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Abstract. Most network scientists restrict their attention to relations
between pairs of things, even though most complex systems have struc-
tures and dynamics determined by n-ary relation where n is greater than
two. Various examples are given to illustrate this. The basic mathemat-
ical structures allowing more than two vertices have existed for more
than half a century, including hypergraphs and simplicial complexes. To
these can be added hypernetworks which, like multiplex networks, allow
many relations to be defined on the vertices. Furthermore, hypersim-
plices provide an essential formalism for representing multilevel part-
whole and taxonomic structures for integrating the dynamics of systems
between levels. Graphs, hypergraphs, networks, simplicial complex, mul-
tiplex network and hypernetworks form a coherent whole from which, for
any particular application, the scientist can select the most suitable.

Keywords: n-ary relation · Graph · Hypergraph · Network · Simplicial
complex · Multiplex network · Hypernetwork

1 Introduction

Given the success of graph and network theory since computers became available
to scientists in the nineteen sixties, it is remarkable that the majority of the
research done in network science has remained focussed on edges representing
binary relations between two vertices. If all relations were binary relations this
would be understandable. However, the structure and dynamics of many systems
depend on relations between many things.

For example, the participants in a dinner party do not just interact in pairs.
Nor do the member of a team or a committee. The members of a choir are
not singing pairwise with the others. A great part of the dynamics of social
and biological systems involves interactions between many individuals and many
things. Surely a science of multidimensional universe should not be constrained
to representing it solely through one dimensional objects.
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This is not to criticise networks in any way. As will become clear, they are
part of a wider story that extends to hypergraphs, simplicial complexes and
hypernetworks. It begins with graphs.

In the literature the terminology for graph theory varies considerably. Here,
let a graph, G, be defined to be a set, V with elements called vertices and a set,
E, of pairs of vertices called edges. Write G = (V,E). Let a and b be vertices
and let {a, b} be an edge Graphs are usually drawn with dots such as a and
b representing vertices and, for example, a line joint a and b to represent the
edge {a, b}. Usually the edges in graphs represent binary relations between the
vertices. To go beyond binary relation something else is required.

2 Hypergraphs

Hypergraphs represent an early attempt to allow graph edges to have more
than two vertices [7]. Berge writes ‘The idea of looking at a family of sets from
this standpoint took shape around 1960. In regarding each set as a “generalised
edge” and in calling the family itself a “hypergraph”, the initial idea was to try
to extend certain classical results of Graph Theory. ... Next it was noticed that
this generalisation often led to simplification; moreover, one single statement ...
could unify several theorems on graphs” [8]. In his 1969 paper [7] he gives the
following definition. ‘Let X = {x1, x2, ..., xn} be a finite set. A hypergraph on X
is a family H = (E1, E2, ..., Em) of subsets of X such that

(1) Ei �= ∅ (i = 1, 2, ...,m)
(2)

⋃m
i=1 = X.

The elements x1, x2, ..., xm are called vertices and the sets E1, E2, ..., Em are the
edges of the hypergraph.’ Berge gives the example shown in Fig. 1 where the
relationship between the vertices and edges is given as an incidence matrix.
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x1 0 0 0 0 1 0
x2 0 0 0 1 1 0
x3 1 0 0 1 0 0

V = x4 1 0 0 0 0 0
x5 1 1 0 0 0 0
x6 0 0 1 0 0 0
x7 0 0 1 1 0 1
x8 0 1 1 0 0 0

)b()a(

Fig. 1. The Berge hypergraph

Berge’s method of drawing hypergraphs is a hybrid between graph-theoretic
links and loops, and hypergraph-theoretic sets. Figure 2(a) shows the Berge
hypergraph drawn entirely as sets. Here the edges corresponding to pairs of
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Fig. 2. The dual Berge hypergraphs

vertices are shown as sets, namely {x1, x2} and {x5, x8}, and the loop from x7

to itself is draw as a singleton set {x7} which is the edge E6.
Figure 2(a) shows the hypergraph with the columns of the incidence matrix

as the edges. The dual hypergraph has sets of edges corresponding to the vertices
as shown in Fig. 2(c). Looking along the rows, each vertex is related to a set of
edges, for example x7 is related to the set of edges {E3, E4, E6} This is a ‘dual’
edge in the dual hypergraph, as shown in Fig. 2(b).

The Galois Lattice. Figure 3 shows a set of arches, A = {a1, a2, a3, a4,
a5, a6, a7} with each arch made from a subset of the blocks B =
{b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12}. Let arch ai be R-related to block bj
if it contains that block. This bipartite relation can be represented by the inci-
dence matrix shown in Fig. 4. The entry in the ith row and the jth column of
the matrix is one if ai is related to bj , and it zero otherwise. Let E(ai) be the
set of blocks related to arch ai. Then:

a1 a2 a3 a4 a5 a6 a7

Fig. 3. Arches related to the blocks used to construct them

E(a1) = {b1, b3, b4} E(a2) = {b2, b3, b4} E(a3) = {b3, b4, b5}
E(a4) = {b4, b5, b6, b7} E(a5) = {b7, b8, b9, b10} E(a6) = {b7, b8, b9, b11}
E(a7) = {b7, b8, b9, b12}.

Apart from these ‘first order’ edges it is interesting to generate ‘higher order’
edges from all their intersections:

E(a1) ∩ E(a2) ∩ E(a3) = {b3, b4} E(a1) ∩ E(a2) ∩ E(a3) ∩ E(a4) = {b4}
E(a3) ∩ E(a4) = {b4, b5} E(a4) ∩ E(a5) ∩ E(a6) ∩ E(a7) = {b7}
E(a5) ∩ E(a6) ∩ E(a7) = {b7, b8, b9}
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b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

a1 1 0 1 1 0 0 0 0 0 0 0 0

a2 0 1 1 1 0 0 0 0 0 0 0 0

a3 0 0 1 1 1 0 0 0 0 0 0 0

a4 0 0 0 1 1 1 1 0 0 0 0 0

a5 0 0 0 0 0 0 1 1 1 1 0 0

a6 0 0 0 0 0 0 1 1 1 0 1 0

a7 0 0 0 0 0 0 1 1 1 0 0 1

Fig. 4. Maximal rectangles in the arch-block structure

Let the set of first order and higher order edges be called the augmented hyper-
graph for the relation in Fig. 5. The edges of the augmented dual hypergraph can
be found in a similar way:

E(b1) = {a1} E(b2) = {a2} E(b3) = {a1, a2, a3}
E(b4) = {a1, a2, a3, a4} E(b5) = {a3, a4} E(b6) = {a4}
E(b7) = {a4, a5, a6, a7} E(b8) = {a5, a6, a7} E(b9) = {a5, a6, a7}
E(b10) = {a5} E(b11) = {a6} E(b12) = {a7}
E(b1) ∩ E(b3) ∩ E(b4) = {a1} E(b2) ∩ E(b3) ∩ E(b4) = {a2}
E(b3) ∩ E(b4) = {a1, a2, a3} E(b3) ∩ E(b4) ∩ E(b5) = {a3}
E(b4) ∩ E(b5) = {a3, a4} E(b4) ∩ E(b5) ∩ E(b6) ∩ E(b7) = {a4}
E(b7) ∩ E(b8) ∩ E(b9) = {a5, a6, a7} E(b7) ∩ E(b8) ∩ E(b9) ∩ E(b10) = {a5}
E(b7) ∩ E(b8) ∩ E(b9) ∩ E(b11) = {a6} E(b7) ∩ E(b8) ∩ E(b9) ∩ E(b12) = {a7}

Bringing together the sets in the augmented hypergraphs shows that they
can be put is one-to-one correspondence. This is known as the Galois connection
and the Galois pairs can be listed as:

{b1, b3, b4} ↔ {a1} {b7, b8, b9, b10} ↔ {a5} {b3, b4} ↔ {a1, a2, a3}
{b2, b3, b4} ↔ {a2} {b7, b8, b9, b11} ↔ {a6} {b7, b8, b9} ↔ {a5, a6, a7}
{b3, b4, b5} ↔ {a3} {b7, b8, b9, b12} ↔ {a7} {b4} ↔ {a1, a2, a3, a4}

{b4, b5, b6, b7} ↔ {a4} {b4, b5} ↔ {a3, a4} {b7} ↔ {a4, a5, a6, a7}

In a Galois pair A′ ↔ B′ every a in A′ is R-related to every b in B′. Therefore
the rows and columns of the matrix can be rearranged so that all the ai in
A′ are contiguous and all the bj in B′ are contiguous, with the corresponding
rectangle of entries in the matrix all ones. For example, let A′ = {a1, a2, a3} and
B′ = {b3, b4}. Then as shown in Fig. 4 the corresponding rectangle is filled with
ones because each of a1, a2 and a3 is related to b3 and b4.

The rectangle corresponding to A′ = {a1, a2, a3} ↔ B′ = {b3, b4} is maximal.
Two other maximal rectangles are shown in Fig. 4 corresponding to the Galois
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Fig. 5. The Galois Lattice for the arch-block relation of Fig. 4

pairs {a3, a4} ↔ {b4, b5} and {a5, a6, a7} ↔ {b7, b8, b9}. The maximal rectangles
A′ ↔ B′ where A′ has just one element or B′ has just one element are not shown.

The Galois pairs can be arranged as a Galois lattice [13] with upwards set
inclusion on the left and downward set inclusion on the right (Fig. 5).

Galois pairs are particularly interesting, since they are sites of relatively high
connectivity. However for relations between large sets there can be a combinato-
rial explosion of Galois pairs making computation difficult. Nonetheless Galois
pairs play an important role in hypernetwork theory [17].

Hypergraphs are an excellent first step towards mathematical structure able
to represent n-ary relations. However they are essentially set-theoretic and have
no orientation. Simplicial complexes provide this.

3 Simplicial Complexes

In the nineteen fifties C.H. Dowker published the paper The homology groups
of relations [11] which showed that relations between n things could be repre-
sented by multidimensional polyhedra with n vertices, such as those shown in
Fig. 6. This idea lay dormant for a quarter of a century until in the nineteen
sixties R.H. Atkin introduced the revolutionary idea that social relations could
be represented by polyhedra. For example, a business deal between three people
can be represented by a triangle, written as 〈a, b, c〉, the relation of four people
playing music together can be represented by a tetrahedron, 〈a, b, c, d〉, and the
relationship between five people working together as a team can be represented
by a 5-hedron, 〈a, b, c, d, e〉. This idea is entirely compatible with network theory
since, for example, a relationship between two people having a conversation can
be represented by a polyhedron with two vertices, namely a line or an edge,
〈a, b〉. These ideas first appeared in the article A mathematical approach towards
a social science, published in the Essex Review in 1968 [1].
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Fig. 6. Simplices can represent relations between two or more things

Polyhedra are the geometric realisation of more abstract objects called sim-
plices. Let V be a set of vertices. An abstract p-simplex is determined by a set
of p+1 vertices, written as 〈v0, v1, ..., vp〉. Simplices are often represented by the
symbol σ.

A simplex σ is a face of a simplex σ′, σ � σ′, if every vertex of σ is also a
vertex of σ′. For example the 2-dimensional simplex 〈x1, x2, x3〉 is a triangular
face of the tetrahedron representing the 3-dimensional simplex 〈x1, x2, x3, x4〉.
A set of simplices with all its faces is called a simplicial complex.

Algebraic Topology. In algebraic topology simplices provide an algebraic way
of calculating the topological invariants of spaces. The ideas will be briefly and
informally sketched here. Figure 7 shows a complex made up of three triangles
with all their faces (lines and vertices). This complex has the topological feature
of a hole surrounded by the triangles.

Fig. 7. A hole in a simplicial complex.

A q-dimension chain is an expression of the form Σi∈I nσi where n is a
number. The boundary operator, ∂, maps a simplex to its boundary according to
the rule ∂〈x0, ..., xp〉 = Σp

i=0(−1)i〈x0, ..., x̂i, ..., xp〉, where x̂i means omit the ith

entry along, counting from zero. For example, ∂〈x1, x2, x3〉 = 〈x2, x3〉−〈x1, x3〉+
〈x1, x2〉. This chain of 1-simplices is called a cycle.

In algebraic topology switching a pair of vertices changes the sign (and ori-
entation) of a simplex, so −〈x1, x3〉 = 〈x3, x1〉. Thus the cycle can be written as
〈x2, x3〉 + 〈x3, x1〉 + 〈x1, x2〉. In this case it is a bounding cycle because it is a
closed loop of 1-simplices that goes round the shaded 2-dimensional triangle. It
starts at 〈x2〉 and goes to 〈x3〉 along the oriented edge 〈x2, x3〉, goes to x1 along
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the oriented edge 〈x3, x1〉 and back to close the loop at x2 along the oriented
edge 〈x3, x2〉.

The boundary operator is nilpotent, i.e. when applied twice it gives zero. For
example, ∂2〈x1, x2, x3〉 = ∂〈x2, x3〉−∂〈x1, x3〉+∂〈x1, x2〉 = 〈x3〉−〈x2〉−〈x3〉+
〈x1〉 + 〈x2〉 − 〈x1〉 = 0.

Any chain c with ∂c = 0 is defined to be a cycle. Apart from bounding
cycles as seen above, there can be non-bounding cycles. For example consider c =
〈x2, x5〉+〈x5, x3〉+〈x3, x2〉. Then ∂c = 〈x5〉−〈x2〉+〈x3〉−〈x5〉+〈x2〉−〈x3〉 = 0
and c is a cycle. However there is no 2-dimensional chain c′ with ∂c′ = c so c is
a non-bounding cycle. In general, non-bounding cycles correspond to holes, in
this case exactly the hole bounded by c.

Atkin’s Q-analysis. In the early seventies Atkin and coworkers investigated
the topological properties of relations in the context of town planning. Atkin
suggested a new kind of connectivity based on the shared faces of social polyhedra
[3–5].

σ σ′

σ1 σ2 σ3 σ4

(a) σ and σ′ )b(raen-1era σ1 and σ4 are 1-connected

Fig. 8. q-connected polyhedra

Two simplices are q-near if they share a q-dimensional face. Two simplices
are q-connected if there is a chain of pairwise q-near simplices between them.
The tetrahedra σ and σ′ are 1-near in Fig. 8(a) because they share an edge, or
1-dimensional face. In Fig. 8(b) the tetrahedra σ1 and σ4 are 1-connected, since
σ1 is 1-near σ2, σ2 is 1-near σ3, and σ3 is 1-near σ4. A Q-analysis determines
classes of q-connected components, sets of simplices that are all q-connected. An
early application of Q-analysis studied land uses in Colchester [6].

Backcloth and Traffic. The vertices and edges of networks often have num-
bers associated with them. For example in a social network the vertices may
be associated with the amount of money a person has and the edges may be
associated with how much money passes between pairs of people. In electrical
networks the vertices have voltage associated with them and the edges have
current. Although the network’s voltages and currents may change, the network
itself does not. Similarly in a road network the daily traffic flows may vary but
usually the network infrastructure does not. The same holds for simplicial com-
plexes when there are patterns of numbers across the vertices and the simplices.
The numbers may change when the underlying simplicial complex does not.

Atkin suggested that the relatively unchanging network or simplicial complex
structure be called a backcloth and that the numbers be called the traffic of
activity on the backcloth. As an example, the airline network acts as a backcloth
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to the traffic of airline passengers. The term backcloth comes from the scenery
painted on large canvas sheets used in theatres as a static backdrop behind the
actors.

Atkin first used simplicial complexes to characterise a wide variety of phe-
nomena in physics by his Cocycle Law that the space-time backcloth supporting
many physical phenomena has no holes. His conceptual leap “from cohomology
in physics to q-connectivity in social science” was published in 1972 [2].

Flows and q-transmission as Multidimensional Percolation. Networks
are excellent for representing and calculating the dynamics of flows, from elec-
tricity to oil to cars and sentiments. Simplicial complexes are multidimensional
networks and they too can carry equally diverse traffic flows. Generally the q-
connectivity of the underlying backcloth constraints the dynamics of the flows.
This has been called q-transmission and has been described as a multidimen-
sional analogue analogue to percolation in networks [17].

Example: Road Accidents. A study of road accidents illustrates the com-
binatorial nature of simplices [17]. Drivers who had been involved in accidents
were interviewed to find out the possible causes. The telephone interviews were
unstructured with the interviewer eliciting the causes from the interviewees, e.g.
interviewees would often would volunteer that they were going too fast for the
conditions. Some typical examples of the 57 reported accident simplices are:

〈mechanical failure, need to stop, lack anticipation, stress; R1〉
〈carelessness, unexpected manoeuvre; R8〉
〈change in road layout, poor signposting, bad visibility; R16〉
〈speed, lack of concentration; R23〉
〈inexperienced driver, car in wrong position; R31〉
〈poor visibility, lack of caution, road wet; R23〉
〈not paying attention, to near/too fast, brakes poor, unexpected manoeuvre; R51〉
〈narrow road, speed R53〉

These combinations of causes were expressed in everyday language. The data
was analysed according to the classes:

D1–Stress D2–carelessness D3–Poor anticipation
D4–Too close D5–Looking wrong way D6–Alcohol
D7–Health/Tiredness D8–Young male ego D9–Inexperience
D10–Unfamiliarity with vehicle D11–Cyclist blind D12–In a hurry
D13–Unfamiliar with road D14–Speed D15–Mistaken priority
V1–Mechanical failure R1–Difficult configuration R2–Poor visibility
R3–Poor signposting R4–Difficult surface R6–Heavy traffic
A1–Unexpected event A2–Slow vehicle in front

Like hypergraphs, simplicial complex also have Galois pairs:

〈D2–Carelessness, R1–Difficult configuration〉 〈2, 5, 9, 12, 35, 40, 42, 51, 57〉
〈D1–Stress, R1–Difficult configuration〉 〈1, 2, 20, 26, 34, 51, 52〉
〈D2–Carelessness, R2–Poor visibility〉 〈2, 3, 4, 35, 38, 40〉
〈D14–Speed, R1–Difficult configuration〉 〈10, 12, 22, 39, 43, 53〉
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〈D1–Stress, R2–Poor visibility〉 〈2, 3, 11, 13, 26〉
〈R1–Difficult configuration, R2–Poor visibility〉 〈2, 26, 35, 40, 43〉
〈R2–Poor visibility, R4–Difficult road surface〉 〈11, 13, 26, 36, 38〉
〈R2–Poor visibility, A1–Unexpected event〉 〈11, 13, 16, 36, 54〉
〈R2–Poor visibility, R3–Poor signposting〉 〈2, 16, 26, 56〉
〈D1–Stress, D13–Unfamiliar with road〉 〈2, 3, 25, 52〉
〈D2–Carelessness, A1–Unexpected event〉 〈1, 9, 10, 41〉
〈R2–Poor visibility, R4–Difficult road surface〉 〈11, 13, 26〉
〈R2–Poor visibility, R4–Difficult road surface, A1–Unexpected event〉 〈11, 13, 36〉
〈D2–Carelessnes, R1–Difficult configuration, R2–Poor visibility〉 〈2, 35, 40〉
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Carelessness

4 6
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Fig. 9. Frequencies of occurrences of accident factors

Figure 9 gives a graphical summary of the Galois pairs and the numbers acci-
dents associated with the simplices. The interviewees were asked to rate the
importance of the factors on a five-point low-high scale. For example, σ(Accident-

2) = 〈D1–Stress(5), D2–Careless(3), D13–Unfamiliar road(5), D15–Mistaken prior-

ity(5), R1–Difficult config(5), R2–Poor visibility(3), R3–Poor signposting(5)〉, and
σ(Accident–2) = 〈D1–Stress(5), D2–Careless(4), D6–Alcohol(1), D7–Tired(5), D13–

Unfamiliar road(3), D15–Speed(3) R2–Poor visibility(2)〉. Let μ(vi) be the weighting
given to accident factor vi, μ(vi). A value on the whole simplex, the fuzzy con-
junction, can be defined as μσ = min{μ(vi) | vi � σ}. Then for a fuzzy value
of 3, σ(Accident-2) and σ(Accident-3) share the face 〈D1-Stress, D2-Careless,
D13-Unfamiliar road〉, and they are 3-fuzzy 2-near.

4 Hypernetworks

Figure 10(a) shows the lines �1, ..., �16 arranged in a circle by the relation R1.
The resulting structure 〈�1, ..., �16;R1〉 has the emergent property that most
people see a white disk at the centre of the lines, the so-called sun illusion.
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Figure 10(b) shows the same set of lines assembled under a different relation, R2.
Now there is no disk but a rectangle shape emerges. This example illustrates that
the same ordered set of elements can be the subject of more than one relation,
and that the simplex notation 〈�1, ..., �16〉 cannot discriminate these very different
cases.

Fig. 10. The lines �1, ..., �16 organised by two different relations, R1 and R2

In order to do this another symbol is necessary to represent the relation. We
write R1 : 〈�1, ..., �16〉 → 〈�1, ..., �16;R1〉 and R2 : 〈�1, ..., �16〉 → 〈�1, ..., �16;R2〉.
Let σ1 represent the sun configuration and σ2 represent the rectangle configu-
ration. Then σ1 and σ2 are examples of relational simplices, or hypersimplices.
Now the notation enables σ1 to be discriminated from σ2, since σ1 �= σ2.

In general a hypernetwork is defined to be any collection of hypersimplices.
This definition is deliberately undemanding, so that almost anything can be a
hypersimplex, and any collection of hypersimplices can be a hypernetwork.

Example: Chemical Molecules. Chemical molecules illustrate the idea of
hypersimplices. For example, propanol assembles three carbon atoms with eight
hydrogen atoms and one oxygen atom, written as C3H8O or C3H7OH. Figure 11
shows the atoms of propanol arranged in a variety of ways. The first two show
the isomers n-propyl alcohol and isopropyl alcohol. The oxygen atom is attached
to an end carbon in the first isomer and to the centre carbon in the second, but
the C-O-H hydroxyl group substructure is common to both. The rightmost iso-
mer of C3H8O, methoxyethane, has the oxygen atom connected to two carbon
atoms and there is no C-O-H substructure. This makes it an ether, methyl-ethyl-
ether, rather than an alcohol. Thus the relational simplices of the isomers have

Fig. 11. Chemical isomers as relational simplices
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the same vertices, but the assembly relations are different. n-propyl alcohol and
isopropyl alcohol share the hydroxyl group substructure C-O-H and are similar,
but methyl-ethyl-ether does not and has different properties. Thus

〈 C, C, C, H, H, H, H, H, H, H, H, O ; R n−propylalcohol〉 �=
]
〈 C, C, C, H, H, H, H, H, H, H, H, O ; R isopropylalcohol〉 �=
〈 C, C, C, H, H, H, H, H, H, H, H, O ; R methyl−ethyl−ether〉

The Vertex Removal Test for n-ary Relations. The essential feature of a
polyhedron is that it ceases to exist if any of the vertices are removed. For exam-
ple, consider a cyclist represented as the combination 〈rider, bicycle; Rriding〉.
Remove either the man or the bicycle and what is left ceases to be a cyclist.
Removing a vertex is like sticking a pin in a balloon, causing the structure to
collapse and whatever is left is not the whole simplex. Remove any vertex from
〈gin, tonic, ice, lemon; Rmixed〉 and it ceases to be the perfect gin and tonic. Gen-
eralising edges to polyhedra allows a distinction to be made between the parts of
things represented by vertices, and wholes represented by hypersimplices. Using
this test it is easy to find many examples of n-ary relations, e.g. a path with n
edges in a network forms a hypersimplex - remove an edge and the path ceases
to exist; four bridge players form a hypersimplex - remove one and the game
collapses; and a car and its wheels are 5-ary related - without any of them it
won’t work.

Fig. 12. Remove a vertex and the simplex ceases to exist.

5 Hypernetworks and Multilevel Structure

Hypersimplices enable the definition of multilevel part-whole structures, e.g. the
four blocks assembled by the 4-ary relation R to form an arch in Fig. 13. Here
the whole has the emergent property of a gap not possessed by any of its parts.
If the parts exist in the system at an arbitrary Level N then the whole exists
at a higher level, here shown as Level N+1. Thus assembly relations provide an
immutable upwards arrow for the definition of multilevel structure.
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Fig. 13. The fundamental part-whole diagram of multilevel aggregation

Part-whole aggregations are interleaved with taxonomic aggregations, as
shown in Fig. 14. The aggregation between Level N and Level N+1 combines
graphical parts to form faces. The aggregation between Level N+1 and Level
N+2 establishes classes of faces in a taxonomy. Such aggregations depend on
the purpose of the taxonomy. For example, there is no class of ‘frowny’ faces
because, for the purpose here, it is not required. Note that part-whole aggrega-
tion require all the parts. In contrast taxonomic aggregations require just one
example to aggregate. For example, the round smiley face is sufficient for there
to be a smiley face, irrespective of whether or not there is a square smiley face.

Fig. 14. Part-whole and taxonomic aggregation

6 Embracing n-ary Relations in Network Science

Despite the mathematics literature on multi-vertex relational structure dating
back at least to the 1950s, and despite the efforts of visionaries such as Berge and
Atkin in the 1960s, today many scientists still shy away from relations between
more than two things. It is all the more remarkable because graph theorists have
known about this mathematics but not adopted it, e.g. in his classic book on
graph theory, Harary [14] quotes Veblen’s 1922 book [19] as a source for his defi-
nition of simplicial complex but, frustratingly, notes in passing that a graph is a
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one-dimensional simplicial complex, even though Veblen explicitly considers two-
dimensional simplicies in the second chapter of his book. In contrast, computer
science recognises the importance of n-ary relations, e.g. Codd [9] uses them in
his seminal paper on relational data structures, and the WC3 consortium defines
their use in the semantic web [15].

Fig. 15. The natural family of network structures embraces n-ary relations

It is unfortunate that network scientists should neglect n-ary relations since
they are part of a natural family of network structures (Fig. 15). Assuming appro-
priate definitions, providing orientation makes a non-oriented graph into a net-
work, and allowing pairs of vertices to support many relations makes multiplex
networks. Vertically, allowing edges to have many vertices generalises graphs to
hypergraphs, allowing oriented edges to have many vertices generalises networks
to simplicial complexes, and allowing oriented edges supporting many relations
to have many vertices generalises multiplex networks to hypernetworks. Hori-
zontally, orienting the edges of hypergraphs creates simplicial families and com-
plexes, and allowing a simplex to support many relations creates hypernetworks.
Thus the diagram in Fig. 15 commutes and these structures form a natural family
by adding structure from top left to bottom right.

Hopefully this paper will stimulate more interest in n-ary relations in network
science:

– many systems involve n-ary relations – ignoring this misrepresents them
– n-ary relations are essential for representing part-whole structures and related

dynamics in multilevel systems
– there is a rich and coherent mathematical theory for n-ary relations - with

many remaining challenges and opportunities for the network community.
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