
where (h)+ = max{0, h}. Thus ||h||1 = 1Tn u + 1Tn v, where 1n = [1, 1,… , 1]T is the

vector consisting of n ones, so (1) can be rewritten as the following bound-constrained

quadratic program (BCQP):

min:
u,v

1
2
||x − D(u − v)||22 + 𝜆1Tn u + 𝜆1Tn v,

s.t. u ≥ 0, v ≥ 0.
(3)

Problem (3) can be written in more standard BCQP form

min:
z

cTz + 1
2
zTBz ≡ F(z)

s.t. z ≥ 0.
(4)

where

z =
[u
v

]
, b = DTx, c = 𝜆12n +

[−b
b

]

and

B =
[
DTD − DTD
−DTD DTD

]
.

(5)

In the GP algorithm, zk is iteratively updated to zk+1 as follows. First, it chooses

some scalar parameter 𝛼
k
> 0 and set

wk = (zk − 𝛼

k∇F(zk))+ (6)

148 Z. Sun and Y. Yu

Then chooses a second scalar 𝛾
k
> 0 and set

zk+1 = zk + 𝛾

k(wk − zk). (7)

In the basic approach, it searches from each iterate zk along the negative gradient

−∇F(zk), projecting onto the nonnegative orthant, and performing a backtracking

line search until a sufficient decrease is attained in F. It uses an initial guess for 𝛼
k

that would yield the exact minimizer of F along the direction if no new bounds were

to be encountered. Specifically, it defines the vector gk by

gki = {
(∇F(zk))i, if zki > 0 or (∇F(zk))i < 0

0, otherwise.
(8)

Then the initial guess can be computed explicitly as

𝛼0 =
(gk)Tgk

(gk)TBgk
. (9)

The complete routine of gradient projection is shown in Algorithm 1.

Algorithm 1 Gradient projection for sparse reconstruction

1: (Initialization) Given z0, choose parameters 𝜌 ∈ (0, 1) and 𝜇 ∈ (0, 1
2
); set k = 0;

2: Compute 𝛼0 from (9), and replace 𝛼0 by mid(𝛼min, 𝛼0, 𝛼max);
3: (Backtracking Line Search) Choose 𝛼

k
to be the first number in the sequence

𝛼0, 𝜌𝛼, 𝜌
2
𝛼,… such that F((zk − 𝛼

k∇F(zk))+) ≤ F(zk) − 𝜇∇F(zk)T (zk − (zk − 𝛼

k

∇F(zk))+),and set zk+1 = (zk − 𝛼

k∇F(zk))+;

4: Perform convergence test and terminate with approximate solution zk+1 if it is

satisfied; otherwise set k = k + 1 and return to Step 2.

The parameter 𝜆 in express (1) is chosen as suggested in [24]

𝜆 = 0.1||DTx||∞ (10)

Note that the zero vector is the unique optimal solution of (1) for 𝜆 ≥ 0.1||DTx||∞
[24, 25].

2.2 Calculation of Output Weights 𝜷

For an input sample (x, t), the output function of ScELM is

Sparse Coding Extreme Learning Machine for Classification 149

y =
L∑

i=1
𝛽ihi(x) = h(x)𝛽 (11)

where 𝛽 = [𝛽1,… , 𝛽L]T is the output weight from the hidden layer to the output layer.

h(x) = [h1(x),… , hL(x)] means the sparse representation (output of hidden layer)

with the respect to the input x.

The ScELM algorithm aims to not only minimize the training error but also the

output weights which is learned from the ELM because the smaller norm of weights

are, the better generalization performance the neuron network tends to has. The target

of ScELM is

Minimize: LPELM
= 1

2
||𝛽||2 + C1

2

N∑

i=1
||𝜉i||2

Subject to: h(xi)𝛽 = tTi − 𝜉

T
i , i = 1,… ,N

(12)

The result of 𝛽 can be divided into two cases:

(1) For the case where the number of training samples is NOT huge:

𝛽 = H(I
C

+ HTH)−1TT
. (13)

(2) For the case where the number of training samples is huge:

𝛽 = (I
C

+ HHT)−1HTT
. (14)

3 Experiments

3.1 Experimental Setup

A standard PC is used in our experiments and its hardware configuration is as follows:

(1) CPU: Intel(R) Pentium(R) CPU G2030 @3.00 GHz;

(2) Memory: 8.00 GB;

(3) Graphics Processing Unit (GPU): None.

The data sets used in our experiments are taken from UCI Machine Learning
Repository [26]. There are 15 data sets including 7 binary-classification cases and 8

multi-classification cases. The details of these data sets are shown in Table 1.

150 Z. Sun and Y. Yu

Table 1 Data sets used in our experiments

Datasets # train # test # features # classes

Musk 6598 476 166 2

Madelon 2000 600 500 2

Diabetes 512 256 8 2

Isolet 6238 1559 617 26

Gesture_phase 1743 1260 50 5

Glass 142 72 9 6

Wine 118 60 13 3

Satimage 4435 2000 36 6

Image

segmentation

1660 650 19 7

Australian credit 460 230 14 2

Vehicle 564 282 18 4

Breast cancer 380 189 30 2

Ecoli 224 112 7 8

Diabetic 786 365 19 2

Blood transfusion 500 248 4 2

This proposed ScELM algorithm is compared against ELM and SVM algorithms.

In the ScELM and ELM, the number of hidden neurons and parameter C are tuned

to find the optimal accuracy. The ‘sigmoid’ function is chosen as active function

in ELM. Because of the randomness of overcomplete dictionary in ScELM and the

randomness of input weights in ELM, the ScELM and ELM procedure were run 50

times with a fixed L (the number of hidden neurons) and a fixed parameter C each

time to compare their average accuracy.

3.2 Evaluation

As shown in Tables 2 and 3, for most of the data sets, ScELM achieves higher accu-

racy than SVM and ELM. For example, ScELM outperforms ELM by more than

11 % and SVM by more than 60 % in the wine data. It can be seen that ScELM out-

performs SVM and ELM in terms of classification accuracy.

Sparse Coding Extreme Learning Machine for Classification 151

Table 2 The maximal accuracy of each algorithm

Datasets SVM (%) ELM (%) ScELM (%)

Musk 56.51 92.86 92.56

Madelon 50.00 61.50 62.50
Diabetes 67.58 70.70 71.88
Isolet 95.70 95.32 95.25

Gesture_phase 38.81 67.22 67.06

Glass 43.06 54.17 63.89
Wine 35.00 85.00 96.67
Satimage 23.85 82.30 79.10

Image segmentation 57.23 94.92 92.92

Australian credit 53.48 75.22 79.57
Vehicle 23.76 75.89 78.72
Breast cancer 57.14 94.71 95.24
Ecoli 67.85 85.71 86.61
Diabetic 56.16 78.90 74.79

Blood transfusion 65.32 72.98 73.79
Bold value denotes the best results

Table 3 The average accuracy of ELM and ScELM

Datasets ELM (%) ScELM (%)

Musk 90.13 ± 1.6202 89.52 ± 2.5394

Madelon 59.76 ± 4.4355 59.48 ± 3.0098

Diabetes 63.68 ± 6.0692 66.84 ± 4.9217
Isolet 94.44 ± 1.7506 94.31 ± 1.5622

Gesture_phase 63.12 ± 8.2969 63.44 ± 5.2899
Glass 48.06 ± 13.5425 51.19 ± 27.7943
Wine 67.97 ± 31.4388 87.13 ± 18.0317
Satimage 81.36 ± 0.1802 77.81 ± 0.4674

Image segmentation 93.39 ± 0.4594 91.39 ± 0.9767

Australian credit 72.30 ± 1.5975 75.00 ± 3.6515
Vehicle 71.62 ± 5.5272 73.98 ± 3.8030
Breast cancer 93.02 ± 0.7931 93.10 ± 0.5713
Ecoli 79.98 ± 6.8360 81.36 ± 6.8865
Diabetic 74.82 ± 1.7961 71.07 ± 4.1483

Blood transfusion 68.90 ± 4.6455 70.33 ± 2.5755
Bold value denotes the best results

152 Z. Sun and Y. Yu

4 Conclusions

This paper proposes a new method for learning single hidden layer feedforward

neural network, called ScELM. It uses sparse coding technique to connect the input

layer and hidden layer as the feature mapping of input signals so that it can decouple

the signals as well as reduce the redundancy of signals. This paper conduct extensive

experiments on publicly available databases to verify the efficacy of the proposed

algorithm and the result shows that the ScELM gets a better performance than ELM

and SVM in terms of classification. This proposed algorithm provides new insights

into future research in classification algorithms, and promotes the development of

machine learning.

Although the ScELM gets higher accuracy than ELM and SVM, there are still a

lot of work should to be done. There are a lot of new sparse coding algorithms been

proposed, such as l1-homotopy [27], Predictive Sparse Decomposition(PSD) [28],

and Locally Competitive Algorithm (LCAs) [29]. It is worth trying the new sparse

coding algorithms to see wether the accuracy of ScELM will be improved.

Future work also includes how to find an over-complete dictionary that can signif-

icantly filter out the same characteristics between different classes and how to design

the number of atoms of the dictionary. Doing that in a principle manner remains an

important direction for future work.

References

1. Cortes, C., Vapnik, V.N.: Support vector networks. Mach. Learn. 20, 273–297 (1995)

2. Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regularization path for the support

vector machine. J. Mach. Learn. Res. 5, 1391–1415 (2004)

3. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document

recognition. Proc. IEEE 86(11), 2278–2324 (1998)

4. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural

Comput. 22, 781–796 (2006)

5. Salakhutdinov, R., Hinton, G.: An efficient learning procedure for deep boltzmann machines.

Neural Comput. 24(8), 1967–2006 (2012)

6. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks.

Science 313(5786), 504–507 (2006)

7. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machine. J. Mach. Learn. Res. 5, 448–455

(2009)

8. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep net-

works. In: Proceedings of Advances in Neural Information Processing Systems, vol. 19, pp.

153–160 (2006)

9. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: International conference on machine

learning. In: Proceedings of International Conference on Machine Learning, pp. 1096–1103

(2008)

10. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoen-

coders: Learning useful representations in a deep network with a local denoising criterion. J.

Mach. Learn. Res. 11, 3371–3408 (2010)

Sparse Coding Extreme Learning Machine for Classification 153

11. Coates, A., Andew, Y.N.: Search machine learning repository: the importance of encoding

versus training with sparse coding and vector quantization. In: Proceedings of International

Conference on Machine Learning, pp. 921–928 (2011)

12. Lee, H., Ekanadham, C., Ng, A.Y.: Sparse deep belief net model for visual area v2. In: Pro-

ceedings of Advances in Neural Information Processing Systems, vol. 20, pp. 1–8 (2008)

13. Huang, G.-B., Zhou, H.-M., Ding, X.-J., Zhang, R.: Extreme learning machine for regression

and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(2), 513–529

(2012)

14. Bartlett, P.L.: The sample complexity of pattern classification with neural networks: the size

of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 44(2),

525–536 (1998)

15. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental constructive

feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892

(2006)

16. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed

by v1? Vis. Res. 37(23), 3311–3325 (1997)

17. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse representation:

application to compressed sensing and other inverse problems. IEEE Trans. Select. Topics

Signal Process. 1(4), 586–597 (2007)

18. Hubel, D.H., Wiesel, T.N.: Receptive fields of signal neurons in the cat’s striate cortex. J.

Physiol. 148, 574–591 (1959)

19. Roll, E.T., Tovee, M.J.: Sparseness of the neuronal representation of stmuli in the primate

temporal visual cortex. J. Neurophysiol. 173, 713–726 (1992)

20. Wright, J., Yang, A.Y., Ganesh, A.: Robust face recognition via sparse representation. IEEE

Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009)

21. Yang, J.-C., Yu, K., Gong, Y.H., Huang, T.: Linear spatial pyramid matching using sparse cod-

ing for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition,

vol. 1, pp. 1017–1022 (2005)

22. Daubechies, M.D.F.I., Mol, C.D.: An iterative thresholding algorithm for linear inverse prob-

lems with a sparsity constraint. Commun. Pure Appl. Math 57, 1413–1457 (2004)

23. Figueiredo, M., Nowak, R.: An em algorithm for wavelet-bases image restoration. IEEE Trans.

Image Process. 12, 906–916 (2003)

24. Kim, S.J., Koh, K., Boyd, S.: An interior-point method for large-scale l1-regularized least

squares. Neural Comput. 24(8), 1967–2006 (2012)

25. Fuchs, J.J.: More on sparse representations in arbitrary bases. IEEE Trans. Inf. Theory 50,

1341–1344 (2004)

26. Blake, C.L., Merz, C.J.: Uci repository of machine learning databases. Department of Infor-

mation and Computer Sciences, University of California, Irvine, CA (1998)

27. Asif, M.S., Romberg, J.: Sparse recovery of streamiing signals using l1-homotopy. IEEE Trans.

Signal Process. 62(16), 4209–4233 (2014)

28. Kavukcuoglu, K., Ranzato, M., LeCun, Y.: Fast inference in sparse coding algorithms with

applications to object recognition. In: Technical report. Computational and Biological Lerning

Lab, NYU (2008)

29. Rozell, C.J., Johnson, D.H., Olshausen, B.A.: Sparse coding via thresholding and local com-

petition in neural circuits. Neural Comput. (2008)

Continuous Top-K Remarkable Comments
over Textual Streaming Data Using ELM

Rui Zhu, Bin Wang and Guoren Wang

Abstract The increasing popularity of location-based social networks encourages

more and more users to share their experience. It deeply impact the decision of the

other users. In this paper, we study the problem of top-K remarkable comments over

textual streaming data. We first study how to efficiently identify the mendacious

comments. Through using a novel machine learning technique named ELM, we could

filter most of mendacious comments. We then study how to maintain these vital

comments. For one thing, we propose a two-level index to maintain their position

information. For another, we employ domination transitivity to remove meaningless

comments. Theoretical analysis and extensive experimental results demonstrate the

effectiveness of the proposed algorithms.

1 Introduction

The increasing popularity of location-based social networks encourages more and

more users to share their experience for point-of-interest (POI) in a cyber world

[1, 2]. When users want to visit a POI such as store, museum, hotel, they often

retrieve the hot comments from the internet. Accordingly, some high-quality com-

ments are important to the user decision. In this paper, we study the problem of

user-defined top-k remarkable comments over location-based social networks.

Usually, comments associated with two important attributes that are textual con-

tent and geo-spatial content. They are generated by visitor check-in, buyer adver-

tisement, etc. As a type of real-time based data, they are modeled as geo-textual

data streams. Thus, we reduce this work to the problem of continuous top-k query

R. Zhu (✉) ⋅ B. Wang ⋅ G. Wang

College of Information Science and Engineering, Northeastern University, Shenyang, China

e-mail: neuruizhu@gmail.com

B. Wang

e-mail: binwang@ise.neu.edu.cn

G. Wang

e-mail: wanggr@ise.neu.edu.cn

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_13

155

156 R. Zhu et al.

over location-based steaming textual data. Obviously, this problem is built up of two

fundamental problems they are POI recommendations and continuous top-k query

over streaming data.

For the first one, there exists a great deal of works answering POI recommenda-

tions. Ye et al. propose the classical user-based collaborative filtering techniques. Its

key idea is to score POIs in terms of similarity between users’ check-in activities,

and return high score results to the users. However, this type of work lack of loca-

tion information and face with data sparsity problem [1]. In order to overcome this

problem, Yin et al. utilized local features (e.g., attractions and events) to improve the

model learning and inference procedure for the recommendation purpose. However,

users are usually more interested to a group of flavors that are exposed in a given

range. Aim to this problem, Chen et al. proposed top-K location category based POI

recommendation, by introducing information coverage to encode the location cat-

egories of POIs in a city. Because it is a NP-hard problem, they propose a greedy

algorithm and an optimization algorithm solve this problem. However, these algo-

rithms exists a common problem where they do not consider the truth of this com-

ments. If a undesirable buyer send some fictitious but tempting information to the

system (e.g., weibo facebook and etc.), the recommendation system may send some

deception result to the users.

For the second one, these also exists a group of works. The representative work is

the k-skyband based algorithm. As is reviewed in Sect. 2, an object o is a k-skyband

object if there are less than k objects who come later than o and have scores higher

than F(o). As proved in [3], top-k results must be k-skyband objects. Consequently,

this cluster of approaches could answer the query via scanning top-k skyband objects

once. However, this kind of algorithms have to waste lots of computing cost in main-

taining the dominate number of k-skyband, and reduce the overall performance.

Especially, when the data are skewed distributed, this algorithms has to maintain

multitudes of k-skybands. In this case, the computing cost of maintaining objects’

dominate number is increased quite significantly.

This paper takes on the challenge of designing an efficient algorithm for solving

the above problems. We propose the framework 𝖯𝖡𝖳𝖨 (short for personalized based

top-k recommendation index). It improves the state of arts solutions by introducing

the falsity comment identification and exploiting a family of filtering techniques.

Furthermore, it employs the domination transmissibility to enhance the algorithm

performances. The challenges and our contributions are as follows.

(i) How to efficiently identify falsity comments? As far as we know, this type of

comments have two characteristics, that are mutable and volume. In order to fast

identify them, we firstly study their behavior character. And then, we employ a

novel machine learning algorithm called ELM for classification. From [4], since

its classification speed is much faster than the other classical algorithms such as

SVM, neural networks and so on, it is very suitable for identifying falsity com-

ments over textual streaming data.

(ii) How to efficiently answer the top-k query? Firstly, we employ the multi-

resolution grid technique to maintain the local information of these comments.

Continuous Top-K Remarkable Comments over Textual Streaming Data Using ELM 157

We then built up of a super top-K result set of all kinds of industries such as

hotels, restaurants and so on. Since K is usually larger than that of user-defined

parameter k, in order to reduce the computation cost, we employ the domination

transmissibility. From the test evaluation, it could effectively reduce the com-

puting cost.

The rest of this paper is organized as follows: Sect. 2 gives background. Section 3

proposes the 𝖯𝖡𝖳𝖨. Section 4 evaluates the proposed methods with extensive exper-

iments. Section 5 is the conclusion and the future work.

2 Background

In this section, we firstly discuss the related work. And then, we introduce an issue

machine learning technique called ELM.

2.1 Related Work

The related work includes two parts. We firstly introduce the related work over

location-based social networks. We then discuss the continuous top-k query over

streaming data.

For the first one, there exists a large number of efforts studying the problem

of LBSN [1, 5, 6]. Wang et al. proposed an efficiently algorithm to do selectiv-

ity estimation on Streaming spatio-textual data [2]. Hu et al. [7] study the problem

of location-aware publish/subscribe for parameterized spatio-textual subscriptions.

Ye et al. proposed an efficiently algorithm to tackle the problem of place semantic

annotation in LBSNs [1]. They formulated as a multi-label classification problem

and propose a two-phase algorithm to learn a binary SVM classifier for each tag in

the entire tag space. They then develop a number of techniques for extracting popula-

tion and temporal features, building a network of related places (NRP), and deriving

label probability for each place in the system. Yin et al. [8] improve the model learn-

ing and inference procedure via utilizing local features. Chen et al. [1] studies the

problem of point-of-interest recommendation for information coverage.

For the second one, there are also many efforts studying the problem of continuous

top-k query over sliding window. Among all these efforts, [9] developed a novel

algorithm named SMA to answer the top-k query [10]. However, its issue is when

the data distribution is skewed, the window may be re-scanned many times. MinTopK
algorithm [10] employed a popular technique named partition to handle this kind

of query, where the partition size equals to the sidling length (e.g., s). In this way, it

could avoid to maintain non-k skybands, and obtain a nice performance when s ≫ k.

However, when s is closing to k, its performance turn to worse.

158 R. Zhu et al.

2.2 Extreme Learning Machine

In this section, we present a brief overview of extreme learning machine (ELM)

[4, 11], developed by Huang et al. ELM is based on a generalized single-hidden-

layer feedforward network (SLFN). Also, it has many variants [12–16]. Compared

with neural networks, its hidden-layer nodes are being randomly chosen instead of

iteratively tuned. In this way, it provides good generalization performance at thou-

sands of times faster speed than traditional popular learning algorithms (e.g., SVM,

neural networks). Also, it get better performance due to its universal approximation
capability [13, 14, 17] and classification capability [18].

As an improving version, the Online sequential extreme [16] learning machine

(short for OS-ELM is proposed. Compared with the basic ELM, OS-ELM could learn

data one-by-one or chunk-by-chunk with fixed or varying size. Thus, it is suitable

for processing streaming data.

Specially, given a set of samples (xi, ti), where xi = [xi1, xi2, ..., xin]T ∈ n
and

ti = [ti1, ti2, ..., tin]T ∈ m
, OS-ELM select the type of nodes, the activation function,

and the hidden node number and so on.

Then, OS-ELM is employed in a two-phase steps that are: (i) initialization phase

and (ii) sequential learning phase. In the first phase, OS-ELM uses a small set of

samples for training. Specially, given a set of training data 0 = {xi, ti}
N0
i=1 is used

for initializing.

From then on, the second phase employs the learning in a chunk-by-chunk way. In

the k-th chunk of new training data, forNk+1 distinct arbitrary samples, OS-ELM firstly

compute the partial hidden layer output matrix 𝐇k+1. And then, OS-ELM computes

the output weight matrix 𝛽k+1, where 𝛽k+1,𝐇k+1, and 𝐓k+1 are computed according

to Eqs. 1–4.

𝛽k+1 = 𝛽k + 𝐏k+1𝐇T
k+1

(
𝐓k+1 −𝐇k+1𝛽k

)
(1)

𝐏k+1 = 𝐏k − 𝐏k𝐇𝐓
k+1

(
I +𝐇k+1𝐇k𝐇T

k+1
)−1 𝐇k+1𝐏k (2)

𝐇k+1 =
⎡
⎢
⎢
⎢⎣

𝐆
(
𝐚1, b1, 𝐱∑Nj+1

)
… 𝐆

(
𝐚N , bN , 𝐱∑Nj+1

)

⋮ … ⋮

𝐆
(
𝐚1, b1, 𝐱∑Nj+1

)
… 𝐆

(
𝐚1, b1, 𝐱∑Nj+1

)

⎤
⎥
⎥
⎥⎦Nk+1×l

(3)

𝐓k+1 =
[
𝐓(

∑k
j=0 Nj)+1

… 𝐓(
∑k

j=0 Nj)

]T
Nk+1×m

(4)

Continuous Top-K Remarkable Comments over Textual Streaming Data Using ELM 159

3 The 𝗣𝗕𝗧𝗜

In this section, we discuss how 𝖯𝖡𝖳𝖨 supporting continuous top-k query over

textual streaming data. We firstly introduce the framework of this paper. We then dis-

cuss the comments management. Lastly, we discuss the efficiently continuous top-k
algorithm.

3.1 The ELM-Based Framework

In this section, we introduce the framework of our solution. From Fig. 1a, it manages

comments from the following three aspects. They are the spatial, the typological and

contents.

The first part is a filter that is used to prune mendacious comments. In order to

accurately them, we firstly find a serial of characteristic of the mendacious contents,

extract them and build up of the characteristic vector according to them. And then, we

employ the ELM technique to apply the training. After training, we use the classifier

to do the pruning. Specially, given a newly arrival comment, if it is classified as a

mendacious content, we discard it immediately. Otherwise, we manage it.

The second part is also a classifier. Compared with the first one, we classify them

according to their associated key words, where the comments are classified into few

types (e.g., accommodation, shopping and so on). Since there exists lots of works,

we skip the details.

The third part is to manage their spatial information. Specially, we employ multi-

resolution grid technique to manage the spatial information of the comments. We

partition the management region into a group of subregions according to the density

of the comments. If the density in a given region is high, we finely partition it. Oth-

erwise, we coarsely partition it. After partition, the comments account in each cell

are rough the same.

From Fig. 1b, c, these comments are managed in a two-level index. The first level

is a multi-resolution grid. It manage the spatial information of the cells. For each

cell, we use a group of inverted-list to manage these comments. Each list corresponds

to a type of comments. They are sorted according to their arrival time. In order to

Fig. 1 The ELM-Based

framework a Flowchart

b Multi-resolution grid

c Group-domination

algorithm

(a) (b)

(c)

160 R. Zhu et al.

supporting continuous top-k query, we propose the group-domination algorithm to

answer top-k queries. In this way, from the evaluation part, the computing cost could

reduce a lot.

3.2 The ELM-Based Mendacious Comments Filtering

In this section, we discuss how ELM-Based identify mendacious comments. In order

to achieve this goal, in Sect. 3.2.1, we firstly study the characteristics of the menda-

cious comments and construct the corresponding vector. We then discuss the ELM-

based classification.

3.2.1 The Feature Vector Selection

In this section, we should points three mendacious comments characteristics. Con-

sidering a mendacious comment, it may be published by the third-party users. Thus,

we need to analyze the characteristics of this kind of users. Through deeply study,

the characteristics are abstracted as follows:

Friends Distribution. The amount of their friends |I| may be relatively small, and

they often concern lots of users (denoted by |C|). In this way, this kind of users is

convenient to spread advertisement to the other users. Thus, the first characteristics

is the value of
|I|
|C| .

Comments Published Frequency. As far as we know, this kind of users often pub-

lish comments in a batch way. For example, they may publish a set of comments at

time t1. And then, they may publish another set of comments at time t2. The interval

between these two group are usually long. Thus, the second characteristics is con-

structed as follows: we firstly combine the comments {c1, c2, ...cn} published in a

given interval into one comment set a. And then, we compute the comments pub-

lished frequency according to Eq. 5, where cu, cv denote comments the same i,

cu − cv denotes the comments publishing time difference between two comments,

i − j denotes the comments publishing time difference between two set of com-

ments. Obviously, if the user is an advertising publisher, |cu − cv| is usually small,

and |i − j| usually high.

Ffre =
|cu − cv|
|i − j|

(5)

Comments Similarity. Usually, this kind of comments are similarity. Therefore,

we apply an effectively text similarity metric algorithm to evaluate the similarity of

different comments, where it is computed by a score function. Thus, we use the score

|F| as the third attribute.

Continuous Top-K Remarkable Comments over Textual Streaming Data Using ELM 161

Algorithm 1: ELM-based Classification

Input: textual oin, WhiteList  , BlackList 

Output: Classification b
User Id ← findID(oin);1
findList(Id, ,);2
if Id ∈ W then3

b= 𝗍𝗋𝗎𝗌𝗍𝗐𝗈𝗋𝗍𝗁𝗒;4

if Id ∈ B then5
b= 𝗆𝖾𝗇𝖽𝖺𝖼𝗂𝗈𝗎𝗌;6

else7
vector v ← 𝖻𝗎𝗂𝗅𝖽𝖵𝖾𝖼𝗍𝗈𝗋(oin, Id);8
b=ELM-classifier(v);9

return ;10

3.2.2 Identifying Mendacious Comments Using ELM

According to the characteristics discussed before, we build a vector for each newly

arrival comments cin. Let u be the user that publishes cin. Its corresponding vector v is⟨ |Iu|
|Cu|

,Ffre, |F|
⟩

. Based on this vector, we apply ELM for classification. In general, the

ELM-based classification can be summarized as two steps. The first step is training.

In this phase, we select a set of comments for learning and obtain a binary classes

ultimately. The second step is classifying. Using the trained classifier, we classify

the newly arrived textual data. In this way, we can determine whether the comments

are mendacious comments. If it is labeled as a mendacious comment, we discard it.

Otherwise, we maintain it.

3.2.3 L-ELM

The above method could effectively find mendacious comments. However, it exists

a key issue, where it has to timely process multitude of textual data. Thus, the classi-

fication speed is vital important. In order to speed up the classification, we propose a

two-level filter. The first level is a user-based filter. This filter maintains two type of

lists that are black-listing and white-listing. Specially, blacklisting maintains all the

users that usually publish mendacious comments. Thus, if a comment is generated

by a blacklisting user, we discard it immediately. Whitelisting maintains all the users

that are trustworthy. Accordingly, if a comment is generated by a white-listing user,

we maintain it.

Algorithm shows the process of newly arrival textual. Line2 to Line6 is the first-

level, where it filter newly arrived textual oin according to white-listing  , black-

listing . If oin can not be filtered, we apply the second level filtering. In this phase,

we firstly build a vector v according to the comment itself and the corresponding

user’s history comments. And then, we input the vector v into the classifier. Lastly,

we output the result.

162 R. Zhu et al.

3.3 Domination Transitivity-Based Continuous Top-k Query
over Textual Data

After filtering mendacious comments, we maintain the top-k representative

comments of each type (e.g., accommodation, shopping and so on). Since the clas-

sify in this step is not our mainly work, we skip the details.

Given a comment c, we use a score function F to compute its representative. And

then, we explain how to maintain candidates according to their score. We abstract

a comment o to a tuple ⟨F(o),F(o)⟩, where F(o) is value computed by the scoring

function, F(o) its arrived time. Also, after it generates, we insert it into the the can-

didate list. When it is not able to become the query result, we delete it. A natural

question is how to identify an comment is able to become a query result.

We discuss our solution in the sliding window model. Specially, given a sidling

window ⟨N, s⟩, we timely retrieve the k object with highest score in the window. This

query window can be either time- or count-based. In this paper, we only focus on the

count-based window. Accordingly, the parameter N denotes the object amount in the

window, and s denotes number of objects that arrive whenever the window slides. We

answer the query through using the domination of different tuples. In the following

part, we propose the conception of dominance. We then propose the conception of

domination number. As a basis, we discuss how to maintain candidates.

Definition 1 (Dominance.) Given two objects o and o′, object o is dominated by

o′ if F(o) > F(o′) and o.t < o′t, denoted as o′ ≺ o. Here, o.t refers to the arrival

order of object o. Given a sliding window W and a set of objects OW in W, o’s

dominant number, denoted as D(o,OW ,W), refers to the number of objects in W that

can dominate o, i.e., D(o,OW ,W) = |{o′ ∈ OW |o′ ≺ o}|.

Definition 2 (Dominance Number.) Given two objects o ∈ , its dominate number

(denoted by D(o)) records how many object in  dominating o.

Clearly, from [10], if an object is dominated by k objects, it is not able to become

a query result. However, as is discussed in [10], they need O(k) computing cost to

delete an object. If k is relatively high, the cost of deleting meaningless object is still

high. In this paper, we propose the domination transitivity to maintain candidates.

After discuss the above theorems, we discuss how to manage meaningful objects

in the candidate set. Let  be the candidate set, Cin be the comments arrived in

the system at the same time, and K be the account of retrieved objects. We firstly

initialize the dominate number of the objects in Cin. Specially, for each object o ∈
Cin, if its score is the ith highest, we set its dominate number to i. Especially, if i > k,

we discard it.

After initializing, we merge Cin with C. Since Cin and C are all ordered, we insert

them based on the key of merge sort. Specially, when we insert oi ∈ Cin into C, its

starting searching si position is the insertion position of the oi+1. We insert it before

the object whose score is minimal but higher than F(o) (denoted by ei). For the object

o′
between [si,ei], we add D(o′) to D(o′) + i (Fig. 2).

Continuous Top-K Remarkable Comments over Textual Streaming Data Using ELM 163

Fig. 2 Example of

removable candidates

disqualified by newly entered

objects, where grey cycles
refer to removable

candidates and dotted cycles
refer to outdated candidates

4 Indexing Local-Based Comments

In this section, we discuss the local-based comments indexing. As is discussed in

Sect. 3.1, we use a two-level index named 𝖬𝖦𝖢 (short for multi-resolution grid-

comment) to manage these comments. The first level is to manage the local infor-

mation of these comments. The second level is to maintain the textual contents. In

the following part, we will discuss the comments management. Then, we explain the

corresponding query algorithm.

The Updating Algorithm. Given a newly arrival comments c, we firstly prune c
via 𝖤𝖫𝖬-based classifier discussed in Sect. 3.1. If c can not be pruned, we select a

suitable comments list via 𝗄𝖾𝗒𝗐𝗈𝗋𝖽-based classifier. Then, we insert c into its corre-

sponding cell and push c at the end of the suitable list.

After insertion, we delete the expire comments from the list. Noted that because

the comments in each list are sort in descendent order by their arrival order, we only

need to pop them from the head. Lastly, we update the corresponding candidate set

which has been discussed in Sect. 3.3. We want to highlight that because s is usually

larger than 1, we could maintain candidates in a batch way. We use a buffer  to

maintain comments. When || = s, we first sort the elements in . Then, we merge

the k comments with highest score into candidate set. Lastly, we clear .

The Query Algorithm. Let q⟨,, k⟩ be a query, where  denotes the query

region,  denotes the key word set, and k denotes the answers amount. When han-

dling q, we firstly find the cells that are overlapping with . Then, we access the

corresponding list to find the k comments with highest score from these lists. For

limitation of space, we skip the details.

5 Experimental Evaluation

5.1 Experimental Setting

This section experimentally evaluates the efficiency of the proposed techniques.

Data set. We used two real datasets: D-COMM and M-COMM. The D-COMM dataset

was collected from dianping.com, which had 10 million comments with locations.

164 R. Zhu et al.

The M-COMM dataset was collected from meituan.com, which had 5 million

comments with locations. In addition, the location of all the comments are all from

shenyang.

Data clear. Since the comments contain many information, we extract a few useful

information from the each comment. It could be expressed by the tuple

< uId, time, text, location, seller >. They represent the user Id, comment publishing

time, comment content, position coordinates and seller Id.

The baseline algorithm. In this section, we propose a baseline algorithm for com-

parison. Comparing with 𝖯𝖡𝖳𝖨, the baseline algorithm exists two difference. Firstly,

recalling Sect. 3.1, we use ELM for classifying. For comparison, we use SVM as

the classifier of the baseline algorithm. Secondly, when maintaining the domina-

tion number of candidates, we introduce the concept of domination transitivity. For

comparison, the baseline algorithm employ the basic k-skyband algorithm.

Experimentalmethods. Our experiments mainly evaluate the following two aspects:

(i) the accuracy of classification, where we compare our proposed algorithms with

varying size of the training data in different datasets. (ii) the efficiency of 𝖯𝖡𝖳𝖨.

5.2 Classification Evaluation

In this subsection, we are going to evaluate the effect of the classifiers based on the

ELM and SVM under different data set. We firstly evaluate the training time against

different training set.

From Fig. 3a, b, with the increasing of the training set size, the training time under

ELM and SVM are all increasing. However, compared with SVM, the training time of

ELM increases slowly. The reason behind is ELM has better performance than SVM.

Next, we evaluate the accuracy rate of ELM. Compared with the first group, we

add two algorithms for comparison. They are the L-ELM and L-SVM. L-ELM combines

ELM and write-list (also black-list) for classifying; L-SVM combines SVM and write-

list (also black-list) for classifying. From Fig. 4a, the testing time of L-ELM is fastest

of all. The reason behind is it could filter many comments via white-list (or black-

list). From Fig. 4a, b, the accuracy ratio of L-ELM is also highest of all.

Last of this subsection, we evaluate the classifying time. We also compare L-ELM
with the baseline. From Table 1, the classifying time of L-ELM is shortest of all. The

main reason is the classifying efficiency of ELM is higher than the SVM algorithms.

5.3 Query Performance

In this section, we evaluate the query performance. We compare 𝖯𝖡𝖳𝖨 with the base-

line algorithm. Firstly, we evaluate the impaction of window length to the algorithm

Continuous Top-K Remarkable Comments over Textual Streaming Data Using ELM 165

Fig. 3 Training time

evaluation. a D-COMM,

b M-COMM

 0

 500

 1000

 1500

 2000

 2500

 3000

 50 100 150 200 250 300

T
ra

in
ni

ng
 ti

m
e

(m
s.

)

Trainning Set Size

SVM
ELM

 0

 500

 1000

 1500

 2000

 2500

 50 100 150 200 250 300

T
ra

in
ni

ng
 ti

m
e

(m
s.

)

Trainning Set Size

SVM
ELM

(a)

(b)

Fig. 4 Accuracy ratio

evaluation. a D-COMM,

b M-COMM

 70

 75

 80

 85

 90

 95

 100

 50 100 150 200 250 300

A
cc

ur
ac

y
R

at
io

(%
)

Trainning Set Size

L-ELM
L-SVM

ELM
SVM

 70

 75

 80

 85

 90

 95

 100

 50 100 150 200 250 300

A
cc

ur
ac

y
R

at
io

(%
)

Trainning Set Size

L-ELM
L-SVM

ELM
SVM

(a)

(b)

performance. We set the parameter k to 100, the amount of comments that have

the same timestamp to 1000, and vary the window size from 100 KB to 10 MB.

From Fig. 5a, b, we find that the 𝖯𝖡𝖳𝖨 has a better performance than that of baseline

166 R. Zhu et al.

Table 1 Classification time

Data set L-SLM L-SVM

Classifying time(S) Class Classifying time(S) Class

D-COMM 15.6 2 325.6 2

M-COMM 7.3 2 147.1 2

Fig. 5 Running time under

different window length.

a D-COMM, b M-COMM

 50

 100

 150

 200

 250 500 750 1000
R

un
ni

ng
in

g
tim

e
(m

s.
)

Window Length

PBTI
baseline

 0

 50

 100

 150

 200

 200 400 600 800 1000

R
un

ni
ng

in
g

tim
e

(m
s.

)

Window Length

PBTI
baseline

(a)

(b)

algorithm. The reason is, for one thing, the classify efficiency of 𝖯𝖡𝖳𝖨 is much higher

than that of the baseline algorithm. For another, because we employ the domination

transitivity to maintain candidates, the computing cost is further reduced.

Next, we evaluate the impaction of window length to the algorithm performance.

From Fig. 6a, b, we find that the 𝖯𝖡𝖳𝖨 has a better performance than that of baseline

algorithm. Another obversion is, the running time of 𝖯𝖡𝖳𝖨 increases sightly slow.

6 Conclusions

In this paper, we propose a novel and general framework namely 𝖯𝖡𝖳𝖨, for support-

ing continuous top-k comments over textual streaming data. Different from all the

existing works, 𝖯𝖡𝖳𝖨 adopts the effectively machine learning technique named 𝖤𝖫𝖬
for identifying mendacious comments. And then, we classify the reality comments

Continuous Top-K Remarkable Comments over Textual Streaming Data Using ELM 167

Fig. 6 Running time under

different K. a D-COMM,

b M-COMM

 100

 200

 300

 400

 500

 200 400 600 800 1000

R
un

ni
ng

in
g

tim
e

(m
s.

)

Parameter k

PBTI
baseline

 100

 200

 300

 200 400 600 800 1000

R
un

ni
ng

in
g

tim
e

(m
s.

)

Parameter k

PBTI
baseline

(b)

(a)

according to their associated key words. Then, we propose a novel index named𝖬𝖦𝖢
to manage these comments according their type and location. We have conducted

extensive experiments to evaluate the performance of 𝖯𝖡𝖳𝖨 on several datasets. The

results demonstrate the superior performance of 𝖯𝖡𝖳𝖨.

Acknowledgments The work is partially supported by the National Natural Science Foundation

of China for Outstanding Young Scholars (No. 61322208), the National Basic Research Program of

China (973 Program) (No. 2012CB316201), the Joint Research Fund for Overseas Natural Science

of China (No. 61129002), the National Natural Science Foundation of China for Key Program

(No. 61572122), the National Natural Science Foundation of China (Nos. 61272178, 61572122,

61173029).

References

1. Chen, X., Zeng, Y., Cong, G., Qin, S., Xiang, Y., Dai, Y.: On information coverage for location

category based point-of-interest recommendation. In: Proceedings of the Twenty-Ninth AAAI

Conference on Artificial Intelligence, Austin, Texas, USA, pp. 37–43, 25–30 Jan 2015. http://

www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9703

2. Wang, X., Zhang, Y., Zhang, W., Lin, X., Wang, W.: Selectivity estimation on streaming

spatio-textual data using local correlations. PVLDB 8(2), 101–112 (2014). http://www.vldb.

org/pvldb/vol8/p101-wang.pdf

3. Shen, Z., Cheema, M.A., Lin, X., Zhang, W., Wang, H.: Efficiently monitoring top-k pairs over

sliding windows. In: ICDE, pp. 798–809 (2012)

http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9703
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9703
http://www.vldb.org/pvldb/vol8/p101-wang.pdf
http://www.vldb.org/pvldb/vol8/p101-wang.pdf

168 R. Zhu et al.

4. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of

feedforward neural networks. In: International Symposium on Neural Networks, vol. 2 (2004)

5. Bao, J., Zheng, Y., Mokbel, M.F.: Location-based and preference-aware recommendation

using sparse geo-social networking data. In: SIGSPATIAL 2012 International Conference on

Advances in Geographic Information Systems (formerly known as GIS), SIGSPATIAL’12,

Redondo Beach, CA, USA, pp. 199–208, 7–9 Nov 2012. http://doi.acm.org/10.1145/2424321.

2424348

6. Liu, B., Xiong, H.: Point-of-interest recommendation in location based social networks with

topic and location awareness. In: Proceedings of the 13th SIAM International Conference on

Data Mining, Austin, Texas, USA, pp. 396–404, 2–4 May 2013. http://dx.doi.org/10.1137/1.

9781611972832.44

7. Hu, H., Liu, Y., Li, G., Feng, J., Tan, K.: A location-aware publish/subscribe framework for

parameterized spatio-textual subscriptions. In: 31st IEEE International Conference on Data

Engineering, ICDE 2015, Seoul, South Korea, pp. 711–722, 13–17 April 2015. http://dx.doi.

org/10.1109/ICDE.2015.7113327

8. Yin, H., Sun, Y., Cui, B., Hu, Z., Chen, L.: LCARS: a location-content-aware recommender

system. In: The 19th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD 2013, Chicago, IL, USA, pp. 221–229, 11–14 Aug 2013. http://doi.acm.

org/10.1145/2487575.2487608

9. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries over sliding

windows. In: SIGMOD Conference, pp. 635–646 (2006)

10. Yang, D., Shastri, A., Rundensteiner, E.A., Ward, M.O.: An optimal strategy for monitoring

top-k queries in streaming windows. In: EDBT, pp. 57–68 (2011)

11. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neu-

rocomputing 70, 489–501 (2006)

12. Feng, G., Huang, G.B., Lin, Q., Gay, R.K.L.: Error minimized extreme learning machine with

growth of hidden nodes and incremental learning. IEEE Trans. Neural Networks 20, 1352–

1357 (2009)

13. Huang, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70,

3056–3062 (2007)

14. Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine.

Neurocomputing 71, 3460–3468 (2008)

15. Huang, G.B., Zhu, Q.Y., Mao, K.Z., Siew, C.K., Saratchandran, P., Sundararajan, N.: Can

threshold networks be trained directly? IEEE Trans. Circ. Syst. II Analog Digital Sig. Process.

53, 187–191 (2006)

16. Rong, H.J., Huang, G.B., Sundararajan, N., Saratchandran, P.: Online sequential fuzzy extreme

learning machine for function approximation and classification problems. IEEE Trans. Syst.

Man Cybern. 39, 1067–1072 (2009)

17. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive

feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 17, 879–892

(2006)

18. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and

multiclass classification. IEEE Trans. Syst. Man Cybern. 42, 513–529 (2012)

http://doi.acm.org/10.1145/2424321.2424348
http://doi.acm.org/10.1145/2424321.2424348
http://dx.doi.org/10.1137/1.9781611972832.44
http://dx.doi.org/10.1137/1.9781611972832.44
http://dx.doi.org/10.1109/ICDE.2015.7113327
http://dx.doi.org/10.1109/ICDE.2015.7113327
http://doi.acm.org/10.1145/2487575.2487608
http://doi.acm.org/10.1145/2487575.2487608

ELM Based Representational Learning
for Fault Diagnosis of Wind Turbine
Equipment

Zhixin Yang, Xianbo Wang, Pak Kin Wong and Jianhua Zhong

Abstract The data preprocessing, feature extraction, classifier training and testing

play as the key components in a typical fault diagnosis system. This paper proposes

a new application of extreme learning machines (ELM) in an integrated manner,

where multiple ELM layers play correspondingly different roles in the fault diagno-

sis framework. The ELM based representational learning framework integrates func-

tions including data preprocessing, feature extraction and dimension reduction. In

the novel framework, an ELM based autoencoder is trained to get a hidden layer out-

put weight matrix, which is then used to transform the input data into a new feature

representation. Finally, a single layered ELM is applied for fault classification. Com-

pared with existing feature extraction methods, the output weight matrix is treated

as the mapping result with weighted distribution of input vector. It avoids wiping off

“insignificant” feature information that may convey some undiscovered knowledge.

The proposed representational learning framework does not need parameters fine-

tuning with iterations. Therefore, the training speed is much faster than the traditional

back propagation-based DL or support vector machine method. The experimental

tests are carried out on a wind turbine generator simulator, which demonstrates the

advantages of this method in both speed and accuracy.

Keywords Fault diagnosis ⋅ Wind turbine ⋅ Representational learning ⋅ Classifi-

cation ⋅ Extreme learning machines ⋅ Autoencoder

Z. Yang (✉) ⋅ X. Wang ⋅ P.K. Wong ⋅ J. Zhong

Department of Electromechanical Engineering, Faculty of Science

and Technology, University of Macau, Macau SAR, China

e-mail: zxyang@umac.mo

X. Wang

e-mail: yb47410@umac.mo

P.K. Wong

e-mail: fstpkw@umac.mo

J. Zhong

e-mail: yb17416@umac.mo

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_14

169

170 Z. Yang et al.

1 Introduction

As a new technique in a trend to supplement the traditional power generation meth-

ods, the reliability of wind turbine generation system (WTGS) becomes a new issue

need to be concerned. Continuously condition monitoring and fault diagnosis tech-

nologies are necessary so as to reduce maintenance cost and work stably. In recent

years, a large body of research suggests fault detection using machine learning-based

approach for WTGS is feasible. Intelligent methods for fault diagnosis in WTGS

and rotating machinery usually depend on the procedures of the vibration signal

processing and fault pattern recognition. Generally, the raw vibration signals con-

tains high-dimensional information and abundant noise (includes irrelevant and

redundant signals), which cannot be fed into the fault diagnostic system directly

[1]. Therefore, it’s necessary to extract the useful information from the raw signals.

There are several typical feature extraction methods available, such as wavelet packet

transform (WPT) [2, 3], time-domain statistical features (TDSF) [4] and independent

component analysis [5, 6]. The demerit of these methods is that these linear meth-

ods cannot extract nonlinear characteristics of input variables effectively, which may

result in the weak performance of recognition. Obtained from WTGS, the vibra-

tion signals characterizes with high dimension and nonlinear. The aforementioned

methods haven’t capability to wipe off the “insignificant information” from the raw

signals. This paper introduces the concept of autoencoder for feature extraction and

explores its application. Regarding autoencoder, each layer in the stack architecture

can be treated as an independent module [7]. The procedure shows briefly as follows,

each layer is firstly trained to produce a new hidden representation of the observed

patterns (input data), based on the representation it receives as input from the layer

below, by optimizing a local supervised criterion. Each level produces a represen-

tation of the input pattern that is more abstract than the previous levels [8]. After

representational learning for a mapping that produces a high level intermediate rep-

resentations (intermediate matrix) of the input pattern, whereas, it is still complex

and hard to calculate. Therefore, we need to decode it into low dimension and sim-

ple representations. Regarding algorithms for classification, neural network (NN) is

widely used for rotating machinery fault diagnosis [1, 9]. However, NN has many

inevitable drawbacks, such as local minima, time-consuming for determination of

optimal network structure, and risk of over-fitting. Recent studies show that extreme

learning machine (ELM) tends to have better scalability and achieves much better

generalization performance at much faster learning speed than SVM [10, 11]. The

ELM algorithm is easier to be implemented for multiclass problem. With the afore-

said advantages of ELM, a new application utilized ELM is introduced and by which

building a fault diagnosis model for the WTGS. The rest of this paper is organized as

follows. Section 2 presents the structure of fault diagnostic framework and the algo-

rithms involved. Experimental rig setup and signals sample data acquisition with

a simulated WTGS are discussed in Sect. 3. Section 4 discusses the experimental

results of ELM and its comparisons with SVM, ML-ELM. Finally, a conclusion is

given in the last Section.

ELM Based Representational Learning for Fault Diagnosis of Wind Turbine Equipment 171

2 Proposed Fault Diagnostic Framework

The framework consists of three parts, namely, autoencoder, matrix compressor and

classifier. The roles of these parts are feature extraction, dimension reduction and

fault classification. Figure 1 presents the structure of the proposed framework, which

consists of three components: (a) ELM based autoencoder, (b) dimension compres-

sion transform, (c) supervised feature classification. The autoencoder has ability to

reconstruct three types of representation (compressed, equal and sparse dimension).

For classification, the original ELM classifier is applied for the final decision making.

2.1 ELM Based Autoencoder

ELM is a recently available learning method with SLFNs [12]. The character of

ELM is that the model only has single hidden layer, of which the parameters need

not to be tuned and can be initialized randomly. The parameters of the hidden layer

are independent upon the target function and the training data [13]. Afterwards, the

output weights which link hidden layer to output layer are determined analytically

by a Moore-Penrose generalized inverse [12, 14]. Different from ANN, ELM tends

to provide good generalization capability at learning speed benefits from its sim-

ple structure and efficient learning algorithm. The main idea of ELM algorithm is

summarized as follows:

(a) (b) (c)

Fig. 1 Structure of the proposed method. a Framework of the proposed ELM based autoencoder.

b Dimension compression. c The ELM based classifier

172 Z. Yang et al.

fL(𝐱) =
L∑
i=1

𝛽ihi(𝐱) = 𝐡(𝐱)𝛽
{

𝛽 =
[
𝛽1, 𝛽2, ..., 𝛽L

]

h(𝐱) = [g1(𝐱), g2(𝐱), ..., gL(𝐱)]

(1)

where 𝛽i is the output weight matrix between the hidden layer and the output layer.

h(𝐱) is the hidden nodes outputs (random hidden features) for the input 𝐱 and gi(𝐱)
is the output of the ith hidden node. Given N training samples {(xi, ti)}Ni=1, the ELM

aims to resolve the follow learning problems:

𝐇𝛽 = 𝐓 (2)

where 𝐓 = [t1, ..., tN]T is the target labels and the matrix 𝐇 =
[
𝐡T (x1), ...,𝐡T (xN)

]T
is hidden nodes output. The output weights 𝛽 can be calculated by Eq. (3)

𝛽 = 𝐇†𝐓 (3)

where 𝐇†
is the Moore-Penrose generalized inverse of matrix 𝐇.

In order to have better generalization performance and to make the solution more

robust, one can add a constrained parameter as shown in Eq. (4)

𝛽 =
(1
𝐂

+𝐇𝐓𝐇
)−1

𝐇𝐓𝐓 (4)

The ELM algorithm in this paper is modified as follows: the input data is equal

to the output data, namely 𝐭 = 𝐱. The objective of ELM based autoencoder is to

represent the input features meaningfully in three different representation: (1) Com-

pressed representation, represent features from a higher dimensional input data space

to a lower dimensional feature space. (2) Sparse representation, represent features

from a lower dimensional input data space to a higher dimensional feature space. (3)

Equal dimension representation, represent features from an input data space dimen-

sion equal to feature space dimension.

2.2 Dimension Compression

Regarding autoencoder, this paper adopts the regression method to training the para-

meters. By using these parameters, we can realize the output data equal to the input

data. When it comes to dimension reduction, the above transform is not enough for

the data compression, because the dimension of input data doesn’t decrease. After all

the parameters of autoencoder are identified, we apply a matrix transform to recon-

struct the input data.

YL(𝐱) =
(
𝛽fL(𝐱)

)T = (𝛽𝐗)T (5)

ELM Based Representational Learning for Fault Diagnosis of Wind Turbine Equipment 173

where YL(𝐱) is the final output of autoencoder. The dimension of YL(𝐱) is shown as

Eq. (9). The subscripts N and L represent the number of input sample and hidden

layer nodes respectively.

It is easy to find that the original dimension has been converted into a new low-

dimensioned matrix. The procedure can be explained that each element in sample

data 𝐱i(i∈N) has relationship with 𝛽, in other words, 𝛽 can be seen as the weight vector

of 𝐱i(i∈N). The procedure from 𝐱i(i∈N) to YL(𝐱) is an unsupervised learning as the

parameters have been identified in the second part as shown in Fig. 1.

Compared with the initial concept of autoencoder in deep learning, the autoen-

coder introduced in this paper has some differences as follows: (1) The autoencoder

in this paper is a single hidden layer network, whereas, autoencoder in deep learning

tends to adopt multi-hidden layers networks. (2) Deep learning tends to adopt back

propagation (BP) algorithm to train all parameters of autoencoder, differently, this

paper proposes the ELM to configure the networks with supervised learning (i.e.

Let the output data is equal to input data). We can get the final output weight 𝛽 so

as to transform input data into a new representation through YL(𝐱) = (𝛽𝐗)T . The

dimension of converted data is much smaller than the raw data. (3) Autoencoder in

deep learning tends to represent sparse feature for input data. However, this paper

proposes the compression for the input data.

2.3 ELM Based Classifier

For a binary classification application, the decision function of ELM shows as:

fL(𝐱) = 𝐬𝐢𝐠𝐧(𝐡(𝐱)𝛿) (6)

ELM aims to reach not only the smallest training error but also the smallest norm

of output weights. According to Bartletts theory [15], in order to reach small training

error, the smaller the norms of weights are, the better generalization performance the

networks tend to have.

Minimize ∶ ||𝐇𝛿 − T||2 and ||𝛿|| (7)

where 𝛿 =
[
𝛿1, 𝛿2, ..., 𝛿l

]T
is the vector of the output weights between the hidden

layer of l nodes and the output nodes.

𝐇 =
⎡
⎢
⎢⎣

𝐡(𝐱1)
⋮

𝐡(𝐱N)

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

h1(𝐱1) … hl(𝐱1)
⋮ ⋮ ⋮

h1(𝐱N) … hl(𝐱N)

⎤
⎥
⎥⎦

(8)

where 𝐡 (𝐱) =
[
h1 (𝐱) , h2 (𝐱) , ..., hl (𝐱)

]T
is the output vector of the hidden layer

which maps the data from the d dimensional input space to the l dimensional

hidden-layer space 𝐇, 𝐓 is the training data target matrix.

174 Z. Yang et al.

𝐓 =
⎡
⎢
⎢⎣

𝐭T1
⋮
𝐭TN

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

t11 … t1m
⋮ ⋮ ⋮
tN1 … tNm

⎤
⎥
⎥⎦

(9)

Based on the KKT theorem, to training ELM is equivalent to solving the following

dual optimization problem:

LDELM
= 1

2
||𝛿||2 + C1

2

N∑

i=1
||𝜉i||2 −

N∑

i=1

M∑

j=1
𝛼i,j

(
𝐡(𝐱i)𝛿j − ti,j + 𝜉i,j

)
(10)

We can have the KKT corresponding optimality conditions as follows:

𝜕LDELM

𝜕𝛽j
= 0 → 𝛿j =

N∑

i=1
𝛼i,j(𝐡(𝐱i)T → 𝛿 = 𝐇Ta (11)

𝜕LDELM

𝜕𝜉i
= 0 → 𝛼i = C𝜉i, i = 1, ...,N (12)

𝜕LDELM

𝜕𝛼i
= 0 → 𝐡(𝐱i)𝛿 − tTi + 𝜉

T
i , i = 1, ...,N (13)

where 𝐚i = [𝛼i,1, 𝛼i,2, ..., 𝛼i,M]T . In this case, by substituting Eqs. (16) and (17) into

Eq. (18), the aforementioned equations can be equivalently written as

(1
C

+𝐇𝐇T
)
𝛼 = 𝐓 (14)

From Eqs. (14)–(16), we have

𝛿 = 𝐇T
(1
C

+𝐇𝐇T
)−1

𝐗 (15)

The output function of ELM classifier is

𝐟 (𝐱) = 𝐡(𝐱)𝛿 = 𝐡(𝐱)𝐇T
(1
C

+𝐇𝐇T
)−1

𝐓 (16)

3 Experimental Results and Discussion

The test rig includes a computer for data acquisition, an electric load simulator, a

prime mover, a gearbox, a flywheel and an asynchronous generator. The test rig

can simulate many common periodic faults and irregular faults in a gearbox such

ELM Based Representational Learning for Fault Diagnosis of Wind Turbine Equipment 175

as broken tooth, chipped tooth, wear of outer race of the bearing and so on. Table 1

presents a total of thirteen cases (including one normal case, eight single-fault and

four simultaneous-fault cases) can be simulated in the gearbox, while which can

generate the test and training dataset. It is necessary to note that some cases can be

realized by specific tools or methods. (e.g., the mechanical misalignment of the gear-

box was simulated by adjusting height of the gearbox with shims, and the mechanical

unbalance case was simulated by adding one eccentric mass on the output shaft.)

In the diagnostic model, each simulated single fault was repeated two hundred

times and one hundred times for each simultaneous-fault under various random elec-

tric loads. Each time, vibration signals in two seconds window was recorded with a

sampling frequency of 2048 Hz. From a feasible data requisition point of view, the

sample frequency must be much higher than the gear meshing frequency, which can

ensure no missing signals during the process of sampling. In other words, each sam-

pling dataset will record 8192 points (two accelerometers ∗ two seconds ∗ 2048) in

each two seconds time window. There are 1800 sample dataset (i.e. (1 normal care +

8 kinds of single-fault cases) ∗ 200 samples) and 280 simultaneous-fault sample data

(i.e. 4 kinds of simultaneous-fault data 100 samples). The procedure by using autoen-

coder for features extraction and dimension reduction has been shown in Fig. 1. The

structure of autoencoder in this paper is set as 8192 ∗ L ∗ 8192 and 8192 ∗ L. The

output of the first part is an equal dimension representation of the input matrix, it is

a supervised learning.

In order to verify the effectiveness of the proposed framework, this paper applies

various combinations of methods to realize the contrast experiments. Testing accu-

racy and testing time are introduced to evaluate the prediction performance of the

Table 1 Sample single-faults and possible simultaneous-fault

Case no. Condition Fault description

C1 Normal Normal

C2 Single fault Unbalance

C3 Looseness

C4 Mechanical misalignment

C5 Wear of cage and rolling elements of bearing

C6 Wear of outer race of bearing

C7 Gear tooth broken

C8 Gear crack

C9 Chipped tooth

C10 Simultaneous fault Gear tooth broken & chipped tooth

C11 Chipped tooth & wear of outer race of bearing

C12 Gear tooth broken & wear of cage & rolling elements of

bearing

C13 Gear tooth broken & wear of cage and rolling elements of

bearing & wear of outer race of bearing

176 Z. Yang et al.

classifier. In this paper, we choose the equal dimensional representation and use the

ELM learning method to train the parameters. The function of autoencoder is to get

an optimal matrix 𝛽, and the function of matrix transform is to reduce the dimension

of input 𝐗. Before the experiments, it is not clear that how many dimensions to be

cut down is appropriate, in other words, the model need proper values of L and 𝛽

to improve the testing accuracies. In order to get a set of optimal parameters (e.g.,

hidden layer nodes L in autoencoder, hidden layer nodes l in classifier), Dtrain(Dtrain
includes dataset Dtrain_l and Dtrain_s) is applied to train the networks. According to

the experimental results not listed here, when L = 80, l = 680, and C = 600, the

classifier has the best testing accuracy.

According to the feature extraction, this paper takes two kinds of methods as

references. The two kinds of method are WPT+TDSF+KPCA combinations and

EMD+SVD combination respectively. This paper takes the Db4 (Daubechies)

wavelet as the mother wavelet and set the level of decomposition at the range from

3 to 5. The radial basis function (RBF) acts as kernel function for KPCA. To reduce

the number of trials, the hyperparameter R of RBF based on 2v is tried for v ranged

from −3 to 3. In the KPCA processing, this paper selects the polynomial kernel with

d = 4 and the RBF kernel with R = 2. After dimension reduction, a total of 80 prin-

cipal components are obtained. After feature extraction, the next step is to optimize

parameters of classifiers. This paper takes 4 kinds of methods, namely PNN, RVM,

SVM and ELM. As mentioned previously, probabilistic based classifiers have their

own hyperparameters for tuning. PNN uses spread s and RVM employs width 𝜔. In

this case study, the value of s is set from 1 to 3 at an interval of 0.5, and the values

of 𝜔 is selected from 1 to 8 at an interval of 0.5. In order to find the optimal decision

threshold, this paper sets the search region at the range from 0 to 1 at an interval of

0.01. For the configuration of ELM, this paper takes the sigmoid function as the acti-

vation function and sets the number of hidden modes l as 680 for a trial. According

to the experimental results in Table 2, a total of 80 components are obtained from the

feature extractor. It is clear that the accuracies with autoencoder are higher than those

with WPT+TDSF+KPCA. The results can be explained that ELM based autoen-

coder holds all information of the input data during the representational learning.

However, KPCA tends to hold the important information and inevitably lose some

unimportant information. In order to compare the performances of classifiers, this

paper sets the contrast experiments with the same ELM based autoencoder and differ-

ent classifiers. As shown in Table 3, the number of hidden nodes L in autoencoder is

80, the last dimensions of training data Dtrain and testing data Dtest are 1800 ∗ 80 and

280 ∗ 80 respectively. For parameters setting of ELM, this paper tried a wide range

of l. For each dataset, we used 50 different values, namely set l ∈ {50, 75, ..., 1000}
respectively. As suggested in Table 2, this paper sets l is 680. According to the exper-

imental results not listed here, SVM employed polynomial kernel with C = 10 and

d∗ = 4 show the best accuracy. Table 2 shows that the fault detection accuracy of

ELM is similar to that of SVM, while the fault identification time of ELM and SVM

take 20 and 157 ms respectively. The performance of ELM is much faster than that of

SVM. Quick recognition is necessary for real-time fault diagnosis system. In actual

WTGS application, the real-time fault diagnostic system is required to analyze sig-

ELM Based Representational Learning for Fault Diagnosis of Wind Turbine Equipment 177

Table 2 Evaluation of different combinations of methods using the optimal model parameters

Feature extraction Classifier Accuracies for test case (%)

Single-fault Simultaneous-fault Overall fault

WPT+TDSF+KPCA PNN 83.64 83.64 83.76

RVM 82.99 74.64 81.21

SVM 92.88 89.73 90.78

ELM 91.29 87.62 90.89
ELM AE PNN 85.64 84.64 84.52

RVM 83.99 77.64 83.21

SVM 95.83 92.87 93.27

ELM 96.25 96.64 95.33

Table 3 Evaluation of methods using ELM or SVM. ELM based autoencoder

Feature

extraction

Fault type Accuracies for test case (%) Time for test case (ms)

SVM ELM SVM ELM

ELM-AE Single-fault 97.58 ± 2.25 96.58 ± 2.25 156 ± 0.9 18 ± 0.8
Simultaneous-fault 95.33 ± 1.25 95.23 ± 3.25 158 ± 0.8 20 ± 0.5
Overall fault 95.62 ± 3.15 94.53 ± 2.25 157 ± 0.4 20 ± 0.5

nals for 24 h per day. In terms of fault identification time, ELM is faster than SVM by

88.46 %. Although the absolute diagnostic time difference between SVM and ELM

is not very significant in this case study, the time difference will be very significant

in real situation because a practical real-time WTGS diagnostic system will analyze

more sensor signals than the two sensor signals used in this case study.

4 Conclusions

This paper proposes a new application of ELM to the real-time fault diagnostic sys-

tem for rotating machinery. At the stage of data preprocessing, this paper applies an

ELM based autoencoder to train the network. During representational learning, the

network generates a new representation with dimensional reduction which is put into

the ELM based classifier. Compared with the widely-applied classifiers (e.g., SVM

and RVM), ELM algorithm can search optimal solution from the feature space with-

out any other constraints. Therefore, ELM is superior to SVM at producing lightly

higher diagnostic accuracy. Besides, ELM tends to generate a smaller classification

model and takes less execution time than SVM. This paper makes contributions in

the following three aspects: (1) it is the first research to analyze the ELM based

autoencoder as a tool of compressed representation. (2) it is the first application of

ELM based autoencoder to the fault diagnosis for rotating machinery. (3) it is the

178 Z. Yang et al.

original application of the proposed framework to the problem of WTGS diagnosis.

As the proposed framework for fault diagnosis is general, it could be applied to other

industrial problems.

Acknowledgments The authors would like to thank the University of Macau for funding support

under Grants MYRG2015-00077-FST.

References

1. Wong, P.K., Yang, Z., Vong, C.M., Zhong, J.: Real-time fault diagnosis for gas turbine gener-

ator systems using extreme learning machine. Neurocomputing 128, 249–257 (2014)

2. Bianchi, D., Mayrhofer, E., Grschl, M., Betz, G., Vernes, A.: Wavelet packet transform for

detection of single events in acoustic emission signals. In: Mechanical Systems and Signal
Processing (2015)

3. Keskes, H., Braham, A., Lachiri, Z.: Broken rotor bar diagnosis in induction machines through

stationary wavelet packet transform and multiclass wavelet svm. Electr. Power Syst. Res.

97, 151–157 (2013)

4. Ebrahimi, F., Setarehdan, S.-K., Ayala-Moyeda, J., Nazeran, H.: Automatic sleep staging

using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlin-

ear dynamics features of heart rate variability signals. Comput. Methods Programs Biomed.

112(1), 47–57 (2013)

5. Allen, E.A., Erhardt, E.B., Wei, Y., Eichele, T., Calhoun, V.D.: Capturing inter-subject variabil-

ity with group independent component analysis of fmri data: a simulation study. Neuroimage

59(4), 4141–4159 (2012)

6. Du, K.-L., Swamy, M.: Independent Component Analysis, pp. 419–450. Springer, London

(2014)

7. Tang, J., Deng, C., Huang, G.-B.: Extreme learning machine for multilayer perceptron (2015)

8. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust

features with denoising autoencoders. In: Proceedings of the 25th International Conference on
Machine Learning, pp. 1096–1103. ACM (2008)

9. Yang, Z., Wong, P.K., Vong, C.M., Zhong, J., Liang, J.: Simultaneous-fault diagnosis of gas

turbine generator systems using a pairwise-coupled probabilistic classifier. Math. Prob. Eng.

2013 (2013)

10. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and

multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(2), 513–529 (2012)

11. Huang, G.-B., Ding, X., Zhou, H.: Optimization method based extreme learning machine for

classification. Neurocomputing 74(1), 155–163 (2010)

12. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications.

Neurocomputing 70(1), 489–501 (2006)

13. Luo, J., Vong, C.-M., Wong, P.-K.: Sparse bayesian extreme learning machine for multi-

classification. IEEE Trans. Neural Networks Learn. Syst. 25(4), 836–843 (2014)

14. Cambria, E., Huang, G.-B., Kasun, L.L.C., Zhou, H., Vong, C.M., Lin, J., Yin, J., Cai, Z., Liu,

Q., Li, K., et al.: Extreme learning machines [trends & controversies]. IEEE Intell. Syst. 28(6),

30–59 (2013)

15. Bartlett, P.L.: The sample complexity of pattern classification with neural networks: the size

of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 44(2),

525–536 (1998)

Prediction of Pulp Concentration Using
Extreme Learning Machine

Changwei Jiang, Xiong Luo, Xiaona Yang, Huan Wang
and Dezheng Zhang

Abstract Pulp concentration is one of the most important production parameters

during ore dressing process. Generally, pulp concentration not only affects concen-

trate grade and recovery rate, but also has a major influence on the chemical and

power consumptions during the flotation process. Recently, there has been a growing

interest in the study of prediction for pulp concentration to improve the productivity

and reduce consumption of various resources. Since the pulp concentration and other

production parameters are nonlinearly related, it imposes very challenging obstacles

to the prediction for this parameter. Because extreme learning machine (ELM) has

the advantages of extremely fast learning speed, good generalization performance,

and the smallest training errors, we employ ELM to predict pulp concentration in this

paper. Pulp concentration data is first preprocessed using phase space reconstruction

method. Then time series prediction model is adjusted from one dimension to mul-

tiple dimensions and thus it is established by several improved ELM algorithms,

including traditional ELM, kernel-based ELM (Kernel-ELM), regularized ELM

(R-ELM), and L2-norm based ELM (ELM-L2). The experiments are conducted with

a real-world production data set from a mine. The experimental results show the

effectiveness of ELM-based prediction approaches, and we can also find that ELM-

This work was jointly supported by the National Natural Science Foundation of China under

Grants 61174103, 61272357, and 61300074, and the National Key Technologies R&D Program

of China under Grant 2015BAK38B01.

C. Jiang ⋅ X. Luo ⋅ X. Yang ⋅ D. Zhang (✉)

School of Computer and Communication Engineering, University of Science

and Technology Beijing, Beijing 100083, China

e-mail: zdzchina@126.com

C. Jiang ⋅ X. Luo ⋅ X. Yang ⋅ D. Zhang

Beijing Key Laboratory of Knowledge Engineering for Materials Science,

Beijing 100083, China

H. Wang

ANSTEEL MINING, Anshan 114001, China

H. Wang

School of Civil and Environmental Engineering, University of Science

and Technology Beijing, Beijing 100083, China

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_15

179

180 C. Jiang et al.

L2 has better prediction effects than other algorithms with the increase of sample

size. Both training speed and prediction accuracy are improved by employing ELM-

L2 to the prediction of pulp concentration.

Keywords Prediction ⋅ Extreme learning machine (ELM) ⋅ Kernel-based elm ⋅
Phase space reconstruction ⋅ Regularized elm ⋅ Pulp concentration

1 Introduction

Pulp concentration is an important production index in flotation process [1]. But, it

is difficult to detect pulp concentration by off-line testing. Then, we can predict pulp

concentration with on-line learning method and some production problems may be

inspected by comparing prediction result and actual production data [2].

Generally, the pulp concentration and other production parameters are nonlinearly

related [3, 4]. And it imposes very challenging obstacles to the prediction for this

value with traditional learning methods. Recently, extreme learning machine (ELM)

for single-hidden layer feedforward network (SLFN) has attracted much attention

because of its unique features, such as extremely fast learning speed, good gen-

eralization performance, and the smallest training errors [5, 6]. In this paper, we

employ ELM related learning algorithms to train the production data and predict

pulp concentration. Furthermore, several ELM algorithms are analyzed in this pre-

diction applications. In addition to the traditional ELM [7], three improved ELM

algorithms are also discussed. In view of the fact that the hidden layer output matrix

is generated by random assignment and then the output of ELM model may be unsat-

isfactory with regard to stability and generalization in some cases, kernel-based ELM

(Kernel-ELM) was proposed through the use of kernel function, and its computa-

tional performance in regression forecast is better than traditional ELM [8]. Mean-

while, considering the fact that traditional ELM does not address heteroskedasticity

in practical applications and its performance will be affected seriously when outliers

exist in the data set, regularized ELM (R-ELM) was developed in accordance with

structural risk minimization principle and weighted least square [9]. The generaliza-

tion performance of R-ELM is improved. However, the output weights in the imple-

mentation of R-ELM are also determined by Moore-Penrose generalized inverse as

traditional ELM. Thus, using Kernel-ELM and R-ELM may cause memory over-

flow problem in the prediction applications while establishing time series prediction

model on a data set with large sample size. In order to avoid such limitations and

achieve better stability, L2-norm based ELM (ELM-L2) was proposed since L2 norm

can shrink coefficients and is more stable [8]. It ensures a unique solution even when

the number of hidden node is bigger than the number of samples, and leads to a

grouping effect with higher robustness and higher learning accuracy compared with

traditional ELM. Here, to ensure fast training speed and high prediction accuracy in

the pulp concentration prediction, we can employ ELM-L2 to address this issue with

the increase of sample size while dealing with pulp concentration data.

Prediction of Pulp Concentration Using Extreme Learning Machine 181

This paper is organized as follows. Section 2 analyzes related works about data

preprocessing method and several ELM algorithms. Section 3 presents an ELM-

based pulp concentration prediction method while providing an analysis for the

advantages and limitations of those ELM related learning approaches. Then experi-

mental results and discussions are provided in Sect. 4. Finally, a conclusion is given

in Sect. 5.

2 Related Works

2.1 Phase Space Reconstruction Theory

Phase space reconstruction as a part of nonlinear time series analysis technique is an

important step of chaotic time series processing. And reconstruction quality directly

affects the establishment of system model. Phase space reconstruction theory has

been used in time series prediction [10]. A core design strategy is that the evolution

of any component is determined by other components of interaction. Therefore, the

information of relative components is implicit in the development process of any

component. In order to reconstruct an equivalent state space, we only need to con-

sider a component and address it by processing measurement information obtained

in some fixed time delay points. They identify a point in a multidimensional state

space. Then some points can be obtained through repeating this process. In this way,

it can reconstruct original dynamic system model and initially determine true infor-

mation of the original system.

Phase space reconstruction plays an important role in time series prediction. In

order to reconstruct a suitable phase space, the key is to select the appropriate embed-

ding dimension r and time delay 𝜏 [11]. The selection of these two parameters is

generally conducted using the following three criteria:

(1) Sequence dependent method, such as the autocorrelation method, the higher

order correlation method, and many others.

(2) Phase space expansion method, such as fill factor method, swing method, and

many others.

(3) Multiple autocorrelation and partial autocorrelation.

For a set of time series {zi|i = 1, 2,… , p}, the number of points in phase space is

T = p − (r − 1)𝜏 and phase space vector 𝐙i(i = 1, 2,… ,T) of reconstruction is:

⎧
⎪
⎨
⎪⎩

𝐙1 = [z1, z1+𝜏 ,… , z1+(r−1)𝜏],
𝐙2 = [z2, z2+𝜏 ,… , z2+(r−1)𝜏],
⋮
𝐙T = [zT , zT+𝜏 ,… , zT+(r−1)𝜏].

(1)

182 C. Jiang et al.

With regard to r and 𝜏, there is a embedding time window 𝛤 which makes phase

space trajectory between zi and zi+𝛤 relatively smooth in the measured time series

{zi|i = 1, 2,… , p}. Here, the optimal embedding time window can be roughly deter-

mined through observing phase space trajectory.

2.2 Extreme Learning Machine (ELM)

For P arbitrary distinct training samples {(𝐱i, 𝐭i)|i = 1, 2,… ,P}, where 𝐱i = [xi1,

xi2, …, xim]T ∈ ℝm
and 𝐭i = [ti1, ti2,… , tin]T ∈ ℝn

. The network structure of SLFN

using ELM is in Fig. 1 and the output function of ELM for a input 𝐱 can be defined

as follows [8]:

f (𝐱) = h(𝐱)𝛽 = h(𝐱)𝐇T(𝐈
𝛾

+𝐇𝐇T)−1𝐓, (2)

where 𝛽 = [𝛽1,… , 𝛽L]T is the vector of the output weights between the hidden layer

of L nodes and the output node, 𝛾 is the regularization parameter, 𝐈 is the identity

matrix, 𝐓 = [𝐭T1 , 𝐭
T
2 ,… , 𝐭TP]

T
, 𝐇 = [h(𝐱1), h(𝐱2),… , h(𝐱P)]T is the feature mapping

matrix of given P training samples, h(𝐱i) (i = 1, 2,… ,P) and h(𝐱) are the output

row vectors of the hidden layer with respect to the input 𝐱i and 𝐱.

Fig. 1 The network

structure of SLFN using

ELM

Prediction of Pulp Concentration Using Extreme Learning Machine 183

2.3 Kernel-Based Extreme Learning Machine (Kernel-ELM)

If the feature mapping h(𝐱) is unknown, kernel function is employed in Kernel-ELM

and a kernel matrix can be defined as follows [8]:

𝛺ELM = 𝐇𝐇T =
⎡
⎢
⎢⎣

h(𝐱1)h(𝐱1) ⋯ h(𝐱1)h(𝐱P)
⋮ ⋮ ⋮

h(𝐱P)h(𝐱1) ⋯ h(𝐱P)h(𝐱P)

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

K(𝐱1, 𝐱1) ⋯ K(𝐱1, 𝐱P)
⋮ ⋮ ⋮

K(𝐱P, 𝐱1) ⋯ K(xP, 𝐱P)

⎤
⎥
⎥⎦
, (3)

where the kernel function K(𝐱i, 𝐱j) = h(𝐱i) ⋅ h(𝐱j).
Here, the output function of Kernel-ELM can be redefined for (2) as follows:

f (𝐱) = h(𝐱)𝐇T
(
𝐈
𝛾

+𝐇𝐇T
)−1

𝐓 =
⎡
⎢
⎢⎣

K(𝐱, 𝐱i)
⋮

K(𝐱, 𝐱P)

⎤
⎥
⎥⎦

T (
𝐈
𝛾

+𝛺ELM

)−1

𝐓. (4)

2.4 Regularized Extreme Learning Machine (R-ELM)

In view of the fact that traditional ELM works under empirical risk minimization

theme and it tends to generate over-fitting model, R-ELM is designed in accordance

with structural risk minimization, and it can be expected to provide better generaliza-

tion ability than traditional ELM. And R-ELM is described as Algorithm 1 [9]. Here,

a weight factor 𝛾 is introduced for empirical risk. By regulating 𝛾 , we can adjust the

proportion of empirical risk and structural risk. Moreover, to obtain a robust estimate

weakening outlier interference, the error variable can be weighted by using factor 𝜈j,

where 𝜈j is a element of matrix 𝐃 = diag(𝜈1, 𝜈2,… , 𝜈P). And 𝛼 is the Lagrangian

multiplier. The inter quartile range 𝐈𝐐𝐑 is the difference between the the 75th per-

centile and the 25th percentile. The constant c1 and c2 are set as c1 = 2.5 and c2 =

3, respectively.

2.5 L𝟐-Norm Based Extreme Learning Machine (ELM-L2)

In order to avoid some limitations of traditional ELM that is implemented normally

under the empirical risk minimization scheme and may tend to generate a large-

scale and over-fitting model, ELM-L2 is proposed to handle regression problem in

a unified framework where L2 norm can shrink coefficients and is more stable. The

mathematic model of ELM-L2 can be described as [8]:

184 C. Jiang et al.

Algorithm 1: R-ELM

Input: Given a training set ℵ = {(𝐱i, 𝐭i)|𝐱i ∈ ℝm
, 𝐭i ∈ ℝn

, i = 1,… ,P}, a activation function

g(x), and the hidden node number L;

1 Randomly assign input weights wi and bias bi(i = 1,… ,L);
2 Calculate the hidden layer output matrix 𝐇;

3 Calculate 𝛼 = −𝛾(𝐇𝛽 − 𝐓)T and calculate 𝜀i =
𝛼i

𝛾

(i = 1,… ,P);

4 Calculate ŝ = 𝐈𝐐𝐑
2×0.6745

and calculate 𝜈j =
⎧
⎪
⎨
⎪⎩

1
c2−|𝜀j ∕̂s|
c2−c1
10−4

|𝜀j∕̂s| ≤ c1
c1 ≤ |𝜀j∕̂s| ≤ c2

otherwise
;

5 Update 𝛽 = (𝐈
𝛾

+𝐇T𝐃2𝐇)†𝐇T𝐃2𝐓

̂
𝛽 = argmin

𝛽

{||𝐲 −𝐇𝛽||22 + 𝜉||𝛽||22}, (5)

where 𝜉 is a ELM-L2 parameter. Then (5) can lead to a closed form solution as

follows:

̂
𝛽 = (𝐇T𝐇 + 𝜉𝐈)−1𝐇T𝐲. (6)

3 Prediction of Pulp Concentration Using ELM Algorithms

We first reconstruct phase space of time series data of pulp concentration. Those

reconstructed samples are trained by ELM algorithms, including traditional ELM,

Kernel-ELM, R-ELM, and ELM-L2. Then the prediction results are obtained accord-

ing to the evaluation criteria.

Specifically, we compare the prediction accuracy of those four algorithms to eval-

uate which kind of ELM algorithms perform best in addressing prediction of pulp

concentration.

4 Experimental Results and Discussions

The actual pulp concentration data is a time series obtained every 5 s, and efficient

data is collected within [40, 50] in terms of pulp concentration. We first reconstruct

phase space of time series data where we set the time delay and the embedding

dimension as 8 and 2, respectively.

Prediction of Pulp Concentration Using Extreme Learning Machine 185

8 10 12 14 16 18 20
0.029

0.03

0.031

0.032

0.033

0.034

0.035

0.036

0.037

0.038

0.039

The Value of log
2
γ

R
M

S
E

Fig. 2 The training of an optimal 𝛾 value

First, we use 7,000 data for the experiment while comparing prediction perfor-

mance of traditional ELM algorithm and several improved ELM algorithms. For

R-ELM, we need to select an optimal 𝛾 value. Then we conduct test for 𝛾 to eval-

uate root mean square error (RMSE). In Fig. 2, we find that the optimal 𝛾 value is

between 109 and 1020 and we can also see that RMSE first comes down then goes

up. And RMSE is minimum when the 𝛾 value is 1013. Therefore, we choose 1013 as

an optimal 𝛾 value.

The prediction results are shown in Figs. 3 and 4. In Fig. 3, we can see that the

results of ELM-L2, R-ELM, and ELM are almost consistent with the actual value,

and they are better than that of Kernel-ELM. Furthermore, we conduct the experi-

ment using 15,000 data and the results are shown in Fig. 4. It should be pointed out

that in our experiment Kernel-ELM, R-ELM, and ELM may cause memory overflow

when sample size is relatively large. However, ELM-L2 can still work. In Fig. 4, we

can see that the prediction result of ELM-L2 is with the trend of the actual curve.

Therefore, ELM-L2 algorithm not only can be used in large sample size, but also has

a fast training speed and high prediction accuracy.

186 C. Jiang et al.

1 2 3 4 5 6 7 8 9 10 11
45.8

45.85

45.9

45.95

46

46.05

46.1

46.15

46.2

46.25

Sample Time (s)

P
ul

p
C

on
ce

nt
ra

tio
n

True
ELM−L2
Kernel−ELM
ELM
R−ELM

Fig. 3 Prediction results using ELM algorithms with time series of 7,000 pulp concentration data

1 2 3 4 5 6 7 8 9 10 11
45.8

45.9

46

46.1

46.2

46.3

46.4

Sample Time (s)

P
ul

p
C

on
ce

nt
ra

tio
n

True
ELM−L2

Fig. 4 Prediction results using ELM algorithm with time series of 15,000 pulp concentration data

Prediction of Pulp Concentration Using Extreme Learning Machine 187

5 Conclusion

In order to predict the trend of pulp concentration data, this paper uses ELM, Kernel-

ELM, R-ELM, and ELM-L2 algorithms to establish time series prediction model of

pulp concentration. Due to the unique features of ELM, the neural network learning

prediction model used in this paper has few parameters to be adjusted, and it also

retains fast convergence speed, strong generalization ability, and better prediction

accuracy. However, ELM, R-ELM, and Kernel-ELM may be only suitable for small

sample size and the prediction model may be memory overflow for large sample

size. Meanwhile, ELM-L2 still has a better prediction effect in large sample size.

Therefore, although pulp concentration is not easy to be predicted, we can apply

ELM-L2 to do it well, so that we are able to prepare for the unknown changes in the

future by revealing change rule of pulp concentration.

References

1. Subrahmanyam, T.V., Forssberg, K.S.: Grinding and flotation pulp chemistry of a low grade

copper ore. Miner. Eng. 8, 913–921 (1995)

2. Tipre, D.R., Dave, S.R.: Bioleaching process for Cu-Pb-Zn bulk concentrate at high pulp den-

sity. Hydrometallurgy 75, 37–43 (2004)

3. Tucker, P.: The influence of pulp density on the selective grinding of ores. Int. J. Miner. Process.

12, 273–284 (1984)

4. Morkun, V., Morkun, N., Pikilnyak, A.: Ultrasonic testing of pulp solid phase concentration

and particle size distribution considering dispersion and dissipation influence. Metall. Min.

Ind. 7, 9–13 (2015)

5. Huang, G., Huang, G.B., Song, S., You, K.: Trends in extreme learning machines: a review.

Neural Netw. 61, 32–48 (2015)

6. Luo, X., Chang, X.H.: A novel data fusion scheme using grey model and extreme learning

machine in wireless sensor networks. Int. J. Control Autom. Syst. 13, 539–546 (2015)

7. Huang, G.B., Ding, X., Zhou, H.: Optimization method based extreme learning machine for

classification. Neurocomputing 74, 155–163 (2010)

8. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and

multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42, 513–529 (2012)

9. Deng, W.Y., Zheng, Q.H., Chen, L.: Regularized extreme learning machine. In: IEEE Sym-

posium on Computational Intelligence and Data Mining, pp. 389–395. IEEE Press, New York

(2009)

10. Zhang, H., Liang. J., Chai. Z.: Stock prediction based on phase space reconstruction and echo

state networks. J. Algorithms Comput. Technol. 7, 87–100 (2013)

11. Zhang, W., Ma, Y., Yang, G.: Study on parameter selection of phase space reconstruction for

chaotic time series. Adv. Inf. Sci. Serv. Sci. 4, 67–77 (2012)

Rational and Self-adaptive Evolutionary
Extreme Learning Machine for Electricity
Price Forecast

Chixin Xiao, Zhaoyang Dong, Yan Xu, Ke Meng, Xun Zhou
and Xin Zhang

Abstract Electricity price forecast is of great importance to electricity market
participants. Given the sophisticated time-series of electricity price, various
approaches of extreme learning machine (ELM) have been identified as effective
prediction approaches. However, in high dimensional space, evolutionary extreme
learning machine (E-ELM) is time-consuming and difficult to converge to optimal
region when just relying on stochastic searching approaches. In the meanwhile, due
to the complicated functional relationship, objective function of E-ELM seems
difficult also to be mined directly for some useful mathematical information to
guide the optimum exploring. This paper proposes a new differential evolution
(DE) like algorithm to enhance E-ELM for more accurate and reliable prediction of
electricity price. An approximation model for producing DE-like trail vector is the
key mechanism, which can use simpler mathematical mapping to replace the
original yet complicated functional relationship within a small region. Thus,
the evolutionary procedure frequently dealt with some rational searching directions
can make the E-ELM more robust and faster than supported only by the stochastic
methods. Experimental results show that the new method can improve the perfor-
mance of E-ELM more efficiently.

Keywords Approximation model ⋅ Differential evolution ⋅ Extreme learning
machine ⋅ E-ELM ⋅ Electricity price prediction

C. Xiao (✉) ⋅ Y. Xu ⋅ K. Meng ⋅ X. Zhou
The Centre for Intelligent Electricity Networks, University of Newcastle,
Newcastle, NSW 2308, Australia
e-mail: chixinxiao@gmail.com

C. Xiao
The College of Information Engineering, Xiangtan University,
Xiangtan 411105, China

Z. Dong ⋅ X. Zhang
The School of Electrical and Information Engineering, University of Sydney,
Sydney, NSW 2006, Australia
e-mail: zydong@ieee.org

© Springer International Publishing Switzerland 2016
J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,
Proceedings in Adaptation, Learning and Optimization 7,
DOI 10.1007/978-3-319-28373-9_16

189

1 Introduction

In past decades, a great of research efforts have been devoted to developing accurate
and reliable methods for electricity price prediction [1–6]. Among, several
state-of-the-art techniques, e.g., ARIMA [7], GARCH [8], and machine learning
methods, the machine learning approaches have attracted the largest research
attention due to its strong nonlinear modeling capacity [9, 10]. Although conven-
tional machine learning methods, e.g., ANN [3], SVM [9], can extract the nonlinear
relationships out of the input and output dataset, meanwhile, such kind of
approaches are often adopted by users, they need time-consuming training, besides
that, they mainly use gradient-descent information to direct the training, and they
are often deemed as lacking efficient strategies to escape premature convergence or
many local minima. Recently, another novel approach called Extreme learning
machine (ELM) [11–15] as well as its variants have shown much better perfor-
mance in respect both of training speed and training accuracy than transitional ones.

However, as for high dimensional problems as in the works [5, 6], ELM is still
difficult to find out a satisfied regression or classification results by once calculation,
because the inputs need to be considered with more characters than the ordinary
ones, even though ELM can calculate output weights fast. E-ELM [16] treats one
random matrix of hidden weights as a solution for the corresponding output vector
for weights. Better solution leads to better output weights, then lower root mean
square error, i.e., a better regression or classification result. The hidden weights can
be combined into a single row solution of the objective function of ELM, the
optimum can be obtained after an evolutionary procedure. Self-adaptive evolu-
tionary extreme learning machine (SaE-ELM) [17] is a representative method,
which can obtain output weights for a single hidden layer feed-forward network
(SLFNs) with some promising features. However, in respect to training high
dimensional data, SaE-ELM is also time-consuming in evolutionary iterations and
seems a bit exhausted. For example, let the data is 100 dimensions and the number
of the hidden layers is 10, the dimensionality of the solution individual will then
reach 1000. Usually, dimensionality of the power market data or the data for
electricity load forecasting is over 100. Thus, faster convergence and better quality
of solution are two mandatory objectives should be considered in this paper.

As mentioned above, in conventional neural network, the gradient information
provides some rapid exploring guides though often leading to local optima. This
motivates us that gradient information perhaps can be properly used in E-ELM to
provide some rational directions to accelerate the whole optimization procedure.
But the complicated objective function of E-ELM is too difficult to mine the gra-
dient information directly, furthermore, the basic framework of ELM seems to have
pushed the gradient approaches out of date. Therefore, this paper proposes a new
simple model composing an approximate mapping to simulate the old functional
relationship of E-ELM within a comparative small region. Based on the new model,
a hybrid DE algorithm is developed to ensure that the new E-ELM not only obtains
global optima, the weights, more reliably than those dull gradient methods, but also

190 C. Xiao et al.

inherits the rational searching features simultaneously, that is, the new algorithm
can approach global optimal region faster than pure stochastic tools while keeping
high level quality of the solutions. Thus it can be seen that the reliability of greedy
means and their variants are no longer the patent of local optimum or premature
convergence, on the contrary, their fast convergence becomes more attractive as
long as with a well-design scheme.

The rest parts are organized as follows. Section 2 outlines some related back-
grounds. The new approximation model is shown in Sect. 3. In Sect. 4, a new
evolutionary algorithm for E-ELM learning high-dimensional data is proposed. The
experimental results and discussions are placed in Sect. 5. Finally, a conclusion and
future works are provided in Sect. 6.

2 Mathematical Background

This section gives brief reviews of aboriginal extreme learning machine (ELM) as
well as some necessary methods used in the rest of this paper for completeness.

2.1 Extreme Learning Machine (ELM) [11]

The basic working mechanism of ELM is briefly generalized as follows.
Given N training samples fðxi, tiÞgNi=1 which can be also described in matrix

style fðP,TtarÞg, where P is a D×N real matrix of input data and Ttar represents
N × 1 target vector. H is a L×D real matrix consisting of the hidden layer
parameters generated randomly. β is a L×1 real vector of output weights. Their
mathematical relationship can be expressed as Eq. (1)

f ðH ⋅P+BiasÞT ⋅ β=Ttar ð1Þ

where Bias is a L×N real matrix and function f ð ⋅ Þ is a kind of activation functions
[10], for instance, a log-sigmoid function,

σðtÞ= 1
1+ e− c ⋅ t ð2Þ

where c is a slop parameter. Usually, Eq. (1) can be presented in brief as Eq. (3)

H ⋅ β= Ttar ð3Þ

where H= f ðH ⋅P+BiasÞT is a N × L matrix. EML uses Moore-Penrose pseu-

doinverse bH† and target vector Ttar to obtain a least-square solution of such linear

Rational and Self-adaptive Evolutionary Extreme Learning … 191

system as Eq. (3). That is, a least-square solution of output weight vector β can be
analytically determined as Eq. (4)

bβ= bH† ⋅ Ttar ð4Þ

More details can be found in [11–14]. Instead of following traditional gradient
descend approach, ELM minimizes training accuracy or the cost function Eq. (5)
via the result gotten by the Eq. (4).

RSME=
ffi

mseðH ⋅bβ− TtarÞ
q

ð5Þ

where mseð ⋅ Þ is the function to measure performance as the mean of absolute
errors.

2.2 Basic Differential Evolution Framework

In classical differential evolution (DE) [18] framework, the remarkably simple trial
vector generation scheme is a main character distinguished from other EAs. It
processes a scaled difference of vectors originating from a fixed-size population of
decision vectors. Usually, such three evolutionary operators as mutation, crossover
and selection are included respectively. During the gth generation and in the basic
DE mutation, a trial vector ui, g is produced by a crossover operation between old
individual vector xi, g and a mutated vector vi, g = xr0, g +Fi ⋅ xr1, g − xr2, g

� �

, where Fi

ðFi >0Þ is a scaling factor, xr0, g, xr1, g, xr2, g are three independent decision vectors
selected randomly from the whole population P= fx1, g, x2, g, . . . , xNP, gg in decision
space. For each vector xi, g ∈P in turn, there is a corresponding trial vector ui, g
being generated. Each old vector xi, g in P will not be replaced unless its trial vector
ui, g yields a better objective function value than itself. Consequently xi, g is also
called a target vector in literature. More variants of DE can be checked in detail in
[19–25].

2.3 SaE-ELM

Self-adaptive evolutionary extreme learning machine (SaE-ELM) [17] is upgraded
from DE-LM [26] and E-ELM [16], which chooses trial vector generation strategies
and some relative control parameters adaptively. Their common place is to explore

192 C. Xiao et al.

the network input weights and hidden node biases of ELM aiming to get optimum
of the network output weights. When training data set XD×N , L hidden layers and an
activation function f ð ⋅ Þ are given, the individuals to be evolved during the gth
generation can be coded into as following vector [17],

θk, g = ðhg11, . . . , hg1D, hg21, . . . , hg2D, . . . , hgL1, . . . , hgLD, bg1, . . . , bgLÞ,

where 1≤ k≤NP, NP is the population size, bgi , 1≤ i≤L, represents the bias value
for the ith hidden layer in g generations.

Based on the coding format, the parameters like H,Bias are obtained as follows,

H =

hg11, . . . , h
g
1D

hg21, . . . , h
g
2D

⋮
hgL1, . . . , h

g
LD

2

6
6
4

3

7
7
5
,P=XD×N ,Bias=

bg1
bg2
⋮
bgL

2

6
6
4

3

7
7
5
× J1×N ð6Þ

where J1×N is a one row and N columns matrix of ones. Then the corresponding
fitness function is formulated as Eq. (7),

RSME=
ffi

mseðf ðH ⋅Ptest +BiasÞT ⋅bβ−TtestÞ
q

ð7Þ

where Ptest and Ttest are testing data set and testing target vector respectively.
The main aim of such kind of algorithms is to explore an optimum of H from

population consisted of θk, g ð1≤ k≤NPÞ during gmax generations. The strategy for
surviving can refer to [17].

3 Approximation Model

Although functional mapping based on the approximation model is not very
accurate to replace the original functional relationship over whole hyper-plane, it
can absolutely satisfy those practical demands within a limited region [27].

3.1 First-Order Approximation Model

Without loss of generality, a decision space can be formulated as a hyper-plane by
one point attached with two vectors. Let x∈ℝn is an arbitrary point in decision
space ℝn or the point can be denoted as a decision vector ðx1, x2, . . . , xnÞT, L is the

Rational and Self-adaptive Evolutionary Extreme Learning … 193

hyper-plane, suppose x0 ≠ x1 ≠ x2 are three distinct points selected randomly among
ℝn, then any arbitrary point x∈ L can be formulated as such style as Eq. (8)

x= x0 + t1 ⋅ ðx1 − x0Þ+ t2 ⋅ ðx2 − x0Þ ð8Þ

where t1, t2 are two independent real variables.
According to Eq. (8), any x∈ L is linear corresponding to the variable vector

ðt1, t2Þ because rest parameters are constants, i.e., x⇔ðt1, t2Þ, if and only if three
arbitrary yet independent points x0 ≠ x1 ≠ x2 have been fixed. In other words, if
x0 ≠ x1 ≠ x2 are located, any x∈ L can be evaluated based on variable vector ðt1, t2Þ
and Eq. (8). Therefore, when decision vector x approaches its optimum, x*, there
must exist a corresponding variable vector ðt*1, t*2Þ⇔x*, i.e.,

x* = x0 + t*1 ⋅ ðx1 − x0Þ+ t*2 ⋅ ðx2 − x0Þ ð9Þ

Likewise, for any pair of fitness function f ðxÞ and its variable x, there has another
pair of image gð ⋅ Þ and its variable vector ðt1, t2Þ. Their common place is
g t1, t2ð Þ= f ðxÞ, while the difference is the functional relationship of gð ⋅ Þ is simpler
than the one of f ð ⋅ Þ. The conversion relationship between gð ⋅ Þ and f ð ⋅ Þ is defined
as Eq. (10)

g t1, t2ð Þ= f xð Þ= g0 + t1 ⋅ ðg1 − g0Þ+ t2 ⋅ ðg2 − g0Þ ð10Þ

where g0, g1, g2, can be dealt with as constants if x0 ≠ x1 ≠ x2 have been fixed as
mentioned above. In order to obtain the constants, g0, g1, g2 simply, some special
points are considered here. Assume ðt1, t2Þ is substituted by vectors, (0, 0), (1, 0),
(0, 1) respectively, then g0 = f ðx0Þ, g1 = f ðx1Þ, g2 = f x2ð Þ can be easily extracted out
via Eqs. (10) and (8). Equation (10) hereby provides an approximation equation as
well to replace the original fitness function since g t1, t2ð Þ= f ðxÞ. Till this step, the
complicated functional relationship between the decision variable x∈ℝn and its
original image f ðxÞ has been estimated via the new mapping between gð ⋅ Þ and
ðt1, t2Þ.

3.2 Direction to Optimum

In fact, Eq. (10) also provides a linear functional relationship between variable
vector ðt1, t2Þ and its image gðt1, t2Þ. Through conventional optimization theories,
g t1, t2ð Þ at point ðt1, t2Þ has a vector of first partial derivatives, or gradient vector

194 C. Xiao et al.

∇g t1, t2ð Þ= ððg1 − g0Þ, ðg2 − g0ÞÞ. Hence, the local minimum optimum of ðt*1, t*2Þ is
most probably being placed in the opposite direction of ∇g t1, t2ð Þ.

t*1, t
*
2

� �

= 0, 0ð Þ− α ⋅ ∇g t1, t2ð Þ= − α ⋅ ∇g t1, t2ð Þ ð11Þ

where α is a step parameter. In one word, any three distinct decision variables,
x0 ≠ x1 ≠ x2, can deduce out the local optimum x* via Eq. (9–11), which can be
expressed as Eq. (12),

x* = x0 − α ⋅ ½ðg1 − g0Þ ⋅ ðx1 − x0Þ+ ðg2 − g0Þ ⋅ ðx2 − x0Þ� ð12Þ

4 Proposed Algorithm

In order to balance global exploration and local exploitation, another DE mutation
strategies, ‘DE/current-to-best/1’ [18], is enrolled as well to construct a hybrid
rational and self-adaptive mutation strategy named RSM mutation just as shown in
Fig. 1.

Fig. 1 Pseudo-code of producing hybrid trial vectors

Rational and Self-adaptive Evolutionary Extreme Learning … 195

4.1 Diversity Mechanism

Similar to JADE [20], RSM mutation applies a historical pool to temporarily
reserve a part of individuals sifted out from the population. Each time, one of three
distinct individual is picked out the union of current population and the historical
pool, denoted by x ̂r2, g, while the others xr0, g, xr1, g are still selected from the current
population. The size of the historical pool is set to a quarter of the population and
the initial state is empty. After being full, the pool permits the individual perished
from current population to replace the worst one if the perished one is better.

Motivated by [20, 23], many control parameters in the new algorithm are
extended into solution individuals for controlling self-adaptively (see Table 1). The
parameters are evolved simultaneously whilst the classical population of solutions
is being processed in evolution procedure. Main parameters for self-adaptive
control, such as Stepi, g ∈ ½0, 2�, CR1

i ,CR
2
i ∈ ½0, 0.9� and Fi, g ∈ ½0.1, 1.0�, are initial-

ized within their definition domain. The successful parameters survive to the next
generation, while the unsuccessful ones are replaced by a normal distribution of the
mean Pm, g and standard deviation sigma as shown in Eq. (13).

Pi, g =Pm, g + sigma ⋅ randni, g ð13Þ

where Pi, g represents the variable of parameters for the ith individual in g generation.
The sigma of each parameter equals to minðjPm, g −PUb, g, j, jPm, g −PLb, gjÞ. The mean
values are initialized as follows, Stepm, 1 = 1.1, Fm, 1 = 0.6, CRk

i =0.6, ðk=1, 2Þ.
Parameter Stepi, g controls the incremental degree of the mutation. In Fig. 1,
v1i, g = xr0, g + s ⋅ t1 ⋅ xr1, g − xr0, g

� �

+ t2 ⋅ xr̂2, g − xr0, g
� �� �

, where s= Stepi, g ̸
ffiffiffiffiffiffiffiffiffiffiffiffi

t21 + t22
p

.
At the beginning of whole evolving procedure, Stepi ≥ 1 helps population converge to
optimum fast, while Stepi <1 is good at effective exploitation, especially for solutions
approaching to the optimum.

4.2 Hybrid Strategy for Selection

In the procedure of selection, one in two new trail vectors is picked up

– Case 1: f ðxi, gÞ< f ðu1i, gÞ< f ðu2i, gÞ
Both two trail vectors are successful trail ones, i.e., success(i,1) = 1, success
(i,2) = 1, all their parameters can be kept to the next generation.

Table 1 Encoding format of
self-adapting individuals

x1, g Step1, g CR1
1, g F1, g CR2

1, g

… … … … …

xNP, g StepNP, g CR1
NP, g FNP, g CR2

NP, g

196 C. Xiao et al.

– Case 2: f ðu1i, gÞ< f ðxi, gÞ< f ðu2i, gÞ
u1i, g is named as a successful trail vector and success(i,1) is set to 1.

– Case 3: f ðu1i, gÞ< f ðu2i, gÞ< f ðxi, gÞ
This case means all the parameters need to be adjusted. As similar as above, the
converse is also followed the rules.

At end of each generation, the mean of each parameter is adjusted by Eq. (14)

Pi, g+1 = 0.85 ⋅Pm, g +0.15 ⋅meanðPsuccess, gÞ ð14Þ

where mean(.) is a function of arithmetic mean.

4.3 RSM-DE Algorithm

The main body of RSM-DE algorithm:
Input NP: the size of the population;

Maxgen: the number of the maximum iteration;
Fitness function;
D: The dimension of decision space.

Output Optima of the fitness function

Step 1 Initialization
Create a random initial population fxi, 0ji=1, . . . ,NPg. Initialize parameters

within their definition regions.
For g=1, . . . ,Maxgen, do
Step 2 Evolution Items
For i=1, . . . ,NP do
Step 2.1 New Parameters Generating: Unsuccessful parameters are refreshed

based on Eq. (14).
Step 2.2 Mating: One of the P best individuals and other three independent

individuals, xPbest, g, xr0, g ≠ xr1, g ≠ xr̂2, g, are picked out. x ̂r2, g is from the union of
current population plus historical pool and xPbest, g is one out of from current pop-
ulation, P = 5 in this paper.

Step 2.3 Call Function RSM-Trial(): To produce two trail vectors by two
strategies respectively.

Step 2.4 Call Function Selection(): To select successful trail vectors and
parameters into the next generation.

Step 2.5 Renew Historical Pool: If the historical pool is not full then the
eliminated individuals are pushed into the pool, otherwise the worst one in the pool
is replaced when the eliminated on is better.

Step 2.6 Summarize the Statistical Result of Successful Trail Vectors: To
evaluate the arithmetical mean value of each parameter by Eq. (14).

Rational and Self-adaptive Evolutionary Extreme Learning … 197

Step 3 Stopping criteria
When stopping criterion is satisfied, the algorithm stops here and outputs cor-

responding results. Otherwise, goes to Step 2.

4.4 RSM-DE-ELM

Given a set of training data, a set of testing data, a candidate range for L hidden
layers and an objective function g(·), RSM-DE-ELM algorithm is summarized as
following Fig. 2. RSM DE ELM ⋅ð Þ represents a procedure to optimize ELM based
on the RSM-DE algorithm. It returns the optimum of the net. ½L1, L2� is the can-
didate range and Train,Test denote training set, testing set respectively.

5 Experimental Results

In this section, several sequential data series extracted from the Australian Energy
Market Operator (AEMO) website [28] are used to test the performance of our new
method.

Fig. 2 Pseudo-code of
RSM-DE-ELM

198 C. Xiao et al.

For a convenient comparison, the first dataset in our case study and dataset
format are a whole year’s RRPs from QLD market just as [5]. It includes total of
17,520 observations and the period crosses over 01 June, 2006 to 31 May, 2007.

Parameter setting for RSM-DE-ELM:

The population size NP=100 and maximum generation is 60. Since the iteration
number of RSM-DE is not high, so the mean values of the parameters are initialized
as, Stepm, 1 = 1.1, Fm, 1 = 0.7, CRk

m, 1 = 0.75, ðk=1, 2Þ. The candidate range ½L1, L2�
of hidden layers L is set to [10,150].

Table 2 Comparison of four
methods on RRP forecast

Season Model MAE MAPE (%) RMSE

Training W I 1.1566 5.1936 1.5225

II 0.8345 3.8910 1.1430
III 0.9458 4.3466 1.3544

IV 0.80145 2.9366 1.1698

S I 1.3195 6.2802 1.7272

II 1.0048 4.7648 1.3311
III 1.2548 5.9897 1.6882

IV 1.1896 4.6761 1.35257

Su I 4.4040 15.3203 6.0542

II 3.1721 11.4565 4.3307
III 3.7803 12.3331 5.5882

IV 3.2682 7.4954 4.4953

A I 5.3081 9.6121 6.7923

II 3.9860 7.6349 5.1718
III 5.5116 10.0494 6.8658

IV 5.1377 7.43097 5.7401

Testing W I 2.3611 9.9423 3.3470

II 2.1046 8.5440 3.0537

III 2.0278 8.3372 2.9371
IV 2.1365 6.0780 2.9835

S I 2.2337 9.9291 3.1190

II 2.6382 11.5712 3.6026

III 2.3021 10.2642 3.1781

IV 1.9443 9.1967 3.0549
Su I 10.9983 24.4636 17.2313

II 10.8783 22.7230 17.7526

III 10.1656 21.8798 16.5881

IV 10.1797 21.1376 16.2054
A I 7.8198 13.7900 10.7256

II 7.9618 13.5447 11.4401

III 7.3193 12.7363 10.3818

IV 7.0116 11.9539 10.2671
W Winter, S Spring, Su Summer, A Autumn
I BPNN, II RBFNN, III ELM, IV RSM-DE-ELM
Bold value represent the best value among I to IV methods by
different criteria in different seasons

Rational and Self-adaptive Evolutionary Extreme Learning … 199

Results Analysis:

Table 2 shows the comparisons between the new approach with three existing
methods [5]. All these results are the mean values collected by multiple trails which
include 50 independent forecasts of each season model. From Table 2, the new
algorithm wins most of the lowest testing criteria in four season dataset among all
these four approaches. For testing in Spring and Autumn, the performances have
been dramatically improved. For example, the testing MAE of Spring using
RSM-DE-ELM is 1.9443, while the other three methods, the testing MAEs of this
season dataset are all greater than 2.2000.

Figure 3. gives out the prediction results run by RSM-DE-ELM on first half of
7*48 observation points belong to testing dataset. The error curve shows the new
algorithm can forecast with low and stable error rate in most points.

In terms of the training time, due to our approach falls into E- ELM category, the
training procedure practically consists of several sub-trainings of basic ELM, thus it
takes longer time in training than one single basic ELM. However, the proposed
approach is definitely faster than SaDE-ELM [17] because only two basic DE
strategies are included rather than four in SaDE-ELM. Secondly, rational DE model
provides our method fast convergence in addition to promising experimental
results, e.g., RSM-DE-ELM can get better results within 60 generations whilst
SaDE-ELM need 100 more generations to reach the same magnitude. What’s more,
our approach is no longer running on the way mentioned in the previous literature
[16, 17], in which the number of hidden layers is often gradually increased and the

0 20 40 60 80 100 120 140 160 180
0

50

100

3.5*48 Observation Points

R
R

P
 (

A
U

D
/M

W
h)

Spring

0 20 40 60 80 100 120 140 160 180
-20

0

20

40

3.5*48 Observation Points

E
rr

or
 (

%
)

Actual Data
Forecast

Fig. 3 Average RRP of forecast by RSM-DE-ELM in spring

200 C. Xiao et al.

one with the best generalization performance is adopted in final. In our proposed
approach, the binary search frame helps the algorithm not only find the optimum at
last, but also keep in less time complexity.

6 Conclusion

In this paper, a self-adaptive DE frame embedding with a rational approximation
operator is proposed intending to optimize E-ELM fast and stably. Experimental
results illustrate some mathematical auxiliary guides for evolving optima can bring
optimization procedure more reliable performances than stochastic strategies do, as
long as the design is a slight proper.

Acknowledgment This work is supported in part by the Australian Research Council
(ARC) through a Linkage Project (grant no. 120100302), in part by the University of Newcastle
through a Faculty Strategic Pilot Grant, in part by the Research Foundation of Education Bureau of
Hunan Province, China (Grant No. 14A136). The author would like to thank Prof. Qingfu Zhang
(UK and Hongkong) for fruitful discussions and patient tutoring. Thank Dr. Jingqiao Zhang for
providing the source code of JADE.

References

1. Zhang, R., Dong, Z.Y., Xu, Y., Meng, K., Wong, K.P.: Short-term load forecasting of
Australian National Electricity Market by an ensemble model of extreme learning machine.
IET Gen. Trans. Dist. 7(4), 391–397 (2013)

2. Wan, C., Xu, Z., Pinson, P., Dong, Z.Y., Wong, K.P.: Probabilistic forecasting of wind power
generation using extreme learning machine. IEEE Trans. Power Syst. 29(3), 1033–1044
(2014)

3. Meng, K., Dong, Z.Y., Wong, K.P.: Self-adaptive RBF neural network for short-term
electricity price forecasting. IET Gen. Trans. Dist. 3(4), 325–335 (2009)

4. Pindoriya, N.M., Singh, S.N., Singh, S.K.: An adaptive wavelet neural network-based energy
price forecasting in electricity markets. IEEE Trans. Power Syst. 23(3), 1423–1432 (2008)

5. Chen, X., Dong, Z.Y., Meng, K., Xu, Y., Wong, K.P., Ngan, H.W.: Electricity price
forecasting with extreme learning machine and bootstrapping. IEEE Trans. Power Syst. 27(4),
2055–2062 (2012)

6. Wan, C., Xu, Z., Pinson, P., Dong, Z.Y., Wong, K.P.: A hybrid artificial neural network
approach for probabilistic forecasting of electricity price. IEEE Trans. Smart Grid 5(1),
463–470 (2014)

7. Conejo, A.J., Plazas, M.A., Espinola, R., Molina, A.B.: Day-ahead electricity price forecasting
using the wavelet transform and ARIMA models. IEEE Trans. Power Syst. 20(2), 1035–1042
(2005)

8. Garcia, R.C., Contreras, J., Akkeren, M.V., Garcia, J.B.C.: A GARCH forecasting model to
predict day-ahead electricity prices. IEEE Trans. Power Syst. 20(2), 867–874 (2005)

9. Bishop, C.M., et al.: Pattern Recognition and Machine Learning, vol. 1. Springer, New York
(2006)

10. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2),
95–99 (1988)

Rational and Self-adaptive Evolutionary Extreme Learning … 201

11. Li, M.-B., Huang, G.-B., Saratchandran, P., Sundararajan, N.: Fully complex extreme learning
machine. Neurocomputing 68, 306–314 (2005)

12. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive
feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892
(2006)

13. Huang, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70
(16–18), 3056–3062 (2007)

14. Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine.
Neurocomputing 71(16–18), 3460–3468 (2008)

15. Feng, G., Huang, G.B., Lin, Q., Gay, R.: Error minimized extreme learning machine with
growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 20(8),
1352–1357 (2009)

16. Zhu, Q.-Y., Qin, A.K., Suganthan, P.N., Huang, G.-B.: Evolutionary extreme learning
machine. Pattern Recogn. 38(10), 1759–1763 (2005)

17. Cao, J., Lin, Z., Huang, G.-B.: Self-adaptive evolutionary extreme learning machine. Neural
Process. Lett. 36, 285–305 (2012)

18. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

19. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans.
Evol. Comput. 15(1), 4–31 (2011)

20. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external
archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

21. Brest, J, Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in
differential evolution: a comparative study on numerical benchmark problems. IEEE Trans.
Evol. Comput. 10(6), 646–657 (2006)

22. Abbass, H.A.: The self-adaptive pareto differential evolution algorithm. In: Proceedings of the
2002 Congress on Evolutionary Computation, 2002, CEC’02, vol. 1, pp. 831–836 (2002)

23. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical
optimization. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 2,
pp. 1785–1791 (2005)

24. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters
in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans.
Evol. Comput. 10(6), 646–657 (2006)

25. Das, S., Konar, A., Chakraborty, U.K.: Two improved differential evolution schemes for faster
global search. In: Proceedings of the 2005 Conference on Genetic and Evolutionary
Computation, 2005, pp. 991–998

26. Subudhi, B., Jena, D.: Differential evolution and Levenberg Marquardt trained neural network
scheme for nonlinear system identification. Neural Process. Lett. 27(3), 285–296 (2008)

27. Montgomery, D.C.: Design and Analysis of Experiments. Wiley.com, p. 405 (2006)
28. Australian Energy Market Operator (AEMO), www.aemo.com.au

202 C. Xiao et al.

http://www.aemo.com.au

Contractive ML-ELM for Invariance Robust
Feature Extraction

Xibin Jia and Hua Du

Abstract Extreme Learning Machine (ELM), a single hidden layer feedforward

neural networks works efficiently in many areas such as machine learning, pattern

recognition, natural language processing, et al. due to its powerful universal approx-

imation capability and classification capability. This paper uses multiply layer ELM

(ML-ELM) which stacks many ELMs based on Auto Encoder (ELM-AE) as main

framework. ELM-AE lets the input data as output data and chooses orthogonal ran-

dom weights and random biases of the hidden nodes to perform unsupervised learn-

ing. To extract more invariance robust feature, we propose Contractive ML-ELM

(C-ML-ELM referring to the work of Rifai et al.). Contractive ML-ELM applys a

penalty term corresponding to the Frobenius norm of the Jacobian matrix of the

encoder activations with respect to the input in each layer of ML-ELM. Experiment

results show that Contractive ML-ELM achieves state of the art classification error

on Mnist dataset.

Keywords Extreme Learning Machine ⋅ Contractive Auto Encoder ⋅ Multi-Layer

ELM

1 Introduction

Extreme Learning Machine (ELM) is proposed by Huang et al. [1] for single-hidden

layer feedforward neural network (SLFN) that has two powerful capability: univer-

sal approximation capability and classification capability [2]. ELM uses nonlinear

X. Jia (✉) ⋅ H. Du

Beijing Municipal Key Laboratory of Multimedia and Intelligent

Software Technology, Beijing Key Laboratory on Integration

and Analysis of Large-scale Stream Data, Beijing University of Technology,

Beijing 100124, China

e-mail: jiaxibin@bjut.edu.cn

URL: http://www.bjut.edu.cn

H. Du

e-mail: dhgacky@gmail.com

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_17

203

204 X. Jia and H. Du

piecewise continuous random hidden nodes such as Sigmoid nodes and RBF nodes

to obtain universal approximation capability and classification capability. The input-

hidden weights w and the hidden biases b of ELM are randomly generated indepen-

dently from the training data and the output weights 𝛽 are analytically computed.

ELM is also a fast learning speed algorithm.

Multi-Layer Extreme Learning Machine (ML-ELM) [3] stacks many Extreme

Learning Machines based on Auto Encoder [4] (ELM-AE) initializing the hidden

layer weights. ELM-AE [3] performs layer-wise unsupervised training by applying

the input data as output data and choosing orthogonal random weights and random

biases of the hidden nodes. ML-ELM’s performance is better than auto encoders

based deep networks and Deep Belief Networks (DBN) for MNIST dataset. ML-

ELM is yet significantly faster than any state-of-the-art deep networks due to not

requiring fine tuning using BP.

However, either ELM or ML-ELM is based on optimize the model under the

assumption with minimized prediction error and parameter energy. Neither of them

consider of the variance of data. In practical problem, data is normally changing con-

secutively rather than extremely. Therefore, finding a solution of the trained model

has good performance to fit this consecutive characteristic is benefit for improving

the performance of algorithm.

In this paper, we propose Contractive ML-ELM (C-ML-ELM) to extract invari-

ance robust features, referring to the work of Rifai et al. [5]. The method applies

a penalty term corresponding to the Frobenius norm of the Jacobian matrix of the

encoder activations with respect to the input in each layer of ML-ELM. Experiments

show that Contractive ML-ELM achieves higher performance against other classifi-

cation algorithms on Mnist and other datasets.

The paper is organized as follows. The first section of this paper introduces the

Multi-Layer ELM, next section shows our proposed method Contractive ML-ELM,

and last section gives the experiments results.

2 Background of Multi-Layer ELM

2.1 ELM

ELM [1] is a SLFN which randomly chooses the input weights and the hidden biases

and analytically determines the output weights. This algorithm can provide the best

generalization performance at extremely fast learning speed due to not requiring iter-

ative training process.

ELM with L hidden nodes can be represented by the following equation:

fL(𝐱) =
L∑

i=1
Gi(𝐱,wi, bi) ⋅ 𝜷 i,wi ∈ ℝd

, bi,𝜷 i ∈ ℝ (1)

Contractive ML-ELM for Invariance Robust Feature Extraction 205

where Gi(⋅) denotes the ith hidden node activation function, wi is the input weight

vector connecting the input layer to the ith hidden layer, bi is the bias weight of

the ith hidden layer, and 𝜷 i is the ith output weight vector. Gi(⋅) using sigmoid s as

activation function is defined as follows:

Gi(𝐱,wi, bi) = s(wi ⋅ 𝐱 + bi) (2)

ELM theory aims to reach the smallest training error but also the smallest norm of

output weights:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 ∶ 𝜆‖𝐇𝜷 − 𝐓‖22 + ‖𝜷‖22 (3)

where 𝐇 is the hidden layer output matrix, 𝐇 = [G1(𝐱,w1, b1),… ,GL(𝐱,wL, bL)].
𝐓 is prelabeled target matrix 𝐓 = [tT1 ,… , tTN]

T
of output in the training dataset.

The output weights are trained based on the smallest norm least squares solu-

tion using the Moore-Penrose generalized inverse [1] of the linear problem Eq. 3 as

follows.

̂𝜷 =
(I
C

+𝐇T𝐇
)−1

𝐇T𝐓 (4)

2.2 Auto Encoder

Auto Encoder [4] has two parts: encoder and decoder. The encoder is a function f
that maps an input 𝐱 ∈ ℝdx to hidden representation h(𝐱) ∈ ℝdh

h(𝐱) = sf (w𝐱 + bh) (5)

where sf typically use the logistic sigmoid s(z) = 1
1+e−z

The decoder function g represented by 𝐱̂ maps hidden representation h back to a

reconstruction y
𝐱̂ = g(𝐡) = sg(wT𝐡 + by) (6)

where sg typically either the identity or a logistic sigmoid.

Auto Encoder minimizes loss function

JAE(𝜃) =
∑

x∈D
L (𝐱, 𝐱̂) (7)

to fit the optimized model parameters 𝜃 = {W, bh, by}. L (𝐱, 𝐱̂) typically uses the sec-

ond order norm: ‖𝐱 − 𝐱̂‖22.

206 X. Jia and H. Du

2.3 Multi-Layer ELM-AE

ELM-AE [3] is a technique by modified AE to perform unsupervised learning that

input data is used as output data t = x, random weights and random biases of the

hidden nodes are chosen to be orthogonal. The output weight is

𝜷 =
(I
C

+𝐇T𝐇
)−1

𝐇T𝐱 (8)

for sparse and compressed ELM-AE representations. The only difference of Eqs. 8

and 4 is last variable, 𝐱 instead of 𝐓. For equal dimension ELM-AE representations,

output weights are calculated by the Singular Value Decomposition (SVD) [3].

In ML-ELM, each hidden layer weights are initialized using ELM-AE which per-

forms layer wise unsupervised training. However in contrast to other deep networks

such as DBN [6] and DBM [7], ML-ELM doesn’s require fine tuning using BP.

3 Contractive ML-ELM

Contractive ML-ELM uses method Contractive Auto-Encoder (CAE) [5] to extract

invariance robust feature.

3.1 Contractive Auto-Encoder

CAE is a deterministic Auto Encoder to find invariance feature by adding a penalty

term, the Frobenius norm of the Jacobian matrix of the encoder activations. Rifai

et al. [5] proof that CAE has the advantages for representations to be locally invariant

in many directions of change of the raw input.

The loss function of CAE is

JCAE(𝜃) =
∑

x∈D

(
L (x, x̂) + 𝜆‖Jf (x)‖2F

)
(9)

where

‖Jf (x)‖2F =
∑

ij

(
𝜕hj(x)
𝜕xi

)
(10)

3.2 Contractive-ML-ELM

In Contractive-ML-ELM, we make use of Contractive Auto-Encoder instead of tradi-

tional Auto-Encoder in each ELM-AE layer to achieve both fast learning capability

Contractive ML-ELM for Invariance Robust Feature Extraction 207

Table 1 Test Accuracy % on

Mnist
C-ML-ELM ML-ELM ELM DBN SAE

99.775 % 99.037 % 98.595 % 98.870 % 98.623 %

and robust generalization capability. According to Eqs. 3 and 9, Contractive-ML-

ELM represents as:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 ∶ ‖𝐇𝜷 − 𝐱̂‖22 + 𝜆‖Jf (𝐱)‖2F (11)

Using the same method of computing Eq. 4, the output weights of Contractive-ML-

ELM is trained as

𝜷 =
(I
C

+𝐇T𝐇 + 𝜆‖𝜕𝐇
𝜕𝐱

‖
)−1

𝐇T𝐱 (12)

Computing ‖𝜕𝐇∕𝜕𝐱‖ divides two steps. Firstly, we compute the norm of partial

derivative of each columns of 𝐇 with 𝐱; Secondly, combine the result of first step to

a diagonal matrix.

4 Experiments and Results

The MNIST [8] of handwritten digits is a commonly used dataset for testing per-

formance of machine learning and pattern recognition algorithms in current papers,

which has 60000 training samples and 10000 testing samples with 28 × 28 size of

each image. We test the proposed algorithm C-ML-ELM on the original MNIST

without any preprocessing comparing with ML-ELM, ELM, SAE (sparse auto-

encoder) and DBN. The performance results are shown in Table 1. The experiments

were performed on a workstation with a core Intel(R) Xeon(R) CPU E5-2687W 3.10

GHz processor and 32.0 GB RAM. The structure of deep network of C-ML-ELM is

784-700-700-15000-10 with ridge parameters [10e − 1, 0, 1e3, 1e8] same as the one

of ML-ELM used by Kasun et al. [3] As we can see, C-ML-ELM has best performing

against other algorithms.

5 Conclusion

This paper proposes a classification algorithm called contractive ML-ELM, which

aims to provide a solution to make sure the consecutiveness of data by applying

a penalty term corresponding to the Frobenius norm of the Jacobian matrix of

input in each layer based on ML-ELM. In ML-ELM, many ELMs based on Auto

Encoder(ELM-AE) stack a multi-layer network. In each layer, ELM-AE lets the

input data as output data and chooses orthogonal random weights and random biases

208 X. Jia and H. Du

of the hidden nodes to perform unsupervised learning. By adding the consecutive

constraint in the loss function, it is benefit for extract invariance robust feature to

improving the classification results. Experiments show the method comparing with

the ML-ELM and deep learning methods of DBN achieves state of the art classifica-

tion error on Mnist dataset. The further work will be done in performance testing on

problem of face recognition, expression recognition. It has prominent future in these

application by adding the constraint of consecutive. The effectiveness performance

will be evaluated in the future work.

Acknowledgments This research is partially sponsored by Natural Science Foundation of China

(Nos. 61175115 and 61370113), Beijing Municipal Natural Science Foundation (4152005), Spe-

cialized Research Fund for the Doctoral Program of Higher Education (20121103110031), the

Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions of

2014 (No. 067145301400), Jing-Hua Talents Project of Beijing University of Technology (2014-

JH-L06), and the International Communication Ability Development Plan for Young Teachers of

Beijing University of Technology (No. 2014-16).

References

1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neu-

rocomputing 70(1), 489–501 (2006)

2. Huang, G.B.: What are Extreme Learning Machines? Filling the gap between Frank Rosenblatt’s

Dream and John von Neumanns Puzzle. Cognitive Comput. 7(3), 263–278 (2015)

3. Kasun, L.L.C, Zhou, H., Huang, G.B., Vong, C.M. Representational learning with extreme

learning machine for big data. IEEE Intell Syst. 28(6), 31C4 (2013)

4. Bengio, Y.: Learning deep architectures for AI. Found. trends Mach. Learn. 2(1), 1–127 (2009)

5. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: Explicit

invariance during feature extraction. In: Proceedings of the 28th International Conference on

Machine Learning (ICML-11), pp. 833–840 (2011)

6. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks.

Science 313(5786), 504–507 (2006)

7. Salakhutdinov, R., Larochelle, H.: Efficient learning of deep Boltzmann machines. In: Interna-

tional Conference on Artificial Intelligence and Statistics, pp. 693–700 (2010)

8. LeCun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recogni-

tion. Proc. IEEE 86(11), 2278–2324 (1998)

Automated Human Facial Expression
Recognition Using Extreme Learning
Machines

Abhilasha Ravichander, Supriya Vijay, Varshini Ramaseshan
and S. Natarajan

Abstract Facial expressions form a vital component of our daily interpersonal com-

munication. The automation of the recognition of facial expressions has been stud-

ied in depth and experiments have been performed to recognize the six basic facial

expressions as defined by Paul Ekman. The Facial Action Coding System (FACS)

defines Action Units, which are movements in muscle groups on the face. Combi-

nations of Action Units yield expressions. In this paper, we propose an approach

to perform automated facial expression recognition involving two stages. Stage one

involves training Extreme Learning Machines (ELMs) to recognize Action Units

present in a face (one ELM per AU), using Local Binary Patterns as features. Stage

two deduces the expression based on the set of Action Units present.

Keywords Action unit ⋅ Action unit recognition ⋅ Facial expression analysis ⋅
Extreme learning machines ⋅ Human-computer interface

1 Introduction

Facial expressions are inherent to social communication and are also one of the most

universal forms of body language. A persons face, mainly the eyes and mouth give

away the most obvious and important cues regarding an emotion. These cues drive

our daily interpersonal interaction and present an additional information component

for informed decision-making. There is a growing interest in improving the interac-

tions between humans and machines and automatic recognition of facial expressions

covers an aspect of it. It has several applications such as lie detection for criminals,

A. Ravichander (✉) ⋅ S. Vijay ⋅ V. Ramaseshan

Department of Computer Science and Engineering, P.E.S Institute of Technology,

Bangalore, India

e-mail: abhilashacs005@gmail.com

S. Natarajan

Department of Information Science and Engineering, P.E.S Institute of Technology,

Bangalore, India

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_18

209

210 A. Ravichander et al.

estimating how people react to a particular product/brand (brand perception). Also,

in the field of Artificial Intelligence, such applications would enable the services that

require a good appreciation of the emotional state of the user such as robots which

can benefit from the ability to recognize expressions where they can gauge emotions

and perform better based on the response they read from the user. Facial expression

recognition thus has the potential to vastly improve the quality of human-computer

interaction leading us to more natural interfaces and environments.

The automation of the detection of Action Units present on a face is a difficult

problem, and more so is its study from static images. FACS is a human observer

based coding system, requiring FACS experts to instruct and observe subjects to

depict Action Units [1]. The six basic facial expressions (happiness, sadness, sur-

prise, anger, fear and disgust) occur frequently [2]. However, the FACS system was

developed to depict the multitude of subtle changes in human facial features that

contribute to facial expressions that extend beyond the six basic expressions. Typi-

cally, Action Unit detection is done using feature point tracking as in [3] over a series

of images depicting the transition into the expression from a neutral facial expres-

sion. Bartlett et al. [4] recognized six upper face Action Units using a combination

of methods, but none occurred in combination with one another.

Several techniques (image processing and machine learning based) have been

attempted for Action Unit detection. Esroy [5] examines a new method to detect

expression. His paper discusses a method involving triangles of shadowing and warp-

ing surrounding the eyes, nose and mouth to reflect emotions. Schmidt [6] used Hid-

den Markov Models (HMM) as the learning technique for Action Unit detection.

HMMs used for facial expression recognition because they perform well and are

analogous to human performance (e.g. for speech and gesture recognition). Simon

[7] examined the usage of segment based SVMs for Action Unit recognition. The

average recognition rate was around 90 %. In the paper by Abidin [8], BPNN (Back

Propagation Neural Networks) was used as the classifier to categorize facial expres-

sion images into seven-class of expressions. Feature extraction was done through

Haar wavelet, Daubechies wavelet and Coiflet wavelet. The use of these wavelet

techniques along with the right configuration of the neural network provided an aver-

age accuracy of 94 %. Ionescue [9] explores a method which uses a bag of words

representation for facial expression recognition. It extracts dense SIFT descriptors

either from the whole image or from a pyramid that divides the image into increas-

ingly finer sub-regions. For machine learning, the method makes use of multi-class

SVMs where the learning is local. This improves results from the global classifica-

tion by around 5 %. Yadan et al. [10] used Deep Belief Networks for facial expres-

sion recognition. The DBNs are tuned through logistic regression. The detectors first

detect face, and then detect nose, eyes and mouth A deep architecture pretrained with

stacked autoencoder is applied to facial expression recognition with the concentrated

features of detected components. The paper by Xiaoming Zhao [11] also examines

the use of DBNs for this problem.

A number of systems have already dealt with exploring the use of neural net-

works for facial Action Unit recognition. Lisetti et al. [12] explored the use of neural

networks for facial expression detection by isolating different areas of the face and

Automated Human Facial Expression Recognition … 211

training a neural network for each of these areas. Kanade [3] also examined the use

of neural networks for Action Unit detection. A three layered neural network was

used for both the upper and the lower face AUs. The average recognition rate for

upper face was around 93 % and lower face was around 95 %. Gargesha et al. [13]

used Multi Layer Perceptrons and Radial Basis Function Networks to achieve an

expression classification accuracy of 73 %.

However traditional approaches as neural networks suffer from slow learning

and poor scalability. Also, most of these systems are designed to work on image

sequences and use the movement of facial muscles when transitioning from a neu-

tral expression to the peak expression to make predictions. In our work, we propose a

system that analyses static images in order to automate the detection of Action Units,

and hence expressions, using Extreme Learning Machines [14, 15] and texture based

feature extraction methods. The system automatically detects the face and recognises

the Action Units. We observe that for the six basic facial expressions, the contribut-

ing Action Units occur in combination with one another. These analyses are done

on static images and the usage of extreme learning machines significantly speeds

up the time taken for the network to learn while offering comparable results. The

results obtained using ELMs are compared to those obtained using Support Vector

Machines which have been shown to perform well for the Action Unit recognition

task. Differences in the experimental procedures results in variations which should

be taken into account when comparing the recognition results between systems [3].

For this reason, the experimental conditions for comparing the performance of ELMs

against SVMs were kept as close to each other as possible. The system has been

trained and tested on the Cohn-Kanade dataset.

Organization of the paper. In Sect. 2 we introduce the architectural setup we used to

perform facial expression analysis. Following that, in Sect. 3 we describe the exper-

imental methodology and in Sect. 4 we present out experimental results including

a comparison of the performances of Extreme Learning Machines against Support

Vector Machines for Action Unit recognition. Finally, in Sect. 5 we elaborate on the

results as well as present future directions this work should take.

2 System Architecture

Our system uses a two stage approach to recognize facial expressions—stage one

generates classifiers to recognize Action Units in an image, and stage two predicts

the expression based on the Action Unit combinations present. Hence, our system

structure consists of a training phase (Fig. 1), and a testing phase (Fig. 2).

The analyses are done on static images. Each sample in the Cohn-Kanade database

consists of a sequence of images starting from a neutral expression and graduating

into a peak expression image. The peak image of every sequence is used, where the

Action Units are at their fullest representation.

We make use of the Facial Action Coding System to recognize Action Units

present in an image. There are over 44 AUs participating in facial expressions,

212 A. Ravichander et al.

Fig. 1 Experimental flow for training

Fig. 2 Experimental flow for testing

categorized into upper and lower face AUs. One classifier per Action Unit is trained

and used, for the AUs participating in the six facial expressions the system recog-

nizes.

3 Experimental Approach

3.1 Dataset

A facial expression can be defined as one or more motions or positions of the muscles

beneath the skin of the face. The Facial Action Coding System (FACS) [1] makes

use of the face muscles to taxonomize human facial movements by their appearance

on the face. FACS defines Action Units (AUs), which are a contraction or relaxation

of one or more muscles.

We conducted our experiments on the Cohn-Kanade AU-Coded Expression Data-

base [16]. The database consists of a series of subjects exhibiting various facial

expressions. The subjects include representatives of various ethnic groups, thus

accounting for diversity in facial features and ways of showing emotion. Each sam-

ple consists of a series of images starting from a neutral expression and transitioning

Automated Human Facial Expression Recognition … 213

Fig. 3 Example of a shortened image sequence depicting transition to peak expression

into the peak expression (Fig. 3). The peak image is coded for the presence of Action

Units as well as the expression. All images are in grayscale and full frontal view

of the face of each subject. For our experiments, following the normalization and

removal of non-viable samples, 552 images were used to train the Extreme Learning

Machines (ELMs) to recognize Action Units. No other conditions were placed on

the selected images.

3.2 Normalization

The images in the CK Database are in grayscale. However, lighting normalization

[17] was performed in order to improve the contrast in the images using Contrast

Limited Adaptive Histogram Equalization (CLAHE). This enables our system to

work on images even when they are taken in poor lighting conditions or when the

light source does not illuminate the entire face. Face detection using the Viola-

Jones object detection framework [18] and cropping was performed (to remove back-

ground) and all cropped images were scaled to a standard size in order to ensure

consistent size across all the training images. In the first training image used, the posi-

tions of the eyes and nose were noted after detection, and set as the standard positions

to be maintained across all training images. Since a texture based feature extraction

method such as LBP is used, which is sensitive to local changes in an image, it was

imperative that the alignment and positions of the facial features remained consistent

across the training set (and subsequently for each test image).

In instances when eye or nose detection failed, certain reconstructions were per-

formed in order to approximate the positions. In our work, we propose a novel

approach to overcome inaccurate nose and eye detection. It is useful to note here

that after cropping the face from an image and scaling it, the image window being

worked with consists of the detected face, with marginal background. To begin with,

in an image window of dimension height × width, if more than two eyes were found,

the eye windows found in the upper half of the face (y < height∕2) are retained and

stored (for selection of the best fits subsequently). Beyond this, the error handling

mechanisms depend highly on the accuracy of nose detection. If the nose is correctly

detected, four possible situations arise.

1. Two eyes detected successfully: this situation is ideal, and the nose and eyes are

returned for the transform.

2. > Two eyes detected: in this case, the two eyes closest to the nose on the left and

right side are chosen and returned.

214 A. Ravichander et al.

Fig. 4 Triangulation

approach to overcome

inaccurate eye detection

3. One eye detected: in this case, the position of the second eye is estimated using

a triangulation method. In this method, the slope of the line connecting the nose

and one detected eye is used to estimate the position of the second eye (as depicted

in Fig. 4).

m =
y2 − y1
x2 − x1

(1)

− m =
y − y1
x − x1

y = y2 x = x1 +
y1 − y2

m
(2)

4. Zero eyes detected: In this case, the image cannot be used without risk of intro-

ducing erroneous data.

If zero noses are detected, one of two situations arise.

1. Two detected eyes, in which case the position of the nose is estimated using an

approach similar to that described above.

2. For all other cases, the correct positions of the eye and nose could not be estimated

from the given data.

If more than one nose is found, the nose closest to the middle of the image is selected.

Following this, normal error handling procedures for one detected nose (as described

above) is followed. Since the Cohn-Kanade database contains faces in the full frontal

position, this method worked well and enabled us to retain images for training instead

of discarding them.

Given the positions of the eyes and nose in an image and their expected posi-

tions in the transformed image, an affine transform was performed to align the eyes

and nose to the same coordinates in every image. An affine transform [17] is a well-

known geometric transform that maps points in one space to corresponding points

in another space through a matrix multiplication followed by vector addition, and

Automated Human Facial Expression Recognition … 215

is often used for normalization tasks in image processing. This transform can be a

combination of scaling (linear transformation), rotation (linear transformation) and

translation (vector addition). The equations given below depicts how an affine trans-

formation is performed. Vector A performs the linear transformation of rotation and

scaling, while vector B is for translation, together leading to the transformation vec-

tor M. Using the positions of the eyes and nose in the source and destination images,

the angle of rotation, scaling factor, and extent of translation can be derived, in order

to yield the transformation vector M that will be applied to the source image.

A =
[
a00 a01
a10 a11

]
B =

[
b00
b10

]
(3)

M =
[
A B

]
M =

[
a00 a01 b00
a10 a11 b01

]
(4)

X =
[
x
y

]
T = A ⋅

[
x
y

]
+ B or T = M ⋅

[
x y 1

]T
(5)

T =
[
a00x + a01y + b00
a10x + a11y + b10

]
(6)

3.3 Feature Extraction

Local Binary Patterns is a texture-based feature extraction technique, and is one of

the best performing texture descriptors [19]. It overcomes challenges such as light-

ing, by being invariant to monotonic gray level changes [20]. LBP works on local

grids within an image or window of study. The essence of LBP is to split an image

into small grids, assign to each pixel in an image a value based on its relationship to

its neighbours within its local grid and then construct a histogram of values over the

grid. The histogram of values over each local grid is constructed, following which all

the histograms are concatenated over the entire image to yield the resulting feature

vector. The basic LBP operator works by calculating a code for each pixel in an image

as shown in Fig. 5. For a pixel, the 8-pixel neighbourhood is thresholded against the

center pixel, assigning 1 to a neighbour where the pixel value of the neighbour is

greater than that of the center pixel and 0 otherwise. This yields an 8-bit binary

string, the integer value of which (by multiplying each digit by its weight) yields the

pixels code. 256 bins hence exist for the histogram, yielding a feature vector 256

components long.

216 A. Ravichander et al.

Fig. 5 Local binary pattern

features

3.4 Training

The proposed system, in order to be able to effectively recognize Action Units present

in an image, uses one classifier, i.e one Extreme Learning Machine per Action Unit,

that decides whether an Action Unit is present in the image or not (0 or 1 respec-

tively). The entire database was split for training, testing and validation using the

holdout sampling method (80-10-10). The Cohn-Kanade Database provides for each

peak image a list of Action Units present. Using this, the training data was prepared

by running LBP on each image (yielding a feature vector describing the image) and

constructing a training set for each Action Unit. For each Action Unit, oversampling

on the training set was performed in order to solve the class imbalance problem.

If the number of negative samples exceeded the number of positive samples by a

threshold value, oversampling was performed. The activation function used was the

hyperbolic tangent function. For each AU, the configuration of the Extreme Learn-

ing Machine that performed best needed to be found, for which the classifier was

trained multiple times using a different number of nodes in the hidden layer each

time. Different parameters gave the best results for each AU.

3.5 Expression Prediction

The training phase yields one classifier per Action Unit of interest, trained using

ELMs. On a test image, following normalization and feature vector extraction, the

obtained feature vector is run through each classifier, at the end of which a list of

Action Units present is obtained. A series of various combinations of AUs that yield

an expression is defined, the satisfaction of any one of which indicates the possibility

of the presence of the expression (Table 1).

However, the combinations of Action Units that result in a particular expression

are not strictly defined. No complete evidence exists to show that these combinations

result in the emotions shown with great universality. The table represents the central

or most common actions for each emotion, but many minor variants of these com-

binations which also result in the same expression do exist. Our system proposes an

approach where one classifier is used for each AU as opposed to assigning a classifier

Automated Human Facial Expression Recognition … 217

Table 1 Action units for facial expressions

Expression Action units

Happiness 6, 12

Surprise 1, 2, 5, 26, 27

Fear 1, 2, 4, 5, 20, 25

Sadness 1, 4, 6, 11, 15, 17

Disgust 9, 10, 15, 16, 17, 25, 26

Anger 4, 5, 7, 10, 16, 17, 22, 23, 24, 25, 26

for each Action Unit combination. For this reason, to improve expression prediction

we also propose and implement a method to detect expressions which involves a

maximal normalised subset intersection between the Action Units detected and the

combination expected for each expression along with thresholding to determine if

the expression is actually present.

4 Experimental Results

The testing of the trained extreme learning machines was performed on forty images

which were randomly sampled and held out from the dataset. Each ELM was used

to detect the presence of a particular Action Unit (AU) within the given image. We

compare the accuracy of the Extreme Learning Machine to that of the Support Vec-

tor Machine for facial Action Unit detection under the same experimental conditions.

Support Vector Machines are amongst the most common approaches used for this

task. The results obtained for upper face and lower face Action Units [21, 22] are out-

lined in Tables 2 and 3 respectively. A comparison of the two classifiers is illustrated

in Fig. 6.

The Extreme Learning Machines trained for this task used hyperbolic tangent as

the activation function. Details of the configurations of the ELM’s used for each

facial Action Unit and the corresponding accuracies, sensitivities and specificities

Table 2 Upper Face AUs

Action unit Description Accuracy (ELM) Accuracy (SVM)

1 Inner brow raiser 82 84

2 Outer brow raiser 86 98

4 Brow lowerer 72 88

5 Upper lid raiser 81 90

6 Cheek raiser 88 88

7 Lid tightener 78 81

9 Nose wrinkler 92 92

218 A. Ravichander et al.

Table 3 Lower Face AUs

Action unit Description Accuracy (ELM) Accuracy (SVM)

11 Nasolabial deepener 81 92

12 Lip corner puller 91 94

15 Lip corner depressor 79 88

16 Lower lip depressor 82 87

17 Chin raiser 72 92

20 Lip stretcher 82 88

22 Lip funneler 98 98

23 Lip tightener 78 92

24 Lip pressor 88 94

25 Lips part 73 92

26 Jaw drop 81 85

27 Mouth stretch 90 96

Fig. 6 A Comparitive study

of ELM’s versus SVM’s for

action unit recognition

are described in Tables 4 and 5 for upper and lower face Action Units respectively.

The sensitivity measures the proportion of cases where the Action Unit is present

and is correctly identified and the specificity measures the proportion of the cases

where the absence of the Action Unit is correctly identified.

The Action Units obtained from each image were then used to predict the facial

expression of the test subjects. Different combinations of Action Units detected

resulted in being able to determine the facial expression of the test subject as demon-

strated in Figs. 7 and 8 for a test subject from the CK+ database.

Automated Human Facial Expression Recognition … 219

Table 4 ELM configuration for upper face AUs

Action unit No. of hidden

nodes

Accuracy (%) Sensitivity (%) Specificity (%)

1 150 82 82.3 82.0

2 75 86 84.6 86.6

4 100 72 72.2 71.0

5 100 81 90 78.2

6 75 88 90.9 86.7

7 120 78 66.7 80.4

9 150 92 85.7 92

Table 5 ELM Configurations for lower face AUs

Action unit No. of hidden

nodes

Accuracy (%) Sensitivity (%) Specificity (%)

11 120 81 25.0 85.0

12 220 91 77.0 95.3

15 220 79 60.0 83.0

16 120 82 66.7 83.0

17 100 72 60.0 78.9

20 150 82 75.0 83.3

22 150 98 00.0 100

23 150 78 57.1 80.3

24 100 88 33.3 94.0

25 120 73 83.8 60.0

26 75 81 66.6 82.3

27 120 90 77.7 91.6

Fig. 7 Face detection, preprocessing, cropping, scaling

220 A. Ravichander et al.

Fig. 8 Action unit detection and facial expression recognition

5 Conclusion and Future Work

Facial Expression Recognition is an important challenge in the domain of artificial

intelligence and human-computer interaction. There is a need for robust and highly

accurate systems which can be leveraged and used for many other unexplored prob-

lems in these areas.

We presented a systematic approach to build a fully automated facial expression

recognition system using Extreme Learning Machines (ELMs) as the machine learn-

ing technique. The system we propose uses Local Binary Patterns for feature extrac-

tion from the test image and one classifier (ELM) per Action Unit is used to decide

if an Action Unit is present within the image or not. The system runs the optimal

configuration of the ELM for each Action Unit so as to be able to produce the best

results. Lighting and geometric normalization are performed on each image before

feature extraction for consistency. The system handles situations where the eye or

nose detection fails initially and ensures the size of the training set is not reduced

by such discrepancies. We present a series of results indicating the highest accuracy

obtained for each Action Unit through ELMs. We also present results comparing the

ELM accuracy to the highest accuracy obtained through Support Vector Machines

under the same experimental conditions. SVMs have been amongst the most com-

mon machine learning techniques used for this problem. Support Vector Machines

show an average accuracy of 88.71 % for seven upper face AUs and 91.5 % for twelve

lower face AUs. In contrast, the proposed system using ELMs has an average accu-

racy of 82.7 % for upper face AUs 82.9 % for lower face AUs, the accuracies matching

that of SVMs for AU1, AU6, AU9 and AU22. The performance of the system using

Extreme Learning Machines against that of a system using Support Vector Machines

under the same experimental conditions indicate that ELMs can offer comparable

performances to that of SVMs for a few Action Units.

Our experiments suggest that better results can be achieved by applying better

feature extraction techniques such as Gabor Filters and through the use of feature

tracking models such as AAM (Active Appearance Models). In addition, better gen-

eralisation can be achieved by including training data from different FACS-coded

datasets such as the MMI facial expression database. It would also be interesting to

obtain the optimal number of hidden nodes for the Extreme Learning Machines by

using techniques such as the algorithm suggested by Huang et al. [23] or by apply-

ing a pruning algorithm as described by Rong et al. [24]. For arriving at the optimal

network architecture, incremental Extreme Learning Machines (I-ELMs) [25, 26]

Automated Human Facial Expression Recognition … 221

or Enhanced Incremental Extreme Learning Machines (EI-ELMs) [27] could also

be employed. This experiment has been conducted with basic Extreme Learning

Machines. For the Action Unit recognition task, the performance of ELM variants

such as using an ELM ensemble [28] for each Action Unit with a bagging [29] or

boosting [30] approach could also be investigated. In our work we have compared the

performance of ELMs with that of SVMs. It would also be of interest to us to explore

the performance of Support Vector Machines with an ELM kernel as suggested by

Frenay and Verleysen [31].

References

1. Ekman, P., Friesen, W.V., Hager, J.C.: Facial Action Coding System (FACS): Manual. A

Human Face. Salt Lake City, USA (2002)

2. Ekman, P., Friesen, W.V., Hager, J.C., Ellsworth, P.: Emotion in the Human Face. Salt Lake

City, USA (1972)

3. Tian, Y., Kanade, T., Cohn, J.F.: Recognizing Action units for facial expression analysis. IEEE

Trans. Pattern Anal. Mach. Intell. 97–115 (2001)

4. Bartlett, M.S., Viola, P.A., Sejnowski, T.J., Golomb, B.A., Hager, J.C., Ekman, P.: Classifying

facial action. IEEE Trans. Pattern Anal. Mach. Intell. 974–989 (1996)

5. Ersoy, Y.: Express Recognition: Exploring Methods of Emotion Detection. Stanford CS229

Stanford University (2013)

6. Schmidt, M., Schels, M., Schwenker, F.: A Hidden Markov model based approach for facial

expression recognition in image sequences. In: 4th IAPR TC3 Proceedings on Artificial Neural

Networks in Pattern Recognition, pp. 149–160 (2010)

7. Simon, T., Nguyen, M.H., De la Torre, F., Cohn, J.F.: Action unit detection with segment-

based SVMs. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

IEEE Press, New York (2010)

8. Abidin, Z., Alamsyah, A.: Wavelet based approach for facial expression recognition. Int. J.

Adv. Intell. Inform. 7–14 (2015)

9. Ionescu, R.T., Popescu, M., Grozea, C.: Local learning to improve bag of visual words model

for facial expression recognition. In: Workshop on Challenges in Representation Learning,

ICML (2013)

10. Lv, Y., Feng, Z., Xu, C.: Facial expression recognition via deep learning. In: International

Conference on Smart Computing (SMARTCOMP), pp. 303–308. IEEE (2014)

11. Zhao, X., Shi, X., Zhang, S.: Facial expression recognition via deep learning. IETE Tech. Rev.

1–9 (2015)

12. Lisetti, C.L., Rumelhart, D.E.: Facial expression recognition using a neural network. In: Pro-

ceedings of the Eleventh International Florida Artificial Intelligence Research Society Confer-

ence, pp. 328–332 (1998)

13. Gargesha, M., Kuchi, P., Torkkola, I.D.K.: Facial expression recognition using artificial neural

networks. EEE 511: Artificial Neural Computation Systems (2002)

14. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of

feedforward neural networks. In: Proceedings of International Joint Conference on Neural Net-

works, pp. 985–990 (2006)

15. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neu-

rocomputing. 489–501 (2006)

16. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The Extended Cohn-

Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression.

In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), pp. 94–101. IEEE (2010)

222 A. Ravichander et al.

17. Bradski, G.: Dr. Dobb’s Journal of Software Tools (2002)

18. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In:

Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (2001)

19. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant tex-

ture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 971–987

(2002) (IEEE Computer Society)

20. Ahonen, T., Hadid, A., Pietikainen, M.: face description with local binary patterns: application

to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2037–2041 (2006) (IEEE Com-

puter Society)

21. Ekman, P., Friesen, W.V.: Facial Action Coding System. Consulting Psychologists Press, Palo

Alto (1978)

22. Cohn, J.F., Ambadar, Z., Ekman, p.: Observer-based measurement of facial expression with

the Facial Action Coding System, pp. 203–221. Oxford University Press, Oxford (2007)

23. Huang, Y., Lai, D.: Hidden node optimization for extreme learning machine. AASRI Procedia.

375–380 (2012)

24. Rong, H.J., Ong, Y.S., Tan, A.H., Zhu, Z.: A fast pruned-extreme learning machine for classi-

fication problem. Elsevier. 359–366 (2008)

25. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive

feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 879–892 (2006)

26. Huang, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing.

3056–3062 (2007)

27. Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine.

Neurocomputing. 3460–3468 (2008)

28. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell.

993–1001 (1990)

29. Breiman, L.: Bagging predictors. Mach. Learn. 123–140 (1996) (Kluwer Academic Publishers)

30. Freund, Y.: boosting a weak learning algorithm by majority. Inf. Comput. 256–285 (1995)

31. Frénay, B., Verleysen, M.: Using SVMs with randomised feature spaces: an extreme learning

approach. In: 18th European Symposium on Artificial Neural Networks Proceedings (2010)

Multi-modal Deep Extreme Learning
Machine for Robotic Grasping Recognition

Jie Wei, Huaping Liu, Gaowei Yan and Fuchun Sun

Abstract Learning rich representations efficiently plays an important role in

multi-modal recognition task, which is crucial to achieve high generalization perfor-

mance. To address this problem, in this paper, we propose an effective Multi-Modal

Deep Extreme Learning Machine (MM-DELM) structure, while maintaining ELM’s

advantages of training efficiency. In this structure, unsupervised hierarchical ELM is

conducted for feature extraction for all modalities separately. Then, the shared layer

is developed by combining these features from all of modalities. Finally, the Extreme

Learning Machine (ELM) is used as supervised feature classifier for final decision.

Experimental validation on Cornell grasping dataset illustrates that the proposed

multiple modality fusion method achieves better grasp recognition performance.

Keywords Representation learning ⋅ Multi-Modal ⋅ Deep Extreme Learning

Machine

1 Introduction

In the past several decades, due to their universal approximation on compact training

samples and modeling capabilities for a large class of natural and artificial phenom-

ena, feedforward neural networks have been widely popular in many fields. Many

researchers have also explored the universal approximation capabilities of standard

multi-layer feedforward neural networks [1–3]. However, there lack faster learning

algorithms for neural networks.

J. Wei ⋅ G. Yan

Department of Electronic Information, Taiyuan University of Technology, Taiyuan, Shanxi,

People’s Republic of China

H. Liu (✉) ⋅ F. Sun

Department of Computer Science and Technology, State Key Laboratory of Intelligent

Technology and Systems, Tsinghua University, Tnlist, Beijing, People’s Republic of China

e-mail: hpliu@tsinghua.edu.cn

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_19

223

224 J. Wei et al.

Traditionally, gradient descent-based methods have mainly been used as learning

algorithms of feedforward neural networks, in which all the parameters need to be

tuned and may easily converge to local minima [4]. Thus these algorithms are usually

far slower than required and always exist the dependency between different layers.

Recently, Huang et al. have proposed a new learning algorithm for single-hidden-

layer feedforward neural network (SLFN) named the extreme learning machine

(ELM) [5, 6]. Unlike traditional gradient descent-based methods, ELM avoids tun-

ing control parameters and reaches good solutions analytically. That means the ELM

learning algorithm not only tends to reach the smallest training error but also the

smallest norm of weights [4]. The learning speed of ELM is extremely fast com-

pared to other traditional methods [7].

Based on the fast learning speed and computational efficiency, ELM is more flex-

ible and computationally attractive than traditional learning methods. However, its

shallow architecture makes it difficult to capture relevant higher-level abstractions.

In order to break this limitation, more and more deep ELM learning algorithm has

been proposed. Reference [8] firstly introduces the ELM auto-encoder (ELM-AE),

which represents features based on singular values. Reference [9] utilizes ELM as

a base building block and incorporates random shift and kernelization as stacking

elements. Reference [10] employs the ELM-AE as the learning unit to learn local

receptive fields at each layer. Reference [11] proposes an efficient image set repre-

sentation and the reconstruction error plays a role as a standard of classification.

Reference [12] presents a new ELM sparse auto-encoder, which is utilized as the

basic elements of H-ELM.

However, the aforementioned works do not refer to multi-modal problem. Thus,

in this paper, we extend the deep ELM and propose a Multi-Modal Deep ELM-

AE (MM-DELM) framework. The proposed MM-DELM is applied to multi-modal

learning task, while maintaining its advantages of training efficiency. The contribu-

tions of this work are summarized as follows:

1. We propose a deep architecture—multi-modal ELM-AE framework, to construct

the nonlinear representation from different aspects of information sources. An

important merit of such a method is that the training efficacy is highly improved.

2. We perform the experimental validation on the recently developed publicly avail-

able Cornell grasping dataset. The obtained results show that the proposed fusion

method obtains rather promising results.

The remainder of this paper is organized as follows: Sect. 2 introduces the related

works, including the fundamental concepts and theories of ELM; Sect. 3 describes

the proposed MM-DELM framework; Sect. 4 compares the performance of MM-

DELM with single modality and one kind of concatenation framework on Cornell

grasping dataset; while Sect. 5 concludes this paper.

Multi-modal Deep Extreme Learning Machine . . . 225

2 Brief Introduction About Extreme Learning Machines

Different from traditional gradient-based algorithms, ELM’s input weights and

single-hidden layer biases are arbitrarily chosen without iterative adjust, and the only

parameters to be learned in training are the output weights which can be calculated

by solving a single linear system [6].

Given N training samples, {𝐗,𝐓} = {𝐱j, 𝐭j}Nj=1, where 𝐱j ∈ 𝐑p
and 𝐭j ∈ 𝐑q

are the

j-th input and target vectors respectively. The parameters p and q are the dimension

of input and target vector respectively. To seek a regressor function from the input

to the target [4], the standard Single Hidden Layer Feed-forward network can be

mathematically modeled as (Fig. 1):

𝐨j =
nh∑

i=1
𝜷 ig(𝐰T

i 𝐱j + bi) = 𝐭j, (1)

where 𝐨j ∈ 𝐑q
is the output vector of the j-th training sample, 𝐰i ∈ 𝐑p

is the input

weight vector connecting the input nodes to the i-th hidden node, bi is the bias of the i-
th hidden node, g(⋅) denotes hidden nodes nonlinear piecewise continuous activation

functions.

The above N equations can be written compactly as:

𝐇𝜷 = 𝐓, (2)

where the matrix 𝐓 is target matrix,

Fig. 1 The model of basic

ELM

226 J. Wei et al.

𝐇 =
⎡
⎢
⎢⎣

g(𝐰T
1𝐱1 + b1) ⋯ g(𝐰T

nh
𝐱1 + bnh)

⋮ ⋯ ⋮
g(𝐰T

1𝐱N + b1) ⋯ g(𝐰T
nh
𝐱N + bnh)

⎤
⎥
⎥⎦
, (3)

𝜷 =
⎡
⎢
⎢⎣

𝜷T
1
⋮
𝜷T
nh

⎤
⎥
⎥⎦
,𝐓 =

⎡
⎢
⎢⎣

𝐭T1
⋮
𝐭TN

⎤
⎥
⎥⎦
. (4)

The matrix 𝐇 is the hidden layer output matrix, which can be randomly gener-

ated independent of the training data. 𝜷 = [𝜷1, 𝜷2,… ,𝜷nh]
T

(𝜷 i ∈ 𝐑q
) is the output

weight matrix between the hidden nodes and the output nodes. Thus, training SLFNs

simply amounts to getting the solution of a linear system (2) of output weights 𝜷 [13].

A simple representation of the solution of the Eq. (2) is given explicitly by Huang

et al. [4] as

𝜷 = 𝐇†𝐓, (5)

where 𝐇†
is the Moore-Penrose generalized inverse of the hidden layer output

matrix 𝐇.

To improve generalization performance and make the solution more robust, we

can add a regularization term [14], as shown in the Eqs. (6) and (7),

𝜷 = (𝐈
𝜆

+𝐇T𝐇)−1𝐇T𝐓, (6)

𝜷 = 𝐇T (𝐈
𝜆

+𝐇T𝐇)−1𝐓. (7)

Thus, the ELM tends to reach the solutions straightforward without the issue of over-

fitting. These two features make ELM more flexible and attractive than traditional

gradient-based algorithms.

3 Multi-modal Deep ELM-AE

However, due to its shallow architecture, feature learning using ELM cannot capture

relevant higher-level abstractions, even with a large number of hidden nodes [9].

In order to learn rich representations efficiently, ELM-based Auto-Encoder(Deep

ELM-AE) can be applied to extract the high level abstraction from different aspects

of information sources.

Multi-modal Deep Extreme Learning Machine . . . 227

Fig. 2 The proposed Multi-modal architecture

3.1 Model Architecture

To address this issue, a hierarchical learning framework, Multi-Modal Deep ELM-

AE (MM-DELM) is proposed . The multi-modal training architecture is structurally

divided into three separate phases: unsupervised feature representation for each

modality separately, feature fusion representation and supervised feature classifica-

tion, as shown in Fig. 2.

As shown in Fig. 2, we perform feature learning to have high-level representations

of each modality before they are mixed, in which features of m modalities are con-

nected to two layers for constructing high level representation individually, where

𝐗m ∈ 𝐑nm . The parameter nm is the dimension of the m-th modal feature. Mathe-

matically, the output of the two hidden layer in the m-th modality can be separately

represented as:

𝐇1,m = g(𝐖1,m𝐗m + 𝐁1,m), (8)

𝐇2,m = g(𝐖2,m𝐇1,m + 𝐁2,m), (9)

where g(⋅) is activation function and we choose the sigmoid function.𝐇∗(∗ can repre-

sent that the hidden nodes belong to which layer and modality) is hidden layer matrix

representing non-linear representations extracted from features of all modalities. For

example, 𝐇i,m represents the i-th layer feature representation of m-th modality.

These high level representations of different information sources–[𝐇2,1,… ,𝐇2,m]
are mixed in a two-layer stacked structure to get well joint representation 𝐇4. At the

228 J. Wei et al.

Fig. 3 Detailed illustration of the DELM representation learning

inference stage, the combination process is as follows:

𝐇2 =
[
𝐇T

2,1,… ,𝐇T
2,m

]T
, (10)

𝐇j = g(𝐖j𝐇j−1 + 𝐁j), for j = 3, 4. (11)

Finally, the original ELM is performed to make final decision based on the joint

representation:

̂𝐓 = g(𝐖5𝐇4). (12)

Through the proposed approach, multi-modal system can be developed as one

whole system rather than being developed as separate expert systems for each

modality.

3.2 Unsupervised Feature Representation

Here, we consider a fully connected multi-modal multi-layer network with h = 4 hid-

den layers. Let 𝐋 = {𝐖1,𝐖2,… ,𝐖h+1}(𝐖i = {𝐖i,1,… ,𝐖i,m}, i = 1, 2) denotes

the parameters of the network that need to be learned. In our paper, the Deep ELM-

AE is applied to learning the parameters 𝐋, which is designed by using the encoded

outputs to approximate the original inputs by minimizing the reconstruction errors

[8, 12].

Figure 3 illustrates the process of learning representation from the features ofm-th

modality 𝐗m, which is similar to the separate learning of other modalities and fusion

learning. To simplify training, each hidden layer of Deep ELM-AE is an independent

ELM, and functions as a separated feature extractor, whose target is same as its input.

Multi-modal Deep Extreme Learning Machine . . . 229

Fig. 4 The original ELM

makes the final decision

For instance,𝐖1,m is learned by considering a corresponding ELM with target vector

𝐭 = 𝐗m.

Thus, the system becomes a linear model and the output weights 𝜷 can be ana-

lytically determined by the Eqs. (6) or (7) depending on the number of nodes in the

hidden layer.

3.3 Supervised Feature Classification

Through the unsupervised feature representation, we can get a part of the parameters

need to be learned:

𝐖k = 𝜷
T
k (k = 1,… , h). (13)

Finally, the learned features 𝐇h are transferred to the original ELM to model the

mapping between feature representation and the label. The 𝐇h can be regarded as

the hidden layer of the original ELM, in which 𝜷h+1 can be obtained easily. Thus,

we can get the parameter 𝐖h+1 as following equation (Fig. 4):

𝐖h+1 = 𝜷h+1. (14)

In MM-DELM, the information of all modalities are combined in an effective

way, and particularity and features for specific modalities have been learned. And in

contrast to deep networks, MM-DELM also does not require expensive iterative fine

tuning of the weights.

4 Experimental Result

Recognizing which part of an object is graspable or not is important for intelligent

robot to perform some complicated tasks. In practice, the grasping performance not

only depends on the pose and configuration of the robotic gripper, but also the shape

and physical properties of the object to be grasped [15, 16]. The acquisition of depth

information has made it easier to infer the optimal grasp for a given object beyond

230 J. Wei et al.

traditional RGB information. RGB-D image classification is a multi-modality learn-

ing problem [17, 18]. Therefore, the MM-DELM framework is applied to combining

RGB information with depth information in RGB-D based image classification [19].

4.1 Dataset

We used the Cornell grasping dataset [20] for our experiments, which is available

at http://pr.cs.cornell.edu/deepgrasping. This dataset contains 1035 images of 280

graspable objects. Each image is labeled with roughly equal numbers of ground-

truth positive and negative grasping rectangles, representing these rectangles are

graspable or non-graspable.

The color features are extracted from RGB’s three 24 × 24 pixel channels, giving

24 × 24 × 3 = 1728 input features. The three channels are the image in color space,

used because it represents image intensity and color separately. The depth features

simply contain the depth channel of the image, giving 24 × 24 = 576 input features.

They are computed after the image is aligned to the gripper so that they are always

relative to the gripper plates.

4.2 Result

We compare our algorithm in the Cornell grasping dataset with other single-modality

networks trained in a similar manner where two separate sets of first layer features

are learned for the depth channel, the combination of the RGB channels. A kind of

naive method is also compared, which perform multi-modal fusion by combining

color features and depth features as a concatenated vector that act as input of the

framework.

Table 1 summarizes that compared with single-modality networks, our Multi-

Modal Deep ELM-AE is able to learn rich representations efficiently which out-

performs single-modal ones for recognition. Compared with RGB features, depth

features can obtain the higher performance.

The proposed method and concatenation method are both integrating multi-modal

information, but the proposed method outperforms the latter. Because in the con-

catenation method, the information sources with different statistical properties are

Table 1 Recognition results for different modalities

Modality Accuracy (%)

RGB 86.34

Depth 89.71

Concatenation method 89.23

Proposed method 90.85

http://pr.cs.cornell.edu/deepgrasping

Multi-modal Deep Extreme Learning Machine . . . 231

Fig. 5 The testing accuracies of different methods versus the number of hidden layer nodes

Fig. 6 Testing accuracy of MM-DELM in terms of nh and 𝜆

mixed in the first hidden layer ignoring the particularity of information about spe-

cific modalities. Therefore, the performance cannot be expected to be satisfactory

(Fig. 5).

To analyse the roles of these parameters, we perform the sensitivity analysis. The

most important two parameters in the proposed MM-DELM include the parameter

𝜆 for the regularized least mean square calculation, and the number of hidden nodes

nh. Therefore, we vary the value of 𝜆 within the set {100, 101,…109, 1010}, and the

value of nh within the set {500, 1000,… , 5000} to analyze the performance varia-

tions. The results are shown in Fig. 6.

232 J. Wei et al.

5 Conclusion

In this paper, we have proposed a novel multi-modal training scheme MM-DELM,

in which information of all modalities has been learned and combined in an effective

way without iterative fine-tuning. In this structure, MM-DELM takes full advantage

of the hierarchical ELM to learn the high level representation from multi-modal data.

Thus, the proposed method could obtain more robust and better performance. We

also verified the generality and capability of MM-DELM on the Cornell grasping

dataset. Compared with the single-modal and concatenation method, the training of

MM-DELM is much faster and achieves higher learning accuracy.

Acknowledgments This work was supported in part by the National Key Project for Basic Research

of China under Grant 2013CB329403; in part by the National Natural Science Foundation of

China under Grant 61210013; and in part by the Tsinghua University Initiative Scientific Research

Program under Grant 20131089295.

References

1. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4,

251C257 (1991)

2. Huang, G., Babri, H.A.:.Upper bounds on the number of hidden neurons in feedforward net-

works with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Netw. 9(1),

224C229 (1998)

3. Leshno, M., Lin, V. Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a non-

polynomial activation function can approximate any function. Neural Netw. 6, 861C867 (1993)

4. Huang, G., Zhu, Q., Siew, C.: Extreme learning machine: theory and applications. Neurocom-

puting 70, 489–501 (2006)

5. Huang, G., Zhu, Q., Siew, C.: Extreme learning machine: a new learning scheme of feed-

forward neural networks. In: Proceedings of International Joint Conference on Neural Net-

work(IJCNN), vol. 2, pp. 985–990 (2004)

6. Huang, G., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and mul-

ticlass classification. IEEE Trans. Syst. Man Cybern.-Part B: Cybern. 42(2), 513–529 (2012)

7. Li, M.B., Huang, G.B., Saratchandran, P., Sundararajan, N.: Fully complex extreme learning

machine. Neurocomputing 68, 306C314 (2005)

8. Cambria, E., Huang, G.: Extreme learning machines-representational learning with ELMs for

big data. IEEE Intell. Syst. 28(6), 30–59 (2013)

9. Yu, W., Zhuang, F., He, Q., Shi, Z.: Learning deep representations via extreme learning

machines. Neurocomputing 149, 308–315 (2015)

10. Zhu, W., Miao, J., Qing, L., Huang, G.: Hierarchical extreme learning machine for unsuper-

vised representation learning. Neurocomputing (in press)

11. Uzair, M., Shafait, F., Ghanem, B., Mian, A.: Representation learning with deep extreme learn-

ing machines for efficient image set classification, pp. 1–10 (2015). arXiv:1503.02445

12. Tang, J., Deng, C., Huang, G.: Extreme learning machine for multilayer perceptron. IEEE

Trans. Neural Netw. Learn. Syst., 1–13 (2015)

13. Feng, G., Huang, G., Lin, Q., Gay, R.: Error minimized extreme learning machine with growth

of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 20(8), 1352–1357 (2009)

14. Ding, S., Zhang, N., Xu, X., Guo, L., Zhang, J.: Deep extreme learning machine and its appli-

cation in EEG classification. Math. Probl. Eng., 1–12 (2014)

http://arxiv.org/abs/1503.02445

Multi-modal Deep Extreme Learning Machine . . . 233

15. Sahbani, A., El-Khoury, S., Bidaud, P.: An overview of 3D object grasp synthesis algorithms.

Robot. Auton. Syst. 60, 326–336 (2012)

16. Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven Grasp SynthesisłA survey. IEEE

Trans. Robot. 30(2), 289–309 (2014)

17. Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D object dataset.

In: International Conference on Robotics and Automation(ICRA), pp. 1817–1824 (2011)

18. Bai, J., Wu, Y.: SAE-RNN deep learning for RGB-D based object recognition. Intell. Comput.

Theory, 235–240 (2014)

19. Beksi, W.J., Papanikolopoulos, N.: Object classification using dictionary learning and RGB-D

covariance descriptors. In: International Conference on Robotics and Automation (ICRA), pp.

1–6 (2015)

20. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Robot. Res.

34(4–5), 705–724 (2015)

Denoising Deep Extreme Learning Machines
for Sparse Representation

Xiangyi Cheng, Huaping Liu, Xinying Xu and Fuchun Sun

Abstract In last decade, a large number of research has focused on the sparse

representation for signal. As a dictionary learning algorithm, K-SVD, is introduced

to efficiently learn an redundant dictionary from a set of training signals. In the mean

time, there is an interesting technique named extreme learning machines (ELM),

which is an single-layer feed-forward neural networks (SLFNs) with a fast learn-

ing speed, good generalization and universal classification capability. In this paper,

we propose an denoising deep extreme learning machines based on autoencoder

(DDELM-AE) for sparse representation. It makes the conventional K-SVD algo-

rithm perform better. Finally, we show the experimental rusults on our optimized

method and the typical K-SVD algorithm.

Keywords K-SVD ⋅ Extreme learning machines ⋅ Denoising ⋅ Deep ELM-AE

1 Introduction

Since Michael Elad and colleagues introduced the K-SVD algorithm [1], sparse sig-

nal reconstruction has gained considerable interests. Kinds of sparse representation

have been applied to a variety of areas such as image denoising [2], image restora-

tion [3], and image classification [4, 5]. In Ref. [5], using sparsity as a prior leads to

state-of-art results.

K-SVD algorithm is an iterative method, which alternates between sparse coding

of the examples based on the current dictionary, and a process of updating the dictio-

nary atoms to better fit the examples. Under strict sparsity constrains, a signal 𝐲 ∈ 𝐑n

X. Cheng ⋅ X. Xu

Department of Electronic Information, Taiyuan University of Technology,

Taiyuan 030024, Shanxi, People’s Republic of China

H. Liu (✉) ⋅ F. Sun

Department of Computer Science and Technology, State Key Laboratory of Intelligent

Technology and Systems, TNLIST, Tsinghua University, Beijing,

People’s Republic of China

e-mail: hpliu@tsinghua.edu.cn

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_20

235

236 X. Cheng et al.

can be represented by an redundant dictionary 𝐃 ∈ 𝐑n×K
which includes Katoms,

{𝐝j}Kj=1. Furthermore, the update of the dictionary columns is combined with an

update of the sparse representations, thereby accelerating convergence.

During this period, a new theory named “deep learning” was put forward. Refer-

ences [6, 7] showed that a restricted Boltzmann machine (RBM) and auto-encoders

could be used for feature engineering. The two types of auto-encoder-based deep

networks are the stacked auto-encoder(SAE) [6] and the stacked denoising autoen-

coder(SDAE) [8]. Both of them are constructed by stacking auto-encoders. The

existing results show that deep networks outperform traditional multilayered neural

networks.

In the meantime, as an emerging technology, extreme learning machines(ELM)

has also achieved exceptional performance in large-scale settings, and is well suited

to binary and multi-class classification, as well as regression tasks. Huang et al. [9]

introduced ELM as a single-layer feed-forward neural networks with a fast learn-

ing speed and good generalization capability, whose hidden node parameters are

randomly generated and the output weights are analytically computed. Like deep

networks, Huang proposed multilayered ELM (ML-ELM) performs layer-by-layer

unsupervised learning. And it also introduces the ELM based on autoencoder (ELM-

AE), which represents features based on singular values. Similar to deep networks,

ML-ELM stacks on top of ELM-AE to create a multilayered neural network. It learns

significantly faster than existing deep networks, outperforming DBNs, SAEs, and

SDAEs and performing on par with DBMs on the MNIST5 database.

The main contribution of our work is that we employ a denoising “input” of the

raw data to the off-the-shelf K-SVD algorithm, which is generated by the denoising

deep ELM-AE(DDELM-AE). Then, according to the restructure error, we solve the

image classification problem. And our best results are much better than the simple

K-SVD. Specially, we gain the test accuracies of 96.1 % on USPS [17] and 99.79 %

on Coil-20.

This paper is organized as follows. In Sect. 2, we briefly review the K-SVD algo-

rithm. Section 3 presents the deep ELM-AE. In Sect. 4, we state our optimization

method on sparse representation. Section 5 demonstrates the experimental results

and analyses the effect of parameters. Finally, Sect. 6 concludes the paper with the

summary and demonstrates the superiority of our proposed method.

2 Sparse Representation and Dictionary Learning

Sparse and redundant signal representations have recently drawn much interest in

computer vision, signal analysis and image processing [10, 11]. And several algo-

rithms have been developed for the task of learning a dictionary. Two of the most

well-known algorithms are the method of optimal directions (MOD) [12] and the

K-SVD algorithm [1].

Denoising Deep Extreme Learning Machines for Sparse Representation 237

In this work, we adopt the K-SVD algorithm [1] for development. Given a set

of N signals 𝐘 = [𝐲1,… ,𝐲N], the goal of K-SVD algorithms is to find a dictionary

𝐃 and a sparse coding matrix 𝐗 which solves the following optimization problem:

(̂𝐃, ̂𝐗)= argmin
𝐃,𝐗

‖𝐘 − 𝐃𝐗‖2F ,
s.t.‖‖𝐱i‖‖0 ≤ T0, ∀i = 1,… ,N,

(1)

where 𝐱i represents the i − th column of 𝐗, ‖𝐀‖F denotes the Frobenius norm of

𝐀, and T0 denotes the sparsity level. K-SVD is an iterative method that alternates

between sparse-coding and dictionary update steps. First, a dictionary 𝐃 with 𝓁2
normalized columns is initialized. Then, the main iteration is composed of the fol-

lowing two stages:

1. Sparse coding: In this step, we fix 𝐃 and solve the following optimization prob-

lem over 𝐱i for each example 𝐲i

min
𝐱i

‖‖𝐲i − 𝐃𝐱i‖‖
2
2,

s.t.‖‖𝐱i‖‖0 ≤ T0, ∀i = 1,… ,N.
(2)

2. Dictionary update: In this step, we fix the coding coefficient matrix and update

the dictionary atom-by-atom in an efficient way.

With an update of dictionary columns and combining with an update of the sparse

representations, traditional K-SVD algorithm achieves sparse signal representations

from the raw signals. However, untreated data may be noisy, it is against this algo-

rithm itself. According to the reconstruct error it inevitably leads to a poor classifi-

cation result.

Motivated by the drawbacks of the current methods and the needs of many prac-

tical applications, we propose a preprocessing method used for the conventional

K-SVD. In our paper, we use high level of representations as input rather than the

original image, which is extracted by the denoising deep ELM based on autoencoder.

Results demonstrate that high level of features can be better preserved and can reduce

the reconstruction error effectively.

3 Principle of ELM based on Autoencoder

3.1 Extreme Learning Machines

Given N training samples {(𝐱i,𝐭i)}Ni=1, the extreme learning machines can resolve the

following learning problem:

𝐇𝜷 = 𝐓, (3)

238 X. Cheng et al.

where 𝐓 = [𝐭1,… , 𝐭N]Tare target labels, and 𝐇 = [𝐡T (𝐱1),… ,𝐡T (𝐱N)]T . We can cal-

culate the output weights 𝜷 from

𝜷 = 𝐇†𝐓, (4)

where 𝐇†
is the Moore-Penrose generalized inverse of matrix 𝐇.

To improve generalization performance and make the solution more robust, we

can add a regularization term as shown [13]:

𝜷 =
(𝐈
C

+𝐇T𝐇
)−1

𝐇T𝐓. (5)

3.2 ELM Based on Autoencoder

In this section, we describe a common framework about deep ELM which is based

on autoencoder [14] used for representation learning.

The ELM can be modified as follows: input data is used as output data 𝐭 = 𝐱, and

random weights and biases of the hidden nodes are chosen to be orthogonal. Widrow

et al. [15] introduced a least mean square (LMS) implementation for the ELM and

a corresponding ELM based on autoencoder that uses nonorthogonal random hid-

den parameters (weights and biases). Orthogonalization of these randomly generated

hidden parameters tends to improve ELM-AE’s generalization performance.

In ELM-AE, the orthogonal random weights and biases of the hidden nodes

project the input data to a different or equal dimension space, as shown by the

Johnson-Lindenstrauss lemma [16] and calculated as

𝐡 = g(𝐚𝐱 + b),
𝐚T𝐚 = 𝐈, bTb = 1, (6)

where 𝐚 = [𝐚1,… , 𝐚L] are the orthogonal random weights, and 𝐛 = [b1,… , bL] are

the orthogonal random biases between the input and hidden nodes.

As stated above, ELM-AE’s attractive property is that the output data is actually

the input data, thus, we can calculate the output weights 𝜷 as follows:

𝜷 =
(𝐈
C

+𝐇𝐓𝐇
)−1

𝐇𝐓𝐗. (7)

Finally, we learn representation in an unsupervised way using an ELM based on

autoencoder. Experimental results also turn out that the learning procedure of ELM-

AE is highly efficient and has good generalization capabilities.

Denoising Deep Extreme Learning Machines for Sparse Representation 239

4 Proposed Method

In this part, we intend to focus on our scheme for multilayered representation, and

how this “deep” representation creates a meaningful learning used for the sparse

representation.

4.1 Learning Representation with Deep ELM-AE

Learning high level of representations is vital for achieving better performance.

We can often see stacked autoencoders (SAE) and stacked denoising autoencoders

(SDA), whose outputs are equal the real input. Furthermore, many deep neural net-

works have yielded good performance in various tasks, they are generally very slow

in training phase. Instead, our deep ELM-AE has obvious advantages in the calcu-

lation speed, even though the high dimensional image.

In our paper, we also set the output of an ELM network equal to the input, then,

we will get the new representation ̂X from the whole deep ELM-AE(DDELM-AE).

Figure 1 shows the process of learning a ELM-AE model from the training set X and

what is the representation of X ultimately. We consider a fully connected deep net-

work with L hidden layers and 𝐖 = {𝐖1
,𝐖2

,… ,𝐖L+1} to denote the parameters

of the deep ELM-AE that need to be learned, namely, 𝜷 = {𝜷1,𝜷2,… ,𝜷L+1}. To

reduce the training cost, each layer is decoupled within the network and processed

as an single ELM, of which targets are the same as its inputs. As shown in Fig. 1,

𝐖1
, in other words, 𝜷T

1 is learned by considering a corresponding ELM with 𝐓 = 𝐗.

Fig. 1 A ELM-AE model from the samples of the training set X

240 X. Cheng et al.

The weight vectors connecting the input layer to each unit of the first hidden layer

are orthonormal to each other, effectively leading to projection of the input data to

a random subspace. Compared to initializing random weights independent of each

other, orthogonalization of these random weights tends to better preserve pairwise

distances in the random ELM feature space [16] and improves ELM based on autoen-

coder generalization performance. Next, 𝜷1 is calculated by Eq. (7) depending on the

number of nodes in the hidden layer. Therefore, this projection matrix is data-driven

and hence used as the weights of the first layer (𝐖1=𝜷T
1).

𝜷∗ = min ‖𝐇𝜷 − 𝐗‖2F ,
s.t.𝜷T𝜷 = 𝐈. (8)

Similarly, the value of 𝐖2
is learned by forcing that the input and output of Hid-

den Layer 2 to 𝐇1 i.e. the output of Hidden Layer 1. In this way, all parameters of the

multilayered ELM can be computed step by step. Using (7) does not ensure orthog-

onality of the computed weight matrix 𝜷. Imposing orthogonality in this case results

in a more accurate solution since the data always lies in the same space. Therefore,

the output weights 𝜷 are calculated as the solution to the Orthogonal Procrustes

problem.

In deep ELM-AE, the orthogonal random weights and biases of the hidden nodes

project the input data to a different or equal dimension space. The deep ELM-

AE models can automatically learn the non-linear structure of data in a very effi-

cient manner. Compared with deep neural networks, deep ELM-AE does not require

expensive iterations of fine tuning.

4.2 Using a Denoising Representation

Conventional autoencoder generates a simply copy of the input or similarly uninter-

esting ones trivially maximizes mutual information. A wide variety of modification

of the traditional autoencoder framework have been proposed in order to learn sparse

representations [6]. Pascal Vincent and colleagues introduced a very different strat-

egy and defined a new representation into the mentioned below: “a good represen-

tation is one that can be obtained robustly from a corrupted input and that will be

useful for recovering the corresponding clean input”.

Here we propose a similar but different method. Using DDELM-AE, we get a

clean input 𝐱̂ = f (𝐱) = g(𝐖𝐱 + 𝐛) comparing with the initial input 𝐱. See Fig. 2 for

a denoising representation of the procedure.

Figure 3 shows two pairs of samples, the former is the initial input, the latter is

representations applied the clever mapping f of DDELM-AE. What the representa-

tion DDELM-AE has learned demonstrates the features are denoised.

Denoising Deep Extreme Learning Machines for Sparse Representation 241

Fig. 2 The denoising deep ELM-AE architecture

Fig. 3 Representation before and after performing the DDELM-AE

242 X. Cheng et al.

5 Experimental Results and Analysis

In the same case of K-SVD’s parameters, such as T0 = 5, maximum number of train-

ing iterations is set to 80, the above framework includes a number of parameters that

can be changed: (i) the number of hidden layers, L, (ii) the number nodes of hidden

layers of DDELM-AE, (iii) the ridge parameterC = [C1, C2, C3]. In this section, we

present our experimental results on the impact of these parameters on performance.

First, we will evaluate the effects of these parameters on the USPS dataset and

Coil-20 dataset. Secondly, we will report the results achieved on these two dataset.

Besides, the parameter settings that our analysis suggests is best overall(i.e., in our

final results, we use the same setting for K-SVD algorithm.)

5.1 Digit Recognition

We apply our approach on the real-world handwritten digits classification problem.

We use the USPS database [17] shown in Fig. 4, which contains ten classes of 256-

dimensional handwritten digits. For each class, we select Ntraining = 500 samples

for training and Ntest = 200 samples for testing. Specifically, we choose the follow-

ing parameters for learning the dictionaries for all classes: each class dictionary is

learned with K = 300 atoms, T0 = 5, maximum number of training iterations is set

to 80.

Fig. 4 Random Samples on the USPS database [17]

Denoising Deep Extreme Learning Machines for Sparse Representation 243

We use 𝐘i = [𝐲i,1,… , 𝐲i,N] ∈ 𝐑256×500
to represent the set of training samples

of the ith class, where i ∈ {1,… , 10}. During our training procedure, there are

two sequential stages: we first learn the stable and robust representations through

a DDELM-AE. In the meanwhile, we also get 10 different kinds of deep ELM-AE

model used to reconstruct testing samples later. The whole learning process is a very

efficient and rapid manner in comparison to autoencoder.

In the second stage, K-SVD is applied to get the dictionary of the training set,

𝐃i ∈ 𝐑256×300
, where i ∈ {1,… , 10}. In other words, all above is to get the model

of each class and the dictionary of every training class.

In the test phase, given a query image 𝐳 ∈ 𝐑256×1
, we first perform the DDELM-

AE to get its denoising representation and then implement OMP algorithm(defined

function s) separately for each 𝐃i , to get the sparse code 𝐱i. The sparse setting is

the same as the training phase, namely T0 = 5. Finally, the reconstruction error ri is

computed as:

r(i,N) = ‖‖𝐳 − 𝐃i𝐱i‖‖
2
F = ‖‖𝐳 − (𝐘i𝐗)𝐱i‖‖

2
F ,

i ∈ {1,… , 10}, N = {1,… , 2000},
(9)

where 𝐗 ∈ 𝐑256×300
is sparse coefficient matrix of training samples, 𝐱i ∈ 𝐑300×1

is sparse coefficient matrix of each testing sample and N is the total number of

testing samples. The test sample is simply classified to the class that gives the small-

est reconstruction error.

Before we present classification results, we first show the influence of the number

of the hidden layers and the effect of different hidden nodes between hidden layers.

Number of Hidden Layers. Our experiments consider that how many hidden

layers are favorable for the denoising DELM-AE. Through extensive experiments we

find that 3 hidden layers based on our method is better than 2 layers. Furthermore,

we also realize that increasing the number of hidden layer is not too good in surprise.

Table 1 shows that the effect of with different nodes in the case of two hidden

layers. Extensive experiments turn out 3 hidden layers of DDELM-AE and 50 hidden

nodes in each layer will perform better.

Table 1 Comparison of digit

recognition accuracies for

various hidden nodes in the

case of two hidden layers

(a)

Structure Accuracy (%)

100–50 85.55

100–100 95.4

100–200 84.35

(b)

Structure Accuracy (%)

50–50 95.65

50–100 84.4

50–200 84.4

244 X. Cheng et al.

Ridge Parameters. Through the above experiments, we get a certain conclusion

that we should adapt 3 hidden layers. And we speculate we may get the best result

with 50 neurons in each layer. Next, we will further confirm the setting of parameter

C = [C1, C2, C3]. We set the parameter C in the range from {10−2, 1010} from the

first hidden layer to the last one.

Experiments are repeated with different nodes but all is 2 layers. There are 2

groups of figures which show the effect of C1, C2 to relevant layer with different

nodes. In Figs. 5 and 6, we can see the results with 50 or 100 nodes in the first layers.

Based on experience, we set C3 = 108, and then we obtain the best testing accu-

racy 96.1 % in the case of 50 nodes when C1 = 0.1, C2 = 0.01. Moreover, the result

with 100 nodes is a little poor, only 95.7 % when C1 = 0.1, C2 = 105, C3 = 108.

Final Classification Results. As we have mentioned, we employ the best and

the most applicable number of neurons and hidden layers on the USPS database. In

Table 2 we can see that our proposed method performs better obviously compared

with the traditional K-SVD algorithm.

Fig. 5 Effect of different parameters C1,C2 to each layers with 50 nodes

Fig. 6 Effect of different parameters C1,C2 to each layers with 100 nodes

Denoising Deep Extreme Learning Machines for Sparse Representation 245

Table 2 Test recognition

accuracy on USPS
Algorithm Accuracy (%)

K-SVD 93.1

Proposed method 96.1

5.2 Coil-20 Recognition

In this part, we will report the classification results on the Coil-20 database, which

is established by Columbia Object Image Library and contains 20 classes objects.

The data set consists of gray-level images with 128 × 128 = 16384 pixels in 20

classes. Each class includes 72 images, we take 50 of them as training samples, the

rest are chosen to test. So there are 1000 samples for training and 440 samples for

testing in total.

As same as the setting of USPS, we set T0 = 5, maximum number of train-

ing iterations is still set to 80, and input training samples are the vectorization

of Coil-20 images with the dimension of n = 16384. Similarly, we employ 𝐘i =
[𝐲i,1,… , 𝐲i,N] ∈ 𝐑16384× 50

to represent the set of training samples of the ith class,

where i ∈ {1,… , 20}. And it should be emphasized that each class dictionary is

learned with K = 30 atoms to use the K-SVD algorithm. There are still two sequen-

tial stages during our training procedure like the experiments on the USPS dataset.

And the test phase can also follow the method of the USPS dataset.

Number of Hidden Layers. We use the same parameters setting and verify that

3 hidden layers in the DDELM-AE are better than 2 layers, and more layers are not

useful to the result. Table 3 states the results with different nodes in 2 layers.

Therefore, we decide to use 3 hidden layers with 20 neurons in each layer.

Ridge Parameters. As same as the method of USPS, we still perform the same

experiments on Coil-20 to verify the effect of various C for the results. We find

C1 = 10, C2 = 103, C3 = 108 generates the best testing accuracy.

Final ClassificationResults.Experimental results show that the proposed method

outperforms the conventional K-SVD in the view of classification rate, so the pro-

posed method has more practical value. Our best result is illustrated in Table 4.

Table 3 Comparison of Coil-20 recognition accuracies for various hidden nodes in the case of

two hidden layers

Structure Accuracy (%)

20–20 99.55

20–50 99.41

Table 4 Test recognition

accuracy on Coil-20
Algorithm Accuracy (%)

K-SVD 91.36

Proposed method 99.79

246 X. Cheng et al.

6 Conclusion

In this paper we have conducted extensive experiments on the USPS dataset and

Coil-20 dataset using the representation learned by the denoising deep ELM-AE to

characterize the effect of various parameters on classification performance. When

combining our denoising representation with the K-SVD algorithm, we have shown

more importantly that these elements such as ridge parameter C can be as significant

as our proposed method itself. There are many classical and distinguished method

about denoising such as SAE. However, for sparse representation, our denoising deep

ELM-AE have greater representational power and fast speed. Compared with more

complex algorithms, it can be highly competitive.

Acknowledgments This work was supported in part by the National Key Project for Basic Research

of China under Grant 2013CB329403; in part by the National Natural Science Foundation of China

under Grant 61210013; and in part by the Tsinghua University Initiative Scientific Research Pro-

gram under Grant 20131089295.

References

1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dic-

tionaries for sparse representation. IEEE Trans. Image Process. 54(11), 4311–4322 (2006)

2. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned

dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

3. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans.

Image Process. 17(1), 53–69 (2008)

4. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding

for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) (2009)

5. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse repre-

sentation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

6. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoen-

coders: learning useful representations in a deep network with a local denoising criterion.

Mach. Learn. Res. 11, 3371–3408 (2010)

7. Hinton, G.E., Simon, O.: A fast learning algorithm for deep belief nets. Neural Comput. 18,

1527–1554 (2006)

8. Salakhutdinov, R., Larochelle, H.: Efficient learning of deep boltzmann machines. Mach.

Learn. Res. 9, 693–700 (2010)

9. Huang, G., Zhu, Q., Siew, C.K.: Extreme learning machine: theory and applications. Neuro-

computing 70, 489–501 (2006)

10. Rubinstein, R., Bruckstein, A.M., Elad, M.: Dictionaries for sparse representation modeling.

Proc. IEEE 98(6), 1045–1057 (2010)

11. Elad, M., Mario, A.T., Figueiredo, M.A.T., Ma, Y.: On the role of sparse and redundant repre-

sentations in image processing. Proc. IEEE 98(6), 972–982 (2010)

12. Engan, K., Aase, S.O., Husoy, J.H.: Method of optimal directions for frame design. IEEE Trans.

Signal Process. 5, 2443–2446 (1999)

13. Huang, G., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and mul-

ticlass classification. IEEE Trans. Syst. Man Cybern. 42(2), 513–529 (2012)

14. Tang, J., Deng, C., Huang, G.: Extreme learning machine for multilayer perceptron. IEEE

Trans. Neural Netw. Learn. Syst. 1–13 (2015)

Denoising Deep Extreme Learning Machines for Sparse Representation 247

15. Widrow, B., Greenblatt, A., Kim, Y., Park, D.: The no-prop algorithm: a new learning algorithm

for multilayer neural networks. Neural Netw. 37, 182–188 (2013)

16. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Modern

Anal. Probab. 26, 189–206 (1984)

17. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal.

Mach. Intell. 16(5), 550–554 (1994)

Extreme Learning Machine Based
Point-of-Interest Recommendation
in Location-Based Social Networks

Mo Chen, Feng Li, Ge Yu and Dan Yang

Abstract Researches on Point-of-Interests (POIs) have attracted a lot of attentions
in Location-based Social Networks (LBSNs) in recent years. Existing studies on
this topic most treat this kind of recommendation as just a type of point recom-
mendation according to its similar properties for collaborative filtering. We argue
that this recommending strategy could yield inaccuracy because these properties
could not illustrate complete information of POIs for users. In this paper, we
propose a novel Extreme Learning Machine (ELM) based approach named ELM
Based POI Recommendation (EPR), which takes into account user preference,
periodical movement and social relationship to discover the correlation of a user
and a certain POI. Furthermore, we model recommendation in EPR as the problem
of binary-class classification for each individual user and POI pair. To our best
knowledge, this is the first work on POI recommendation in LBSNs by exploring
the preference property, social property and periodicity property simultaneously.
We show through comprehensive evaluation that the proposed approach delivers
excellent performance and outperforms existing state-of-the-art POI recommenda-
tion methods, especially for cold start users.

Keywords Point-of-Interest recommendation ⋅ Extreme learning machine ⋅
Location-Based social networks ⋅ Classification ⋅ Cold start users

M. Chen (✉) ⋅ F. Li ⋅ G. Yu ⋅ D. Yang
Computing Center, Northeastern University, Liaoning, China
e-mail: chenmo@mail.neu.edu.cn

F. Li
e-mail: lifeng@mail.neu.edu.cn

© Springer International Publishing Switzerland 2016
J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,
Proceedings in Adaptation, Learning and Optimization 7,
DOI 10.1007/978-3-319-28373-9_21

249

1 Introduction

With the rapid growth of wireless communication techniques and the popularity of
mobile devices, a number of location-based social network (LBSN) services, e.g.,
Loopt, Foursqure, FindMe, Facebook Place andWheel, have emerged in recent years.
All these LBSN applications allow users to record their visits to point-of-interests
(POIs) and share them, e.g., stores, cinema, restaurant, etc., to friends or other users.
These services could provide people with more opportunities to experience life than
ever before. Generally, users can share POIs to their friends on social network,
meanwhile find new interesting spots to go according to other users’ visiting records.
For this reason, how to efficiently make a satisfying decision among the large number
of POIs in LBSNs becomes a tough problem, which makes POI recommendation be a
hot and interesting research area.

In the traditional recommendation approaches, collaborative filtering techniques
are widely adopted, which provide better performance than content-based filtering
techniques. User-item matrix is utilized in collaborative filtering approach to gen-
erate a prediction. However, in LBSNs, there are three aspects different form tra-
ditional recommendation, including social network, user movement and preference
factors. For example, people prefer to visit the spots which have been visited by
their friends, moreover, they are more likely to visit a spot which is nearer to users’
POI that they are in favor of. Finally, it is less possible for a user to check in the
spots that has big deviation from users’ preference.

In this paper, we propose a novel POI recommendation approach, which inte-
grates user preference, periodical movement and social relationship through
extreme learning machine (ELM), named Extreme machine learning Based
Point-of-interest Recommendation (EPR). We extract features of user and POI pair
(named UP pair for short) in the above three aspects. The features extracted from
user preference, corresponding to a given UP pair, can be derived by modeling
topic associations between observable properties of users and spots. To consider the
factor of users’ periodical movement, we extract the feature from temporal and
geographical distributions of users’ check-ins by capture the relevance of two POIs.
In addition, social relationships of users have significant influence on their check-in
behavior, based on which we can extract the third feature.

The rest of the paper is organized as follows. We briefly review the related work
in Sect. 2 and describe our POI recommendation approach EPR in Sect. 3. Results
of experiments are shown in Sect. 4, and we conclude this paper in Sect. 5.

2 Related Work

In the POI recommendation researches, most existing approaches focus on dealing
with similarity measurement for making recommendations. Huang et al. [1] build a
Bayesian network model to recommend locations using business hours of a store,

250 M. Chen et al.

stay duration on a location and user occupation. Ye et al. [2] propose a unified POI
recommendation framework, which fuses user preference to a POI with social
influence and geographical influence. Hsieh et al. [3] argues a good route should
consider the popularity of places, the visiting order of places, and the proper transit
time from one place to another. In comparison with the traditional approaches in
1 and 2, the trip route recommendation in [3] is more suitable for tourists in traveling
mode. Some works [4–6] proposed collaborative filtering approaches using social
networks for POI recommendation. Memory-based collaborative filtering approa-
ches are proposed in [4, 5], while a model-based collaborative filtering approach is
proposed in [6]. All of the three papers search users’ friends in the social network
and recommend POIs visited by his/her friends. There are some other works [7–10]
for top-k POI recommendation, which are not based on social networks. The most
related study to our work so far is [11] which exploring the geographic, textual and
social properties on followed recommendation in LBSNs. To our best knowledge,
this is the first work on POI recommendation in LBSNs by exploring user prefer-
ence, periodical movement and social friendship simultaneously.

3 ELM Based Point-of-Interest Recommendation

The problem of personalized POI recommendation is to recommend POIs to a user.
As discussed earlier, the traditional POI recommendations could not work well. The
reason is that traditional social-based POI recommendations always make recom-
mendation by identifying the k most similar users to the active user, and then
aggregate the similar users’ choices to make recommendation. In our approach, POI
recommending based on not only social factor but also POIs generated data and
users’ personalized check-in behaviors. Let U = {u1, u2,…,un} be a set of users and
each user ui has observable properties xi, e.g., a user’s profile. Let P be a set of POIs,
and each ui has a set of checked spots Pi, of which the locations are represented by
<longitude, latitude>. Meanwhile, the check-in time of each user is also recorded by
system. Observable properties yk of each spot pk is usually obtained by it’s textual
description. Moreover, users usually do not offer explicit ratings to a spot in most of
LBSN applications, we regard a user’s number of check-ins as the score of this spot.

We explore three different aspects which can affect POI recommendation,
including user preference, periodical movement and social relationship. given a set
of users U and point-of-interests P, the problem of POI recommendation can be
formulated as classifying the relation of a given ordered UP pair, ui and pk, into
binary class, 1 and 0. Here, class 1 means that recommends point pk to user ui, and
class 0 means that does NOT recommends pk to ui.

f uijpkð Þ→ 0, 1f g,where ui ∈U and pk ∈P ð1Þ

The features are extracted based on prompted aspects above, corresponding to a
given UP pair. We give the details of the approach in the following section.

Extreme Learning Machine Based Point-of-Interest Recommendation … 251

4 Feature from User Preference

As mentioned above, user preference is an important factor to POI recommenda-
tion. There are two aspects contribute to user preference: one is how the user is
interested in the spot and the other one is how popular the spot is. First, we calculate
the user interesting score of a spot pk, which plays a very important role in user
preference. If a user prefers coffee to other drinks, the user is more interested in
going to a coffee shop. Thus interesting score is extracted from textual feature
description of users’ profile and spots’ tags. We adopt the aggregated LDA model
in [12] to explore the observable features. The latent Dirichlet Allocation
(LDA) model is a popular technique which can identify latent topic from a large
document collection. Based on the model, we use proposed matrix factorization
approach in [13] to obtain the interesting score:

inðui, pkÞ=uTi pk + xTi Wyk ð2Þ

where ui and pk are user ui and spot pk factors, xi and yk are user and spot properties
respectively, and W is a matrix used to transfer the observable prosperity space into
the latent space.

As we know, popularity can affect the user check-in behavior deeply. Individ-
ual’s decision to check in a POI is affected by its world wide opinions, which can be
viewed as the popularity of POI. Thus, we calculate the popular score of each spots
in P, which is involved in the later feature extraction. We normalize the popularity
score for a spot pk by following equation [12]:

pok =
1
2

TpeðpkÞ− 1
maxðTpeðpkÞÞ− 1

+
TchðpkÞ− 1

maxðTchðpkÞÞ− 1

� �

ð3Þ

where Tpe(pk) and Tch(pk) are the total numbers of people have visited in pk and the
times they check in there respectively. Furthermore, max() is an operation of cal-
culating the maximum value.

We extract a feature from user preference property based on the above calcu-
lations which can be represented as a linear combination of interesting score and
popularity score as follows:

UPreferðui, pkÞ= inðui, pkÞpok ð4Þ

5 Feature from Periodical Movement

A lot of studies have shown that temporal and geographic periodicity influences
user check-ins. Intuitively, we expect some types of spots are visited regularly
during the same times of the day. For example, some users go to café for afternoon

252 M. Chen et al.

tea, while some other users like go shopping after work. In order to explore peri-
odicity of user movement, we separate a daily time into several time periods with
different segment, i.e., TP = {tp1, tp2,…,tpm}, of which an example is described in
the following Table 1 (m = 5).

One simple but effective way to quantify the correlation of temporal periodicity
of two spots (e.g., pk and pd) in tpi is as follows:

sim tpiðpk, pdÞ= ch tiðpkÞ+ ch tiðpdÞ
∑m

i=1 ch tiðpkÞ+ ch tiðpdÞð Þ ð5Þ

where ch_ti(pk) and ch_ti(pd) represent total check-in number of pk and pd in period
tpi respectively. Then we normalized the similarity value into [0, 1]:

sim tp♢i ðpk , pdÞ=
sim tpiðpk, pdÞ− minmn=1ðsim tpiðpk, pdÞÞ

maxmn=1ðsim tpiðpk , pdÞ− minmn=1ðsim tpiðpk , pdÞ ð6Þ

Some works have shown that geographical proximities of spots have a signifi-
cant influence on users’ check-in behavior. Ye et al. [2] verifies the phenomenon
that users are interested in exploring nearby spots of a POI that they are favor of,
even it is far away from home. As a result, the spots visited by the same user have
an implicit influence to POI recommendation. Thus in the following, we explore the
geographical influence based on user existed check-in behavior at POIs, aiming to
utilize it in feature extraction. We model the personalized distribution of the dis-
tance between any pair of spots visited by user ui using kernel density estimation
[14], since it is not limited to any distributions and without the assumption that the
distance distribution is known. Given a spot pd which belongs to user ui’s set of
checked spots, we compute the Euclidean distance between the two spots as
follows:

disðpk , pdÞ=
ffi

ðxk − xdÞ2 + ðyk − ydÞ2
q

, ∀pd ∈Pi ð7Þ

Let SDi be the sample for ui that is drawn from some distribution with an
unknown density fi, its kernel density estimator f ̂over distance dis(pk, pd) using SDi

is given by:

f îðdisðpk, pdÞÞ=
1

jSDijh ∑
sd′i ∈ SDi

Kðdisðpk , pdÞ− sd′i
h

Þ ð8Þ

Table 1 Example of time period segmenting

Name tp1 tp2 tp3 tp4 tp5
Time period 7:00–9:00 11:00–13:00 15:00–16:00 17:00–20:00 20:00–24:00

Extreme Learning Machine Based Point-of-Interest Recommendation … 253

where K(.) is the kernel function and h is bandwidth. In this paper, we adopt the
most popular normal kernel:

KðxÞ= 1
ffiffiffiffiffi

2π
p e−

x2
2 ð9Þ

and the optimal bandwidth [15] is as follows where σ ̂ is the standard deviation of
the sample in SDi:

h=
4σ5̂

3n

� �1 5̸

≈1.06σ ̂n− 1 ̸5 ð10Þ

We obtain the geographical influence measurement of Pi to pk by taking the
mean probability as follows:

p geðpkjPiÞ= 1
jPij ∑

jPij

d=1
f ð̂disðpk , pdÞÞ ð11Þ

Finally, we can exploit the periodicity of user movement by fusing temporal and
geographic periodicity measurement, based on which we can efficiently extract the
feature:

UMoveðui, pkÞ= η ⋅ sim tpiðpk , pdÞ+ ð1− ηÞ ⋅ p geðpkjPiÞ ð12Þ

where parameter η is used to adjust the weight of temporal and geographical
influence. For example, during the work week users check-in behaviors are more
regular than weekend since they may go to the spots roughly at the same time
period, while they prefer long-distance travel during weekend or holidays.
Short-distance check-ins are more correlated with periodical movement, while
long-distance check-ins is more influenced by geographical movement.

6 Feature from Social Relationship

Usually, friends have similar behavior because they might share a lot of common
interests, which leads to similar check-in behaviors [16, 17]. For example, friends
may hang out to have dinner together, or a user prefer to go to the restaurant
recommended by his friends. In a word, users’ check-in behaviors might be
potentially affected by their friends. Thus we need to take into account of social
influence based on social friendship for POI recommendation. Moreover, it is not
possible that every friend of a user has the similar interest with him. Perhaps they

254 M. Chen et al.

are just only “social” friends. For example, a user is a foodie traveler meanwhile his
colleague likes visiting museums. Therefore, user-user similarity is calculated
which leads to more accurate recommendation. We combine the user similarity
from friendship with similarity from check-in behaviors.

We use check-in matrix to describe users’ check-in behavior, in which users’
check-in records are viewed as feature vectors. Every user vector consists of
n feature slots, one for each available spot. The value of each slot can be either the
check-in number that counts the total number of a user ui checks in spot pk, or 0 if
no such check-in record. We can compute the proximity between two users ui and uj
by calculating the similarity between their vectors. We use Cosine Similarity as
follows:

Sim chðui, ujÞ= Chi ⋅Chj
Chik k Chj

�
�

�
�

ð13Þ

where Chi and Chj are two vectors of check-ins from users ui and uj respectively. In
order to avoid sparse problem when few spots are checked in, we limit the length of
the vectors to parameter l. Interaction matrix is used to represent user-user similarity
based on their social friendship. If user ui give a comment on uj’s check-in infor-
mation on the social network, we consider it as an interaction. If the number of the
comments given by ui to uj is x, the value of cell coij is x. Otherwise, the value is 0.
Considering individual user has different social interaction habit, for example some
users may like to comment each updated status information of their friends while
others may not like to comment frequently, we obtain user similarity by Adjusted
Cosine Similarity based on this interaction matrix as follows:

Sim coðui, ujÞ=
∑ui, j ∈U ðcoij − coiÞðcoji − cojÞ

ffi

∑ui, j ∈U ðcoij − coiÞ2
q ffi

∑ui, j ∈U ðcoji − cojÞ2
q ð14Þ

where coi is the average of the number of user ui’s total comments.
Fusing Similarity is calculated by combing above two similarities in a weighted

way as follows:

Simui, uj =ω ⋅ sim chðui, ujÞ+ ð1−ωÞ ⋅ sim coðui, ujÞ ð15Þ

Parameter ω is a tuning parameter ranging within [0, 1]. The bigger ω is, the
more important role that behavior similarity plays. In other words, we can tune the
influence of either check-in behavior or interaction to users’ similarity calculating.

For a given UP, its inter correlation could be depicted by measuring the ratio of
u’s friends that have checked in p to all the friends of u. We extract a feature to
formulate the social property of a UP pair named UFriend:

Extreme Learning Machine Based Point-of-Interest Recommendation … 255

UFriend ui, pkð Þ=
sim

ui , uj ∈U†i

∑
uj ∈U†i

simui , uj
chðuj, pkÞ ð16Þ

where U†
i is the set of friends of ui with top-N fusing similarity. Notice that the size

of friends set Ui is usually much smaller than user set U. For a given user, only his
friends are involved in the similarity calculation and contribute to feature extraction.
Thus, we estimate the computation cost for the feature extraction is |Ui||P| + N|P|.

7 POI Recommendation

After the phase of feature extraction, features derived from all of user preference,
social relationship and attraction of locations are used as inputs for the POI rec-
ommendation phase to learn a classification model for each UP pair. We choose
ELM to classify the data, because compared with other traditional learning algo-
rithms for recommendation tasks, ELM provides extremely faster learning speed,
better generalization performance and with least human intervention.

The proposed ERP approach is designed a two-phase algorithm, as shown in
Fig. 1, to address the problem of UP pair similarity mining for POI recommen-
dation. The first phase processes the feature extraction (lines 1 to 4), while the
second phase describes the POI recommendation (lines 5 to 7). Feature extraction
explores three aspects that are discussed in introduction, such as user preference,
social relationship and attraction of location. These features are used to learn an
ELM model for each POI to classify whether the spot could be recommended to the
user.

Input: Users Set U

POIs Set P

Check-in Datasets D

Output: Classification Result R

1. Feature Set F // Feature Extraction

2. F F UPrefer(u,p)

3. F F UMove(u,p)

4. F F UFriend(u,p)

5. Training Set T F D // POI Classification

6. Classifier C ELM(T)

7. R C(U P)

Fig. 1 EPR algorithm

256 M. Chen et al.

8 Experiments

In this section, we conduct a series of experiments to evaluate the performance of
our method. All the experiments are implemented on Intel Core i5-3320M CPU
2.60 GHz machine with 4 GB of memory running Microsoft Windows win7. We
use the Foursquare dataset for our experiments, and we show the results of our
experiments as the following discussions.

We extract the data from 04/2011 to 06/2011, which correspond to the city of
New York and Chicago, denoted by NY and CH respectively. In New York, the
number of the users is 6978, the number of the POIs is 49,021, the number of users’
check-ins is 368,346. In Chicago, the number of the users is 5403, the number of
the POIs is 44,132, the number of users’ check-ins is 367,437. All of the data is
divided into the training data and the testing data. About 80 % of the data is training
data, and others are the testing data.

Precision =
p+

p+ + p− ð17Þ

Recall =
p+

R
ð18Þ

Fig. 2 Comparison with
various recommenders

Extreme Learning Machine Based Point-of-Interest Recommendation … 257

As the earlier study, The Precision, Recall are defined as followed, where p+ and
p− indicate the number of correct recommendations and incorrect recommendations,
and R indicates the total number of links in the testing data. Our experiment eval-
uates the effectiveness of our method (EPR) comparing with User-based Collabo-
rative Filtering (UCF) and Item-based Collaborative Filtering (ICF). UCF and ICF
are two main approaches in POI recommendation, of which the former aggregate
k similar users to make recommendation and the latter computes the k most similar
spots for each spot to make recommendation. The results are shown as below.

Figure 2 shows the performance of all approaches under evaluation. The
experiments use both NY and CH datasets. The precision and recall for them are
plotted in the two figures. In these figures, EPR always exhibits the best perfor-
mance in terms of precision and recall, showing the strength of combines all three
factors of user preference, periodical movement and social friendship influence. The
results show that our approach outperforms UCF by about 22 and 32 % improve-
ment in precision and recall performance averagely in dataset NY and CH, and

Fig. 3 Tuning parameter η

258 M. Chen et al.

outperforms ICF by about 36 and 42 % improvement in precision and recall
respectively.

As mentioned, parameter η can be controlled to tune the influence of either
temporal or geographical factor to POI recommendation. Here we vary it in EPR to
understand the roles of these two factors plays in our datasets.

Figure 3 shows the performance results of EPR under different η settings. The
optimal value of η can be observed from the figures, which will lead an optimal
tradeoff between precision and recall. For different datasets, the optimal value of is
different since the proportion of users with short-distance travel habit varies, but
usually η can be set in [0.5, 0.6].

In Fig. 4, we examine recommendations for cold start users whose numbers of
friends less than 3 and less than 5 check-ins as the cold start users. As shown in the
figures, the EPR method is more effective than the other two methods for the cold
start users. Note that ICF and UCF perform worse for cold start users due to lack of
user records because the two filtering methods cannot calculate similarity on little
users’ history data accurately. In addition, EPR for cold start users outperforms EPR
for general users both in precision and recall.

Fig. 4 Comparison with
various recommenders for
cold start users

Extreme Learning Machine Based Point-of-Interest Recommendation … 259

9 Conclusions

In this paper, we have proposed a novel approach named Extreme machine learning
Based Point-of-interest Recommendation (EPR) for recommendation of POIs by
mining the relationships of users and POIs. The core task of POI recommendation
can be transformed to the problem of binary classification. We evaluate the pos-
sibility of each UP pair by learning ELM model. In EPR, we have explored user
preference, social relationship and periodical movement by exploiting the check-in
data in LBSN to extract descriptive features. To our best knowledge, this is the first
work on POI recommendation that consider preference property, social property
and mobility property for user and OPI pairs simultaneously. Through a series of
experiments by on the real datasets obtained from Foursquare, we have validated
our proposed EPR. As for the future work, we plan to design more advanced
classification strategies to enhance the quality of POI recommendation for LBSNs.

Acknowledgments The research is supported by NSFC No. 61402093 and 61402213, Funda-
mental Research Funds for the Central Universities N141604001.

References

1. Huang, Y., Bian, L.: A Bayesian network and analytic hierarchy process based personalized
recommendations for tourist attractions over the internet. In: Expert Systems with
Applications, pp. 933–943 (2009)

2. Ye, M., Yin, P., Lee, W.C., Lee, D.L.: Exploiting geographical influence for collaborative
point-of-interest recommendation. In SIGIR, pp. 325–334 (2011)

3. Hsieh, D.L., Li, C.T., Lin, S.D.: Exploiting large-scale check-in data to recommend
time-sensitive routes. In: UrbComp, pp. 55–62 (2012)

4. Chen, X., Zeng, Y., Cong, G., Qin, S., Xiang, Y., Dai, Y.: On information coverage for
location category based point-of-interest recommendation. In: AAAI, pp. 37–43 (2015)

5. Gao, H., Tang, J., Liu, H.: gSCorr. Modeling geo-social correlations for new check-ins on
location-based social networks. In: CIKM, pp. 1582–1586 (2012)

6. Cheng, C., Yang, H., King, I., Lyu, M.R.: Fused matrix factorization with geographical and
social influence in location-based social networks. In: AAAI (2012)

7. Liu, B., Fu, Y., Yao, Z., Xiong, H.: Learning geographical preferences for point-of-interest
recommendation. In: KDD, pp. 1043–1051 (2013)

8. Yin, H., Sun, Y., Cui, B., Hu, Z., Chen, L.: Lcars: a location-content aware recommender
system. In: KDD, pp. 221–229 (2013)

9. Hu, B., Jamali, M., Ester, M.: Spatio-temporal topic modeling in mobile social media for
location recommendation. In: ICDM, pp. 1073–1078 (2013)

10. Hu, B., Ester, M.: Spatial topic modeling in online social media for location recommendation.
In: RecSys, pp. 25–32 (2013)

11. Ying, J., lu, E., Tseng, V.: Followee recommendation in asymmetrical location-based social
networks. In: UbiComp, pp. 988–995 (2012)

12. Liu, B., Xiong, H.: Point-of-interest recommendation in location based social networks with
topic and location awareness. In: SDM, pp. 396–404 (2013)

13. Liu, B., Fu, Y., Yao, Z., Xiong, H.: Learning geographical preferences for POI
recommendation. In: KDD, pp. 1043–1051 (2013)

260 M. Chen et al.

14. Zhang, J., Chow, C.: iGSLR: personalized geo-social location recommendation-a kernel
density estimation approach. In: GIS, pp. 324–333 (2013)

15. Silverman, B.: Density estimation for statistics and data analysis. Chapman and Hall, Boca
Raton (1986)

16. Ma, H., King, I., Lyu, M.R.: Learning to recommend with social trust ensemble. In SIGIR,
pp. 203–210 (2009)

17. Ma, H., Yang, H., Lyuand, M.R., King, I.: SoRec: social recommendation using probabilistic
matrix factorization, pp. 931–940 (2008)

Extreme Learning Machine Based Point-of-Interest Recommendation … 261

The Granule-Based Interval Forecast
for Wind Speed

Songjian Chai, Youwei Jia, Zhao Xu and Zhaoyang Dong

Abstract With the increasing penetration of wind power in modern power sys-
tems, sound challenges have emerged for system operators due to the uncertain
nature of wind power. Deterministic point forecasting has become less effective to
power system operators in terms of information accuracy and reliability. Unlike the
conventional methods, a granule-based interval forecasting approach is proposed in
this paper, which effectively considers the uncertainties involved in the original
time series and regression models, other than only generating a plausible yet less
reliable value. By incorporating Extreme Learning Machine (ELM) into the gran-
ular model construction, a specific interval can be simply obtained by granular
outputs at extremely fast speed. Case studies based on 1-min wind speed time series
demonstrate the feasibility of this approach.

Keywords Wind speed forecast ⋅ Information granule ⋅ Granular time series ⋅
Extreme learning machine (ELM) ⋅ Granular ELM

S. Chai (✉) ⋅ Y. Jia ⋅ Z. Xu
Department of Electrical Engineering, The Hong Kong Polytechnic University,
Hong Kong, China
e-mail: sj.chai@polyu.edu.hk

Y. Jia
e-mail: corey.jia@connect.polyu.hk

Z. Xu
e-mail: eezhaoxu@polyu.edu.hk

Z. Dong
School of Electrical and Information Engineering, The University of Sydney,
Sydney, NSW, Australia
e-mail: zydong@ieee.org

© Springer International Publishing Switzerland 2016
J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,
Proceedings in Adaptation, Learning and Optimization 7,
DOI 10.1007/978-3-319-28373-9_22

263

1 Introduction

The surging growth in the wind energy sector has changed the electricity mix in
many countries and brought significant environmental benefits for last decade. The
energy structure has been changed with more and more fossil fuels being displaced
by renewable energies, especially for wind energy, which turn out to be more
environmental friendly. Over the last decade, the installed capacity of wind power
has increased remarkably all around the world. In the Europe, electricity generated
by wind shares 8 % of total electricity generation by the end of 2013 [1]. In
Denmark, such amount even reached 33.2 % of national electricity generation in the
same year.

In the modern power system, forecasting accuracy of wind power/wind speed
has significant influences on reliable system operation and electricity market par-
ticipants. Wind power producers are required to take part in the bidding and system
operation by providing day-ahead generation profiles and undergoing penalties in
case of deviations from the schedule. The grid operators could determine the
reverse capacity and the strategy of generation commitment and dispatch based on
the forecasting results. However, prediction errors always exist due to the vari-
ability and intermittence of the wind power. This always gives rise to potential risks
to power system security and reliability, and economic loss to energy producers.
Therefore, it is important to evaluate the uncertainties associated with the deter-
ministic wind energy forecasts, and incorporate the knowledge into the operating
practices.

Generally, the stochastic uncertainty and knowledge uncertainty [2] are regarded
as the two main contributors to the prediction errors in a modeling system. The
former is relevant to the inherent variability of the observed values due to the
natural physical phenomenon, measured error, device failure and the like; the latter
reveals the uncertainty in knowledge transfer, such as imperfect representation of
processes in a model, the imperfect knowledge of the parameters associated with
these processes, etc. Recently, information granule [3] has been attracting much
attention as its underlying idea is intuitive and appeals to our commonsense rea-
soning [4]. By being abstract constructs, information granules and their ensuing
processing provide a powerful vehicle to deal with an array of decision-making,
control and prediction problems. In this paper, the information granule is utilized to
quantify the underlying uncertainties in the forecasting system. By granulating
model inputs and parameters through e.g. interval, rough set, and fuzzy set, a
granular input-output mapping can be established; the results produced by the
granular model are also granular. In this manner, they become reflective for various
possible attributes in the process of knowledge transfer. In addition, ELM is
employed as the basis model to construct granular ELM. Granular outputs are
obtained by both coverage and specify criterion. That is, the optimal performance
index makes sure the coverage criterion is satisfied to the nominal coverage rate
while the average width of granular outputs maintains narrow.

264 S. Chai et al.

The remainder of this paper is organized as follows. Section 2 describes four
methods of granulating the original time series. Section 3 proposes the granular
ELM and its underlying training strategy, where the granular parameters are
selected by means of particle swarm optimization (PSO) algorithm. Case studies are
reported in Sect. 4. 1-min wind speed dataset measured by Hong Kong Observatory
are used to test the proposed granular model. Section 5 concludes this paper.

2 Information Granulation of Time Series

The granulation of time series aims to capture the variability and abstract the
complexity of the time series with high volatility and intermittent, thus properly
quantifying the uncertainty of inputs. The basic idea of granular time series is to
build a collection of temporal windows with larger time scale by the approaches
like intervals, rough sets, fuzzy sets and probabilistic density function (PDF) [3]. In
this paper, the interval and fuzzy representation [2, 5] has been applied to the 1-min
wind speed inputs using four different methods.

2.1 Interval Representation

The frequently used methods to represent interval information granule are min-max
based granulation (min-max-Gr) and mean-std based granulation (mean-std-Gr).
The min-max-Gr method aims to construct the intervals by taking the minimum and
maximum value of certain larger time segment, which can be formulated as

Xi = xi, 1, xi, 2, . . . , xi, kf g→Gi = ½minðXiÞ, maxðXiÞ� ð1Þ

where Xi is the original time series belonging to the ith time window, k is the length
of each time segment, which is a user-dependent variable.

Mean-std-Gr method characterizes the variability in each time window by two
statistical parameters, the average value and standard deviation, as described by

Xi = xi, 1, xi, 2, . . . , xi, kf g→Gi = mean Xið Þ− std Xið Þ, mean Xið Þ+ std Xið Þ½ � ð2Þ

2.2 Fuzzy Sets Representation

The fuzziness of granules, their attributes and their values is characteristic of ways
in which humans granulate and manipulate information [6]. In this paper, the
membership-function-based granulation (MF-Gr) and fuzzy c-means clustering
based granulation (FCM-Gr) are considered.

The Granule-Based Interval Forecast for Wind Speed 265

MF-Gr approach is mainly based on fuzzy membership function theory [7]. The
commonly used membership functions include triangular membership function,
trapezoidal membership function and Gaussian membership function. For simplify,
only the triangular membership function is utilized in this paper.

The subseries Xi is firstly sorted and divided into Slow, i = x′i, 1, . . . x′i, ½k 2̸�
� �

and
Sup, i = x′i, k 2̸½ �+ b, . . . x′i, k

� �

, where [k/2] represents the maximal integer not more
than [k/2], when k is even b = 1, otherwise, b = 2. Based on the triangle mem-
bership function theory, the low granule and up granule is produced by Slow,i and
Sup,i, respectively, and are expressed by [5].

Glow, i = ð2 ∑
½k ̸2�

j=1
x′i, jÞ ̸½k ̸2�−medianfx′i, 1, x′i, 2, . . . , x′i, kg

Gup, i = ð2 ∑
k

j= ½k ̸2�+ b
x′i, jÞ ̸ðk− ½k ̸2�− b+1Þ−medianfx′i, 1, x′i, 2, . . . , x′i, kg

8

>>><

>>>:

ð3Þ

Hence, the Xi = {xi,1,xi,2,…,xi,k} is granulated as Gi = [Glow,i, Gup,i].
Similarly, FCM-Gr approach also takes advantages of fuzzy sets theory that each

data point could belong to two or more clusters with different degrees of mem-
bership measured in [0,1], thus giving the flexibility to represent the membership
relationship of each data. Further, the shape of membership function is not required
to be pre-assumed in this method; instead, it depends on the clusters’ centers to
establish low and up granules [5]. The algorithm is presented as follows:

1. Initialize the partition matrix U (0) = [umn], m = 1, 2,…,k.
2. Calculate the centers vector C(t) = [cn] with U(k) at tth step, where

Cn = ∑k
m=1 u

l
mnxi,m ̸∑k

m=1 u
l
mn.

3. Update U (k), U (k+1) by umn =1 ̸ ∑C
t=1 xi,m − cnk k ̸ xi,m − ctk k2 ̸ðl− 1Þ

� �� �

.

4. If Uðk+1Þ −UðkÞ�
�

�
�< ξ then stop; otherwise, return to step 2. where ξ is termi-

nation criterion between 0 and 1.

Here, we take C = 2, that is two clusters in each time segment. Finally, the
smaller center clow,i is set as low granule and the larger one cup,i is set as up granule,
Gi = [clow,i, cup,i].

3 Construction of Granular ELM

3.1 Extreme Learning Machine (ELM)

A novel learning algorithm termed as Extreme Learning Machine (ELM) is pro-
posed in [8] to train single hidden-layer feedforward neural networks (SLFNs). In
this algorithm, the input weights and biases of hidden nodes are randomly assigned

266 S. Chai et al.

and free to be tuned further. The output weights of SLFNs are analytically deter-
mined by a direct matrix calculation. According the experimental results reported in
[8], ELM achieves better generalization performance with extremely fast learning
speed. In this paper, ELM is utilized to efficiently generate Granular outputs. ELM
algorithm is briefly introduced in the following.

Given N arbitrary distinct samples fðxi, tiÞjxi ∈Rn, ti ∈RmgNi=1, where xi denotes
the input vector and ti denoted the target vector. ELM with a specific activation
function gð ⋅ Þ and randomly assigned input weights and biases can efficiently
approximate all sample data with zero error:

f ðxjÞ= ∑
L

i=1
βigðwixj + biÞ= tj, j=1, 2, . . . ,N

∑
L

i=1
βigðwixj + biÞ= oj, j=1, 2, . . . ,N

∑
N

j=1
jjoj − tjjj=0

ð4Þ

where wi is the weight vector associated with the ith hidden node and all input
nodes; βi is the weight vector associated with the ith hidden node and all output
nodes; bi is the threshold of the ith hidden node; and L is the number of hidden
neurons. Equation (4) can be rewritten as the following matrix form:

Hβ=T

where H is expressed as:

H =
gðw1x1 + b1Þ . . . gðwLx1 + bLÞ

⋮
gðw1xN + b1Þ . . . gðwLxN + bLÞ

2

4

3

5

β and T are respectively expressed as:

β=
βT1
⋮
βTL

2

4

3

5

L×m

and T =
tT1
⋮
tTN

2

4

3

5

N ×m

Since the input weights and biases are random assigned, training an SLFN based
on ELM is equivalent to obtaining the smallest norm least-squares of the linear
system in Eq. (4), which is expressed as:

β* =H†T

where H† is the Moore-Penrose generalized inverse of H [9].

The Granule-Based Interval Forecast for Wind Speed 267

ELM effectively overcomes the limitation of high computational burdens of
traditional gradient-based neural networks, which best suits the requirement in our
application to achieve timely interval forecasting.

3.2 Granular ELM (GELM) Training Strategy

The granular neural network (GNN) was first introduced by Pedrycz [10, 11], where
the parameters presented in the original neural network are regarded as information
granules rather than numeric entities to account for the uncertainties in the process
of knowledge transfer, the general architecture is shown in Fig. 1. Hence, the
traditional numeric learning issue is transformed into a granular regression problem.
Essentially, the granular parameters are trained using an optimization vehicle
aiming at minimizing a cost function in terms of different performance index, such
as interval error function [12, 13], coverage criterion [11] and alike. However, the
quality and efficiency of the optimization process might be negatively affected by
the large number of model parameters (double of the number of the original
numeric parameters) to be optimized and the complex interval arithmetic. In order
to tackle this issue, this paper proposes a novel ELM-based granular neural network
(GELM), which could immensely take advantages of the wealth of well-established
learning strategies of ELM, as described in Sect. 3.1.

The entire training process is outlined as follows. The low granules Glow and up
granules Gup are extracted to train two numerical ELM networks with the same
structure and same values of input weights and bias, respectively. Hence, two sets
of numerical output weights β

ini
and β

ini
corresponding to up and low granules are

determined. Afterwards, a spread percentage vector s= si, si½ �, i=1, 2, . . . ,mf g is
introduced, where si ranges in [−100, 100 %] and is assigned to each obtained
output weight value, which can be formulated as,

β
i
, β

i

h i

= β
i, ini

+ si βi, ini

�
�
�

�
�
�, βi, ini + si βi, ini

�
�
�

�
�
�

h i

ð5Þ

..
.

..
.

..
.

..
.1 1 1[,]G x x=

[,]n n nG x x=

11 11[,]w w

[,]nm nmw w

1 1[,]

Input Layer Hidden Layer Output Layer

[,]m m

1 1[,]b b

[,]m mb b

[,]i i iG x x= [,]Y L U=

Fig. 1 Architecture of
granular neural network

268 S. Chai et al.

Finally, the whole learning process is well articulated and translated into the
optimization stage only concerned with the design asset si. In this sense, the number
of parameters to be optimized is significantly reduced and the searching space is
narrowed. Furthermore, the topology of traditional neural network is augmented
and simplified since the granular values of input weights and bias can be regarded
as crisp values, which are randomly generated and as same as that in the
well-trained numerical ELM networks.

3.3 Optimal Granular Prediction Outputs Construction

The granular outputs of GELM are evaluated by certain performance indices with
regard to the numeric targets according to the required physical meaning of the
underlying problem. Generally, the targets could be regarded as the means of each
subseries, the real data points with original resolution, as well as the granular data [2].

In this paper, we evaluate the derived granular outputs in the light of both
average coverage rate (ACR) and level of specificity with regard to the means of
every granulation time window.

Average Coverage Rate (ACR): This criterion means the probability of the real
targets lie in the granular outputs, defined as

ACR=
1
Nt

∑
Nt

i=1
ci ð6Þ

where Nt is the number of targets, and ti is the real target. If ti is included in the PI,
ci = 1; otherwise, ci = 0. Normally, a normalized coverage rate is assumed asso-
ciated with the underlying granular outputs (e.g. 95, 90, 80 %). ACR is expected to
be closet to the nominal probability. Hence, another evaluation index, Absolute
Coverage Error (ACE), is introduced, indicating the difference between nominal
coverage probability and estimated average coverage rate. Apparently, ACE should
be diminished towards zero.

Specificity: It is focused at expressing a level of specificity of the granular
outputs produced by the GELM, which is defined as the average width of the
granular outputs, expressed by

Sp=
∑Nt

i=1 G ̂up, i −G ̂low, i
�
�

Nt
ð7Þ

where Ĝi = ½Ĝlow, i,G ̂up, i� is the granular output with Ĝlow, i and Ĝup, i as the lower
and upper bound, respectively.

The Granule-Based Interval Forecast for Wind Speed 269

Normally, these two criterions are very likely in conflict, hence they should be
combined together to construct the cost function in Eq. (8)

sopt = argminðACE+ SpÞ ð8Þ

After obtaining the optimal spread percentage vector, the optimal GELM
parameters are finally determined.

4 Case Study

In this section, the proposed GELM is tested on a very-short-term forecast (i.e. one
time step) based on data measured by Hong Kong Observatory from January 1st, to
December 30th, 2013, which comprises 525,600 pieces of data in total. By utilizing
the granulation approaches introduced in Sect. 2, 17,520 and 8760 granules are
respectively obtained in 30-min and hourly time window. Among the granular time
series, the first 80 % of samples are used to train GELM, and the remaining is used
for validation. All the measured data are pre-normalized into [0.1, 0.9] and 95 %
nominal coverage rate is assumed. Experimental results based on different granu-
lation methods are reported in Table 1.

As is shown in Table 1, there is no significant difference between the training
results and testing results, and all testing ACR values are close to the nominal
coverage rate 95 % with narrow prediction intervals, which demonstrates the
effectiveness of GELM predictor in producing granule-based forecasts in different
granulation level. Moreover, since the data size is highly reduced by time series
granulation and the learning speed of ELM is extremely fast, the entire training
process is computationally efficient. It is also observed that the interval-form
granulation approaches, Min-max-Gr and Mean-std-Gr lead to a better coverage
rate than fuzzy-granulation approaches perform, while the fuzzy-granulation
methods could derive a slightly sharper granular output. Hence, one might com-
ment that interval-based inputs can obtain higher quality granular outputs than

Table 1 The performance of granular outputs with different methods and different granulation
level

Granulation
time window

30 min 1 h

Training Testing Training Testing

Performance
index

ACR
(%)

Specificity ACR
(%)

Specificity ACR
(%)

Specificity ACR
(%)

Specificity

Min-max-Gr 94.94 0.1163 94.60 0.1165 94.63 0.1310 93.87 0.1298

Mean-std-Gr 94.99 0.1094 94.10 0.1133 95.00 0.1193 94.13 0.1198

Trimf-Gr 94.92 0.1099 93.90 0.1100 94.98 0.1133 93.66 0.1137

FCM-Gr 94.98 0.1133 93.83 0.1103 95.00 0.1181 92.60 0.1180

270 S. Chai et al.

fuzzy sets based inputs. The 30 min min-max-Gr based granular outputs with 95 %
confidence level is partially plotted in Fig. 2, where the real targets can be well
enclosed in the granular prediction intervals.

5 Conclusion

This paper proposed a novel interval forecasting method based on GELM, which can
quantitatively represent the uncertainties involved in time series and regression
models. Interval and fuzzy sets based granulation approaches are employed to
capture the variability in the original time series and reduce the data size. In addition,
PSO is used to select granular parameters. Real wind speed time series are used in
case study to test the proposed approach. Experimental results reveal that granular
outputs can effectively reflect the stochastic uncertainty and knowledge uncertainty
involved in the predictor, which demonstrates the effectiveness of the proposed
approach. Future work is underway to quantify the uncertainty in other represen-
tation forms and to further enhance the performance of the granule-based predictor.

References

1. REN21: Renewables 2014 Global Status Report, REN21 Secr2014 (2014)
2. Ak, R., Vitelli, V., Zio, E.: An Interval-Valued Neural Network Approach for Uncertainty

Quantification in Short-Term Wind Speed Prediction. IEEE, New York (2015)
3. Pedrycz, W.: Granular Computing: Analysis and Design of Intelligent Systems. CRC Press,

Baco Raton (2013)

Fig. 2 Plot of granular outputs with 95 % confidence and 30-min granulation level

The Granule-Based Interval Forecast for Wind Speed 271

4. Pedrycz, W., Skowron, A., Kreinovich, V.: Handbook of Granular Computing. Wiley-
Interscience, New York (2008)

5. Ruan, J., Wang, X., Shi, Y.: Developing fast predictors for large-scale time series using fuzzy
granular support vector machines. Appl. Soft Comput. 13(9), 3981–4000 (2013)

6. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human
reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–127 (1997)

7. Zadeh, L.A.: Fuzzy sets. Inf Control 8(6), 338–353 (1965)
8. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications.

Neurocomputing 70, 489–501 (2006)
9. Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and its Applications. Wiley, New

York (1971)
10. Pedrycz, W., Vukovich, G.: Granular neural networks. Neurocomputing 36(2), 205–224

(2001)
11. Song, M., Pedrycz, W.: Granular neural networks: concepts and development schemes. IEEE

Trans. Neural Netw. Learn. Syst. 24(4), 542–553, (2013) 2013
12. Roque, A., Maté, C., Arroyo, J., Sarabia, Á.: iMLP: applying multi-layer perceptrons to

interval-valued data. Neural Process. Lett. 25, 157–169, (2007)
13. Cimino, M.G.C.A., Lazzerini, B., Marcelloni, F., Pedrycz, W.: Genetic interval neural

networks for granular data regression. Inf. Sci. 257, 313–330 (2014)

272 S. Chai et al.

KELMC: An Improved K-Means
Clustering Method Using Extreme
Learning Machine

Lijuan Duan, Bin Yuan, Song Cui, Jun Miao and Wentao Zhu

Abstract As a critical step for unsupervised learning, clustering is widely used in
scientific data analysis and engineering systems. However, the shortage of cate-
gories information makes clustering an inconvenient issue. As an efficient and
effective supervised learning algorithm, Extreme Learning Machines (ELMs) can
be also adaptive for clustering tasks by constructing class labels properly. In this
paper, we present a new clustering algorithm, K-means ELM Clustering (KELMC),
which uses the output of an extreme learning machine instead of the similarity
metrics in k-means. Extreme learning machine in KELMC is trained from potential
cluster centers with its categories artificially labeled. For further improvement, we
tried KELMC on an ELM-AE-PCA feature space and proposed another algorithm
called EP-KELMC. Empirical study on UCI data sets demonstrates that the pro-
posed algorithms are competitive with the state-of-the-art clustering algorithms.

Keywords Extreme learning machine ⋅ K-means ⋅ Clustering ⋅ Embedding

L. Duan ⋅ B. Yuan ⋅ S. Cui
Beijing Key Laboratory of Trusted Computing, College of Computer Science
and Technology, Beijing University of Technology, Beijing 100124, China
e-mail: ljduan@bjut.edu.cn

B. Yuan
e-mail: 19890926yb@emails.bjut.edu.cn

S. Cui
e-mail: cuisong@emails.bjut.edu.cn

L. Duan ⋅ B. Yuan ⋅ S. Cui
Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data,
College of Computer Science and Technology, Beijing University of Technology,
Beijing 100124, China

J. Miao (✉) ⋅ W. Zhu
Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS),
Institute of Computing Technology, CAS, Beijing 100190, China
e-mail: jmiao@ict.ac.cn

W. Zhu
e-mail: wentaozhu1991@gmail.com

© Springer International Publishing Switzerland 2016
J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,
Proceedings in Adaptation, Learning and Optimization 7,
DOI 10.1007/978-3-319-28373-9_23

273

1 Introduction

Data clustering is an inevitable step in most of scientific data analysis and in
engineering systems. Generally speaking, clustering is a task of grouping similar
objects together [1]. Since each algorithm has their own characters, researchers
have proposed many principles and models for different kinds of problems.
Therefore, a large family of clustering algorithms were developed by researchers to
adapt different kinds of situations. Methods such as k-means clustering [2, 3],
k-centers clustering [2], and the expectation maximization (EM) [4] were proposed
in the early stage of machine learning, and keep a practical applicability until now.
Laplacian eigenmaps (LE) [5] and spectral clustering (SC) [6] both use spectral
techniques for clustering and get wonderful results in some data sets. Deep auto
encoder (DAE) [7] processes the ability to capture multi-modal aspects of the input
distribution.

The emergent machine learning technique, extreme learning machines (ELMs)
[8–13], has become a hot area of research over the past years. ELM can be used for
regression, classification, clustering and feature learning with its ability to
approximate any objective function with fast learning speed and good generaliza-
tion capability [8–10]. Recently, new variants of clustering methods based on ELM
are emerging in an endless stream. He et al. [14] proposed ELM kMeans algorithm
which transform the original data into the ELM feature space and use k-means to
clustering. Huang et al. [15] proposed unsupervised ELM (US-ELM) based on
manifold regularization framework. Kasun et al. [16] proposed Extreme Learning
Machine Auto Encoder Clustering (ELM-AEC) which extends ELM for clustering
using Extreme Learning Machine Auto Encoder (ELM-AE) [17]. Miche et al. [18]
proposed a SOM-ELM clustering algorithm which projects the data samples to the
cluster center space and using a heuristic method to optimization.

But above all, most of clustering algorithms, such as LE, SC, DA, ELM kMeans,
US-ELM, ELM-AEC and so on, follow a unified framework that consist of two
stages: (1) feature mapping or embedding and (2) clustering using k-means. They
all received remarkable results by modifying the feature mapping strategy. In this
paper, we present an improvement of k-means algorithm, K-means ELM Clustering
(KELMC), which uses the outputs of an extreme learning machine instead of the
similarity metrics in k-means. Extreme learning machine in KELMC is trained from
potential cluster centers with its categories artificial labeled. This means a
non-linear and evolvable similarity measurement was introduce in k-means. And
inspired by the [16], which proposed ELM-AEC and shows that performing
k-means clustering on the embedding ELM auto encoder feature space produces
wonderful results, we proposed another improvement algorithms called K-ELMs
Clustering on ELM-AE-PCA feature space (EP-KELMC).

The rest of the paper is organized as follows. In Sect. 2, we give a brief review of
ELM and ELM-AEC. Section 3 introduces our two clustering algorithms. Extensive
experimental result on clustering are presented in Sect. 4. Finally, some concluding
remarks are provided in Sect. 5.

274 L. Duan et al.

2 ELM

2.1 Brief Review of ELM

ELM, proposed by Huang et al. [12], has been widely adopted in pattern classifi-
cation in recent years. It has many advantages, which not only avoids many
problems encountered by traditional neural network learning algorithms based on
gradient such as local minima, various training parameters, but also learns much
faster with higher generalization performance than the established learning methods
on the basis of gradient. ELM is a kind of generalized single hidden layer
feed-forward networks (SLFNs). The essence of ELM is that the hidden layer of
SLFNs need not to be tuned. The structure of the ELM is shown in Fig. 1.

Given N arbitrary distinct samples xj, tj
� �

, j=1, 2, . . . ,N, where xj =

xj1, xj2, . . . , xjd
� �T ∈ℝd, and tj = tj1, tj2, . . . , tjm

� �T , the output function of SLFNs
with L hidden nodes in the output layer can be expressed by Eq. 1:

f xj
� �

= ∑
L

i=1
βiG ai, bi, xj

� �

= oj, ai ∈ℝd, bi ∈ℝ, βi ∈ℝm ð1Þ

where ai = ai1, ai2, . . . , aid½ �T is the weight vector connecting the ith hidden neuron
and input neurons, and bi is the bias of the ith hidden neurons, βi =
βi1, βi2, . . . , βim½ �T is the weight vector connecting the ith hidden neuron and the
output neurons.

For Extreme Learning Machine, all the equations above can be written com-
pactly as Hβ=T . In general, regularized ELM [19] is to solve the following
learning problems:

Fig. 1 Single hidden layer feed-forward networks [12]

KELMC: An Improved K-Means Clustering Method … 275

min β
1
2

βk k2 + C
2

T −Hβk k2 ð2Þ

where C is a penalty coefficient on the training errors. We have the following closed
form solution for (2):

β= HTH +
I
C

� �− 1

HTT ð3Þ

or β=HT HHT +
I
C

� �− 1

T ð4Þ

where I is an identity matrix.

2.2 Extreme Learning Machine Auto Encoder
for Clustering

Extreme Learning Machine Auto Encoder for Clustering (ELM-AEC) [16] was
proposed by Kasun L.L.C. et al. in 2014. It shows that k-means clustering in the
embedding space of ELM-AE produces better results than clustering in the original
space. They considered the Singular Value Decomposition (SVD) [20] of input data
as:

D=UΣV ð5Þ

where U = u1, u2, . . . , uN½ � is the eigenvectors of the gram matrix DDT ,
Σ= σ1, σ2, . . . , σn½ � is the singular value of D, V = v1, v2, . . . , vn½ � is the eigen-
vectors of the covariance matrix DTD, N is the number of input data and n is the
dimension of each data.

Theorem 1 The embedding DVT reduces the distances between the data points in
the same cluster, while the distances between data points in different clusters are
not changed [21].

Theorem 1 shows that, projecting the input data D along the eigenvectors of the
covariance matrix VT is as similar as k-means clustering the data points. And it
presents that k-means produces better results on the embedding DVT than on
original space. It has been shown that ELM-AE learns the variance information
[17]. In [16], Kasun L.L.C. et al. shows that k-means clustering in the embedding
DβT produces better results than clustering in the original space D.

276 L. Duan et al.

3 Methodology

3.1 K-Means ELMs Clustering—KELMC

In k-means, clusters assignment always follow the nearest cluster center principle
with Euclidean distance as its similarity measurement. In this paper, we proposed
an improved clustering method for k-means based on ELM which changes the
clusters assignment rules in k-means by using an extreme learning machine.

As we can see in the Fig. 2, the proposed method primarily involves the fol-
lowing processes. (a) Randomly choose k clustering centers. (b) Tag centers and
build training data. (c) Train ELM and update β. (d) Cluster data with ELM.
(e) Justify termination conditions. (f) Compute new cluster centers. Algorithm 1
describes KELMC algorithm. The following steps are introduced in detail.

Fig. 2 Flow diagram of KELMC

KELMC: An Improved K-Means Clustering Method … 277

Randomly choose k clustering centers.
Given a data set D= xijxi ∈ℝn, i=1, . . . ,Nf g, where n is the dimension of each

data and the number of data is N. Like k-means, KELMC takes k initial clustering
centers as exemplar set Eð0Þ = eijeiϵD, i=1, . . . , kf g, where k is the number of
clusters. And clustering centers could be random values or random data points.

Tag centers and build train data.
After get the initial exemplar set Eð0Þ, we should tag centers with the train label

which is typically given by a 1-in-all code. The configuration of target output,
T= tijti ∈ℝk, i=1, . . . , k

� 	

, is set according to train label. Then, we build initial
train data TDð0Þ = ei, tið Þjei ∈D, ti ∈T , i=1, . . . , kf g. If at least after a round of
iteration, another form of exemplar set, EðmÞ = eijjeijϵD, i=1,⋯, k, j=1,⋯, ρ

� 	

where m is the number of iteration and ρ is the number of exemplars for each
cluster, is used in proposed methods. In later iteration, we could use knowledge of
data distribution learned by ELM to pick up more exemplars for each cluster.
Therefore, we get training data TDðmÞ = eij, ti

� �jeij ∈D, ti ∈T , i=1, . . . , k,
�

j=1, . . . , ρg.
Train ELM and update β.
Only in the initial phase, ELM needs to assign arbitrary input weight wi, bias bi,

i=1, . . . ,N ̃ where N ̃ is the number of hidden neurons and set activation function
gðxÞ, regularization factor γ. After that, we should calculate the hidden layer output
matrix HðmÞ and get the target output matrix T ðmÞ. Then, update the output
weight βðmÞ.

Clustering data with ELM.
In this process, we use ELM to clustering the whole data set, and get labeled data

LDðmÞ = xi, t
ðmÞ
i

 �

jxi ∈D, tðmÞi ∈T , i=1, . . . ,N
n o

. It must be noted that using

ELM to clustering is equal to using ELM to classify. The reason why we called it
“clustering” is that proposed methods use the auto generated label without the need
for manual labeling.

Justify termination conditions.
Algorithm will be terminated, if the condition meet any of the following

situations:

1. No change in the prediction label of data points, formally:

LDðmÞ −LDðm− 1Þ�
�

�
�
0 < ε ð6Þ

where ε is the threshold of label differences.
2. Reached the maximal iteration number limit, formally:

m>MaxIteration ð7Þ

where m is the number of iteration andMaxIteration is the limitation of iteration.

278 L. Duan et al.

Compute new cluster centers.
In order to minimize the within-cluster sum of squares (WCSSs), calculating the

new mean value in each of the new clusters is a general measure. We make use of
ELM in a reversed way. For each cluster, we pick up ρ data points as its new
exemplar set (belong to this cluster) which is closest to the mean. After this step, we
can get the new exemplar sets EðmÞ = eijjeijϵD, i=1, . . . , k, j=1, . . . , ρ

� 	

.

Algorithm 1. k-ELMs clustering (KELMC)

Input: Data set D= xijxi ∈ℝn, i=1, . . . ,Nf g, activation function gðxÞ, hidden neuron number
N ̃, number of clusters k, number of exemplar for each cluster ρ, and regularization factor γ.

Output: The labeled data LDðmÞ.
Initialization: Randomly choose k clustering centers and build initial train data, then assign
arbitrary input weight wi and bias bi and calculate βð0Þ based on initial train data.
For m=1:MaxItreation

1. Use ELM (with βðm− 1Þ) cluster the data set, and get labeled data LDðmÞ;

2. Compute new cluster centers and get new exemplar set EðmÞ;

3. Tag centers and build train data TDðmÞ;

4. Calculate the hidden layer output matrix HðmÞ and get the target output matrix TðmÞ;

5. Update the output weight βðmÞ;

6. If LDðmÞ − LDðm− 1Þ�
�

�
�
0 < ε, jumps to end

End

3.2 KELMC in ELM-AE-PCA Feature Space

In order to further improve the performance of the algorithm, we try KELMC on
different kinds of feature spaces. In [16], the experiments show that performing
k-means clustering on the ELM-AE feature space (embedding DβTAE, where βTAE
stands for the output weights of ELM-AE) get better results than performing
k-means clustering in the original data space. And Ding C. et al. [21] have proved
that using principal component analysis (PCA) [22] to get PCA feature space
(embedding DVT) can reduces the distances between the data points in the same
cluster, while the distances between data points in different clusters are not changed.
We made a combination with these two ideas to get an ELM-AE-PCA embedding
and perform proposed KELMC in this embedding space.

Firstly, we transform the original data into the ELM-AE feature space. Then,
projecting the current space to PCA feature space and get ELM-AE-PCA

KELMC: An Improved K-Means Clustering Method … 279

embedding. Finally, we operate KELMC on ELM-AE-PCA embedding space.
Algorithm 2 describes EP-KELMC algorithm.

Algorithm 2. KELMC in ELM-AE-PCA embedding space

Input: Data set D= xijxi ∈ℝn, i=1, . . . ,Nf g, activation function gðxÞ, hidden neuron number
N ̃, number of clusters k, number of exemplar for each cluster ρ, regularization factor γ,
regularization factor γAE for ELM-AE, number of embedding dimension ne for PCA.

Output: The labeled data LDðmÞ.
1. Calculate and normalize ELM-AE output weights βAE for input data D.
2. Create and normalize the ELM-AE embedding DβTAE .
3. Calculate ELM-AE embedding’s SVD DβTAE =UΣV , which equals a PCA transform on
ELM-AE embedding.
4. Create and normalize the ELM-AE-PCA embedding DβTAEV

T .

5. Operate KELMC on ELM-AE-PCA embedding DβTAEV
T .

4 Experiments

We evaluated our algorithms on a wide range of clustering tasks. Comparisons are
made with the related state-of-the-art algorithms, e.g., k-means, ELM kMeans [14],
DA [7], SC [6], LE [5], US-ELM [15] and ELM-AEC [16]. All algorithms were
implemented using MATLAB R2014a on a 3.10 GHz machine with 4 GB of
memory and Windows 8 (64 bits) operating system.

The data sets used for testing our two proposed algorithms include six UCI data
sets, namely Iris, Wine, Segment, Synthetic Control, Libras Movement and Seeds.
The characteristics of these data sets are presented in Table 1.

In our experiment, we run two proposed methods on all the data sets. For
comparison purposes, we also present the results of seven other clustering algo-
rithms, k-means, ELM kMeans, deep auto encoder (DA), spectral clustering (SC),
Laplacian eginmaps (LE), unsupervised ELM (US-ELM), and Extreme Learning
Machine Auto Encoder Clustering (ELM-AEC). Among these seven algorithms,
the results of k-means and ELM kMeans are tested by ourselves on all the data sets.
K-means algorithm is the original version in MATLAB R2014a and ELM kMeans

Table 1 Details of the data
sets

Data sets Cluster Dimension N

IRIS 3 4 150
Wine 3 13 178
Segment 7 19 2310
Synthetic control 6 60 600
Libras movement 15 90 360
Seeds 3 7 210

280 L. Duan et al.

T
ab

le
2

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
in

U
C
I
da
ta

se
ts

A
lg
or
ith

m
s

A
cc
ur
ac
y

IR
IS

W
in
e

Se
gm

en
t

Sy
nt
he
tic

co
nt
ro
l

L
ib
ra
s
m
ov

em
en
t

Se
ed
s

K
-m

ea
ns

A
ve
ra
ge

85
.3
7
±

7.
88

95
.3
4
±

0.
49

58
.7
8
±

2.
99

71
.9
7
±

5.
12

46
.7
6
±

1.
88

89
.0
5
±

0.
01

B
es
t

88
.6
7

96
.6
3

72
.2
1

83
.5
0

51
.6
7

89
.0
5

L
E
[5
]

A
ve
ra
ge

80
.8
5
±

13
.8
2

96
.6
3
±

0
62

.3
9
±

5.
03

B
es
t

89
.3
3

96
.6
3

68
.2
7

SC
[6
]

A
ve
ra
ge

76
.1
6
±

8.
92

93
.3
2
±

11
.3
6

65
.6
4
±

4.
72

B
es
t

84
.0
0

96
.6
3

77
.1
0

D
A

[7
]

A
ve
ra
ge

89
.6
9
±

14
.0
1

95
.2
4
±

0.
48

59
.0
6
±

4.
03

B
es
t

97
.3
3

95
.5
1

62
.2
1

U
S-
E
L
M

[1
5]

A
ve
ra
ge

86
.0
6
±

15
.9
2

96
.6
3
±

0
64

.2
2
±

5.
64

B
es
t

97
.3
3

96
.6
3

74
.5
0

E
L
M
-A

E
C

[1
6]

A
ve
ra
ge

96
.0
0
±

0
97

.2
6
±

0.
36

72
.2
0
±

3.
35

B
es
t

96
.0
0

97
.7
5

78
.5
7

E
L
M

K
M
E
A
N
S
[1
4]

A
ve
ra
ge

89
.6
7
±

1.
92

94
.9
4
±

0.
71

61
.5
7
±

1.
24

75
.7
2
±

3.
45

50
.0
0
±

2.
07

92
.6
2
±

0.
26

B
es
t

92
.6
7

96
.6
3

64
.3
7

83
.3
3

53
.3
3

92
.8
6

K
E
L
M
C

A
ve
ra
ge

94
.2
2
±

1.
24

97
.1
9
±

0
69

.4
0
±

0.
38

67
.9
2
±

5.
23

50
.7
9
±

1.
70

95
.2
4
±

0
B
es
t

96
.6
7

98
.3
1

71
.9
0

76
.3
3

55
.8
3

95
.2
4

E
P-
K
E
L
M
C

A
ve
ra
ge

95
.1
1
±

0.
54

98
.5
0
±

0.
92

67
.1
8
±

1.
30

81
.5
6
±

4.
98

52
.9
6
±

2.
24

95
.8
1
±

1.
14

B
es
t

96
.6
7

98
.8
8

71
.6
5

87
.6
7

59
.1
7

96
.6
7

B
ol
d
va
lu
e
de
no

te
s
th
e
be
st
re
su
lts

KELMC: An Improved K-Means Clustering Method … 281

is implemented by ourselves according to the [14]. Our ELM-AEC’s MATLAB
version is from Kasun L.L.C. in [16], but we only have best configuration of
parameters in first three data sets (Iris,Wine and Segment). The rest of experimental
results for DA, SC, LE, and US-ELM are quoted from [15] (Table 2).

5 Conclusion

In this paper, we have proposed two algorithms, KELMC and EP-KELMC, to
extend the traditional ELM for clustering task. The proposed KELMC is an
improved k-means algorithm which changes the cluster assignment rules with an
ELM instead of the nearest cluster center. An ELM is suitable for this task through
its fast nonlinear cost function. Compared to the k-means algorithm, the proposed
KELMC has better performance on most of six UCI data sets. In order to obtain
further improvement in performance, we try KELMC in the ELM-AE-PCA feature
space and propose EP-KELMC which receives comparable results in six UCI data
sets. EP-KELMC also led to competitive results with several state-of-the-art clus-
tering algorithms. In future works, we have two aspects to follow up. First, we need
to prove the convergence of the proposed algorithm by theoretical and mathe-
matical derivations. Second, during the experiments, we found KELMC has an
ability to eliminate the interference of the noise characteristics. It will be used in
some data sets which has useless information in feature expression.

Acknowledgements This research is partially sponsored by Natural Science Foundation of China
(Nos. 61175115, 61370113 and 61272320), Beijing Municipal Natural Science Foundation
(4152005 and 4152006), the Importation and Development of High-Caliber Talents Project of
Beijing Municipal Institutions (CIT&TCD201304035), Jing-Hua Talents Project of Beijing
University of Technology (2014-JH-L06), Ri-Xin Talents Project of Beijing University of Tech-
nology (2014-RX-L06), the Research Fund of Beijing Municipal Commission of Education
(PXM2015_014204_500221) and the International Communication Ability Development Plan for
Young Teachers of Beijing University of Technology (No. 2014-16).

References

1. Cattell, R.B.: The description of personality: basic traits resolved in clusters. J. Abnorm. Soc.
Psychol. 38(4), 476 (1943)

2. MacQueen, J. et al.: Some methods for classification and analysis of multivariate observations.
In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
vol. 1, no. 14, pp. 281–297. Oakland, CA, USA (1967)

3. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. Appl. Stat.
28, 100–108 (1979)

4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the
EM algorithm. J. Roy. Stat. Soc. B 39(1), 1–38 (1977)

5. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Comput. 15(6), 1373–1396 (2003)

282 L. Duan et al.

6. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. Adv.
Neural Inform. Process. Syst. vol. 2, pp. 849–856. MIT Press (2002)

7. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127
(2009)

8. Huang, G.-B., Chen, L., Siew, C.-K.: Universal approximation using incremental constructive
feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892
(2006)

9. Huang, G.-B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70,
3056–3062 (2007)

10. Zhang, R., Lan, Y., Huang, G.-B., Xu, Z.-B.: Universal approximation of extreme learning
machine with adaptive growth of hidden nodes. IEEE Trans. Neural Netw. Learn. Syst. 23(2),
365–371 (2012)

11. Huang, G.-B., Chen, L.: Enhanced random search based incremental extreme learning
machine. Neurocomputing 71(16–18), 3460–3468 (2008)

12. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications.
Neurocomputing 70, 489–501 (2006)

13. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and
multiclass classification. IEEE Trans. Systems Man Cybern. Part B 42(2), 513–529 (2012)

14. He, Q., et al.: Clustering in extreme learning machine feature space. Neurocomputing 128,
88–95 (2014)

15. Huang, G., Song, S., Gupta, J.N.D., Wu, C.: Semi-supervised and unsupervised extreme
learning machines. IEEE Trans. Cybern. 99, 1 (2014)

16. Kasun, L.L.C., Liu, T.-C., Yang, Y., Lin, Z.-P., Huang, G.-B.: Extreme learning machine for
clustering. Proc. ELM 2014(1), 435–444 (2014)

17. Kasun, L.L.C., Zhou, H., Huang, G.-B., Vong, C.M.: Representational learning with extreme
learning machines for big data. IEEE Intell. Syst. 28(6), 31–34 (2013)

18. Miche, Y., Akusok, A., et al.: SOM-ELM-self-organized clustering using ELM.
Neurocomputing 165, 238–254 (2015)

19. Deng, W.-Y., Zheng, Q.-H., Chen, L.: Regularized extreme learning machine. In:
Proceedings IEEE Symposium on Computational Intelligence and Data Mining, CIDM
2009, pp. 389–395 (2009)

20. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank.
Psychometrika 1(3), 211–218 (1936)

21. Ding, C., He, X.: K-means clustering via principal component analysis. In: Proceedings of the
Twenty-First International Conference on Machine Learning, ICML 2004, p. 29. ACM (2004)

22. Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer, New York (2002)

KELMC: An Improved K-Means Clustering Method … 283

Wind Power Ramp Events Classification
Using Extreme Learning Machines

Sujay Choubey, Anubhav Barsaiyan, Nitin Anand Shrivastava,
Bijaya Ketan Panigrahi and Meng-Hiot Lim

Abstract Wind power is becoming increasingly popular as a renewable source of
energy. Being a non-dispatchable energy resource, wind power facilities entail effi-
cient forecast mechanisms to estimate the production of various wind power utilities
available. In an integrated grid system, a balance must be maintained between pro-
duction and consumption. Given that wind power is directly affected by meteoro-
logical factors (wind speed etc.) accurately predicting such fluctuations becomes
extremely important. These events offluctuation are termed as ramp events. Forecast
of wind power is important but accurate prediction of ramp events is much more
crucial to the safety of the grid as well as the security and reliability of the grid. In this
paper we employ the ELM (Extreme Learning Machine) technique on wind power
data of 2012 Alberta, Canada market for different sampling times to predict wind
power ramp events. We also try to compare it with respect to other existing standard
algorithms of feed-forward Neural Networks to analyze the efficacy of the technique
in the area. ELM is shown to outperform other techniques in terms of computation
time whereas prediction performance is at par with other neural network algorithms.

Keywords Ramp events classification ⋅ Extreme learning machine ⋅ Neural
networks

S. Choubey (✉) ⋅ A. Barsaiyan ⋅ N.A. Shrivastava ⋅ B.K. Panigrahi
Indian Institute of Technology Delhi, Hauz Khas 110016, New Delhi, India
e-mail: sujay.sprng@gmail.com

A. Barsaiyan
e-mail: anubhavgpt08@gmail.com

N.A. Shrivastava
e-mail: anandnitin26@gmail.com

B.K. Panigrahi
e-mail: bijayaketan.panigrahi@gmail.com

M.-H. Lim
School of Electrical and Electronic Engineering, Nanyang Technological University,
Nanyang Avenue, Singapore 639798, Singapore
e-mail: emhlim@ntu.edu.sg

© Springer International Publishing Switzerland 2016
J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,
Proceedings in Adaptation, Learning and Optimization 7,
DOI 10.1007/978-3-319-28373-9_24

285

1 Introduction

Wind power is a renewable eco-friendly source of energy that is spreading rapidly
in popularity. The global share of wind power increased to 4 % in 2014 rising from
283 to 370 GW [1]. However wind energy comes with challenges of its own—the
prime one being its intermittency. Variability of wind power is usually different on
different timescales—hour, day, and season. When wind power generators are
injected into the grid, their instantaneous production and consumption must remain
in balance for maintenance of grid stability. While this calls for an accurate model
that could reliably forecast power production in advance to plan loads and gener-
ators accordingly, it also entails specific functionality of these techniques to predict
events of abrupt change (ramp events) in wind power of farms. Ramp events refer to
relatively rapid movements in the power of the wind farm. Say the magnitude of
wind power change over an interval of 10 min crosses a certain set threshold, then a
ramp-up or ramp-down is said to occur. The concept of thresholds is introduced
because of the behavior of power utilities in the grid system. If ramp events are
small they are left to the generation control mechanisms but large ramp events
require intervention such as re-dispatching which might even cause stress and load
shedding. For example, ramp events of 15 MW/10 min and 25 MW/10 min may be
dealt with by the mechanism but a ramp event of 150 MW/10 min will require
different mechanism.

The above example establishes the importance of classification in comparison to
point-forecasting. The thresholds vary as per the power system under study, and are
system operator defined parameters. In modern grid applications involving
self-scheduling by demand-side participants, certain ramp thresholds are more
relevant than point forecasts because the behavior of machines changes across
specific thresholds. However the selection of severity thresholds depends on the
specific wind-farm under consideration. Hence wind forecast and classification is
gaining popularity as a research area. Many methods have been proposed in the past
to carry out the prediction. A survey of these methods can be found in [2].
A number of wind power models have been developed internationally, such as
WPMS, WPPT, Prediktor, ARMINES, Previento, WPFS Ver1.0 etc. [3]. These
include numeric weather prediction (NWP), statistical approaches, artificial neural
network (ANN) and hybrid techniques over different time-scales.

This paper in particular tries to apply a novel method “Extreme Learning
Machine” to the problem and document its performance compared to other common
classification methods in the class of Neural Network. This includes gradient descent
back-propagation (traingd), gradient-descent with adaptive learning rate
back-propagation (traingdx) and gradient-descent with momentum back-propagation
(traingdm). Historic data are used to predict to perform one-step ahead and multi-step
ahead classification.

286 S. Choubey et al.

Classification problem is being widely worked upon in machine learning. How-
ever the available literature is still limited [4]. Neural network-based methods have
been extensively used for classification purpose. Their good learning and general-
izing ability with any kind of data has made them popular. However practical
application is tedious since there are large numbers of parameters that must be iter-
atively tuned for training [5]. Their training algorithms are known to be slow and
likely to get stuck into local minima. ELM is a novel learning algorithm for single
feed-forward neural networks (SLFN). Unlike the traditional gradient-based learning
algorithms, in ELM the input weights and hidden biases are randomly chosen, and the
output weights are analytically determined by using the Moore–Penrose (MP) gen-
eralized inverse.

ELM has been applied to many contemporary research problems such as plain
text classification [6, 7], Bioinformatics [8], XML document classification [9] and
electricity price forecasting [10]. This paper is structured as follows. The
methodology is introduced in Sect. 2. The underlying details of the algorithm are
mentioned in Sect. 3. Section 4 discusses the approach while modeling input data
and analyzing performance. Section 5 contains the experimental results. Conclusion
from the study is summarized in Sect. 6.

2 Methodology

A ramp is basically “a large increase or decrease in energy output over a short
period of time”. As discussed earlier, ramp event is defined in a highly localized
manner depending on local wind farm attributes. Thus no universal benchmarks or
thresholds exist. The generic definition goes as follows:

A ramp event is considered to occur at the start of an interval if the magnitude of
the increase or decrease in generation at a time ΔT ahead of the interval is greater
than a predefined threshold, Tr:

MWðT+ΔTÞ−MWðTÞj j>Tr.

As discussed earlier, in our case, we have arbitrarily chosen the critical values of
−300, −50, 50, 300 MW to define thresholds and classes. Hence

• Ramp values ranging from −500 to −30 MW are labeled as ramp class c1.
• Ramp values ranging from −30 to 30 MW are labeled as ramp class c2;
• Ramp values ranging from 30 to 500 MW are labeled as ramp class c3;

Wind Power Ramp Events … 287

3 Extreme Learning Machine

ELM is a Single Layer Feed forward Network (SLFN) in which input weight matrix
W is chosen randomly and the output weight matrix b of SLFN is analytically
determined. For a data set with N arbitrary distinct samples xi, tið Þ where
xi = ½xi1, xi2, . . . , xin�T∈Rn and ti = ½ti1, ti2, . . . , tim�T∈Rm.

The mathematical model of a standard SLFN with eN hidden nodes and activation
function g(x) for the given data can be formulated as see [11]

∑
eN

i=1
βigiðxjÞ= ∑

eN

i=1
βigiðwixj + biÞ= yj, j = 1 . . . , N ð1Þ

Here wi = ½wi1,wi2, . . . ,win�T is the weight vector connecting the ith hidden node
and the input nodes, ti = ½ti1, ti2, . . . , tim�T is the weight vector connecting the ith
hidden node and the output nodes, and bi is the threshold of the ith hidden node.
The operation wi. xj in (1) denotes the inner product of wi and xj.

Let us consider that the standard SLFNs with eN hidden nodes with activation
function g(x) can approximate these N samples with zero error, then we have

∑
N

j=1
yj − tj

�
�

�
� ð2Þ

Here y is the actual output value of the SLFN. This indicates the existence of βi,wi

and bi such that

∑
eN

i=1
βigiðwixj + biÞ= tj j = 1 . . . , N ð3Þ

The above N equations can be written compactly as

Hβ=T ð4Þ

Here H is the hidden layer output matrix:

hðx1Þ
. . .

hðxNÞ

2

4

3

5=
h1ðx1Þ . . . hN ̃ðx1Þ
.

h1ðxnÞ . . . hN ̃ðxnÞ

2

4

3

5 ð5Þ

β=
βT1
⋮
βT
N ̃

2

4

3

5 ð6Þ

288 S. Choubey et al.

T =
TT
1
⋮
TT
N ̃

2

4

3

5 ð7Þ

In ELM, the input weights and hidden biases are randomly generated and do not
require any tuning as in the case of SLFN. The evaluation of the output weights
linking the hidden layer to the output layer is equivalent to determining the
least-square solution to the given linear system. The minimum norm least-square
(LS) solution to the linear system (4) is

bβ=H†T ð8Þ

The H† in the above equation is the Moore–Penrose generalized inverse of matrix
H [12, 13]. The resultant solution is unique and has the minimum norm among all
the LS solutions. ELM tends to obtain a good generalization performance with a
radically increased learning speed by using the Moore–Penrose inverse method. In
this work, we are using ELM for the classification problem and the ELM classifier
handles the multi-class classification problem by using a network of multiple output
nodes which are equal to the number of pattern classes. Therefore, for each training
sample, the target tj is m-dimensional vector ðt1, t2, . . . tmÞT. The final class of the
given sample is determined by the output node having the highest output.

4 Datasets and Approach

The data that we used for our study is the wind power data of the year 2012 from
Alberta, Canada. Alberta wind farms are mostly located in the southern part of the
province, close to the foot of the Rocky Mountains where severe weather changes
are experienced throughout the year [5]. Wind power production data for the year
2012 was available at 10-min resolution. This data was used to derive sample
values at 30-min intervals and 60-min intervals. Ramp values were also derived
from the data itself. For the sake of the classification problem, four thresholds were
used uniformly based on the distribution of ramp values to encapsulate the severity
of ramp event. Hence three classes were formed, c1 (−500 to −30 MW), c2 (−30 to
30 MW) and c3 (30 to 500 MW). Classification done was univariate using only
historical wind power production data as features. A 16-member vector was used
for the classification comprising historical wind power data at different lags span-
ning up to two weeks. One set of 24 features was also used for studying the effect of
features on results.

To quantify the performance of each algorithm, simple percentage measure of
correct predictions upon total number of predictions (testing data size) was used.
Test data used (i.e. n-step ahead prediction) varied according to resolution used.

Wind Power Ramp Events … 289

Thus the classification accuracy was assessed through Percentage Correct Classi-
fication (PCC) index.

PCC=
Number of Correct Classifications

Total cases
×100 ð9Þ

PCC indices were evaluated for representative months of different seasons (January,
April, August, and November) to compare performance of different algorithms.

5 Experimental Results and Discussion

The ELM algorithm showed a decent performance on the data. Wind power is
highly affected by weather variations so we treated samples from different seasons
separately to analyze the effect on predictive capability of algorithms.

As can be seen in Figs. 2 and 3, occurrences of ramps does not follow any
simple repetitive pattern that holds for each season. Clearly the occurrence of ramp
is stronger and more frequent in May vis-a-vis February. Hence it is useful to
analyze the problem in context of meteorological cycles. For example, there is
greater occurrence of ramps in July than in February (Fig. 1). The results corre-
sponding to different experiments are presented in Table 1.

The ELM-method was applied on two sets of the 10-min samples of wind power
data with different number of features (basically lagged values i.e. historical wind
power data). One selection was 16-feature based and the second was 24-feature
based (Table 2).

We see that the addition of some extra features doesn’t introduce any significant
improvement in the prediction accuracy. Thus the dependence of the performance
of the final algorithm depends highly on proper selection of significant features.

Fig. 1 Schematic
representation of extreme
learning machine [14]

290 S. Choubey et al.

Timing is another parameter on the basis of which the resourcefulness of a
particular algorithm is decided. In this respect, ELM shows explicit advantage over
others. While Neural Network is fast, ELM with its unique constitution performs
much faster than all neural network algorithms (traingdm, traingd, traingdx)
(Tables 3 and 4).

Fig. 2 Wind power versus instance (February 2012)

Fig. 3 Wind power versus instance (May 2012)

Wind Power Ramp Events … 291

Table 1 Comparison of accuracy through three classification methods (ELM, NN and multiSVM)

ELM (10-min) NN-traingdm (10-min) NN-traingd (10-min) NN-traingdx (10-min)

January 55.84 44.16 60.89 70.16

April 86.04 46.43 71 69.32

August 81.49 81.49 64.68 69

November 87.66 83.77 72.32 78

ELM (30-min) NN-traingdm (30-min) NN-traingd (30-min) NN-traingdx (30-min)

January 73 71.14 70 47.50

April 77 76.86 75.43 58.50

August 85.57 85.57 82.29 65.25

November 75 74.71 74.14 54.75

ELM (60-min) NN-traingdm (60-min) NN-traingd (60-min) NN-traingdx (60-min)

January 60.75 56.25 73 61

April 62.75 54.75 77 72.75

August 73 63.25 85.57 77.50

November 62 58 75 73.25

Table 2 Effect of adding more features to ELM algorithm on prediction accuracy

16-feature ELM (accuracy %) 24-feature ELM (accuracy %)

January 65.11 62.47
April 70.79 71
August 68.58 68.47
November 73.16 73.16

Table 3 Relative performance of ELM and NN (taingdm, traingd, traingdx) (training time in
seconds) for the case of 10-min samples

Training
time (ELM)

Training time
(NN-traingdm)

Training time
(NN-traingd)

Training time
(NN-traingdx)

January 0.0387 10.3978 10.6595 3.4758
April 0.0483 10.44 10.4609 3.9135
August 0.0394 10.5588 11.0594 3.5890
November 0.0460 10.6650 10.4136 3.4917

Table 4 Relative performance of ELM and NN (taingdm, traingd, traingdx) (testing time in
seconds) for the case of 10-min samples

Testing time
(ELM)

Testing time
(NN-traingdm)

Testing time
(NN-traingd)

Testing time
(NN-traingdx)

January 0.0138 0.0428 0.0389 0.0398
April 0.0127 0.0429 0.0406 0.0391
August 0.0136 0.0373 0.0422 0.04
November 0.0151 0.0376 0.0408 0.0423

292 S. Choubey et al.

6 Conclusions

Wind Power is undoubtedly the energy resource of the future. With evolving smart
grids and preference for green energy, its prevalence will increase. The problem of
wind ramp event classification is extremely vital to the entire project as discussed
chiefly because of the requirement that consumption must match production.

Our work was aimed at studying various facets of ELM to evaluate its appli-
cability to the problem of wind power ramp event classification in particular.
Overall the study reveals a lot about competence of ELM as a tool in Wind Power
Ramp forecasting. None of the applied algorithms showed outstanding perfor-
mance. Further ELM was found to be mostly at par with the rest of neural network
algorithms. However ELM provides distinct advantage over all other neural net-
work algorithms in the field of computation time. There is scope of improvement of
prediction by studying feature selection methodology and coming up with definitive
inferences regarding the right approach to select historical data.

Acknowledgements This work was supported by the Scientists’ Pool Scheme of the Council of
Scientific and Industrial Research (CSIR), Government of India (No. 8741-A).

References

1. Global Wind Energy Council. Global Wind Statistics 2014. Available at www.gwec.net
2. Soman, S., Zareipour, H., Malik, O., Mandal, P.: A review of wind power and wind speed

forecasting methods with different time horizons. In: 42nd North American Power Symposium
(NAPS), Arlington, Texas, USA, 26–28 Sept 2010

3. Wang, X., Guo, P., Huang, X.: A review of wind power forecasting models. Energy Procedia
12, 770–778 (2011)

4. Zareipour, H., Janjani, A., Leung, H., Motamedi, A., Schellenberg, A.: Classification of
future222 electricity market prices. IEEE Trans. Power Syst. 26(1), 165–173 (2011)

5. Shrivastava, N.A., Panigrahi, B.K., Lim, M.-H.: Electricity price classification using extreme
learning machines, Neural Comput. Appl. 24(1) (2014). doi:10.1007/s00521-013-1537-1

6. Rong, H.-J., Huang, G.-B., Ong, Y.-S.: Extreme learning machine for multi-categories
classification applications. In: IEEE International Joint Conference on Neural Networks 2008
(IJCNN 2008), IEEE World Congress on Computational Intelligence, pp. 1709–1713 (2008)

7. Rong, H.-J., Ong, Y.-S., Tan, A.-H., Zhu, Z.: A fast prunedextreme learning machine for
classification problem. Neurocomputing 72(1–3), 359–366 (2008)

8. Wang, G., Zhao, Y., Wang, D.: A protein secondary structure prediction framework based on
the extreme learning machine. Neurocomputing 72(1–3), 262–268 (2008)

9. Zhao, X., Wang, G., Bi, X., Gong, P., Zhao, Y.: XML document classification based on ELM.
Neurocomputing 74(16), 2444–2451 (2011)

10. Chen, X., Dong, Z.Y., Meng, K., Xu, Y., Wong, K.P., Ngan, H.W.: Electricity price
forecasting with extreme learning machine and bootstrapping. IEEE Trans. Power Syst. 27(4),
2055–2062 (2012)

11. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications.
Neurocomputing 70, 489–501 (2006)

12. Serre, D.: Matrices: theory and applications. Springer, New York (2002)

Wind Power Ramp Events … 293

http://www.gwec.net
http://dx.doi.org/10.1007/s00521-013-1537-1

13. Rao, C., Mitra, S.: Generalized inverse of matrices and its applications. Wiley, New York
(1971)

14. Zhao, L., Qi, J., Wang, J., Yao, P.: IOP Publishing Ltd 2012. The study of using an extreme
learning machine for rapid concentration estimation in multi-component gas mixtures (2012)

294 S. Choubey et al.

Facial Expression Recognition Based
on Ensemble Extreme Learning Machine
with Eye Movements Information

Bo Lu, Xiaodong Duan and Ye Yuan

Abstract Facial expression recognition has become a very active research in

computer vision, behavior interpretation of emotions, human computer interaction,

cognitive science and intelligent control. Traditional facial expression analysis meth-

ods mainly focuses on the facial muscle movement and basic expression features of

face image. In this paper, we propose a novel method for facial expression recog-

nition based on ensemble extreme learning machine with eye movements informa-

tion. Here, the eye movements information is regarded as explicit clue to improve

the performance of facial expression recognition. Firstly, we extract eye movements

features from eye movements information which recorded by Tobii eye tracker. The

histogram of orientation gradient (HOG) features are simultaneously obtained from

the face images by dividing it into a number of small cells. Secondly, we combine

the eye movements features together with the HOG features of face images by using

a tensor kernel. Finally, the fusion features are trained by ensemble extreme learning

machine and a bagging algorithm is explored for producing the results. Extensive

experiment on the two widely available datasets of facial expressions demonstrate

that our proposal effectively improves the accuracy and efficiency of face expression

recognition and achieve performance at extremely high speed.

Keywords Facial expression recognition ⋅ Ensemble extreme learning machine ⋅
Eye movements information

B. Lu ⋅ X. Duan(✉)

Dalian Key Lab of Digital Technology for National Culture,

Dalian Nationalities University, Dalian 116600, China

e-mail: duanxd@dlnu.edu.cn

B. Lu

e-mail: lubo@dlnu.edu.cn

Y. Yuan

School of Information Science and Engineering, Northeastern University,

Shenyang 110004, China

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_25

295

296 B. Lu et al.

1 Introduction

Facial expression recognition has attracted research community during the last few

decades as it is the most common visual pattern in our environment. Facial expres-

sion is one of the most powerful, nature, and immediate means for human beings to

communicate their emotions and intentions [1]. Traditional facial expression analy-

sis methods are greatly depends on the facial muscle movement and accurate facial

features [2]. However, there are some useful implicit information can be used to

assist the task of facial expression recognition. Eye movements information pro-

vides an index of over attention and reveal the information strategically selected to

categorize expressions. Eye is a vital organ of the human emotion, to some extent,

it will help people to better understanding of nonverbal communication. We can

understand a person’s emotion and even the inner world through eyes. Eye move-

ments and facial expressions have a close relationship. Therefore, the eye move-

ments information plays an important role in facial expression recognition. Earlier

studies of Hardoon and Kaski [3] explored the problem of where an implicit infor-

mation retrieval query is inferred from eye movements measured during a reading

task. However, there is few literature use eye movements information as a feature to

classify the facial expression. In this study, we use the eye movements information

as a particular source to improve the performance of facial expression recognition.

Moreover, we expect there to be small training errors during the training stage

in the neural network, but neural network training usually suffers from overtrain-

ing, which might degrade the generalization performance of the network. In such

cases, the neural network can classify the training data without any errors but it can

not guarantee that there will be good classification performance on the validation

datasets. Huang et al. [4, 5] proposed a new learning algorithm called extreme learn-

ing machine (ELM) for single-hidden-layer feedforward neural networks (SLFNs)

which can be used in regression and classification applications with a fast running

speed. In this paper, we have selected bagging to generate the ensemble of the ELM

for recognizing facial expressions. There are several reasons behind choosing ELM

as a base classifier. First, the ELM takes random weights between the input and hid-

den layer. We train the same dataset several times, which gives different classification

accuracy with different output space. Second, the ELM is a much simpler learning

algorithm for a feedforward neural network. Unlike the traditional neural networks

(e.g. support vector machine), it does not need to calibrate the parameters, such as

learning rate, learning epochs, etc. Another reason is that the learning speed of ELM

is extremely fast.

As mentioned above, in this paper, we propose a novel method for facial expres-

sion recognition based on ensemble ELM with eye movements information. We

firstly extract eye movements features from eye movements information which

recorded by Tobii eye tracker. Then, The histogram of orientation gradient (HOG)

features are simultaneously obtained from the face images by dividing it into a num-

ber of small cells. We further combine the eye movements features together with

the HOG features of face images by using a tensor kernel. The fusion features are

Facial Expression Recognition Based on Ensemble Extreme … 297

trained using ELM base classifiers in a bagging algorithm produce better results as

compared with other methods in the literature of facial expression recognition. Here

we applied the bagging algorithm to generate the number of training bags from the

original training datasets. The fusion features are calculated for each newly gener-

ated datasets and facial expression are trained by using individual ELMs. Finally, the

result from individual ELMs is combined by using a majority voting scheme. Instead

of using a single ELM for expression classification, we used the ELM ensemble with

bagging algorithm. This is because it improves the generalization capability of the

whole system, even if the classification accuracy of the individual ELMs is smaller.

The rest of this paper is organized as follows. Section 2 describes the procedure

of extracting eye movements features, we indicate that the eye movements features

and HOG features are combined by using tensor kernel. In Sect. 3, we introduce

the ensemble ELM classifier for the task of facial expression recognition. Section 4

demonstrate the performance of our proposal and give experiment results. We finally

conclude the paper in Sect. 5.

2 Preliminaries

2.1 Eye Movements Feature Extraction

The eye movement features are computed using only on the eye trajectory and loca-

tions of the facial expression images. This type of features are general-purpose and

are easily applicable to all application scenarios. The features are divided into two

categories; the first category uses the raw measurements obtained from the eye

tracker, whereas the second category is based on fixations estimated from the raw

data. The following definitions are shown in order to clearly illustrate the whole pro-

cedure of extraction of eye movements features.

(i) Area of interest (AOI): area of visual environment which is focus of your atten-

tion, select the area for further processing.

(ii) Fixation duration: statistic the duration of each fixation point of the AOI. It

is an important indicator of eye movements data, the longer the duration, is likely to

mean that participants’ access to information in the AOI is more important.

(iii) Fixation count: the number of fixations in an AOI. It is a sign to distinguish

the interest area important degree, the more the count, indicates this area is more

important.

(iv) Fixation order: order of the participants’ fixations in AOI. To some extent,

this indicator can reflect the attention degree of AOI.

(v) Regression times: participants observe AOI again formed the order of

sequence.

(vi) Regression duration: the duration of AOI’s fixation once again.

(vii) Scan path: a sequence of spatial arrangement about fixations.

298 B. Lu et al.

Fig. 1 AOI’s division

diagram

2.2 Preprocessing of Eye Movements Features

There is an important step that we have to reduce the size of the recorded eye move-

ments features by eye movements tracking system. Therefore, we firstly preprocess

the eye movements data by calculating the weights of AOI. When people observing

the human face images, their fixations mainly focuses on eyes, eyebrows, nose and

mouth [6]. In order to better analyze the subjects’ AOI of fixation situation, the facial

images are divided into six AOIs. Left eyebrow is AOI1, right eyebrow is AOI2, left

eye is AOI3, right eye is AOI4, nose is AOI5, mouth is AOI6. Figure 1 shows the

AOIs’ division diagram.

We defined fi as the duration of AOIj on i, i is the sequence number of the par-

ticipants’ fixation, AOIj represent participants in the ith order’s fixation of AOI, j is

interest area number (range is 1–6), w1 is the difference between the order of impor-

tance of the order factor, w1 value is in the range of [1, 2], the first fixation factor

value is 2, after fixation factor in turn reduce the i/p, p is the number of all the fix-

ation point of participant. According to the order of fixation we can get each AOI

fixation time for T1.

T1 = fi (2 − i∕p) (1)

When an AOI have a regression, this experiment is defined fi as the ith regression

duration of AOIj, ci is the ith position’ in this AOI is the Nth regression, w2 is regres-

sion factor, w2 value is in the range of [1, 2], the first regression factor value is 1,

after regression factor in turn increase the ci/20. Since each AOI there may be have

multiple regressions, the total regression time should be the sum of all of the regres-

sion values for this AOI. According to the above method get each AOI regressive

value of time T2.

T2 = fi
(
1 + ci∕20

)
(2)

Facial Expression Recognition Based on Ensemble Extreme … 299

Finally, the AOI’s weight is (T1 + T2)/total, total is the sum of all the fixation and

regression time of AOI. By Eqs. (1) and (2) using the literature [7] obtain each AOI’s

Weightj.

Weightj =
∑i=p

i=0 fi (2 − i∕p)
(
1 + ci∕20

)

total
(3)

2.3 Features Fusion Based on Tensor Kernel

As mentioned above, we can obtain the eye movements features and HOG features

of facial image from different data source. Then, we propose to construct a tensor

kernel to combine image and eye movements features. Let X ∈ Rn×m
and Y ∈ Rl×m

be the matrix of sample vectors, x and y, for the HOG features and eye movements

features respectively, where n is the number of image features and m are the total

number of the samples. We continue to define Kx
, Ky

as the kernel matrices for the

facial expression image and eye movements respectively. In our experiments we use

linear kernels, i.e. Kx = X′X and Kx = Y ′Y . The resulting kernel matrix of the tensor

T = X◦Y can be expressed as pair-wise product [8].

̄Kij = (T ′T)ij = Kx
ijK

y
ij (4)

3 Ensemble ELM for Facial Expression Recognition

In this section we will describe the classifier that we have employed in our method

for facial expression recognition. In the following subsection we will give brief intro-

duction of ELM and ensemble ELM for facial expression recognition.

3.1 Brief of ELM

ELM is a new algorithm based on Single-Hidden Layer Feedforward Networks

(SLFNs) [9, 10]. Compared with traditional SVM, ELM not only tends to reach

the smallest training error but also the smallest norm of the output weights. ELM

is not very sensitive to user specified parameters and has fewer optimization con-

straints [11]. In addition, ELM tends to provide good generalization performance at

extremely high learning speeds.

For the multi-categories classification problem, ELM classifier uses a network

of multiple output nodes equal to the number of pattern classes m, as shown in

300 B. Lu et al.

Sn

S1

1

L

i

Single-Hidden Layer

Visual feature
Prediction

result

Visual feature
Prediction

result

Input Output

t1

tm

Fig. 2 Example of ELM classifier with multiple output nodes for multi-categories classification

Fig. 2. For each training sample si, the target output ti is an m-dimensional vector

(t1, t2,… , tm)T .

The learning procedure of the ELM classifier is given below. For N arbitrary

distinct shot samples (si, ti) ∈ Rn × Rm
, if an SLFN with L hidden nodes can approx-

imate these N samples with zero error, then we have

L∑

i=1
𝛽iG(ai, sj, bi) = tj, j = 1,… ,N (5)

where ai is the weight vector connecting the ith hidden node and the input nodes,

𝛽i is the output weight linking the ith hidden node to the output node, and bi is the

threshold of the ith hidden node. G(ai, sj, bi) is the output of the ith hidden node with

respect to the input sj. In our simulations, sigmoid activation function of hidden

nodes are used, we formulate it as G(ai, sj, bi) = 1
/
(1 + exp(−ai ⋅ sj + bi)). Under

these conditions, Eq. (3) can be written compactly as

H𝛽 = T (6)

where

H =
⎡
⎢
⎢⎣

G(a1, s1, b1) ⋯ G(aL, s1, bL)
⋮ ⋯ ⋮

G(a1, sN , b1) ⋯ G(aL, sN , bL)

⎤
⎥
⎥⎦N×L

(7)

Facial Expression Recognition Based on Ensemble Extreme … 301

𝛽 =
⎡
⎢
⎢⎣

𝛽

T
1
⋮
𝛽

T
L

⎤
⎥
⎥⎦L×m

, T =
⎡
⎢
⎢⎣

tT1
⋮
tTN

⎤
⎥
⎥⎦N×m

(8)

While computing, the determination of the output weights 𝛽 is estimated by the

smallest norm least-squares solution and defined as

̂
𝛽 = H†T (9)

where H†
is the Moore-Penrose generalized inverse [12] of the hidden layer output

matrixH. The original algorithm of ELM proposed by Huang et al. [4] contains three

steps as follows:

Algorithm ELM: Given a training set ℵ = {(si, ti)|si ∈ Rn
, ti ∈ Rm

, i = 1,… ,

N}, activation function G(x), and hidden node number L, then training the ELM

classifier takes several steps:

Step 1: Randomly assign hidden node parameters (ai, bi), i = 1,… ,L.

Step 2: Calculate the hidden layer output matrix H.

Step 3: Calculate the output weight ̂
𝛽 = H†T .

3.2 Ensemble ELM for Facial Expression Recognition

Let X denote the training samples for a K-class classification problem:

X =
K⋃

i=1
Xi =

K⋃

i=1
{Xi

l}
Li
l=1 (10)

where Xi is the training sample set of the class Ci, Xi
l is the lth sample, and Li is the

number of samples in the class Ci.

This K-class classification problem can be divided into K(K − 1)∕2 smaller

binary subproblems through the one-versus-one (OAO) strategy as follows:

Tij = {Xi
l ,+1}

Li
l=1 ∪ {(Xj

l ,−1)}
Li
l=1 (11)

where the classes Ci and Cj are taken as positive and negative classes, respectively.

Alternatively, a K-class classification problem can also be divided into K binary

subproblems through the one-versus-all (OVA) strategy as follows:

Ti = {Xi
l ,+1}

Li
l=1 ∪

(K⋃

j=1,j≠i
{(Xj

l ,−1)}
Li
l=1

)
(12)

302 B. Lu et al.

These binary subproblems defined by Eqs. (11) and (12) can be further divided.

Assume that the sample set Xi is partitioned into Ni subsets in the form

X𝜇

i = {X(i,𝜇)
l }L

𝜇

i
l=1 (13)

where X𝜇

i is the ath subset of Xi, X
(i,𝜇)
l is the lth sample, L𝜇i is the number of the

samples, and
⋃Ni

𝜇=1 X
𝜇

i = Xi.

After the partition of the sample sets defined by Eq. (13), each binary subproblem

Tij is divided as follows:

T (𝜇,𝜈)
ij = {(X(i,𝜇)

l ,+1)}L
𝜇

i
l=1 ∪ {(X(j,𝜈)

l ,−1)}
L𝜈j
l=1 (14)

where the sample sets X𝜇

i and X𝜈

j are taken as positive and negative sets, respectively.

After all the binary subproblems defined by Eq. (14) have been learned, the

trained classifiers are integrated through the M3
-network. The module combination

for the task decomposition defined by Eq. (14) can be formulated as

gij(x) =
Nimax
𝜇=1

Nj

min
𝜈=1

h(𝜇,𝜈)ij (x) (15)

where x is a sample, gij(x) is the discriminant function of the binary problem Tij, and

h(𝜇,𝜈)ij is the output of the module M(𝜇,𝜈)
ij .

4 Experimental Evaluation

In this section, we evaluate the performance of our proposed approach on facial

expression datasets through extensive experiments.

4.1 Experiments Setup

The performance of the proposed system is evaluated on two well-known facial

expression datasets, which are the Japanese Female Facial Expression (JAFFE)

dataset [13] and the Extended Cohn-Kanade (CK+) facial expression dataset [14].

All of the results presented in this paper for both the JAFFE and CK+ dataset belong

to the validation set. Moreover, we define some symbol which include AN, DI, FE,

HA, NE, SA, SU to represent 7 facial expressions include neural, angry, disgust, fear,

happy, sadness and surprise respectively.

We chose 7 facial expression from the above two databases, each expression has

20 images, all the CK+ images were cropped into 300 * 340 pixels, the JAFFE

Facial Expression Recognition Based on Ensemble Extreme … 303

images were cropped into 210 * 230. Participant sat in front of the computer approx-

imately 60cm, each image was displayed 10s. Then using Tobii X2-30 eye tracker

to record the participants’ eye movements. Forty participants took part in this exper-

iment, half males and half females. All participants were university students. They

had normal or corrected-to-normal vision and provided no evidence of color blind-

ness. There is a initial five points of calibration process in every experiment, every-

one carried out the experiment three times, then we took the average as the final

data.

4.2 Experiments Results

In this section, we demonstrate that several of the experimental results from both

of the datasets what we used. First of all, we compared single HOG features with

fusion feature (combination of HOG features and eye movements features). Figure

3 shows the performance of the ensemble classification system on the CK+ dataset

with a different number of base ELM classifiers. We determined the HOG features

by dividing the image into 8 × 8, 6 × 6, and 4 × 4 cells, with 9 bins per cell, which

resulted in 512, 328, and 128 dimensional HOG features. The image size taken for

this experiment was 100 ×100 pixels. From Fig. 3 we can observe that classification

performance using 328-D fusion features is better on others.

Moreover, we performed was on expression classification with different resolu-

tions of input face images. The resolution of the input image is very important. If

we want to develop a real time facial expression classification system, then in gen-

eral, the resolution of the detected input face image can vary from low resolution to

high resolution. In our experiment, we found that by reducing the image resolution,

the performance of the individual base ELMs also decreased. However, the bagging

0 5 10 15 20 25
80

82

84

86

88

90

92

94

96

98

Number of Base ELM Classifiers

R
ec

og
ni

tio
n

A
cc

ur
ac

y(
%

)

512−D HOG Features
328−D HOG Features
128−D HOG Features

5 10 15 20 25
85

90

95

100

Number of Base ELM Classifiers

R
ec

og
ni

tio
n

A
cc

ur
ac

y(
%

)

512−D Fusion Features
328−D Fusion Features
128−D Fusion Features

(a) (b)

Fig. 3 Recognition performance of an ensemble ELM using bagging with HOG features and fusion

features on CK+ dataset. a Performance of ensemble ELM use HOG features. b Performance of

ensemble ELM use fusion features

304 B. Lu et al.

Table 1 Average recognition rate (%) of the 23 base ELM classifiers with different image resolu-

tions

Database Resolution of image

96 × 96 84 × 84 72 × 72 60 × 60 48 × 48 32 × 32
CK+ 87.90 87.72 82.67 81.22 79.50 75.54

JAFFE 74.51 70.46 70.29 65.45 63.14 58.02

0 5 10 15 20 25
70

75

80

85

90

95

100

Number of Base ELM Classifiers

R
ec

og
ni

tio
n

A
cc

ur
ac

y(
%

)

Image Size:96*96
Image Size:84*84
Image Size:72*72
Image Size:60*60
Image Size:48*48
Image Size:36*36

0 5 10 15 20 25
82

84

86

88

90

92

94

96

98

Number of Base ELM Classifiers

R
ec

og
ni

tio
n

A
cc

ur
ac

y(
%

)
Image Size:96*96
Image Size:84*84
Image Size:72*72
Image Size:60*60
Image Size:48*48
Image Size:36*36

(a) (b)

Fig. 4 Recognition performance of an ensemble ELM using bagging for different image resolu-

tions with a different number of base ELM classifiers on dataset. a Performance of ensemble ELM

use JAFFE dataset. b Performance of ensemble ELM on CK+ dataset

result was not significantly decreased, even if the classification performance of the

individual base ELMs decreased. Table 1 shows the average classification accuracy

of 23 base ELMs with a different resolution in both datasets. Regardless of the reso-

lution of the image, we divided the face image into 6 × 6 cells and the 328-D fusion

features were obtained.

From Table 1 we observed that the average classification accuracy was decreased

from 74.51 to 58.02 % by reducing the image resolution from 96 × 96 to 36 × 36 in

the case of the JAFFE dataset and that the classification accuracy was reduced from

87.90 to 75.54 % in the case of the CK+ dataset. Classifying facial expressions in the

CK+ dataset is relatively easier than classifying expressions in the JAFFE dataset.

There is big difference in the classification accuracy of a single ELM, as we reduced

the image resolution. Figure 4 shows the result of an ELM ensemble using bagging

with different input face image resolutions. For low-resolution images, even though

the base classifier accuracy was smaller, the bagging performance was better. With

23 base ELMs in bagging algorithms, the lowest classification accuracy was around

90 % and the highest classification accuracy was around 97 %, in the case of both the

JAFFE and CK+ facial expression datasets. The classification results are relatively

more stable in the case of the CK+ dataset.

Facial Expression Recognition Based on Ensemble Extreme … 305

5 Conclusion

In this paper, we propose a novel method for facial expression recognition based

on ensemble extreme learning machine with eye movements information. Here, the

eye movements information is regarded as explicit clue to improve the performance

of facial expression recognition. Firstly, we extract eye movements features from

eye movements information which recorded by Tobii eye tracker. The histogram

of orientation gradient (HOG) features are simultaneously obtained from the face

images by dividing it into a number of small cells. Secondly, we combine the eye

movements features together with the HOG features of face images by using a ten-

sor kernel. Finally, the features of fusion are trained by ensemble extreme learning

machine and a bagging algorithm is explored for producing the results. Extensive

experiment on the two widely available datasets of facial expressions demonstrate

that our proposal effectively improves the accuracy and efficiency of face expression

recognition. Our future work will expand this experiment to six basic expressions

plus neutral expression and invite more people to carry out this experiment, this will

develop such dataset which could be more useful in developing computational model

for visual attention, by analysis this dataset, the results would be more accurate and

robust.

Acknowledgments This work was supported by the National Natural Science Foundation of

China under Grant No. 61370146; National Natural Science Foundation of China under Grant

No. 2013405003; Fundamental Research Funds for the Central Universities No. DC201501030401,

DC201502030203.

References

1. Tian, Y., Brown, L., Hampapur, A., Pankanti, S., Senior, A., Bolle, R.: Real world real-time

automatic recognition of facial expression. IEEE PETS, Australia (2003)

2. Whitehill, J., Bartlett, M.S., Movellan, J.: Automatic facial expression recognition. In: Social

Emotions in Nature and Artifact. London: Oxford University Press (2013)

3. Hardoon, D., Kaski, K.: Information retrieval by inferring implicit queries from eye move-

ments. In: Proceedings of the International Conference on Artificial Intelligence and Statistics,

pp. 29–46 (2007)

4. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Nue-

rocomputing 70(1–3): 489–501 (2006)

5. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Etreme learning machine: a new learning scheme of feed-

forward neural networks. In: Proceedings of International Joint Conference on Neural Net-

works, vol. 2, pp. 985–990 (2004)

6. Schurgin, M.W., Nelson, J., Lida, S., Franconeri, S.L.: Eye movements during emotion recog-

nition in faces. J. Vis. 14(13), 1–16 (2014)

7. Chen, J.J., Yan, H.X., Xiang, J.: Study of decoding mental state based on eye tracks using SVM.

Comput. Eng. Appl. 47(11), 39–42 (2011)

8. Pulmannova, S.: Tensor products of hilbert space effect algebras. Rep. Math. Phys. 53(2), 301–

316 (2004)

9. Huang, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70(1),

3056–3062 (2007)

306 B. Lu et al.

10. Huang, G.B., Zhu, Q.Y., Siew, K.Z.: Can threshold networks be trained directly? IEEE Trans.

Circuits Syst. II 53(3), 187–191 (2006)

11. Huang, G.B., Ding, X.J., Zhou, H.: Optimization method based extreme learning machine for

classification. Neurocomputing (2010)

12. Serre, D.: Matrieces: Theory and Applications. Springer, New York (2002)

13. Lyons, M., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding facial expressions with Gabor

wavelets. In: Proceedings of the IEEE International Conference on Face and Gesture Recog-

nition, pp. 200–205 (1998)

14. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Matthews, I.: The extended cohn-kanade dataset

(CK+): a complete dataset for action unit and emotion-specific expressions. IEEE Computer

Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 94–101

(2010)

Correlation Between Extreme Learning
Machine and Entorhinal Hippocampal
System

Lijuan Su, Min Yao, Nenggan Zheng and Zhaohui Wu

Abstract In recent years there has been a considerable interest in exploring the

nature of learning and memory system among artificial intelligence researchers and

neuroscientists about the neural mechanisms, simulation and enhancement. While a

number of studies have investigated the artificial neural networks inspired by biolog-

ical learning and memory systems, for example the extreme learning machine and

support vector machine, seldom research exists examining and comparing the record-

ing neural data and these neural networks. Therefore, the purpose of this exploratory

qualitative study is to investigate the extreme learning machine proposed by Huang

as a novel method to analyze and explain the biological learning process in the

entorhinal hippocampal system, which is thought to play an important role in animal

learning, memory and spatial navigation. Data collected from multiunit recordings

of different rat hippocampal regions in multiple behavioral tasks was used to analyze

the relationship between the extreme learning machine and the biological learning.

The results demonstrated that there was a correlation between the biological learning

and the extreme learning machine which can contribute to a better understanding of

biological learning mechanism.

Keywords Extreme learning machine ⋅ Biological learning ⋅ Entorhinal

hippocampal system ⋅ Multiunit extracellular recordings ⋅ Local field potential ⋅
Spike

1 Introduction

In recent years, researchers in artificial intelligence as well as neuroscience have

paid considerable attention to explore the learning and memory mechanisms to

explain how the biological brain itself to process information [1–3]. The study

L. Su ⋅ M. Yao (✉) ⋅ N. Zheng ⋅ Z. Wu

College of Computer Science and Technology, Zhejiang University, Hangzhou, China

e-mail: myao@zju.edu.cn

L. Su ⋅ M. Yao ⋅ N. Zheng ⋅ Z. Wu

Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_26

307

308 L. Su et al.

of the learning and memory mechanisms is a prominent topic within the field of

neuroscience. Considerations is most commonly given to the anatomical structure of

hippocampal formation, which includes the dentate gyrus, the hippocampus proper,

the subiculum and the entorhinal cortex. Interest has also been taken in the inter-

action between hippocampal formation, in terms of the internal circuitry [4]. In the

biological brain, the dendrite of a typical neuron is responsible to collect signals from

other dentrites, and the axon of the neuron is a long and thin stand to deliver spikes

of electrical activity. At the end of each axon, there are thousands of branches which

were called synapses. A synapse is a structure of one neuron to pass an electrical or

chemical signal to another neuron. When a neuron receives excitatory input that is

enough large compared with the inhibitory input, it will send a spike of electrical

activity along its axon. In this way, the learning and memory occur by changing the

connection between the two neurons which is strengthened when both the neurons

are active at the same time.

On the other hand, the artificial neural networks inspired by biological neural

networks have drawn much attention and have been successfully used to solve a wide

variety of tasks, especially in classification, regression and clustering [5]. Artificial

neural networks are typically consisted of many interconnected nodes, which are the

abstract models of neurons and can be divided into three types of input layer, hidden

layer, and output layer [6]. And the synapse between two neurons is modelled as

the connected weight between two nodes which can be modified. Each node in the

artificial neural network can convert all its received signals into one single activity

signal which is broadcasted to all other connected nodes. In this process, there are two

important stages. First, one node multiples each input signal by the corresponding

connected weight and adds all these weighted inputs together to produce the total

input. Then, the node transforms the total input into the output activity signal with a

transfer function, such as threshold transfer function, log-sigmoid transfer function,

piecewise linear transfer function, and Gaussian transfer function. There are many

different types of artificial neural networks, but they are generally classified into

feedforward and feedback neural networks. A feedforward neural network is a non-

recurrent neural network in which all the signals from the input layer, the hidden

layer and the output layer can only deliver in one direction. Typical feedforward

neural networks include perceptron, radial basic function, extreme learning machine

[6–8] and so on. On the other hand, a recurrent artificial neural network can travel in

two directions, for example Hopfield network, Elman network and Jordan network.

Although considerable research has been devoted to the learning and memory

mechanisms as well as the artificial neural networks, rather less attention has been

paid to the relationship between the artificial neural networks and the neural mech-

anisms, especially from the neural data perspective. This lack of empirical stud-

ies is somewhat surprising as in recent years there has been growing interest in the

multiunit extracellular recordings in local field potential and action potential. Under-

standing the correlation between the artificial neural network and the extracellular

recording data would seem to be a promising attempt to fill the gap between biolog-

ical learning and the artificial learning.

Correlation Between Extreme Learning Machine and … 309

Our primary goal in this paper is to explore the correlation between the extreme

learning machine and the entorhinal hippocampal learning system. In short, we will

attempt to demonstrate that extreme learning machine can make a useful contribu-

tion to our understanding of the biological learning and the entorhinal hippocampal

system. To achieve this aim the structure of this paper is as follows. We first review

empirical work on the entorhinal hippocampal system in Sect. 2. Subsequently, we

report the theoretical research of the study on extreme learning machine in Sect. 3.

And then the evaluation and the correlation between extreme learning machine and

the entorhinal hippocampal system are analysed and evaluated with experiments in

Sect. 4. Finally the conclusion as well as the discussion of our current and future

work are present in Sect. 5.

2 Extracellular Recordings in the Entorhinal Hippocampal
System

Recent researches on lesion experiments with the involvement of the hippocampus

in the animal learning and memory have revealed that the hippocampus plays an

especially important role in processing and remembering the spatial and contextual

information, however the other related hippocampal formation structures also make

important contributions to learning and memory [4, 9].

The hippocampal formation in animal brain includes the hippocampus proper

and some other adjacent closely associated cortical regions in the animal brain. The

hippocampus proper consists of the cornu ammonis fields: the much-studied cornu

ammonis field 1 and cornu ammonis field 3, and the smaller little-studied cornu

ammonis field 2 [10]. Thus the main components of the hippocampal formation

include: the entorhinal cortex which is divided into lateral and medial entorhinal

cortex to constitute the major gateway between the hippocampal formation and the

neocortex, dentate gyrus, cornu ammonis field 1, cornu ammonis field 3, subiculum,

presubiculum and parasubiculum [11].

As shown in Fig. 1, classic pathway consists of projection from Entorhinal cortex

(LEC: lateral entorhinal cortex; MEC: medial entorhinal cortex) to Dentate gyrus

(DG), from DG to cornu ammonis field 3 (CA3), and from CA3 to cornu ammonis

field 1 (CA1). The entorhinal input also consists of direct monosynaptic LEC and

MEC projections to CA3, to CA1, and to subiculum (Sb). CA1 projection to Sb and

to LEC/MEC, and Sb projections to LEC/MEC, complete the circuit. Other circuits

involve projections from subiculum (Sb) to presubiculum (PreSb) and to parasubicu-

lum (ParaSb), and projections from PreSb to MEC and ParaSb to LEC and MEC

[12]. Among all the layers of entorhinal cortex, the superficial layers (ECs) are typ-

ically thought as the interconnected set of cortical cortex to deliver information to

the hippocampus, on the other hand the deep layers (ECd) and the subiculum are

regarded to provide the output from the hippocampal formation to a variety of other

multimodal association areas of the cortex such as parietal, temporal, and prefrontal

310 L. Su et al.

Fig. 1 Major regions and pathways in the entorhinal hippocampal system

Fig. 2 Flowchart of processing of the extracellular recording data in the entorhinal hippocampal

system

cortex in the brain [12]. It has been reported that some CA3 pyramidal cells also

project to some other CA3 pyramidal cells. To distinct from the CA3 to CA1 projec-

tions proposed by Marr to underlie pattern completion, these projections was called

the Schaffer collaterals [13].

In this paper, our data contains multiunit recordings from different rat hippocam-

pal regions which includes EC2, EC3, EC4, EC5, CA1, CA3 and DG [11, 14]. In the

experiments, the data was recorded using either 4 or 8 extracellular electrodes from

11 rats performing 14 different behavioral tasks, such as midSquare, bigSquare and

bigSquarePlus. Each extracellular electrode has 8 recording sites, in this case in our

database there are 32 or 64 recording sites. As shown in Fig. 2, the raw data recorded

from multiple channels at 20,000 Hz sample rate is consisted of the spikes generated

by one or more neurons and the local field potentials (LFPs) which represent the

total synaptic current in the neuronal circuit. Typically, the spikes can be identified

Correlation Between Extreme Learning Machine and … 311

by high-pass filtering, thresholding, and subsequent sorting, whereas the LFPs can

be extracted by low-pass filtering the wideband signal.

3 Spike Clustering with Extreme Learning Machine

To explore and explain the mechanisms of animal learning and memory, recording

brain activity is an important method [15]. With the development of neuroscience,

there are many technologies available to record brain activity, such as electroen-

cephalography (EEG), magnetoencephalography (MEG), functional magnetic reso-

nance imaging (fMRI), local field potential (LFP) and spikes [16]. Single or multiple

unit recordings can be done intracellularly or extracellularly, and much of our mech-

anistic understanding of brain function comes from extracellular recordings, which

provide a direct and effective measure of electrical activity near the tip of the record-

ing electrode [17].

In this paper, our data contains multiple unit recordings from different rat hip-

pocampal regions which includes EC2, EC3, EC4, EC5, CA1, CA3 and DG. In the

experiments, the data was recorded using either 4 or 8 extracellular electrodes from

11 rats performing 14 different behavioral tasks, such as midSquare, bigSquare, and

bigSquarePlus. Each extracellular electrode has 8 recording sites, so there are 32 or

64 recording sites in the data. The raw data recorded from channel at 20 KHz sample

rate is composed of the spikes emitted by one or more neurons and the local field

potentials which represent the total synaptic current in the neuronal circuit. Typi-

cally, the spikes can be identified by high-pass filtering, thresholding, and subsequent

sorting, whereas the LFP can be extracted by low-pass filtering the wideband signal

[18, 19].

The raw data was firstly processed by a high-pass filter at 800 Hz. And then the

filtered data was used to detect possible spikes using the simple threshold trigger

method, for the amplitude is the most prominent feature of the spike shape. When

spikes are detected, extracting features with principal component analysis from mul-

tiple spike shapes will save much computational time as well as be helpful for the

spikes clustering. Once the features are selected, the data can be used to group spikes

with similar features into clusters which represent the different neurons. In this paper,

we use extreme learning machine to do the spike sorting and compare the results with

the other methods shown in Fig. 3 [20, 21].

In the experiments, the voltages from all the recording sites are recorded. When

any one of the voltages is bigger than a threshold, a possible spike is detected and

stored with the time of the possible spike and a window of data surrounding the spike.

Then with the extreme learning machine we do the spike sorting on this possible

spikes. The results computed by extreme learning machine mean that the spikes in

the same cluster are most likely produced by the same neuron. We train the data with

50 times, and the average result is regarded as the total number of recorded neurons.

312 L. Su et al.

Fig. 3 Schematic diagram

of spikes clustering with

extreme learning machine

The total number computed by extreme learning machine on one session data is 21,

which is similar as the total number computed by the KlustaKwick and Kclusters

of 18.

4 Local Field Potentials Trained with Extreme Learning
Machine

Understanding the relationships between single-neuron spiking and network activity

is therefore of great importance and the latter can be readily estimated from low-

frequency brain signals known as local field potentials(LFPs) [22]. The local field

potential (LFP) is the electrical potential recorded with intracranial electrodes in the

extracellular space around neurons which can be obtained by low pass-filtering usu-

ally with a cutoff low-pass frequency in the range of 100–300 Hz and can capture

multitude of neural processes, such as synchronized synaptic potentials, afterpoten-

tials of somatodendritic spikes, and voltage-gated membrane oscillations.

For this reason, the LFP can be widely used to investigate the dynamics and the

functions of neural circuits in different conditions, which can offer unique windows

onto integrative excitatory and inhibitory synaptic process at level of neural popula-

tion activity [23]. And on other hand, the LFP is sensitive to subthreshold integrative

processes and carries information about the state of the cortical network and local

intracortical processing, including the activity of excitatory and inhibitory interneu-

rons and the effect of neuromodulatory pathways. These contributions are almost

impossible to capture using spiking activity from only a few neurons. Therefore,

the combined recording and analysis of LFPs and spikes offers more insights into

the circuit mechanism that cannot be obtained at present by examining spikes alone

[24].

Correlation Between Extreme Learning Machine and … 313

Fig. 4 Schematic diagram of LFPs trained with extreme learning machine

Here in this paper we train the electrical neural data on the projection from CA3 to

CA1 with extreme learning machine. As shown in Fig. 4, the neural data is recorded

from the CA3 and CA1 region in the entorhinal hippocampal system of the rat brain.

By low pass-filtering in the range 100–300, we obtain the LFPs in these regions.

The neural data from CA3 is regarded as inputs of extreme learning machine, which

the neural data from CA1 is regarded as the output of the extreme learning machine.

The hidden layer in this network is to model the interneurons (IN) between the pro-

jection from CA3 neurons to CA1 neurons. After the network is trained, we compare

the output of the network with the neural data recorded from CA1 in the test dataset.

The average accuracy of 50 trainings on one session data with 11,710 samples is

75 %, and the accuracy can be improved with the data preprocessing to 82 %.

5 Conclusion and Discussion

The paper has successfully demonstrated that the theory of the extreme learning

machine has some similarities with the biological learning. In particular, it has been

shown that the network has the similar feature as the neural data in entorhinal hip-

pocampal system. Furthermore, this claim has been given experimental evidence by

the local field potentials and the action potentials. We hope the theoretical framework

314 L. Su et al.

and the correlation analysis will assist biologists to explore or verify the underlying

mechanisms. Beyond in the theoretical science, the application or the improvements

of the extreme learning machine can lead to industrial innovations, robotic control

and physical rehabilitation.

Our studies add to the understanding of the correlation between the extreme

learning machine and the biological learning [7]. We conducted two studies of the

extreme learning machine methods in the neural data perspective from the entorhi-

nal hippocampal system. Results across the studies indicate that the spike clustering

with the extreme learning machine can obtain good results. Furthermore, the results

across the studies imply that using the extreme learning machine to train the local

field potentials data can have a stable neural network with a good generalization [25].

This finding, consistent with the previous studies [20, 26], indicated that there may

be significant correlation between the extreme learning machine and the biological

learning. This conclusion also fits with the findings of the similar random property

and the stable performance about different tasks.

Another contribution of the present research is the use of feedforward neural net-

work methods to investigate the complex nature of learning and memory system in

entorhinal hippocampal system. Extreme learning machine is particularly valuable

for such research because it is more stable in a wide range and is much easier in

online sequential learning with fast speed and high accuracy.

However, a comparison between the related methods of spike clustering and net-

work training is lacking, thus should also be one topic of our future research. Still,

we did not measure the instructional practices in our studies, and doing so would

add to the present research. Some related studies have shown the importance of

the implementation of the neural network about the projection from CA3 to CA1.

Another direction for our future work would be to further consider the consistency

between the extreme learning machine and the biological machine. Clearly, the rela-

tions between artificial neural networks and the biological learning raised further

question for future investigation on this topic. It is to be hoped that researchers will

continue to pursue this research agenda.

Acknowledgments This work was supported by the National Key Basic Research Program of

China (973 program, No. 2013CB329504) and partially supported by Zhejiang Provincial Natural

Science Foundation of China (No. LZ14F020002) and the Natural Science Foundation of China

(No. 61103185, No. 61572433 and No. 61472283).

References

1. Hartley, T., Lever, C., Burgess, N., O’Keefe, J.: Space in the brain: how the hippocampal for-

mation supports spatial cognition. Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 369(1635),

20120510 (2014)

2. Su, L., Zhang, N., Yao, M., Wu, Z.: A computational model of the hybrid bio-machine mpms

for ratbots navigation. IEEE Intell. Syst. 29(6), 5–13 (2014)

3. Zheng, N., Su, L., Zhang, D., Gao, L., Yao, M., Wu, Z.: A computational model for ratbot

locomotion based on cyborg intelligence. Neurocomputing 170, 92–97 (2015)

Correlation Between Extreme Learning Machine and … 315

4. Yamaguchi, Y., Sato, N., Wagatsuma, H., Wu, Z., Molter, C., Aota, Y.: A unified view of theta-

phase coding in the entorhinal-hippocampal system. Curr. Opin. Neurobiol. 17(2), 197–204

(2007)

5. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feed-

forward neural networks. In: 2004 IEEE International Joint Conference on Neural Networks.

Proceedings, vol. 2, pp. 985–990. IEEE (2004)

6. Huang, G.B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn.

Cybern. 2(2), 107–122 (2011)

7. Huang, G.B.: What are extreme learning machines? Filling the gap between frank rosenblatts

dream and john von neumanns puzzle. Cogn. Comput. 7(3), 263–278 (2015)

8. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neu-

rocomputing 70(1), 489–501 (2006)

9. Gluck, M.A., Meeter, M., Myers, C.E.: Computational models of the hippocampal region:

linking incremental learning and episodic memory. Trends Cogn. Sci. 7(6), 269–276 (2003)

10. Deshmukh, S.S., Knierim, J.J.: Representation of non-spatial and spatial information in the

lateral entorhinal cortex. Front. Behav. Neurosci. 5 (2011)

11. Mizuseki, K., Sirota, A., Pastalkova, E., Buzsáki, G.: Theta oscillations provide temporal win-

dows for local circuit computation in the entorhinal-hippocampal loop. Neuron 64(2), 267–280

(2009)

12. Diba, K., Buzsáki, G.: Hippocampal network dynamics constrain the time lag between pyra-

midal cells across modified environments. J. Neurosci. 28(50), 13448–13456 (2008)

13. Deuker, L., Doeller, C.F., Fell, J., Axmacher, N.: Human neuroimaging studies on the hip-

pocampal ca3 region—integrating evidence for pattern separation and completion. Front. Cel-

lular Neurosci. 8 (2014)

14. Mizuseki, K., Diba, K., Pastalkova, E., Teeters, J., Sirota, A., Buzsáki, G.: Neurosharing: large-

scale data sets (spike, lfp) recorded from the hippocampal-entorhinal system in behaving rats.

F1000Research 3 (2014)

15. Klauke, N., Smith, G.L., Cooper, J.: Extracellular recordings of field potentials from single

cardiomyocytes. Biophys. J. 91(7), 2543–2551 (2006)

16. Buzsáki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currentseeg,

ecog, lfp and spikes. Nat. Rev. Neurosci. 13(6), 407–420 (2012)

17. Gold, C., Henze, D.A., Koch, C., Buzsáki, G.: On the origin of the extracellular action potential

waveform: a modeling study. J. Neurophysiol. 95(5), 3113–3128 (2006)

18. Belitski, A., Gretton, A., Magri, C., Murayama, Y., Montemurro, M.A., Logothetis,

N.K., Panzeri, S.: Low-frequency local field potentials and spikes in primary visual cortex

convey independent visual information. J. Neurosci. 28(22), 5696–5709 (2008)

19. Quilichini, P., Sirota, A., Buzsáki, G.: Intrinsic circuit organization and theta-gamma oscilla-

tion dynamics in the entorhinal cortex of the rat. J. Neurosci. 30(33), 11128–11142 (2010)

20. Huang, G., Huang, G.B., Song, S., You, K.: Trends in extreme learning machines: a review.

Neural Netw. 61, 32–48 (2015)

21. Lekamalage, C.K.L., Liu, T., Yang, Y., Lin, Z., Huang, G.B.: Extreme learning machine for

clustering. In: Proceedings of ELM-2014, vol. 1, pp. 435–444. Springer, Berlin (2015)

22. Einevoll, G.T., Kayser, C., Logothetis, N.K., Panzeri, S.: Modelling and analysis of local field

potentials for studying the function of cortical circuits. Nat. Rev. Neurosci. 14(11), 770–785

(2013)

23. Zanos, T.P., Mineault, P.J., Pack, C.C.: Removal of spurious correlations between spikes and

local field potentials. J. Neurophysiol. 105(1), 474–486 (2011)

24. Mazzoni, A., Logothetis, N.K., Panzeri, S.: The information content of local field potentials:

experiments and models. arXiv preprint arXiv:1206.0560 (2012)

25. Huang, G.B.: An insight into extreme learning machines: random neurons, random features

and kernels. Cogn. Comput. 6(3), 376–390 (2014)

26. Huang, G.B., Bai, Z., Kasun, L.L.C., Vong, C.M.: Local receptive fields based extreme learning

machine. IEEE Comput. Intell. Mag. 10(2), 18–29 (2015)

http://arxiv.org/abs/1206.0560

RNA Secondary Structure Prediction
Using Extreme Learning Machine
with Clustering Under-Sampling Technique

Tianhang Liu, Jiarun Lin, Chengkun Wu and Jianping Yin

Abstract This paper gives a machine learning method for the subject of RNA

secondary structure prediction. The method is based on extreme learning machine for

its outstanding performance in classification problem, and use under-sampling tech-

nique to solve the problem of data imbalance. Feature vector in the classifier includes

covariation score and inconsistent sequence penalty. The proposed method is com-

pared with SVM and ELM without under-sampling, as well as classical method

RNAalifold in terms of sensitivity, specificity, Matthews correlation coefficient and

G-mean. The training and testing data are 68 RNA aligned families from Rfam, ver-

sion 11.0. The results show that the proposed method can achieve highest scores in

sensitivity, MCC and G-mean, which means that it is an effective method for RNA

secondary structure prediction.

1 Introduction

Determining RNA secondary structures is significant for creating drugs and

understanding genetic diseases [1–4]. The structures can be achieved by experimen-

tal methods, such as X-ray crystallography [5, 6] and nuclear magnetic resonance

(NMR) spectroscopy [7]. However, these methods are extremely

expensive and time consuming [8]. Therefore, many computing methods have been

proposed to predict RNA secondary structures, such as hierarchical networks [9], k-

nearest neighbor classifier [9], genetic algorithm [10, 11], supporter vector machine

(SVM) [12] and extreme learning machine (ELM) [13–15]. Using machine learning

The authors are with the College of Computer Science, National University of Defense

Technology, 410073, Changsha, P.R. China.

This work was supported by the National Natural Science Foundation of China (Project

No.61379145, 61170287, 61232016, 61070198,61402508,61303189).

T. Liu (✉) ⋅ J. Lin ⋅ C. Wu ⋅ J. Yin

College of Computer, National University of Defense Technology, Changsha, People’s Republic

of China

e-mail: liuth007@163.com

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_27

317

318 T. Liu et al.

techniques in comparative sequence analysis method has showed good performance

in experiments, while in practice, the data imbalance in training set is a main problem

that can effect the performance [13].

In this paper, we propose a machine learning method for RNA secondary structure

prediction based on ELM with clustering under-sampling technique. Extreme learn-

ing machine is a rapidly developing machine learning technique in recent years, and

clustering under-sampling technique reduce the number of negative samples.

The feature vector we use in this paper contains two parts: (1) covariation score

and (2) fraction of complementary nucleotides. The training and testing sets are

68 RNA alignment families from Rfam (version 11.0) [16, 17].

The paper’s structure is as follows. Section 2 states the preliminaries, including

biological basics in RNA secondary structure prediction, covariation score, inconsis-

tent sequence penalty and evaluation metrics. Section 3 gives the proposed method.

Performance evaluation including data specification, parameters setting and experi-

mental results are provided in Sect. 4. Finally discussions are given in Sect. 5.

2 Preliminary

2.1 Biological Basics in RNA Secondary Structure Prediction

Generally, the secondary structure is composed by A-U and C-G base pairs which are

known as Waston-Crick base pairs [18] as well as G-U base pairs known as wobble

base pairs [4, 19], and some other types of base pairs [20].

2.2 Feature Vector

Covariation Score Covariation score is a metric that quantifies the covariation of

two columns in an alignment [21], which is defined as:

C(i, j) =
∑

XY ,X′Y ′

fi,j(XY)D(XY ,X′Y ′)fi,j(X′Y ′), (1)

where i and j represent the ith column and the jth column of the alignment respec-

tively. For the ij column pair, X, Y belong to D = {A,U,G,C}. fi,j(XY) is the

frequency of XY in the ith and the jth columns. D(XY ,X′Y ′) is the Hamming dis-

tance between XY and X′Y ′
. If both XY and X′Y ′

belong to B = {GC,CG,AU,UA,
GU,UG}, D(XY ,X′Y ′) equals to the distance, otherwise D(XY ,X′Y ′) equals to zero.

The sum is taken over all possible combinations of X and Y.

Inconsistent Sequence Penalty The inconsistent sequence penalty was proposed to

measure the degree of inconsistency between two columns [12], which is defined as

RNA Secondary Structure Prediction . . . 319

̂P(i, j) = Nb(i, j)∕Nb−all, (2)

where Nb(i, j) is the number of sequences that can match in ith and jth nucleotides,

and Nb−all is the number of all sequences.

2.3 Evaluation Metrics

We use sensitivity, specificity, the Matthews correlation coefficient (MCC) [9, 22]

and G-mean as evaluation metrics.

sensitivity =
tp

tp + fn
, (3)

specificity =
tp

tp + fp
, (4)

MCC =
tp ⋅ tn − fp ⋅ fn

√
(tp + fp)(tp + fn)(tn + fp)(tn + fn)

. (5)

where tp, tn, fp, fn are true-positive, true-negative, false-positive and false-negative

respectively,

G − mean = (
m∏

i=1
Ri)1∕m, (6)

where Ri is the recall of ith class.

3 Method

3.1 Extreme Learning Machine

Extreme learning machine (ELM) for single-hidden layer feed-forward neural net-

works (SLFNs) has been proved effective and efficient for both classification and

regression problems [14, 23–26]. The essential superiority of ELM is that the hid-

den layer of SLFNs doesn’t need to be tuned. The parameters of hidden neurons are

randomly assigned, and the output weights can be calculated by the Moore-Penrose

generalized inverse, which gives ELM better generalization performance at a faster

speed with least human interventions. Given N training samples (xi, ti), the mathe-

matical model of ELM is defined as

H𝜷 = T, (7)

320 T. Liu et al.

where 𝜷 is the output weight, T is the target vector and H is the hidden layer output

matrix:

H = [h(x1);h(x2);… ;h(xN)], (8)

where

h(xi) = [h1(xi),… , hL(xi)] (9)

is the hidden layer output row vector with L hidden nodes. hj(x) = h(𝜶j, bj, x) is

the feature mapping function, where the parameters 𝜶j, bj are randomly generated

according to any continuous probability distribution. Then the output weight 𝜷 can

be analytically determined as the least square solution by

𝜷 = H†T =
⎧
⎪
⎨
⎪⎩

HT
(I
C

+HHT
)−1

T when N < L
(I
C

+HTH
)−1

HTT when N ≥ L
(10)

So given a new sample x, the output function of ELM is

f (x) =
⎧
⎪
⎨
⎪⎩

h(x)HT
(I
C

+HHT
)−1

T when N < L

h(x)
(I
C

+HTH
)−1

HTT when N ≥ L
(11)

3.2 Clustering Under-Sampling Technique

The problem of RNA secondary structure prediction can be considered as a binary

classification problem: to judge whether two nucleotides can form a base pair or

not. The clustering under-sampling technique clusters the negative samples using

k-means, and generates N central points, which are regarded as new negative sam-

ples. This process relieves the problem of data imbalance by reducing the number of

negative samples.

3.3 ELM with Clustering Under-Sampling

The algorithm ELM with clustering under-sampling is shown as below.

RNA Secondary Structure Prediction . . . 321

Algorithm 1 ELM with clustering under-sampling.

Input:
Ψ: Training set Ψ = (xi, ti), xi ∈ Rn

, ti ∈ Rm
, i = 1, 2,… ,N.

̃N: The number of clusters for k-means.

C: The trade off constant C.

L: The number of hidden node L.

Output:
M: Trained ELM model;

1: Generate ̃N clusters from negative samples using k-means, and set the central points of the

clusters as new negative samples.

2: Randomly generate 𝜶j ,bj, j = 1, 2,… ,L for L nodes and trained ELM model with L, C.

3: return the parameters of the classifiers M.

Test:
Given an unlabeled sample x, output the predicted label.

4 Performance Evaluation

4.1 Data Specification

We use the “seed” alignments and consensus secondary structures provided by Rfam

(version 11.0) [17]. The Rfam (version 11.0) contains 10 years RNA families, in the

form of alignments and structures, which is a widely used benchmark of RNA sec-

ondary structure prediction. For insuring the quality of the features, the alignments

with ≥30 sequences are adopted, resulting in 68 RNA sequence alignment families

in our data set, which is shown in Table 1.

In the training set, a positive sample is a column pair of the alignment that can

form a base pair and a negative sample is one that cannot. In the 68 families, there

are total 2,057 positive samples and 720,013 negative samples. Then 5-fold crossover

validation is performed on the data set.

Table 1 The 68 RNA sequence alignment families from Rfam used as training and testing sets

RF00001 RF00002 RF00003 RF00004 RF00005 RF00008 RF00011

RF00012 RF00015 RF00017 RF00019 RF00020 RF00026 RF00031

RF00032 RF00037 RF00041 RF00045 RF00048 RF00049 RF00050

RF00061 RF00062 RF00066 RF00094 RF00095 RF00097 RF00100

RF00102 RF00105 RF00106 RF00162 RF00163 RF00164 RF00167

RF00168 RF00169 RF00171 RF00175 RF00176 RF00181 RF00198

RF00199 RF00209 RF00210 RF00214 RF00215 RF00216 RF00233

RF00238 RF00250 RF00260 RF00309 RF00374 RF00375 RF00376

RF00386 RF00389 RF00436 RF00451 RF00465 RF00467 RF00468

RF00469 RF00480 RF00481 RF00486 RF00506

322 T. Liu et al.

Table 2 The compared results of ELM with under-sampling, ELM, SVM and RNAalifold

Metrics Sensitivity Specificity MCC G-mean

ELM with

under-sampling

0.8447 0.7291 0.7565 0.9167

ELM 0.5603 0.9681 0.7073 0.8476

SVM 0.5587 0.9548 0.7011 0.8427

RNAalifold 0.5525 0.7062 0.6237 0.8101

4.2 Parameter Setting

Three parameters need to be tuned: the trade off constant C, the number of hidden

node L, as well as the number of clusters ̃N. C and L effect the performance of

ELM. And ̃N is related with the number of positive samples, it should be close to

the number of positive samples, and properly chosen to avoid over-fitting. C and L
are determined through grid search, and ̃N changes from 3000 to 10000, with step

500, according to the number of positive samples. Finally we got C = 100, L = 16,

̃N = 4500.

4.3 Experimental Results

The prediction performance was evaluated by five indexes: sensitivity, specificity,

Matthews correlation coefficient (MCC) and G-mean. Besides our method, we run

SVM and ELM without under-sampling, as well as RNAalifold as comparisons. The

parameters of SVM and ELM are defined through grid search, SVM uses RBF ker-

nel. For SVM, log2 C = 13, log2 𝛾 = −5. For ELM, C = 100, L = 16. The results are

shown in Table 2. We can see from Table 2 that, the proposed method has highest

values in sensitivity, MCC and G-mean, which means that the weighted ELM has a

outstanding performance in imbalanced data set.

5 Discussion

In this paper, we proposed a new machine learning method for RNA secondary struc-

ture prediction using ELM and under-sampling technique. For rfam 11.0 data set,

there are few positive samples but much more negative samples, and ELM with

under-sampling technique can solve the problem.

Experimental results on 68 families from Rfam, vesion 11.0, show that the pro-

posed method can get highest scores in terms of sensitivity, MCC and G-mean, which

means that the method has outstanding performance when the data is significantly

RNA Secondary Structure Prediction . . . 323

imbalanced. Future works include considering the phylogenetic relationship of the

aligned sequences, and further analyzing the effects of different parameters.

References

1. Lodish, H.: Molecular Cell Biology. Macmillan (2008)

2. Schultes, E.A., Bartel, D.P.: One sequence, two ribozymes: implications for the emergence of

new ribozyme folds. Science 289(5478), 448–452 (2000)

3. Tinoco, I., Bustamante, C.: How RNA folds. J. Mol. Biol. 293(2), 271–281 (1999)

4. Varani, G., McClain, W.: The g x u wobble base pair. a fundamental building block of RNA

structure crucial to RNA function in diverse biological systems. EMBO Rep. 1(1), 18–23

(2000)

5. Batey, R.T., Gilbert, S.D., Montange, R.K.: Structure of a natural guanine-responsive

riboswitch complexed with the metabolite hypoxanthine. Nature 432(7015), 411–415 (2004)

6. Kim, S.H., Quigley, G., Suddath, F., Rich, A.: High-resolution x-ray diffraction patterns of

crystalline transfer RNA that show helical regions. Proc. Natl. Acad. Sci. 68(4), 841–845

(1971)

7. Ferentz, A.E., Wagner, G.: NMR spectroscopy: a multifaceted approach to macromolecular

structure. Q. Rev. Biophys. 33(1), 29–65 (2000)

8. Ray, S.S., Pal, S.K.: RNA secondary structure prediction using soft computing. IEEE/ACM

Trans. Comput. Biol. Bioinform. 10(1), 0002–17 (2013)

9. Bindewald, E., Shapiro, B.A.: RNA secondary structure prediction from sequence alignments

using a network of k-nearest neighbor classifiers. RNA 12(3), 342–352 (2006)

10. Benedetti, G., Morosetti, S.: A genetic algorithm to search for optimal and suboptimal RNA

secondary structures. Biophys. Chem. 55(3), 253–259 (1995)

11. Chen, J.-H., Le, S.-Y., Maizel, J.V.: Prediction of common secondary structures of RNAs: a

genetic algorithm approach. Nucleic Acids Res. 28(4), 991–999 (2000)

12. Yingjie, Z., Zhengzhi, W.: Consensus RNA secondary structure prediction based on SVMS.

In: The 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008.

ICBBE 2008, pp. 101–104, IEEE (2008)

13. Li, K., Kong, X., Lu, Z., Wenyin, L., Yin, J.: Boosting weighted elm for imbalanced learning.

Neurocomputing 128, 15–21 (2014)

14. Liu, Q., He, Q., Shi, Z.: Extreme support vector machine classiffier. In: Advances in Knowledge

Discovery and Data Mining, pp. 222–233. Springer (2008)

15. Tianhang, L.I.U., Jianping, Y.I.N.: RNA secondary structure prediction using self-adaptive

evolutionary extreme learning machine. J. Comput. Inform. Syst. 11(3), 995–1004 (2015)

16. Burge, S.W., Daub, J., Eberhardt, R., Tate, J., Barquist, L., Nawrocki, E.P., Eddy, S.R., Gardner,

P.P., Bateman, A.: Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 1005 (2012)

17. Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R., Bateman, A.: Rfam:

annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33(suppl 1), 121–124

(2005)

18. Watson, J.D., Crick, F.H., et al.: Molecular structure of nucleic acids. Nature 171(4356), 737–

738 (1953)

19. Crick, F.: Codon-anticodon pairing: the wobble hypothesis (1965)

20. Leontis, N.B., Westhof, E.: Geometric nomenclature and classiffication of RNA base pairs.

RNA 7(04), 499–512 (2001)

21. Hofacker, I.L., Fekete, M., Stadler, P.F.: Secondary structure prediction for aligned RNA

sequences. J. Mol. Biol. 319(5), 1059–1066 (2002)

22. Gardner, P.P., Giegerich, R.: A comprehensive comparison of comparative RNA structure pre-

diction approaches. BMC Bioinform. 5(1), 140 (2004)

324 T. Liu et al.

23. Cambria, E., Huang, G.-B., Kasun, L.L.C., Zhou, H., Vong, C.M., Lin, J., Yin, J., Cai, Z., Liu,

Q., Li, K., et al.: Extreme learning machines trends and controversies. IEEE Intell. Syst. 28(6),

30–59 (2013)

24. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications.

Neurocomputing 70(1), 489–501 (2006)

25. Huang, G.-B., Ding, X., Zhou, H.: Optimization method based extreme learning machine for

classification. Neurocomputing 74(1), 155–163 (2010)

26. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and

multiclass classification. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(2), 513–529

(2012)

Multi-instance Multi-label Learning
by Extreme Learning Machine

Chenguang Li, Ying Yin, Yuhai Zhao, Guang Chen and Libo Qin

Abstract Multi-instance Multi-label learning is a learning framework, where every

object is represented by a bag of instances and associated with multiple labels simul-

taneously. The existing degeneration strategy based methods often suffer from some

common drawbacks: (1) the user-specific parameter for the number of clusters may

incur the effective problem; (2) utilizing SVM as the classifiers builder may bring

the high computational cost. In this paper, we propose an algorithm, namely MIML-

ELM, to address the problems. To our best knowledge, we are the first utilizing ELM

in MIML problem and conducting the comparison of ELM and SVM on MIML.

Extensive experiments are conducted on the real datasets and the synthetic datasets.

The results show that MIML-ELM tends to achieve better generalization perfor-

mance at a higher learning speed.

Keywords Multi-instance multi-label ⋅ Extreme learning machine

1 Introduction

When utilizing machine learning to solve the practical problems, we often consider

an object as a feature vector. Then, we get an instance of the object. Further, asso-

ciating the instance with a specific class label of the object, we obtain an example.

Given a large collection of examples, the task is to get a function mapping from the

instance space to the label space. We expect that the learned function can predict

the labels of unseen instances correctly. However, in some applications, a real-world

object is often of ambiguity, which consists of multiple instances and corresponds

to multiple different labels simultaneously.

For example, an image usually contains multiple patches each represented by an

instance, while in image classification such an image can belong to several classes

C. Li ⋅ Y. Yin (✉) ⋅ Y. Zhao ⋅ G. Chen ⋅ L. Qin

College of Information Science and Engineering, Northeastern University,

Shenyang 110819, China

e-mail: yinying@ise.neu.edu.cn

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_28

325

326 C. Li et al.

simultaneously, e.g. an image can belong to mountains as well as Africa [1]; Another

example is text categorization [1], where a document usually contains multiple sec-

tions each of which can be represented as an instance, and the document can be

regarded as belonging to different categories if it was viewed from different aspects,

e.g. a document can be categorized as scientific novel, Jules Verne’s writing or even

books on travelling; The MIML problem also arises in the protein function pre-

diction task [2]. A domain is a distinct functional and structural unit of a protein.

A multi-functional protein often consists of several domains, each fulfilling its own

function independently. Taking a protein as an object, a domain as an instance and

each biological function as a label, the protein function prediction problem exactly

matches the MIML learning task.

In this context, Multi-instance Multi-label learning was proposed [1]. Similar to

two another multi-learning frameworks, i.e. Multi-instance learning (MIL) [3] and

Multi-label learning (MLL) [4], the MIML learning framework also results from the

ambiguity in representing the real-world objects. Differently, more difficult than two

another multi-learning frameworks, MIML studies the ambiguity in terms of both the

input space (i.e. instance space) and the output space (i.e. label space) while MIL just

studies the ambiguity in the input space and MLL just studies the ambiguity in the

output space, respectively. In [1], Zhou et al. proposed a degeneration strategy based

framework for MIML, which consists of two phases. First, the MIML problem is

degenerated into the single-instance multi-label (SIML) problem through a specific

clustering process; Second, the SIML problem is decomposed into multiple inde-

pendent binary classification (i.e. single-instance single-label) problem using SVM

as the classifiers builder. This two-phase framework has been successfully applied

to many real-world applications and has been shown effective [5]. However, it could

be further improved if the following drawbacks are tackled. On one hand, the clus-

tering process in the first phase requires a user-specific parameter for the number of

clusters. Unfortunately, it is often trouble to determine the correct number of clusters

in advance. The incorrect number of clusters may affect the accuracy of the learning

algorithm; On the other hand, SIML is degenerated into SISL (i.e. single instance

single label) in the second phase, as will increase the volume of data to be handled

and thus burden the classifier building. Utilizing SVM as the classifiers builder in

this phase may suffer from the high computational cost and require much number of

parameters to be optimized.

In this paper, we propose to enhance the two-phase framework by tackling the two

above issues and make the following contributions: (1) we utilize Extreme Learn-

ing Machine (ELM) [6] instead of SVM to improve the efficiency of the two-phase

framework. To our best knowledge, we are the first utilizing ELM in MIML prob-

lem and conducting the comparison of ELM and SVM on MIML; (2) we design a

method of theoretical guarantee to determine the number of clusters automatically

while incorporating it into the improved two-phase framework for effectiveness.

The remainder of this paper is organized as follows. In Sect. 2, we give a brief

introduction to MIML and ELM; Sect. 3 details the improvements of the two-phase

framework; Finally, Sect. 5 concludes this paper.

Multi-instance Multi-label Learning by Extreme Learning Machine 327

2 The Preliminaries

This research is related to some previous work on multi-instance multi-label (MIML)

learning and extreme learning machine (ELM). In what follows, we briefly review

some preliminaries of the two related work in Sects. 2.1 and 2.2, respectively.

2.1 Multi-instance Multi-label Learning

In the traditional supervised learning, the relationships between an object and its

description and its label are always one-to-one correspondence. That is, an object

is represented by a single instance and associated with a single class label. In this

sense, we refer to it as single-instance single-label learning (SISL for short). For-

mally, let X be the instance space (or say feature space) and Y the set of class

labels. The goal of SISL is to learn a function fSISL:X → Y from a given data set

{(x1,Y1), (x2,Y2),… , (xm,Ym)}, where xi ∈ X is a instance and yi ∈ Y is the label of

xi. This formalization is prevailing and successful. However, as mentioned in Sect. 1,

a lot of real-world objects are complicated and ambiguous in their semantics. Rep-

resenting these ambiguous objects with SISL may lose some important informa-

tion and make the learning task problematic [1]. Thus, many real-world complicated

objects do not fit in this framework well.

In order to deal with this problem, several multi-learning frameworks have been

proposed, e.g. Multi-Instance Learning (MIL), Multi-Label Learning (MLL) and

Multi-Instance Multi-Label Learning (MIML). MIL studies the problem where a

real-world object described by a number of instances is associated with a single class

label. Multi-instance learning techniques have been successfully applied to diverse

applications including image categorization [7], image retrieval [8], text categoriza-

tion [9], web mining [10], computer-aided medical diagnosis [11], etc. Differently,

MLL studies the problem where a real-world object is described by one instance

but associated with a number of class labels. The existing work of MLL falls into

two major categories. The one attempts to divide multi-label learning to a number

of two class classification problems [12] or transform it into a label ranking prob-

lem [13]; the other tries to exploit the correlation between the labels [14]. MLL has

been found useful in many tasks, such as text categorization [15], scene classifica-

tion [16], image and video annotation [17, 18], bioinformatics [19, 20] and even

association rule mining [21, 22]. MIML is a generalization of traditional supervised

learning, multi-instance learning and multi-label learning, where a real-world object

may be associated with a number of instances and a number of labels simultaneously.

MIML is more reasonable than (single-instance) multi-label learning in many cases.

In some cases, understanding why a particular object has a certain class label is even

more important than simply making an accurate prediction while MIML offers a

possibility for this purpose.

328 C. Li et al.

2.2 A Brief Introduction to ELM

Extreme Learning Machine (ELM for short) is a generalized Single Hidden-layer

Feedforward Network. In ELM, the hidden-layer node parameter is mathematically

calculated instead of being iteratively tuned, thus it provides good generalization per-

formance at thousands of times faster speed than traditional popular learning algo-

rithms for feedforward neural networks [23].

As a powerful classification model, ELM has been widely applied in many fields,

such as protein sequences classification in bioinformatics [24, 25], online social net-

work prediction [26], XML document classification [23], Graph classification [27]

and so on. How to classify the data quickly and correctly is an important thing. For

example, in [28], ELM was applied for plain text classification by using the one-

against-one (OAO) and one-against-all (OAA) decomposition scheme. In [23], an

ELM based XML document classification framework was proposed to improve clas-

sification accuracy by exploiting two different voting strategies. A protein secondary

prediction framework based on ELM was proposed in [29] to provide good perfor-

mance at extremely high speed. Wang et al. [30] implemented the protein-protein

interaction prediction on multi-chain sets and on single-chain sets using ELM and

SVM for a comparable study. In both cases, ELM tends to obtain higher Recall val-

ues than SVM and shows a remarkable advantage in the computational speed. Zhang

et al. [31] evaluated the multicategory classification performance of ELM on three

microarray data sets. The results indicate that ELM produces comparable or better

classification accuracies with reduced training time and implementation complexity

compared to artificial neural networks methods and Support Vector Machine meth-

ods. In [32], the use of ELM for multiresolution access of terrain height informa-

tion was proposed. Optimization method based ELM for classification was studied

in [33].

Given N arbitrary distinct samples (xi, ti), where xi =
[
xi1, xi2,… , xin

]T ∈ 𝐑n
and

ti =
[
ti1, ti2,… , tim

]T ∈ 𝐑m
, standard SLFNs with L hidden nodes and activation

function g(x) are mathematically modeled as

f (x) =
L∑

i=1
𝛽ig

(
𝐚i, bi, 𝐱

)
(1)

where ai and bi are the learning parameters of hidden nodes and 𝛽i is the weight

connecting the ith hidden node to the output node. g
(
𝐚i, bi, 𝐱

)
is the output of the ith

hidden node with respect to the input x. In our case, sigmoid type of additive hidden

nodes are used. Thus, Eq. (1) is given by

f (x) =
L∑

i=1
𝛽ig

(
𝐚i, bi, 𝐱

)
=

L∑

i=1
𝛽ig

(
𝐰i ⋅ 𝐱j + bi

)
= 𝐨j, (j = 1, ...,N) (2)

Multi-instance Multi-label Learning by Extreme Learning Machine 329

where 𝐰i =
[
wi1,wi2, ...,win

]T
is the weight vector connecting the i-th hidden node

and the input nodes, 𝛽i =
[
𝛽i1, 𝛽i2, ..., 𝛽im

]T
is the weight vector connecting the ith

hidden node and the output nodes, bi is the bias of the ith hidden node, and oj is the

output of the jth node [34].

If an SLFN with activation function g(x) can approximate the N given samples

with zero error that 𝛴
L
j=1

‖‖‖oj − tj
‖‖‖ = 0, there exist 𝛽i, ai and bi such that

L∑

i=1
𝛽ig

(
𝐰i ⋅ 𝐱j + bi

)
= 𝐭j, j = 1,… ,N (3)

Equation (3) can be expressed compactly as follows

𝐇𝛽 = 𝐓 (4)

where

𝐇
(
𝐰1,… ,𝐰L, b1,… , bL, 𝐱1,… , 𝐱N

)
=
⎡
⎢
⎢⎣

g
(
𝐰1 ⋅ 𝐱1 + b1

)
… g

(
𝐰L ⋅ 𝐱1 + bL

)

⋮ … ⋮
g
(
𝐰1 ⋅ 𝐱N + b1

)
… g

(
𝐰L ⋅ 𝐱N + bL

)
⎤
⎥
⎥⎦N×L

,

𝛽 =
[
𝛽

T
1 ,… , 𝛽

T
L

]T
m×L , and 𝐓 =

[
𝐭T1 ,… , 𝐭TL

]T
m×N

𝐇 is called the hidden layer output matrix of the network. The ith column of 𝐇
is the ith hidden nodes output vector with respect to inputs x1, x2, …, xN and the jth
row of 𝐇 is the output vector of the hidden layer with respect to input xj.

For the binary classification applications, the decision function of ELM [33] is

f (x) = sign

(L∑

i=1
𝛽ig(𝐚i, bi, 𝐱)

)
= sign(𝛽 ⋅ h(x)) (5)

h(𝐱) =
[
g
(
𝐚𝟏, b1, 𝐱

)
,… , g

(
𝐚𝐋, bL, 𝐱

)]T
is the output vector of the hidden layer with

respect to the input 𝐱. h(𝐱) actually maps the data from the d-dimensional input space

to the L-dimensional hidden layer feature space 𝐇.

Algorithm 1: ELM

Input: DB:dataset, HN: Number of Hidden Layer nodes, AF: ActivationFunction

Output: Results

for i=1 to L do1
randomly assign input weight wi;2
randomly assign bias bi;3

end4
calculate 𝐇;5
calculate 𝛽 = 𝐇†𝐓6

330 C. Li et al.

In ELM, the parameters of hidden layer nodes, i.e. wi and bi, can be chosen ran-

domly without knowing the training data sets. The output weight 𝐋 is then calcu-

lated with matrix computation formula 𝐋 = 𝐇†𝐓, where 𝐇†
is the Moore-Penrose

Inverse of 𝐇. ELM not only tends to reach the smallest training error but also the

smallest norm of weights [6]. Given a training set ℵ = {(𝐱i, 𝐭i)|𝐱i ∈ 𝐑n
, 𝐭i ∈ 𝐑m

, i =
1,… ,N}, activation function g(x) and hidden node number L, the pseudo code of

ELM [34] is given in Algorithm 1.

3 The Proposed Two-Phase MIMLELM Framework

MIMLSVM is a representative two-phase MIML algorithm successfully applied in

many real-world tasks [2]. It was first proposed by Zhou et al. in [1], and recently

improved by Li et al. in [5]. MIMLSVM solves the MIML problem by first degenerat-

ing it into single-instance multi-label problems through a specific clustering process

and then decomposing the learning of multiple labels into a series of binary clas-

sification tasks using SVM. However, as ever mentioned, MIMLSVM may suffer

from some drawbacks in either of the two phases. For example, in the first phase,

the user-specific parameter for the number of clusters may incur the effective prob-

lem; in the second phase, utilizing SVM as the classifiers builder may bring the high

computational cost and require much number of parameters to be optimized.

Algorithm 2: The MIMLELM Algorithm

Input: DB:dataset, HN: Number of Hidden Layer nodes, AF: ActivationFunction

Output: Results

DB = {(X1,Y1), (X2,Y2),… , (Xm,Ym)}, 𝛤 = X1,X2,… ,Xm;1
Determine the number of clusters, k, using AIC;2
randomly select k elements from 𝛤 to initialize the k medoids {M1,M2,… ,Mk};3
repeat4

𝛤t={Mt}(t = 1, 2,… , k);5
foreach Xu∈(𝛤−{Mt}) do6

index=argmint∈{1,2,…,k} dH(Xu,Mt);7
𝛤index=𝛤index∪{Xu}8

end9
Mt=argmin

A∈𝛤t

∑
B∈𝛤t

dH(A,B)(t = 1, 2,… , k);
10

Transform (Xu,Yu) into into an SIML example (zu,Yu), where11
zu=(dH(Xu,M1), dH(Xu,M2),… , dH(Xu,Mk));

until Mt (t = 1, 2,… , k) don’t change;12
foreach zu (u ∈ {1, 2,… ,m}) do13

foreach y∈Yu do14
decompose (zu,Yu) into |Yu| SISL examples15

end16
end17
Train ELMy for every class y18

Multi-instance Multi-label Learning by Extreme Learning Machine 331

In this paper, we present another algorithm, namely MIMLELM, to make

MIMLSVM more efficient and effective. The MIMLELM algorithm is outlined in

Algorithm 2. It consists of four major elements: (1) determination of the number

of clusters (line 2); (2) transformation from MIML to SIML (line 3–12); (3) trans-

formation from SIML to SISL (line 13–17); (4) multi-label learning based on ELM

(line 18).

4 Performance Evaluation

In this section, we study the performance of the proposed MIMLELM algorithm in

terms of both efficiency and effectiveness. The experiments are conducted on a HP

PC with 2.33 GHz Intel Core 2 CPU, 2 GB main memory running Windows 7 and

all algorithms are implemented in MATLAB 2013.

Fig. 1 The efficiency

comparison on Image data

set. a The comparison of

training time, b the

comparison of testing time

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.5 1 1.5 2

tr
ai

ni
ng

 ti
m

e(
s)

data scale

MIMLSVM with cost=1
MIMLSVM with cost=2
MIMLSVM with cost=3
MIMLSVM with cost=4
MIMLELM with cost=5

MIMLSVM with HN=10
MIMLSVM with HN=20
MIMLSVM with HN=30

 0

 10

 20

 30

 40

 50

0.5 1 1.5 2

te
st

in
g

tim
e(

s)

data scale

MIMLSVM with cost=1
MIMLSVM with cost=2
MIMLSVM with cost=3
MIMLSVM with cost=4
MIMLELM with cost=5

MIMLSVM with HN=10
MIMLSVM with HN=20
MIMLSVM with HN=30

(a)

(b)

332 C. Li et al.

Four real datasets are utilized in our experiments. The data set is Image [1], which

comprises 2000 natural scene images and 5 classes. The percent of images of more

than one class is over 22 %. On average, each image is of 1.24 ± 0.46 class labels

and 1.36 ± 0.54 instances.

In the next experiments, we study the efficiency of MIMLELM by testing its scala-

bility. That is, the data set is replicated different number of times, and then we observe

how the training time and the testing time vary with the data size increasing. Again,

MIMLSVM+ is utilized as the competitor. Similarly, the MIMLSVM+ algorithm

is implemented with a Gaussian kernel while the penalty factor Cost is set to be 1,

2, 3, 4 and 5, respectively. The experimental results are given in Figs. 1. The Image

data set is replicated 0.5–2 times with step size set to be 0.5. When the number of

copies is 2, the efficiency improvement could be up to one 92.5 % (from about 41.2 s

down to about 21.4 s). As we observed, as the data size increasing, the superiority

of MIMLELM becomes more and more significant.

5 Conclusion

MIML is a framework for learning with complicated objects, and has been proved to

be effective in many applications. However, the existing two-phase MIML

approaches may suffer from the effectiveness problem arising from the user-specific

clusters number and the efficiency problem arising from the high computational cost.

In this paper, we propose the MIMLELM approach to learn with MIML examples

fast. On one hand, the efficiency is highly improved by integrating Extreme Learn-

ing Machine into the MIML learning framework. To our best knowledge, we are the

first utilizing ELM in MIML problem and conducting the comparison of ELM and

SVM on MIML. On the other hand, we develop a method of theoretical guarantee

to determine the number of clusters automatically and exploit a genetic algorithm

based ELM ensemble to further improve the effectiveness.

Acknowledgments National Natural Science Foundation of China (61272182, 61100028,

61572117, 61173030, 61173029), State Key Program of National Natural Science of China

(61332014,U1401256), New Century Excellent Talents (NCET-11-0085) and the Fundamental

Research Funds for the Central Universities under grants (No.130504001).

References

1. Zhou, Z.H., Zhang, M.L.: Multi-instance multi-label learning with application to scene

classification. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information

Processing Systems 19, pp. 1609–1616. MIT Press, Cambridge (2007)

2. Wu, J., Huang, S., Zhou, Z.: Genome-wide protein function prediction through multi-instance

multi-label learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 11, 891–902 (2014)

3. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with

axis-parallel rectangles. Artif. Intell. 89, 31–71 (1997)

Multi-instance Multi-label Learning by Extreme Learning Machine 333

4. Schapire, R.E., Singer, Y.: Boostexter: a boosting-based system for text categorization. Mach.

Learn. 39, 135–168 (2000)

5. Li, Y., Ji, S., Kumar, S., Ye, J., Zhou, Z.: Drosophila gene expression pattern annotation through

multi-instance multi-label learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 9, 98–112

(2012)

6. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of

feedforward neural networks. In: Proceedings of International Joint Conference on Neural

Networks (IJCNN2004), vol. 2, pp. 985–990, Budapest, Hungary, 25–29 July 2004

7. Chen, Y., Bi, J., Wang, J.Z.: MILES: multiple-instance learning via embedded instance selec-

tion. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1931–1947 (2006)

8. Yang, C., Lozano-Pérez, T.: Image database retrieval with multiple-instance learning

techniques. In: ICDE, pp. 233–243 (2000)

9. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance

learning. In: Advances in Neural Information Processing Systems 15 [Neural Informa-

tion Processing Systems, NIPS 2002, December 9–14, 2002, Vancouver, British Columbia,

Canada], pp. 561–568 (2002)

10. Zhou, Z., Jiang, K., Li, M.: Multi-instance learning based web mining. Appl. Intell. 22,

135–147 (2005)

11. Fung, G., Dundar, M., Krishnapuram, B., Rao, R.B.: Multiple instance learning for computer

aided diagnosis. In: Advances in Neural Information Processing Systems 19, Proceedings of

the Twentieth Annual Conference on Neural Information Processing Systems, pp. 425–432,

Vancouver, British Columbia, Canada, 4–7 Dec 2006

12. Joachims, T.: Text categorization with suport vector machines: learning with many relevant fea-

tures. In: Proceedings Machine Learning: ECML-98, 10th European Conference on Machine

Learning, pp. 137–142, Chemnitz, Germany, 21–23 April 1998

13. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in

Neural Information Processing Systems 14 [Neural Information Processing Systems: Natural

and Synthetic, NIPS 2001, December 3–8, 2001, Vancouver, British Columbia, Canada], pp.

681–687 (2001)

14. Liu, Y., Jin, R., Yang, L.: Semi-supervised multi-label learning by constrained non-negative

matrix factorization. In: Proceedings, The Twenty-First National Conference on Artificial Intel-

ligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, pp.

421–426, Boston, Massachusetts, USA, 16–20 July 2006

15. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In:

Proceedings Advances in Knowledge Discovery and Data Mining, 8th Pacific-Asia Confer-

ence, PAKDD 2004, 22–30, Sydney, Australia, 26–28 May 2004

16. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pat-

tern Recogn. 37, 1757–1771 (2004)

17. Kang, F., Jin, R., Sukthankar, R.: Correlated label propagation with application to multi-label

learning. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition (CVPR 2006), pp. 1719–1726, New York, NY, USA, 17–22 June 2006

18. Qi, G., Hua, X., Rui, Y., Tang, J., Mei, T., Zhang, H.: Correlative multi-label video annotation.

In: Proceedings of the 15th International Conference on Multimedia 2007, 17–26, Augsburg,

Germany, 24–29 Sept 2007

19. Barutçuoglu, Z., Schapire, R.E., Troyanskaya, O.G.: Hierarchical multi-label prediction of

gene function. Bioinformatics 22, 830–836 (2006)

20. Brinker, K., Fürnkranz, J., Hüllermeier, E.: A unified model for multilabel classification and

ranking. In: Proceedings ECAI 2006, 17th European Conference on Artificial Intelligence,

August 29–September 1, 2006, Riva del Garda, Italy, Including Prestigious Applications of

Intelligent Systems (PAIS 2006), pp. 489–493 (2006)

21. Rak, R., Kurgan, L.A., Reformat, M.: Multi-label associative classification of medical

documents from MEDLINE. In: Fourth International Conference on Machine Learning and

Applications, ICMLA 2005, Los Angeles, California, USA, 15–17 Dec 2005

334 C. Li et al.

22. Thabtah, F.A., Cowling, P.I., Peng, Y.: MMAC: a new multi-class, multi-label associative clas-

sification approach. In: Proceedings of the 4th IEEE International Conference on Data Mining

(ICDM 2004), pp. 217–224, Brighton, UK, 1–4 Nov 2004

23. Zhao, X., Wang, G., Bi, X., Gong, P., Zhao, Y.: Xml document classification based on elm.

Neurocomputing 74, 2444–2451 (2011)

24. Zhao, Y., Wang, G., Yin, Y., Li, Y., Wang, Z.: Improving elm-based microarray data classifi-

cation by diversified sequence features selection. Neural Comput. Appl. 2014, 1–12 (2014)

25. Zhao, Y., Wang, G., Zhang, X., Yu, J.X., Wang, Z.: Learning phenotype structure using

sequence model. IEEE Trans. Knowl. Data Eng. 26, 667–681 (2014)

26. Sun, Y., Yuan, Y., Wang, G.: An on-line sequential learning method in social networks for node

classification. Neurocomputing 149, 207–214 (2015)

27. Wang, Z., Zhao, Y., Wang, G., Li, Y., Wang, X.: On extending extreme learning machine to non-

redundant synergy pattern based graph classification. Neurocomputing 149, 330–339 (2015)

28. Zhang, R., Huang, G.B., Sundararajan, N., Saratchandran, P.: Multi-category classifica-

tion using an extreme learning machine for microarray gene expression cancer diagnosis.

IEEE/ACM Trans. Comput. Biol. Bioinform. 4, 485–495 (2007)

29. Wang, G., Zhao, Y., Wang, D.: A protein secondary structure prediction framework based on

the extreme learning machine. Neurocomputing 72, 262–268 (2008)

30. Wang, D.D., Wang, R., Yan, H.: Fast prediction of protein-protein interaction sites based on

extreme learning machines. Neurocomputing 128, 258–266 (2014)

31. Zhang, R., Huang, G.B., Sundararajan, N., Saratchandran, P.: Multicategory classifica-

tion using an extreme learning machine for microarray gene expression cancer diagnosis.

IEEE/ACM Trans. Comput. Biol. Bioinform. 4, 485–495 (2007)

32. Yeu, C.W.T., Lim, M.L., Huang, G.B., Agarwal, A., Ong, Y.S.: A new machine learning par-

adigm for terrain reconstruction. IEEE Geosci. Remote Sens. Lett. 3, 382–386 (2006)

33. Huang, G.B., Ding, X., Zhou, H.: Optimization method based extreme learning machine for

classification. Neurocomputing 74, 155–163 (2010)

34. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.

Neurocomputing 70, 489–501 (2006)

A Randomly Weighted Gabor Network
for Visual-Thermal Infrared Face
Recognition

Beom-Seok Oh, Kangrok Oh, Andrew Beng Jin Teoh,
Zhiping Lin and Kar-Ann Toh

Abstract In this paper, a novel three-layer Gabor-based network is proposed for

heterogeneous face recognition. The input layer of our proposed network consists of

pixel-wise image patches. At the hidden layer, a set of Gabor features are extracted

by a projection operation and a magnitude function. Subsequently, a non-linear acti-

vation function is utilized after weighting the extracted Gabor features with random

weight vectors. Finally, the output weights are deterministically learned similarly

to that in extreme learning machine. Some experimental results on private BERC

visual-thermal infrared database are observed and discussed. The proposed method

shows promising results based on the average test recognition accuracy.

Keywords Heterogeneous face recognition ⋅ Gabor features ⋅ Extreme learning

machine ⋅ Random weighting

B.-S. Oh ⋅ K. Oh ⋅ A.B.J. Teoh ⋅ K.-A. Toh (✉)

School of Electrical and Electronic Engineering, Yonsei University,

50 Yonsei-ro, Seodaemun-gu, Republic of Korea

e-mail: katoh@yonsei.ac.kr,katoh@ieee.org

B.-S. Oh

e-mail: a-bullet@yonsei.ac.kr,bsoh@ntu.edu.sg

K. Oh

e-mail: kangrok.oh@yonsei.ac.kr

A.B.J. Teoh

e-mail: bjteoh@yonsei.ac.kr

B.-S. Oh ⋅ Z. Lin

School of Electrical and Electronic Engineering, Nanyang Technological University,

50 Nanyang Avenue, Singapore, Singapore

e-mail: ezplin@ntu.edu.sg

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_29

335

336 B.-S. Oh et al.

1 Introduction

According to [1], heterogeneous face recognition refers to face matching across dif-

ferent visual domains such as visual, near-infrared, thermal infrared, sketch, 3D, and

etc. To the best of our knowledge, [2] was among the pioneering work to have intro-

duced the term based on earlier works in applications such as face sketch recognition

[3] and illumination invariant face recognition [4]. Due to the demand of matching

face images captured under different conditions for practical reasons, heterogeneous

face recognition became an interesting research topic recently. Particularly, hetero-

geneous face recognition is important when the modality gap between a registered

image and a query image is significantly large. For example, consider a forensic

application which requires matching between visual face images and non-visual face

images. Under this situation, it is hard to exploit established techniques in homo-

geneous face recognition without resolving problems caused by the modality gap

between different visual domains.

Based on the ways to deal with the modality gap, existing works in heterogeneous

face recognition can be grouped into four approaches: (i) common subspace learning

approach, (ii) invariant feature extraction approach, (iii) synthesis-based approach,

and (iv) classification-based approach. Related works with common subspace learn-

ing approach aim to learn a common subspace from heterogeneous face images [5–8]

to narrow the modality gap. The key idea of invariant feature extraction approach is

to represent heterogeneous face images by designing a method to extract domain

invariant features [9–11]. Methods with synthesis-based approach attempted to syn-

thesize face images of a modality with those of other modalities [12, 13] to narrow

the modality gap. For these three approaches, majority of existing works adopted a

nearest neighbor (NN) classifier based on a similarity measure at recognition stage.

Different from the above approaches, classification-based approach utilizes a clas-

sifier learned from the training data [14] to narrow down the modality gap. Compar-

ing with the first three approaches, it is possibly beneficial to utilize a learning based

classifier (for example, partial least square (PLS) [14]) with an appropriate parameter

setting instead of using a prototype based NN. Our work belongs to classification-

based approach.

In this paper, we propose a Gabor-based extreme learning machine for het-

erogeneous face recognition. The main contributions of this paper can be enu-

merated as follows: (i) proposal of a novel scheme based on a pixel-wise image

patch and random weight vectors for extracting randomly weighted Gabor features,

(ii) proposal of a novel network structure which propagate randomly weighted Gabor

features to a hidden layer. This paper is organized as follows: some pre-requisite

background knowledge is provided in Sect. 2. Section 3 presents the proposed net-

work. The experimental results and discussions are presented in Sect. 4. Some

concluding remarks are provided in Sect. 5.

A Randomly Weighted Gabor Network for Visual-Thermal . . . 337

2 Preliminaries

In this section, we provide brief descriptions on Gabor filtering [15, 16] and extreme

learning machine (ELM) [17] as background knowledge of the proposed network.

2.1 Gabor Filtering

According to [15, 16], a Gabor kernel can be defined as follows

𝐊
𝜇,𝜈

(𝐜) =
‖‖‖𝐯𝜇,𝜈

‖‖‖
2

𝜎
2 ⋅ exp

⎛
⎜
⎜
⎜⎝

−
‖‖‖𝐯𝜇,𝜈

‖‖‖
2
‖𝐜‖2

2𝜎2

⎞
⎟
⎟
⎟⎠

⋅
[
exp

(
i𝐯T

𝜇,𝜈

𝐜
)
− exp

(
−𝜎

2

2

)]
, (1)

where c = (x, y)T denotes an image coordinate consisting of row(x) and column(y),

𝐊
𝜇,𝜈

∈ ℂH×W
is a complex Gabor kernel. Here, 𝜇 and 𝜈 are the orientation and scale

of the Gabor kernel, and 𝜎 is the standard deviation. We utilize ‖⋅‖ and i to denote

the L2-norm operator and the imaginary axis. The wave vector 𝐯
𝜇,𝜈

is defined as

𝐯
𝜇,𝜈

= kmax
f 𝜈

exp
(
i𝜇𝜋
8

)
where kmax is the maximum frequency, f is a factor regarding

the space between kernels in frequency domain. Given an image matrix 𝐗 ∈ ℝP×Q
,

the Gabor kernel 𝐊
𝜇,𝜈

defined in (1) is convolved with 𝐗. Subsequently, magnitude

or phase information are extracted from the convolution results [16, 18].

2.2 Extreme Learning Machine (ELM) for Binary
Classification

GivenM pairs of training sample and corresponding class label,
(
𝐱i, yi

)
, i = 1,… ,M,

where 𝐱i ∈ ℝD×1
is an input vector and yi ∈ {0, 1} is a corresponding class label, a

single hidden layer feedforward neural network (SLFN) with N hidden nodes and an

activation function h (⋅) can be written as

N∑

j=1
𝛽jh

(
𝐰T

j 𝐱i + bj
)
= oi, i = 1,… ,M, (2)

where 𝐰j ∈ ℝD×1
is a randomly assigned weight vector connecting the input nodes

to the jth hidden node, 𝛽j ∈ ℝ is a weight value connecting the jth hidden node to

the output node, bj ∈ ℝ is a randomly assigned threshold for the jth hidden node,

and oi ∈ ℝ is a network output value.

338 B.-S. Oh et al.

For M training samples, (2) can be written compactly as

𝐇𝛽𝛽𝛽 = 𝐲, (3)

where

𝐇 =
⎡
⎢
⎢⎣

h
(
𝐰T

1𝐱1 + b1
)
⋯ h

(
𝐰T

N𝐱1 + bN
)

⋮ ⋱ ⋮
h
(
𝐰T

1𝐱M + b1
)
⋯ h

(
𝐰T

N𝐱M + bN
)
⎤
⎥
⎥⎦M×N

, (4)

and 𝛽𝛽𝛽 =
[
𝛽1,… , 𝛽N

]T
and 𝐲 =

[
y1,… , yM

]T
.

According to [17], a closed-form solution for 𝛽𝛽𝛽 to (3) can be written as

̂
𝛽𝛽𝛽 = 𝐇†𝐲 =

(
𝐇T𝐇

)−1𝐇T𝐲, (5)

where 𝐇†
is the Moore-Penrose generalized inverse of 𝐇. Given a test sample 𝐱t,

the corresponding network output value ot can be estimated as ot = 𝐡Tt ̂𝛽𝛽𝛽 where

𝐡t =
[
h
(
𝐰T

1𝐱t + b1
)
,… , h

(
𝐰T

N𝐱t + bN
)]T

. This algorithm for SLFN is called an

extreme learning machine (ELM) in [17]. A similar network structure can be found in

[19–21].

3 Gabor-Based Extreme Learning Machine

Suppose that we have M pairs of training sample and class label
(
𝐗i, yi

)
, i =

1,… ,M, where 𝐗i ∈ ℝP×Q
and yi ∈ {1,… ,C} denote a face image and a corre-

sponding class label respectively. Here, C is the number of subjects existing in the

training data. Let 𝐙i
x,y ∈ ℝH×W

denote an image patch centered at an image coordi-

nate (x, y) of the ith face image and𝐊
𝜇,𝜈

∈ ℂH×W
denote the Gabor kernel with an ori-

entation 𝜇 and a scale 𝜈 defined in (1). By defining an index j as j = Q × (x − 1) + y
for x = 1,… ,P and y = 1,… ,Q and changing matrix representations into vector

representations, we obtain new representations 𝐳ij ∈ ℝS×1
and 𝐤

𝜇,𝜈

∈ ℂS×1
instead of

𝐙i
x,y ∈ ℝH×W

and 𝐊
𝜇,𝜈

∈ ℂH×W
, respectively, where S = H ×W. Then the proposed

GaborELM can be written as

L∑

j=1
𝛽jh

(
𝐰T

j
|||𝐆𝐳ij

||| + bj
)
= oi, i = 1,… ,M, (6)

where 𝐆 =
[
𝐤0,0,… ,𝐤0,𝜈max

,… ,𝐤
𝜇max,0,… ,𝐤

𝜇max,𝜈max

]T ∈ ℂT×S
is a matrix stacking

Gabor kernels, T =
(
𝜇max + 1

)
×
(
𝜈max + 1

)
stands for the number of Gabor kernels,

𝐰j ∈ ℝT×1
denotes a randomly assigned weight vector connecting image patches to

jth hidden node, |⋅| is an element-wise magnitude function, and L = P × Q.

A Randomly Weighted Gabor Network for Visual-Thermal . . . 339

In order to learn a class specific output weights vector 𝛽𝛽𝛽c ∈ ℝL×1
, c = 1,… ,C,

we further adopt a total error rate (TER) minimization [22, 23] to exploit its efficient

learning capability on a discriminative model. Since the resolution of training images

is high and the number of training samples is low, the TER solution under a dual

solution space [23] is adopted. According to [23], the output weight vector for cth

class (subject) can be learned as

̂
𝛽𝛽𝛽c = 𝐇T

c
(
𝜆𝐈 +𝐖c𝐇c𝐇T

c
)−1𝐖c𝐲c, c = 1,… ,C, (7)

where

𝐇c =
[
𝐇−

c
𝐇+

c

]

M×L
, (8)

𝐇−
c =

⎡
⎢
⎢
⎢⎣

h
(
𝐰T

1
|||𝐆𝐳11

||| + b1
)

⋯ h
(
𝐰T

L
|||𝐆𝐳1L

||| + bL
)

⋮ ⋱ ⋮

h
(
𝐰T

1
|||𝐆𝐳M

−
c

1
||| + b1

)
⋯ h

(
𝐰T

L
|||𝐆𝐳M

−
c

L
||| + bL

)

⎤
⎥
⎥
⎥⎦M−

c ×L

, (9)

and

𝐇+
c =

⎡
⎢
⎢
⎢⎣

h
(
𝐰T

1
|||𝐆𝐳11

||| + b1
)

⋯ h
(
𝐰T

L
|||𝐆𝐳1L

||| + bL
)

⋮ ⋱ ⋮

h
(
𝐰T

1
|||𝐆𝐳M

+
c

1
||| + b1

)
⋯ h

(
𝐰T

L
|||𝐆𝐳M

+
c

L
||| + bL

)

⎤
⎥
⎥
⎥⎦M+

c ×L

. (10)

Here, M−
c and M+

c denote the number of samples in negative and positive class

respectively (M = M+
c +M−

c), 𝐖c = 𝐖−
c +𝐖+

c ∈ ℝM×M
indicates a class-specific

diagonal weighting matrix,𝐖−
c = diag(1,… , 1, 0,… , 0)/M−

c
, and𝐖+

c = diag(0,… ,

0, 1,… , 1)/M+
c

. The target vector 𝐲c is defined as yc =
[
y−c
y+c

]
=
[
(𝜏 − 𝜂) 1−
(𝜏 + 𝜂) 1+

]
∈

ℝM×1
, where 1− = [1,⋯ , 1]T ∈ ℕM−

c ×1, 1+ = [1,⋯ , 1]T ∈ ℕM+
c ×1, 𝜏 is a threshold

value and 𝜂 is an offset value [22].

Given an unseen test face image 𝐗t, the class label can be predicted based on

one-versus-all technique as

yt = argmax
c

(
𝐡Tt

[
̂
𝛽𝛽𝛽1,… ,

̂
𝛽𝛽𝛽C

])
, (11)

where 𝐡t =
[
h
(
𝐰T

1
||𝐆𝐳t1|| + b1

)
,… , h

(
𝐰T

L
||𝐆𝐳tL|| + bL

)]T
is a feature vector

extracted by GaborELM from 𝐗t, and yt ∈ {1,… ,C} is a predicted class label.

340 B.-S. Oh et al.

4 Experiment

4.1 Database and Preprocessing

In our experiments, private BERC VIS-TIR database [24] has been utilized to show

the usefulness of our proposed GaborELM for heterogeneous face recognition task.

The BERC VIS-TIR database consists of 10,368 images captured from 96 subjects.

The number of images captured under the visual (VIS) and the thermal infrared (TIR)

spectrums are exactly the same (5,184 images). Images in the database contains vari-

ation in pose, expression, illumination, and appearance (with and without glasses)

[24]. Among the 10,368 images, only 288 VIS images (size = 640 × 480) and 288

TIR images (size = 320 × 240) which were acquired under frontal pose and neutral

expression conditions were utilized in the experiments to exclude pose and expres-

sion variation. Hence, each subject has three VIS images and three TIR images.

The VIS and TIR images were geometrically normalized (size = 150 × 130)

based on the center of eyes and lips. Subsequently, the geometrically normalized

images were photometrically normalized using preprocessing sequences (PS) tech-

nique [25]. It includes a variety of well-known image preprocessing techniques such

as gamma correction, difference of Gaussian (DoG), masking and equalization of

variation. The adopted techniques for PS are performed in the listed order. Figure 1

shows the original and preprocessed images (VIS and TIR) of one subject.

4.2 Experimental Setup

In order to configure the training and test data, we follow a learning protocol for

heterogeneous face recognition which was recently proposed by [14]. In the protocol,

a database is firstly divided into two sets, namely Set1 and Set2. At training phase,

training positive class samples for cth subject consist of only VIS images of this cth

subject in Set1 while training negative class samples for cth subject consist of VIS

Visual
(VIS)

Termal Infrared
(TIR)

Original images After PS processing

Fig. 1 Samples images of one subject in BERC VIS-TIR database and preprocessed images by the

geometrical and photometrical normalization

A Randomly Weighted Gabor Network for Visual-Thermal . . . 341

Table 1 Two conducted experiments for performance evaluation of the proposed GaborELM

Name Purpose

Experiment I Evaluation of accuracy and CPU time performance of GaborELM under a

heterogeneous face recognition scenario (three VIS images/subject for

training & three TIR images/subject for test)

Experiment II Investigation into the effect of the number of random weight vectors for

hidden nodes on recognition accuracy

images of other subjects in Set1 and some non-visual (NVIS) images (TIR images in

our experiments) of Set2. The NVIS images is called training cross examples in [14].

Note that the size of training negative class samples is now M−
c + U, where M−

c is

the number of negative class samples of the cth subject in Set1, and U is the number

of training cross examples in Set2. At testing phase, the protocol utilizes only NVIS

images of each subject in Set1 as test samples. The size of Set1 and Set2 can be

controlled by a parameter (image set partitioning ratio) s (which is the number of

subjects of Set1 / the number of entire subjects).

The accuracy and computational (CPU) time performance of the proposed

GaborELM were evaluated on BERC VIS-TIR database. As the accuracy perfor-

mance measure, we adopted test recognition accuracy (which is the number of cor-

rectly classified samples / the number of entire test samples). Table 1 shows a brief

description on the two experiments. In Experiment I, the accuracy and CPU time

performance of GaborELM is evaluated under a heterogeneous face recognition sce-

nario using three VIS and TIR images per subject. Here, we compared the proposed

method with a method from [14] which was based on histogram of oriented gra-

dients (HOG) features and a partial least square (PLS) regression. We will denote

HOG-PLS for this compared method hereafter. In Experiment II, we investigate into

the effect of the number of random weight vectors for hidden nodes on accuracy

performance.

Under Experiment I, we set kmax = 𝜋∕2, 𝜎 = 2𝜋, 𝜇max = 7, 𝜈max = 4, H = 21 and

W = 21 for values of parameters regarding Gabor kernels according to [16, 26].

This results in 40 Gabor kernels each with the size of 21 × 21 pixels. For the image

patches near the four sides of an image, zero values were padded to prevent informa-

tion loss. For the HOG-PLS, we followed settings in [14] (cell size = 8 × 8, block

size = 2 × 2, window overlapping size = 8). A set of discrete values with the range of

{0.1, 0.2,… , 0.9} was utilized for the image set partitioning ratio s. For GaborELM,

the accuracy and CPU time performance were averaged from 100 iterations resulted

from 10 iterations for random image set partitioning and 10 iterations for random

settings regarding ELM. The accuracy and CPU time performance of HOG-PLS

was averaged from 10 random settings regarding the image set partitioning ratio.

Under Experiment II, we followed the settings regarding Gabor kernels as in Exper-

iment I and we set the image set partitioning ratio s = 0.5. For the number of ran-

dom weight vectors for hidden nodes, we utilized a set of values with the range of

{1, 10, 100, 500, 1000, 3000, 5000, 8000, 10000, 13500}.

342 B.-S. Oh et al.

4.3 Results

Experiment I Figure 2 shows the average test recognition accuracy (%) of

GaborELM and HOG-PLS algorithms on BERC VIS-TIR database. As illustrated

in the figure, GaborELM showed slightly better average test accuracy performance

than HOG-PLS. Both GaborELM and HOG-PLS showed relatively good average test

accuracy performance as the image set partitioning ratio decreases. The CPU time

performance of GaborELM and HOG-PLS algorithms on BERC VIS-TIR database

are illustrated in Fig. 3. As shown in Fig. 3a, HOG-PLS showed better training CPU

time performance than GaborELM, When three images per subject were utilized for

training and test, GaborELM consumed around 10 seconds more than HOG-PLS.

Fig. 2 Average test

recognition accuracy of

GaborELM and HOG-PLS

algorithms on BERC

VIS-TIR database

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
86

88

90

92

94

96

98

Image Set Partitioning Ratio, r

T
es

t R
ec

og
ni

tio
n

A
cc

ur
ac

y
(%

)

BERC database (VIS−TIR matching)

HOG−PLS (3imgs./subj.)
GaborELM (3imgs./subj.)

Fig. 3 Training CPU time,

and test CPU time of

GaborELM and HOG-PLS

algorithms on BERC

VIS-TIR database.

a Training CPU time (sec.)

b Test CPU time (sec.)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

Image Set Partitioning Ratio, r

C
P

U
 ti

m
e

(s
)

CPU time elapsed for feature
extraction and model training

HOG−PLS (3img./subj.)
GaborELM (3imgs./subj.)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

Image Set Partitioning Ratio, r

C
P

U
 ti

m
e

(s
)

CPU time elapsed for testing

HOG−PLS (3imgs./subj.)
GaborELM (3imgs./subj.)

(a)

(b)

A Randomly Weighted Gabor Network for Visual-Thermal . . . 343

Fig. 4 Average test

recognition accuracy of

GaborELM on BERC

VIS-TIR database by

changing the number of

random weight vectors for

hidden nodes

The number of random weights, w
j

1 10 100 500 1000 3000 5000 8000 10000 13500

T
es

t R
ec

og
ni

tio
n

 A
cc

ur
ac

y
(%

)

20
30
40
50
60
70
80
90

The effects of hidden-node specific random
weighting on accuracy

GaborELM on BERC

As shown in Fig. 3b, test CPU time performance showed a similar trend with train-

ing CPU time performance. Both GaborELM and HOG-PLS showed relatively good

training and test CPU time performance as the image partitioning ratio decreases.

Experiment II Figure 4 shows the average test recognition accuracy of GaborELM

by changing the number of random weight vectors for hidden nodes. As shown in the

figure, the accuracy performance increases as the number of random weight vectors

increases until reaching to 1000. The average test recognition accuracy performance

was saturated when 1000 random weight vectors were utilized.

5 Conclusion

In this paper, we proposed a novel Gabor-based extreme learning machine for het-

erogeneous face recognition. The proposed input layer consists of pixel-wise image

patches. The hidden layer outputs randomly weighted Gabor magnitude features

through a non-linear activation function. The output weights were deterministically

learned by a total error rate minimizer. The proposed Gabor-based extreme learning

machine showed promising results on private BERC visual-thermal infrared data-

base based on average test recognition accuracy.

Acknowledgments This research was supported by Basic Science Research Program through the

National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and

Technology (Grant number: NRF-2012R1A1A2042428).

References

1. Ouyang, S., Hospedales, T., Song, Y.Z., Li, X.: A Survey on Heterogeneous Face Recognition:

Sketch, Infra-red, 3D and Low-resolution (2014). arXiv:1409.5114

2. Lin, D., Tang, X.: Inter-modality face recognition. In: European Conference on Computer

Vision, pp. 13–26. Springer (2006)

3. Tang, X., Wang, X.: Face sketch recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1),

50–57 (2004)

http://arxiv.org/abs/1409.5114

344 B.-S. Oh et al.

4. Gross, R., Brajovic, V.: An image preprocessing algorithm for illumination invariant face

recognition. In: Audio-and Video-Based Biometric Person Authentication, pp. 10–18 (2003)

5. Klare, B.F., Jain, A.K.: Heterogeneous face recognition using kernel prototype similarities.

IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1410–1422 (2013)

6. Yi, D., Liu, R., Chu, R., Lei, Z., Li, S.Z.: Face matching between near infrared and visible light

images. In: IAPR/IEEE International Conference on Biometrics, pp. 523–530 (2007)

7. Liao, S., Yi, D., Lei, Z., Qin, R., Li, S.Z.: Heterogeneous face recognition from local structures

of normalized appearance. In: IAPR/IEEE International Conference on Biometrics, pp. 209–

218 (2009)

8. Lei, Z., Zhou, C., Yi, D., Jain, A.K., Li, S.Z.: An improved coupled spectral regression for

heterogeneous face recognition. In: IAPR International Conference on Biometrics, pp. 7–12,

IEEE (2012)

9. Liu, S., Yi, D., Lei, Z., Li, S.Z.: Heterogeneous face image matching using multi-scale features.

In: IAPR/IEEE International Conference on Biometrics, pp. 79–84 (2012)

10. Huang, L., Lu, J., Tan, Y.P.: Learning modality-invariant features for heterogeneous face recog-

nition. In: International Conference on Pattern Recognition, pp. 1683–1686 (2012)

11. Chen, C., Ross, A.: Local Gradient Gabor Pattern (LGGP) with applications in face recogni-

tion, cross-spectral matching, and soft biometrics. In: SPIE Defense, Security, and Sensing,

International Society for Optics and Photonics, pp. 87120R–87120R (2013)

12. Chen, J., Yi, D., Yang, J., Zhao, G., Li, S.Z., Pietikainen, M.: Learning mappings for face

synthesis from near infrared to visual light images. In: IEEE Conference on Computer Vision

and Pattern Recognition, pp. 156–163 (2009)

13. Zhang, Z., Wang, Y., Zhang, Z.: Face synthesis from near-infrared to visual light via sparse

representation. In: International Joint Conference on Biometrics, pp. 1–6 (2011)

14. Hu, S., Choi, J., Chan, A.L., Schwartz, W.R.: Thermal-to-visible face recognition using partial

least squares. J. Opt. Soc. Am. A 32(3), 431–442 (2015)

15. Daugman, J.G.: Two-dimensional spectral analysis of cortical receptive field profiles. Vis. Res.

20(10), 847–856 (1980)

16. Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear dis-

criminant model for face recognition. IEEE Trans. Image Process. 11(4), 467–476 (2002)

17. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neu-

rocomputing 70(1–3), 489–501 (2006)

18. Su, Y., Shan, S., Chen, X., Gao, W.: Hierarchical ensemble of global and local classifiers for

face recognition. IEEE Trans. Image Process. 18(8), 1885–1896 (2009)

19. Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive networks.

complex Syst. 2, 321–355 (1988)

20. Schmidt, W.F., Kraaijveld, M., Duin, R.P.: Feed forward neural networks with random weights.

In: IAPR International Conference on Pattern Recognition, Conference B: Pattern Recognition

Methodology and Systems, pp. 1–4, IEEE (1992)

21. Pao, Y.H., Takefji, Y.: IEEE functional-link net computing. Comput. J. 25(5), 76–79 (1992)

22. Toh, K.A., Eng, H.L.: Between classification-error approximation and weighted least-squares

learning. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 658–669 (2008)

23. Toh, K.A.: Deterministic neural classification. Neural Comput. 20(6), 1565–1595 (2008)

24. Kim, S.K., Lee, H., Yu, S., Lee, S.: Robust face recognition by fusion of visual and infrared

cues. In: IEEE Conference on Industrial Electronics and Applications, pp. 1–5, IEEE (2006)

25. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult

lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

26. Lei, Z., Liao, S., Pietikainen, M., Li, S.Z.: Face recognition by exploring information jointly

in space, scale and orientation. IEEE Trans. Image Process. 20(1), 247–256 (2011)

Dynamic Adjustment of Hidden Layer
Structure for Convex Incremental
Extreme Learning Machine

Yongjiao Sun, Yuangen Chen, Ye Yuan and Guoren Wang

Abstract Extreme Learning Machine (ELM) is a learning algorithm based on

generalized single-hidden-layer feed-forward neural network. Since ELM has an

excellent performance on regression and classification problems, it has been paid

more and more attention recently. The determination of structure of ELM plays a

vital role in ELM applications. Essentially, determination of the structure of ELM

is equivalent to the determination of the hidden layer structure. Utilizing a smaller

scale of the hidden layer structure can promote faster running speed. In this paper,

we propose algorithm PCI-ELM (Pruned-Convex Incremental Extreme Learning

Machine) based on CI-ELM (Convex Incremental Extreme Learning Machine). Fur-

thermore, we also present an improved PCI-ELM algorithm, EPCI-ELM (Enhanced

Pruned-Convex Incremental Extreme Learning Machine), which introduces a filter-

ing strategy for PCI-ELM during the neurons adding process. In order to adjust the

single-hidden-layer feed-forward neural network more flexibly and achieve the most

compact form of the hidden layer structure, in this paper, we propose a algorithm

which can dynamically determine hidden layer structure, DCI-ELM (Dynamic Con-

vex Incremental Extreme Learning Machine). At the end of this paper, we verify

the performance of PCI-ELM, EPCI-ELM and DCI-ELM. The results show that

PCI-ELM, EPCI-ELM and DCI-ELM control hidden layer structure very well and

construct the more compact single-hidden-layer feed-forward neural network.

Keywords Extreme learning machine ⋅Dynamic adjustment ⋅ Feed-forward neural

network ⋅ Convex optimal increment

1 Introduction

ELM [1], which is now an important branch of neural networks, gains high test-

ing accuracy, extremely fast learning speed and good generalization performance.

Increasing attention has been drawn to ELM in both industrial and academic fields.

Y. Sun (✉) ⋅ Y. Chen ⋅ Y. Yuan ⋅ G. Wang

Northeastern University, Shenyang 110819, Liaoning, China

e-mail: sunyongjiao@ise.neu.edu.cn

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_30

345

346 Y. Sun et al.

In the computing theory of ELM, the input weights and bias are generated randomly.

The output weights are calculated using input data matrix, input weights and bias.

Then the whole structure of neural networks are generated. From this point of view,

we draw a conclusion that the calculation cost are directly related to the structure of

the neural network. Researchers have done some work trying to simplify the structure

of ELM on the premise of keeping the advantages of extremely fast learning speed

and generalization performance, so that the overfitting problem can be avoided.

Many researchers focused on improvement of the testing accuracy, generaliza-

tion performance and training speed. Hai-Jun Rong et al. proposed P-ELM (Pruned

Extreme Learning Machine) [2, 7–9], which analyzes the relativity of neurons with

mathematical statistics methods and eliminates the neurons insensitive of class

labels. P-ELM reduces the calculation cost and is capable of real-time structure

adjustment. Yoan Miche et al. focused on the influence of the incorrect training data

and proposed OP-ELM (Optimally Pruned Extreme Learning Machine) [3]. Differ-

ent from P-ELM, OP-ELM takes the influence of irrelative training data into consid-

eration and increases the generalization performance and robustness using pruning

strategies. Guorui Feng et al. proposed E-ELM (Error Minimized Extreme Learning

Machine) [4] to realize increment of single or multiple neurons by minimizing error.

Rui Zhang et al. analyzed the weights of the hidden layer nodes and proposed D-ELM

(Dynamic Extreme Learning Machine) [5] to further evaluate the changes after the

increment of neurons. Guorui Feng et al. proposed DA-ELM [6] (Dynamic Adjust-

ment Extreme Learning Machine) based on theory of application circle expectation

minimization to reduce errors.

Given a specific application, how to determine the structure of the neural network

remains an open question. In this paper, we try to solve the problem in the following

aspects.

∙ Generate appropriate neural network structures automatically for various applica-

tions. Increasing strategies of hidden layer neurons have to be proposed to mini-

mize training errors.

∙ Evaluate neurons to organize hidden layer with higher performance. Neurons with

less contribution have to be eliminated to generate a reduced but efficient neural

network.

∙ Alter the complexity of the hidden layer structure. Adjustment strategies of hidden

layer make the alteration more reasonable.

2 Improved Convex Incremental ELM

During the adjustment of the ELM structure, the increment of hidden layer nodes

without consideration of the effectiveness will cause the redundant of the ELM struc-

ture. Furthermore, the additive node will also affect the effectiveness of the neurons

Dynamic Adjustment of Hidden Layer Structure . . . 347

already added into the hidden layer. Therefore, when eliminating the neurons with

low effectiveness, the measure of neurons faces great challenges.

2.1 Pruned Convex Incremental Extreme Learning Machine

The pruning ELMs usually measure and sort the neurons by some criteria to elimi-

nate the neurons with low effectiveness. Based on the same idea, we propose Pruned

Convex Incremental Extreme Learning Machine (PCI-ELM), which measures the

neurons by the output weights. In the case of multiple output nodes, PCI-ELM mea-

sures the neurons by the norm of the output weights:

‖‖𝛽i‖‖ =
√

𝛽

2
i1 +⋯ + 𝛽

2
im (1)

where 𝛽i = [𝛽i1,… , 𝛽im]T is the output weights of the ith neurons; m is the number

of output nodes. However, even if the output weight is not small, but the output of

the activation function, taking sigmoid as example, is small, thus, in this case, the

output weight cannot represent the importance of the neuron. In CI-ELM [10], the

weights are updated as

𝛽i = (1 − 𝛽L)𝛽i (2)

If we view 𝛽i as the function of additive weights 𝛽L, 𝛽i is a monotonical decreasing

function. o = [o1,… , om]T is the output of ELM, hi(xj) is the output of the jth sample

on the ith neuron:

oi = h1(xi)𝛽1 +⋯ + hL(xi)𝛽L (3)

Since the parameters of the existing neurons do not change, the outputs of hidden

layer neurons h(x) do not change either. Given any training sample x, the influence of

the existing neurons hi(x)𝛽i, i ∈ (1,L − 1) will change due to the Lth additive node.

Therefore, in CI-ELM, the output weights indicate the effectiveness of hidden layer

nodes very well. According to the output weights, we sort the hidden layer nodes

and eliminate the ones with little effectiveness. A threshold of the weights 𝛾 is set,

which is initiated as

𝛾

′ = 𝛾 = 1
L
∑L

i=1
||𝛽i|| (4)

The elimination is determined by the training accuracy: if the training accuracy

𝜀

′
< 𝜀 after the elimination, the neurons have to be kept in the network; if 𝜀

′
> 𝜀

after the elimination, the network has to be pruned.

348 Y. Sun et al.

In order to provide better adjustment, PCI-ELM eliminates the neurons with low

effectiveness to construct a neural network with simplest structure.

2.2 Enhanced Pruned Convex Incremental Extreme
Learning Machine

The pruning after the construction of the ELM simplifies the network structure. How-

ever, the calculation of the effectiveness of the neurons and the performance vari-

ation lead to much more calculation cost. Therefore, a better way is to verify the

effectiveness of the neurons before they are added into the network.

Since the smaller the norm of the output weights is, the better generalization per-

formance the network gains [11], we also use the norm of the output weights ‖𝜷‖ as

a criterion to choose additive neurons. After the output weights are updated as 𝛽i =
(1 − 𝛽L)𝛽i, the neuron with smaller ‖𝜷‖ will be added into the network. The selec-

tion is summarized as ΨL+1 =
⎧
⎪
⎨
⎪⎩

Ψ(1)
L+1

Ψ(2)
L+1if ∥ E

(
Ψ(2)
L+1

)
∥<∥ E

(
Ψ(1)
L+1

)
∥ and ∥ 𝛽

Ψ(2)
L+1 ∥<∥ 𝛽

Ψ(1)
L+1 ∥

where Ψ(L+1) is the network with L+1 hidden layer neurons. The output weight of

the Lth neuron is calculated as:

‖‖‖𝛽
L−1‖‖‖ =

√
𝛽

2
1 +⋯ + 𝛽

2
L−1 (5)

When the Lth neuron is added, the output weights is calculated as:

‖‖𝛽L‖‖ =
√(

1 − 𝛽L
)2

⋅
(
𝛽

2
1 +⋯ + 𝛽

2
L−1

)
+ 𝛽

2
L

=
√(

1 − 𝛽L
)2‖‖𝛽L−1‖‖

2 + 𝛽

2
L

≥

√√√√ ‖‖𝛽L−1‖‖
2

‖‖𝛽L−1‖‖
2 + 1

=
‖‖𝛽L−1‖‖√
‖‖𝛽L−1‖‖

2 + 1
(6)

As to ‖‖𝛽L‖‖, ‖‖𝛽L−1‖‖ is a constant, thus, ‖‖𝛽L‖‖ can be viewed as a dependent vari-

able, 𝛽L as an independent variable. Equation 6 can be viewed as function f (x) =√
(1 − x)2a2 + x2, where a is a constant, x ∈ R, thus, f (x) is monotonic decreasing

in the interval

[
−∞,

a2

1+a2

]
, monotonic increasing in the interval

[
a2

1+a2
,+∞

]
.

Note that the method mentioned above only tries to guarantee that the existing

neurons have certain effectiveness. Although in each step we try to make ‖𝜷‖ as

small as possible, the output weight ‖𝜷‖ is not smaller than ‖𝜷‖ in CI-ELM for sure.

Dynamic Adjustment of Hidden Layer Structure . . . 349

The redundancy of the network cannot be avoided, which is because the remaining

training error is calculated as:

Δ = ‖‖eL−1‖‖
2 − ‖‖eL‖‖

2

= ‖‖eL−1‖‖
2 − ‖‖‖eL−1 − 𝛽L

(
H − FL−1

)‖‖‖
2

= 2𝛽L ⟨eL−1,HL − FL−1⟩ − 𝛽

2
L
‖‖HL − FL−1

‖‖
2

= ‖‖HL − FL−1
‖‖
2
⎛
⎜
⎜⎝

⟨eL−1,HL − FL−1⟩2

‖‖HL − FL−1
‖‖
4 −

(
𝛽L −

⟨eL−1,HL − FL−1⟩
‖‖HL − FL−1

‖‖
2

)2⎞
⎟
⎟⎠

(7)

When 𝛽L = ⟨eL−1,HL−FL−1⟩
‖HL−FL−1‖2 , Δ is maximum, Δmax =

⟨eL−1,HL−FL−1⟩2

‖HL−FL−1‖2 . The greater 𝛽L is,

the greater Δmax is.

From Eq. 6 we can see that, if the output weight of the additive node is 𝛽

L =
‖𝛽L−1‖2

‖𝛽L−1‖2+1
, the norm ‖𝜷‖ is minimum. Therefore, we try to choose larger 𝛽L =

‖𝛽L−1‖2

‖𝛽L−1‖2+1
, which means larger ‖‖𝛽L−1‖‖.

If a large enough ‖‖𝛽1‖‖ is set in the neural network, the output of the additive

node can also be large. In the initiate phase, K neurons are generated randomly as

h1,… , hK , 𝛽i =
𝐄⋅[𝐄−(𝐅−𝐇i)]T

[𝐄−(𝐅−𝐇i)]⋅[𝐄−(𝐅−𝐇)i]T
, i = 1,. . . , K, larger 𝛽 will be chosen as the

initiate neuron.

Based on the random search strategy, the probability of finding a neuron with

output weight
‖𝛽L−1‖2

‖𝛽L−1‖2+1
is nearly zero. Thus, it is not necessary to pursue the min-

imum ‖‖𝛽L‖‖. Like the random search in EI-ELM, a maximum search time k is set,

the neurons with more training error decrement and the least norm is added into

the network. In other words, these neurons must exists in the circle with the center

located as 𝛽

L = ‖𝛽L−1‖2

‖𝛽L−1‖2+1
, 𝛾 as the radius. In most cases, the output weights near

center
‖𝛽L−1‖2

‖𝛽L−1‖2+1
are more likely to be chosen.

3 Dynamic Convex Incremental Extreme Learning
Machine

In this section, we introduce the Convex Incremental Extreme Learning Machine

(DCI-ELM). We merge the pruning of useless neurons into the process of adding new

neurons. So we can delete the useless or inefficient neurons from the ELM network

350 Y. Sun et al.

earlier, simplify the neuron network structure as early as possible, and make the most

effort to get the most compact and efficient ELM hidden structure.

The less error the new added neurons using CI-ELM bring to the ELM network

training process, the more efficient the network will be. But this may lead to the

decrease of the effectiveness of other neurons in the hidden layer. Meanwhile, the

method that CI-ELM construct the front-feedback single hidden layer network can be

treated as ordering a sequence of neurons in the hidden layer. So trying some kinds of

ordering method for each new added neuron can maximally mining its effectiveness.

Thus, for the ELM network with i neurons in the hidden layer, there would exist a

set Φi with size Vmax recording the network hidden layers with currently smallest

training error for the i neurons in the hidden layer.

Before the processing of DCI-ELM, all the sets can be treated as not existing. At

this time, no ELM network with any size of hidden layer is constructed. The first step

of DCI-ELM is to construct an ELM network Ψ(1)
1 with only one neuron in its hidden

layer. Using the same training method of the first neuron with CI-ELM, we get its

corresponding weight in the output layer. Then, Ψ(1)
1 is treated as an element and add

to the set Φ1. We update the set Φ1 with the maximal training error ‖‖E(Φ1)‖‖max and

size V1 = 1.

If the constructed single-hidden-layer feed-forward neural network Ψ(1)
1 cannot

satisfy the given training target, then DCI-ELM randomly generate a neuron H2,

H2 = [G(a2, b2, x1),G(a2, b2, x2),… ,G(a2, b2, xN)]T . At this time, for the neuron

H2, there exist two choices: (1) construct a new ELM network Ψ(2)
1 containing only

H2; (2) add H2 into ELM Ψ(1)
1 and construct a new network Ψ(1)

2 containing two

neurons in the hidden layer. To mostly utilize the generated neurons to construct the

optimal ELM network, and mine the effectiveness of each neuron in the hidden layer,

H2 will conduct these two processes. At the same time, to make each set full faster

and drive the compete among them to select preferable middle networks, the update

strategy of the sets is bottom up, i.e., the adding order of the new generated neurons

is Φ1, Φ2,. . .Then, when there is an ELM network reaches the training accuracy, the

algorithm halts. This ensures that the simpler and efficient ELM networks are cho-

sen in prior. Thus, h2 firstly constructs the ELM network, and then is added to the

set Φ1:

Ψ(2)
1 ∈ Φ1,V1 = V1 + 1 (8)

where, Φ1 = {Ψ(1)
1 ,Ψ(2)

1 }. If ∃Ψ1 ∈ Φ1, makes ∥ 𝐄(𝚿𝟏) ∥< 𝜀, then it means we have

constructed an appropriate ELM network, and the algorithm halts. Otherwise, based

on the elements in Φ1, we add neuron H2 to these ELM networks. We use the follow-

ing equations to calculate the corresponding output weight 𝛽2 of H2, and the training

error E of each new generated network:

𝛽2 =
𝐄 ⋅ [𝐄 −

(
𝐅 −𝐇2

)
]T

[
𝐄 −

(
𝐅 −𝐇2

)]
⋅
[
𝐄 − (𝐅 −𝐇)2

]T (9)

Dynamic Adjustment of Hidden Layer Structure . . . 351

E = (1 − 𝛽2)E + 𝛽2(F −H2) (10)

Thus, we can obtain two more complex networks Ψ(1)
2 = Ψ(1)

1 + 𝛽

(1)
2 H2 and Ψ(2)

2 =
Ψ(2)

1 + 𝛽

(2)
2 H2, and add them to the set Φ2, Φ2 = {Ψ(1)

2 ,Ψ(2)
2 }.

When the Lth neurons are generated if the volume of each set Vmax < L, all the

sets are full, and the set containing the most complex ELM network is ΦL−1, in which

the hidden layer of each network has L-1 neurons. For the sets Φ1, Φ2,. . . , ΦL−1, the

neuron HL are added to the middle network of these sets in order. Thus, compared to

the original network, in the new generated middle network, the more accurate net-

work remains in the set and continue to be increased, and the ones with less accuracy

are pruned. Thus, for each time we add neurons and generate a new single-hidden-

layer feed-forward neural network, it has the following comparison process with the

existing sets that contain the same size of neurons in the hidden layer:

If Vi = Vmax, i < L, and let k=1, when k ≤ Vmax,

Ψmax
i =

⎧
⎪
⎨
⎪⎩

̃Ψ(k)
i , if ‖‖‖E

(
Ψmax

i

)‖‖‖ >

‖‖‖‖
E
(
̃Ψ(k)
i

)‖‖‖‖
Ψmax

i , if ‖‖‖E
(
Ψmax

i

)‖‖‖ ≤
‖‖‖‖
E
(
̃Ψ(k)
i

)‖‖‖‖

(11)

Here, Ψmax
i presents the element whose training error is the largest in the set Φi;

̃Ψ(k)
i

presents the kth result in the single-hidden-layer feed-forward neural network. Thus,

this kind of comparison or competition makes the accuracy of any neuron in each

set keeps increasing, so that we can obtain the network meeting the training target as

soon as possible. When the Lth neuron is added to the set ΦL−1, the set ΦL is empty.

So after adding a neuron to the set ΦL−1, all the generated VL−1 single-hidden-layer

feed-forward neural networks will be added to the set ΦL.

Therefore, when any single-hidden-layer feed-forward neural network added into

any set will active the comparison with the training target 𝜀. If the ones whose train-

ing error is smaller than the training target 𝜀 have existed in the set, the algorithm

halts. To consolidate the generalization ability of ELM, for the situation in which

more than one single-hidden-layer feed-forward neural networks reach the target,

we will choose the one in which ‖𝛽‖ is the smallest. In order words, the final chosen

structure of ELM is as follows:

Ψ = Ψi, if ‖‖E(Ψi)‖‖ ≤ 𝜀 and ∀Ψ ∈ Φi,min‖𝜷‖ (12)

352 Y. Sun et al.

4 Performance Evaluation

In this Section, we test the algorithms proposed in the former using extensive exper-

iments. The tests focus on three targets: proceeding time, generalization ability, and

the number of neurons in the hidden layer. Meanwhile, we compare the algorithms,

PCI-ELMEPCI-ELM, and DCI-ELM, introduced in the former, with the existing

typical ELM algorithms, such as I-ELMEI-ELM and CI-ELM. All the evaluations

were carried out in MATLAB R2009a in a Intel Core i3 processor with 3.3 GHz and

4GB RAM. A group of real datasets [12] about the regression problem are used to

test the performance the PCI-ELM, EPCI-ELM, and DCI-ELM algorithms.

To ensure the effectiveness of the training results, each dataset is separated in to

training data and testing data using a proportion of 2:1, so that the training data and

testing data are independent and not repeated. At the same time, before using these

data to train the networks, the input data in all dimensions are normalized into a

range of [–1,1] according to the following equation.

Input (∶, i) =
Input (∶, i) − min (Input (∶, i))

max (Input (∶, i)) − min (Input (∶, i))
× 2 − 1 (13)

Here, Input means the matrix of the input data, and Input(∶, i) means a line of the

input matrix, i.e., all the input data in the same attribute or dimension.

We will analyze the experiment results of I-ELM, CI-ELM, PCI-ELM, and DCI-

ELM algorithms. We compare the training time of different algorithms over the same

dataset, predicting time, and the number of neurons in the hidden layer w.r.t the

learning problems.

To avoid the occasionality of a single experiment result, in this paper, all our

experiments over each dataset are conducted 30 times and calculate the average value

as the final result. Moreover, for each algorithm, the number of neurons is counted

from 0 to 1000. Meanwhile, when EI-ELM and EPCI-ELM searching for prior neu-

rons, we set the maximal searching times and the size of sets both as 5. Thus, for the

given training target, if the training result cannot reach , the result is also recorded

when the number of neurons in the hidden layer reaches 1000.

Figures 1 and 2 show the results of using sigmoid function and RBF function in

different algorithms respectively. Even though the effect would be somehow different

when using different excitation function, in general, the training time has obvious

similarity between the two experiments. As we delete useless or inefficient neurons

during the process of training, the training time of PCI-ELM is longer than that of

CI-ELM conducted over the same dataset. As EPCI-ELM as to PCI-ELM is just

like EI-ELM as to I-ELM, there exists a more strategy to select the neurons, and

thus the training time of EPCI-ELM is longer than that of PCI-ELM. However, this

is not absolutely. Because the searching of neurons can speed up the convergence

of algorithm, there exists such situation that EPCI-ELM is faster than PCI-ELM or

even CI-ELM. For the same reason, similar situation also happen in the process of

EI-ELM and I-ELM.

Dynamic Adjustment of Hidden Layer Structure . . . 353

Fig. 1 Comparison chart of training time by using sigmoid function. aWithout insurance company

bench-mark. b Insurance company benchmark

Fig. 2 Comparison chart of training time by using RBF function. a Without housing. b Housing

Fig. 3 Comparison chart of predicted results. a Sigmoid function. b RBF function

From the experiment results, we can see that the training time has similarity when

using sigmoid or RBF function. Usually, EI-ELM and EPCI-ELM enhance the selec-

tion of neurons in the hidden layer, so it will spend more training time. But this is

not absolute. As EI-ELM and EPCI-ELM speed up the convergence of algorithms,

they may be faster sometimes. So as to DCI-ELM, even though training more than

one networks spends more training time, it also speed up the convergence when con-

structing the hidden layer structures.

Figure 3 shows the predicting results of the algorithms conducted over different

datasets. Firstly, we can see that the pruning of hidden layer structures in CI-ELM

influences little in the approximate ability. Secondly, as optimization methods for

generalization ability exist in EPCI-ELM and DCI-ELM, the predicting results of

these two algorithms is not worse or even better than those of CI-ELM.

354 Y. Sun et al.

Fig. 4 Comparison chart of hidden layer scale. a Sigmoid function. b Sigmoid function

From Fig. 4, we can see that the pruning that PCI-ELM providing to CI-ELM

largely decrease the redundancy when constructing the networks suing CI-ELM, so

that the hidden layer is more compact. EPCI-ELM improves the searching strategy of

the neurons in the hidden layer, so that it further avoiding the attendance of redundant

neurons. In other words, it optimize the constructed single-hidden-layer feed-forward

neural networks from the very beginning. The DCI-ELM makes an adjustment to the

network construction in a largest degree. In other words, it mines the most compact

structure constructed by the generated neurons in a largest degree, so that the needed

neurons is fewer and make the ELM predicting efficient.

5 Conclusion

In this paper, we firstly introduce the ELM theory and its typical dynamic construc-

tion algorithms, and analyze the corresponding idea of structure selection. Then, we

propose two hidden layer structure optimization algorithms: PCI-ELM and EPCI-

ELM. We further adjust the hidden layer structure constructed by CI-ELM to make

it more compact and efficient. After this, we propose a DCI-ELM algorithm, and

provide a more dynamic hidden layer structure adjustment algorithm, so that it

can allocate the pruning to the process of adding neurons. Finally, we take exten-

sive experiments over real datasets and analyze the effectiveness of our proposed

algorithms.

References

1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.

Neurocomputing 70(1), 489–501 (2006)

2. Rong, H.J., Ong, Y.S., et al.: A fast pruned-extreme learning machine for classification prob-

lem. Neurocomputing 72(1), 359–366 (2008)

Dynamic Adjustment of Hidden Layer Structure . . . 355

3. Miche, Y., Sorjamaa, A., et al.: OP-ELM: optimally pruned extreme learning machine. Neural

Netw. 21(1), 158–162 (2010)

4. Feng, G., Huang, G.B., et al.: Error minimized extreme learning machine with growth of hidden

nodes and incremental learning. Neural Netw. 20(8), 1352–1357 (2009)

5. Zhang, R., Lan, Y., Huang, G.B., et al.: Dynamic extreme learning machine and its approxi-

mation capability. Cybernetics 43(6), 2054–2065 (2013)

6. Feng, G., Lan, Y., et al.: Dynamic adjustment of hidden node parameters for extreme learning

machine. Cybernetics 45(2), 279–288 (2015)

7. Huang, G.B., Zhou, H., et al.: Extreme learning machine for regression and multiclass classi-

fication. Cybernetics 42(2), 513–529 (2012)

8. Liang, N.Y., Huang, G.B., et al.: A fast and accurate online sequential learning algorithm for

feedforward networks. Neural Netw. 17(6), 1411–1423 (2006)

9. Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine.

Neurocomputing 71(16), 3460–3468 (2008)

10. Huang, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing

70(16), 3056–3062 (2007)

11. Bartlett, P.L.: The sample complexity of pattern classification with neural networks: the size

of the weights is more important than the size of the network. Inform. Theory 44(2), 525–536

(1998)

12. Blake, C., Merz, C.: UCI Repository of Machine Learning Databases, Department of Informa-

tion and Computer Sciences, University of California, Irvine, USA, 1998. http://archive.ics.

uci.edu/ml/datasets.html

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html

ELMVIS+: Improved Nonlinear
Visualization Technique Using Cosine
Distance and Extreme Learning Machines

Anton Akusok, Yoan Miche, Kaj-Mikael Björk, Rui Nian,
Paula Lauren and Amaury Lendasse

Abstract This paper presents ELMVIS+, a significant improvement in ELMVIS

methodology that enables faster computation, more stable results and a wider appli-

cation range. The novel cost function and a fast way of estimating it speeds up

the method compared to ELMVIS, especially in large-dimensional datasets. The

included Genetic Algorithms add global optimization that helps ELMVIS+ to find a

better optimum. The improved methodology shows state-of-the-art performance in

three different benchmark datasets.

Keywords Visualization ⋅ Nonlinear dimensionality reduction ⋅ Machine learn-

ing ⋅ Neural network ⋅ Genetic algorithms ⋅ Cosine distance ⋅ Extreme learning

machines ⋅ Big data ⋅ Big dimensionality ⋅ Projection

1 Introduction

High-dimensional data is omnipresent in the modern world, but it stays virtually

impenetrable for human analysis, except for images or audio. Thus data visual-

ization [1] stays a demanded area of research. For analysing or exploration of an

A. Akusok (✉) ⋅ A. Lendasse

The Iowa Informatics Initiative, The University of Iowa, Iowa City, USA

e-mail: anton-akusok@uiowa.edu

A. Lendasse

e-mail: amaury-lendasse@uiowa.edu

Y. Miche

Nokia Solutions and Networks Group, Espoo, Finland

K.-M. Björk

Arcada University of Applied Sciences, Helsinki, Finland

R. Nian

Ocean University of China, Qingdao, China

P. Lauren

Oakland University, Rochester, USA

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_31

357

358 A. Akusok et al.

arbitrary high dimensional data, a suitable visualization should be created. It is com-

monly restricted to 2 or 3 dimensions, which are easier to show, but for the visual-

ization to be useful it must be representative of the original data.

The naive dimensionality reduction method is variable (feature) selection, but a

few selected variables could present only a part of the data structure, if any. Other

dimensionality reduction methods optimize a selected criterion, with different crite-

ria resulting in two different algorithms.

Linear dimensionality reduction methods are PCA [2] and linear MDS [3], which

however yield the same results, as proven in [1]. Their criterion is variance maxi-

mization which works for datasets with linear dependencies, but the general perfor-

mance may be poor.

If the variables are relevant but correlated (which is often the case), the dimen-

sionality of data is higher than necessary. Then the same data could be explained

by a smaller set of transformed variables, and is said to lie on a manifold [1]. As

an example, one can imagine a camera rotating around an object at a fixed distance,

then the pictures of that camera would lie on a 2-dimensional manifold (sphere),

while their actual dimension would be much higher. Many nonlinear dimensionality

reduction methods, including those listed in the next section, aim to find and unfold

such a manifold using various cost functions and training algorithms. Even PCA

would find a manifold in the data, if that is linear. Manifolds are commonly found by

preserving the neighbourhood in original and reduced spaces. Topology-preserving

methods that use graph distances, like CDA [4], normally provide excellent results

for un-foldable manifolds.

In a very high dimensional space, neighbourhood rank is a weak metric [5]. This

is caused by an empty space phenomenon [6] and the curse of dimensionality, stud-

ied thoroughly in [5]. The problem comes from the change of distances distribution

between points in space as the dimensionality goes up. Distances between points in

a dataset are typically normally distributed. With the increase of a space dimension-

ality, the mean of that normal distribution increases whereas the variance stays the

same. It causes the distribution to concentrate around some value, and reduces dis-

tance differences between various ranked neighbours, making the nearest neighbour

unstable already at 10–20 dimensions [5]. These cases require a nonlinear dimen-

sionality reduction method with general cost function without other assumptions.

The Extreme Learning Machine (ELM)-based visualization methods ELMVIS [7]

and its improvement ELMVIS+ use Mean Squared Error (MSE) or cosine distance

or ELM-reconstructed data accordingly, while the non-linearity of ELM provides

the desired nonlinear projection.

The ELMVIS method links data points with the given visualization points. An

ELM model learns the de-projection of visualization points back into the original

space, where a cost function is calculated. The optimization task is to find the best

order of data points for a given fixed order of visualization points.

This task is similar to an open loop travelling salesman problem [8] and its

optimization is challenging. In the ELMVIS+ methodology, two improvements are

proposed: a new cost function with a very fast way of updating it when exchang-

ing positions of two data samples, and a global optimization step with Generic

ELMVIS+: Improved Nonlinear Visualization Technique . . . 359

Algorithms [9] (GA). In total, they provide a fast and useful method of data visual-

ization onto arbitrary fixed set of points in the visualization space. The method has

only one hyper-parameter that is the number of neurons in ELM model, and with the

proposed cost function it works for very high-dimensional data.

The rest of the paper is organized as following. Section 2 describes the ELM algo-

rithm and its adaptation for computation and fast update of a cost function for visu-

alization, and a use of GA for a first stage. Section 3 presents experiments on various

datasets in comparison with other methods, performance and convergence analysis,

and evaluates an effect of Genetic Algorithms stage. Section 4 concludes on the work

done, discusses about improvements compared to the original ELMVIS, benefits and

drawbacks.

2 Methodology

This paper presents an improved way of creating a visualization using Extreme

Learning Machines (ELM). The data is projected onto fixed visualization points.

ELM learns a reverse projection of visualization points to the original data space,

and an error is computed in the original space. Thus ELM is utilized as a nonlin-

ear metric for the reconstruction error which stands for recall, or continuity [10] in

data visualization field. A relation between original and visualization data spaces is

shown on Fig. 1.

Fig. 1 ELMVIS+ finds an optimal order, or permutation, of data samples 𝐱i in matrix 𝐗 for the

given visualization space points 𝐯i in matrix 𝐕. Points 𝐕 are fixed, and are chosen in any suitable

way—for instance from a normal distribution, or on a regular grid. An ELM learns a projection

𝐕 → 𝐗 and estimates ̂𝐗 from 𝐕. The visualization cost function is an error between 𝐗 and ̂𝐗,

which is a negative cosine similarity for ELMVIS+

360 A. Akusok et al.

While the visualization points and their order is fixed, the order of data samples is

not defined. ELMVIS+ method computes an error (the visualization cost function)

with some order of data samples. The cost function is optimized by changing that

order and updating the error; an order of samples which results in a lower error is

kept.

The ELM method and all steps of ELMVIS+ are explained in detail in the rest of

the Methodology section.

2.1 Extreme Learning Machine

The Extreme Learning Machine algorithm was originally proposed by Guang-Bin

Huang et al. in [11–14], and is originally a regression method [15]. The method is

proven to be a universal approximator given enough hidden neurons [16]. It works

as following:

Consider a set of N distinct samples (xi, ti) with xi ∈ ℝd
and ti ∈ ℝc

. Then a

SLFN with L hidden neurons is modelled as:

L∑

i=1
𝛽i𝜙(wixj + bi), j ∈ �1,N� (1)

with 𝜙 being an activation function, wi the input weights, bi the biases and 𝛽i the

output weights.

In case the SLFN would perfectly approximate the data, the errors between the

estimated outputs yi and the targets ti are zero, and the relation between inputs,

weights and targets is then:

L∑

i=1
𝛽i𝜙(wixj + bi) = tj, j ∈ �1,N� (2)

which can be written compactly as H𝛽 = T, with

H =
⎛
⎜
⎜⎝

𝜙(w1x1 + b1) ⋯ 𝜙(wLx1 + bL)
⋮ ⋱ ⋮

𝜙(w1xN + b1) ⋯ 𝜙(wLxN + bL)

⎞
⎟
⎟⎠

(3)

𝛽 = (𝛽T1 … 𝛽

T
L)

T
, 𝐓 = (𝐭T1 … 𝐭TN)

T
. (4)

Solving the output weights 𝛽 from the hidden layer representation of inputs

H and targets T is done using the Moore-Penrose generalized inverse of the matrix

H, denoted as H†
[17]. The training of ELM requires no iterations, and the most

ELMVIS+: Improved Nonlinear Visualization Technique . . . 361

computationally cost part is the calculation of a pseudo-inverse of the matrix 𝐇(d×L),

which makes ELM an extremely fast artificial neural network method.

2.2 Visualization with ELM

In visualization, the data points 𝐱i ∈ ℝd
, i ∈ �1,N� are projected to the correspond-

ing visualization points 𝐯i ∈ ℝ̃d
, i ∈ �1,N� in a smaller dimensional space ̃d, usually

̃d = 2 or ̃d = 3.

An ELM learns the reverse projection model, that is ELM projects visualization

space points 𝐕 into the original data space ℝd
, see Fig. 2.

An ELM provides an approximated data samples ̂𝐗 = f (𝐕) projected from the

input points 𝐕. If there is a smooth relation between 𝐕 and 𝐗, the approximation

̂𝐗 learned by ELM is close to the true data 𝐗. If visualization points 𝐕 are located

arbitrary and do not relate to 𝐗, an ELM with a limited number of neurons fails to

learn an accurate projection model, and samples ̂𝐗 are far from the original samples

in 𝐗. Note that sample similarity for the visualization is computed in the original

data space ℝd
, which provides more accurate results that finding it in a reduced

visualization space ℝ2
or ℝ3

.

An ELM in ELMVIS+ is trained with input data 𝐕 and target data 𝐗. The data is

arranged in pairs (𝐯i, 𝐱j) ∣ i = j, i ∈ �1,N�, j ∈ �1,N�. The indexes i and j are given

implicitly by the position of a particular sample 𝐯i or 𝐱j in the corresponding data

matrix 𝐕, 𝐗. The optimization is done by creating a random permutation 𝐩 of index

j, exchanging pairs of values in 𝐩, and applying the permutation 𝐩 to samples (rows)

in 𝐗 before computing the cost function.

After the training completes, the final permutation 𝐩 stores the best order of data

samples for the given order of visualization points in 𝐕.

Fig. 2 ELM learns a

reverse projection of

visualization points 𝐕 in to

the data space ℝd
with the

original samples 𝐗

362 A. Akusok et al.

2.3 Fast Cost Function from ELM

In the original ELMVIS method, the cost function was the MSE (Mean Squared

Error) between the original data samples 𝐱 and the projected visualization points

f (𝐯) = 𝐱̂. The cost function of ELMVIS+ method is the negative cosine similarity

between 𝐱 and 𝐱̂. The cosine similarity can be used because the absolute value of a

cost function is irrelevant for the optimization, while the cosine similarity provides a

convenient formula and good speedup over MSE. Because the optimization problem

is formulated as minimization of an error, a mean negative cosine similarity is used

as an error.

The negative cosine similarity has a compact and fast formula to use in the

reverse-projecting ELM framework. A dot product between two vectors is

defined as:

𝐚 ⋅ 𝐛 = ‖a‖‖𝐛‖ cos 𝜃 (5)

Assume the input data is normalized to ‖𝐱 = 1, then ‖𝐱̂ ≈ 1 and

similarity = cos 𝜃 = 𝐱 ⋅ 𝐱̂
‖𝐱‖𝐱̂ = 𝐱 ⋅ 𝐱̂ = 𝐱T 𝐱̂ (6)

For the whole data matrices 𝐗, ̂𝐗 the cost function s, which is a mean negative

cosine similarity, is

s = −1
d

trace(𝐗T
̂𝐗) (7)

Here an ̂𝐗 has to be computed using ELM. But because the visualization points

𝐕 are fixed, the output 𝐇 of an ELM hidden layer never changes and needs to be

computed only once. A formula based on 𝐇 is derived from the ELM solution:

̂𝐗 = 𝐇𝛽 (8)

𝛽 = 𝐇†𝐗 = (𝐇T𝐇)−1𝐇T𝐗 (9)

̂𝐗 = 𝐇(𝐇T𝐇)−1𝐇T𝐗 (10)

𝐗T
̂𝐗 = 𝐗T𝐇(𝐇T𝐇)−1𝐇T𝐗 (11)

𝐇(𝐇T𝐇)−1𝐇T = 𝐀 = const (12)

s = −1
d

trace(𝐗T𝐀𝐗) (13)

ELMVIS+: Improved Nonlinear Visualization Technique . . . 363

The matrix 𝐀 in Eq. (13) depends only on 𝐇 and needs to be computed once after

an ELM model is built. It is re-used to update the cost function s for every change in

permutation 𝐩 of rows in 𝐗.

In fact, a cost function update formula exists, which allows a fast update of s if

only a few rows in 𝐗 change. If a row 𝐱k in 𝐗 changes by 𝛿 = 𝐱new

k − 𝐱k ∈ ℝ1,d
, the

update formula is:

(𝐗T
new

𝐀𝐗
new

)k,m = (𝐗T𝐀𝐗)k,m + 2[𝐀T
k𝐗]m𝛿m + 𝐀k,k𝛿

2
m, m ∈ �1, d� (14)

s
new

= −1
d

trace(𝐗T
new

𝐀𝐗
new

) (15)

The second term in Eq. (14) is derived from the fact that diagonal elements in

𝐗T𝐀𝐗 are computed from (𝐗T𝐀)k,∶ ⋅ 𝐗k,∶ and 𝐗T
k,∶ ⋅ (𝐀𝐗),k, which are the same due

to symmetric matrix 𝐀. The third term is a correction for the diagonal element of

𝐀 which gets computed twice. In fact, Eq. (14) correctly updates only the diagonal

of matrix (𝐗T
new

𝐀𝐗
new

), but because an error function is a trace of that matrix, only

diagonal elements matter.

For a change of two values i, j in p, the update formula is applied twice:

for 𝛿
1 = 𝐱j − 𝐱i, k = i and 𝛿

2 = 𝐱i − 𝐱j, k = j.

2.4 ELMVIS+ Algorithm

The updated ELMVIS+ method starts by building an ELM and computing matrix

𝐀 from Eq. (13). It needs to be done only once when ELMVIS+ method starts. A

random permutation p of data samples in 𝐗 is taken. The ELMVIS+ method is opti-

mized by randomly selecting and changing two indexes i, j from p. If the change

results in a lower cost function it is kept, otherwise it is reverted. With a fast cost

function update equation from Eq. (14), even a laptop with 1,4 GHz dual-core CPU

runs 5 millions updates per minute for a small dataset with 100 samples. The only

parameter of the ELMVIS+ method is a number of neurons L in an ELM. The opti-

mal L depends on a task, and controls variation across the visualization space. Too

few neurons fail a visualization, while too many neurons create an overly variative

visualization pattern. An good number is found by trial. The ELMVIS+ algorithm

for data visualization is presented on Algorithm 1.

364 A. Akusok et al.

Algorithm 1 ELMVIS+ Algorithm

given input data 𝐗 ∈ ℝd
with N samples

given visualization points 𝐕 ∈ ℝc
, typically c = 2 or c = 3

create a random permutation p and apply it to the samples of 𝐗
train an ELM 𝐕 → 𝐗 and obtain 𝐇
compute 𝐀 = 𝐇(𝐇T𝐇)−1𝐇T

compute sbest
with initial p as in Eq. (13)

while no improvement in sbest
during many iterations do

randomly choose i, j ∣ i ≠ j
compute s

new
as in Eq. (14)

if s
new

< sbest then
sbest = s

new

swap values pi, pj in p
reset no improvements in sbest counter

end if
end while

initialize GA with p
run GA to globally optimize p → p∗ using the cost function from Eq. (13)

optimize p∗ with another iterative part

order samples in 𝐗 according to p∗

3 Experimental Results

The ELMVIS+ visualization method is tested on the same three datasets as the orig-

inal ELMVIS for comparable results. Reference methods are PCA as the baseline,

Self-Organizing Maps (SOM) [18, 19] as another method which uses fixed visual-

ization points, and NeRV [20] as a state-of-the-art nonlinear visualization method.

A fast ELM model is provided by a toolbox from [21].

The overview of performance of all methods is given by the MSE of a data recon-

struction from visualization. The reconstruction (a reverse projection) already exists

in ELMVIS+ and ELMVIS; for other methods it is learned by a separate model as

in [1]. This separate model is another ELM; the lowest error over 100 retrains is

presented. The errors for all methods are gathered in Table 1.

ELMVIS+ method always performs better and runs faster than the original

ELMVIS. It is much better than any other method in Sculpture faces because it is able

to process the huge original dimensionality of the data, and in Real faces because

it achieves a better optimization with millions of iterations run in an hour with the

new cost function. On Spiral dataset it is second only to NeRV, but the errors are

similarly small.

ELMVIS+: Improved Nonlinear Visualization Technique . . . 365

Table 1 Reconstruction MSE for all methods; the lowest error of 100 initializations is shown

Dataset PCA SOM NeRV ELMVIS ELMVIS+
Spiral 0.482 0.054 0.011 0.049 0.017

Sculpture

faces

0.980 0.916 0.769 0.718 0.712

(compressed)

0.292

(original)

Real faces 0.724 0.511 0.501 0.449 0.156

ELMVIS+ on Sculpture faces dataset is run twice: with the compressed (d = 240) and an original

(d = 4096) image representations

3.1 Artificial Faces Dataset

A set of 698 face images is proposed in [22], and then widely used for benchmark

purposes, for instance in [1, 20]. These images are computer renderings of a 3D

sculpture head under different poses and lighting directions. Examples of faces are

shown on Fig. 3.

Each image consists of an array of 64 by 64 brightness values of pixels, giving the

input data dimensionality of 4096. A preprocessing step is applied to reduce dimen-

sionality with PCA: the first 240 principal components keep over 99 % of the global

variance [1]. ELMVIS uses 100 randomly selected samples at a time and is repeated

100 times to get a true estimate. ELM and SOM use 20 neurons for visualization.

ELMVIS+ method uses the original 4096-dimensional data, as the speed of the new

cost function update rule allows processing such high-dimensional datasets; it also

uses the compressed data for comparison purposes.

The results are presented in Table 1. The PCA does not change the data which

is already an output of another PCA. Two first principal components keep only 2 %

of variance. SOM and NeRV both perform poorly, although it may be explained by

a bad estimation of a reverse projection MSE obtained with ELM. ELMVIS and

ELMVIS+ with the compressed data give better results, but still the error is too high

for the results to be good in absolute numbers. Only ELMVIS+ with the original

data results in a significantly lower error, even though the reconstruction ELM has

the same 20 hidden neurons for prediction of a much higher dimensional data.

An example visualization is shown on Figs. 4 and 5. Both NeRV and ELMVIS+

show a clear organisation of sculpture faces. ELMVIS+ maps those faces on a

Fig. 3 Some examples from the 698 sculpture face pictures from [22]

366 A. Akusok et al.

Fig. 4 ELMVIS+ visualization using the original 4096-dimensional data and 20 neurons. A clear

manifold structure is visible, similar to NeRV mapping

Fig. 5 Sculpture face images mapped to a grid using the NeRV results. If several faces correspond

to the same grid cell, a random one is displayed

ELMVIS+: Improved Nonlinear Visualization Technique . . . 367

regular grid; NeRV is unable to achieve that so there are holes in NeRV projec-

tion. A poor MSE error of NeRV probably refers to an inability of ELM to learn an

inverse projection with PCA-compressed data.

3.2 Computational Time

On a laptop with 1.4 GHz dual-core CPU, a visualization of the Spiral dataset runs

at 850,000 iterations per minute for ELMVIS and 5,000,000 for ELMVIS+. The

speedup is less than 6 times, but the processed variables are so small that execution

overhead takes the most time.

On a desktop workstation with 4-core 3.6GHz CPU, the visualization of 400 real

faces runs at 20,000 iterations per minute for ELMVIS and 1,000,000 iterations per

minute for ELMVIS+. The speedup is thus roughly 50 times for large tasks. Even the

slowest processing of 4096-dimensional Sculpture faces dataset with 100 samples

and 20 neurons runs at 500,000 iterations per minute on the same desktop. In general,

the cosine similarity criterion in ELMVIS+ provides a notable speedup over the

original ELMVIS, especially in cases of high dimensional data. Thus ELMVIS+

has a wider application area.

3.3 Convergence Speed

Theoretically, the ELMVIS+ method has a complexity of (N!) for a dataset with

N samples because it considers all random permutations of data samples. In prac-

tice, only two samples are changed at a time before the cost function is updated.

This leads to a local optimum, but decreases the complexity to (N2) as only two

samples are changed (swapped) at a time—the same complexity as NeRV. This is

observed in practice—ELMVIS+ typically takes 10N2
iterations to converge, and a

better solution is found in no more than N2
iterations. The convergence time for a

dataset with N = 100 samples is less than a minute, and for the largest tested dataset

with all faces it is about 1 h.

4 Conclusion

This paper describes the ELMVIS+, a significant improvement of ELMVIS method

of data visualization. The method is based on a random search of an optimal order of

data samples for the pre-defined visualization points. It uses ELM as a nonlinear met-

ric, with a cosine similarity between the true and estimated (by ELM) data samples

computed in the original data space. This metric is accurate and allows for millions

of iterations per minute. Combined with GA, ELMVIS+ optimizes a data visualiza-

368 A. Akusok et al.

tion both globally and locally. The ELMVIS+ method is tested on three datasets. It

showed a decrease of error and a significant improvement in runtime ranging from

6 to 50 times. It even allowed for processing of an extremely high dimensional data,

which provided greatly improved visualization results for image data samples. The

performance of an improved ELMVIS+ visualization method is similar or better than

other visualization methods, including the state-of-the-art NeRV [22]. In practice, it

also has the same (N2) complexity as NeRV, with N being the number of data sam-

ples. Thus an ELMVIS+ is a new way of creating useful data visualizations in a wide

application range. In order to target visualization of Big Data, in the future work we

will investigate the GPU acceleration of ELMVIS+ iterative optimization. The new

fast update formula of a cosine similarity cost function from Eq. (14) uses vector

operations, which are conveniently parallelizable on a suitable hardware. This will

allow ELMVIS+ method process Big Data, specifically the emerging Big Dimen-

sionality [23] data.

References

1. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, New York (2007)

2. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. London

Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

3. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypoth-

esis. Psychometrika 29(1), 1–27 (1964)

4. Lee, J.A., Lendasse, A., Donckers, N., Verleysen, M.: A robust nonlinear projection method.

In: Proceedings of ESANN. pp. 13–20 (2000)

5. Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: In: ICDT

6. Scott, D.W., Thompson, J.R.: Probability density estimation in higher dimensions. In: Com-

puter Science and Statistics: Proceedings of the Fifteenth Symposium on the Interface. vol.

528, pp. 173–179. North-Holland, Amsterdam (1983)

7. Cambria, E., et al.: Extreme learning machines. IEEE Intell. Syst. (6), 30–59

8. Gutin, G., Punnen, A.P. (eds.): The Traveling Salesman Problem and its Variations. Combina-

torial Optimization. Kluwer Academic, Dordrecht, London

9. Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press (1996)

10. Kaski, S., Peltonen, J.: Informative discriminant analysis. In: Proceedings of the Twentieth

International Conference on Machine Learning (ICML-2003). vol. 20, p. 329 (2003)

11. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and mul-

ticlass classification. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(2), 513–529 (2012)

12. Huang, G.B., Zhu, Q.Y., Mao, K.Z., Siew, C.K., Saratchandran, P., Sundararajan, N.: Can

threshold networks be trained directly? IEEE Trans. Circuits Syst. II Express Briefs 53(3),

187–191 (2006)

13. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neu-

rocomputing 70(1), 489–501 (2006)

14. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: Op-elm: Optimally

pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–162 (2010)

15. Yu, Q., Miche, Y., Eirola, E., van Heeswijk, M., Sverin, E., Lendasse, A.: Regularized extreme

learning machine for regression with missing data. Neurocomputing 102, 45–51 (2013)

16. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive

feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892

(2006)

ELMVIS+: Improved Nonlinear Visualization Technique . . . 369

17. Rao, C.R., Mitra, S.K.: Generalized Inverse of a Matrix and its Applications. Wiley (1971)

18. Lendasse, A., Cottrell, M., Wertz, V., Verleysen, M.: Prediction of electric load using kohonen

maps—application to the polish electricity consumption. In: Proceedings of the 2002 American

Control Conference. vol. 5, pp. 3684–3689 (2002)

19. Merlin, P., Sorjamaa, A., Maillet, B., Lendasse, A.: X-SOM and L-SOM: a double classification

approach for missing value imputation. Neurocomputing 73(7–9), 1103–1108 (2010)

20. Venna, J., Peltonen, J., Nybo, K., Aidos, H., Kaski, S.: Information retrieval perspective to

nonlinear dimensionality reduction for data visualization. J. Mach. Learn. Res. 11, 451–490

(2010)

21. Akusok, A., Björk, K.M., Miché, Y., Lendasse, A.: High-performance extreme learning

machines: a complete toolbox for big data applications. IEEE Access, pp. 1011–1025

22. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear

dimensionality reduction. Science 290(5500), 2319–2323 (2000)

23. Zhai, Y., Ong, Y.S., Tsang, I.W.: The emerging “Big Dimensionality”. IEEE Comput. Intell.

Mag. 9(3), 14–26 (2014)

On Mutual Information over Non-Euclidean
Spaces, Data Mining and Data Privacy Levels

Yoan Miche, Ian Oliver, Silke Holtmanns, Anton Akusok, Amaury Lendasse
and Kaj-Mikael Björk

Abstract In this paper, we propose a framework for measuring the impact of data

privacy techniques, in information theoretic and in data mining terms. The need for

data privacy and anonymization is often hampered by the fact that the privacy func-

tions alter the data in non-measurable amounts and details. We propose here to use

Mutual Information over non-Euclidean spaces as a means of measuring this distor-

tion. In addition, and following the same principle, we also propose to use Machine

Learning techniques in order to quantify the impact of the data obfuscation in terms

of further data mining goals.

1 Introduction

There is nowadays a strong need for data anonymization, be it for legal purposes

or commercial ones: data sharing for advertisement purposes, e.g., could probably

do without the full extent of the data, which reveals private and personal informa-

tion that is not only irrelevant to the task being carried out, but also sometimes too

sensitive to be handed out.

Companies or legal bodies who have gathered such data should be allowed

to share the data once a certain set of criteria have been fulfilled regarding the

anonymity of the data. The problem typically lies in the choice of the techniques

used on the data at hand, as well as the extent to which they are used.

The need for data privacy is well known [1], however the techniques for ensur-

ing privacy are less well established [2, 3]. While techniques such as encryption

Y. Miche (✉) ⋅ I. Oliver ⋅ S. Holtmanns

Nokia Solutions and Networks, Espoo, Finland

e-mail: yoan.miche@nokia.com

A. Akusok ⋅ A. Lendasse

Department of Mechanical and Industrial Engineering

and The Iowa Informatics Initiative, The University of Iowa, Iowa City, USA

K.-M. Björk

Arcada University of Applied Sciences, Helsinki, Finland

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_32

371

372 Y. Miche et al.

and hashing can be considered to some extent as privacy preserving techniques, we

decide in this work to focus more on techniques that do not merely alter the syn-

tax and the format of the data, but attempt to modify the semantic of the data. Note

that the framework proposed in this paper is not excluding such techniques as hash-

ing and encryption, but it is devised in order to look at techniques that affect more

the semantics than only the format. The “popular” techniques such as data suppres-

sion, tokenisation, κ-anonymity [4] including its relatives 𝓁-diversity and t-closeness

[5], and the latest ideas of differential privacy [6] all alter data such that its analytics

usage is compromised as little as possible without revealing enough information for

sufficient cross-referencing to reconstruct the original data.

The application of such techniques is further compounded by the fact that they are

generally insufficiently used or even mis-used [7]. For example, insufficient diver-

sity removal, insufficient randomness of continuous values and failure to apply the

techniques together across multiple fields in a data set.

One difficulty regarding the practical use of such techniques is in the setting of the

various parameters involved in the anonymization: too much added noise or diver-

sity removal will irremediably render such fields unusable, and in this sense, the

anonymization has failed to prove useful for the further steps that will use this dataset.

One of the problems this paper studies is in the influence of these parameters, and

to define a framework to control and quantify the amount of distortion generated to

anonymize the data to “acceptable” levels within a machine learning context. Thus,

we propose here two points of view, each with a slightly different goal, but hopefully

reconcilable:

∙ An information theoretic point of view, in which the approach aims at establishing

a set of standards in quantifiable and mathematically sound ways using mutual

information estimation;

∙ A data mining point of view, which focuses on providing measurable guarantees

on the data mining task to be performed after the anonymization, by using various

performance metrics.

The following Sect. 2 first proposes a visual and high level motivation and expla-

nation of the problem. We then, in Sect. 3 introduce the general notations for the

framework and the subsequent discussion. Section 4 then proposes the first approach,

Mutual Information based; and Sect. 5, the second one, Machine Learning based.

2 High-Level Motivation for Quantifying Data Privacy

In this section, we propose a high level description of the problem tackled in this

paper. The next sections then describe the two proposed means of doing so.

In an ideal situation, data mining in general, and classification or partition of data

in particular, can be made in an unambiguous manner; meaning that, for example, a

classification of the data can be made and the number of border cases is minimal as

depicted in Fig. 1.

On Mutual Information over Non-Euclidean Spaces . . . 373

Fig. 1 Depiction of an example case in which the data is easily separable, with little border cases

Fig. 2 Depiction of the data after the use of a privacy function h: the data has become much more

difficult to separate. In this case, the data space remains the same

Application of algorithms that increase the privacy (or the entropy) of a system

distort this in some known manner, in terms of the direct effects on the data fields.

For example κ-anonymity [4] and 𝓁-diversity [5] reduce the distribution and

amounts of unique values in the discrete valued cases; differential privacy [6] adds

noise in the continuous valued cases, for example, speeds, distances etc. A privacy

function h (defined more precisely in the next section) distorts a system such that

classification either can not be made or becomes difficult to make in a reasonable

manner, as illustrated on Fig. 2. In this figure, the application of the privacy function

over the data has modified it, but the data has remained in the same space.

In this work, we consider as well the case of such privacy functions that modify

the data in such a way as to change the “format” of the data, and thus the underlying

space in which the data lies. Indeed, another way to consider this is that the privacy

functions alter the underlying space or topology rather than moving the elements

themselves. This altering of the topology in the best case involves continuous (metric

preserving or homotopy preserving) stretching and shrinking, but may also include

tearing and creasing of the space such that the resolution of the original metric func-

tion is no longer possible. For example in Fig. 3 (depicting this in a two dimensional

374 Y. Miche et al.

Fig. 3 Depiction of the topological stretching case: the arrows depict the areas in which the space

is not longer “continuous” due to the application of the privacy functions

plot), one can imagine that the underlying space, in terms of the distance defined on

it, is no longer continuous, but presents something like singularities.

The challenge here is then to “accommodate” for the deformation of the space to

a degree such that classification of information in the deformed space is as good as

classification made with the original information and topology. Or at least as close

as possible to it.

However as we do not work in an ideal world, establishing commutativity between

the original, deformed and reconstructed spaces becomes a probabilistic exercise

rather than a definitive one. Unless we have access to the original data or have some
knowledge—which is more likely—of it then we have no metric for measuring how

close our reconstruction is. Indeed in most cases a high percentile level of confidence

is normally sufficient.

The work in this paper is aimed at this problem: proposing two points of view for

quantifying the effects of the privacy/obfuscation functions, and thus have a means

of measuring in “practically useful” terms, how much the data has been altered.

3 General Notations and a Note About Non-Euclidean
Spaces

Let us first define the notations for a metric space and sets.

3.1 Notations

Let i =
(
𝕏i, di

)
be a metric space on the set 𝕏i with the distance function di ∶

𝕏i ×𝕏i ⟶ ℝ+. The i need not be Euclidean spaces, and in the cases discussed in

the later sections, are not.

On Mutual Information over Non-Euclidean Spaces . . . 375

Parting slightly from the notations of the data privacy literature, define by

𝐗 =
[
𝐱1,… , 𝐱n

]
a N × n matrix, with each column vector 𝐱i ∈ 𝕏N×1

i . The 𝐱i are

thus discrete random variables representing a set of samples over the set of all the

possible samples from the attribute represented here by 𝕏i. And 𝐗 is a table over

these attributes.

The fact that the i are not necessarily Euclidean spaces in this work poses the

problem of the definition of the distance function associated, di. Indeed, most data

mining and machine learning tools rely on the Euclidean distance and its properties;

and even if the learning of the model does not require the use of Euclidean distances

directly, the evaluation criterion typically relies on it, for example as a Mean Square

Error for regression problems.

Similarly, as described in Sect. 4, information theory metrics estimators such as

mutual information estimators typically rely on the construction of the set of nearest

neighbours, and therefore also on the Euclidean distance.

3.2 Distances over Non-Euclidean Spaces

The argument for considering the use of distances over non-Euclidean spaces in this

work, is that it is possible to tweak and modify such non-Euclidean distances so

that their distribution and properties will be “close enough” to that of the original

Euclidean distance.

More formally, let us assume that we have two metric spaces i = (𝕏i, di) and

j = (𝕏j, dj), with i the canonical Euclidean space (i.e. 𝕏i = ℝd
and di the Euclid-

ean norm) and j a non-Euclidean metric space endowed with a non-Euclidean met-

ric. Drawing uniformly samples from the set 𝕏j, we form 𝐗j =
[
𝐱1j ,… , 𝐱nj

]
, a set of

random variables, with 𝐱lj having values over 𝕏j. Denoting then by fdj the distribu-

tion of pairwise distances over all the samples in 𝐗j, we assume that it is possible to

modify the non-Euclidean metric dj such that

lim
n→∞

fdj = fdi , (1)

where fdi is the distribution of the Euclidean distances di over the Euclidean space

i. The limit here is over n as the distribution fdj is considered to be estimated using

a limited number n of random variables, and we are interested in the limit case where

we can “afford” to draw as many random variables as possible to be as close to the

Euclidean metric as possible. That is, that we can make sure that the non-Euclidean

metric behaves over its non-Euclidean space, as would a Euclidean metric over a

Euclidean space.

This assumption is “theoretically reasonable”, as it comes down to being able to

transform a distribution into another, given both. And while this may not be simple

376 Y. Miche et al.

nor possible using linear transformation tools, most Machine Learning techniques

are able to fit a continuous input to another different continuous output.

3.3 Learning the Mapping Between Distances Using ELM

In this work, we propose to use Extreme Learning Machines (ELM) [8, 9] as the map-

ping tool between distance functions. The reasons for using this specific Machine

Learning technique are threefold: first, it lies among the techniques with the best

performance/computational time ratio, as the model is simple and involves a min-

imal amount of computations. Second, given that we are here working in terms of

the limit from Eq. 1, we need a model that can learn the mapping in reasonable time

from large amounts of data, if such a need arises. Third, the theory behind ELM (and

behind single layer feed-forward neural networks in general) states that it is a univer-

sal function approximator (per the universal approximation theorem [10]), and can

therefore fit any continuous function, to a ε > 0.

The Extreme Learning Machine algorithm was originally proposed by Huang et

al. in [9] (and further developed, e.g. in [11–13] and analysed in [14]). It uses the

structure of a Single Layer Feed-forward Neural Network (SLFN). The main concept

behind ELM is the replacement of a computationally costly procedure of training the

hidden layer, by its random initialisation. Then an output weights matrix between

the hidden representation of inputs and the outputs remains to be found. The ELM

is proven to be a universal approximator given enough hidden neurons [9]. It works

as following:

Consider a set of N distinct samples (𝐱i, 𝐲i) with 𝐱i ∈ ℝd
and 𝐲i ∈ ℝc

. Then a

SLFN with n hidden neurons is modelled as
∑n

j=1 βjφ(𝐰j𝐱i + bj), i ∈ [1,N], with

φ ∶ ℝ → ℝ being the activation function, 𝐰j the input weights, bj the biases and

βj the output weights.

In case the SLFN would perfectly approximate the data, the errors between the

estimated outputs 𝐲̂i and the actual outputs 𝐲i are zero, and the relation between

inputs, weights and outputs is then
∑n

j=1 βjφ(𝐰j𝐱i + bj) = 𝐲i, i ∈ [1,N] which can

be written compactly as 𝐇β = 𝐘, with β = (βT
1 …βT

n)
T
, 𝐘 = (𝐲T1 … 𝐲TN)

T
.

Solving the output weights β from the hidden layer representation of inputs

𝐇 and true outputs 𝐘 is achieved using the Moore-Penrose generalised inverse of

the matrix 𝐇, denoted as 𝐇†
[15]. The training of ELM requires no iterations, and

the most computationally costly part is the calculation of a pseudo-inverse of the

matrix 𝐇, which makes ELM an extremely fast Machine Learning method.

Therefore, using ELM, we propose to learn the transformation between the previ-

ously defined fdj , the distribution of pairwise distances over a non-Euclidean space,

and fdi , the distribution of pairwise Euclidean distances over the canonical Euclidean

space.

On Mutual Information over Non-Euclidean Spaces . . . 377

With this assumption made, we propose to first take a look at the Information The-

oretic approach, that is, to use the Mutual Information to quantify the data privacy

level.

4 Mutual Information for Data Privacy Quantification

4.1 Mutual Information Estimation

With the previous notations from Sect. 3, we take here the definition of mutual infor-

mation I(𝐱i, 𝐱j) between two discrete random variables 𝐱i, 𝐱j as

I(𝐱i, 𝐱j) =
∑

xi∈𝐱i

∑

xj∈𝐱j

p(xi, xj) log
(p(xi, xj)
p(xi)p(xj)

)
. (2)

Obviously, the marginals p(xi) and p(xj) as well as the joint p(xi, xj) are unknown,

and we resort to estimators of the mutual information.

Most of the mutual information estimators (Kraskov’s [16], Pal’s [17, 18], e.g.)

make use of the canonical distance defined in the metric space in which lies the data.

Typically, this is defined and computable for a Euclidean space, with the traditional

Euclidean distance used as the distance function.

We give some details in the following about the two most famous (arguably)

mutual information estimators, merely to illustrate their strong dependencies on

distances. This is mainly to make the point that mutual information can thus be esti-

mated using non-Euclidean distances over non-Euclidean spaces, given the precau-

tions mentioned in the previous Sect. 3.2.

4.1.1 Kraskov’s Estimator

In [16], Kraskov et al. propose a mutual information estimator relying on counts of

nearest neighbours, as follows. To be precise, two estimators are proposed in the

original paper, but we only present the second one here, as we have found it to be

more reliable in practice.

The mutual information estimator I(2) between two random variables 𝐱lj and 𝐱mj is

defined as

I(2)
(
𝐱lj, 𝐱

m
j

)
= 𝛹 (k) − 1∕k− < 𝛹 (𝐧𝐱lj) + 𝛹 (𝐧𝐱mj) > +𝛹 (N), (3)

with 𝛹 the digamma function, k the number of neighbours to use (to be decided by

the user), and 𝐧𝐱lj =
[
n𝐱lj (1),… , n𝐱lj (N − 1)

]
the vector holding counts of neighbours

n𝐱lj (i) defined as

378 Y. Miche et al.

n𝐱lj (i) = Card

({
xi ∈ 𝐱lj ∶ dj(xj − xi) ≤ ε𝐱lj

(i)∕2
})

(4)

where ε𝐱lj
(i)∕2 = ||zi − zkNN(i)||max

is the distance between sample zi and its kth

nearest neighbour in the joint space 𝐳 = (𝐱lj, 𝐱
m
j), and the distance || ⋅ ||

max
defined

as ||zq − zr||max
= max

{
||xlj(q) − xlj(r)||, ||x

m
j (q) − xmj (r)||

}
, where xlj(q) clunkily

denotes the qth sample from the random variable 𝐱lj.
Basically, the calculation requires calculating the nearest neighbours of points in

a joint space, and counting how many lie in a certain ball.

Note that while we have adapted the notations to our needs, here, the original arti-

cle relies on the Euclidean distance, and not on arbitrary distances on non-Euclidean

distances. But as discussed earlier, this is not necessarily a problem.

4.1.2 Pal’s Estimator

More recently, in [17, 18], David Pal et al. have proposed another estimator of the

more general Rényi Entropy, as well as of the associated Rényi mutual information.

The estimator relies on the use of nearest neighbours graphs, as follows.

The authors define what they name the nearest-neighbour graph NNS(𝐱i) as a

directed graph on the values that the discrete random variable 𝐱i takes, and S is a

finite set of integers of which the maximum value is denoted by k. For each j ∈ S,

there is an edge in NNS(𝐱i) from each vertex x ∈ 𝐱i to its jth nearest neighbour.

We must then define Lp(𝐱i), the sum of the pth powers of the Euclidean lengths

of the edges of the nearest neighbour graph:

Lp(𝐱i) =
∑

(x,y)∈E(NNS(𝐱i))
di(x, y), (5)

with E(NNS(𝐱i)) the edge set of the nearest neighbour graph NNS(𝐱i). It so happens

that the following constant value γ, depending on Lp(𝐱i), is required in the following

calculations of entropy and mutual information. γ is defined as

γ = lim
n→∞

Lp
(
𝐗𝐣

)

n1−p∕d
, (6)

where in this equation, 𝐗j = (𝐱1j ,… , 𝐱nj) is the formerly defined set of n random vari-

ables, where each 𝐱j = (x1j ,… , xdj). γ has to be estimated beforehand, empirically.

The Rényi entropy Hα(𝐗j) is then estimated as

Hα(𝐗j) =
1

1 − α
log

Lp(𝐗𝐣)
γn1−p∕d

, (7)

where p = d(1 − α).

On Mutual Information over Non-Euclidean Spaces . . . 379

The authors then show that the mutual information can be calculated by using

directly the entropy estimator from Eq. (7), but on the marginal distributions of the

(𝐱1j ,… , 𝐱nj). These marginals being unknown, they are estimated as well.

Thus, Kraskov’s estimators from [16] make use of nearest neighbours counts

within certain vicinities, while Pal’s [17, 18] estimator (of the Rényi entropy and

mutual information) use also the nearest neighbour graphs, but this time with the

normalised ratio between the sum of the pth powers of the nearest neighbour graph

distances and the limit of this same sum.

Therefore, both estimators require the use of the distance functions d =
{
di
}
1≤i≤n,

where the distance function di is defined as before on the set 𝕏i.

4.2 Using Mutual Information Estimators

Introducing the notation xi ≤
NN

xj for convenience: xi ≤
NN

xj states that xj is the nearest

neighbour for xi in terms of the distance defined on that space. We can then write

xi ≤
NN

xj ≤
NN

xk ≤
NN

xl, which signifies that the 3 nearest neighbours of xi are, in order of

increasing distance to xi, respectively xj, xk and xl. We decide to break the possible

ties arbitrarily.

We then want to create a family h =
{
hi
}
1≤i≤n of obfuscating functions which

intuitively “preserves” the distances, and in a sense also the mutual information

between the random variables.

More precisely, defining d(h) =
{
d(h)i

}

1≤i≤n
a family of distance functions such

that d(h)i ∶ 𝕏(h)
i ×𝕏(h)

i ⟶ ℝ+, with 𝕏(h)
i denoting the set of possible values obtained

by obfuscating the elements in 𝕏i using the function hi, i.e. 𝕏(h)
i =

{
hi(x), x ∈ 𝕏i

}
,

the family d(h) and the obfuscating functions family h should be so that neighbour-

hoods are preserved, i.e., with x, y, z ∈ 𝕏i three elements,

if x ≤
NN

y ≤
NN

z, then hi(x) ≤
NN

hi(y) ≤
NN

hi(z), (8)

in which the distance functions di and d(h)i are hidden in the notation ≤
NN

.

If this is the case, and even if the distances in 𝕏i and 𝕏(h)
i are not in the same

“range” of values (remember we map the distances from non-Euclidean spaces to

fit the distribution of the Euclidean one), the nearest neighbour graphs will be pre-

served. We can then look at the matrix holding the pairwise mutual information

values, 𝐈(𝐗), defined as

𝐈(𝐗) =
{
I(𝐱i, 𝐱j)

}
, 1 ≤ i, j ≤ n, (9)

where 𝐈(𝐗) ∈ ℝn×n
+ , 𝐗 = [𝐱1,… , 𝐱n] and I(𝐱i, 𝐱j) is the mutual information between

the two random variables 𝐱i and 𝐱j, using one of the estimators presented.

380 Y. Miche et al.

We want to get, in terms of mutual information, similar matrices between the

obfuscated data and the original data.

More precisely, if we have a measure μ(pj, pk) between two probability densities

pj, pk (e.g. the Kullback-Leibler divergence [19] or Wasserstein metric [20]), we want

to make sure that the distribution of the pairwise mutual information values between

the original discrete random variables 𝐱i and the obfuscated ones 𝐱(h)i is such that

μ
(
hist(𝐈(𝐗)), hist(𝐈(𝐗(h)))

)
≤ ε, (10)

with ε ≥ 0 as small as possible, and hist(𝐈(𝐗)) denotes the distribution of the pairwise

mutual information values.

Thus, to conclude on this part using the Mutual Information as a way to quantify

the Data Privacy, we propose to define (μ, h, d) as the tuple holding the objects defin-

ing respectively the measure μ, the obfuscation function family h and the distances

(both over the original space and the obfuscated space) families d. The spaces are

themselves defined by the data that is being obfuscated, and some of the required

distance functions might be obvious, over such spaces.

This tuple defines the obfuscation functions and measures needed to quantify

their impact.

Given (μ, h, d), we can then propose privacy levels in terms of thresholds ε:

∙ Small thresholds imply a low distortion due to the obfuscation, in terms of the

pairwise mutual information, and thus force the obfuscation functions (or their

parameters) to be limited in their effect;

∙ While a high threshold allows for high distortions, and thus allows for high levels

of obfuscation, at the possible cost of unusable data.

It is worth noting here that while this criterion of Mutual Information preservation

is important, it might not convey sufficient restrictions over the obfuscation functions

to make sure the data is still “usable” for further data mining, e.g.

For example, if a certain low threshold ε is respected in terms of this proposed

mutual information criterion, it is possible that the data has become much more

difficult to process, in terms of Machine Learning techniques: the information that

has been kept between the several random variables considered is still present, but

extracting and using it for meaningful purposes is not guaranteed by this mutual

information criterion.

5 Machine Learning for Data Privacy Quantification

This former section presented a criterion on the level of the mutual information. We

ultimately want to see how much the obfuscation affects a clustering/classification/

regression algorithm, as well.

Using the same notations as for the case of the Mutual Information, in the previous

section, we assume this time, that we use a machine learning technique class ML(⋅, ⋅)

On Mutual Information over Non-Euclidean Spaces . . . 381

with a certain instance MLj(𝐗, d) to perform a data mining task requiring the distance

function family d on the data 𝐗.

We want to devise/have a set of L performance criteria or metrics m =
{
mi
}
1≤i≤L

and have

||mi
(
MLj(𝐗, d)

)
− mi

(
MLj

(
𝐗(h)

, d(h)
))

||2 ≤ ε, 1 ≤ i ≤ L, (11)

with || ⋅ ||2 the Euclidean norm.

Note that in this definition, we have two varying quantities to use to measure the

distortion introduced by the obfuscating function family h: the Machine Learning

techniques MLj and the performance metrics m.

As such, and for the same reasons as in Sect. 3.3, we propose to use the ELM as

the class of Machine Learning techniques. Another reason to do so, here, is that the

ELMs, by their non-deterministic nature, ensure that the same model class with the

same hyper-parameters (i.e. in this case, the number of neurons and the activation

functions used in each) can be used, while still having different models in terms of

the inner coefficients.

Thus, we propose for this case to use the Mean Square Error (or the classification

accuracy, depending on the problem at hand) as the performance measure m (mean-

ing L = 1 for this proposition), and the ELM with various random initialisation as

the MLj.

In practice, if the data mining techniques to be used are fixed, then the metrics and

the means to generate diversity in the Machine Learning models need to be arranged.

In the same way as for the previous case with the Mutual Information, we can

then proceed, for a fixed set (m, h,
{

MLj(⋅)
}
), to define appropriate thresholds ε that

quantify the amount of data distortion introduced by the obfuscation functions, but

this time in terms of the “final goal” of data mining.

6 Conclusions and Future Work

This work proposes means of quantifying and measuring the impact of data privacy

functions on the data itself, as well as on the further processing on such data, in data

mining terms. We propose a framework that allows to use Mutual Information esti-

mators on non-Euclidean spaces, thus allowing to use the mutual information as a

measure of the distortion introduced by the obfuscation functions. We discuss the

assumptions made and the necessary transformations required on the distance func-

tions over non-Euclidean spaces to allow for such computations. While measuring

this distortion using the mutual information is valuable, it might not reflect fully the

difficulty introduced in terms of further processing of the data, and, specifically, in

terms of data mining on such data.

We thus propose the second approach in this framework, by measuring the per-

formance of several instances of Machine Learning techniques and comparing the

performance on the original data and on the obfuscated data. This approach, while

382 Y. Miche et al.

less “precise”, maybe, allows for direct insight into the effects of the data obfusca-

tion; and thus is useful in terms of tuning the privacy functions parameters.

Future work on this topic is clearly to provide large experimental results on

the application of this framework, for various data formats, privacy functions and

Machine Learning techniques. In addition, we hope to be able to quantify, given a

fixed data format and privacy functions, a set of “reasonable” thresholds ε for both

the mutual information and machine learning criterion. Reasonable meaning in this

instance that such thresholds could set up standards for data sharing and exchange:

if we consider network traces, e.g. as the data format, and a fixed set of privacy

functions over the various fields included in these traces, we want to be able to give

precise recommendations as to how much the data needs to be obfuscated to ensure

user privacy, while allowing further data mining based processing, for instance.

References

1. Nissenbaum, H.: A contextual approach to privacy online. Daedalus, 140(4):32–48 (Fall 2011)

2. Gürses, S., Troncoso, C.G., Diaz, C.: Engineering privacy by design. In: Computers, Privacy

and Data Protection (2011)

3. Oliver, I.: Privacy Engineering: A Data Flow and Ontological Approach. CreateSpace (2014)

4. Ciriani, V., Capitani di Vimercati, S., Foresti, S., Samarati, P.: κ-anonymity. In: Ting, Y.,

Jajodia, S. (eds.) Secure Data Management in Decentralized Systems. Advances in Information

Security, vol. 33, pp. 323–353. Springer, New York (2007)

5. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: 𝓁-diversity: Privacy

beyond κ-anonymity. In: 2013 IEEE 29th International Conference on Data Engineering

(ICDE), 0:24 (2006)

6. Dwork, C.: Differential privacy: a survey of results. In: Theory and Applications of Models of

Computation. Lecture Notes in Computer Science, vol. 4978, pp. 1–19. Springer, Berlin (2008)

7. The UK Cabinet Office. Security policy framework (April 2013)

8. Huang, G., Chen, L., Siew, C.-K., Huang, G.-B., Chen, L., Siew, C.-K.: Universal approxima-

tion using incremental constructive feedforward neural networks with random hidden nodes.

IEEE Trans. Neural Networks 17(4), 879–892 (2006)

9. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications.

Neurocomputing 70(1), 489–501 (2006)

10. Cybenko, G.: Approximations by superpositions of sigmoidal functions. Math. Control Signals

Syst. 2(4), 303–314 (1989)

11. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: optimally-

pruned extreme learning machine. IEEE Trans. Neural Networks 21(1), 158–162 (2010)

12. Miche, Y., van Heeswijk, M., Bas, P., Simula, O., Lendasse, A.: TROP-ELM: a double-

regularized ELM using LARS and Tikhonov regularization. Neurocomputing 74(16), 2413–

2421 (2011)

13. Van Heeswijk, M., Miche, Y., Oja, E., Lendasse, A.: GPU-accelerated and parallelized ELM

ensembles for large-scale regression. Neurocomputing 74(16), 2430–2437 (2011)

14. Cambria, E., Huang, G.-B., Kasun, L.L.C., Zhou, H., Vong, C.M., Lin, J., Yin, J., Cai, Z.,

Liu, Q., Li, K., Leung, V.C.M., Feng, L., Ong, Y.-S., Lim, M.-H., Akusok, A., Lendasse, A.,

Corona, F., Nian, R., Miche, Y., Gastaldo, P., Zunino, R., Decherchi, S., Yang, X., Mao, K., Oh,

B.-S., Jeon, J., Toh, K.-A., Teoh, A.B.J., Kim, J., Yu, H., Chen, Y., Liu, J.: Extreme learning

machines (trends and controversies). IEEE Intell. Syst. 28(6), 30–59 (2013)

15. Radhakrishna Rao, C., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications.

Wiley, New York (1972)

On Mutual Information over Non-Euclidean Spaces . . . 383

16. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69,

066138 (2004)

17. Pál, D., Póczos, B., Szepesvári, C.: Estimation of Rényi entropy and mutual information based

on generalized nearest-neighbor graphs. ArXiv e-prints (2010)

18. Pál, D., Póczos, B., Szepesvári, C.: Estimation of rényi entropy and mutual information based

on generalized nearest-neighbor graphs. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J.,

Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23, pp.

1849–1857. Curran Associates, Inc. (2010)

19. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86

(1951)

20. Bogachev, V.I., Kolesnikov, A.V.: The Monge-Kantorovich problem: achievements, connec-

tions, and perspectives. Russ. Math. Surv. 67, 785–890 (2012)

Probabilistic Methods for Multiclass
Classification Problems

Andrey Gritsenko, Emil Eirola, Daniel Schupp,
Edward Ratner and Amaury Lendasse

Abstract In this paper, two approaches for probability-based class prediction are

presented. In the first approach, the output of Extreme Learning Machines algorithm

is used as an input for Gaussian Mixture models. In this case, ELM performs as

dimensionality reduction technique. The second approach is based on ELM and a

newly proposed Histogram Probability method. Detailed description and analysis

of these methods are presented. To evaluate these methods five datasets from UCI

Machine Learning Repository are used.

Keywords Classification ⋅ Machine learning ⋅ Neural networks ⋅ Extreme learn-

ing machines ⋅ Gaussian mixture model ⋅ Naive Bayesian classifier ⋅ Multiclass

classification ⋅ Probabilistic classification ⋅ Histogram distribution ⋅ Leave-one-out

cross-validation ⋅ PRESS statistics

1 Introduction

There are a lot of algorithms that can be successfully used for multiclass classifi-

cation problems. For many real world problems, it would be preferable to be able

to build probabilistic models for confidence determination, yet many methods yield

binary classifications without a probability.

The Extreme Learning Machines (ELM) [1–6] and Neural Networks in general, as

well as other classification methods, have a successful history of being used to solve

multi-class classification problems. The standard procedure is to convert the class

A. Gritsenko ⋅ A. Lendasse (✉)

Department of Mechanical and Industrial Engineering and the Iowa

Informatics Initiative, The University of Iowa, Iowa City, USA

e-mail: amaury-lendasse@uiowa.edu

E. Eirola ⋅ A. Lendasse

Arcada University of Applied Sciences, Helsinki, Finland

A. Gritsenko ⋅ D. Schupp ⋅ E. Ratner

Lyrical Labs LLC, Iowa City, USA

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_33

385

386 A. Gritsenko et al.

labels into numerical 0/1 binary variables, effectively transforming the situation into

a regression task. When a new sample is fed through the network to produce a result,

the class is assigned based on which numerical value it is closest to. While this leads

to good performance in terms of classification accuracy and precision, the network

outputs as such are not always meaningful. This paper presents two methods, which

convert the outputs into more interpretable probabilities by using Gaussian Mixture

Models (GMM) [7] and building histograms of hits and misses.

Most classifiers provide results which can not directly be interpreted as probabil-

ities. Probabilities are useful for understanding the confidence in classification, and

evaluating the possibility of misclassification. In a multiclass problem, for instance,

certain misclassification results may be considerably more harmful or expensive than

others. One example is in website filtering based on user-defined categories, where

neural networks are used to classify previously uncategorized sites [8, 9].

It is true that the optimal least-squares estimator for ELM output values is equiv-

alent to the conditional probability:

ŷ(x) = E[Y ∣ x] = p(Y=1 ∣ x). (1)

In practice, however, the results can be outside the range 0–1, and this interpre-

tation is not very reliable or directly useful.

The proposed probabilistic methods can be used to transform the output values

in the output layer to more interpretable probabilities. The detailed explanation of

these methods is given in Sects. 4.2 and 4.3.

The remainder of this paper is structured as follows: Sect. 2 describes previously

done research in the related area, Sect. 3 describes the problem of calculating and

comprehending probabilistic outputs, Sect. 4 reviews the overall process of obtain-

ing probabilistic outputs using ELM as baseline algorithms. All methods used in this

process are described in the corresponding subsections. An experimental compari-

son on a variety of datasets is provided in Sect. 5 that also has a note on specific

implementation of methods. Section 6 presents conclusions and further works.

2 Previous Works

Regardless of great benefit that could be obtained with probabilistic classification,

only early work has been done. The most popular method is called Naive Bayes

Classifier (NBC) [10, 11] and is based on Bayes’ Theorem to compute conditional

probabilities

p
(
Ck|x

)
=

p
(
Ck

)
p
(
x|Ck

)

p (x)
, (2)

where x is a sample vector of features, p
(
Ck

)
is the prior probability of class Ck,

p
(
x|Ck

)
is the likelihood of x for a given class Ck, and p (x) =

∑
k p

(
Ck

)
p
(
x|Ck

)
is

Probabilistic Methods for Multiclass Classification Problems 387

the marginal probability of x. Though this theorem works well in probability theory,

NBC cannot be considered as a reliable probability classifier as it assumes input

variables are conditionally independent given the class label.

There are a lot of measures to estimate the accuracy of non-probabilistic learning

algorithms [12, 13], while the lack of interest in probabilistic classification methods

results in poor developed methodology to evaluate probabilistic outputs. The most

well known Mean Square Error estimation [13] is usually used to evaluate accuracy

of probabilistic methods, though this approach may discard the meaning of proba-

bility output.

Here for each example x, the square error (SE) is defined as

SE =
∑

i

(
T
(
ci ∣ x

)
− P

(
ci ∣ x

))2
, (3)

where P(ci|x) is the probability estimated for example x and class ci and T(ci|x)
is defined to be 1 if the actual label of x is c and 0 otherwise. The drawback of

this method, which is true for all MSE-based estimators, is that they have heavily

weighted outliers. First of all, that means that large errors have a bigger impact on

the estimation than small errors. Secondly, but what is more important in case of

probabilities, is that a lot of small errors would influence the evaluation and not let

us to estimate properly how far our prediction from the correct class.

3 Description of the Problem

Consider the following problem of multiclass classification of an object depicted on

an image, where each object could belong to any of three classes: class 1—‘Dog’,

class 2—‘Cat’, Class 3—‘Bird’. Assume that for three different samples, the fol-

lowing output values have been received (see Table 1). Suppose that for each sam-

ple, output value t̂i for the corresponding class i belongs to the interval [0; 1] and∑3
i=1 t̂i = 1. The discussion of what classification algorithm has been used to obtain

these output values is out of the scope of this example.

When using standard classification estimators (e.g., mean square error estima-

tor [14]) the class with the highest output value should be picked as a prediction.

Though, in terms of the given example, the mentioned approach is meaningful only

for the first data sample. For samples 2 and 3 it is more intuitively to use the terms of

Table 1 Possible outputs for

multiclass classification

problem

Sample Class 1 (Dog) Class 2 (Cat) Class 3 (Bird)

Sample 1 99 1 0

Sample 2 49 51 0

Sample 3 33.3 33.3 33.4

388 A. Gritsenko et al.

probability when discussing and estimating the corresponding outputs. With this it

can be stated, that sample 2 most probably belongs to either class 1 or 2 with slightly

better hand of class 2 and definitely does not belong to class 3; and sample 3 has a

more or less equal probability of belonging to any of three classes, that can indicate,

for example, that the sample belongs to a class of unseen during the training step

data, or the sample possess features of all three classes.

Though it is more intuitively to comprehend and interpret probabilistic outputs,

additional methods are required to convert raw outputs into probabilistic ones (see

Sects. 4.2 and 4.3 for more information).

4 Global Methodology

4.1 Extreme Learning Machines

Extreme Learning Machines (ELMs) [1] are single hidden-layer feed-forward neural

networks where only the output weights are optimised, and all the weights between

the input and hidden layer are assigned randomly (Fig. 1). Training this model is

simple, as the optimal output weights 𝜷 can be calculated by ordinary least squares

or various regularised alternatives.

In the following, a multi-class classification task is assumed. The data is a set of

N distinct samples {xi, yi} with xi ∈ ℝd
and yi ∈ {1,… ,C} where C is the number

of distinct classes. Encode classification targets as one binary variable for each class

(one-hot encoding). 𝐓 is the matrix of targets such that 𝐓ij = 1 if and only if yi = j,
i.e., sample i belongs to class j. Otherwise, 𝐓ij = 0. ̂𝐓 is the output matrix of the

method. In the case of two classes, a single output variable is sufficient. Ideally,

Fig. 1 Extreme learning

machine with multiple

outputs. Bias is conveniently

included as an additional

constant +1 input. Hidden

layer weights 𝐖 are fixed,

only output layer weights 𝜷

are calculated

Probabilistic Methods for Multiclass Classification Problems 389

values of output matrix should be ̂𝐓ij ∈ {0,… , 1}, but in practice the bounds are

usually extended to some extent depending on the model random initialization.

A single (hidden) layer feedforward neural network (SLFN) with d input nodes,

C output nodes, and M neurons in the hidden layer can be written as

f (x) =
M∑

k=1
𝜷kh

(
wk ⋅ x

)
, (4)

where wk are randomly assigned d-dimensional weight vectors, the output layer

weights 𝜷k are C-dimensional vectors, and h(⋅) an appropriate nonlinear activation

function, e.g., the sigmoid function. The output of f is a C-dimensional vector, and

class assignment is determined by which component is the largest.

In terms of matrices, the training of the network can be re-written as finding the

least-squares solution to the matrix equation

𝐇𝜷 = 𝐓, where Hik = h
(
wk ⋅ xi

)
. (5)

Constant bias terms are commonly included by appending a 1 to each xi and con-

catenating a column of 1 s to 𝐇.

4.1.1 PRESS Optimization for Number of Neurons

The number of hidden neurons is the only tunable hyperparameter in an ELM

model. It is selected using a Leave-One-Out (LOO) Cross-Validation error. The LOO

method is usually a costly approach to optimize a parameter since it requires to train

the model on the whole dataset but one sample, and evaluate on this sample repeat-

edly for all the samples of the dataset. However, the output layer is linear for the

ELM model, and the LOO error has a closed form given by Allen’s Prediction Sum

of Squares (PRESS) [15]. This closed form allows for fast computation of the LOO

Mean Square Error, which gives an estimate of the generalization error of ELM. The

optimal number of hidden neurons is found as the minimum of that Meas Squared

Error.

The Allen’s PRESS formula written with the multi-output notations of the paper is

MSE
PRESS

LOO
= 1

Nc

N∑

n=1

c∑

k=1

(
𝐓 −𝐇𝐇†𝐓[

𝟏N − diag
(
𝐇𝐇†

)]
𝟏Tc

)2

ik

, (6)

where 𝐇†
denotes the Moore-Penrose pseudo-inverse [16] of 𝐇, and the division and

square operations are applied element-wise. Additionally, for the particular imple-

mentation of PRESS optimization Tikhonov regularization [17] was also used in the

paper when computing the pseudo-inverse matrix of 𝐇

390 A. Gritsenko et al.

𝐇† =
(
𝐇T𝐇 + 𝛼𝐈

)−1 𝐇T
, (7)

where 𝛼 = 10−5 is a chosen regularization parameter and 𝐈 is an identity matrix.

Tikhonov regularization is a well-known regularization technique for ill-posed prob-

lems [18], which allows to avoid possible numerical and computational issues when

finding the solution of the system described by Eq. (5).

4.2 Gaussian Mixture Models

Mixtures of Gaussians can be used for a variety of applications by estimating the

density of data samples [19, 20]. A Gaussian Mixture Model can approximate any

distribution by fitting a number of components, each representing a multivariate nor-

mal distribution.

The model is defined by its parameters, which consist of the mixing coefficients

𝜋k, the means 𝝁k, and covariance matrices 𝚺k for each component k (1 ≤ k ≤ K)

in a mixture of K components. The combination of parameters is represented as

𝜽 = {𝜋k,𝝁k,𝚺k}Kk=1.

The model specifies a distribution in ℝd
, given by the probability density function

p(x ∣ 𝜽) =
K∑

k=1
𝜋k (x ∣ 𝝁k,𝚺k), (8)

where  (x ∣ 𝝁,𝚺) is the probability density function of the multivariate normal dis-

tribution

 (x ∣ 𝝁,𝚺) = 1√
(2𝜋)d det(𝚺)

exp
(
−1
2
(x − 𝝁)T𝚺−1(x − 𝝁)

)
. (9)

The standard procedure for fitting a Gaussian Mixture Model to a dataset is

maximum likelihood estimation by the Expectation-Maximisation (EM) algorithm

[20–22]. The E-step and M-step are alternated until convergence is observed in the

log-likelihood. Initialisation before the first E-step is arbitrary, but a common choice

is to use the clustering algorithm K-means to find a reasonable initialisation [19].

The only parameter to tune select is the number of components K. This can be

done by separately fitting several models with different values for K, and using the

BIC criterion [23] to select the best model. In the proposed methodology, we are

using the BIC criterion to select the value of K. Several further criteria are discussed

in [24, Chap. 6].

Probabilistic Methods for Multiclass Classification Problems 391

4.2.1 ELM as Dimensionality Reduction Technique for GMM

In [25] a method was proposed that combines ELM and GMM algorithms. The

core of this method is to train a standard ELM for classification at first and then

apply GMM to the output of ELM to obtain more interpretable probabilistic results.

As usually the number of classes in data is less then number of features/variables,

ELM could be intuitively considered as a dimensionality reduction technique that

decreases number of training parameters Nparam of GMM:

Nparam = NcompNdim +
NcompNdim

(
Ndim + 1

)

2
+ Ncomp − 1 , (10)

where Ndim is the dimension of input data for GMM and Ncomp is number of mixture

components.

The main requirement to fit a representative mixture model is that the number

of observations should be greater than the number of parameters. That means, that

aside from the fact that using ELM as data preprocessing reduces computational

complexity of GMM algorithm, it also increases the possibility to basically building

a GMM.

In the current situation, GMM is applied in conjunction with Bayes’ theorem to

find estimates for the posterior probabilities of each class for a sample. Specifically,

it is used to estimate the term p
(
x|Ck

)
in Eq. (2). This requires that a separate GMM

is built for each class.

Algorithm 1 Training the model and finding the conditional class probabilities for

unseen data.

⊳ Training step
Require: Input data 𝐗, targets 𝐓
1: Randomly assign input vectors wk and form 𝐇
2: Calculate 𝜷 as the least squares solution to Eq. (5)

3: Calculate outputs on training data: 𝐘 = 𝐇𝜷

4: For each class C do
5: Fit a GMMC to the rows of 𝐘 corresponding to the class C
6: End for
7: Calculate p(C) based on proportions of each class

8: Return wk, 𝜷, GMMC , p(C)

⊳ Testing step
Require: Test data 𝐗t, weights wk, 𝜷, GMMC and p(C) for each class C
1: Form 𝐇t by using the weights wk
2: Calculate outputs: 𝐘t = 𝐇t𝜷

3: For each class C do
4: Use GMMC to calculate p(Yt ∣ C) for each sample

5: End for
6: Calculate p(C ∣ Yt) ∝ p(Yt ∣ C)p(C) for each sample

7: Return Conditional probabilities p(C ∣ Yt) for each class for each sample

392 A. Gritsenko et al.

Considering all of the above and according to [25], the procedure of combining

ELM and GMM in classification method with probabilistic outputs was summarized

in Algorithm 1.

4.3 New Proposed Histogram Probability Method

4.3.1 Overview

In broad terms, the histogram method is a simple characterization of the continu-

ous result from a classification algorithm. In short, the proposed approach is to take

advantage of a continuous decision function (as opposed to a binary decision maker).

The proposed approach then bins the resulting decision space, and uses training data

to build a model of the class distributions [26]. Bayesian theory can then be applied

for robust decision making.

4.3.2 Methodology

Hereafter the steps of performing the Histogram Probability method of obtaining

probabilistic output from raw output of any multi-class classification algorithm are

described.

At first, some classification algorithm should be trained in order to obtain outputs

(for the sake of unambiguousness, called raw outputs) that would serve as a basis for

probabilistic outputs for a certain multi-class problem. In order to build histograms,

the range of raw training set outputs is computed as

[
min ̂𝐓train; max ̂𝐓train

]
. The

range is then divided into bins, and a certain number of bins can differ for different

classification problems with respect to their complexity. It should be noted that too

small number of bins would result in loosing features of distribution, while too large

number could be a reason for sparse histograms.

Then, for each class two types of histograms are built. At the first stage, samples

in training set are split up into different sets according to the corresponding correct

class. Then for each sample i in separated sets the raw output value of the correct

class is added to the set of IN-class values, output values for other classes are added

to the set of OUT-class values.

̂Tij ↦

{
INCk

if j = k
OUTCk

if j ≠ k
, k = correct class (i) , (11)

where ̂Tij—is the raw output value of sample i for the corresponding class Cj, k
identifies correct class for sample i, INCk

and OUTCk
are respectively sets of IN-class

and OUT-class values for class Ck.

Probabilistic Methods for Multiclass Classification Problems 393

After all, samples are processed, histograms of IN-class andOUT-class values are

constructed on the selected bins. Obviously, number of values used to build OUT-

class histogram is bigger than number of raw output values used to build IN-class

histogram for the same class. Moreover, for real-world multi-class classification

problems, number of samples in training set for different classes could be different.

In order to compensate these differences, histograms are normalized in the following

way

INCi
=

INCi

size
(
Ci
) and (12)

OUTCi
=

OUTCi
∑Nclasses

j=1 size
(
Cj
) , j ≠ i , (13)

where INCi
and OUTCi

are respectively IN-class and OUT-class histograms built

for class Ci, size
(
Cj
)

represents the number of samples in the training set, whose

correct class is class Cj, Nclasses is number of total classes in a certain multi-class

classification problem. For each class, resulting histograms can be considered as

histograms of probability density functions that for a certain output value define

the probability of either correct (in case of IN-class histogram) or wrong (in case

of OUT-class histogram) classification, if that output value would be picked as the

resulting value (the highest output value) for a sample.

With the respect to the used classification algorithm, probabilistic output for a

given sample i, which has a raw output value ̂Tij for j class respectively, is computed

as follows

p
(
Cj ∣ ̂Tij

)
=

INCj

(
̂Tij
)

INCj

(
̂Tij
)
+ OUTCj

(
̂Tij
) . (14)

Equation (14) does not guarantee that for each sample probabilities would sum

up to 1. The main reason is that for each class these probabilities are calculated

regardless of information about other classes. In order to treat results of Eq. (14) as

probabilities for each sample they should be normalized.

5 Experiments

In the following subsections, presented earlier probabilistic classification method-

ologies are compared, using a number of multiclass datasets. These compared meth-

ods include the original ELM algorithm, the two variants of the proposed combina-

tion of ELM and GMM: ELM-GMM and ELM-GMMr, and also ELM+HP.

Performance of the mentioned algorithms was compared in terms of both training

time and accuracy—percentage of correct predictions, where class with the highest

output value or probability (for probability-output methods) is kept as prediction.

394 A. Gritsenko et al.

5.1 Implementation

All methods described above were implemented using OpenCV v.2.4.9—an open

source computer vision and machine learning software library [27]. At first, ELM

was trained on the original input data. The number of neurons for each dataset has

also been chosen before running experiments. For each dataset PRESS Leave-One-

Out cross-validation technique [15, 28] has been performed 1000 times and number

of neurons that gives the highest average accuracy in predictions has been chosen.

Gaussian Mixture Model was implemented using built-in OpenCV functions real-

izing Expected Maximization (EM) algorithm [29]. For each class, Gaussian Mixture

Model was built with the number of mixture components equal to 2 for each model.

Amount of mixture components was chosen empirically as the number, for which

the accuracy of ELM-GMM method has the smallest error.

5.2 Datasets

Five different datasets have been used for the experiments. Four datasets have already

been used to compare results of ELM-GMM probabilistic classification methodol-

ogy in [25], and for this paper have mainly been chosen to provide an overall compar-

ison of two different probabilistic classification techniques. In addition, Iris dataset

has also been included in the comparison, because it is a well-known dataset usually

used to compare performance of multi-class classification algorithms. All datasets

have been collected from the University of California at Irvine Machine Learning

Repository [30].

Table 2 summarizes the different attributes for all datasets. The datasets have been

preprocessed in the same way: two thirds of the points are used to create the training

set and the remaining third is used as the test set. For all datasets, proportions of

classes have been kept balanced in both training and test sets. For all datasets, the

training set is standardized to zero mean and unit variance, and the test set is also

standardized using the same mean and variance calculated and used for the training

set.

Table 2 Information about used datasets

Samples Neurons

Dataset Variables Classes Train Test Max Mean

Iris 4 3 100 50 150 30

Wine 13 3 118 60 150 40

Image segmentation 18 7 1540 770 1000 410

First-order theorem proving 51 6 4078 2040 2000 960

Cardiotocography 21 10 1417 709 1000 400

Probabilistic Methods for Multiclass Classification Problems 395

Table 3 Accuracy and training time comparison for presented methods

ELM ELM-GMM ELM-GMMr ELM-HP

Dataset Time Acc.(%) Time Acc.(%) Time Acc.(%) Time Acc.(%)

Iris 0.003 96.36 0.069 94.59 0.071 95.70 0.007 96.42

Wine 0.007 93.89 0.124 93.54 0.124 93.56 0.013 93.81

Image Seg. 3.240 94.54 4.491 93.37 4.557 94.08 3.351 94.33

F.-O.T.P. 49.03 53.66 52.39 51.59 51.40 52.67 49.28 53.23

Card. 2.743 74.18 3.865 74.95 3.839 74.49 3.004 73.67

5.3 Results

All experiments have been run on the same computational server, single threaded

execution, for the sake of comparison. Technical characteristics of the Windows

server are the following: 32 Intel Xeon v2 processors with 2.8 GHz each, 90 GB

of RAM and 100 GB of hard drive memory, no swapping has been used for any of

the experiments.

Because ELM is a single hidden-layer feed-forward neural network with randomly

assigned weights wk (see Sect. 4.1) that influence the accuracy of the method, each

ELM-based method was run 1000 times for each dataset and average performance

was calculated.

In [25] a method to refine the training of GMM was presented. The suggestion was

to use as inputs for GMM only correct predictions outputs, because GMM trained

on wrong predictions inherit the error. For datasets, for which ELM made predic-

tions with high accuracy, the proposed method (dispayed as ELM-GMMr in Table 3)

shows better results in comparison to GMM trained on ELM outputs for both correct

and wrong predictions.

Table 3 contain results of performing probabilistic classification for five different

datasets and four methods as mentioned in Sect. 5.

6 Conclusions and Further Works

In this paper, two approaches for probability-based class prediction are presented:

both are using Extreme Learning Machines algorithm as a first stage, then the output

is transformed into a probability in the second stage. The second stage was performed

using Gaussian Mixture models or a new proposed Histogram Probability method.

In the future, the proposed methodologies have to be improved in terms of com-

putational time in order to target Big Data problems. For example, comparison with

k-nearest neighbors will be investigated since they can also be used to provide classi-

fication probabilities. Furthermore, to fairly evaluate performances when probability

396 A. Gritsenko et al.

outputs are provided by the classifiers and since no traditional criteria can easily be

used in that case, a new criteria has be proposed instead of traditional ‘training time-

accuracy’ comparison approach.

References

1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neu-

rocomputing 70(1–3), 489–501 (2006)

2. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive

feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892

(2006)

3. Akusok, A., Björk, K.M., Miché, Y., Lendasse, A.: High-performance extreme learning

machines: a complete toolbox for big data applications. IEEE Access 3, 1011–1025 (2015)

4. Cambria, E., et al.: Extreme learning machines. IEEE Intell. Syst. 28(6), 30–59 (2013)

5. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: optimally

pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–162 (2010)

6. Yu, Q., Miche, Y., Eirola, E., van Heeswijk, M., Séverin, E., Lendasse, A.: Regularized extreme

learning machine for regression with missing data. Neurocomputing 102 (2013) 45–51 cited

By 9

7. Dinov, I.D.: Expectation maximization and mixture modeling tutorial. Statistics Online Com-

putational Resource (2008)

8. Qi, X., Davison, B.D.: Web page classification: features and algorithms. ACM Comput. Surv.

41(2), 12:1–12:31 (2009)

9. Patil, A.S., Pawar, B.: Automated classification of web sites using naive bayesian algorithm.

In: Proceedings of the International MultiConference of Engineers and Computer Scientists,

vol. 1 (2012)

10. Rennie, J.D.M., Shih, L., Teevan, J., Karger, D.R.: Tackling the poor assumptions of naive

bayes text classifiers. In: In Proceedings of the Twentieth International Conference on Machine

Learning, pp. 616–623 (2003)

11. In: Emerging Intelligent Computing Technology and Applications. Communications in Com-

puter and Information Science, vol. 304 (2012)

12. Westgard, J.O., Carey, R.N., Wold, S.: Criteria for judging precision and accuracy in method

development and evaluation. Clin. Chem. 20(7), 825–833 (1974)

13. Bermejo, S., Cabestany, J.: Oriented principal component analysis for large margin classifiers.

Neural Netw. 14(10), 1447–1461 (2001)

14. Mood, A., Graybill, F.: Introduction to the Theory of Statistics. International Student Edition:

McGraw-Hill Series in Probability and Statistics. McGraw-Hill Book Company, Incorporated

(1963)

15. Allen, D.M.: The relationship between variable selection and data agumentation and a method

for prediction. Technometrics 16(1), 125–127 (1974)

16. Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications. Wiley (1971)

17. Tikhonov, A.: Numerical Methods for the Solution of Ill-Posed Problems. Current Plant Sci-

ence and Biotechnology in Agriculture. Springer (1995)

18. Bell, J.B.: Math. Comput. 32(144), 1320–1322 (1978)

19. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

20. Eirola, E., Lendasse, A., Vandewalle, V., Biernacki, C.: Mixture of gaussians for distance esti-

mation with missing data. Neurocomputing 131, 32–42 (2014)

21. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the

EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977)

22. McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions. Wiley Series in Probability

and Statistics. Wiley, New York (1997)

Probabilistic Methods for Multiclass Classification Problems 397

23. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

24. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley Series in Probability and Statistics.

Wiley, New York (2000)

25. In: Advances in Computational Intelligence. Lecture Notes in Computer Science, vol. 9095

(2015)

26. Schupp, D., Ratner, E., Gritsenko, A.: U.S. Provisional Patent Application No. 7062320: object

categorization using statistically-modeled classifier outputs (08 2015)

27. Bradski, G.: The opencv library. Dr. Dobb’s J. Softw. Tools (2000)

28. Myers, R.: Classical and Modern Regression with Applications. Bookware Companion Series.

PWS-KENT (1990)

29. Bilmes, J.: A gentle tutorial of the em algorithm and its application to parameter estimation

for gaussian mixture and hidden markov models. Technical report, International Computer

Science Institute and Computer Science Division, University of California at Berkeley (1998)

30. Lichman, M.: UCI machine learning repository. http://archive.ics.uci.edu/ml (2013)

http://archive.ics.uci.edu/ml

A Pruning Ensemble Model of Extreme
Learning Machine with L1/2 Regularizer

Bo He, Tingting Sun, Tianhong Yan, Yue Shen and Rui Nian

Abstract Extreme learning machine (ELM) as an emerging branch of machine
learning has shownits good generalization performance at a fast learning speed.
Nevertheless, the preliminary ELM and other evolutional versions based on ELM
cannot provide the optimal solution of parameters between the hidden and output
layer and cannot determine the suitable number of hidden nodes automatically. In
this paper, a pruning ensemble model of ELM with L1/2 regularizer (PE-ELMR) is
proposed to solve above problems. It involves two stages. First, we replace the
original solving method of the output parameter in ELM to a minimum
squared-error problem with sparse solution by combining ELM with L1/2 regular-
izer. In addition, L1/2 regularizerguarantees the sparse solution with less computa-
tional cost. Second, in order to get the required minimum number for good
performance, we prune the nodes in hidden layer with the ensemble model, which
reflects the superiority in searching the reasonable hidden nodes. Experimental
results present the performance of L1 and L1/2 regularizers used in our model
PE-ELMR, compared with ELM and OP-ELM, for regression and classification
problems under a variety of benchmark datasets.

Keywords Neural networks ⋅ Extreme learning machine ⋅ L1/2 regularizer ⋅
Ensemble models ⋅ Pruning methods

B. He (✉) ⋅ T. Sun ⋅ Y. Shen ⋅ R. Nian
School of Information and Engineering, Ocean University of China, Qingdao,
Shandong, China
e-mail: bhe@ouc.edu.cn

T. Yan
School of Mechatronic Engineering, China Jiliang University, Hangzhou,
Zhejiang, China
e-mail: yanth@163.com

© Springer International Publishing Switzerland 2016
J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,
Proceedings in Adaptation, Learning and Optimization 7,
DOI 10.1007/978-3-319-28373-9_34

399

1 Introduction

Extreme learning machine (ELM) [1, 2] proposed by Huang et al. has proved to be
of good generalization performance at a fast learning speed. ELM is designed based
on the generalized single-hidden layer feedforward networks (SLFNs) [3, 4] with a
variety of hidden nodes. SLFNs have a strong ability of nonlinear approximation
for regression problem, and forming disjoint decision regions with arbitrary
dimension data for classification problem. In addition, except manually setting the
number of nodes in hidden layer and the activation function, ELM needs no human
intervention. The above characteristics of ELM give contribution to a wide range of
applications, such as feature learning, clustering, regression and classification
problems.

However, the preliminary ELM and other evolutional versions based on ELM
have two main drawbacks. On one hand, it does not provide an optimal solution of
parameters in the output layer. On the other hand, the suitable number of hidden
nodes must be determined by a trial and error method. In addition, it can achieve the
better performance to select the required minimum number of hidden nodes than
other numbers. To overcome the mentioned problems, researchers have proposed
several effective schemes.

Hansen and Salamon presented that generalization performance of using an
ensemble of neural networks with a plurality consensus scheme is better than that of
a single network [5]. Then, Zhou et al. suggested that ensemble several models
were better than ensemble all of them, and a selective neural network ensemble
based on genetic algorithm (GASEN) was presented later [6]. However, the pro-
posed GASEN method has lower speed than other ensemble algorithms because
genetic algorithm is employed to select an optimum set of individual networks.
Moreover, Sun et al. [7] and Liu et al. [8] combined the ensemble method with
ELM and a new model of the ELM ensemble was proposed to get stable good
performance. In addition, Xu et al. [9] proposed a genetic ensemble of ELM on the
basis of Liu’s method with genetic algorithm. In general, ensemble methods can
achieve better performance than the single ELM network.

Some pruning methods have been proposed to handle with the number of the
hidden nodes. Rong et al. presented a pruned ELM (P-ELM) for classification
problems [10]. The method initializes a large network and then eliminates the
hidden nodes with low relevance to the class labels by using statistical criteria.
Miche et al. proposed another pruning algorithm named optimally-pruned ELM
(OP-ELM) for both regression and binary classification problems [11]. Since both
P-ELM and OP-ELM are evolutional versions of the preliminary ELM, structural
drawbacks also exist in these algorithms and they do not have satisfactory per-
formance. Moreover, it is hard to determine the time when to start the pruning
process in these two methods.

In this paper, inspired by the existing methods, a pruning ensemble model of
ELM with L1 ̸2 regularizer (PE-ELMR) is proposed to overcome the drawbacks of
the preliminary ELM. And it can be divided into two stages. First, we replace the

400 B. He et al.

original solving method of the output parameters in the preliminary ELM to
a minimum squared-error problem with sparse solution by combining ELM with
L1 ̸2 regularizer [12, 13] (ELMR). Second, in order to get the required minimum
number for good performance, the hidden nodes are pruned by the ensemble model.
Therefore, our approach has a great potential for achieving better performance with
less human intervention.

The rest of paper is organized as follows. Section 2 briefly discusses previous
work on the preliminary ELM and minimum squared-error problem with regular-
ization methods. Section 3 describes the proposed method named a pruning
ensemble model of ELM with L1 ̸2 regularizer. Section 4 reports experimental
results on our method and the others for regression and classification problems
under a variety of benchmark datasets. In Sect. 5, conclusions are summarized on
our recent research and future work.

2 ELM and Regularization Methods

2.1 The Preliminary ELM

ELM [1, 2] is an algorithm designed based on the generalized SLFNs. The weights
and bias between the input and hidden nodes are generated randomly, and then the
output weights can be calculated by solving a linear system analytically without
iteration.

Given N pairs of training samples xi, yif gNi=1, where xi = xi1,⋯, xin½ �T ∈ℝn is the
input data and yi = yi1,⋯, yim½ �T ∈ℝm is the output target. The standard model of
ELM with L hidden neurons and activation function g wj, bj, xi

� �

can be mathe-
matically expressed as

∑
L

j=1
βjg wj, bj, xi

� �

= oi, i=1, 2,⋯,N ð1Þ

where the weight vector wj = wj1,⋯,wjn
� �T ∈ℝn connects the j_th hidden nodes

and the input nodes, andbias bj is of the j_th hidden nodes. The weight vector

βj = βj1,⋯, βjm
� �T ∈ℝm connects the j_th hidden nodes and the output nodes.

ELMcan approximate theseN sampleswith zero errormeans that ∑
N

i=1
oi − yik k=0,

and it can be modified as

Hβ=Y ð2Þ

A Pruning Ensemble Model of Extreme Learning Machine … 401

where H is called the hidden layer output matrix of the neural network

H=
g w1, b1, x1ð Þ ⋯ g wL, bL, x1ð Þ

⋮
g w1, b1, xNð Þ ⋯ g wL, bL, xNð Þ

2

4

3

5

N × L

ð3Þ

β= βT1 ,⋯, βTL
� �T

L×m ð4Þ

Y= yT1 ,⋯, yTN
� �T

N ×m ð5Þ

H can be obtained. And then the output weights β can be generated as

β=H†Y ð6Þ

where H† denotes the Moore–Penrose generalized inverse of matrix H.

2.2 Regularization Methods

In statistics and machine learning, regularization methods [14, 15] are used for
model selection. The general form of the regularization methods can be modeled as

min
1
n
∑
n

i=1
l yi, f ðxiÞð Þ+ λ fk kk

� �

ð7Þ

where lð ⋅ Þ represents a loss function, xi, yif gNi=1 is a dataset and f ðxiÞ is the
function with regard to xi. λ is the regularization parameter, and ⋅k kk denotes
k− norm. The equation is the general form of Lk regularizer. Given a M ×N matrix
A and a target y, then an observation can be obtained by

y=Ax+ ε ð8Þ

where x is the weight and ε is the observation noise. In order to solve the coeffi-
cients x of the equation, Lk regularization methods are used for minimizing the
observation noise term. And then l ⋅ð Þ and f ⋅ð Þ in (7) can be replaced by (8), and
the solution of the regression problem is in the following form.

x= arg min
x

y−Axk k22 + λ xk kk
n o

ð9Þ

Four forms of regularization methods are presented as follows. When k= 0, it is
referred to as the L0 regularizer [16]. The L0 regularizer can generate the sparsest
solutions, however, solving L0 regularizer in the minimization problem is a NP-hard

402 B. He et al.

problem. When k= 1 (L1 regularizer), it transforms to the Lasso problem [17]. The
solution of Lasso is derived from solving a quadratic programming problem
[18, 19]. But it is less sparse than the L0 regularizer. When k= 2 (L2 regularizer), it
transforms to the ridge regression [20]. The solutions of L2 regularizer have the
properties of being smooth, but have no properties of sparse.

3 Proposed PE-ELMR

3.1 ELM with L1 ̸2 Regularizer

In order to obtain the optimal solution of parameters between the hidden and output
layer and prevent over-fitting in the learning procedure. Also, L1 ̸2 regularizer
proposed by Xu et al. [12] can produce sparser solutions than L1 regularizer and
easier computation than L0 regularizer. Therefore, a structure of combining ELM
with L1 ̸2 regularizer (ELMR) is proposed. The important prerequisite of ELMR is
that assuming the errors between the output of the network and the target are not
zero. A problem of a minimum squared-error with sparse solution is addressed and
then the error δ δ≥ 0ð Þ is defined as

δ= Y−Hβk k. ð10Þ

Our aim is to calculate the output weight β of (10) with the constraint that the
error δ is equal to or approximate to zero. The output weight β can be calculated by
Lk(k=1 ̸2) regularization methods.

β= argmin
β

Y−Hβk k22 + λ βk k1 ̸2

n o

ð11Þ

Although the solutions of L1 ̸2 regularizer prove to be much sparser than those of
L1 regularizer, the solving process of L1 ̸2 regularizer seems to be more difficult.
Then an iterative method is proposed to solve of L1 ̸2 regularizer problem, whose
main principle is to transform L1 ̸2 regularizer into a series of weighted L1 regu-
larizer [12]. In order to solve the L1 regularizer problem, we adopt the l1_lstoolbox
proposed by Koh [21].

3.2 The Pruning Methods

The preliminary ELM cannot select the number of the nodes in hidden layer without
human intervention, so a pruningmethod is need to decrease the hidden nodes number

A Pruning Ensemble Model of Extreme Learning Machine … 403

to a suitable value for optimization problem. First, sort the output weight β from
large to small and the sorted β can be represented by β β1 ≥ β2 ≥⋯≥ βL

� �

. Second,
select the hidden nodes by a threshold γ. The ratio of the first l accumulation coeffi-
cients to the sum coefficients can be represented by

γl =
∑l

i=1 βi
∑L

i=1 βi
, l=1, 2,⋯,L ð12Þ

According to the set threshold γ, the necessary number S of hidden nodes can be
defined as

S=min l γlj ≥ γf g, l=1, 2,⋯,L ð13Þ

The output weight refers to coefficients of the regularization problems, which
can reveal the relativity between the variables of hidden nodes and the output
targets. The rest of the work is to set a threshold for selecting the hidden nodes. We
resolve it without human participation by employing the ensemble model of ELM.

3.3 A Pruning Ensemble Model of ELMs with L1 ̸2
Regularizer

Since the process of pruning is needed to repeat to determine the optimal number,
and the multiple processes of pruning increase the computational cost, ensemble
model is then proposed to handle the multiple processes at the same time. With the
ensemble model of ELMs, we can randomly set different thresholds on pruning
process at the same time and then select the individual ELM under the best
performance.

The structure of the ensemble ELMs model is shown in Fig. 1. We adopt the
ensemble model of ELMs for training process, and employ the single ELM for
testing process with the suitable number of hidden nodes selected by the training
process.

After pruning the hidden nodes in each of ELMs, we need to update the weights
and bias between the input and hidden nodes. Define the subset of the deleting
hidden nodes as D= d1, d2,⋯, dL− Sf g. The weight vector wj is assigned to

wold
j = wold

j1 ,⋯,wold
jn

h iT
∈ℝn, j=1, 2,⋯, L. And the old bias is assigned to boldj = bj,

j=1, 2,⋯,L. Then the new weights are updated by the following formula

wnew
s, i =wold

s, i +
1

L− S
∑
L− S

t=1
wdt , i i=1, 2,⋯n, s=1, 2,⋯, S ð14Þ

404 B. He et al.

The new bias are updated as

bnews = bolds +
1

L− S
∑
L− S

t=1
bdt , s=1, 2,⋯, S ð15Þ

Therefore, the proposed method can be described as Algorithm 1.

Algorithm 1 The PE-ELMR algorithm
Input Trainingdataset xi, yif gNi=1, initial hidden nodes number L, the

activation function g ⋅ð Þ, the parameter λ, the ELMs number K of the
ensemble model.

OutputThe k− th single ELMnetwork, its suitable hidden nodes number Sk.

Step 1 Construct a set of K ELM networks and randomly assign the weight
wk
j and bias bkj between the input and hidden layer in each of the

ELMs.

Fig. 1 The structure of the pruning ensemble ELMs model

A Pruning Ensemble Model of Extreme Learning Machine … 405

fLðxiÞ= ∑
L

j=1
βkj g wk

j , b
k
j , xi

� 	

, i=1, 2,⋯,N k=1, 2,⋯K

Step 2 Calculate the coefficients βk of the L1 regularizer or L1 ̸2 regularizer,
and then rank them in each of the ELMRs, respectively.
For L1 regularizer,

βk = arg min
βk

Y−Hβk

2
2 + λ βk

1

n o

, k=1, 2,⋯,K

For L1 ̸2 regularizer,

βk = argmin
βk

Y−Hβk

2
2 + λ βk

1 ̸2

n o

, k=1, 2,⋯,K

Randomly generate K thresholds γk ∈ 0, 1½ �, and prune the hidden
nodes.

Sk = argmin
l

γkl ≥ γk
� �

, l=1, 2,⋯, l, k=1, 2,⋯,K

Step 3 Update the weights and bias between the input and hidden nodes,
and the output matrix H can be recalculated by

Hnewð Þk =
g wnew

1

� �k, bnew
1

� 	k
, x1

 �

⋯ g wnew
Sk

� �k, bnewSk
� �k, x1

� 	

⋮

g wnew
1

� �k, bnew
1

� 	k
, xN

 �

⋯ g wnew
Sk

� �k, bnewSk
� �k, xN

� 	

2

6
6
6
4

3

7
7
7
5

N × Sk

Step 4 Calculate the actual output Ok using (1) and the residuals rk com-
pared with the target Y.

Ok = Hnewð Þkβk , k=1, 2,⋯,K

rk = Y−Ok

2
2, k=1, 2,⋯,K

Select the k− th individual ELM network with the best performance,
which has the suitable number of hidden nodes. Then save the

corresponding pruned hidden nodes number Sk.

k= argmin
k

rk
� �

406 B. He et al.

4 Experimental Results

4.1 Experimental Setup

All the simulations for the algorithms are carried out in Matlab R2010b environ-
ment running in an Intel (R) Core (TM) i5-3470 3.20 GHz CPU. Before the
experiments get started, each of the dataset is split into 70 % of the total for training
samples and 30 % of the total for the testing samples. The attributes of the input
samples have been normalized into the range [−1, 1] for implementing the ELMs.
In the experiments of ELM part, the activation function is set to ‘sig’ representing
the sigmoidal function, which tends to perform better than the other activation
functions. For the preliminary ELM,the hidden nodes number LELM is set using trial
and error method. For our method PE-ELMR, OP-ELM and ELM-L1 (our structure
with L1 regularizer), the hidden nodes number L is set to 400. And the number of
ELMs is set to 20 in the ensemble model.

The datasets used in our experiments are collected from the University of Cal-
ifornia at Irvine (UCI) Machine Learning Repository. We choose the datasets based
on the overall heterogeneity in terms of variable numbers and the nonlinearity.
Tables 1 and 2 show the information and characteristics of the datasets for
regression and classification problems, respectively.

Table 1 Specification of
regression datasets

Dataset Number of samples #Attributes
Training Testing

Sinc 5000 5000 1
Abalone 772 331 8
Housing 354 152 13
Bodyfat 70 30 9
Redwine 1119 480 11

Table 2 Specification of
classification datasets

Dataset Number of samples #Attributes #Classes
Training Testing

Diabetes 576 192 8 2
Ionosphere 246 105 34 2
Iris 100 50 4 3
Glass 150 64 10 6
Landsat 4435 2000 36 6
Wine 125 53 13 3
Segment 147 63 19 7

A Pruning Ensemble Model of Extreme Learning Machine … 407

4.2 Parameters Selection

As previously described, the nodes number in the hidden layer has effect on the
performance as Fig. 2 shows. The experiments were carried out under the Boston
Housing for regression problem and the Diabetes for classification problem.
Moreover, the Root Mean Square Error (RMSE) was regarded as the measure of
performance for the regression problem. Similarly, the accuracy was regarded as the
measure of performance for the classification problem. Figure 2 also shows that the
proposed method gives a better performance at the same node number.

4.3 Performance Comparison for Regression Problems

We evaluated the performance of different datasets for regression problem with four
algorithms, including ELM, OP-ELM, ELM-L1 and PE-ELMR. In this section,
every experiment was repeated 20 times, and then the average training RMSE and
testing RMSE under different datasets were recorded in Table 3. ‘Tr’ means
training, ‘Te’ means testing and STD is the abbreviation of standard deviation.

As Table 3 shows, both ELM-L1 and PE-ELMR methods perform well in the
training RMSE and are superior to the existing ELM and OP-ELM methods, but for
the testing RMSE, our method achieves the best performance over the others in the
testing RMSE. In addition, the small STD value means the algorithm has the ability
of stability. It is obvious that our method has the least STD among the algorithms
under all the regression datasets except the ‘Sinc’ dataset.

Fig. 2 The performance of regression and classification testing data with different nodes number
in hidden layer. a RMSE of housing testing data versus the nodes number. b Accuracy of diabetes
testing data versus the nodes number

408 B. He et al.

4.4 Performance Comparison for Classification Problems

The proposed learning structure is appropriate for regression problem, but it must
be modified whilst confronting with classification problem, especially
multi-classification problem. As the definition yi = yi1,⋯, yim½ �T ∈ℝm, when m=1,
it can solve the regression and binary classification problems and when m>1, it can
solve the multi-classification problem. Since the multi-classification problem has
multiple outputs, we deal with the number m of the outputs is equal to the classes
C. Then the coefficients βc ∈ℝL, c=1, 2,⋯,C of each class can be calculated and
all the coefficients form a new matrix B= β1, β2,⋯, βC½ �L×C.

It shows that ELM-L1 performs a high testing accuracy nearly as our approach
PE-ELMR in Table 4. However, our method can get the least STD value compared
with other methods. On some datasets, the hidden number of OP-ELM is less than
that of PE-ELMR, but OP-ELM cannot achieve the best performance as our
approach does.

Table 3 Performance comparison for regression problems

Dataset Algorithm Tr_accuracy Te_accuracy STD #Nodes

Sinc ELM 0.1158 0.0081 6.0989 × 10−5 30
OP-ELM 0.1163 0.0126 5.3541 × 10−4 15
ELM-L1 0.0187 0.0079 7.1362 × 10−6 38
PE-ELMR 0.0094 0.0075 8.4324 × 10−5 38

Abalone ELM 2.4533 2.5546 0.0282 25
OP-ELM 2.5882 2.5761 0.0523 20
ELM-L1 2.4153 2.5009 0.0258 23
PE-ELMR 2.4351 2.4924 0.0249 23

Housing ELM 3.8315 3.6471 0.1866 50
OP-ELM 5.2309 4.0759 0.5895 50
ELM-L1 3.7325 3.1339 0.1386 55
PE-ELMR 3.7839 3.0809 0.1147 55

Bodyfat ELM 3.6873 3.7252 0.1203 15
OP-ELM 4.8098 3.8515 0.0454 15
ELM-L1 3.8234 3.6621 0.0245 14
PE-ELMR 3.8232 3.6272 0.0198 14

Redwine ELM 0.6028 0.6851 0.0073 50
OP-ELM 0.6429 0.6953 0.0398 30
ELM-L1 0.6063 0.6680 0.0033 48
PE-ELMR 0.6093 0.6635 0.0032 48

A Pruning Ensemble Model of Extreme Learning Machine … 409

5 Conclusions

In this paper, a pruning ensemble model of ELM with L1 ̸2 regularizer is proposed,
which can handle with over-fitting of the preliminary ELM. Moreover, it can prune
the nodes in the hidden layer and select the suitable number of hidden nodes
automatically. For the section of ELMR, we replace the original solving method of
the output parameter in the preliminary ELM to a minimum squared-error problem
with sparse solution by combining ELM with L1 ̸2 regularizer. For the section of
ensemble model building, we prune the hidden nodes with the ensemble model of
ELM, in order to get the required minimum number for good performance. With
these two stages of our approach, we manage to solve the regression and

Table 4 Performance comparison for classification problems

Dataset Algorithm Tr_accuracy Te_accuracy STD #Nodes

Diabetes ELM 0.8056 0.7646 0.0077 50
OP-ELM 0.7778 0.8021 0.0196 25
ELM-L1 0.8038 0.8021 0.0057 30
PE-ELMR 0.7969 0.8021 0.0046 30

Ionosphere ELM 0.9557 0.8848 0.0337 50
OP-ELM 0.9593 0.9143 0.0181 45
ELM-L1 0.9593 0.9333 0.0064 51
PE-ELMR 0.9715 0.9429 0.0113 51

Iris ELM 0.9900 0.9620 0.0474 50
OP-ELM 0.9800 0.9600 0.0341 30
ELM-L1 0.9700 0.9800 0.0032 21
PE-ELMR 0.9700 0.9800 0.0032 21

Glass ELM 0.7188 0.7438 0.0233 100
OP-ELM 0.9200 0.7656 0.0204 20
ELM-L1 0.9333 0.7813 0.0084 24
PE-ELMR 0.9400 0.7813 0.0083 24

Landsat ELM 0.8186 0.7883 0.0028 100
OP-ELM 0.6489 0.6355 0.0224 85
ELM-L1 0.8169 0.7925 0.0046 80
PE-ELMR 0.8147 0.7945 0.0054 80

Wine ELM 0.9912 0.8981 0.0239 50
OP-ELM 0.8880 0.9245 0.0430 15
ELM-L1 0.9440 0.9811 0.0348 8
PE-ELMR 0.9440 0.9811 0.0215 8

Segment ELM 0.9918 0.7556 0.0438 100
OP-ELM 0.8571 0.7143 0.0205 30
ELM-L1 0.9600 0.8413 0.0056 80
PE-ELMR 0.9660 0.8413 0.0045 80

410 B. He et al.

classification problems at a better performance. We have also shown through
numbers of experiments on the benchmark datasets, that the proposed method is
efficient and performs very well in comparison with other methods.

References

1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.
Neurocomputing 70, 489–501 (2006)

2. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and
multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42, 513–528 (2012)

3. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal
approximators. Neural Netw 2(5), 359–366 (1989)

4. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of
feedforward neural networks. Proc. Int. Joint Conf. Neural Netw. 70, 25–29 (2004)

5. Zhou, Z.H., Chen, S.F.: Neural network ensemble. Chin. J. Comput. 25, 1–8 (2002)
6. Zhou, Z.H., Wu, J.X., Jiang, Y.: Genetic algorithm based selective neural network ensemble.

In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, vol.
2 (2001)

7. Sun, Z.L., Choi, T.M.: Sales forecasting using extreme learning machine with applications in
fashion retailing. Decis. Support Syst. 46, 411–419 (2008)

8. Liu, N., Wang, H.: Ensemble based extreme learning machine. IEEE Trans. Signal Proc. Lett.
17(8), 754–757 (2010)

9. Xue, X., Yao, M., Wu, Z., Yang, J.: Genetic ensemble of extreme learning machine.
Neurocomputing 129, 175–184 (2014)

10. Rong, H.J., Ong, Y.S., Tan, A.H., Zhu, Z.: A fast pruned-extreme learning machine for
classification problem. Neurocomputing 72, 359–366 (2008)

11. Miche, Y., Sorjamaa, A., Bas, P., Simula, O.: OP-ELM: optimally pruned extreme learning
machine. IEEE Trans. Netw. 21, 158–162 (2010)

12. Xu, Z.B., Guo, H.L., Wang, Y., Zhang, H.: Representative of L 1/2 Regularization among L q
(0 < q ≤ 1) regularizations: an experimental study based on phase diagram. Acta Automatica
Sin. 38, 1225–1228 (2012)

13. Zeng, J., Lin, S., Wang, Y., Xu, Z.: L1/2 regularization: convergence of iterative half
thresholding algorithm. IEEE Trans. Signal Proc. 62(9) (2014)

14. Hankeand, M, Hansen, P.C.: Regularization methods for large-scale problem. Surv. Math. Ind.
3 (1993)

15. Argyriou, A., Baldassarre, L., Miccheli, C.A., Pontil, M.: On Sparsity Inducing Regularization
Methods for Machine Learning. Empirical Inference, pp. 205–216. Springer, Berlin (2013)

16. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In:
Selected Papers of Hirotugu Akaike, pp. 199–213. Springer, New York (1998)

17. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser.
B (Methodol) 58(1), 267–288 (1996)

18. Kukreja, S.L., Lofberg, J., Brenner, M.J.: A least absolute shrinkage and selection operator
(LASSO) for nonlinear system identification (2006)

19. Berkin, B., Fan, A.P., Polimeni, J.R.: Fast quantitative susceptibility mapping with L1
regularization and automatic parameter selection. Magn. Reson. Med. 72, 1444–1459 (2014)

20. Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in dual
variables. In: Proceedings of the 15th International Conference on Machine Learning
(ICML-1998). Morgan Kaufmann, Burlington (1998)

21. Koh, K., Kim, S.J., Boyd, S.: l1_ls: Simple Matlab Solver for L1-regularized Least Squares
Problems. Available: http://stanford.edu/∼boyd/l1_ls/

A Pruning Ensemble Model of Extreme Learning Machine … 411

http://stanford.edu/%7eboyd/l1_ls/

Evaluating Confidence Intervals for ELM
Predictions

Anton Akusok, Yoan Miche, Kaj-Mikael Björk, Rui Nian, Paula Lauren
and Amaury Lendasse

Abstract This paper proposes a way of providing more useful and interpretable

results for ELM models by adding confidence intervals to predictions. Unlike a usual

statistical approach with Mean Squared Error (MSE) that evaluates an average per-

formance of an ELM model over the whole dataset, the proposed method computed

particular confidence intervals for each data sample. A confidence for each particu-

lar sample makes ELM predictions more intuitive to interpret, and an ELM model

more applicable in practice under task-specific requirements. The method shows

good results on both toy and a real skin segmentation datasets. On a toy dataset,

the predicted confidence intervals accurately represent a variable magnitude noise.

On a real dataset, classification with a confidence interval improves the precision at

the cost of recall.

Keywords Extreme learning machines ⋅ Confidence ⋅ Confidence interval ⋅
Regression ⋅ Image segmentation ⋅ Skin segmentation ⋅ Classification ⋅
Interpretability ⋅ Big data

A. Akusok (✉) ⋅ A. Lendasse

Department of Mechanical and Industrial Engineering and the Iowa Informatics Initiative,

The University of Iowa, Iowa City, USA

e-mail: anton-akusok@uiowa.edu

A. Lendasse

e-mail: amaury-lendasse@uiowa.edu

Y. Miche

Nokia Solutions and Networks Group, Espoo, Finland

Y. Miche

Aalto University School of Science, 00076 Helsinki, Finland

K.-M. Björk

Arcada University of Applied Sciences, Helsinki, Finland

R. Nian

Ocean University of China, Qingdao, China

P. Lauren

Oakland University, Rochester, USA

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_35

413

414 A. Akusok et al.

1 Introduction

Extreme Learning Machines [1–3] (ELM) are fast [4] and robust [5, 6] methods

of training feed-forward networks, which have the universal approximation prop-

erty [7] and have numerous applications in regression [8–10] and classification [11]

problems. They are an active research topic with numerous extensions and improve-

ments proposed over the last decade.

ELMs are powerful non-linear methods, but they share one common drawback of

non-linear methods in practical applications, which is a non transparency of results

(predictions). A prediction made by a linear model from input data is easily explained

and interpreted by observing the coefficients at input data features. Results which

have an explanation are easier to trust and apply for people outside a Machine Learn-

ing field. Non-linear models lack such transparency, so their results are hard to be

trusted, and thus non-linear methods (including ELM) are sometimes denied despite

a supreme performance compared to linear methods.

This paper proposes a way of providing more useful and interpretable results for

ELM models by adding confidence intervals [12–15] to predictions. Unlike a usual

statistical approach with Mean Squared Error (MSE) [16] that evaluates an average

performance of an ELM model over the whole dataset, the proposed method com-

puted particular confidence intervals for each data sample. These intervals are small

for samples on which a model is accurate, and large for samples where a model is

unstable and inaccurate. A confidence for each particular sample makes ELM pre-

dictions more intuitive to interpret, and an ELM model more applicable in practice

under task-specific requirements to precision and recall of predictions.

The next Sect. 2 introduces the method of input-specific confidence intervals. The

experimental Sect. 3 presents the examples of confidence intervals on artificially

made toy dataset and on a real image segmentation task. In the conclusion, Sect. 4

the method is summarised, and further research directions are discussed.

2 Methodology

Confidence intervals are estimated boundaries of a stochastic output sample for a

given input sample and confidence level, in a regression or classification task. They

provide a measure of confidence for a prediction result of an ELM. This information

is practically important in many ELM applications, and is useful in complex systems

which utilize ELM as their part.

A simple way of estimating confidence interval of ELM predictions is to use Mean

Squared Error (MSE), which is a variance of error between model predictions and

true output values. But this method provides constant confidence intervals for the

whole dataset, while predictive performance of ELM may vary depending on the

input. More useful confidence intervals are defined in the input space, as described

hereafter.

Evaluating Confidence Intervals for ELM Predictions 415

Confidence intervals are estimated from the variance (or standard deviation),

however predictions of a single ELM are deterministic. To obtain stochastic pre-

dictions, this work considers a family of ELM models. Input weights of these ELMs

are randomly sampled, but each model has the same parameters including random

weights distribution, projection function and network structure. As ELM is a very

fast training method, hundreds to millions of ELMs can be trained in a few minutes

(depending on training data and model size), providing adequately precise estimation

of outputs distribution of an ELM model family.

2.1 Confidence Interval for Regression

A data set is a limited set of N samples {𝐱i, 𝐭i}, i ∈ �1,N� which represents an

unknown projection function F ∶ 𝐗 → 𝐓. An ELM approximates that function F by

a smooth function f such as f (𝐱i) = 𝐲i = 𝐭i + 𝜖. The noise 𝜖 comes from an imperfect

approximation of the true projection function, noise in the dataset, and uncertainty

of the dataset itself.

An assumption is made that a model prediction 𝐲i is normally distributed

 (𝜇i, 𝜎
2
i) where 𝜎i = 𝜎(𝐱i) is defined in the input space. The confidence intervals

for an input sample 𝐱i are computed from 𝜎(𝐱i) at the desired confidence level. How-

ever, evaluating 𝜎(𝐱) for arbitrary 𝐱 is complicated because the dataset input samples

do not cover all input space.

In fact, the 𝜎(𝐱) needs to be evaluated only for the given input points, not the

whole input space. These evaluations are obtained using ELM models, which cover

the whole input space (an ELM produces an output for any input sample) and can

evaluate 𝜎(𝐱) for any given input sample directly.

The standard deviation 𝜎(𝐱i) is evaluated by training multiple ELMs with the

same network structure but different randomly sampled hidden layer weights. The

obtained 𝜎(𝐱i) is influenced by a local data outputs distribution and a model struc-

ture 𝜎1(𝐱i) = 𝜎

data(𝐱i) + 𝜎

model(𝐱i). Unfortunately, the model structure influence is

dominant and cannot be removed by training a large number of ELM models, see

Fig. 1.

The following method is proposed to remove model influence 𝜎

model(𝐱i). Each

model in the ELM family is trained again, but with a smaller random subset of

data samples {𝐱j, 𝐭j}, j ∈ �1,M < N�. The model component of 𝜎(𝐱) will be the

same because the ELM models are the same, and the data component will increase

because with less training samples ELMs have worse fit and larger variance of pre-

dictions. The result will be 𝜎2(𝐱i) = (1 + 𝛽)𝜎data(𝐱i) + 𝜎

model(𝐱i) with some posi-

tive 𝛽 > 0 (see Fig. 2). The model-independent estimation is obtained as 𝜎(𝐱i) =
𝜎2(𝐱i) − 𝜎1(𝐱i) = 𝛽𝜎

data(𝐱i) ∝ 𝜎

data(𝐱i) (see Fig. 3).

The scale 𝛼 of an estimate 𝜎(𝐱i) ∝ 𝜎

data(𝐱i) = 𝛼𝜎(𝐱i) = 𝛼[𝜎2(𝐱i) − 𝜎1(𝐱i)] is not

defined. It is obtained using a validation dataset, and a desired confidence level.

For c confidence level, 𝛼 is adjusted such that 1 − c validation samples are outside

416 A. Akusok et al.

Fig. 1 Estimated standard

deviation of data (solid line)

with a family of 10,000 ELM

models, and true standard

deviation of data (dotted
line)

Fig. 2 Estimated standard

deviation of data (solid line)

with a family of 10,000 ELM

models, using 70 % random

training samples

Fig. 3 Estimated standard

deviation of data (solid line)

with a family of 10,000 ELM

models, as a difference

between ELM model family

trained on a full dataset and

the same family trained on

randomly selected 70 %

training data (each)

Evaluating Confidence Intervals for ELM Predictions 417

𝐲i ± 𝛼[𝜎2(𝐱i) − 𝜎1(𝐱i)] interval. The computed 𝛼 is then used for calculating the con-

fidence intervals for test data samples.

2.2 ELM Confidence Intervals Algorithm

An algorithm of confidence intervals method for ELM is presented on Algorithm 1.

Algorithm 1 ELM Confidence Intervals Algorithm

given data sets (𝐗,𝐓)
train

, (𝐗,𝐓)
validation

and 𝐗
test

for all ELM model m in ELM family do
initialize random input weights of m
train m with full training set (𝐗,𝐓)

train

compute 𝐘1,m from m for validation and test sets

train m again on a subset of (𝐗,𝐓)subset

train

compute 𝐘2,m from re-trained m for validation and test sets

end for
compute 𝜎1 from 𝐘validation

1,m ,m ∈ models

compute 𝜎2 from 𝐘validation

2,m ,m ∈ models

compute 𝜎

validation = 𝜎2 − 𝜎1 for validation set

compute 𝛼 scaling coefficient for desired percentage on a validation set

compute test set confidence intervals 𝜎
test = 𝛼(𝜎2 − 𝜎1)

report 𝐘test = 1
|models|

∑
m 𝐘1,m and 𝜎

test

3 Experimental Results

3.1 Artificial Dataset

An artificial dataset (Fig. 4a, b) has one-dimensional input and target data, for the

ease of visualization. The data is a sum of two sine functions. Noise has been added

to data samples, with varying magnitude. Because the noise is added artificially, the

exact 1𝜎 and 2𝜎 confidence boundaries are known, and can be compared with the

estimated boundaries by the proposed method. The method uses 1000 training, 9000

validation and 1000 test samples.

The confidence boundaries are shown on Fig. 5a, b for variable magnitude noise

and Fig. 5c, d for constant magnitude noise. All experiments train 1000 different OP-

ELM models with 25 hidden neurons, which takes between 37 and 40 s on 1.4 GHz

dual-core laptop using a toolbox from [17].

As a performance measure, an integral of absolute difference between two bound-

aries is evaluated, using the test samples. This integral is divided by an integral of

the true boundary.

418 A. Akusok et al.

(a) (b)

Fig. 4 Artificial datasets with added variable and constant magnitude noise. Dots are training

samples, solid line is the true function, and dash lines show 1𝜎 confidence boundaries. a Constant

magnitude noise. b Variable magnitude noise

(a) (b)

(c) (d)

Fig. 5 Boundaries for 1𝜎 and 2𝜎 confidence levels on toy dataset with variable and constant mag-

nitude noise. True shape of noise magnitude is shown by a thin curve ending with stars, ELM-

estimated boundary by a thick curve, and MSE boundary by a dash line. a Variable noise, 1𝜎
boundary. b Variable noise, 2𝜎 boundary. c Constant noise, 1𝜎 boundary. d Constant noise, 2𝜎
boundary

Evaluating Confidence Intervals for ELM Predictions 419

(a) (b)

Fig. 6 Skin color confidence interval map, shown on a color wheel. Small confidence intervals

(black) show high confidence regions—for skin (drawn by red solid circles) and non-skin (drawn

by a blue dashed circle). Large confidence intervals (white) show low confidence for skin/non-skin

classification of that color

𝛿 =
∑

𝐱
test

|𝜎(𝐱) − 𝜎̂(𝐱)|
∑

𝐱
test

𝜎(𝐱)
× 100% (1)

With variable noise, delta of an ELM-estimated boundary is 𝛿
ELM = 9%…11%,

while the delta of MSE boundary is 𝛿

MSE = 50%. For constant noise, 𝛿

ELM =
12%…16% and an MSE provides almost perfect boundary estimation with 𝛿

MSE
<

2%. ELM does not provide a smooth boundary in case of a constant noise, because

while noise is being constant, the data itself is highly varying which is reflected by

an ELM estimation. Also, ELM-estimation is not accurate at the edges of a dataset.

3.2 Skin Color Dataset

Confidence intervals for ELM predictions are tested on a Face/Skin Detection dataset

[18], a useful benchmark [19] Big Data dataset. It includes 4000 photos of people

under various real-world conditions, as well as manually created masks for faces and

skin. The dataset is split into 2000 training and 2000 test images.

Confidence intervals are estimated for a simple task of classifying a pixel into

skin/non-skin, based on its RGB color. 500 random skin and non-skin pixels are

taken from each training image; 500 training set images are used for training and

1500 for validation. All pixels of a single test set image are added as test samples,

for which the classification and confidence intervals are computed. A total of 1000

ELM models are built for confidence interval estimation.

420 A. Akusok et al.

Fig. 7 Skin segmentation by pixel classification with ELM based on their RGB color values, using

a threshold. Top row original image and thresholded skin/non-skin pixels. Middle row thresholded

pixels with predicted values larger than their 68 % confidence intervals. Bottom row thresholded

pixels with predicted values larger than their 95 % confidence intervals. Thresholding with confi-

dence interval improves the precision at a cost of recall

Evaluating Confidence Intervals for ELM Predictions 421

The results are shown on Fig. 7. An original image is split into skin and non-skin

with a good accuracy using a simple threshold, however some parts are misclassi-

fied. Thresholding pixels with more than 68 % confidence (roughly 1𝜎) significantly

reduces the recall, but provides almost perfect precision. Increasing a threshold to

95 % confidence (or 2𝜎) provides perfect precision at a cost of even smaller recall.

Another experiment is performed in a similar setup, but a color wheel image is

used instead of a test picture. The confidence intervals for different colors are shown

on Fig. 6a, b. Confidence intervals are organized according to color values—they

are small for skin colors and clearly non-skin colors, and are large in between these

two. An MSE confidence interval would be constant over all colors in a color wheel,

providing less accurate results.

4 Conclusion

A method for evaluating input-dependent confidence intervals for ELM model is

proposed in the paper. It is based on estimation of a standard deviation of output

(target) noise for a fixed ELM model trained on a different subsets of the training

set. Then the confidence intervals are scaled using a validation set, and evaluated for

the given test input samples. The method can compute confidence intervals even for

a high dimensional inputs, because they are computed for the given test samples and

not for the whole input space (Fig. 7).

The method shows good results on both toy and real datasets. On a toy dataset,

the predicted confidence intervals accurately represent a variable magnitude noise.

On a real dataset, classification with a confidence interval improves the precision at

the cost of recall.

Future work on confidence intervals for ELM will be focused on computing confi-

dence intervals for classification tasks, in a classification-specific way without value

threshold. Other directions are creating more smooth confidence intervals for differ-

ent models, and formulating rules for choosing parameters of the proposed method

that ensure good and stable results in any application scenarios. Targeting Big Data

is also an important future works topic, as the confidence interval estimations will

add more value to ELM ability of handle Big Data.

References

1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of

feedforward neural networks. In: Proceedings of the 2004 IEEE International Joint Conference

on Neural Networks, vol. 2, pp. 985–990, IEEE (2004)

2. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and mul-

ticlass classification. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(2), 513–529 (2012)

3. Huang, G.B.: What are Extreme learning machines? Filling the gap between Frank Rosenblatts

Dream and John von Neumanns Puzzle. Cogn. Comput. 7(3), 263–278 (2015)

422 A. Akusok et al.

4. van Heeswijk, M., Miche, Y., Oja, E., Lendasse, A.: Gpu-accelerated and parallelized ELM

ensembles for large-scale regression. Neurocomputing 74(16), 2430–2437 (2011)

5. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: optimally

pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–162 (2010)

6. Miche, Y., van Heeswijk, M., Bas, P., Simula, O., Lendasse, A.: TROP-ELM: a double-

regularized ELM using LARS and Tikhonov regularization. Neurocomputing 74(16), 2413–

2421 (2011)

7. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neu-

rocomputing 70(1), 489–501 (2006)

8. Yu, Q., Miche, Y., Eirola, E., van Heeswijk, M., Séverin, E., Lendasse, A.: Regularized extreme

learning machine for regression with missing data. Neurocomputing 102, 45–51 (2013)

9. Miche, Y., Bas, P., Jutten, C., Simula, O., Lendasse, A.: A methodology for building regression

models using extreme learning machine: OP-ELM. In: ESANN 2008 Proceedings

10. Cambria, E., et al.: Extreme learning machines. IEEE Intell. Syst. 28(6), 30–59 (2013)

11. Akusok, A., Miche, Y., Karhunen, J., Björk, K.M., Nian, R., Lendasse, A.: Arbitrary category

classification of websites based on image content. IEEE Comput. Intell. Mag. 10(2), 30–41

(2015)

12. Shang, Z., He, J.: Confidence-weighted extreme learning machine for regression problems.

Neurocomputing 148, 544–550 (2015)

13. Lendasse, A., Ji, Y., Reyhani, N., Verleysen, M.: LS-SVM Hyperparameter Selection with

a Nonparametric Noise Estimator. In: Artificial Neural Networks: Formal Models and Their

Applications ICANN 2005. Volume 3697 of Lecture Notes in Computer Science. Springer,

Berlin Heidelberg, pp. 625–630 (2005)

14. Pouzols, F.M., Lendasse, A., Barros, A.B.: Autoregressive time series prediction by means

of fuzzy inference systems using nonparametric residual variance estimation. Fuzzy Sets Sys.

161(4), 471–497 (2010). Theme: Forecasting, Classification, and Learning

15. Guillén, A., Sovilj, D., Lendasse, A., Mateo, F., Rojas, I.: Minimising the delta test for variable

selection in regression problems. Int. J. High Perform. Syst. Archit. 1(4), 269–281 (2008)

16. Bishop, C.M.: Pattern Recognition and Machine Learning. Volume 4 of Information science

and statistics. Springer (2006)

17. Akusok, A., Björk, K.M., Miché, Y., Lendasse, A.: High-performance extreme learning

machines: a complete toolbox for big data applications. IEEE Access 3, 1011–1025 (2015)

18. Phung, S.L., Bouzerdoum, A., Chai D.: Skin segmentation using color pixel classification:

analysis and comparison. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 148–154 (2005)

19. Swaney, C., Akusok, A., Björk, K.M., Miche, Y., Lendasse, A.: Efficient skin segmentation

via neural networks: HP-ELM and BD-SOM. 53, 400–409 (2015)

Real-Time Driver Fatigue Detection Based
on ELM

Hengyu Liu, Tiancheng Zhang, Haibin Xie, Hongbiao Chen
and Fangfang Li

Abstract Driver fatigue is a serious road safety issue that results in thousands of
road crashes every year. Image-based fatigue monitoring is one of the most
important methods of avoiding fatigue-related accidents. In this paper, a
vision-based real-time driver fatigue detection system based on ELM is proposed.
The system has three main stages. The first stage performs facial features local-
ization and tracking, by using the Viola–Jones face detector and the KLT algorithm.
The second stage is the judgement of facial and fatigue status, applying twice ELM
with an extremely fast learning speed. The last one is online learning, which
can continuously improve ELM accuracy according to the user’s feedback. Multiple
facial features (including the movement of eyes, head and mouth) are used to
comprehensively assess the driver vigilance state. In comparison to backpropaga-
tion (BP), the experimental results showed that applying ELM has a better per-
formance with much faster training speed.

Keywords Extreme learning machine (ELM) ⋅ Fatigue detection ⋅ Driver
monitoring system ⋅ Real-time learning

The work is partially supported by the National Narural Science Foundation of China
(No. 61272180, 61202086, 61272179, 61472071) and the Fundamental Research Funds for the
Central Universities (No. N140404013).

H. Liu ⋅ T. Zhang (✉) ⋅ H. Xie ⋅ H. Chen ⋅ F. Li
College of Information Science and Engineering, Northeastern University,
Shenyang 110819, Liaoning, China
e-mail: tczhang@mail.neu.edu.cn

H. Xie
e-mail: l372511387@gmail.com

© Springer International Publishing Switzerland 2016
J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,
Proceedings in Adaptation, Learning and Optimization 7,
DOI 10.1007/978-3-319-28373-9_36

423

1 Introduction

Driver fatigue has become an important factor of resulting in thousands of traffic
accidents. According to the statistical data from the NHTSA, about 100,000 road
accidents involve driver fatigue and cause over 1500 fatalities and 71,000 injuries
each year [1]. Driver fatigue detection system can detect a driver’s level of vigilance
and alert the driver promptly before drowsiness, which is beneficial to prevent
fatigue-related crashes. Therefore, it’s essential to develop a powerful monitoring
system.

The information that is usually used as the basis for existing driver fatigue
detection systems by researchers can be divided into the following types.

• Information on the driver’s physiological status [2–6].
• Information on vehicle performance [7].
• Information on video images of the driver monitoring [8–11].

Driver drowsiness detection systems that identify the driver fatigue through
driver’s physiological signals such as brainwaves can achieve high detection
accuracy. And systems through vehicle performance parameters such as the
movements of the vehicle straying from the lane markers on the roadway can
acquire steady detection accuracy. But they all produce high costs and need bulky
equipment. In contrast with the previous two methods, systems through facial
features including eye movement (e.g., eyelid closures) [8–11], head movement
(e.g., nodding) [12] and mouth movement (e.g., yawning) [13], which can reflect
driver fatigue directly, are high-efficiency and non-intrusive methods. But existing
image-based operator fatigue monitoring systems mainly work by capturing single
facial feature, which reduces system performance in a complex environment.

Extreme learning machine (ELM) has been widely applied in many fields, espe-
cially in image recognition, as ELM has extremely fast learning speed and excellent
generalization performance. Using ELM on image-based fatigue-monitoring systems
can correct the miscalculation of driver’s vigilance state in real time, which could
significantly increase the detection accuracy.

In this paper, ELM is used to infer the driver’s state of vigilance comprehen-
sively from multiple facial features. We propose an ELM-based online learning
algorithm that is adaptable to various situations of different operators, which
achieved a high degree of accuracy and dramatically enhance the training speed.

2 Extreme Learning Machine

ELM is a single-hidden layer feedforward neural networks (SLFNs) learning
algorithm [14]. ELM only need to set the number of hidden nodes of the network,
the algorithm execution process does not need to adjust the input weights and

424 H. Liu et al.

hidden element of bias, and only optimal solution, so it has the advantages of fast
learning speed and good generalization performance.

Suppose we train an ELM with n input neurons, m output neurons, L hidden
neurons and an activation function g(x).

The train data is ðx, yÞ, where

x= x1, x2, x3, x4, . . . , xN½ � and y= y1, y2, y3, y4, . . . , yN½ �

xi = xi1, xi2, xi3, xi4, . . . , xiN½ � and y= yi1, yi2, yi3, yi4, . . . , yiN½ � ð1Þ

The weight vector connecting the input nodes and the ith hidden node is

wi = wi1,wi2,wi3, . . . ,win½ �. ð2Þ

And define w= w1,w2, . . . ,wL½ �T .
The weight vector linking the ith hidden node to the output nodes is

βi = βi1, βi2, βi3, . . . , βin½ �. ð3Þ

The offset of the ith hidden node which is randomly generated is

b= b1, b2, . . . , bn½ �. ð4Þ

The ELM can be mathematically modeled as the matrix equation with forms,
which is

Hβ=Y,where ð5Þ

H w1,w2,w3, . . . ,wL; b1, b2, b3, . . . , bL; x1, x2, x3, . . . , xLð Þ

=

g w1*x1 + b1ð Þ g w2*x1 + b2ð Þ . . . g wL*x1 + bLð Þ
g w1*x2 + b1ð Þ g w2*x2 + b2ð Þ . . . g wL*x2 + bLð Þ

.

g w1*xN + b1ð Þ g w2*xN + b2ð Þ . . . g wL*xN + bLð Þ

2

6
6
6
4

3

7
7
7
5

β= βT1 , β
T
2 , . . . , β

T
L

� �T
M*LandY= YT

1 , Y
T
2 , . . . ,Y

T
L

� �T
M*N . ð6Þ

So we have the model as shown below in Fig. 1.
When we assign random w and b, the smallest norm least squares solution of the

above linear system is

β=H − 1Y , where ð7Þ

H − 1 is the Moore–Penrose generalized inverse of matrix H.
Algorithm 1: ELM training

Real-Time Driver Fatigue Detection Based on ELM 425

1 Determine the number of hidden neurons L, generate the
hidden node parameters w and b randomly;

2 Choose a function g(x) as the activation function which is
infinitely differentiable in any interval;

3 Calculate the hidden layer output matrix H;
4 Calculate the output weight vector β=H − 1Y.

3 Fatigue Detection Based on ELM

3.1 An Overview of Framework

In order to get higher accuracy rate, we present a comprehensive fatigue detection
system that could determine the user’s status by face, mouth and eyes feature, and
could optimize itself according to the user’s feedback by online learning.

Figure 2 shows a general system framework, which can be divided into three
parts:

• Locate and track the face and facial feature.
• Judge the status of eyes, mouth and face by using ELM, and then use ELM

again to determine the fatigue status on the basis of the previous ELM output.
• Adjust ELM itself in real time according to the user’s feedback.

Fig. 1 The model of ELM

426 H. Liu et al.

3.2 Locate and Track the Face and Facial Feature

In order to judge the status of face and facial feature, we need to locate and track
their position. And we adopt the Viola–Jones detector to detect face and facial
features. Viola–Jones detector has three core parts: Haar-like features, Adaboost
classifier and Cascade classifier. To calculate the Haar-like features quickly, it uses
an intermediate representation for the image which is called integral image. What’s
more, it uses Cascade classifier to connect several Adaboost classifiers together
where each of the Adaboost classifiers has outstanding ability in feature selection.
A negative outcome from any classifier will result in an immediate rejection.The
effect is shown in Fig. 3.

Fig. 2 The general framework of the system

Real-Time Driver Fatigue Detection Based on ELM 427

As we need to deal with the video in real time, the time complexity of the
Viola–Jones algorithm is unacceptable. So the Kanade–Lucas–Tomasi (KLT) al-
gorithm is adopted to do most of the feature tracking. We use the Viola–Jones
algorithm to locate the first set of features and then use the KLT algorithm for the
feature tracking.

KLT makes use of spatial intensity information to search the best match positon.
Briefly, good features are located by examining the minimum eigenvalue of each 2
by 2 gradient matrix, and features are tracked using a Newton–Raphson method of
minimizing the difference between the two windows.

3.3 Judgement of Features and Fatigue Status

Compression of the feature vector In order to judge the user’s fatigue status, we
need to further determine the status of face, mouth, and eyes. We treat each pixel in
the picture as an one-dimensional feature in order to determine the status. For these
high dimension features, we use principal component analysis method to reduce
variables to improve process speed.

Principal Component Analysis (PCA), is a statistical procedure that uses an
orthogonal transformation to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables called principal
components.

The main target of PCA is to reduce feature dimension under the principle of
minimum loss. In other words, we use lesser number of variables (600) than
original data (3000) by using linear transformation while guarantee the minimum
data information.

Judging characteristic position state by using ELM* Orthogonal projection
method can be used efficiently in the ELM [15], If HHT is a non-singular matrix,
HT =HT HHTð Þ− 1. According to the ridge regression theory, adding appropriate
regularization term 1

λ to HHT orHTH oblique diagonal will make the final classifier
more stable and have better generalization performance [15]. In large data appli-
cations, we can easily see that L ≪ N. Therefore, the size of HTH is much smaller
than HHT . We can get the following formula:

Fig. 3 The effect of locating and tracking the face and facial feature

428 H. Liu et al.

β=
I
λ
+HTH

� �− 1

HTY ð8Þ

The output function of the ELM will be

fðxÞ=hðxÞβ=hðxÞ I
λ
+HTH

� �− 1

HTY . ð9Þ

As shown in Fig. 4, ELM* performs better than ELM in generalization ability,
accuracy and stability.

Fatigue judgment After the above steps, we are able to get the state of eyes,
mouth and face at any time. However, the fatigue status cannot be judged only by a
certain moment. We need to determine the status in continuous period of time. So
we collect five consecutive frames (including the current frame) to judge the user’s
fatigue status.

The first ELM will generate 6 features (eyes, mouth and face each have 2
features) for each frame. So we have a total of 5 * 6 = 30 dimension features to
judge fatigue status at a certain moment.

3.4 Online Learning

We can fulfill the online learning according to the feedback of users since ELM has
the advantage of high learning speed. As the detection system adopts two layers of
ELM (The first layer is used to determine the status of eyes, mouth and face, the
second uses the output from the first layer to determine the fatigue status), mis-
judgment could be caused by the first layer or the second layer as follows.

Fig. 4 The comparsion of accuracy between ELM* and ELM

Real-Time Driver Fatigue Detection Based on ELM 429

1. The training set of first layer has no relevant data, which results in the identical
output for both true and false data. In this case, we will collect new data for the
user in order to retrain the first layer of ELM. When a new user uses the
detection system, we will ask him/her to help the system collect new training
data in order to achieve higher accuracy.

2. Due to the data in the critical range of true and false state, the detection system
misjudges the fatigue status. For this case, we corrected it by training the second
layer of ELM. When the system misjudges the fatigue state, the user feeds it
back to the system. Then, the detection system records the wrong data and adds
the wrong data into the specified queue. The second layer of ELM will retrain if
misjudgments reach a certain amount or a certain time since the last training.

4 Performance Evaluation

4.1 Experimental Settings

We collected over 4000 volunteers’ images, which were captured by the proposed
detection system using a camera under good illumination conditions. The volun-
teers are Chinese between the ages of 20 and 40. For each image, we use the
Viola/Jones face detector and the KLT Algorithm to extract the face, eyes and
mouth images.

4.2 Evaluation Indexes

The proposed driver fatigue detection system uses ELM twice, which can be
replaced by Back-Propagation Neural Networks. So it’s necessary to use some ob-
jective evaluation indexes to evaluate systems’ capabilities. We use four indexes—
accuracy, precision, recall and training time.

The positive examples are fatigue state and the negative examples are non-fa-
tigue state. Accuracy describes the percentage of true results (both true positives
and true negatives) among the total number of examples examined.

Precision measures the percentage of positive results in diagnostic examples that
are true positive. Recall represents the proportion of the positive examples that are
correctly identified as fatigue state. Training time denotes the required time of the
training classifier. Table 1 shows the relevant formulas to compute these indexes.

430 H. Liu et al.

The meaning of parameters in the above table are:

(1) TP: The number of correctly identified images which have positive examples.
(2) TN: The number of correctly identified images which have negative examples.
(3) FP: The number of inaccurately classified images that have negative examples.
(4) FN: The number of inaccurately classified images which have positive

examples.

When other parameters are at the same level, the less training time the more
efficient it is.

4.3 Parameters Optimization

In the experiments, the authors apply ELM and BP separately as the detector of
driver fatigue detection system so as to compare their capabilities. But first we need
to determine and optimize the parameters that ELM and BP used, including the
number of hidden neurons L and the regularization coefficient λ. We randomly se-
lected 70 % of the data as the training set, and the remainder are regarded as the test
set. The training set and test set were both used in the process of determining and
optimizing the parameters.

The process of determining and optimizing the number of hidden nodes L and
the regularization coefficient λ has the following two steps. First, we obtain a
variety of L at a fixed interval values within a certain scope and do the same thing
for the regularization coefficient λ, so we have multiple combinations (L, λ).
Then we train and test by ELM using different combinations (L, λ), obtain the ac-
curacies by every combination (L, λ) within the training set and the test set, and do
the same thing to find the optimized parameters of BP. The above result is shown in
Fig. 5.

As Fig. 5a shows, the optimal detection performance of ELM emerged
when L = 290 and λ = 1. And as Fig. 5b shows, the optimal detection performance
of BP emerged when L = 300 and λ = 5. Therefore, these optimized parameters will
be used in the following steps of the experiment.

Table 1 Evaluation indexes Indexes Formulas

Accuracy (TP + TN)/(TP + TN + FP + FN)
Recall TP/(TP + FN)
Precision TP/(TP + FP)
Training The required time of training classifier

Real-Time Driver Fatigue Detection Based on ELM 431

4.4 Experimental Results

The results of facial feature state judgment After we made a comparison
of performance between ELM and BP using the same sets of different train data
sizes, we got the results as shown below. The degree of accuracy, precision, recall
and training time of ELM and BP were compared independently. For each evalu-
ation index, the facial features (eyes, face and mouth) were compared
independently.

As shown above, most evaluation indexes of BP go near to ELM’s (including
accuracy, precision and recall) as shown in Figs. 6, 7 and 8, which both perform
well. But it is obvious that the training time of ELM is significantly less than that of
BP as shown in Fig. 9, which means ELM has better abilities than BP.

Fig. 5 Parameters determination (a) ELM and (b) BP

Fig. 6 The accuracy of each facial feature

Fig. 7 The precision of each facial feature

432 H. Liu et al.

The results of comprehensive fatigue judgment As Fig. 10 shows, ELM and BP
are both able to detect the fatigue state accurately, but the training speed of ELM is
much better than BP, which enable ELM to study real-time driver’s feedback online
so as to optimize the system in time for higher adaptability.

Fig. 8 The recall of each facial feature

Fig. 9 The training time of each facial feature

Fig. 10 Performance of ELM and BP

Real-Time Driver Fatigue Detection Based on ELM 433

5 Conclusions

This paper presents a driver fatigue detection system based on extreme learning
machine. The system adopts the Viola/Jones face detector and the KLT Algo-
rithm to detect and track the images of the driver’s face, eyes and mouth. Then we
use ELM to extract the fatigue features from those images. Finally, ELM is used
again to judge the driver’s level of vigilance based on the features.

The results of the experiments showed that this system is more accurate in
fatigue detection and more adaptable in a complex environment compared with
other existing systems as it synthesizes multiple facial features. Meanwhile, this
system apply ELM twice with an extremely learning speed to studying in an online
fashion through optimizing the parameters continuously from the driver’s feedback,
which enables the system to fulfill the job in real time.

In the future work we will synthesize more elements to improve fatigue detection
accuracy, such as the driver physiological data and vehicle performance parameters.

References

1. Ji, Q., Zhu, Z., Lan, P.: Real-time nonintrusive monitoring and prediction of driver fatigue.
Veh. Technol. IEEE Trans. 53(4), 1052–1068 (2004)

2. Jap, B.T., Lal, S., Fischer, P., Bekiaris, E.: Using EEG spectral components to assess
algorithms for detecting fatigue. Expert Syst. Appl. 36(2), 2352–2359 (2009)

3. Lal, S.K., Craig, A., Boord, P., Kirkup, L., Nguyen, H.: Development of an algorithm for an
EEG-based driver fatigue countermeasure. J. Saf. Res. 34(3), 321–328 (2003)

4. Kar, S., Bhagat, M., Routray, A.: EEG signal analysis for the assessment and quantification of
driver’s fatigue. Transp. Res. Part F Traffic Psychol. Behav. 13(5), 297–306 (2010)

5. Chang, B.C., Lim, J.E., Kim, H.J., Seo, B.H.: A study of classification of the level of
sleepiness for the drowsy driving prevention. In: Annual Conference on SICE, 2007. IEEE,
NJ, pp. 3084–3089

6. Redmond, S., Heneghan, C.: Electrocardiogram-based automatic sleep staging in sleep
disordered breathing. In: Computers in Cardiology, 2003. IEEE, NJ, pp. 609–612

7. Dong, Y., Hu, Z., Uchimura, K., Murayama, N.: Driver inattention monitoring system for
intelligent vehicles: a review. Intell. Transp. Syst. IEEE Trans. 12(2), 596–614 (2011)

8. Horng, W.B., Chen, C.Y., Chang, Y., Fan, C.H.: Driver fatigue detection based on eye
tracking and dynamk, template matching. In: IEEE International Conference on Networking,
Sensing and Control 2004, vol 1. IEEE, NJ, pp. 7–12

9. Dong, W., Wu, X.: Fatigue detection based on the distance of eyelid. In: Proceedings of 2005
IEEE International Workshop on VLSI Design and Video Technology. IEEE, NJ, pp. 365–368

10. Devi, M.S., Bajaj, P.R.: Driver fatigue detection based on eye tracking. In: ICETET’08. First
International Conference on Emerging Trends in Engineering and Technology, 2008. IEEE,
NJ, pp. 649–652

11. Zhang, Z., Zhang, J.S.: Driver fatigue detection based intelligent vehicle control. In: ICPR
2006. 18th International Conference on Pattern Recognition, 2006, vol 2. IEEE, NJ,
pp. 1262–1265

12. Popieul, J.C., Simon, P., Loslever, P.: Using driver’s head movements evolution as a
drowsiness indicator. In: Proceedings of IEEE Conference on Intelligent Vehicles Symposium,
2003. IEEE, NJ, pp. 616–621

434 H. Liu et al.

13. Saradadevi, M., Bajaj, P.: Driver fatigue detection using mouth and yawning analysis. Int.
J. Comput. Sci. Netw. Secur. 8(6), 183–188 (2008)

14. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.
Neurocomputing 70(1), 489–501 (2006)

15. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and
multiclass classification. Syst. Man Cybern. Part B Cybern. IEEE Trans. 42(2), 513–529
(2012)

Real-Time Driver Fatigue Detection Based on ELM 435

A High Speed Multi-label Classifier Based
on Extreme Learning Machines

Meng Joo Er, Rajasekar Venkatesan and Ning Wang

Abstract In this paper a high speed neural network classifier based on extreme
learning machines for multi-label classification problem is proposed and discussed.
Multi-label classification is a superset of traditional binary and multi-class classi-
fication problems. The proposed work extends the extreme learning machine
technique to adapt to the multi-label problems. As opposed to the single-label
problem, both the number of labels the sample belongs to, and each of those target
labels are to be identified for multi-label classification resulting in increased com-
plexity. The proposed high speed multi-label classifier is applied to six benchmark
datasets comprising of different application areas such as multimedia, text and
biology. The training time and testing time of the classifier are compared with those
of the state-of-the-arts methods. Experimental studies show that for all the six
datasets, our proposed technique have faster execution speed and better perfor-
mance, thereby outperforming all the existing multi-label classification methods.

Keywords Classification ⋅ Extreme learningmachine ⋅ High-speed ⋅ Multi-label

1 Introduction

In recent years, the problem of multi-label classification is gaining much impor-
tance motivated by increasing application areas such as text categorization [1–5],
marketing, music categorization, emotion, genomics, medical diagnosis [6], image

International Conference on Extreme Learning Machines, 2015.

M.J. Er ⋅ R. Venkatesan (✉)
Nanyang Technological University, Nanyang, Singapore
e-mail: raja0046@e.ntu.edu.sg

M.J. Er ⋅ N. Wang
Dalian Maritime University, Dalian, China

© Springer International Publishing Switzerland 2016
J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,
Proceedings in Adaptation, Learning and Optimization 7,
DOI 10.1007/978-3-319-28373-9_37

437

and video categorization, etc. Recent realization of the omnipresence of multi-label
prediction tasks in real world problems has drawn increased research attention [7].

Classification in machine learning is defined as “Given a set of training examples
composed of pairs {xi, yi}, find a function f(x) that maps each attribute vector xi to
its associated class yi, i = 1, 2,…, n, where n is the total number of training samples”
[8]. These classification problems are called single-label classification. Single-label
classification problems involve mapping each of the input vectors to its unique
target class from a pool of target classes. However, there are several classification
problems in which the target classes are not mutually exclusive and the input
samples belong to more than one target class. These problems cannot be classified
using single-label classification thus resulting in the development of several
multi-label classifiers to mitigate this limitation. By the recent advancements in
technology, the application areas of multi-label classifiers spread across various
domains such as text categorization, bioinformatics [9, 10], medical diagnosis,
scene classification [11, 12], map labeling [13], multimedia, biology, music cate-
gorization, genomics, emotion, image and video categorization and so on. Several
classifiers are developed to address the multi-label problem and are available in the
literature. Multi-label problems are more difficult and more complex compared to
single-label problems due to its generality [14]. In this paper, we propose a
high-speed multi-label classifier based on extreme learning machines (ELM). The
proposed ELM-based approach outperforms all existing multi-label classifiers with
respect to training time and testing time and other performance metrics.

The rest of the paper is organized as follows. A brief overview of different types of
multi-label classifiers available in the literature is discussed in Sect. 2. Section 3
describes the proposed approach for multi-label problems. Different benchmark met-
rics formulti-label datasets and experimentation specifications are discussed in Sect. 4.
In Sect. 5, a comparative study of the proposed method with existing methods and
related discussions are carried out. Finally, concluding remarks are given in Sect. 6.

2 Multi-label Classifier

The definition for multi-label learning as given by [15] is; “Given a training set,
S = (xi, yi), 1≤ i≤ n, consisting of n training instances, (xi ϵX, yi ϵY) drawn from an
unknown distribution D, the goal of multi-label learning is to produce a multi-label
classifier h:X→Y that optimizes some specific evaluation function or loss function”.

Let pi be the probability that the input sample is assigned to ith class from a pool
of M target classes. For single-label classification such as binary and multi-class
classification the following equality condition holds true.

∑ pi =1 ð1Þ

This equality does not hold for multi-label problems as each sample may have
more than one target class. Also, it can be seen that the binary classification

438 M.J. Er et al.

problems, the multi-class problems and ordinal regression problems are specific
instances of the multi-label problems with the number of labels corresponding to
each data sample restricted to 1 [16].

The multi-label learning problem can be summarized as follows:

– There exists an input space that contains tuples (features or attributes) of size
D of different data types such as Boolean, discrete or continuous. xi ϵ X,
xi = (xi1, xi2,…xiD).

– A label space of tuple size M exists which is given as, L = {ζ1, ζ2,…, ζM}.
– Each data sample is given as a pair of tuples (input space and label space

respectively). {(xi, yi) | xi ϵ X, yi ϵ Y, Y ⊆ L, 1 ≤ i ≤ N} where N is the number
of training samples.

– A training model that maps the input tuple to the output tuple with high speed,
high accuracy and less complexity.

Several approaches for solving multi-label problem are available in the literature.
Earlier categorization of the multi-label (ML) methods [17] classify the methods
into two categories, namely, Problem Transformation (PT) and Algorithm Adap-
tation (AA) methods. This categorization is extended to include a third category of
methods by Gjorgji Madjarov et al. [18] called Ensemble methods (EN). Several
review articles are available in the literature that describe various methods available
for multi-label classification [7, 8, 15, 17, 18]. As adapted from [18], an overview
of multi-label methods available in the literature is given in Fig. 1.

Based on the machine learning algorithm used, the multi-label techniques can be
categorized as shown in Fig. 2, adapted from [18]. This paper proposes a high speed
multi-label learning technique based on ELM, which outperforms all the existing
techniques based on speed and performance.

Multi-label
Learning

Algorithm
Adaptation
Methods

Multi label-C4.5 (ML-C4.5)
Predictive Clustering Trees (PCT)

ML-k Nearest Neighbour
(ML-kNN)

Problem
Transformation

Methods

Binary
Relevance

Binary Relevance (BR)
Classifier Chaining (CC)

Pair-wise Calibrated Label Ranking (CLR)
Q-Weighted ML (QWML)

Label Powerset Heirarchy of Multilabel learners
(HOMER)

Ensemble Methods

Random k label sets (RAkEL)
Ensemble Classifier Chains (ECC)
Random Forest - Decision Trees

(RDT)
Random Forest -PCT (RF-PCT)

Fig. 1 Classification of multi-label methods

A High Speed Multi-label Classifier Based on Extreme Learning … 439

3 Proposed Approach

The extreme learning machine is a learning technique that operates on a single-layer
feedforward neural network. The key advantage of the ELM over the traditional
backpropagation (BP) neural network is that it has the smallest number of
parameters to be adjusted and it can be trained with very high speed. The traditional
BP network needs to be initialized and several parameters tuned and improper
selection of which can result in local optima. On the other hand, in ELM, the initial
weights and the hidden layer bias can be selected at random and the network can be
trained for the output weights in order to perform the classification [19–22]. The
key steps in extending the ELM to multi-label problems is in the pre-processing and
post-processing of data. In multi-label problems, each input sample may belong to
one or more samples. The number of labels an input sample belongs to is not
previously known. Therefore, both the number of labels and the target labels are to
be identified for the test input samples and also the degree of multi-labelness varies
among different datasets. This results in increased complexity of the multi-label
problem resulting in much longer training and testing time of the multi-label
classification technique. The proposed algorithm exploits the inherent high speed
nature of the ELM resulting in both high speed and superior performance compared
with the existing multi-label classification techniques.

Consider N training samples of the form {(xi, yi)} where xi in the input denoted
as xi = [xi1, xi2,…, xin]

T ϵ Rn and yi is the target label set, yi = [yi1, yi2,…yim]
T. As

opposed to traditional single-label case, the target label is not a single label but is a
subset of labels from the label space given as Y ⊆ L, L = {ζ1, ζ2,…., ζM}. Let N be
the number of hidden layer neurons, the output ‘o’ of the SLFN is given by

∑
N

i=1
βigi xj

� �

= ∑
N

i=1
βig wi.xj + bi

� �

= oj ð2Þ

where, βi = [βi1,βi2,…βim]T is the output weight, g(x) is the activation function,
wi = [wi1,wi2,…win]T is the input weight and bi is the hidden layer bias.

Machine Learning
Algorithms for Multi-label

Classification

SVM

BR, CC, CLR,
ECC, QWML,

HOMER, RAkEL

Decision Trees

ML-C4.5,
RFML-C4.5,
PCT, RF-PCT

Nearest
Neighbours

ML-kNN

Fig. 2 Machine learning
algorithms for multi-label
problems

440 M.J. Er et al.

For the ELM, the input weights wi and the hidden layer bias bi are randomly
assigned. Therefore, the network must be trained for βi such that the output of the
network is equal to the target class so that the error difference between the actual
output and the predicted output is 0.

∑
N

j=1
oj − yj

�
�

�
�=0 ð3Þ

Thus, the ELM classifier output can be as follows:

∑
N

i=1
βig wi.xj + bi

� �

= yj ð4Þ

The above equation can be written in following matrix form:

Hβ=Y ð5Þ

The output weights of the ELM network can be estimated using the equation

β=H+Y ð6aÞ

where H+ is the Moore-Penrose inverse of the hidden layer output matrix H and it
can be calculated as follows:

H+ = HTH
� �− 1

HT ð6bÞ

The theory and mathematics behind the ELM have been extensively discussed in
[23–25] and hence are not re-stated here. The steps involved in multi-label ELM
classifier are given below.

Initialization of Parameters. Fundamental parameters such as the number of
hidden layer neurons and the activation function are initialized.

Processing of Inputs. In the multi-label case, each input sample can be associated
with more than one class labels. Hence, each of the input samples will have the
associated output label as a m-tuple with 0 or 1 representing the belongingness to
each of the labels in the label space L. The label set denoting the belongingness for
each of the labels is converted from unipolar representation to bipolar representation.

ELMTraining. The processed input is then supplied to the basic batch learningELM.
LetHbe the hidden layer outputmatrix,βbe the outputweights andYbe the target label,
the ELM can be represented in a compact form asHβ=Ywhere Y⊆L, L= {ζ1, ζ2,….,
ζM}. In the training phase, the input weights and the hidden layer bias are randomly
assigned and the output weights β are estimated as β = H+Y, where H+ = (HT H)−1HT

gives the Moore-Penrose generalized inverse of the hidden layer output matrix.
ELM Testing. In the testing phase, the test data sample is evaluated using the

values of β obtained during the training phase. The network then predicts the target

A High Speed Multi-label Classifier Based on Extreme Learning … 441

output using the equation Y = Hβ. The predicted output Y obtained is a set of real
numbers of dimension equal to the number of labels.

Post-processing and Multi-label Identification. The key challenge in multi-label
classification is that the input sample may belong to one or more than one of the
target labels. The number of labels that the sample corresponds to is completely
unknown. Hence, a thresholding-based label association is proposed. The L
dimensioned raw-predicted output is compared with a threshold value. The index
values of the predicted output Y which are greater than the threshold fixed repre-
sents the belongingness of the input sample to the corresponding class.

Setting the threshold value is of critical importance. Threshold setting has to be
made in such a way that it maximizes the difference between the values of the label
the data belongs to and the labels the data does not. The distribution of the raw
output values is categorized into a range of values that represent the belongingness
of the label and the range of values that represent the non-belongingness of the label
to a particular sample. From the distribution, a particular value is chosen that
maximizes the separation between the two categories of the labels. It is to be
highlighted that there are no ELM-based multi-label classifier in the literature thus
far. The proposed method is the first to adapt the ELM for multi-label problems and
make extensive experimentation and results comparison and analysis with the
state-of-the-arts multi-label classification techniques.

4 Experimentation

This section describes the different multi-label dataset metrics and gives the
experimental design used to evaluate the proposed method. Multi-label datasets
have a unique property called the degree of multi-labelness. The number of labels,
the number of samples having multiple labels, the average number of labels cor-
responding to a particular sample varies among different datasets. Two dataset
metrics are available in the literature to quantitatively measure the multi-labelness
of a dataset. They are Label Cardinality (LC) and Label Density (LD). Consider
there are N training samples and the dataset is of the form {(xi, yi)} where xi in the
input data and yi is the target label set. The target label set is a subset of labels from
the label space with M elements given as Y ⊆ L, L = {ζ1, ζ2… ζM}.

Definition 4.1 Label Cardinality of the dataset is the average number of labels of
the examples in the dataset [17].

Label−Cardinality=
1
N

∑
N

i=1
Yij j ð7Þ

Label Cardinality signifies the average number of labels present in the dataset.

442 M.J. Er et al.

Definition 4.2 Label Density of the dataset is the average number of labels of the
examples in the dataset divided by |L| [17].

Label−Density=
1
N

∑
N

i=1

Yij j
Lj j ð8Þ

Label density takes into consideration the number of labels present in the dataset.
The properties of two datasets have same label cardinality, but different label
density can vary significantly and may result in different behavior of the training
algorithm [14]. The influence of label density and label cardinality on multi-label
learning is analyzed by Bernardini et al. [26] in 2013. The proposed method is
experimented with six benchmark datasets comprising of different application areas
and its results are compared with 9 existing state-of-the-art methods. The datasets
are chosen in such a way that they exhibit diverse nature of characteristics and the
wide range of label density and label cardinality. The datasets are obtained from
KEEL multi-label dataset repository and the specifications of the dataset are given
in Table 1. The details of state-of-the-arts multi-label techniques used for result
comparison are given in Table 2.

Table 1 Dataset specifications

Dataset Domain No. of features No. of samples No. of labels LC LD

Emotion Multimedia 72 593 6 1.87 0.312
Yeast Biology 103 2417 14 4.24 0.303
Scene Multimedia 294 2407 6 1.07 0.178
Corel5 k Multimedia 499 5000 374 3.52 0.009
Enron Text 1001 1702 53 3.38 0.064
Medical Text 1449 978 45 1.25 0.027

Table 2 Methods used for comparison

Method name Method category Machine learning category

Classifier chain (CC) PT SVM

QWeighted approach for multi-label learning (QWML) PT SVM

Hierarchy of multi-label classifiers (HOMER) PT SVM

Multi-label C4.5 (ML-C4.5) AA Decision trees

Predictive clustering trees (PCT) AA Decision trees

Multi-label k-nearest neighbors (ML-kNN) AA Nearest neighbors

Ensemble of classifier chains (ECC) EN SVM

Random forest predictive clustering trees (RF-PCT) EN Decision trees

Random Forest of ML-C4.5 (RFML-C4.5) EN Decision trees

A High Speed Multi-label Classifier Based on Extreme Learning … 443

5 Results and Discussions

This section discusses the results obtained by the proposed method and compares it
with the existing methods. The results obtained from the proposed method are
evaluated for consistency, performance and speed.

5.1 Consistency

Consistency is a key feature that is essential for any new technique proposed. The
proposed algorithm should provide consistent results with minimal variance. Being
an ELM based algorithm, since the initial weights are assigned in random, it is
critical to evaluate the consistency of the proposed technique. The unique feature of
multi-label classification is the possibility of partial correctness of the classifier, i.e.
one or more of the multiple labels to which the sample instance belongs and/or the
number of labels the sample instance belongs can be identified partially correctly.
Therefore, calculating the error rate for multi-label problems is not same as that of
traditional binary or multi-class problems. In order to quantitatively measure the
correctness of the classifier, the hamming loss performance metric is used. To
evaluate the consistency of the proposed method, a 5 fold and a 10 fold cross
validation of hamming loss metric is evaluated for each of the six datasets and is
tabulated.

From the Table 3, it can be seen that the proposed technique is consistent in its
performance over repeated executions and cross validations thus demonstrating the
consistency of the technique.

5.2 Performance Metrics

As foreshadowed, the unique feature of multi-label classification is the possibility
of partial correctness of the classifier. Therefore, a set of quantitative performance
evaluation metrics is used to validate the performance of the multi-label classifier.
The performance metrics are hamming loss, accuracy, precision, recall and

Table 3 Consistency table—
cross validation

Dataset Hamming loss—5-fcv Hamming loss—10-fcv

Emotion 0.2492(±0.0058) 0.2509(±0.0050)
Yeast 0.1906(±0.0025) 0.1911(±0.0031)
Scene 0.0854(±0.0029) 0.0851(±0.0033)
Corel5 k 0.0086(±0.0005) 0.0090(±0.0006)
Enron 0.0474(±0.0022) 0.0472(±0.0015)
Medical 0.0108(±0.0008) 0.0109(±0.0009)

444 M.J. Er et al.

T
ab

le
4

H
am

m
in
g
lo
ss

co
m
pa
ri
so
n

D
at
as
et

C
C

Q
W
M
L

H
O
M
E
R

M
L
-C
4.
5

PC
T

M
L
-k
N
N

E
C
C

R
FM

L
-C
4.
5

R
F-
PC

T
E
L
M

E
m
ot
io
n

0.
25

6
0.
25

4
0.
36

1
0.
24

7
0.
26

7
0.
29

4
0.
28

1
0.
19

8
0.
18

9
0.
25

1
Y
ea
st

0.
19

3
0.
19

1
0.
20

7
0.
23

4
0.
21

9
0.
19

8
0.
20

7
0.
20

5
0.
19

7
0.
19

1
Sc
en
e

0.
08

2
0.
08

1
0.
08

2
0.
14

1
0.
12

9
0.
09

9
0.
08

5
0.
11

6
0.
09

4
0.
08

5
C
or
el
5
k

0.
01

7
0.
01

2
0.
01

2
0.
01

0.
00

9
0.
00

9
0.
00

9
0.
00

9
0.
00

9
0.
00

9
E
nr
on

0.
06

4
0.
04

8
0.
05

1
0.
05

3
0.
05

8
0.
05

1
0.
04

9
0.
04

7
0.
04

6
0.
04

7
M
ed
ic
al

0.
07

7
0.
01

2
0.
01

2
0.
01

3
0.
02

3
0.
01

7
0.
01

4
0.
02

2
0.
01

4
0.
01

1
B
ol
d
va
lu
e
de
no

te
s
th
e
pe
rf
or
m
an
ce

of
pr
op

os
ed

m
et
ho

d

A High Speed Multi-label Classifier Based on Extreme Learning … 445

T
ab

le
5

A
cc
ur
ac
y
co
m
pa
ri
so
n

D
at
as
et

C
C

Q
W
M
L

H
O
M
E
R

M
L
-C
4.
5

PC
T

M
L
-k
N
N

E
C
C

R
FM

L
-C
4.
5

R
F-
PC

T
E
L
M

E
m
ot
io
n

0.
35

6
0.
37

3
0.
47

1
0.
53

6
0.
44

8
0.
31

9
0.
43

2
0.
48

8
0.
51

9
0.
41

2
Y
ea
st

0.
52

7
0.
52

3
0.
55

9
0.
48

0.
44

0.
49

2
0.
54

6
0.
45

3
0.
47

8
0.
51

4
Sc
en
e

0.
72

3
0.
68

3
0.
71

7
0.
56

9
0.
53

8
0.
62

9
0.
73

5
0.
38

8
0.
54

1
0.
67

6
C
or
el
5
k

0.
03

0.
19

5
0.
17

9
0.
00

2
0

0.
01

4
0.
00

1
0.
00

5
0.
00

9
0.
04

4
E
nr
on

0.
33

4
0.
38

8
0.
47

8
0.
41

8
0.
19

6
0.
31

9
0.
46

2
0.
37

4
0.
41

6
0.
41

8
M
ed
ic
al

0.
21

1
0.
65

8
0.
71

3
0.
73

0.
22

8
0.
52

8
0.
61

1
0.
25

0.
59

1
0.
71

5
B
ol
d
va
lu
e
de
no

te
s
th
e
pe
rf
or
m
an
ce

of
pr
op

os
ed

m
et
ho

d

446 M.J. Er et al.

T
ab

le
6

Pr
ec
is
io
n
co
m
pa
ri
so
n

D
at
as
et

C
C

Q
W
M
L

H
O
M
E
R

M
L
-C
4.
5

PC
T

M
L
-k
N
N

E
C
C

R
FM

L
-C
4.
5

R
F-
PC

T
E
L
M

E
m
ot
io
n

0.
55

1
0.
54

8
0.
50

9
0.
60

6
0.
57

7
0.
50

2
0.
58

0.
62

5
0.
64

4
0.
54

8
Y
ea
st

0.
72

7
0.
71

8
0.
66

3
0.
62

0.
70

5
0.
73

2
0.
66

7
0.
73

8
0.
74

4
0.
71

8
Sc
en
e

0.
75

8
0.
71

1
0.
74

6
0.
59

2
0.
56

5
0.
66

1
0.
77

0.
40

3
0.
56

5
0.
68

5
C
or
el
5
k

0.
04

2
0.
32

6
0.
31

7
0.
00

5
0

0.
03

5
0.
00

2
0.
01

8
0.
03

0.
14

4
E
nr
on

0.
46

4
0.
62

4
0.
61

6
0.
62

3
0.
41

5
0.
58

7
0.
65

2
0.
69

0.
70

9
0.
66

8
M
ed
ic
al

0.
21

7
0.
69

7
0.
76

2
0.
79

7
0.
28

5
0.
57

5
0.
66

2
0.
28

4
0.
63

5
0.
77

4
B
ol
d
va
lu
e
de
no

te
s
th
e
pe
rf
or
m
an
ce

of
pr
op

os
ed

m
et
ho

d

A High Speed Multi-label Classifier Based on Extreme Learning … 447

T
ab

le
7

R
ec
al
l
co
m
pa
ri
so
n

D
at
as
et

C
C

Q
W
M
L

H
O
M
E
R

M
L
-C
4.
5

PC
T

M
L
-k
N
N

E
C
C

R
FM

L
-C
4.
5

R
F-
PC

T
E
L
M

E
m
ot
io
n

0.
39

7
0.
42

9
0.
77

5
0.
70

3
0.
53

4
0.
37

7
0.
53

3
0.
54

5
0.
58

2
0.
49

1
Y
ea
st

0.
6

0.
6

0.
71

4
0.
60

8
0.
49

0.
54

9
0.
67

3
0.
49

1
0.
52

3
0.
60

8
Sc
en
e

0.
72

6
0.
70

9
0.
74

4
0.
58

2
0.
53

9
0.
65

5
0.
77

1
0.
38

8
0.
54

1
0.
70

9
C
or
el
5
k

0.
05

6
0.
26

4
0.
25

0.
00

2
0

0.
01

4
0.
00

1
0.
00

5
0.
00

9
0.
04

3
E
nr
on

0.
50

7
0.
45

3
0.
61

0.
48

7
0.
22

9
0.
35

8
0.
56

0.
39

8
0.
45

2
0.
50

8
M
ed
ic
al

0.
75

4
0.
80

1
0.
76

0.
74

0.
22

7
0.
54

7
0.
64

2
0.
25

1
0.
59

9
0.
74

4
B
ol
d
va
lu
e
de
no

te
s
th
e
pe
rf
or
m
an
ce

of
pr
op

os
ed

m
et
ho

d

448 M.J. Er et al.

T
ab

le
8

F1
m
ea
su
re

co
m
pa
ri
so
n

D
at
as
et

C
C

Q
W
M
L

H
O
M
E
R

M
L
-C
4.
5

PC
T

M
L
-k
N
N

E
C
C

R
FM

L
-C
4.
5

R
F-
PC

T
E
L
M

E
m
ot
io
n

0.
46

1
0.
48

1
0.
61

4
0.
65

1
0.
55

4
0.
43

1
0.
55

6
0.
58

3
0.
61

1
0.
51

8
Y
ea
st

0.
65

7
0.
65

4
0.
68

7
0.
61

4
0.
57

8
0.
62

8
0.
67

0.
58

9
0.
61

4
0.
65

8
Sc
en
e

0.
74

2
0.
71

0.
74

5
0.
58

7
0.
55

1
0.
65

8
0.
77

1
0.
39

5
0.
55

3
0.
69

7
C
or
el
5
k

0.
04

8
0.
29

2
0.
28

0.
00

3
0

0.
02

1
0.
00

1
0.
00

8
0.
01

4
0.
03

3
E
nr
on

0.
48

4
0.
52

5
0.
61

3
0.
54

6
0.
29

5
0.
44

5
0.
60

2
0.
50

5
0.
55

2
0.
57

7
M
ed
ic
al

0.
33

7
0.
74

5
0.
76

1
0.
76

8
0.
25

3
0.
56

0.
65

2
0.
26

7
0.
61

6
0.
75

9
B
ol
d
va
lu
e
de
no

te
s
th
e
pe
rf
or
m
an
ce

of
pr
op

os
ed

m
et
ho

d

A High Speed Multi-label Classifier Based on Extreme Learning … 449

T
ab

le
9

C
om

pa
ri
so
n
of

tr
ai
ni
ng

tim
e
(i
n
se
co
nd

s)

D
at
as
et

C
C

Q
W
M
L

H
O
M
E
R

M
L
-C
4.
5

PC
T

M
L
-k
N
N

E
C
C

R
FM

L
-C
4.
5

R
F-
PC

T
E
L
M

E
m
ot
io
n

6
10

4
0.
3

0.
1

0.
4

4.
9

1.
2

2.
9

0.
04

Y
ea
st

20
6

67
2

10
1

14
1.
5

8.
2

49
7

19
25

0.
2

Sc
en
e

99
19

5
68

8
2

14
31

9
10

23
0.
12

C
or
el
5
k

12
25

23
88

77
1

36
9

30
38

9
10

,0
73

38
5

90
2

0.
6

E
nr
on

44
0

97
1

15
8

15
1.
1

6
14

67
25

47
0.
26

M
ed
ic
al

28
40

16
3

0.
6

1
10

3
7

27
0.
11

B
ol
d
va
lu
e
de
no

te
s
th
e
pe
rf
or
m
an
ce

of
pr
op

os
ed

m
et
ho

d

450 M.J. Er et al.

T
ab

le
10

C
om

pa
ri
so
n
of

te
st
in
g
tim

e
(i
n
se
co
nd

s)

D
at
as
et

C
C

Q
W
M
L

H
O
M
E
R

M
L
-C
4.
5

PC
T

M
L
-k
N
N

E
C
C

R
FM

L
-C
4.
5

R
F-
PC

T
E
L
M

E
m
ot
io
n

1
2

1
0

0
0.
4

6.
6

0.
1

0.
3

0
Y
ea
st

25
64

17
0.
1

0
5

15
8

0.
5

0.
2

0
Sc
en
e

25
40

21
1

0
14

16
8

2
1

0
C
or
el
5
k

31
11

9
14

1
1

45
20

77
1.
8

2.
5

0.
06

E
nr
on

53
17

4
22

0.
2

0
3

69
6

1
1

0
M
ed
ic
al

6
25

1.
5

0.
1

0
0.
2

46
0.
5

0.
5

0
B
ol
d
va
lu
e
de
no

te
s
th
e
pe
rf
or
m
an
ce

of
pr
op

os
ed

m
et
ho

d

A High Speed Multi-label Classifier Based on Extreme Learning … 451

F1-measure. A comparison of performance metrics such as hamming loss, preci-
sion, recall, accuracy and F1 measure of the proposed technique is shown in
Tables 4, 5, 6, 7 and 8. The performance of state-of-the-art techniques is adapted
from [18]. From the tables, it is clear that the proposed method works uniformly
well on all datasets. The proposed method outperforms all the existing methods in
most cases and remains one of the top classification techniques in other cases.

5.3 Speed

The performance of the proposed method in terms of execution speed is evaluated
by comparing the training time and the testing time of the algorithm used. The
proposed method is applied to 6 datasets of different domains with a wide range of
label density and label cardinality and the training time and the testing time are
compared with other state-of-the-art techniques. The comparison table of training
time and testing time is given in Tables 9 and 10 respectively.

In summary, the proposed method outperforms all existing multi-label learning
techniques in terms of training and testing time by several orders of magnitude.
From the results, it can be seen that the proposed method is the fastest multi-label
classifier when compared to the current state-of-the-arts techniques. The speed of
the proposed classifier is many-fold greater than existing methods. Also, from the
comparison results of other performance metrics such as hamming loss, accuracy,
precision, recall and F1-measure, it can be seen that the proposed method remains
one of the top positions in each case. Also, the F1-measure of the proposed
approach outperforms the most recent method which uses canonical correlation
analysis (CCA) with ELM for multi-label problems [27] in most cases. The key
advantage of the proposed method is that it surpasses all existing state-of-the-arts
methods in terms of speed and simultaneously while remaining one of the top
learning techniques in terms of other 5 performance metrics.

6 Conclusion

The proposed high speed multi-label classifier executes with both fast speed and high
accuracy. It is to be highlighted that there are no extreme-learning-machine-based
multi-label classifiers existing in the literature thus far. The proposed method is
applied to 6 benchmark datasets of different domains and a wide range of label
density and label cardinality. The results are compared with 9 state-of-the-arts
multi-label classifiers. It can be seen from the results that the proposed method
surpasses all state-of-the-arts methods in terms of speed and remain one of the top
techniques in terms of other performance metrics. Thus, the proposed ELM-based
multi-label classifier can be a better alternative for a wide range of multi-label
classification techniques in order to achieve greater accuracy and very high speed.

452 M.J. Er et al.

Acknowledgements This work is supported by the National Natural Science Foundation of
P. R. China (under Grants 51009017 and 51379002), Applied Basic Research Funds from Ministry
of Transport of P. R. China (under Grant 2012-329-225-060), China Postdoctoral Science
Foundation (under Grant 2012M520629), Program for Liaoning Excellent Talents in University
(under Grant LJQ2013055). The second author would like to thank Nanyang Technological
University for supporting this work by providing NTU RSS.

References

1. Gonclaves, T., Quaresma, P.: A preliminary approach to the multi-label classification problem
of Portuguese juridical documents progress in artificial intelligence, pp. 435–444. Springer,
Berlin (2003)

2. Joachims, T.: Text categorization with support vector machines: learning with many relevant
features. In: Nedellec, C., Rouveirol, C. (eds.) ECML, LNCS, vol. 1938, pp. 137–142.
Springer, Heidelberg (1998)

3. Luo, X., Zincir Heywood, A.N.: Evaluation of two systems on multi-class multi-label
document classification. In: Hacid M.S., Murray N.V., Ras Z.W., Tsumoto S. (eds.) ISMIS
2005, LNCS (LNAI), vol. 3488, pp. 161–169, Springer, Heidelberg (2005)

4. Tikk, D., Biro, G.: Experiments with multi-label text classifier on the Reuters collection.
Proceedings of the International Conference on Computational Cybernetics (ICCC 2003),
Hungary, pp. 33–38 (2003)

5. Yu, K., Yu, S., Tresp, V.: Multi-label informed latent semantic indexing. Proceedings of the
28th Annual International ACM SIGIR Conference on Research and Development in
information retrieval, pp. 258–265 (2005)

6. Karalic, A., Pirnat, V.: Significance level based multiple tree classification. Informatica 15(5),
12 (1991)

7. Tsoumakas, G., Katakis, I, Vlahavas, I.: Mining multi-label data, data mining and knowledge
discovery handbook. In: Maimon, O., Rokach, L. (ed.) Springer, 2nd edn. (2010)

8. de Carvalho, A.C., Freitas, A.A.: A tutorial on multi-label classification techniques. Found.
Comput. Intell. 5, 177–195 (2009)

9. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. Neural Information
Processing Systems, NIPS, vol. 14 (2001)

10. Zhang, M.L., Zhou, Z.H.: A k-nearest neighbour based algorithm for multi-label classification.
Proceedings of the 1st IEEE International Conference on Granular Computing, pp. 718–721.
Beijing, China (2005)

11. Boutell, M., Shen, X., Luo, J., Brouwn, C.: Multi-label semantic scene classification,
Technical report. Department of Computer Science University of Rochester, USA (2003)

12. Shen X., Boutell, M., Luo, J., Brown, C.: Multi-label machine learning and its application to
semantic scene classification. In: Yeung, M.M., Lienhart, R.W., Li, C.S. (eds.) Storage and
retrieval methods and applications for multimedia. Proceedings of the SPIE, vol. 5307,
pp. 188–199 (2003)

13. Zhu, B., Poon, C.K.: Efficient approximation algorithms for multi-label map labelling. In:
Algorithms and computation, pp. 143–152. Springer, Heidelberg (1999)

14. Zhang, M.L., Zhou, Z.H.: ML-kNN: a lazy learning approach to multi-label learning. Pattern
Recogn. 40(7), 2038–2048 (2007)

15. Sorower, M.S.: A literature survey on algorithms for multi-label learning. Oregon State
University, Corvallis (2010)

16. Elisseeff, A., Weston, J.: Kernel methods for multi-labelled classification and categorical
regression problems, Technical report, BIOwulf Technologies (2001)

17. Tsoumakas, G., Katakis, I.: Multi-label Classification: an overview. Int. J. Data Warehouse.
Min. 3(3), 1–13 (2007)

A High Speed Multi-label Classifier Based on Extreme Learning … 453

18. Madjarov, G., Kocev, D., Gjorgjevikj, D., Dzeroski, S.: An extensive experimental
comparison of methods for multi-label learning. Pattern Recogn. 45, 3084–3104 (2012)

19. Wang, N., Sun, J.C., Er, M.J., Liu, Y.C.: A novel extreme learning control framework of
unmanned surface vehicles. IEEE Transactions on Cybernetics. Accepted for Publication
(2015).

20. Wang, N., Er, M.J., Han, M.: Generalized single-hidden layer feedforward networks for
regression problems. IEEE Transac. Neural Networks Learn. Syst. 26(6), 1161–1176 (2015)

21. Wang, N., Er, M.J., Han, M.: Parsimonious extreme learning machine using recursive
orthogonal least squares. IEEE Transac. Neural Networks Learn. Syst. 25(10), 1828–1841
(2014)

22. Wang, N., Han, M., Dong, N., Er, M.J.: Constructive multi-output extreme learning machine
with application to large tanker motion dynamics identification. Neurocomputing 128, 59–72
(2014)

23. Huang, G.B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn.
Cybern. 2, 107–122, 06/01 (2011)

24. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.
Neurocomputing 70, 489–501, 12 (2006)

25. Ding, S., Zhao, H., Zhang, Y., Xu, X., Nie, R.: Extreme learning machine: algorithm, theory
and applications. Artif. Intell. Rev. 1–13 (2013)

26. Bernardini, F.C., da Silva, R.B., Meza, E.M., das Ostras–RJ–Brazil, R.: Analyzing the
influence of cardinality and density characteristics on multi-label learning (2009)

27. Kongsorot, Y., Horata, P.: Multi-label classification with extreme learning machine.
International Conference on Knowledge and Smart Technology, pp. 81–86

Author Biography

Meng Joo Er is a Chair Professor with Marine Engineering College, Dalian Maritime University,
Dalian 116026, China, and together with Rajasekar Venkatesan are with the School of Electrical
and Electronics Engineering in NTU, Singapore; Ning Wang is with Marine Engineering College,
Dalian Maritime University, Dalian 116026, China.

454 M.J. Er et al.

Image Super-Resolution by PSOSEN
of Local Receptive Fields Based
Extreme Learning Machine

Yan Song, Bo He, Yue Shen, Rui Nian and Tianhong Yan

Abstract Image super-resolution aims at generating high-resolution images from
low-resolution inputs. In this paper, we propose a novel learning-based and efficient
image super-resolution approach called particle swarm optimization based selective
ensemble (PSOSEN) of local receptive fields based extreme learning machine
(ELM-LRF). ELM-LRF is locally connected ELM, which can directly process
information including strong correlations such as images. PSOSEN is a selective
ensemble used to optimize the output of ELM-LRF. This method constructs an
end-to-end mapping of which the input is a single low-resolution image and the
output is a high resolution image. Experiments show that our method is better in
terms of accuracy and speed with different magnification factors compared to the
state-of-the-art methods.

Keywords Super-resolution ⋅ Particle swarm optimization based selective
ensemble ⋅ Local receptive fields based extreme learning machine

1 Introduction

Due to the influence of various factors in environment, raw images obtained are
always blurred and fuzzy. It is difficult to obtain details from these images.
Accordingly, image super-resolution [1] processing is essential to enhance
low-resolution images for extracting exact information. In recent years, important

Y. Song ⋅ B. He (✉) ⋅ Y. Shen ⋅ R. Nian
School of Information and Engineering, Ocean University of China, Qingdao,
Shandong, China
e-mail: bhe@ouc.edu.cn

T. Yan
School of Mechatronic Engineering, China Jiliang University, Hangzhou,
Zhejiang, China
e-mail: yanth@163.com

© Springer International Publishing Switzerland 2016
J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,
Proceedings in Adaptation, Learning and Optimization 7,
DOI 10.1007/978-3-319-28373-9_38

455

progress has been made in single image super-resolution [2]. Many machine
learning methods are used for single image super-resolution processing.

Nowadays, there are many ways to achieve image super-resolution. Methods for
super-resolution (SR) can be classified into three types: (i) interpolation-based
approach [3–5], (ii) reconstruction-based approach [6–8], (iii) learning-based
approach [9–16]. Interpolation-based approach such as bicubic method and bilinear
method often cause over-smooth. The first two methods get higher resolution images
from a set of low-resolution input images. The third method is an end-to-endmapping
which can directly output high-resolution images after learning the relationship
between low-resolution images and high-resolution images. The interpolation-based
approach includes registering low-resolution images first and then interpolating to get
a high-resolution image and finally deblurring to enhance the high-resolution image.
However, this method has high computational cost. The reconstruction-based SR
approach constructs high-resolution images by using some heuristics or specific
interpolation functions. The quality of the reconstructed image degrades when the
magnification factor becomes large. Learning-based approach aims to enhance
the high frequency information of the low-resolution image by learning to retrieve the
most likely high-frequency information from the training image samples based on the
local features of the input low-resolution image. A SR technique of learning-based
approach is sparse representation [12, 15]. This method makes use of a sparse rep-
resentation for each patch in a set of low-resolution images and then utilizes this
representation to generate the high resolution output. By jointly training two dic-
tionaries for the low- and high-resolution image patches, this method gets the simi-
larity of sparse representations between the low-resolution and high-resolution image
patch pair with respect to their own dictionaries. Recently, a deep learning method for
single image super-resolution called Super-Resolution Convolutional Neural Net-
work (SRCNN) [14] has been proposed. This method directly learns an end-to-end
mapping between the low- and high-resolution images. Themapping is represented as
a deep convolutional neural network (CNN) [17] that takes the low-resolution image
as input and outputs high-resolution one. While results of it are appealing, SRCNN is
time consuming in training step. Besides, super-resolution based on Extreme
Learning Machine (SRELM) [13, 18] is another method which makes use of
low-resolution images and their 1st and 2nd order derivatives. Thismethod focuses on
recovering the high-frequency (HF) components of the low-resolution image effi-
ciently and accurately. During the training process, pixel intensity values in a local
image patch and the 1st and 2nd order derivative are extracted from low-resolution
images. Then ELM learns the relationship between pixel intensity values of
high-resolution images and these features. However, features of super-resolution
based on Extreme Learning Machine are selected manually. The prior knowledge we
have about HF components of images has much effect on experimental results.

In this paper, we propose to use Particle Swarm Optimization based Selective
Ensemble (PSOSEN) [19] of Local Receptive Fields Based Extreme Learning
Machine (ELM-LRF) [20] to carry out image super resolution motivated by SRCNN
and SRELM. Instead of making use of conventional Convolutional Neural Network
(CNN) and Extreme LearningMachine (ELM) alone, we aim at using ELM-LRF that

456 Y. Song et al.

takes the advantages of these two algorithms both into account to achieve image
super-resolution. The result is an end-to-end mapping between low- and
high-resolution images. In order to improve the accuracy, PSOSEN is performed.
PSOSEN is proposed in [19] which employ particle swarm optimization to choose
good learners and combine these predictions for results better than genetic algorithms
[21]. The method proposed in this paper has several advantages. First, the time it
spends on training and testing is much shorter than the state-of-the-art methods.
Second, the performance of this method is better than other learning-based methods.

The remainder of this paper is organized as follows. Section 2 presents some
previous work about SRCNN, PSOSEN and ELM-LRF. Proposed method is
described in Sect. 3. Section 4 is various results of our experiment. In Sect. 5, we
conclude our method and efficiency and accuracy of the experiment. Besides, we
discuss future work in the final section.

2 Review of Related Works

2.1 Super Resolution Convolutional Neural Network

Convolutional neural network is widely applied to image process for its local
correlation. Recently, Dong et al. have proposed a method called Super Resolution
Convolutional Neural Network (SRCNN). In this method, a deep convolutional
neural network is used to realize super-resolution. And [14] makes a connection
between SRCNN and sparse-coding-based SR method and concludes that the latter
is one kind of SRCNN. The low-resolution training images of SRCNN are obtained
from high-resolution images which are Gaussian-blurred and down-sampled and
then bicubic interpolated. SRCNN can be divided into three steps:

(A) Patch extraction and representation. In this step, a set of feature images are
extracted from low-resolution input images. Each feature map has the same
weight and bias. Each patch of images has a high-dimensional vector at this step.

(B) Non-linear mapping. The high-dimensional vectors are mapped onto another
high-dimensional vector in this step.

(C) Reconstruction. The high-dimensional vectors of step 2 are used to generate
the final high-resolution images.

2.2 Local Receptive Fields Based Extreme Learning
Machine

ELM has very fast learning speed and provides efficient results in the applications
such as feature learning, clustering, regression and classification. The difference
between conventional single-hidden layer feedforward neural networks (SLFNs)

Image Super-Resolution by PSOSEN of Local Receptive Fields … 457

and ELM is that the latter confirms that the number of hidden neurons is important
but the hidden neurons of ELM need not to be tuned iteratively.

Recently, Huang et al. have proposed a new theory called Local Receptive Fields
Based Extreme Learning Machine. The connection of input layer and one node of
hidden layer are generated according to continuous probability distribution. These
random connections constitute local receptive fields. When it is applied to image
processing and other similar tasks, ELM-LRF learns the local structure of images
and generates more meaningful expression in the hidden layer.

In order to get the thorough representations of input, ELM-LRF uses K different
random input weights to obtain K different feature maps. Hidden layers are com-
posed by random convolution nodes. The same feature map shares the same input
weight and different feature maps have different input weights. The input weights
are random generated and orthogonal. ELM-LRF can extract more complete feature
by using orthogonal input weights.

Assume that the initial input weights are A ̂init, the size of each input weight is
r × r and the size of each input image is d × d. So the size of feature map is
ðd− r+1Þ× ðd− r+1Þ. Then

Â
init ∈Rr2 ×K , Â

init
= ½a ̂init1 , a ̂init2 , . . . , a ̂initK �

a ̂initK ∈Rr2 , k=1, . . . ,K
ð1Þ

Â
init

is orthogonalised by using singular value decomposition (SVD). The Orthog-

onalised input weights are Â, of which each column a ̂k is orthogonal basis of Â
init
. If

r2 < K, Â
init

should be transposed at first and then orthogonalised and transposed
again at last. The weight of the Kth feature map is ak ∈Rr × r and it is aligned of ak̂ by
column. The convolutional node (i, j) of the Kth feature map is ci,j,k:

ci, j, kðxÞ= ∑
r

m=1
∑
r

n=1
ðxi+m− 1, j+ n− 1 ⋅ am, n, kÞ

i, j=1, . . . , ðd− r+1Þ
ð2Þ

Pooling size e is the distance between the center and the edge of pooling. And the
size of pooling map is the same as feature map ðd− r+1Þ× ðd− r+1Þ. ci,j,k, hp,q,k
stand for node (i, j) of kth feature map and node (p, q) of kth pooling map
respectively:

hp, q, k =

ffi

∑
p+ e

i= p− e
∑
q+ e

j= q− e
c2i, j, k

s

p, q=1,⋯, ðd− r+1Þ
ð3Þ

If (i, j) is out of bound, the ci,j,k = 0.

458 Y. Song et al.

The connections of pooling layer and output layer are full. β is output weight and
calculated in [23]. For every sample x, calculating its feature map using Eq. (2) and

its pooling map using Eq. (3). Combinatorial layer matrix H∈RN ×K ⋅ ðd− r+1Þ2 is
obtained by simply combining all combinatorial nodes into a row vector and putting
the row vector of N samples into together. And

β=HTð1
C

+HHTÞ− 1T

if N ≤K ⋅ ðd− r+1Þ2
ð4Þ

β= ð1
C

+HHTÞ− 1HTT

if N >K ⋅ ðd− r+1Þ2
ð5Þ

2.3 Particle Swarm Optimization Selective Ensemble

The parameters of ELM-LRF are generated randomly and the performance of it
cannot be guaranteed. Therefore, selective ensemble [24] is utilized in our method.
PSOSEN is proved to be more accurate and faster than the state-of-art selective
ensemble method. PSOSEN assumes each learner can be assigned a weight and
could characterize the fitness of including this learner in the ensemble. We will
explain the principle of PSOSEN from the context of regression. Suppose the task is
to employ learners to learn from the ensemble f : Rm →Rn. Each learner
f1, f2, . . . , fN has its own weight ωiði=1, 2, . . . ,NÞ, which satisfying the following
equations:

0≤ωi ≤ 1 ð6Þ

∑
N

i=1
ωi =1 ð7Þ

The output of lth output of the ensemble is calculated as:

f l̂ = ∑
N

i=1
ωi fi, l ð8Þ

where fi,l is the lth output of the lth learner. For simplification, we suppose each
learner has one output (but this method can be generalized to more outputs of any
other learners). Suppose that x∈Rm is random selected from its distribution
p(x) with expected output d(x) and actual output fi(x). Then the output of the simple
ensemble on x is

Image Super-Resolution by PSOSEN of Local Receptive Fields … 459

f ð̂xÞ= ∑
N

i=1
ωi fiðxÞ ð9Þ

The generalization error Ei(x) and E ̂ðxÞ of the ith learner fi and the simple
ensemble respectively are

EiðxÞ= ðfiðxÞ− dðxÞÞ2 ð10Þ

E ̂ðxÞ= ðf ð̂xÞ− dðxÞÞ2 ð11Þ

So the generalization error Ei and E ̂ of the ith learner fi and the simple ensemble
p(x) respectively are

Ei =
Z

dxpðxÞEiðxÞ ð12Þ

E ̂=
Z

dxpðxÞE ̂ðxÞ ð13Þ

The correlation of the ith learner fi and the jth learner fj is defined as follows:

Cij =
Z

dxpðxÞð fiðxÞ− dðxÞÞð fjðxÞ− dðxÞÞ ð14Þ

Obviously, Cij satisfies the following equations:

Cii =Ei ð15Þ

Cij =Cji ð16Þ

Combine (9) and (11) and we can get

E ̂ðxÞ= ð∑
N

i=1
ωi fiðxÞ− dðxÞÞð∑

N

j=1
ωj fjðxÞ− dðxÞÞ ð17Þ

Combine (13), (14), (17) and we can get

E ̂ðxÞ= ∑
N

i=1
∑
N

j=1
ωiωjCij ð18Þ

According to (18), to minimize the generalization error of the simple ensemble,
the optimum weight vector ωopt can be calculated as

460 Y. Song et al.

wopt = argω minð∑
N

i=1
∑
N

j=1
ωiωjCijÞ ð19Þ

The kth component ωopt.k of ωopt can be calculated by using Lagrange multiplier
methods and the result is

∂ð∑N
i=1 ∑

N
j=1 ωiωjCij − 2λð∑

N

i=1
ωi − 1ÞÞ

∂wopt.k
=0 ð20Þ

Equation (20) can be simplified to

∑
N

j=1
j≠ k

wopt.kCij = λ ð21Þ

ωopt.k satisfies (7) and

ωopt.k =
∑N

j=1 C
− 1
kj

∑N
i=1 ∑

N
j=1 C

− 1
ij

ð22Þ

Equation (22) can be viewed as an optimization problem. Particle swarm opti-
mization is proved to be a powerful optimization tool [21] and PSOSEN is pro-
posed for this. Weights are evolved by employing PSOSEN and can characterize
the fitness of the learners in joining the ensemble.

3 Proposed Approach

This paper uses a new learning-based method to realize the super-resolution of
image which utilizes PSOSEN of ELM-LRF. There are three procedures of our
method which comprised of image preprocessing, the process of ELM-LRF and the
process of PSOSEN. As is introduced in Sect. 2, there are three layers of
ELM-LRF: hidden layer, combinatorial layer and output layer. An overview of our
method is shown in Fig. 1.

3.1 Image Pre-processing

Images obtained from real environment always have low resolution because of
noise or poor light. In order to get this kind of low resolution images in our method,

Image Super-Resolution by PSOSEN of Local Receptive Fields … 461

the luminance channel of one high-resolution image is Gaussian blurred first and
then down-sampled and then processed with bicubic interpolation. These
low-resolution images and the original high-resolution images have the same size
because scale of down-sampled is equivalent to scale of bicubic interpolation. We
carry out this new method on the luminance channel for the reason that people are
more sensitive to the change of this channel. These blurred images are as input of
ELM-LRF.

3.2 Process of ELM-LRF

In hidden layer, we obtain feature maps by making convolution of the patches of
low-resolution image. There are K random input weights with orthogonalization of
hidden layer which are W1,W2, . . . ,WK ∈Rn× n. As is proved in [20], test error

Fig. 1 The overview of proposed approach

462 Y. Song et al.

rates will decrease if the input weights are orthogonalized after random generating.
And the size of low-resolution image I0 is N × N and the size of each weight is
n × n. So node (i, j) in the kth feature map C(i, j, k) is calculated as

Cði, j, kÞ=Wk*I
0
0 ð23Þ

The size of the kth feature map is ðN − n+1Þ× ðN − n+1Þ. I 00 is one patch of I0
with a size n × n and has a location from pixel (i, j) to pixel ði+ n− 1, j+ n− 1Þ.

The low-resolution image has K different feature maps, that is to say, each pixel
of this image has K different features. These features are random selected by
making convolution rather than prior knowledge. The weights need not to be tuned
which is in contrast to [14]. The process of hidden layer is illustrated in Fig. 2.

In combinatorial layer, there are K pooling maps combined with K feature maps
respectively and these two kinds of maps share the same size. The pooling size is n′.
The node (p, q) of Kth pooling map hp,q,k is a square of features calculated in (3). As
is shown in Fig. 3, if (i, j) of a feature map in hidden layer is out of bound, C(i, j,
k) = 0. The structure that a convolutional layer followed by a square pooling layer is
frequency selective and translational invariant as proved in [25].

In output layer, ELM-LRF transforms the feature map of combinatorial layer
into a row vector and puts the rows of M different input images together to get

combinatorial layer matrix H ∈RM ×K ⋅ ðN − n+1Þ2 . T ∈RM ×N2
is the ground truth

matrix of training images. Finally, β is calculated according to (4) or (5).
While the weights of hidden layer need not to be tuned in ELM-LRF, there are

four parameters that need to be tuned by using root mean square error (RMSE)
between the luminance channel of input high-resolution images and the output of
ELM-LRF. These four parameters include the number of feature maps K, the size of
convolution n, the size of pooling n′ and value of C. Then

Fig. 2 The process of hidden layer. The left image is an input sample and the right is one of
K feature maps. By making convolution of the patches of sample image, such as the colored
patches of the sample image, we get corresponding features (with the same color) in feature map

Image Super-Resolution by PSOSEN of Local Receptive Fields … 463

RMSE=

ffi

1
M

∑
M

i=1
Ti − f ðyiÞk k2

s

ð24Þ

where yi is ith low-resolution image and Ti is the ground truth high-resolution image
of it. f(yi) is the output of ELM-LRF. M is the number of training inputs. We choose
the parameters which can minimize RMSE.

After training, this method generates an end-to-end model and can output a high
resolution image when the input is a low resolution image. ELM-LRF for super
resolution is faster than other training-based methods for its no tuned weights in
hidden layer.

3.3 Selective Ensemble Particle Swarm Optimization

PSOSEN is applied to ELM-LRF to improve the generalization performance. The
generalization performance of the ELM-LRF mentioned above may not be quite
good results from the random generation of weights in hidden layer. PSOSEN is
superior to simple ensemble. The framework for the new algorithm can be
explained as follows: first, N individual ELM-LRFs are initialized. The number of
feature maps and the size of convolution map are the same for each ELM-LRF and
the weights of hidden layer for each ELM-LRF are randomly generated. Second,
the actual output fi,L is calculated and PSOSEN is performed and a selective
ensemble M is obtained. At last, the output of the system is calculated as the
average output of the individual in the ensemble set:

0 0

(1) (1)N n N n− + × − + (1) (1)N n N n− + × − +

0

0

0

Fig. 3 The process between hidden layer and combinatorial layer

464 Y. Song et al.

Yout =
1
M

∑
M

j=1
fj,L =

1
M

∑
M

j=1
Hj ⋅ βj ð25Þ

where Hj is the output matrix of the jth ELM-LRF, and βj is the output weight
calculated by the jth ELM-LRF.

4 Experiments

We use the same training images and test images as in [14] to compare our method
with other methods fairly. 8 high-resolution images with size 512 × 512 are used in
pre-processing before ELM-LRF. The methods for pre-processing are as follows.
For training set, first select the luminance channel of these images (people’s eyes
are more sensitive to the change of luminance channel), and then these images are
Gaussian-blurred with patch size 5 × 5 and standard deviation 1. Then these blurred
images are down-sampled with scale 2, 4 respectively and finally done with bicubic
interpolation with the same scale. These images are divided into sub-images with
size 32 × 32 and we have a training set of 2048 sub-images. But for testing set, we
didn’t carry out the operation of Gaussian-blurred; the rest processing procedures
are the same as training set. One image with size 512 × 512 can produce 256
sub-images. We also try to divide these images into more sub-images, but the
performance didn’t get more improvement.

We use sub-images with the size 32 × 32 processed by the above method to train
ELM-LRF, and then save the value of β obtained by the train process. The
pre-processed test sub-images are put into ELM-LRF, and β obtained in training
step is utilized to calculate the output. The parameters of ELM-LRF including the
number of feature maps, the size of convolution, the size of pooling and the value of
C are 74, 9 × 9, 3 × 3 and 100 respectively. The output of ELM-LRF is sub-images
at size 32 × 32, and then we use these output as the input of PSOSEN. Finally, the
sub-images will be integrated into a whole image for visualization.

Our method is compared with other SR methods in this paper including bicubic,
SRCNN (Super-resolution Convolutional Neural Network) and ANR (Anchored
Neighbourhood Regression) [26] method. These codes are available on the authors’
website.

Experimental results are shown in Fig. 4. As can be seen in Fig. 4, compared
with the other method such as bicubic and super-resolution convolutional neural
network (SRCNN), our methods perform better, and have a better visual effect. Our
proposed methods and SRCNN both can produce the details of images. But our
methods still work better and have more details when magnification factor is 4. The
proposed methods are very close to SRCNN when the magnification factor is at 2,
but it is easy to find that the proposed methods show more details. Furthermore,
when the magnification factor is 4 and the images have low-resolution, our method
is still able to achieve good performance.

Image Super-Resolution by PSOSEN of Local Receptive Fields … 465

To evaluate the performance quantitatively, Peak Signal to Noise Ratio (PSNR)
[27] is calculated as shown in Table 1. PSNR has a relationship with RMSE, that

PSNR=20* lnð255 R̸MSEÞ ð26Þ

When the magnification factor is 2, the PSNR of our method is better than
bicubic, and note that SRCNN and we proposed method have similar results. But
when the magnification factor becomes 4, our method is better than SRCNN.
Besides, our method has only one convolutional layer and one pooling layer and the
training steps are much easier and faster.

Fig. 4 From left to right: original images, results by bicubic, results by SRCNN, results by the
proposed method. The first two rows are the results at down-sampled scale 2 and the last two rows
are the results at down-sampled scale 4

466 Y. Song et al.

Table 1 also shows the running time compared with SRCNN. The programs are
executed on the machine with Inter Core 2.8 GHz CPU and 64 GB of RAM. We
take approximately 6 s per image, which is contrast with the running time about
7.5 s of SRCNN, no matter with the upscale factor 2 or 4.

5 Conclusions

This paper proposes an efficient method to realize image super resolution based on
particle swarm optimization based selective ensemble (PSOSEN) of local receptive
fields based extreme learning machine (ELM-LRF). The proposed approach
employs pre-processed sub-images to train and test ELM-LRF, and with PSOSEN
for better results. For visualization, the output sub-images will be integrated into
final whole images. It is demonstrated in experimental results that this method is
effective both in training and testing speed and quantitative evaluations. In the
future, we will use more high-resolution images and more complicated features to
train ELM-LRF for better results, and more details also will be resulted. But on the
other hand, through the experiment we found that when we integrate those
sub-images into a complete picture, the edge of sub-images will affect PSNR. So we
will also focus on resolving this problem in the future to get better performance.

Acknowledgments This work is partially supported by the Natural Science Foundation of China
(41176076, 51075377, 51379198), the High Technology Research and Development Program of
China (2006AA09Z231, 2014AA093410).

References

1. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical
overview. Sig. Process. Mag. IEEE 20(3), 21–36 (2003)

2. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP: Graphical Models
Image Process 53(3), 231–239 (1991)

3. Deepu, R., Chaudhuri, S.: Generalized interpolation and its application in super-resolution
imaging. Image Vis. Comput. 19, 957–969 (2001)

Table 1 Experimental result of PSNR (DB) and test time between the proposed methods and
other methods

Images Scale Bicubic ANR SRCNN Proposed
PSNR Time PSNR Time PSNR Time PSNR Time

baby 2 37.07 – 38.44 – 38.30 7.52 38.37 6.05
pepper 2 34.97 – – – 36.75 7.71 36.78 6.17
baby 4 31.78 – 32.99 – 32.98 7.46 33.11 6.12
pepper 4 30.60 – – – 32.34 7.45 32.47 6.03

Image Super-Resolution by PSOSEN of Local Receptive Fields … 467

4. Tao, H., Tang, X., Liu, J., Tian, J.: Superresolution remote sensing image processing algorithm
based on wavelet transform and interpolation. Image Process. Pattern Recog. Remote Sens.
4898, 259–263 (2003)

5. Surapong, L., Bose, N.K.: High resolution image formation from low resolution frames using
Delaunay triangulation. Image process. IEEE Transac. 11, 1427–1441 (2002)

6. Sina, F., Dirk, R.M., Michael, E., Peyman, M.: Fast and robust multiframe super resolution.
Image process. IEEE Transac. on 13, 1327–1344 (2004)

7. Hardie, R.C., Barnard, K.J., Armstrong, E.E.: Joint MAP registration and high-resolution
image estimation using a sequence of undersampled images. Image Process. IEEE Transac. on
6, 1621–1633 (1997)

8. Atsunori, K., Maeda, S., Ishii, S.: Superresolution with compound Markov random fields via
the variational EM algorithm. Neural Netw. 22, 1025–1034 (2009)

9. Chang H., Yeung, D., Xiong, Y., Super-resolution through neighbor embedding. In: Computer
Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, Vol. 1 (2004)

10. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comput.
Vision 40, 25–47 (2000)

11. Datsenko, D., Elad, M.: Example-based single document image super-resolution: a global
MAP approach with outlier rejection. Multidimension Syst. Signal Process. 18, 103–121
(2007)

12. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation.
Image Process. IEEE Transac. on 19(11), 2861–2873 (2010)

13. An, L., Bhanu, B.: Image super-resolution by extreme learning machine. In: Image processing
(ICIP), 2012 19th IEEE International Conference on, pp. 2209–2212 (2012)

14. Dong, C., Loy, C.C., He, K., Tang, X, Learning a deep convolutional network for image
super-resolution. Computer Vision–ECCV 2014, pp. 184–199 (2014)

15. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw
image patches. In: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pp. 1–8 (2008)

16. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations.
Curves Surf. 711–730 (2012)

17. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.:
Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551
(1989)

18. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.
Neurocomputing 70, 489–501 (2006)

19. Liu, Y., He, B., Dong, D., Shen, Y., Yan, T., Nian, R., Lendasse, A.: Particle swarm
optimization based selective ensemble of online sequential extreme learning machine. Math.
Probl. Eng. 2015, 1–10 (2014)

20. Huang, G.B., Bai, Z., Lekamalage, L., Kasun, C.: Local receptive fields based extreme
learning machine. Comput. Intell. Mag., IEEE 10(2), 18–29 (2015)

21. Kennedy, J., Spears, W.M.: Matching algorithms to problems: an experimental test of the
particle swarm and some genetic algorithms on the multimodal problem generator.
Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 78–83
(1998)

22. Huang, G.B., Zhu, Q.Y., Siew, C.K.: “Extreme learning machine: a new learning scheme of
feedforward neural networks”, Neural networks, 2004. Proceedings 2004 IEEE International
Joint Conference on, vol. 2, (2004)

23. Huang, G.B., Zhou, H., Ding, X.: Extreme learning machine for regression and multiclass
classification. Syst. Man Cybern. Part B: Cybern., IEEE Transac. on 42(2), 513–529 (2012)

24. Zhou, Z.H., Tang, W.: Selective ensemble of decision trees. Rough Sets, Fuzzy Sets, Data
Min. Granular Comput. 2639, 476–483 (2003)

468 Y. Song et al.

25. Saxe, A., Koh, P.W., Chen, Z., Bhand, M., Suresh, B., Ng, A.Y.: On random weights and
unsupervised feature learning. In: Proceedings of the 28th International Conference on
Machine Learning (ICML-11), pp. 1089–1096 (2011)

26. Timofte, R., De, V., Gool, L.V.: Anchored neighborhood regression for fast example-based
super-resolution. In: Computer Vision (ICCV), 2013 IEEE International Conference on,
pp. 1920–1927 (2013)

27. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment.
Electron. Lett. 44(13), 800–801 (2008)

Image Super-Resolution by PSOSEN of Local Receptive Fields … 469

Sparse Extreme Learning Machine
for Regression

Zuo Bai, Guang-Bin Huang and Danwei Wang

Abstract Extreme learning machine (ELM) solves regression and classification

problems efficiently. However, the solution provided is dense and requires plenty of

storage space and testing time. A sparse ELM has been proposed for classification in

[1]. However, it is not applicable for regression problems. In this paper, we propose a

sparse ELM for regression, which significantly reduces the storage space and testing

time. In addition, we develop an efficient training algorithm based on iterative com-

putation, which scales quadratically with regard to the number of training samples.

Therefore, the proposed sparse ELM is advantageous over other ELM methods when

facing large data sets for achieving faster training and testing speed, while requiring

less storage space. In addition, sparse ELM outperforms support vector regression

(SVR) in the aspects of generalization performance, training speed and testing speed.

Keywords Regression ⋅ Extreme learning machine (ELM) ⋅ Sparse ELM ⋅
Quadratic programming (QP) ⋅ Support vector regression (SVR)

1 Introduction

Extreme learning machine (ELM) was first proposed as an improvement on classic

single-hidden-layer feedforward neural networks (SLFNs) [2] and later was extended

to multi-layer networks [3, 4]. Hidden nodes do not need to be tuned and superb per-

formance is provided. Later, a unified ELM is proposed to unify different learning

methods [5]. However, the solution of the unified ELM is dense, requiring plenty

Z. Bai (✉) ⋅ G.-B. Huang ⋅ D. Wang

School of Electrical and Electronic Engineering, Nanyang Technological University,

Nanyang Avenue, Singapore 639798, Singapore

e-mail: zbai1@e.ntu.edu.sg

G.-B. Huang

e-mail: egbhuang@ntu.edu.sg

D. Wang

e-mail: edwwang@ntu.edu.sg

© Springer International Publishing Switzerland 2016

J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,

Proceedings in Adaptation, Learning and Optimization 7,

DOI 10.1007/978-3-319-28373-9_39

471

472 Z. Bai et al.

of storage space and testing time. Besides, the unified ELM obtains the solution

by matrix inversion with complexity between O(N2) and (N3) (N is the number of

training samples). To address these issues, Bai et al. propose a sparse ELM for classi-

fication, which provides a sparse network and scales quadratically with regard to N.

However, the existing sparse ELM is not capable of dealing with regression prob-

lems. Thus, we propose a sparse ELM for regression in this paper and develop a

specific, highly efficient training algorithm accordingly. The storage space and test-

ing time are largely reduced and the computational complexity is quadratic to the

number of training samples N. Additionally, comparing to support vector regression

(SVR) [6], it achieves faster training and testing speed, while obtaining better gen-

eralization performance. In general, the proposed method is preferred when facing

large-scale regression problems, such as time series prediction, neuroscience, etc.

2 Review of ELM

Since the emergence of ELM, numerous variants of ELM have been suggested. In

[5], a unified ELM was proposed, providing a common framework for different learn-

ing methods. Later, a sparse ELM was proposed for classification problems in order

to reduce the requirement for storage space and testing time [1].

2.1 Unified ELM

In the unified ELM, the problem is solved by minimizing the structural risks and

empirical errors. The solution 𝜷 is calculated:

𝜷 = 𝐇T
(𝐈
C

+𝐇𝐇T
)−1

𝐓 =
(𝐈
C

+𝐇T𝐇
)−1

𝐇T𝐓 (1)

And kernel form is also applicable when 𝐡(𝐱) is inconvenient to use:

f (𝐱) = 𝐡(𝐱)𝜷 =
⎡
⎢
⎢⎣

K(𝐱, 𝐱1)
⋮

K(𝐱, 𝐱N)

⎤
⎥
⎥⎦

T
(𝐈
C

+𝜴
ELM

)−1
𝐓

𝜴
ELM

= 𝐇𝐇T ∶ 𝛺
ELMi,j = 𝐡(𝐱i) ⋅ 𝐡(𝐱j) = K(𝐱i, 𝐱j)

(2)

2.2 Sparse ELM for Classification

In [1], a sparse ELM was proposed for classification, providing a sparse network and

reducing the storage space and computational requirement. The solution is:

Sparse Extreme Learning Machine for Regression 473

f (𝐱) = 𝐡(𝐱)𝜷 = 𝐡(𝐱)
(Ns∑

s=1
𝛼sts𝐡(𝐱s)T

)
=

Ns∑

s=1
𝛼stsK(𝐱, 𝐱s) (3)

where 𝐱s is support vector (SV), and Ns < N is the number of SVs. And 𝛼s’s are

Lagrangian multipliers calculated from the following optimization problem:

Minimize: Ld =
1
2

N∑

i=1

N∑

j=1
𝛼i𝛼jtitj𝛺ELMi,j −

N∑

i=1
𝛼i

Subject to: 0 ≤ 𝛼i ≤ C, i = 1, ...,N

(4)

3 Sparse ELM for Regression

3.1 Problem Formulation

In regression problems, the goal is to find a function f (𝐱) that minimizes the expected

risk on the probability distribution of the samples [7]. According to structural risk

minimization (SRM) [8], the combination of empirical errors R
emp

[f] and structural

risks ‖𝜷‖2 is used to approximate the expected risks.

Minimize: R
reg

= 𝜆

2
‖𝜷‖2 + R

emp
[f] = 𝜆

2
‖𝜷‖2 + 1

N

N∑

i=1
c
(
ti, f (𝐱i)

)
(5)

where the loss function c
(
ti, f (𝐱i)

)
needs to be convex [7]. In this paper, we choose

𝜀-insensitive loss function because it will lead to a sparse solution. Intuitively

speaking, errors will not be considered if they are smaller than 𝜀.

c
(
ti, f (𝐱i)

)
=
{

0 for |ti − f (𝐱i)| < 𝜀

|ti − f (𝐱i)| − 𝜀 for otherwise
(6)

3.2 Optimization

According to (5) and (6), the primal problem of sparse ELM for regression is:

Minimize: Lp =
1
2
‖𝜷‖2 + C

N∑

i=1
(𝜉i + 𝜉

∗
i)

Subject to: ti − 𝐡(𝐱i)𝜷 ≤ 𝜀 + 𝜉i, 𝐡(𝐱i)𝜷 − ti ≤ 𝜀 + 𝜉

∗
i , 𝜉

(∗)
i ≥ 0, i = 1, ...,N

(7)

474 Z. Bai et al.

Thus, the Lagrangian P is:

P = 1
2
‖𝜷‖2 + C

N∑

i=1
(𝜉i + 𝜉

∗
i) −

N∑

i=1
𝛼i

(
𝜀 + 𝜉i − ti + 𝐡(𝐱i)𝜷

)

−
N∑

i=1
𝛼

∗
i

(
𝜀 + 𝜉

∗
i + ti − 𝐡(𝐱i)𝜷

)
−

N∑

i=1
𝜇i𝜉i −

N∑

i=1
𝜇

∗
i 𝜉

∗
i

𝛼

(∗)
, 𝜇

(∗)
i ≥ 0

(8)

in which 𝛼

(∗)
i , 𝜇

(∗)
i respectively denotes 𝛼i, 𝛼

∗
i and 𝜇i, 𝜇

∗
i . With standard optimization

method, the dual form is constructed:

Minimize: Ld =
1
2

N∑

i=1

N∑

j=1
(𝛼i − 𝛼

∗
i)(𝛼j − 𝛼

∗
j)𝛺ELMi,j = −

N∑

i=1
(𝛼i − 𝛼

∗
i)ti + 𝜀

N∑

i=1
(𝛼i + 𝛼

∗
i)

Subject to: 𝛼i ⋅ 𝛼
∗
i = 0 and 𝛼i, 𝛼

∗
i ∈ [0,C]

(9)

in which 𝜴
ELM

is the ELM kernel matrix, which has two forms: (1) random hidden

nodes form; (2) kernel form. Readers may refer to [1] for details.

For convenience, we substitute 𝜆i = 𝛼i − 𝛼

∗
i into (9) and 𝜆i is called Lagrange

multipliers. |𝜆i| = 𝛼i + 𝛼

∗
i because at least one of 𝛼i and 𝛼

∗
i is zero:

Minimize: Ld =
1
2

N∑

i=1

N∑

j=1
𝜆i𝜆j𝛺ELMi,j −

N∑

i=1
𝜆iti + 𝜀

N∑

i=1
|𝜆i|

Subject to: − C ≤ 𝜆i ≤ C

(10)

And the output function of sparse ELM for regression is:

f (𝐱) = 𝐡(𝐱)𝜷 = 𝐡(𝐱)
(N∑

i=1
𝜆i𝐡(𝐱i)T

)
= 𝐡(𝐱)

(Ns∑

s=1
𝜆s𝐡(𝐱s)T

)
=

Ns∑

s=1
𝜆sK(𝐱, 𝐱s)

(11)

where 𝐱s is support vector (SV) and Ns is the number of SVs.

Theorem 1 The dual problem of sparse ELM for regression (10) is convex.

Proof
𝜕

𝜕𝜆s
Ld =

N∑

i=1
𝜆i𝛺ELMs,i − ts + 𝜀

(
sign(𝜆s)

)

𝜕

2

𝜕𝜆
2
s
Ld = 𝛺

ELMs,s

(12)

Thus, the Hessian matrix ∇2Ld = 𝜴
ELM

.

Sparse Extreme Learning Machine for Regression 475

Fig. 1 The primal and dual networks of sparse ELM for regression

(i) Random hidden nodes form:

𝐳T
(
∇2Ld

)
𝐳 = 𝐳T𝐇𝐇T𝐳 =

(
𝐇T𝐳

)T 𝐈L×L
(
𝐇T𝐳

)
≥ 0, ∀𝐳 ∈ 𝐑N (13)

Thus, ∇2Ld is positive semi-definite.

(ii) Kernel form: the kernel function K must satisfy Mercer’s conditions. Thus ∇2Ld
is guaranteed to be positive semi-definite.

Since the Hessian matrix ∇2Ld is positive semi-definite, the first-order derivative

𝜕Ld∕𝜕𝜆s is monotonically increasing. Therefore, the dual problem is convex.

3.3 Sparsity Analysis

If |ti − f (𝐱i)| < 𝜀, 𝛼i and 𝛼

∗
i should both be zero, making 𝜆i = 𝛼i − 𝛼

∗
i = 0, and cor-

responding SVs vanish in the expansion of 𝜷 in (11).

The primal and dual networks of sparse ELM for regression are shown in Fig. 1.

For the dual network, non-SVs are excluded so that a sparse network is provided. For

the primal network, many components are removed from the expansion of 𝜷. And

the storage space and testing computations are both proportional to Ns. Therefore,

the requirement for storage space and testing time are greatly reduced.

4 Training Algorithm of Sparse ELM for Regression

The dual problem of sparse ELM for regression (10) is in effect a QP problem. In

this section, we develop an efficient training algorithm, which divides the large QP

problem into a series of smallest possible sub-problems and solves them sequentially.

476 Z. Bai et al.

Unlike SVR, it does not have the sum constraint
∑N

i=1 𝜆i = 0. Therefore, these small-

est possible sub-problems only involves one Lagrange variable and can be calculated

analytically.
1

4.1 Optimality Conditions

In the standard optimization, we derive the relationships that must be satisfied at the

optimum. Once they are satisfied, the optimal solution is reached; and vice versa.

ei = ti − f (𝐱i) denotes the error between the output and the expected value of sparse

ELM.

(i) 𝜆i = C:

𝛼i = C, 𝛼∗
i = 0 ⇒ 𝜇i = 0, 𝜉i > 0

ti − f (𝐱i) − 𝜀 − 𝜉i = 0 ⇒ ei > 𝜀

(14)

(ii) 0 < 𝜆i < C:

𝛼i ∈ (0,C), 𝛼∗
i = 0 ⇒ 𝜇i ∈ (0,C), 𝜉i = 0

ti − f (𝐱i) − 𝜀 = 0 ⇒ ei = 𝜀

(15)

(iii) 𝜆i = 0:

𝛼

(∗)
i = 0 ⇒ 𝜇

(∗)
i = C, 𝜉(∗)i = 0

|ti − f (𝐱i)| < 𝜀 ⇒ |ei| < 𝜀

(16)

(iv) −C < 𝜆i < 0:

𝛼

∗
i ∈ (0,C), 𝛼i = 0 ⇒ 𝜇

∗
i ∈ (0,C), 𝜉∗i = 0

f (𝐱i) − ti − 𝜀 = 0 ⇒ ei = −𝜀
(17)

(v) 𝜆i = −C:

𝛼

∗
i = C, 𝛼i = 0 ⇒ 𝜇

∗
i = 0, 𝜉∗i > 0

f (𝐱i) − ti − 𝜀 − 𝜉

∗
i = 0 ⇒ ei < −𝜀

(18)

4.2 Update Rule

The update rule determines how to decrease the objective function Ld in each step.

Assume that 𝜆c is the chosen Lagrange multiplier, then we have:

1
It is noted to the authors after the previous work [1] that SVM can also be trained without the sum

constraint, if satisfying certain conditions [9].

Sparse Extreme Learning Machine for Regression 477

Ld = 𝜀|𝜆c| − 𝜆ctc +
1
2
𝜆

2
cKcc + 𝜆czold

c +W
const

zold

c = f old

c − 𝜆

old

c Kcc

(19)

where W
const

is a constant term and the superscript “old” indicates previous step.

And Kcc, f old

c respectively denotes K(𝐱c, 𝐱c), f (𝐱c)old
for conciseness.

𝜕Ld
𝜕𝜆c

= 𝜀

(
sign(𝜆c)

)
− tc + 𝜆cKcc + f old

c − 𝜆

old

c Kcc (20)

At the optimal solution 𝜆

†
, the first-order partial derivative 𝜕Ld∕𝜕𝜆c = 0.

⇒𝜆

†
c = 𝜆

old

c + 1
Kcc

(
tc − f old

c − 𝜀

(
sign(𝜆†c)

))
(21)

Bound constraint [−C,C] exists for the minimum 𝜆

†
c . In addition, Ld is not dif-

ferentiable at 𝜆c = 0, causing a discontinuity in 𝜕Ld∕𝜕𝜆s. Hence, we need to avoid

crossing the value 0 in the update process by imposing more stringent constraint

([0,C] if 𝜆
old

c > 0; and [−C, 0] if 𝜆
old

c < 0).

Thus, we can derive the update rule for the following three cases:

(i) 𝜆

old

c = 0:

𝜆

†
c =

1
Kcc

(
tc − f old

c − 𝜀

(
sign(tc − f old

c)
))

𝜆c =
[
𝜆

†
c
]C
−C

(22)

(ii) 𝜆

old

c > 0:

𝜆

†
c = 𝜆

old

c + 1
Kcc

(
tc − f old

c − 𝜀

)

𝜆c =
[
𝜆

†
c
]C
0

(23)

(iii) 𝜆

old

c < 0:

𝜆

†
c = 𝜆

old

c + 1
Kcc

(
tc − f old

c + 𝜀

)

𝜆c =
[
𝜆

†
c
]0
−C

(24)

4.3 Selection Criteria

Which Lagrange multiplier to choose remains an issue. A straightforward approach

is to choose the one that decreases the objective function Ld the most.

c ∈ arg min
i=1,...,N

(
Ld(𝜆i) − Ld(𝜆old

i)
)

(25)

478 Z. Bai et al.

However, it is time consuming to calculate the exact decrease that each Lagrange

multiplier brings. Instead, we use the violated degree of optimality conditions as an

approximation and choose the one with the highest violated degree:

c ∈ arg max
i=1,...,N

di (26)

Definition 1 d denotes the degree of violation of the KKT conditions. If di > 0, it

indicates that KKT conditions are not satisfied for 𝜆i.

(i) 𝜆i = C:

di = 𝜀 − ei (27)

(ii) 0 < 𝜆i < C:

di = |ei − 𝜀| (28)

(iii) 𝜆i = 0:

di = |ei| − 𝜀 (29)

(iv) −C < 𝜆i < 0:

di = |ei + 𝜀| (30)

(v) 𝜆i = −C:

di = 𝜀 + ei (31)

4.4 Termination Condition

Optimality conditions are not likely to be satisfied exactly since the algorithm is

based on iterative update. In fact, they only need to be fulfilled within a tolerance 𝛾 .

Thus, the training algorithm will be terminated if max
i=1,...,N

di < 𝛾 .

It was found out that a tolerance equal to the square root of the machine epsilon

would present stable results [10]. In our method, we choose 𝛾 = 0.001.

4.5 Convergence Proof

Theorem 2 The training algorithm for sparse ELM for regression will converge to
the global optimal solution in a finite number of iterations.

Proof The proposed training algorithm of sparse ELM for regression is required to

satisfy the following conditions in order to be convergent:

Sparse Extreme Learning Machine for Regression 479

(i) The dual problem (10) is a convex QP one.

(ii) Lagrange multiplier chosen to be updated 𝜆c violated KKT conditions before

the step.

(iii) The update rule guarantees that the objective function Ld will be decreased after

the step.

(iv) Lagrange multipliers are all bounded within [−C,C]N .

Therefore, the algorithm is convergent to the global optimum [11].

5 Experiments

We evaluate the performance of the proposed sparse ELM for regression problems

in this section. Experimental platform is Matlab R2010b, on Intel i5-2400, 3.1 GHz

CPU (except CASP: Matlab R2013a, on Intel Xeon E5-2650, 2 GHz CPU, because of

memory issues for the unified ELM and SVR). SVR is realized by SVM and Kernel

Methods Matlab Toolbox downloaded from [12] (Table 1).

5.1 Data Sets Description

We adopt different data sets from UCI repository [13]. Each data set is equally split

into training and testing sets. For the training set, targets are linearly scaled into [0, 1]
and attributes into [−1, 1]; for the testing set, they are respesctively scaled based on

the factors used for the training set.

Table 1 Data sets description

Data set # Train # Test # Features

Body fat 126 126 14

Mpg 196 196 7

Housing 253 253 13

Concrete 515 515 8

Mg 693 692 6

Spacega 1554 1553 6

Abalone 2089 2088 8

Wine quality 2449 2449 11

Cpusmall 4096 4096 12

Cadata 10320 10320 8

CASP 22865 22865 9

480 Z. Bai et al.

Fig. 2 Number of iterations for original and improved algorithms

Table 2 Detailed training process

Data set # of 𝜆i (samples) # of iterations # 𝜆i changed in

the process

Average
𝛥i(1)
𝛥i

Bodyfat 126 134 33 2.01

Concrete 515 2622 217 7.88

Abalone 2089 9177 607 12.60

Cpusmall 4096 3998 225 12.34

5.2 Improvements of Convergence Speed

At here, we evaluate the convergence speed of the proposed training algorithm.

Gaussian kernel K(𝐮, 𝐯) = exp

(
− ‖𝐮−𝐯‖2

2𝜎2

)
is used and parameters are naively set as

C = 1, 𝜎 = 1. 20 repetitions are conducted for each experiment. As shown in Fig. 2,

the ratios between the number of iterations and the number of training samples (the

bars named “original”) are much larger than 1.

Let us investigate the detailed training process. Four sets are used for illustration,

while the others show similar characteristics. Observing from Table 2, only a part of

𝜆i’s are changed in the process while the total number of iterations is much larger

than the number of changed 𝜆i’s. It means that some 𝜆i’s are updated multiple times.

𝛥i(1) denotes change of 𝜆i in the first time it is updated. And 𝛥i is the change that

𝜆i finally achieves. As the ratios
𝛥i(1)
𝛥i

are larger than 1, we can add a learning rate

𝜂 = 1 + a ⋅ exp
(
− (TIi − 1)

)
in the update rule (22)–(24). TIi denotes which time

(1st time, 2nd time or more) the ith Lagrange multiplier 𝜆i is updated. Therefore,

bigger changes can be achieved in the first several times 𝜆i being updated, so that

fewer iterations are required. a is tried with 4 different values: [2, 3, 4, 5]. As shown

Sparse Extreme Learning Machine for Regression 481

−10 −5 0 5 10
−0.6

0

0.6

1.2
ε=0.1

−10 −5 0 5 10

ε=0.2

−10 −5 0 5 10

ε=0.3

SVs
expected
actual output

Fig. 3 Expected and actual outputs and SVs with different 𝜀

in Fig. 2, all of them make significant improvements while the difference between

each one is trivial. As our focus is not the optimal value of a, we use a = 3 for the

remaining experiments.

5.3 Influence of 𝜺

At here, we investigate the influence of 𝜀. Gaussian kernel is adopted with naive

parameter setting C = 1, 𝜎 = 1 similar to the previous section.

1. The number of SVs: synthetic data set “sinc” function is used:

y(x) =
{

sin(x)∕x, x ≠ 0
1, x = 0 (32)

where x is uniformly distributed on the interval of (−10, 10). The training and

testing sets both include 1000 samples. Uniform noise within (−0.2, 0.2) is added

into y of the training data, while testing data is noise-free. 𝜀 is tried with 3 values:

[0.1, 0.2, 0.3] as illustrated in Fig. 3.

2. 10-fold cross-validation error: the optimal 𝜀 depends on the noise model and level

[14], which is usually unknown in real problems. Compared with the unified ELM

[5], 𝜀 is an additional parameter to be tuned. In order to conduct a fair comparison

with the unified ELM later, the value of 𝜀 is investigated at here and will be fixed

in the overall performance comparison.

𝜀 is tried with 8 values: [0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14]. And 10-fold

cross-validation RMSE is of all training sets are listed in Table 3. Consistent with

the expectation, the optimal 𝜀 is problem-dependent. 𝜀 = 0, 0.02 and 0.06 are

acceptable and bigger 𝜀 means more sparse network. Thus, 𝜀 = 0.06 is fixed for

the remaining experiments.

482 Z. Bai et al.

Ta
bl
e
3

1
0
-
fo

ld
c
ro

s
s
-
v
a
li

d
a
ti

o
n

R
M

S
E

w
it

h
d
iff

e
r
e
n
t
𝜀

𝜀
=
0

𝜀
=
0.
02

𝜀
=
0.
04

𝜀
=
0.
06

𝜀
=
0.
08

𝜀
=
0.
10

𝜀
=
0.
12

𝜀
=
0.
14

B
o
d
y

fa
t

0.
06
08

0
.0

6
7
6

0
.0

7
4
7

0
.0

8
1
7

0
.0

8
8
2

0
.0

9
6
2

0
.0

9
9
3

0
.1

0
4
1

M
p
g

0.
04
76

0
.0

5
0
4

0
.0

4
9
7

0
.0

5
2
5

0
.0

5
7
0

0
.0

6
4
3

0
.0

6
8
4

0
.0

7
3
4

H
o
u
s
in

g
0
.0

6
1
2

0.
05
69

0
.0

6
0
7

0
.0

6
6
8

0
.0

7
5
6

0
.0

8
2
9

0
.0

9
0
5

0
.0

9
9
0

C
o
n
c
r
e
te

0.
08
98

0
.0

9
0
4

0
.0

9
1
5

0
.0

9
3
8

0
.0

9
6
7

0
.0

9
7
4

0
.1

0
0
0

0
.1

0
3
8

M
g

0
.1

4
4
2

0
.1

4
4
2

0
.1

4
4
1

0.
14
08

0
.1

4
1
0

0
.1

4
0
9

0
.1

4
2
3

0
.1

4
4
5

S
p

a
c
e
g
a

0.
03
20

0
.0

3
3
1

0
.0

3
4
3

0
.0

3
7
4

0
.0

4
2
2

0
.0

4
9
8

0
.0

5
8
9

0
.0

6
2
7

A
b
a
lo

n
e

0
.0

7
8
1

0
.0

7
8
4

0
.0

7
7
8

0.
07
77

0
.0

7
8
3

0
.0

8
0
0

0
.0

8
2
4

0
.0

8
8
7

W
in

e
q
u
a
li

ty
0
.1

2
4
0

0
.1

2
3
4

0.
12
25

0.
12
25

0
.1

2
3
8

0
.1

2
3
4

0
.1

2
3
0

0
.1

2
4
0

C
p

u
s
m

a
ll

0
.0

3
1
3

0.
03
07

0
.0

3
2
5

0
.0

3
6
3

0
.0

4
2
8

0
.0

5
3
0

0
.0

5
7
5

0
.0

6
2
6

C
a
d

a
ta

0
.1

2
1
4

0
.1

2
1
0

0
.1

2
0
5

0.
12
02

0
.1

2
0
3

0
.1

2
0
5

0
.1

2
1
1

0
.1

2
2
4

C
A

S
P

0
.2

3
4
8

0
.2

3
4
3

0
.2

3
3
4

0
.2

3
2
0

0
.2

3
1
0

0
.2

3
0
0

0
.2

2
9
3

0.
22
87

Sparse Extreme Learning Machine for Regression 483

5.4 Parameter Specification

Linear kernelK(𝐮, 𝐯) = 𝐮 ⋅ 𝐯 and Gaussian kernelK(𝐮, 𝐯) = exp

(
− ‖𝐮−𝐯‖2

2𝜎2

)
are eval-

uated with 20 values: [2−9, 2−8,… , 210]. In addition, Sigmoid activation function is

utilized for the random hidden nodes form, where L = 29 is selected for all the prob-

lems. Optimal parameters are selected based on 10-fold cross-validation accuracy

and specified in Table 4.

5.5 Performance Comparison

In this section, the proposed method is compared with the unified ELM and SVR. It

is reasonably assumed that the mean RMSE over 20 repetitions provides a credible

estimate of the algorithm’s performance on each data set.

Tables 5, 6 and 7 list the detailed performance with linear kernel, Gaussian ker-

nel and Sigmoid hidden nodes. For each problem, the smallest testing RMSE and

shortest training time are highlighted.

1. Generalization performance: sparse ELM is compared with the unified ELM and

SVR separately in generalization performance. Wilcoxon signed ranks test is a

statistical test suitable for the comparison of two methods [15]. The test value

between sparse ELM and SVR with Gaussian kernel is z = −2.0449 < −1.96.

Thus, sparse ELM achieves better performance at the significance level 𝛼 = 0.05
in this case. Similarly, the test is conducted between sparse ELM and SVR with

linear kernel and z = −1.9560 > −1.96. Thus, it is highly probable that sparse

ELM presents better performance, even though it cannot be stated as statistically

significant.

Furthermore, Wilcoxon test is also conducted between sparse ELM and the uni-

fied ELM. And the z values are all bigger than −1.96: −0.9780 for linear kernel,

−0.5335 for Gaussian kernel and −1.6893 for Sigmoid hidden nodes. Conse-

quently, the performance of sparse ELM and unified ELM are comparable.

2. Training and testing speed: compared with the unified ELM, sparse ELM achieves

faster training speed when dealing with large data sets, because it requires com-

plexity of lower order. When the data set is small, sparse ELM costs more training

time. However, the training speed is not a big issue for small data sets. In addi-

tion, the testing speed of sparse ELM is faster than the unified ELM.

Comparing to SVR, sparse ELM achieves much faster training and testing speed

as easily observed from Tables 5 and 6.

3. Number of SVs: as shown in Table 8, the proposed method does provide a sparse

network. Therefore, less storage space is needed than the unified ELM.

However, when comparing to SVR, it is not definite whether the proposed sparse

ELM or SVR provides a more compact network.

484 Z. Bai et al.

Ta
bl
e
4

P
a
r
a
m

e
te

r
s
p
e
c
ifi

c
a
ti

o
n
s

D
a
ta

s
e
ts

S
p
a
r
s
e

E
L

M
U

n
ifi

e
d

E
L

M
S

V
R

L
in

e
a
r

k
e
r
n
e
l

G
a
u

s
s
ia

n
k
e
r
n
e
l

S
ig

m
o

id

n
o
d
e
s

L
in

e
a
r

k
e
r
n
e
l

G
a
u

s
s
ia

n
k
e
r
n
e
l

S
ig

m
o

id

n
o
d
e
s

L
in

e
a
r

k
e
r
n
e
l

G
a
u

s
s
ia

n
k
e
r
n
e
l

C
C

𝜎
C

C
𝜎

C
C

C
C

C
B

o
d
y
fa

t
20

21
22

22
26

21
0

24
26

22
20

22

M
p
g

22
25

21
23

27
21

0
22

21
0

20
25

22

H
o
u
s
in

g
20

22
21

20
24

21
0

25
24

2−
2

23
23

C
o
n
c
r
e
te

23
21

20
22

21
27

20
24

2−
2

21
2−

1

M
g

20
20

20
23

21
23

20
21

0
26

21
20

S
p

a
c
e
g
a

23
21

21
21

29
29

23
26

23
22

22

A
b
a
lo

n
e

20
20

20
20

23
28

21
21

0
22

22
20

W
in

e
q
u
a
li

ty
2−

5
2−

2
21

2−
2

26
21

20
25

21
21

22

C
p

u
s
m

a
ll

2−
4

22
20

21
23

28
20

21
0

2−
2

2−
1

20

C
a
d

a
ta

20
20

20
21

25
21

20
26

21
21

20

C
A

S
P

20
20

20
20

22
20

2−
2

21
0

20
20

20

Sparse Extreme Learning Machine for Regression 485

Ta
bl
e
5

P
e
r
fo

r
m

a
n

c
e

o
f

s
p

a
r
s
e

E
L

M
,

u
n

ifi
e
d

E
L

M
a
n

d
S

V
R

w
it

h
li

n
e
a
r

k
e
r
n
e
l

D
a
ta

s
e
t

S
p

a
r
s
e

E
L

M
U

n
ifi

e
d

E
L

M
S

V
R

T
ra

in
in

g

R
M

S
E

T
e
s
ti

n
g

R
M

S
E

T
ra

in
in

g

ti
m

e
(
s
)

T
e
s
ti

n
g

ti
m

e
(
s
)

T
ra

in
in

g

R
M

S
E

T
e
s
ti

n
g

R
M

S
E

T
ra

in
in

g

ti
m

e
(
s
)

T
e
s
ti

n
g

ti
m

e
(
s
)

T
ra

in
in

g

R
M

S
E

T
e
s
ti

n
g

R
M

S
E

T
ra

in
in

g

ti
m

e
(
s
)

T
e
s
ti

n
g

ti
m

e
(
s
)

B
o

d
y

fa
t

0
.0

5
3
4

0
.0

4
3
6

0
.0

0
6
6

0
.0

0
0
1

0
.0

3
3
6

0.
01
61

0.
00
51

0
.0

0
1
0

0
.0

4
0
2

0
.0

3
6
8

0
.0

2
6

8
0

.0
0

0
2

M
p
g

0
.0

6
6
0

0.
13
41

0
.0

4
2
4

0
.0

0
0
4

0
.0

6
0
2

0
.1

5
0
0

0.
00
39

0
.0

0
1
4

0
.0

6
0
4

0
.1

4
5
2

0
.0

5
6

2
0

.0
0

0
7

H
o
u
s
in

g
0
.0

7
4
3

0.
14
55

0
.0

1
9
3

0
.0

0
0
4

0
.0

7
1
6

0
.1

5
0
7

0.
00
73

0
.0

0
1
2

0
.0

7
2
3

0
.1

5
4
3

0
.0

8
3

2
0

.0
0

0
8

C
o
n
c
r
e
te

0
.1

4
8
5

0.
12
72

0
.3

4
2
0

0
.0

0
1
2

0
.1

4
5
7

0
.1

4
0
2

0.
02
17

0
.0

0
2
5

0
.1

4
6
2

0
.1

2
9
4

0
.7

2
8

3
0

.0
0

3
4

M
g

0
.1

6
7
4

0.
15
70

0
.0

8
4
0

0
.0

0
2
9

0
.1

6
6
6

0
.1

5
8
2

0.
02
59

0
.0

0
4
4

0
.1

6
6
8

0
.1

5
7
2

1
.8

1
3

5
0

.0
0

7
0

S
p

a
c
e
g
a

0
.0

4
7
7

0.
04
06

0
.3

4
2
4

0
.0

0
2
6

0
.0

3
9
5

0
.0

4
3
5

0.
13
90

0
.0

2
9
1

0
.0

3
9
8

0
.0

4
3
6

4
.5

0
9

2
0

.0
2

0
5

A
b
a
lo

n
e

0
.0

8
0
2

0.
07
71

0.
30
49

0
.0

1
3
1

0
.0

8
0
6

0
.0

7
7
4

0
.3

1
7
1

0
.0

5
0
2

0
.0

8
0
2

0
.0

7
7
6

1
9

.6
1

1
4

0
.0

4
4

7

W
in

e
q
u
a
li

ty
0
.1

3
4
5

0
.1

2
7
3

0.
37
92

0
.0

3
6
8

0
.1

2
9
4

0.
12
43

0
.4

7
5
1

0
.0

5
6
2

0
.1

2
9
7

0
.1

2
6
6

4
6

.9
3

3
3

0
.0

9
5

2

C
p

u
s
m

a
ll

0
.1

1
4
7

0
.1

0
0
1

0.
50
04

0
.0

3
5
6

0
.1

0
3
6

0.
09
61

2
.1

6
9
1

0
.1

6
9
4

0
.1

2
1
2

0
.1

0
0
9

7
5

.7
3

0
2

0
.0

6
5

7

C
a
d

a
ta

0
.1

4
3
7

0.
15
16

10
.5
74
3

0
.4

5
4
7

0
.1

4
2
3

0
.1

5
3
6

1
5
.1

5
9
3

0
.8

1
5
3

0
.1

4
3
6

0
.1

5
3
7

3
5

4
8

.7
4

8
7

1
.3

9
2

1

C
A

S
P

0
.2

3
9
0

0.
24
13

10
2.
91
73

3
.5

1
2
6

0
.2

4
5
7

0
.2

4
8
3

1
1
6
.4

5
4
8

4
.7

8
7
8

0
.2

5
0
0

0
.2

5
2
9

1
4

4
0

0
.5

3
3

2
2

2
.9

3
6

2

486 Z. Bai et al.

Ta
bl
e
6

P
e
r
fo

r
m

a
n
c
e

o
f

s
p
a
r
s
e

E
L

M
,

u
n
ifi

e
d

E
L

M
a
n
d

S
V

R
w

it
h

G
a
u
s
s
ia

n
k
e
r
n
e
l

D
a
ta

s
e
t

S
p

a
r
s
e

E
L

M
U

n
ifi

e
d

E
L

M
S

V
R

T
ra

in
in

g

R
M

S
E

T
e
s
ti

n
g

R
M

S
E

T
ra

in
in

g

ti
m

e
(
s
)

T
e
s
ti

n
g

ti
m

e
(
s
)

T
ra

in
in

g

R
M

S
E

T
e
s
ti

n
g

R
M

S
E

T
ra

in
in

g

ti
m

e
(
s
)

T
e
s
ti

n
g

ti
m

e
(
s
)

T
ra

in
in

g

R
M

S
E

T
e
s
ti

n
g

R
M

S
E

T
ra

in
in

g

ti
m

e
(
s
)

T
e
s
ti

n
g

ti
m

e
(
s
)

B
o

d
y

fa
t

0
.0

5
1
6

0
.0

4
2
5

0
.0

0
6
6

0
.0

0
0
1

0
.0

3
3
3

0.
01
62

0.
00
34

0
.0

0
0
9

0
.0

5
2
2

0
.0

4
3
9

0
.0

2
2

4
0

.0
0

0
3

M
p
g

0
.0

5
0
4

0.
12
11

0
.0

1
9
3

0
.0

0
0
4

0
.0

4
0
5

0
.1

2
1
6

0.
00
42

0
.0

0
1
2

0
.0

4
6
4

0
.1

2
2
8

0
.0

4
7

1
0

.0
0

0
7

H
o
u
s
in

g
0
.0

5
1
0

0.
12
84

0
.0

4
8
0

0
.0

0
0
8

0
.0

7
1
5

0
.1

4
9
6

0.
00
61

0
.0

0
3
3

0
.0

7
0
0

0
.1

5
0
9

0
.0

6
4

7
0

.0
0

1
2

C
o
n
c
r
e
te

0
.0

6
7
1

0.
12
41

0.
07
42

0
.0

0
2
7

0
.0

5
0
3

0
.1

3
9
4

0
.0

8
2
7

0
.0

0
9
9

0
.0

5
8
3

0
.1

5
0
9

0
.7

4
8

1
0

.0
0

5
8

M
g

0
.1

3
0
7

0
.1

3
4
1

0
.0

9
8
7

0
.0

0
9
3

0
.1

2
7
2

0.
13
19

0.
03
59

0
.0

1
6
6

0
.1

2
7
9

0
.1

3
4
7

1
.7

1
3

6
0

.0
1

4
3

S
p

a
c
e
g
a

0
.0

4
1
2

0.
03
85

0.
14
99

0
.0

0
8
3

0
.0

3
5
8

0
.0

4
0
1

0
.1

9
0
5

0
.0

8
8
0

0
.0

4
1
4

0
.0

4
2
2

4
.3

2
9

2
0

.0
3

0
7

A
b
a
lo

n
e

0
.0

7
5
3

0
.0

7
3
8

0
.3

5
8
0

0
.0

4
6
0

0
.0

7
3
8

0.
07
35

0.
34
28

0
.1

4
7
7

0
.0

7
3
6

0
.0

7
4
2

1
8

.6
7

2
5

0
.1

2
8

1

W
in

e
q
u
a
li

ty
0
.1

2
6
2

0.
12
00

0
.5

2
3
3

0
.1

3
2
8

0
.1

1
7
7

0
.1

2
0
4

0.
48
16

0
.2

0
3
5

0
.1

2
7
4

0
.1

2
0
8

4
5

.1
6

5
6

0
.3

3
0

0

C
p

u
s
m

a
ll

0
.0

3
1
7

0
.0

4
0
7

1.
21
19

0
.0

3
8
2

0
.0

2
4
8

0.
03
52

1
.6

6
2
9

0
.5

5
0
5

0
.0

3
4
8

0
.0

3
8
3

6
1

.2
2

9
7

0
.1

3
5

4

C
a
d

a
ta

0
.1

1
9
7

0
.1

4
2
3

8.
91
24

1
.5

9
7
7

0
.1

2
0
3

0
.1

4
3
3

1
5
.3

3
7
6

3
.2

9
2
8

0
.1

1
7
1

0.
14
17

2
8

1
3

.5
9

3
0

3
.0

7
1

0

C
A

S
P

0
.1

8
7
4

0.
20
26

51
.6
68
8

1
5
.2

4
7
6

0
.1

9
3
5

0
.2

0
4
6

1
2
1
.2

5
1
9

2
4
.9

6
2
7

0
.2

3
0
7

0
.2

3
5
4

1
2

2
6

9
.6

4
3

6
4

1
.0

6
1

4

Sparse Extreme Learning Machine for Regression 487

Ta
bl
e
7

P
e
r
fo

r
m

a
n
c
e

o
f

s
p
a
r
s
e

E
L

M
a
n
d

u
n
ifi

e
d

E
L

M
w

it
h

S
ig

m
o
id

h
id

d
e
n

n
o
d
e
s

D
a
ta

s
e
t

S
p
a
r
s
e

E
L

M
U

n
ifi

e
d

E
L

M

T
ra

in
in

g
R

M
S

E
T

e
s
ti

n
g

R
M

S
E

T
ra

in
in

g
ti

m
e

(
s
)

T
e
s
ti

n
g

ti
m

e
(
s
)

T
ra

in
in

g
R

M
S

E
T

e
s
ti

n
g

R
M

S
E

T
ra

in
in

g
ti

m
e

(
s
)

T
e
s
ti

n
g

ti
m

e
(
s
)

B
o
d
y
fa

t
0
.0

5
2
4

0
.0

4
4
8

0
.0

1
0
5

0
.0

0
3
2

0
.0

3
3
1

0.
01
98

0.
00
67

0
.0

0
4
7

M
p
g

0
.0

6
0
3

0
.1

3
8
9

0
.0

5
8
3

0
.0

0
3
0

0
.0

4
3
9

0.
12
31

0.
00
86

0
.0

0
8
5

H
o
u
s
in

g
0
.0

8
3
5

0.
13
67

0
.0

1
6
6

0
.0

0
8
1

0
.0

7
1
7

0
.1

4
3
6

0.
00
90

0
.0

0
9
1

C
o
n
c
r
e
te

0
.1

2
2
4

0.
13
74

0
.1

6
3
0

0
.0

1
8
8

0
.1

2
4
3

0
.1

4
0
7

0.
05
34

0
.0

4
6
5

M
g

0
.1

5
5
5

0
.1

4
5
0

0
.5

0
4
5

0
.0

2
8
6

0
.1

3
5
9

0.
13
30

0.
04
00

0
.0

3
7
0

S
p

a
c
e
g
a

0
.0

4
7
4

0
.0

4
5
0

0
.3

1
6
6

0
.0

3
6
9

0
.0

3
7
4

0.
04
01

0.
18
23

0
.1

2
4
6

A
b
a
lo

n
e

0
.0

8
1
9

0
.0

7
8
5

0.
33
97

0
.0

9
2
0

0
.0

7
5
6

0.
07
41

0
.4

4
5
9

0
.2

2
0
8

W
in

e
q
u
a
li

ty
0
.1

3
1
8

0
.1

2
2
1

0.
50
67

0
.2

0
8
9

0
.1

2
6
7

0.
12
10

0
.6

4
7
5

0
.3

2
1
6

C
p

u
s
m

a
ll

0
.0

3
4
5

0.
03
73

1.
03
75

0
.2

3
8
9

0
.0

3
3
3

0
.0

3
7
6

2
.1

9
9
1

0
.8

1
3
2

C
a
d

a
ta

0
.1

4
0
9

0.
14
97

13
.4
12
2

1
.9

6
1
1

0
.1

3
2
2

0
.1

4
9
8

2
1
.3

4
1
6

4
.0

0
5
6

C
A

S
P

0
.2

4
6
7

0
.2

4
9
5

59
.3
27
3

6
.7

3
6
5

0
.2

3
1
4

0
.2

3
4
7

7
0
.7

2
2
0

9
.4

2
3
3

488 Z. Bai et al.

Ta
bl
e
8

N
u
m

b
e
r

o
f

s
u
p
p
o
r
t

v
e
c
to

r
s

D
a
ta

s
e
t

#
T

o
ta

l

v
e
c
to

r
s

S
p
a
r
s
e

E
L

M
U

n
ifi

e
d

E
L

M
S

V
R

L
in

e
a
r

k
e
r
n
e
l

G
a
u

s
s
ia

n

k
e
r
n
e
l

S
ig

m
o
id

n
o
d
e
s

L
in

e
a
r

k
e
r
n
e
l

G
a
u

s
s
ia

n

k
e
r
n
e
l

S
ig

m
o

id

n
o
d
e
s

L
in

e
a
r

k
e
r
n
e
l

G
a
u

s
s
ia

n

k
e
r
n
e
l

B
o
d
y
fa

t
1
2
6

1
9

1
5

1
3
.6

5
1
2
6

1
2
6

1
2
6

1
6

2
0

M
p
g

1
9
6

4
7

3
8

3
5
.3

0
1
9
6

1
9
6

1
9
6

5
8

4
7

H
o
u
s
in

g
2
5
3

8
9

6
9

8
3
.4

5
2
5
3

2
5
3

2
5
3

9
5

9
0

C
o
n
c
r
e
te

5
1
5

3
1
3

2
1
2

2
7
8
.2

5
5
1
5

5
1
5

5
1
5

3
3
5

2
3
3

M
g

6
9
3

4
9
7

4
3
0

4
2
9
.5

5
6
9
3

6
9
3

6
9
3

5
0
0

4
1
8

S
p

a
c
e
g
a

1
5
5
4

9
3

1
1
2

1
5
2
.6

0
1
5
5
4

1
5
5
4

1
5
5
4

1
8
1

1
7
4

A
b
a
lo

n
e

2
0
8
9

6
4
2

6
5
9

6
3
1
.4

0
2
0
8
9

2
0
8
9

2
0
8
9

7
0
3

6
7
1

W
in

e
q
u
a
li

ty
2
4
4
9

1
6
0
1

1
5
7
2

1
5
8
5
.5

5
2
4
4
9

2
4
4
9

2
4
4
9

1
5
7
4

1
6
0
2

C
p

u
s
m

a
ll

4
0
9
6

8
5
8

2
1
5

7
4
5
.8

0
4
0
9
6

4
0
9
6

4
0
9
6

7
4
5

2
8
0

C
a
d

a
ta

1
0
3
2
0

5
6
8
4

4
7
9
8

5
3
0
5
.4

0
1
0
3
2
0

1
0
3
2
0

1
0
3
2
0

6
0
4
1

4
8
7
9

C
A

S
P

2
2
8
6
5

1
8
2
3
2

1
6
4
4
2

1
7
8
9
2
.1

0
2
2
8
6
5

2
2
8
6
5

2
2
8
6
5

1
8
6
0
9

1
6
6
4
4

Sparse Extreme Learning Machine for Regression 489

6 Conclusions and Future Work

In this paper, a sparse ELM is proposed to solve regression problems. It provides a

sparse network, requiring less storage space and testing time than the unified ELM.

Furthermore, an efficient training algorithm, which is based on iterative computa-

tion, is developed for proposed method. It has several distinct merits: (1) no sum

constraint
∑N

i=1 𝜆i = 0 and bias b that exist in the SVR, eliminating the inefficiency

associated with the sum constraint and bias; (2) no memory issue as it only needs to

calculate and store the values encountered in each step, which are quite few; (3) less

computational complexity than the unified ELM, so that it achieves faster training

speed when dealing with large data sets; (4) sparse network is provided, and thus

requiring less storage space and testing time.

In conclusion, the proposed method is preferred when facing large-scale regres-

sion problems, such as neuroscience, image processing, time series prediction, etc.

In the future, we will try to realize parallel implementation of sparse ELM and to use

kernel cache, which was introduced in [16], to further improve the training speed of

sparse ELM.

Acknowledgments This work was supported by the Singapore Academic Research Fund (AcRF)

Tier 1 under Project RG 80/12 (M4011092).

References

1. Bai, Z., Huang, G.-B., Wang, D., Wang, H., Westover, M.B.: Sparse extreme learning machine

for classification. IEEE Trans. Cybern. 44(10), 1858–1870 (2014)

2. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications.

Neurocomputing 70, 489–501 (2006)

3. Huang, G.-B., Bai, Z., Kasun, L.L.C., Vong, C.M.: Local receptive fields based extreme learn-

ing machine. IEEE Comput. Intell. Mag. 10(2), 18–29 (2015)

4. Bai, Z., Kasun, L.L.C., Huang, G.-B.: Generic object recognition with local receptive fields

based extreme learning machine. Procedia Comput. Sci. 53, 391–399 (2015)

5. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and

multiclass classification. IEEE Trans. Syst. Man Cybern. Part B 42(2), 513–529 (2012)

6. Drucker, H., Burges, C.J., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression

machines. In: Mozer, M., Jordan, J., Petscbe, T. (eds.) Neural Information Processing Systems

9, pp. 155–161. MIT Press, Cambridge (1997)

7. Smola, A., Schölkopf, B.: A tutorial on support vector regression. Stat. comput. 14(3), 199–222

(2004)

8. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1999)

9. Steinwart, I., Hush, D., Scovel, C.: Training SVMs without offset. J. Mach. Learn. Res. 12,

141–202 (2011)

10. Flake, G.W., Lawrence, S.: Efficient SVM regression training with SMO. Mach. Learn.

46(1–3), 271–290 (2002)

11. Osuna, E., Freund, R., Girosi, F.: An improved training algorithm for support vector machines.

In: Neural Networks for Signal Processing [1997] VII. Proceedings of the 1997 IEEE Work-

shop, pp. 276–285. IEEE, New York (1997)

490 Z. Bai et al.

12. Canu, S., Grandvalet, Y., Guigue, V., Rakotomamonjy, A.: SVM and kernel methods matlab

toolbox. Perception Systmes et Information. INSA de Rouen, Rouen, France (2005)

13. Frank, A., Asuncion, A.: UCI Machine Learning Repository (2010)

14. Smola, A., Murata, N., Schölkopf, B., Müller, K.-R.: Asymptotically optimal choice of 𝜀-loss

for support vector machines. In: ICANN 98, pp. 105–110. Springer, Berlin (1998)

15. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res.

7, 1–30 (2006)

16. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell.

Syst. Technol. 2(3), 27 (2011)

WELM: Extreme Learning Machine
with Wavelet Dynamic Co-Movement
Analysis in High-Dimensional Time Series

Heng-Guo Zhang, Rui Nian, Yan Song, Yang Liu, Xuefei Liu
and Amaury Lendasse

Abstract In this paper, we propose a fast and efficient learning approach called
WELM based on Extreme Learning Machine and 3-D Wavelet Dynamic
Co-Movement Analysis to enhance the speed and precision of big data prediction.
3-D Wavelet Dynamic Co-Movement Analysis is firstly employed to transform
optimization problems from an original higher-dimensional space to a new
lower-dimensional space while preserving the optimum of the original function, and
then ELM is utilized to train and forecast the whole process. WELM model is used
in the volatility of time series prediction. The forecasts obtained by WELM has
been compared with ELM, PCA-ELM, ICA-ELM, KPCA-ELM, SVM and
GARCH type models in terms of closeness to the realized volatility. The compu-
tational results demonstrate that the WELM provides better time series forecasts
and it shows the excellent performance in the accuracy and efficiency.

Keywords Extreme learning machine ⋅ Wavelet dynamic Co-Movement analy-
sis ⋅ High-dimensional space ⋅ Volatility ⋅ GARCH models

R. Nian (✉) ⋅ Y. Song ⋅ Y. Liu
College of Information Science and Engineering, Ocean University of China,
266003 Qingdao, China
e-mail: nianrui_80@163.com

H.-G. Zhang ⋅ X. Liu
School of Economics, Ocean University of China, 266003 Qingdao, China

A. Lendasse
Arcada University of Applied Sciences, 00550 Helsinki, Finland

A. Lendasse
Department of Mechanical and Industrial Engineering and the Iowa
Informatics Initiative, The University of Iowa, Iowa City, IA 52242-1527, USA

© Springer International Publishing Switzerland 2016
J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,
Proceedings in Adaptation, Learning and Optimization 7,
DOI 10.1007/978-3-319-28373-9_40

491

1 Introduction

In the Era of Big Data, how to forecast and model the fluctuation of time series
turns out to be one of most challenging topic. Motivated with 3-D Wavelet
Dynamic Co-Movement Analysis [1–5], we come up with a fast and efficient
Wavelet Analysis approach for the big data via ELM [6, 7]. We first transform
optimization problems from an original high dimensional space to a new low
dimensional space while preserving the optimum of the original function by 3-D
Wavelet Dynamic Co-Movement Analysis, and then employ ELM to forecast the
volatility of time series, and the relevant mathematical criterion of the model
selection will also be developed for the performance improvements.

The rest of the paper is organized as follows. In Sect. 2, we propose a model
called WELM based on Extreme Learning Machine and 3-D Wavelet Dynamic
Co-Movement Analysis. Section 3 comes to the conclusions.

2 Fast 3-D Wavelet Dynamic Co-Movement Analysis
via ELM

2.1 General Model

The basic idea of the proposed method is that 3-D Wavelet Dynamic Co-Movement
Analysis is firstly employed to transform optimization problems from an original
higher-dimensional space to a new lower-dimensional space while preserving the
optimum of the original function, and then ELM is utilized to train and forecast the
whole process. In this paper, employing 3-D Wavelet Dynamic Co-Movement
Analysis, we pick out the decisive features which can reflect the whole time or most
time domains and cover a wide range of frequencies in frequency domains and have
a high strength both in time frequency domains as the input of ELM learning. Let
the time series set X1:T , i = ½x1i, . . . , xti, . . . , xTi� as an input in the train set for 3-D
Wavelet Dynamic Co-Movement Analysis contain T samples, t=1, . . . ,T . X1:T , i

belongs to the original features set Xt = fXt1, . . . ,Xti, . . . ,XtNg as an input in the
train set or the test set composed of N features for ELM learning, i=1, . . . ,N. After
selecting features by 3-D Wavelet Dynamic Co-Movement Analysis, the decisive
features can be written as X′

t = fX′
t1, . . . ,X

′
tj, . . . ,X

′
tMg in a new lower-dimensional

space, t=1, 2 . . . , T and 1≤ j≤M,M ≤N. Once a set of SLFNs is reasonably
established via ELM leaning with the help of 3-D Wavelet Dynamic Co-Movement
Analysis, the decisive features set can Let the train set X′

t = fX′
t1, . . . ,X

′
tj, . . . ,X

′
tMg

contain M features, with each feature X′
tj composed of T − c− 1 samples when

t=1, 2, . . . ,T − c− 1.c is constant. Let the test set X′
t = fX′

t1, . . . ,X
′
tj, . . . ,X

′
tMg

contain M features, with each feature X′
tj composed of c samples when

t= T − c, . . . ,T − 1, T . c is constant. The normalized test input can be written as

492 H.-G. Zhang et al.

X′′
t = fX′′

t1, . . . ,X
′′
tj , . . . ,X

′′
tMg, t=T − c, . . . , T − 1, T and c is constant. The flow

chart of our method is shown in Fig. 1. The model selection strategy is further
developed in SLFN so as to well fit the simulation process of 3-D Wavelet Dynamic
Co-Movement Analysis via ELM ensemble. The decision is mainly made for the
following parameters, i.e., the number of the window sizes Wα, 1≤Wα ≤ T , the
number of the hidden nodes Pμ, 1≤Pμ ≤Pμmax and the dimensionality
Dγ, 1≤Dγ ≤N. In SLFN, the test output of the low dimensional representation
in each SLFN can be represented in the Dγ dimensional space as
YtestðWa,Dγ ,PμÞ= ½yT − c, . . . , yT − 1, yT �T , t= T − c, T − 1, T and c is constant.

2.2 ELM Learning Based 3-D Wavelet Dynamic
Co-Movement Analysis

In this paper, we take the ELM learning strategies to perform a fast
low-dimensional representation on the basis of 3-D Wavelet Dynamic
Co-Movement Analysis and develop the relevant mathematical criterion. Let the
decisive features set X′

t = fX′
t1, . . . ,X

′
tj, . . . ,X

′
tMg range from trmin to trmax, each

feature X′
tj in X′

t can be mapped into a normalized feature X′′
tj by calculating

Test Input Training Input

Preprocessing Standardization Normalization

Model Generator

Window Number

Dimensionality

Hiden Node Number

3-D Wavelet Dynamic
Co-Movement Analysis

Wavelet Power Spectrum

Wavelet Coherency

Discretization

ELM Ensemble (Kernel)

….

….

ELM

ELM

ELM

ELM

ELM

ELM

ELM

ELM

ELM

Volatility Forecast

MAE RMSE

Hiden Node Number

1: T,iX

Fig. 1 The flowchart of our proposed approach

WELM: Extreme Learning Machine … 493

X′′
tj = ðX′

tj − trminÞ ð̸trmax − trminÞ, t=1, . . . ,T , j=1, . . . ,M, so that the normalized
decisive features X′′

t = fX′′
t1, . . . ,X

′′
tj , . . . ,X

′′
tMg can be considered as the train set or

the test set for ELM learning.

2.2.1 ELM Learning

In this paper, we try to simply realize the 3-D Wavelet Dynamic Co-Movement
Analysis by means of ELM techniques. We propose to facilitate the entire ELM
learning in an ensemble at several levels. Let X′′

t = fX′′
t1, . . . ,X

′′
tj , . . . ,X

′′
tMg

t=1, 2, . . . ,T − c− 1, j=1, . . . ,M be the train set for ELM learning. c is constant.
In general, ELM is to minimize the training error as well as the norm of the output
weights:

Minimize: H ̃β′′ − Y
�� ��2 and β′′

�� �� ð1Þ

where H ̃ is the hidden-layer output matrix

H ̃=
h1ðX′′

11Þ ⋯ hPðX′′
1MÞ

⋮ ⋮ ⋮
h1ðX′′

T1Þ ⋯ hPðX′′
TMÞ

264
375

=

gða1 ×X′′
11 + b1Þ ⋯ gðaP ×X′′

1M + bPÞ
⋮ ⋮ ⋮

gða1 ×X′′
T1 + b1Þ ⋯ gðaP ×X′′

TM + bPÞ

264
375
M ×P

ð2Þ

Seen from (2), to minimize the norm of the output weights β′′
�� �� is actually to

maximize the distance of the separating margins of the two different classes in the
ELM feature space: 2 ̸ β′′

�� ��.
The minimal norm least square method instead of the standard optimization

method was used in the original implementation of ELM:

β′′ =H ̃†Y ð3Þ

where H ̃† is the Moore–Penrose generalized inverse of matrix H ̃. The orthogonal

projection method can be used in two cases: when H ̃TH ̃ is nonsingular and

H ̃† = ðHT̃
H ̃Þ− 1H ̃T , or when H ̃TH ̃ is nonsingular and H ̃† =H ̃TðH ̃H ̃Þ− 1. If the

Number of Training Samples is Not Huge, then we can get

β′′ =H ̃Tð I
C

+H ̃H ̃TÞ− 1Y ð4Þ

494 H.-G. Zhang et al.

If the Number of Training Samples is Huge and we have:

β′′ = ð I
C

+H ̃TH ̃Þ− 1H ̃TY ð5Þ

After 3-D Wavelet Dynamic Co-Movement Analysis, the whole process is
further conducted by the ELM ensemble when different types of SLFNs are
established with all kinds of variations in the number of the window sizes Wα, the
number of the hidden nodes Pμ and the dimensionality Dr. Then learning model of
each SLFN in the ELM ensemble can be written as follows,

yt+1ðWa,Dγ ,PμÞ= fPμðX′′
t Þ= hðX′′

t Þβ′′ ð6Þ

where t=T − c, . . . ,T − 1, T , 1≤Pμ ≤Pμmax. β′′ is the vector of the output weights
between the hidden layer of Pμ nodes and the output node in the low dimensional
space. hðX′′

t Þ is the output (row) vector of the hidden layer with respect to the input
X′′
t in the low dimensional space from the training set.
The purpose is to generate multiple versions of ELM learning from different

perspective, which will decide the Dr, Pμ, Dr in the model selection. A collection of
the component SLFNs is organized into the ELM ensemble to seek a better
expression of the low-dimensional space. Theoretically, the model selection of the
ELM ensemble architecture is as follows.

2.2.2 The Decision of the Dimensionality Dr

In the ELM ensemble, when the Wα and the Pμ are fixed, a set of actual training
output Y = fyðWα, 1,PμÞ, . . . , yðWα,Dγ,PμÞ, . . . , yðWα,Nγ ,PμÞg in different kinds
of SLFNs, mathematically correlated with the parameters Dr, will be obtained from
the time series set X1: T , i = ½x1i, . . . , xti, . . . , xTi�, t=1, . . . ,T . In this paper,

employing the wavelet power spectrum GX1: T , iX1: T , 0 τ,ϑð Þ�� ��2 and the wavelet coher-
ency Γ2

X1:T , iX1:T , 0
τ,ϑð Þ, we pick out the decisive features. Therefore, the decisive

features can determine the dimension Dr.
Wavelet power spectrum. In this paper, we define a wavelet power spectrum

GX1:T , i τ,ϑð Þ�� ��2 for the time series set X1:T , i = ½x1i, . . . , xti, . . . , xTi�, t=1, . . . ,T is

GX1: T , i
τ, ϑð Þ

��� ���2 =GX1:T , i
τ,ϑð ÞG*

X1:T , i
τ,ϑð Þ ð7Þ

From the CWT of the time series, one can construct the cross wavelet transform
(XWT). We can similarly define a cross-wavelet transform of the time series set
X1: T , i = ½x1i, . . . , xti, . . . , xTi� and X1: T , 0 = ½x10, . . . , xt0, . . . , xT0�, t=1, . . . ,T as
GX1: T, iX1: T, 0 τ, ϑð Þ=GX1:T , i τ,ϑð ÞG*

X1: T , 0
τ,ϑð Þ. The cross-wavelet power spectrum can

WELM: Extreme Learning Machine … 495

be a measure of the localized covariance between the time series X1:T , i and X1:T , 0

for the specified frequency, which is accordingly written as:

GX1:T , iX1:T , 0 τ,ϑð Þ�� ��2 = GX1: T , i τ,ϑð Þ�� ��2 G*
X1: T, 0

τ,ϑð Þ
��� ���2 ð8Þ

If wavelet power spectrum GX1: T, iX1: T , 0 τ,ϑð Þ�� ��2 ≤ 0.5, the feature X1: T , i will be
deleted.

Wavelet coherency. The spectral density functions are RX1: T , i
ðΛÞ, i=1, 2, . . .N,

t=1, . . . T and RX1: T , 0ðΛÞ, t=1, 2, . . . ,T , − π ≤Λ< π, and the co-spectrum is
CSX1:T , iX1:T , 0ðΛÞ of the time series X1: T , i and X1: T , 0. In this paper, we define dynamic
correlation for the time series set X1: T , i = ½x1i, . . . , xti, . . . , xTi�, t=1, . . . , T is

ρX1: T, iX1: T, 0
ðΛÞ= CSX1:T , iX1:T , 0ΛÞffi

RX1: T , iX1: T , 0 Λð ÞRX1: T , iX1: T , 0 Λð Þp ð9Þ

We define the spectral decomposition of the time series X1:T , i and X1: T , 0:

X1:T , i =
Zπ
− π

eiνtdIX1: T, i ðΛÞ X1: T , 0 =
Zπ
− π

eiνtdIX1:T , 0 ðΛÞ ð10Þ

where dIX1: T, i ðΛÞ and dIX1:T , 0ðΛÞ are orthogonal increment processes.
As is well known, the spectral and cross-spectral density functions of the time

series X1: T , i and X1:T , 0 are related to the above representation:

RX1: T, iðΛÞ=varðeiνtdIX1:T , iðΛÞÞ=varðdIX1:T , iðΛÞÞ
RX1:T , 0ðΛÞ=varðeiνtdIX1:T , 0ðΛÞÞ=varðdIX1: T, 0ðΛÞÞ

CSX1:T , iX1:T , 0ðΛÞ= covðdIX1: T, iðΛÞdIX1: T , 0ðΛÞÞ
ð11Þ

If the time series X1: T , i is real, then dIX1:T , i ðΛÞ= dIX̄1:T , i ð−ΛÞ, so:

eiνtdIX1:T , i ðΛÞ+ e− iνtdIX1:T , ið−ΛÞ=2 cosðΛtÞdUX1: T , iðΛÞ− 2 sinðΛtÞdVX1:T , i
ðΛÞ ð12Þ

where dUX1:T , i and dVX1: T , i are the real and the imaginary part of the orthogonal
increment processes dIX1:T , i . So we can calculate ρX1:T , iX1:T , 0

ðΛÞ according to this.
Similarly, in this paper, we define the wavelet coherency for the time series set

X1: T , i = ½x1i, . . . , xti, . . . , xTi�, t=1, . . . , T is

ΓX1: T , iX1: T , 0ðτ,ϑÞ=
GX1:T , iX1:T , 0ðτ,ϑÞffi

GX1: T , iðτ,ϑÞGX1:T , 0ðτ, ϑÞ
p ð13Þ

496 H.-G. Zhang et al.

and

Γ2
X1:T , iX1:T , 0

τ, ϑð Þ= ½ℜGX1:T , iX1:T , 0 τ,ϑð Þ�2 + ½ℑGX1:T , iX1:T , 0 τ, ϑð Þ�2
GX1:T , i τ,ϑð ÞGX1: T , 0 τ,ϑð Þ

=
O ϑ− 1GX1:T , iX1:T , 0 τ, ϑð Þ� ��� ��2

O ϑ− 1 GX1:T , i τ,ϑð Þ�� ��2� �
⋅O ϑ− 1 G*

X1: T, 0
τ,ϑð Þ

��� ���2	
 ð14Þ

The functions ℜGX1: T, iX1: T, 0 τ,ϑð Þ and ℑGX1: T, iX1: T , 0 τ,ϑð Þ in (14) are respectively
the real and imaginary parts of GX1:T , iX1:T , 0 τ,ϑð Þ. Hence the co- and quadrature-
wavelet spectra of the time series X1:T , i and X1: T , 0. O is a smoothing operator.
Smoothing is achieved by convolution in time and frequency domain. We define
the smoothing operator O as:

OðGÞ=OsðOtðGðτ, ϑÞÞÞ ð15Þ

where Os is smoothing along the wavelet scale axis and Ot smoothing in time. For
the Morlet wavelet, a suitable smoothing operator is given

OsðGÞjϑ = ðGðτ,ϑÞ*e
− t2

2ϑ2

1 Þjϑ
OtðGÞjϑ = ðGðτ,ϑÞ*e2 ∏ð0.6ϑÞÞjt

ð16Þ

where e1 and e2 are normalization constants and Π is the rectangle function. The
statistical significance level of the wavelet coherence is estimated using Monte
Carlo methods.

The squared wavelet coherency Γ2
X1:T , iX1:T , 0

τ, ϑð Þ varies between 0 and 1, with a
high value showing strong co-movement between time series, and vice versa.
Therefore a graph of wavelet squared coherency will show regions in the time–-
frequency space. Zero coherency indicates no co-movement while the highest
coherency implies the strongest co-movement between time series. If wavelet
coherency Γ2

X1:T , iX1:T , 0
τ,ϑð Þ≤ 0.5, the feature X1:T , i will be deleted.

The phase difference ψX1:T , iX1:T , 0
which characterizes phase relationship between

the time series X1: T , i and X1:T , 0, in this paper, is defined as:

ψX1:T , iX1:T , 0
= tan− 1 ℂ O ϑ− 1GX1: T , iX1: T , 0 τ,ϑð Þ� �� �

ℚ O ϑ− 1GX1:T , iX1:T , 0 τ, ϑð Þ� �� � !
with ψX1: T , iX1:T , 0

∈ − π, π½ �

ð17Þ

where ℂ and ℚ are the imaginary and real parts of the smoothed cross-wavelet
transform, respectively. If phase difference ψX1: T, iX1: T, 0

∈ 0, π 2̸ð Þ and ψX1:T , iX1:T , 0
∈

− π, − π 2̸ð Þ, then the series move in phase (positively co-movement) with X1:T , i

WELM: Extreme Learning Machine … 497

leading X1:T , 0. If ψX1:T , iX1:T , 0
∈ π 2̸, πð Þ and ψX1:T , iX1: T, 0

∈ − π 2̸, 0ð Þ, then the series
move out of phase (negatively co-movement) with X1:T , 0 leading X1: T , i.

Discretization. In this paper, when the time series set X1: T , i =
½x1i, . . . , xti, . . . , xTi�, t=1, . . . , T with uniform time steps Δt is discrete, the CWT
is defined as the convolution of the discrete time series X1: T , i at time t and a scaled
α with the Morlet wavelet ϕ0 (t):

G
X1: T , i

τ,ϑð Þ=
ffiffiffiffiffi
Δt
ϑ

r
∑
Q

t′ =1
X1:T , i, t′ϕ0½ðt′ − tÞΔt

ϑ
� ð18Þ

where Q is the number of points in the time series. By varying the wavelet scale α
and translating along the localized time index t′, one can construct a picture
showing both the amplitude of any features versus the scale and how this amplitude
varies with time.

To approximate the continuous wavelet transform, the convolution (18) should
be done Q times for each scale, where Q is the number of points. By choosing
Q points, the convolution theorem allows us do all Q convolutions simultaneously
in Fourier space employing a Discrete Fourier Transform (DFT). The DFT of the
discrete time series X1:T , i is:

X ̂1: T , iðkÞ= 1
Q

∑
Q

t=1
X1:T , ie− 2πikt Q̸ ð19Þ

where k=1 . . .Q is the frequency index.
In the continuous limit, the Fourier transform of a function ϕðt ϑ̸Þ is given bybϕðϑϖÞ. According to the convolution theorem, the wavelet transform is the inverse

Fourier transform of the product:

GX1:T , i τ,ϑð Þ= ∑
Q

k=1
X ̂1:T , iðkÞbϕ*ðϑϖkÞeiϖk t▵t ð20Þ

where the (*) indicates the complex conjugate, and bϕðϑϖkÞ=
ffiffiffiffiffiffi
2πϑ
Δt

q bϕ0ðϑϖkÞ and

∑Q
k=1

bϕðϑϖkÞ
��� ���2 =Q, Q is the number of points. The angular frequency ϖk is

defined as:

ϖk =
2πk
QΔt k≤ Q

2

− 2πk
QΔt k> Q

2

(
ð21Þ

Employing (20) and a standard Fourier transform routine, one can calculate the
continuous wavelet transform (for a given ϑ) at all t simultaneously and efficiently.

498 H.-G. Zhang et al.

2.2.3 The Choose of the Number of Hidden Nodes Pμ

When the number of the window sizes Wα and the dimensionality Dr are fixed,
training ELM is Divided into two kinds of cases.

If the Number of Training Samples is Not Huge. The number of hidden nodes Pμ

can be much smaller than the number of training samples, the computational cost
reduces dramatically. We have

β′′ =H ̃Tð I
C

+H ̃H ̃TÞ− 1Y ð22Þ

The output function of ELM is

yt+1ðWα,Dr,PμÞ= f ðX′′
t Þ= hðX′′

t Þβ′′ = hðX′′
t ÞH

T̃ð I
C

+H ̃H ̃TÞ− 1Y ð23Þ

where 1≤ t≤ T − c− 1, 1≤Pμ ≤Pμmax.

The kernel matrix of ELM can be defined as follow. Let ΘELM =H ̃H ̃T :
ΘELMi, j = hðX′′

ti ÞhðX′′
tj Þ=KðX′′

ti ,X
′′
tj Þ. The output function of ELM can be written

compactly as:

yt+1ðWα,Dr,PμÞ= f ðX′′
t Þ= hðX′′

t Þβ′′ = hðX′′
t ÞH

T̃ð I
C

+H ̃H ̃TÞ− 1Y

=

KðX′′
t ,X

′′
t1Þ

. . .

KðX′′
t ,X

′′
TMÞ

264
375
T

ð I
C

+ΘELMÞ− 1Y
ð24Þ

If the Number of Training Samples is Huge. If the number of training data is very
large, for example, it is much larger than the dimensionality of the feature space, we
have an alternative solution. We have

β′′ =CH ̃Tξ

ξ=
I
C
ðHT̃Þ†β′′

H ̃TðH ̃+
I
C
ðHT̃Þ†Þβ′′ =H ̃TY

β′′ = ð I
C

+H ̃TH ̃Þ− 1H ̃TH ̃

ð25Þ

The output function of ELM can be written compactly as:

yt+1,Dγ ðWα,Dr,PμÞ= f ðX′′
t Þ= hðX′′

t Þβ′′ = hðX′′
t Þð

I
C

+H ̃TH ̃Þ− 1H ̃TH ̃ ð26Þ

where 1≤ t≤ T − c− 1, 1≤Pμ ≤Pμmax.

WELM: Extreme Learning Machine … 499

2.2.4 The Decision of the Window Sizes Wα

When the number of hidden nodes Pμ and the dimensionality Dr are fixed, the
decision of the window sizes Wα depend on the nature of the data and the objective
of the research.

2.3 Algorithm

In the following, the WELM algorithm in this paper can be summarized as follows.

Algorithm 1

Input:
Let the time series set X1:T , i = ½x1i, . . . , xti, . . . , xTi�, t=1, . . . ,T as an

input for 3-D Wavelet Dynamic Co-Movement Analysis contain T samples.
Steps:
For t=1: T , i=1:N

(1) Calculate the Discrete Fourier Transform (DFT) of the time series X1:T , i

X ̂1: T , iðkÞ= 1
Q

∑
Q

t=1
X1: T , ie− 2πikt Q̸

(2) Calculate the wavelet transform

GX1:T , i τ,ϑð Þ= ∑
Q

k=1
X ̂1:T , iðkÞbϕ*ðϑϖkÞeiϖk tΔt

(3) Calculate the wavelet power spectrum

GX1: T, iX1: T , 0 τ,ϑð Þ�� ��2 = GX1:T , i τ,ϑð Þ�� ��2 G*
X1:T , 0

τ,ϑð Þ
��� ���2

If wavelet power spectrum GX1: T, iX1: T, 0 τ,ϑð Þ�� ��2 ≤ 0.5, the feature X1:T , i

will be picked out.
(4) Calculate wavelet coherency

Γ2
X1: T , iX1: T , 0

τ, ϑð Þ= O ϑ− 1GX1: T , iX1: T , 0 τ, ϑð Þ� ��� ��2
O ϑ− 1 GX1: T , i τ, ϑð Þ�� ��2� �

⋅O ϑ− 1 G*
X1: T , 0

τ, ϑð Þ
��� ���2	

If wavelet coherency Γ2
X1:T , iX1:T , 0

τ, ϑð Þ≤ 0.5, the feature X1:T , i will be
picked out.

(5) Delete the feature X1: T , i which has no or little co-movement.
End
Output:
Output the decisive features X′

t = fX′
t1, . . . ,X

′
tj, . . . ,X

′
tMg in a new

lower-dimensional space, t=1, 2 . . . ,T and j=1, 2, . . . ,M,M ≤N.

500 H.-G. Zhang et al.

Algorithm 2

Input:
Let the normalized decisive set X′′

t = fX′′
t1, . . . ,X

′′
tj , . . . ,X

′′
tMg t=1, . . . , T −

c− 1 be the training set and the decisive features X′′
t = fX′′

t1, . . . ,
X′′
tj , . . . ,X

′′
tMg t= T − c, . . . ,T be the testing set.

Steps:

(1) The features reserved X′′
t and their label t form the set ðt,X′′

t Þ, which is
the input of ELM learning. Hidden node output function f ðai, bi, tÞ
and the number of hidden nodes Pμ.

(2) Assign parameters of hidden nodes ðai, biÞ randomly,
i=1, . . . ,Pμmax.

(3) Calculate the hidden layer output matrix H ̃:

H ̃=
h1ðX′′

11Þ ⋯ hPðX′′
1MÞ

⋮ ⋮ ⋮
h1ðX′′

T1Þ ⋯ hPðX′′
TMÞ

24 35=
gða1 ×X′′

11 + b1Þ ⋯ gðaP ×X′′
1M + bPÞ

⋮ ⋮ ⋮
gða1 ×X′′

T1 + b1Þ ⋯ gðaP ×X′′
TM + bPÞ

24 35
M ×P

(4) If the Number of Training Samples is Not Huge, the output of ELM
learning is:

β′′ =H ̃Tð I
C

+H ̃H ̃TÞ− 1Y

(5) If the Number of Training Samples is Huge, the output of ELM
learning is:

β′′ = ð I
C

+H ̃TH ̃Þ− 1H ̃TH ̃

Output:
Input the testing set X′′

t = fX′′
t1, . . . ,X

′′
tj , . . . ,X

′′
tMg t= T − c, . . . , T into

ELM and calculate the output using β′′.

3 Conclusion

In this paper, we propose a model called WELM based on a 3-D wavelet dynamic
co-movement analysis and extreme learning machine. We randomly select 305
stocks as the input sets of the WELM. As verified by the results, compared to ELM,
PCA-ELM, ICA-ELM, KPCA-ELM, SVM and GARCH type models, WELM
achieves better generalization performance for regression. WELM (WELM-kernel)
not only can turn an original higher-dimensional space into a new lower-dimensional
space but also further improve the forecasting accuracy and speed. Using financial
time series and SZSE market data samples from CSMAR, the case study results

WELM: Extreme Learning Machine … 501

illustrate that the WELM model can be used as a tool by financial market partici-
pants. The selection criteria of feature employing a 3-D wavelet dynamic
co-movement analysis need further quantitative.

Acknowledgements This work is partially supported by the Natural Science Foundation of
P. R. China (31202036), the National Science and Technology Pillar Program (2012BAD28B05),
the National High-Tech R&D 863 Program (2014AA093410), the Key Science and Technology
Project of Shandong Province (2013GHY11507), the Fundamental Research Funds for the Central
Universities (201362030), and the Natural Science Foundation of P. R. China (41176076,
51379198, 51075377).

References

1. Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79
(1), 61–78 (1998)

2. Rua, A.: Measuring comovement in the time–frequency space. J. Macroecon. 32(2), 685–691
(2010)

3. Kaiser G.: A Friendly Guide to Wavelets. Springer Science & Business Media (2010)
4. Farge, M.: Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24

(1), 395–458 (1992)
5. Grinsted, A., Moore, J.C., Jevrejeva, S.: Application of the cross wavelet transform and wavelet

coherence to geophysical time series. Nonlinear Processes Geophys. 11(5/6), 561–566 (2004)
6. Huang, G.B., Zhu, Q., Siew, C.K.: Extreme learning machine: theory and applications.

Neurocomputing 70, 489–501 (2006)
7. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and

multi-class classification. IEEE Trans. Syst. Man Cybern. 42(2), 513–529 (2012)

502 H.-G. Zhang et al.

Imbalanced Extreme Learning Machine
for Classification with Imbalanced Data
Distributions

Wendong Xiao, Jie Zhang, Yanjiao Li and Weidong Yang

Abstract Due to its much faster speed and better generalization performance,
extreme learning machine (ELM) has attracted many attentions as an effective
learning approach. However, ELM rarely involves strategies for imbalanced data
distributions which may exist in many fields. In this paper, we will propose a novel
imbalanced extreme learning machine (Im-ELM) algorithm for binary classification
problems, which is applicable to the cases with both balanced and imbalanced data
distributions, by addressing the classification errors for each class in the perfor-
mance index, and determining the design parameters through a two-stage heuristic
search method. Detailed performance comparison for Im-ELM is done based on a
number of benchmark datasets for binary classification. The results show that
Im-ELM can achieve better performance for classification problems with imbal-
anced data distributions.

Keywords Extreme learning machine � Imbalanced data distribution � Imbalanced
extreme learning machine � Classification

1 Introduction

Single hidden layer feedforward neural network (SLFN) has been widely used in
many fields for its capacity of approximating complex nonlinear processing, which
cannot be precisely modelled mathematically using traditional methods, directly
from the training samples. Hornik [1] proved that if the activation functions of the
SLFNs are continuous, the continuous mappings can be approximated by SLFNs
based on the training samples. However, traditional gradient-based training meth-
ods of SLFNs are easy to trap in the local minimum and always slow. For this

W. Xiao (&) � J. Zhang � Y. Li � W. Yang
School of Automation & Electrical Engineering, University of Science
and Technology Beijing, Beijing 100083, People’s Republic of China
e-mail: wdxiao@ustb.edu.cn

© Springer International Publishing Switzerland 2016
J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,
Proceedings in Adaptation, Learning and Optimization 7,
DOI 10.1007/978-3-319-28373-9_41

503

reason, Huang et al. [2] proposed the extreme learning machine (ELM) as an
extension of SLFNs, in which the input weights of SLFNs do not need to be tuned
and can be generated randomly, and the output weights are calculated by the
least-square method. Due to its faster speed and better generalization performance,
ELM has received much attention and many new progresses have been made. For
example, Huang et al. proposed the incremental ELM (I-ELM) and its improved
versions [3–6], by adopting an incremental construction method to adjust the
number of the hidden nodes. Liang et al. [7] proposed the online sequential ELM
(OS-ELM) for online learning problems when samples come sequentially. Huang
et al. [8] proposed the semi-supervised ELM (SS-ELM) and the unsupervised ELM
(US-ELM) to tackle the learning problems when collecting large amount of labeled
data is hard and time-consuming. Nowadays, ELM has been used in many fields,
such as industrial production [9, 10], human physical activity recognition [11],
regression [12], classification [13, 14], etc.

However, ELM rarely involves imbalanced learning, which is used to deal with
imbalanced data distribution [15]. Imbalanced data distribution happens in two
kinds of situations. In the first situation, the number of majority class is greater than
the minority class. While in the second situation, the distribution of the majority
class is concentrated and the minority class is relatively sparse. Usually, the first
situation has great influence on the performance of the classifier. That is to say, the
performance of a classifier can be deteriorated seriously due to the imbalanced data
distribution. Dataset with imbalanced data distribution can be found in many areas,
such as disease diagnosis, intrusion detection and fraudulent telephone calls, etc. In
order to rebalance the data distribution, three main methods are explored:
over-sampling to duplicate the minority samples, under-sampling to remove a
fraction of the majority samples, and their combination. However, the above
methods may bring in redundant samples or remove useful samples.

In order to tackle these drawbacks in the existing classification approaches, we
propose a novel imbalanced extreme learning machine (Im-ELM) algorithm for
both imbalanced and balanced data distributions. In addition, a two-stage heuristic
search method for determining the design parameters of Im-ELM is also presented.
The same place between Im-ELM and the Weighted Extreme Learning Machine
(W-ELM) in [15] is both of them belong to the cost sensitive learning, the differ-
ence of them are: 1) the Im-ELM is implemented by addressing the sum error of
each class in the performance index, and the W-ELM adding weight value in the
error of each sample; 2) the cost value in the Im-ELM are determined by the
two-stage heuristic method, but the weight value in the W-ELM set in advance.

The paper is organized as follows. A brief introduction to ELM theory is given
in Sect. 2. The details of Im-ELM, including the effect of imbalanced data distri-
bution on the classifier, the evaluation metrics and the mathematical formulation of
Im-ELM for binary classification problems, are described in Sect. 3. Experimental
results and analysis are presented in Sect. 4. Finally, conclusions and the future
work are given in Sect. 5.

504 W. Xiao et al.

2 A Brief Introduction to ELM

ELM is extended from SLFN. Similar to SLFN, the output of ELM with L hidden
nodes can be represented by

fLðxÞ ¼
XL

i¼1

biGðai; bi; xÞ ð1Þ

where x ∊ Rn is the input, ai ∊ R
n and bi ∊ R

n are the learning parameters of the hidden
nodes, βi ∊ Rm is the output weight, and G(ai, bi, x) denotes the active function.

For a given dataset for training {(xi, ti)}i=1
N � Rn × Rm, where xi is a n-dimension

input vector and ti is the corresponding m-dimension observation vector, the ELM
with L hidden nodes approximating these N training data should satisfy

XL

i¼1

biGðai; bi; xÞ ¼ tj; j ¼ 1; 2; . . .;N ð2Þ

which can be rewritten compactly as

Hb ¼ T ð3Þ

where

Hða1; . . .; aL; b1; . . .bL; x1; . . .; xNÞ ¼
Gða1; b1; x1Þ � � � GðaL; bL; x1Þ

..

. . .
. ..

.

Gða1; b1; xNÞ � � � GðaL; bL; xNÞ

2

6
4

3

7
5

N�L

ð4Þ

b ¼
bT1
..
.

bTL

2

6
4

3

7
5

L�m

ð5Þ

T ¼
tT1
..
.

tTN

2

6
4

3

7
5

N�m

ð6Þ

Here βT denotes the transpose of the vector β. H is called the hidden-layer output
matrix. Parameters ai and bi are assigned in advance with random values. (2)
becomes a linear system and the output weight β can be estimated by

b̂ ¼ HyT ð7Þ

where Hy is the Moore-Penrose generalized inverse of the matrix H [16]. When

HyH is nonsingular, we have Hy ¼ ðHTHÞ�1HT .

Imbalanced Extreme Learning Machine … 505

According to statistical learning theory, the real prediction risk of a learning
algorithm consists of empirical risk and structural risk. Usually the empirical risk
can be reflected by the sample errors, and the structural risk can be reflected from
the distance between the margin separation classes [17, 19, 20].

The above ELM is based on the empirical risk minimization principle [17] and
tends to result in over-fitting problem, which can be adjusted by trading off between
the empirical risk and the structural risk [2, 18]. A normal operation to do this is to
use the weighted sum of them in the performance index by introducing a weight
factor C for the empirical risk to regulate the proportion of the empirical risk and the
structural risk. Thus, ELM can be described as

minð1
2

bk k2 þ 1
2
C ek k2Þ

s:t:;
XL

i¼1

bigðaixi þ biÞ � tj ¼ej; j ¼ 1; 2; . . .;N
ð8Þ

where ‖β‖2 stands for the structural risk, and ɛ = [ɛ1, ɛ2, …, ɛN] is the sample errors.
β can be calculated from the following expression

b ¼ HTð IC þHTHÞyT ; N\L

ð IC þHTHÞyHTT ; N[L

(

ð9Þ

where I is the unit matrix.

3 Proposed Approach

In this section, we will firstly analyze the impacts of the imbalanced data distri-
bution on the classification performance, and give a brief introduction to the
evaluation metrics we choose. Then, we will present the details of the proposed
Im-RELM for binary classification.

3.1 Impacts of Imbalanced Data Distribution on Classifier

Without loss of generality, we take a binary classification problem as an example.
Assuming there are lots of negative samples and few positive samples in a binary
classification problem. As shown in Fig. 1a, the negative samples are denoted as
minus signs and the positive samples are denoted as plus signs. Due to the
advantage in quantity, the negative samples tend to push the separation boundary
towards the opposite direction to get a better classification result for themselves.
From mathematical view, C in (8) is the decisive factor to determine the location of

506 W. Xiao et al.

the separation boundary. When C is too small, the separation boundary is supposed
to be close to the positive samples, while when C is relatively larger, the separation
boundary may be closer to the negative samples (see Fig. 1b), and the training error
is smaller. Surely, the separation boundary is the ideal one when it locates in the
middle of the two classes of samples (see Fig. 1c). Therefore, our purpose is to
rebalance the proportion of the two classes of samples, and let the separation
boundary locate in the middle as near as possible (circle sign in Fig. 1d).

3.2 Evaluation Metrics for Imbalanced Classification

There are many evaluation metrics that can be used to measure the performance of
the classifiers in classification problems. Most of them are based on the confusion
matrix as shown in Table 1, where TP stands for true positive, TN stands for true
negative, FP stands for false positive, and FN stands for false negative. Based on
the confusion matrix, the overall accuracy can be defined in (10). However, the

(a) (b)

(c) (d)

Fig. 1 Impacts of the imbalanced data distribution on classifier: a Moving trend of the separation
boundary with imbalanced data distribution; b Expecting moving trend of the separation boundary;
c Ideal location of the separation boundary; d Rebalancing the proportion of two classes of
samples

Imbalanced Extreme Learning Machine … 507

overall accuracy may be not good enough to evaluate the performance of the
classifier in imbalanced classification problem. Also, it is sensitive to the class
distribution and misleading in some way [21]. As an example, let us consider a
binary classification problem with imbalanced data distribution, which has 998
negative samples and 2 positive samples. According to the above evaluation met-
rics, the classifier will get 99.8 % accuracy and 0.2 % error by classifying all the
samples to the negative class. Superficially, the classifier may get a wonderful
result, but in fact it is meaningless to the positive class.

There are three main evaluation metrics to overcome the drawbacks of the above
overall accuracy metric in binary classification [22, 23]: G-mean, F-measure and
ROC curve. In this paper, we will choose G-mean as the evaluation metric for both
binary and multiclass classification problems.

accuracy ¼ TPþ TN
TPþFPþ TN þFN

ð10Þ

G-mean can be described as follows

sensitivity ¼ TP
TPþFN

ð11Þ

specificity ¼ TN
TNþFP

ð12Þ

G� mean ¼
ffi

sensitivity � specificity
p

¼
ffi

TP
TPþFN

� TN
TN þFP

r

ð13Þ

The sensitivity in (11) and the specificity in (12) are usually adopted to evaluate
the performance of a classifier in binary classification. The sensitivity is also called
the true positive rate or the positive class accuracy, and the specificity is also
called the true negative rate or the negative class accuracy. G-mean was proposed
based on the above two metrics, which is the geometric mean of sensitivity and
specificity [24].

3.3 Im-ELM for Binary Classification

In this subsection, we will propose Im-ELM algorithm for binary classification
problem, which is suitable for both balanced and imbalanced data distributions.

Table 1 Confusion Matrix Predicted positives Predicted negatives

Real positives True positive (TP) False negative (FN)

Real negatives False positive (FP) True negative (TN)

508 W. Xiao et al.

3.3.1 Im-ELM

According to the analysis in Sect. 3.1, our purpose is to keep the separation
boundary locating in the middle to rebalance the proportion of the two classes.
Different from the original ELM, the proposed Im-ELM will set two parameters, C+

for minority positive samples and C− for majority negative samples. Im-ELM can
be described as

minð1
2

bk k2 þ 1
2
Cþ eþk k2 þ 1

2
C� e�k k2Þ

s:t:;
XL

i¼1

bigðaixi þ biÞ � tj ¼ej; j ¼ 1; 2; . . .;N
ð14Þ

where ɛ+ stands for the sum error of the positive class and ɛ- stands for the sum error
of the negative class.

The Lagrangian for (14) can be written as

Lðb; e; eþ ; e�; a;Cþ ;C�Þ ¼ 1
2

bk k2 þ 1
2
Cþ eþk k2 þ 1

2
C� e�k k2�

XN
�

j¼1

ajð
XN

�

i¼1

bigðaixi þ biÞ � tj � ejÞ

¼ 1
2

bk k2 þ 1
2
Cþ eþk k2 þ 1

2
C� e�k k2�aðHb� T � eÞ

ð15Þ

According to the KKT condition, by setting the gradient of the Lagrangian with
respect to (β, ɛ+, ɛ-, α) equal to zero, we have

@L
@b

¼ 0 ! bT ¼ aH

@L
@eþ

¼ 0 ! Cþ eTþ þ a ¼ 0

@L
@e�

¼ 0 ! C�eT� þ a ¼ 0

@L
@a

¼ 0 ! Hb� T � e ¼ 0

8

>>>>>>>>><

>>>>>>>>>:

ð16Þ

As

e ¼ eþ þ e� ð17Þ

From the last expression of (16), we have

Hb� T � ðeþ þ e�Þ ¼ 0 ð18Þ

Imbalanced Extreme Learning Machine … 509

Substituting the second and the third expressions of (16) in (18), we can compute
α as

a ¼ �ð 1
1

Cþ þ 1
C�
ÞðHb� TÞT ð19Þ

By substituting (19) in the first expression of (16), we can compute β as

b ¼ HTð I
Cþ þ I

C� þHTHÞyT; N\L

ð I
Cþ þ I

C� þHTHÞyHTT; N[L

(

ð20Þ

Similarly, as the matrix for the inversion operation in (20) is with the dimension
L × L, where L is the number of hidden nodes, the computational burden for
calculating β in Im-ELM is the same as the original ELM.

Finally, we can obtain the following Im-ELM classifier for binary classification
from f ðxÞ ¼ sign hðxÞb:

f ðxÞ ¼ sign hðxÞHTð I
Cþ þ I

C� þHTHÞyT ; N\L

sign hðxÞð I
Cþ þ I

C� þHTHÞyHTT ; N[L

(

ð21Þ

where h(x) = [h1(x),…, hL(x)] is the row vector representing the outputs of L hidden
nodes with respect to the input x.

3.3.2 Kernel Based Im-ELM

Sometimes, the Im-ELM classifier proposed for the binary classification (in
Sect. 3.3.1) may not be possible to separate the samples with data overlapping.
Therefore, we will extend (21) by using kernel based ELM [13]. A kernel matrix for
ELM is defined as

XELM ¼ HHT : XELMi;j ¼ hðxiÞ � hðxjÞ ¼ Kðxi; xjÞ ð22Þ

So, the kernel based Im-ELM classifier can be obtained

f ðxÞk ¼ sign hðxÞHTð I
Cþ þ I

C� þHTHÞyT

¼ sign

Kðx; x1Þ
..
.

Kðx; xNÞ

2

6
6
4

3

7
7
5

T

ð I
Cþ þ I

C� þXELMÞyT
ð23Þ

510 W. Xiao et al.

3.3.3 Parameter Determination Strategy in Binary Classification

In Im-ELM, there are three main parameters to be determined, C+, C− and the
number of hidden nodes L, which can affect the performance of Im-ELM signifi-
cantly. In this paper, we will propose a two-stage heuristic search method to
determine these parameters.

The proposed two-stage heuristic search method consists of the following two
stages. In the first stage, the parameter search method in [13, 16] is used to determine
the best combinations of C and L for the original ELM in Sect. 2. In the second stage,
the number of hidden nodes L is fixed as the result of the stage 1 and the combination
of C+ and C− is searched by discretizing each of them to discrete values.

3.4 Relevant Definitions in Imbalanced Classification

In binary classification, we define negative samples as the majority class and
positive samples as the minority class.

Imbalanced ratio (IR) is defined to represent the imbalanced degree of the dataset

IR ¼ Nþ
N�

4 Approach Implementation and Experimental Results

In this section, we will implement the proposed Im-RELM for binary classification
problems and compare the results with ELM. All the experiments for the algorithms
are carried out in Matlab 2012a environment running in an Inter i5 3.2 GHz CPU
and 4G RAM.

4.1 Dataset Description and Parameter Settings

In order to verify the validity of our proposed methodology, we have performed
experiments on 18 binary datasets from UCI Machine Learning Repository and
some of them preprocessed by Fernandez et al. [26]. Table 2 indicates the detailed
description of benchmark datasets used in our research work, including the number
of attributes, number of categories, as well as IRs. All the experimental results are
averaged for 10 runs. According to Table 2, we can find that IRs of the datasets are
between 0.0077 and 0.5507. We think that the dataset is highly imbalanced when its
IR is below 0.1500 and low imbalanced when its IR is above 0.1500.

Imbalanced Extreme Learning Machine … 511

4.2 Experimental Results

We divide the whole datasets into 2 different types, including binary classification
with low imbalance and binary classification with high imbalance. For each dataset,
we chose 75 % of the samples as the training data and the rest 25 % as the testing
data.

Here we will evaluate the performance of Im-ELM for datasets with imbalanced
data distributions using G-mean as the evaluation metric. The results are shown in
Tables 3 and 4, respectively. With the increasing of the imbalanced degree, the
results become worse when using G-mean as the evaluation metric. This is because
the conventional overall accuracy evaluation metric cannot reflect the real perfor-
mance of a classifier.

Table 2 Description of datasets

Datasets Attributes Category Max-class Min-class IR

Abalone19 8 2 4142 32 0.0077

Ecoli1 7 2 259 77 0.2973

Ecoli3 7 2 299 37 0.1237

Glass0 9 2 144 70 0.4861

Glass1 9 2 138 76 0.5507

Glass2 9 2 195 19 0.0974

Iris0 4 2 100 50 0.5000

New-thyroid1 5 2 180 35 0.1944

Pima 8 2 500 268 0.5350

Shuttle-C0_vs_C4 9 2 1706 123 0.0721

Wisconsin 9 2 444 239 0.5383

Yeast3 8 2 1321 163 0.1234

Table 3 Experimental results of binary classification with low imbalance (G-mean)

Datasets Sigmoid Gaussian kernel

ELM Im-ELM Im-ELM

Testing result (%) Testing result (%) Testing result (%)

Ecoli1 87.19 89.65 91.23

Glass0 79.99 82.35 85.59

Glass1 77.36 76.34 80.11

Iris0 100 100 100

New-thyroid1 97.24 98.41 99.18

Pima 68.88 73.37 74.97

Wisconsin 95.31 96.01 96.05

512 W. Xiao et al.

Furthermore, most of datasets in Table 4 (such as Abalone19, Ecoli3 and Glass2,
etc.) can get better results when Im-ELM is applied, which indicate that IR has
greater influence on the performance of the classifier than the data complexity.

5 Conclusions

In this paper, we propose Im-ELM algorithm for binary classification for both
imbalanced and balanced data distributions. We design a two-stage heuristic search
method for determining the design parameters. The proposed Im-ELM can achieve
better classification performance especially in imbalanced data distribution situa-
tion, compared with original ELM.

References

1. Hornik, K.: Approxination capabilities of multilayer feedforword networks. Neural Netw. 4
(2), 251–257 (1991)

2. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.
Neurocomptuing 70(1), 489–501 (2006)

3. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive
feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892
(2006)

4. Huang, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomptuing 70
(10), 3056–3062 (2007)

5. Huang, G.B., Li, M.B., Chen, L., et al.: Incremental extreme learning machine with fully
complex hidden nodes. Neurocomptuing 71(4), 576–583 (2008)

6. Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine.
Neurocomptuing 71(16), 3056–3062 (2008)

7. Liang, N.Y., Huang, G.B., Saratchandran, P., et al.: A fast and accurate online squential
learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423
(2006)

8. Huang, G., Song, S., Gupta, J.N., et al.: Semi-supervised and unsupervised extreme learning
machines. IEEE Trans. Cybern. 78(3), 2405–2417 (2014)

Table 4 Experimental results of binary classification with high imbalance (G-mean)

Datasets Sigmoid Gaussian kernel

ELM Im-ELM Im-ELM

Testing result (%) Testing result (%) Testing result (%)

Abalone19 46.55 73.11 72.47

Ecoli3 78.68 90.88 88.16

Glass2 77.42 81.58 83.22

Shuttle-C0_vs_C4 100 100 100

Yeast3 80.56 91.26 93.56

Imbalanced Extreme Learning Machine … 513

9. He, Y.L., Geng, Z.Q., Xu, Y., et al.: A hierarchical structure of extreme learning machine
(HELM) forhigh-dimensional datasets with noise. Neurocomputing 76(3), 407–414 (2014)

10. Zhang, S., Chen, X., Yin, Y.X.: An ELM based online soft sensing approach for alumina
concentration detection. Math. Probl. Eng. 2015, Article ID 268132, 8 pp (2015)

11. Xiao, W.D., Lu, Y.J.: Daily human physical activity recognition based on kernel discriminant
analysis and extreme learning machine. Math. Probl. Eng. 2015, Article ID 790412, 8 pp
(2015)

12. Soria-Olivas, E., Gomez-Sanchis, J., Martin, J.D., et al.: BELM: Bayesian extreme learing
machine. IEEE Trans. Neural Netw. 22(3), 505–509 (2011)

13. Rong, H.J., Ong, Y.S., Tan, A.H., et al.: A fast pruned-extreme learning machine for
classification problem. Neurocomputing 72(3), 359–366 (2008)

14. Huang, G.B., Zhou, H., Ding, X., et al.: Extreme learning machine for regression and
multiclass classification. IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 513–529 (2012)

15. Zong, W.W., Huang, G.B., Chen, Y.Q.: Weighted extreme learning machine for imbalance
learing. Neurocomputing 101(1), 229–242 (2013)

16. Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and its Applications. Wiley,
New York (1971)

17. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)
18. Deng, W.Y., Chen, L.: Regularized extreme learning machine. In: IEEE Symposium on

Computational Intelligence and Data Mining, pp. 389–395. IEEE Press, USA (2009)
19. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge

University Press, Cambridge (2000)
20. Fung, G., Mangasarian, O.L.:Proximal Support Vector Machine Classifiers. In: Proceedings

KDD-2001: Knowledge Discovery and Data Mining, pp. 77–86 (2001)
21. He, H.B., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9),

1263–1284 (2009)
22. Thai-Nghe, N., Gantner, Z., Schmidt-Thieme, L.: A new evaluation measure for learning from

imbalanced data. In: Proceedings of International Joint Conference on Neural Networks,
pp. 537–542 (2011)

23. Fawcett, T.: An Introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)
24. Tang, Y.C., Zhang, Y.Q., Chawla, N.C., et al.: SVMs modeling for highly imbalanced

classification. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39(1), 281–288 (2009)
25. Huang, G.B.: An insight into extreme learning machines: random neurons, random features

and kernels. Cogn. Comput. 6, 376–390 (2014)
26. Fernandez, A., Jesus, M.J., Herrera, F.: Hierarchical fuzzy rule based classification systems

with genetic rule selection for imbalanced data-sets. Int. J. Approx. Reason. 3(50), 561–577
(2009)

514 W. Xiao et al.

Author Index

A
Akusok, Anton, 357, 371, 413

B
Bai, Zuo, 471
Barsaiyan, Anubhav, 285
Björk, Kaj-Mikael, 357, 371, 413

C
Cai, Zhiping, 67
Cao, Yuchi, 55
Chai, Songjian, 263
Chen, Guang, 325
Cheng, Xiangyi, 235
Chen, Hongbiao, 423
Chen, Mo, 249
Chen, Su-Shing, 107
Chen, Yuangen, 345
Choubey, Sujay, 285
Cui, Song, 273

D
Ding, Shi-fei, 93
Dong, Zhaoyang, 189, 263
Duan, Lijuan, 273
Duan, Xiaodong, 295
Du, Hua, 203

E
Eirola, Emil, 385
Er, Meng Joo, 437

F
Feng, Jun, 107

G
Gritsenko, Andrey, 385
Gu, Jason, 1

H
He, Bo, 399, 455
He, Feijuan, 107
Holtmanns, Silke, 371
Huang, Guang-Bin, 471

J
Jiang, Changmeng, 107
Jiang, Changwei, 179
Jiang, Chunfeng, 117
Jia, Xibin, 203
Jia, Youwei, 263

L
Lauren, Paula, 357, 413
Lendasse, Amaury, 357, 371, 385, 413, 491
Li, Chenguang, 325
Li, Fangfang, 423
Li, Feng, 249
Li, Lianbo, 55
Lim, Meng-Hiot, 285
Lin, Jiarun, 67, 317
Lin, Zhiping, 335
Li, Shan, 117
Li, Yanjiao, 503
Liu, He, 117, 131
Liu, Hengyu, 423
Liu, Huaping, 223, 235
Liu, Huilin, 117, 131
Liu, Jun, 43
Liu, Tianhang, 67, 317
Liu, Xinwang, 67
Liu, Xuefei, 491
Liu, Yang, 491
Li, Yao, 131
Lu, Bo, 295
Luo, Minnan, 43
Luo, Xiong, 179

© Springer International Publishing Switzerland 2016
J. Cao et al. (eds.), Proceedings of ELM-2015 Volume 2,
Proceedings in Adaptation, Learning and Optimization 7,
DOI 10.1007/978-3-319-28373-9

515

M
Mao, Kezhi, 19
Meng, Ke, 189
Miao, Jun, 273
Miche, Yoan, 357, 371, 413

N
Natarajan, S., 209
Nian, Rui, 357, 399, 413, 455, 491

O
Oh, Beom-Seok, 335
Oh, Kangrok, 335
Oliver, Ian, 371

P
Panigrahi, Bijaya Ketan, 285

Q
Qin, Libo, 325

R
Ramaseshan, Varshini, 209
Ratner, Edward, 385
Ravichander, Abhilasha, 209

S
Schupp, Daniel, 385
Shen, Yue, 399, 455
Shrivastava, Nitin Anand, 285
Song, Yan, 455, 491
Su, Lijuan, 307
Sun, Fuchun, 223, 235
Sun, Kai, 1
Sun, Tingting, 399
Sun, Xia, 107
Sun, Yongjiao, 345
Sun, Zhenzhen, 143

T
Teoh, Andrew Beng Jin, 335
Toh, Kar-Ann, 335

V
Venkatesan, Rajasekar, 437
Vijay, Supriya, 209

W
Wang, Bin, 77, 155
Wang, Danwei, 471
Wang, Dongzhe, 19
Wang, Guoren, 77, 155, 345
Wang, Huan, 179

Wang, Jiarong, 107
Wang, Miao-miao, 93
Wang, Ning, 437
Wang, Xianbo, 169
Wei, Jie, 223
Wong, Pak Kin, 169
Wu, Chengkun, 317
Wu, Lingying, 1
Wu, Q.M. Jonathan, 31
Wu, Zhaohui, 307

X
Xiao, Chixin, 189
Xiao, Wendong, 503
Xie, Haibin, 423
Xu, Jingting, 107
Xu, Xinying, 235
Xu, Yan, 189
Xu, Zhao, 263

Y
Yan, Gaowei, 223
Yang, Dan, 249
Yang, Weidong, 503
Yang, Xiaona, 179
Yang, Yimin, 31
Yang, Zhixin, 169
Yao, Min, 307
Yan, Tianhong, 399, 455
Yin, Jianchuan, 55
Yin, Jianping, 67, 317
Yin, Ying, 325
Yuan, Bin, 273
Yuan, Ye, 295, 345
Yu, Ge, 249
Yu, Yuanlong, 1, 143

Z
Zhang, Dezheng, 179
Zhang, Heng-Guo, 491
Zhang, Tiancheng, 423
Zhang, Xin, 189
Zhao, Jian, 55
Zhang, Jie, 503
Zhao, Rui, 19
Zhao, Yuhai, 325
Zheng, Nenggan, 307
Zheng, Qinghua, 43
Zhong, Jianhua, 169
Zhou, Xun, 189
Zhu, Rui, 77, 155
Zhu, Wentao, 273

516 Author Index

	Contents
	Large-Scale Scene Recognition Based on Extreme Learning Machines
	1 Introduction
	2 Exposition of the Proposed Scene Recognition
	2.1 Hierarchy of the Scene Recognition
	2.2 Ensemble-Based Classifier
	2.3 ELM based Basic Classifiers

	3 Experiments
	3.1 Experimental Setup
	3.2 Tuning Parameters
	3.3 Overall Recognition Performance

	4 Conclusion
	References

	Partially Connected ELM for Fast and Effective Scene Classification
	1 Introduction
	2 Semi-random Projection for Extreme Learning Machine
	2.1 Extreme Learning Machine (ELM)
	2.2 Random Projection (RP)
	2.3 Semi-random Projection (SRP)
	2.4 Partially Connected ELM (PC-ELM)

	3 Experiments
	3.1 Dataset and Experimental Setup
	3.2 Results

	4 Conclusion
	References

	Two-Layer Extreme Learning Machine for Dimension Reduction
	1 Introduction
	2 Preliminaries and Problem Statement
	2.1 Notations
	2.2 Basic-ELM

	3 The Proposed Method
	3.1 The Proposed Framework

	4 Experimental Verification
	5 Conclusion
	References

	Distributed Extreme Learning Machine with Alternating Direction Method of Multiplier
	1 Introduction
	2 Principles of Extreme Learning Machine
	3 Distributed Extreme Learning Machine (DELM)
	4 ADMM Based Algorithm for DELM
	4.1 ADMM
	4.2 Algorithms for DELM

	5 Experiments
	6 Conclusion
	References

	An Adaptive Online Sequential Extreme Learning Machine for Real-Time Tidal Level Prediction
	1 Introduction
	2 Online Sequential Extreme Learning Machine (OS-ELM)
	3 Dimension Adjustment Strategy for OS-ELM
	4 Simulation of Tidal Level Prediction Based on Variable-Structure OS-ELM
	4.1 Structure of Online Tidal Prediction Scheme
	4.2 Real-Time Tidal Prediction Simulation

	5 Conclusions
	References

	Optimization of Outsourcing ELM Problems in Cloud Computing from Multi-parties
	1 Introduction
	2 Preliminary
	3 Multi-parties Cooperating Outsourcing of ELM
	3.1 Threat Model of Cloud Computing
	3.2 Outsourcing ELM from Multi-parties Cooperating in Different Ways
	3.3 Improved Partitioned Policy for Outsourcing ELM
	3.4 Security Analysis and Result Verifications

	4 Performance Evaluation
	5 Conclusion
	References

	H-MRST: A Novel Framework for Support Uncertain Data Range Query Using ELM
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Extreme Learning Machine
	2.3 Problem Definition

	3 Effectively Summarizing Uncertain Data
	3.1 The H-MRST Overview
	3.2 The Summary Construction Algorithms
	3.3 Accessing the Summary of Uncertain Data

	4 Experimental Evaluation
	4.1 Experimental Setting
	4.2 Classification Evaluation
	4.3 Query Performance

	5 Conclusions
	References

	The SVM-ELM Model Based on Particle Swarm Optimization
	1 Introduction
	2 SVM-ELM Model
	3 Particle Swarm Optimization
	4 Experimental Analysis
	5 Conclusion
	References

	9 ELM-ML: Study on Multi-label Classification Using Extreme Learning Machine
	Abstract
	1 Introduction
	2 ELM-ML
	3 Experiments
	3.1 Datasets
	3.2 Evaluation Measures
	3.3 Results
	3.3.1 Thresholding Function
	3.3.2 Multi-label Algorithms

	4 Conclusion
	Acknowledgements
	References

	Sentiment Analysis of Chinese Micro Blog Based on DNN and ELM and Vector Space Model
	1 Introduction
	2 Related Work
	2.1 ELM
	2.2 Vector Space Model
	2.3 Information Gain
	2.4 Weight Calculation Method TF-IDF

	3 Research Content
	3.1 Feature Selection
	3.2 Weight Calculation
	3.3 Space Expansion Algorithm Based on Concept Model

	4 Experiments and Results
	4.1 Space Expansion Algorithm Based on Concept Model
	4.2 Micro Blog Sentiment Classification Experiment

	5 Summary
	References

	Self Forward and Information Dissemination Prediction Research in SINA Microblog Using ELM
	1 Introduction
	2 Related Work
	2.1 Information Dissemination in Social Networks
	2.2 ELM

	3 Self Forward Model and Information Dissemination Prediction
	3.1 Dataset Description
	3.2 Direct Self Forward Prediction
	3.3 Information Dissemination Prediction

	4 Experiments and Results
	4.1 Self Forward Prediction
	4.2 Information Dissemination Prediction

	5 Conclusions
	References

	Sparse Coding Extreme Learning Machine for Classification
	1 Introduction
	1.1 Related Work on Sparse Coding

	2 The Proposed ScELM Algorithm
	2.1 Encoding Stage
	2.2 Calculation of Output Weights β

	3 Experiments
	3.1 Experimental Setup
	3.2 Evaluation

	4 Conclusions
	References

	Continuous Top-K Remarkable Comments over Textual Streaming Data Using ELM
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Extreme Learning Machine

	3 The PBTI
	3.1 The ELM-Based Framework
	3.2 The ELM-Based Mendacious Comments Filtering
	3.3 Domination Transitivity-Based Continuous Top-k Query over Textual Data

	4 Indexing Local-Based Comments
	5 Experimental Evaluation
	5.1 Experimental Setting
	5.2 Classification Evaluation
	5.3 Query Performance

	6 Conclusions
	References

	ELM Based Representational Learning for Fault Diagnosis of Wind Turbine Equipment
	1 Introduction
	2 Proposed Fault Diagnostic Framework
	2.1 ELM Based Autoencoder
	2.2 Dimension Compression
	2.3 ELM Based Classifier

	3 Experimental Results and Discussion
	4 Conclusions
	References

	Prediction of Pulp Concentration Using Extreme Learning Machine
	1 Introduction
	2 Related Works
	2.1 Phase Space Reconstruction Theory
	2.2 Extreme Learning Machine (ELM)
	2.3 Kernel-Based Extreme Learning Machine (Kernel-ELM)
	2.4 Regularized Extreme Learning Machine (R-ELM)
	2.5 L2-Norm Based Extreme Learning Machine (ELM-L2)

	3 Prediction of Pulp Concentration Using ELM Algorithms
	4 Experimental Results and Discussions
	5 Conclusion
	References

	16 Rational and Self-adaptive Evolutionary Extreme Learning Machine for Electricity Price Forecast
	Abstract
	1 Introduction
	2 Mathematical Background
	2.1 Extreme Learning Machine (ELM) [11]
	2.2 Basic Differential Evolution Framework
	2.3 SaE-ELM

	3 Approximation Model
	3.1 First-Order Approximation Model
	3.2 Direction to Optimum

	4 Proposed Algorithm
	4.1 Diversity Mechanism
	4.2 Hybrid Strategy for Selection
	4.3 RSM-DE Algorithm
	4.4 RSM-DE-ELM

	5 Experimental Results
	6 Conclusion
	Acknowledgment
	References

	Contractive ML-ELM for Invariance Robust Feature Extraction
	1 Introduction
	2 Background of Multi-Layer ELM
	2.1 ELM
	2.2 Auto Encoder
	2.3 Multi-Layer ELM-AE

	3 Contractive ML-ELM
	3.1 Contractive Auto-Encoder
	3.2 Contractive-ML-ELM

	4 Experiments and Results
	5 Conclusion
	References

	Automated Human Facial Expression Recognition Using Extreme Learning Machines
	1 Introduction
	2 System Architecture
	3 Experimental Approach
	3.1 Dataset
	3.2 Normalization
	3.3 Feature Extraction
	3.4 Training
	3.5 Expression Prediction

	4 Experimental Results
	5 Conclusion and Future Work
	References

	Multi-modal Deep Extreme Learning Machine for Robotic Grasping Recognition
	1 Introduction
	2 Brief Introduction About Extreme Learning Machines
	3 Multi-modal Deep ELM-AE
	3.1 Model Architecture
	3.2 Unsupervised Feature Representation
	3.3 Supervised Feature Classification

	4 Experimental Result
	4.1 Dataset
	4.2 Result

	5 Conclusion
	References

	Denoising Deep Extreme Learning Machines for Sparse Representation
	1 Introduction
	2 Sparse Representation and Dictionary Learning
	3 Principle of ELM based on Autoencoder
	3.1 Extreme Learning Machines
	3.2 ELM Based on Autoencoder

	4 Proposed Method
	4.1 Learning Representation with Deep ELM-AE
	4.2 Using a Denoising Representation

	5 Experimental Results and Analysis
	5.1 Digit Recognition
	5.2 Coil-20 Recognition

	6 Conclusion
	References

	21 Extreme Learning Machine Based Point-of-Interest Recommendation in Location-Based Social Networks
	Abstract
	1 Introduction
	2 Related Work
	3 ELM Based Point-of-Interest Recommendation
	4 Feature from User Preference
	5 Feature from Periodical Movement
	6 Feature from Social Relationship
	7 POI Recommendation
	8 Experiments
	9 Conclusions
	Acknowledgments
	References

	22 The Granule-Based Interval Forecast for Wind Speed
	Abstract
	1 Introduction
	2 Information Granulation of Time Series
	2.1 Interval Representation
	2.2 Fuzzy Sets Representation

	3 Construction of Granular ELM
	3.1 Extreme Learning Machine (ELM)
	3.2 Granular ELM (GELM) Training Strategy
	3.3 Optimal Granular Prediction Outputs Construction

	4 Case Study
	5 Conclusion
	References

	23 KELMC: An Improved K-Means Clustering Method Using Extreme Learning Machine
	Abstract
	1 Introduction
	2 ELM
	2.1 Brief Review of ELM
	2.2 Extreme Learning Machine Auto Encoder for Clustering

	3 Methodology
	3.1 K-Means ELMs Clustering---KELMC
	3.2 KELMC in ELM-AE-PCA Feature Space

	4 Experiments
	5 Conclusion
	Acknowledgements
	References

	24 Wind Power Ramp Events Classification Using Extreme Learning Machines
	Abstract
	1 Introduction
	2 Methodology
	3 Extreme Learning Machine
	4 Datasets and Approach
	5 Experimental Results and Discussion
	6 Conclusions
	Acknowledgements
	References

	Facial Expression Recognition Based on Ensemble Extreme Learning Machine with Eye Movements Information
	1 Introduction
	2 Preliminaries
	2.1 Eye Movements Feature Extraction
	2.2 Preprocessing of Eye Movements Features
	2.3 Features Fusion Based on Tensor Kernel

	3 Ensemble ELM for Facial Expression Recognition
	3.1 Brief of ELM
	3.2 Ensemble ELM for Facial Expression Recognition

	4 Experimental Evaluation
	4.1 Experiments Setup
	4.2 Experiments Results

	5 Conclusion
	References

	Correlation Between Extreme Learning Machine and Entorhinal Hippocampal System
	1 Introduction
	2 Extracellular Recordings in the Entorhinal Hippocampal System
	3 Spike Clustering with Extreme Learning Machine
	4 Local Field Potentials Trained with Extreme Learning Machine
	5 Conclusion and Discussion
	References

	RNA Secondary Structure Prediction Using Extreme Learning Machine with Clustering Under-Sampling Technique
	1 Introduction
	2 Preliminary
	2.1 Biological Basics in RNA Secondary Structure Prediction
	2.2 Feature Vector
	2.3 Evaluation Metrics

	3 Method
	3.1 Extreme Learning Machine
	3.2 Clustering Under-Sampling Technique
	3.3 ELM with Clustering Under-Sampling

	4 Performance Evaluation
	4.1 Data Specification
	4.2 Parameter Setting
	4.3 Experimental Results

	5 Discussion
	References

	Multi-instance Multi-label Learning by Extreme Learning Machine
	1 Introduction
	2 The Preliminaries
	2.1 Multi-instance Multi-label Learning
	2.2 A Brief Introduction to ELM

	3 The Proposed Two-Phase MIMLELM Framework
	4 Performance Evaluation
	5 Conclusion
	References

	A Randomly Weighted Gabor Network for Visual-Thermal Infrared Face Recognition
	1 Introduction
	2 Preliminaries
	2.1 Gabor Filtering
	2.2 Extreme Learning Machine (ELM) for Binary Classification

	3 Gabor-Based Extreme Learning Machine
	4 Experiment
	4.1 Database and Preprocessing
	4.2 Experimental Setup
	4.3 Results

	5 Conclusion
	References

	Dynamic Adjustment of Hidden Layer Structure for Convex Incremental Extreme Learning Machine
	1 Introduction
	2 Improved Convex Incremental ELM
	2.1 Pruned Convex Incremental Extreme Learning Machine
	2.2 Enhanced Pruned Convex Incremental Extreme Learning Machine

	3 Dynamic Convex Incremental Extreme Learning Machine
	4 Performance Evaluation
	5 Conclusion
	References

	ELMVIS+: Improved Nonlinear Visualization Technique Using Cosine Distance and Extreme Learning Machines
	1 Introduction
	2 Methodology
	2.1 Extreme Learning Machine
	2.2 Visualization with ELM
	2.3 Fast Cost Function from ELM
	2.4 ELMVIS+ Algorithm

	3 Experimental Results
	3.1 Artificial Faces Dataset
	3.2 Computational Time
	3.3 Convergence Speed

	4 Conclusion
	References

	On Mutual Information over Non-Euclidean Spaces, Data Mining and Data Privacy Levels
	1 Introduction
	2 High-Level Motivation for Quantifying Data Privacy
	3 General Notations and a Note About Non-Euclidean Spaces
	3.1 Notations
	3.2 Distances over Non-Euclidean Spaces
	3.3 Learning the Mapping Between Distances Using ELM

	4 Mutual Information for Data Privacy Quantification
	4.1 Mutual Information Estimation
	4.2 Using Mutual Information Estimators

	5 Machine Learning for Data Privacy Quantification
	6 Conclusions and Future Work
	References

	Probabilistic Methods for Multiclass Classification Problems
	1 Introduction
	2 Previous Works
	3 Description of the Problem
	4 Global Methodology
	4.1 Extreme Learning Machines
	4.2 Gaussian Mixture Models
	4.3 New Proposed Histogram Probability Method

	5 Experiments
	5.1 Implementation
	5.2 Datasets
	5.3 Results

	6 Conclusions and Further Works
	References

	34 A Pruning Ensemble Model of Extreme Learning Machine with L1/2 Regularizer
	Abstract
	1 Introduction
	2 ELM and Regularization Methods
	2.1 The Preliminary ELM
	2.2 Regularization Methods

	3 Proposed PE-ELMR
	3.1 ELM with {\varvec L}_{1\solidus\, 2} Regularizer
	3.2 The Pruning Methods
	3.3 A Pruning Ensemble Model of ELMs with {\varvec L}_{1\solidus\, 2} Regularizer

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Parameters Selection
	4.3 Performance Comparison for Regression Problems
	4.4 Performance Comparison for Classification Problems

	5 Conclusions
	References

	Evaluating Confidence Intervals for ELM Predictions
	1 Introduction
	2 Methodology
	2.1 Confidence Interval for Regression
	2.2 ELM Confidence Intervals Algorithm

	3 Experimental Results
	3.1 Artificial Dataset
	3.2 Skin Color Dataset

	4 Conclusion
	References

	36 Real-Time Driver Fatigue Detection Based on ELM
	Abstract
	1 Introduction
	2 Extreme Learning Machine
	3 Fatigue Detection Based on ELM
	3.1 An Overview of Framework
	3.2 Locate and Track the Face and Facial Feature
	3.3 Judgement of Features and Fatigue Status
	3.4 Online Learning

	4 Performance Evaluation
	4.1 Experimental Settings
	4.2 Evaluation Indexes
	4.3 Parameters Optimization
	4.4 Experimental Results

	5 Conclusions
	References

	37 A High Speed Multi-label Classifier Based on Extreme Learning Machines
	Abstract
	1 Introduction
	2 Multi-label Classifier
	3 Proposed Approach
	4 Experimentation
	5 Results and Discussions
	5.1 Consistency
	5.2 Performance Metrics
	5.3 Speed

	6 Conclusion
	Acknowledgements
	References

	38 Image Super-Resolution by PSOSEN of Local Receptive Fields Based Extreme Learning Machine
	Abstract
	1 Introduction
	2 Review of Related Works
	2.1 Super Resolution Convolutional Neural Network
	2.2 Local Receptive Fields Based Extreme Learning Machine
	2.3 Particle Swarm Optimization Selective Ensemble

	3 Proposed Approach
	3.1 Image Pre-processing
	3.2 Process of ELM-LRF
	3.3 Selective Ensemble Particle Swarm Optimization

	4 Experiments
	5 Conclusions
	Acknowledgments
	References

	Sparse Extreme Learning Machine for Regression
	1 Introduction
	2 Review of ELM
	2.1 Unified ELM
	2.2 Sparse ELM for Classification

	3 Sparse ELM for Regression
	3.1 Problem Formulation
	3.2 Optimization
	3.3 Sparsity Analysis

	4 Training Algorithm of Sparse ELM for Regression
	4.1 Optimality Conditions
	4.2 Update Rule
	4.3 Selection Criteria
	4.4 Termination Condition
	4.5 Convergence Proof

	5 Experiments
	5.1 Data Sets Description
	5.2 Improvements of Convergence Speed
	5.3 Influence of ε
	5.4 Parameter Specification
	5.5 Performance Comparison

	6 Conclusions and Future Work
	References

	40 WELM: Extreme Learning Machine with Wavelet Dynamic Co-Movement Analysis in High-Dimensional Time Series
	Abstract
	1 Introduction
	2 Fast 3-D Wavelet Dynamic Co-Movement Analysis via ELM
	2.1 General Model
	2.2 ELM Learning Based 3-D Wavelet Dynamic Co-Movement Analysis
	2.2.1 ELM Learning
	2.2.2 The Decision of the Dimensionality D_{r}
	2.2.3 The Choose of the Number of Hidden Nodes P_{\mu }
	2.2.4 The Decision of the Window Sizes W_{\alpha }

	2.3 Algorithm

	3 Conclusion
	Acknowledgements
	References

	41 Imbalanced Extreme Learning Machine for Classification with Imbalanced Data Distributions
	Abstract
	1 Introduction
	2 A Brief Introduction to ELM
	3 Proposed Approach
	3.1 Impacts of Imbalanced Data Distribution on Classifier
	3.2 Evaluation Metrics for Imbalanced Classification
	3.3 Im-ELM for Binary Classification
	3.3.1 Im-ELM
	3.3.2 Kernel Based Im-ELM
	3.3.3 Parameter Determination Strategy in Binary Classification

	3.4 Relevant Definitions in Imbalanced Classification

	4 Approach Implementation and Experimental Results
	4.1 Dataset Description and Parameter Settings
	4.2 Experimental Results

	5 Conclusions
	References

	Author Index

