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6.1 Introduction

Endothelial cells (ECs) detect and respond to blood flow-induced forces in a
process known as mechanotransduction. Dysfunctional mechanotransduction has
been implicated as one of the causes of cardiovascular diseases such as atheroscle-
rosis [1]. Hence, studying mechanotransduction processes is motivated by the
possibility of improving the diagnosis and prevention of cardiovascular diseases.
Davies et al. proposed a decentralized model in which mechanotransduction occurs
as the sum of two processes. First, mechanotransmission, whereby forces from
blood flow are transmitted internally into the cell via the cytoskeleton. Second
transduction, where force-sensitive transducers located throughout the cell are
activated, causing a biological response such as release of vasodilators [2]. Hence
there is no central transducer responsible for overall mechanotransduction: cell
signaling is the aggregate output of all transducers within the cell.

Both mechanotransmission within and mechanical behavior of endothelial cells
have been examined using computational modeling [3–6]. The spatial domain of
these studies is typically based either on images of a single cell [5] or on idealized
geometry [3, 4, 6], where the cell is represented by simple shapes and solids (for
instance, the nucleus as a spheroid). These approaches do not consider the effect of
cell shape variation on their predicted outputs. As such, it is uncertain whether the
findings of cell-specific studies can be applied to the overall cell population.

There is reason to suggest they cannot be: Ferko et al. demonstrated that the
spatial distribution of focal adhesions causes heterogenous stress/strain distribu-
tions. They also found that stresses concentrated at the interface of the nucleus and
cytoplasm [5]. This suggests that varying focal adhesion and nuclei morphology
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would have resulted in substantially different stress/strain estimates. Caile et al.
found that rounded cells had an elastic response to compression, whereas spread
cells of identical elastic moduli exhibited hysteresis [3]. Taken together, this
suggests that individual endothelial morphology is an important determinant of
cell mechanical behavior. Thus it is important to consider spatial variation in the
population of cells when performing single cell mechanical simulations.

In this study we aimed to quantify the morphological variation in an EC
population. We also aimed to determine if this variation leads to substantially
different estimates of mechanical behavior. The starting point for our methods to
quantify spatial variation was based on a range of studies carried out by Murphy
et al. [7–9]. They proposed a generative model approach, whereby a population of
cells are imaged and used to build up a dataset of spatial descriptors. From these
descriptors, new virtual cells can be generated that display characteristic patterns
learned from the cell images.

6.2 Materials and Methods

We imaged a population of endothelial cells cultured under identical condi-
tions (n D 15). The nucleus, f-actin, and acetylated ’-tubulin components of the
cytoskeleton were imaged. Shape descriptors were formulated to numerically
describe the morphology of the nucleus and cell edge. The statistical variation in
each descriptor was analyzed and used to create generative cells: virtual cells with a
morphology sampled from the shape descriptor distribution of the entire population
of endothelial cells. These generative cells were then used as the spatial domain
for our finite-element analysis to generate stress estimates. Physiological levels of
flow-induced shear stress formed the boundary conditions of our simulation.

6.2.1 Cell Culture and Imaging

Unless otherwise stated all materials were obtained from Life Technologies
(Carlsbad, CA, USA). Human microvascular endothelial cells (HMEC-1s) were
kindly provided by Dr. Edwin Ades, Mr. Francisco J. Candal (CDC, Atlanta
GA, USA), and Dr. Thomas Lawley (Emory University, Atlanta, GA, USA) [10].
HMEC-1s between passages 5–7 were seeded (1 � 105 cells/ml concentration) onto
fibronectin-coated 6-well plates (fibronectin, 20 �g/ml, #33016-015). They were
grown to confluence at 37 ıC in 5 % CO2. Cells were maintained daily in MCDB131
(#10372019) media with 10 % L-glutamine (#25030081), 2 % FBS (#10091148),
and 1 % penicillin/streptomycin (#15140122).
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Immunofluorescent Labeling Due to overlapping wavelengths of absorption and
emission only three distinct sub-cellular components could be imaged simultane-
ously. Thus we stained and imaged the nucleus, acetylated ’-tubulin, and f-actin.
The protocol is as follows:

Upon confluence cells were fixed with 4 % paraformaldehyde (#158127-100,
Sigma-Aldrich, St Louis, MO, USA) for 30 min at 37 ıC, then washed with PBS
(3 � 5 min, #00-3000). Next, cells were permeabilized in triton X-100 (0.5 %,
5 min, #T9284, Sigma-Aldrich), followed by PBS wash (3 � 5 min). To image
the nucleus, cells were stained with Hoechst 33258 (1:1000, #B2883, Sigma-
Aldrich) for 5 min at room temperature and washed with PBS (3 � 5 min). To image
acetylated ’-tubulin, cells were blocked with goat serum (1:20, #G9023 Sigma-
Aldrich) for 30 min at room temperature. They were then incubated overnight with
611b (1:500, #T7451 Sigma-Aldrich). This was followed by a 2 h incubation with
secondary antibody goat antimouse Alexa Fluor 594 (1:500, #A11005), and a PBS
wash (3 � 5 min). To image f-actin, cells were incubated with Alexa Fluor Phalloidin
488 (1:500, #A12379) for 30 min at room temperature, followed by PBS washes
(3 � 10 min). Next, coverslips were mounted directly onto six well plates using
ProLong Gold (#P36934). The bottom of each well (with coverslip attached) was
then removed with a heated scalpel to allow direct imaging.

Microscopy An Olympus FV1000 laser scanning confocal microscope with a
60�/1.35 NA oil immersion lens was used to image the cells. Diode-pumped 405 nm
(to image the nuclei), helium neon 543 nm (acetylated ’-tubulin), and an argon ion
multiline 458 nm (primary cilium and f-actin) lasers were used to sequentially excite
samples. Acquired image resolution was 1600 � 1600 pixels, with an XY spatial
resolution 0.132 �m/pixel.

6.2.2 Generating Virtual Cell Components

Image processing and image analysis of the nucleus and cell edge were carried out
in MATLAB (version R2013b), ImageJ (version 1.48o), and AMIRA (version 5.6).
Nuclei morphology was quantified first, as the nucleus is an easily identified feature
present in every cell. Thus the nucleus functions as a useful reference point for shape
descriptors of the other sub-cellular components.

Quantifying Spatial Variation of Nuclei To quantify nuclei morphology we used a
modified version of the method described by Buck et al. [9]. This method involved
four spatial descriptors: median axis, nucleus width, nucleus length, and centroid
vector (see Fig. 6.1). Both median axis and nuclei curves were normalized by the
length of the central axis, and fitted with a 10th order polynomial. Finally in every
2D slice, we defined the centroid vector: the vector between the centroid of the
slice and the centroid of the whole nucleus. Hence any nucleus can be described
by the 1 � n vector of central axis lengths where n is number of slices, two 11 � n
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Fig. 6.1 Quantifying nuclei morphology using spatial descriptors. (a) Triple-labeled co-image of
a human microvascular endothelial cell, with the nucleus in blue, f-actin in green, and acetylated
’-tubulin in red. (b) Thresholded image of cell shown in (a) with the central axis in blue and the
nucleus centroid in green. The central axis length is the nucleus length. (c) Cells were rotated so
that the central axis runs top-to-bottom. (d) Cells were rotated a 180ı if needed, to ensure majority
of cell area was on the right-hand side of the central axis. All slices in stack were rotated by the
same angle as the central slice. (e) The median axis was found, as the point along the row (shared
y coordinate) that is equally distant from either edge of the nucleus. (f) This distance is known as
the nucleus width. (g) Median axis position in pixels, normalized by dividing by nuclear length.
(h) Nuclear width in pixels normalized by dividing by nuclear length

vectors (fitted coefficients of a 10th order polynomial to describe the median axis
and nuclei width), and the 3 � n array of centroid vectors. A distribution for each
shape descriptor was gathered from a population of cells (n D 15). By sampling
from this distribution, it is possible to generate a nuclei representative of the entire
population.

Quantifying Spatial Variation of Cell Edge The cell membrane was not explicitly
imaged in this study. Instead the edge of the cell was approximated as being one
pixel (132 nm) beyond the edge of the f-actin and acetylated ’-tubulin features. This
was achieved by adding these channels together and Gaussian blurring the resulting
image. The shape descriptors of the cell membrane were adapted from Buck et al.
[9]. First, the nuclear centroid of the central slice within the cell was defined as the
origin of the cell. Every cell image stack was rotated so that the nucleus central
axis ran top-to-bottom and majority of cell area was on the right-hand side of the
central axis (Fig. 6.1b–d). The centroid of each slice was also determined, and the
x and y displacement between the slice centroid and the origin was recorded. In
each slice the cell boundary was detected by finding the boundary at 240 equally
spaced points, radiating outwards 1.5ı apart from the slice centroid (see Fig. 6.4).
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Instead of storing these points as x, y, and z coordinates, they were converted to a
polar coordinate system, hence only 240 radial lengths were needed (as the angle is
known).

Hence the cell membrane spatial description could be stored as a 241 � n cell
edge vector, where n is the number of slices, and there are 240 radial lengths, and
a single z coordinate that all the points in each slice share. Prior to calculating
radial length, each x and y coordinate in the cell edge vector was normalized by
the displacement of the slice centroid relative to the origin (Fig. 6.3).

To analyze the variation in these cell edge vectors, we used principle component
analysis. Firstly the 241 � n cell edge vectors were converted back into Cartesian
coordinates resulting in a vector of 1 � 720n, whereby each slice, n, has 240 x, y,
and z coordinates. A matrix was formed from the edge vectors of all cells, 15 � 720n.
Each column was centered by subtracting the mean cell edge vector. PCA was then
performed using singular value decomposition algorithm. The PCA method finds
shape modes that can be linearly combined to recreate any cell shape from the
original data.

Hence cell membrane shapes can be generated by randomly generating shape-
mode weightings. The square root of the eigenvalue is the standard deviation of
that particular shape mode (corresponding eigenvector) in the population. Hence
the weightings can be sampled from a normal distribution with a mean (zero, as
data is centered), and standard deviation, to generate “typical” cells, or sampled
from a standard deviation above or below the mean to generate “unlikely” cells.

To deconstruct our actual cell shapes into a linear combination of shape modes,
we used the Open Genetic Algorithm Toolbox, implemented in MATLAB [11].
The parent solutions of the genetic algorithm were a 1 � 8 vector of shape-mode
weightings. The fitness function of the algorithm was to minimize the root-mean-
squared difference between the 240 points in the original cell and the 240 points of
the cell created from the genetic algorithm. Rank scaling method and satellite range
scheduling selection method were used, with a single crossover point, crossover
probability of 90 %, mutation probability of 6–9 %, and an elitism of 10 %. Note:
the genetic algorithm parameters reported here were used in this study to analyze all
the cells. However, the genetic algorithm converged to a similar solution when top
scaling was used and when the elitism and mutation rate was varied.

6.2.3 Finite-Element Model of Solid and Fluid Domains

Computational modeling was carried out in ANSYS (version 16), using geometry
files processed in SolidWorks (version 2011).

Fluid Domain We simulated a single cell within a flow chamber. Flow inlet and
outlets were 300 �m up- and downstream of the cell. The side and upper walls
were 200 �m away from the cell. This geometry approximates the flow chamber
we intend to use in future experiments. Pressure boundary conditions of 6 and 0 Pa
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Table 6.1 Constitutive
properties of computational
model

Parameter Value Reference

Poisson’s ratio, nucleus 0.33 [3, 5]
Poisson’s ratio, cytoplasm 0.33 [3, 5]
Young’s modulus, nucleus 5100 Pa [3–6, 17]
Young’s modulus, cytoplasm 775 Pa [3–6, 17]

were applied to the inlet and outlet, respectively, resulting in a pressure drop of
0.009 Pa/�m. This resulted in a maximum fluid velocity of 4.7 � 10�2 ms�1, and
a maximum wall shear stress of 2.4 Pa on the cell surface and �0.8 Pa on the
chamber walls. Our boundary conditions were selected to result in a similar wall
shear stress as simulated by Ferko et al. (1 Pa wall shear stress on the chamber
walls with �1.5 Pa maximum wall shear stress on the apical cell surface) [5]. The
Reynolds number was �9, indicating laminar flow. The forces acting on the cell
surface were exported from the fluid domain into the solid domain (one-way fluid–
structure interaction).

Solid Domain The basal surface of the cell was constrained in all directions,
simulating cell attachment with the extracellular matrix. We treated both the nucleus
and the cytoplasm as compressible isotropic linear elastic materials, as assumed by
Ferko et al. [5]. The full list of material properties is shown in Table 6.1.

Meshing and Solution Procedure The fluid domain was meshed with 4-node
tetrahedron elements. The solid domain was meshed with 10-node ANSYS solid
187 elements (4 vertices, 6 mid-edge nodes). Both fluid and solid domains were
meshed using the patch conforming method, which firstly generates a surface mesh,
then uses the Delaunay advancing front approach to mesh the remaining volume.
Mesh independence analysis was conducted on both the solid and fluid domain (see
Fig. 6.2).

6.3 Results

6.3.1 Shape Variation of Endothelial Cell Components

Nucleus The median axis and nucleus width are shown in Fig. 6.3. The mean
centroid vector was 0 ˙ 1.5 pixels in both x and y, indicating that each slice of the
nucleus had a centroid directly above the middle slice centroid. The average nuclear
length was 144 ˙ 20.4 pixels. By sampling from these distributions it was possible
to generate a typical nucleus as shown in Sect. 6.3.2.

Cell Edge Each cell in the population was deconstructed into a linear combination
of shape modes. Of the 15 cells, 5 had non-typical morphology. They had a first
shape modes weighting greater than one standard deviation away from the average
(the first shape mode explains 40 % of the shape variation, Fig. 6.4).
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Fig. 6.2 Mesh independence analysis of the fluid (left) and solid domain (right). The fluid domain
solution stabilized at 1.4 � 105 number of elements. The plotted point is the velocity in the middle
of the channel 100 �m downstream of the cell. Because the system Reynolds number is �9, we
can approximate the system using a numerical solution to laminar flow in a rectangular duct, as
described by Spiga and Morino [16]. We estimate a maximum velocity of 0.50 ms�1 which is in
close agreement with our simulated value of 0.49 ms�1. To analyze the solid domain we monitored
the Von Mises stress at two points: a point on the apical surface of the nucleus near the maximum
stress concentration (red) and a point on the basal surface of the nucleus (green). The solid domain
solution stabilized at 5.7 � 104 number of elements with an element sizing of 2.5 �m. This sizing
was used in both the typical and atypical cell models

Fig. 6.3 Variation in nuclei shape descriptors. The average median axis and nucleus width are
shown in red. The green and blue lines represent an envelope of two standard deviations above and
below the average, hence nearly all nuclei fall within the envelope. The maximum average width
of the nucleus is at the center, and is 40 pixels � 0.132 �m/pixel resolution D 5.28 �m (on each
side of the median axis)
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Fig. 6.4 Spatial descriptors of the cell edge. (a) Illustration of polar coordinate description of the
cell outline. There are 240 data points shown on the outline in blue, numbers refer to the point
number. Hence each slice can be represented by a 1 � 241 vector. (b) Percentage of shape variation
explained by each of the shape modes found using PCA. To analyze our data set we considered
the first eight modes which accounted for >95 % of the total variation. (c) Goodness of fit of the
genetic algorithm (blue) versus the actual cell outline (red). The actual nucleus is shown in green.
To generate the blue cell outline the weightings found using the genetic algorithm were multiplied
with the shape modes and added to the average cell outline. PCA analysis and genetic algorithm
fitting have been extended to three dimensions, but for illustrative purposes are shown here in two
dimensions

6.3.2 Computational Model Estimates of Stress Depend on Cell
Morphology

6.4 Discussion and Conclusions

Overall we found littlevariation in nuclear shape in the population: both the median
axis and median width curves are symmetric, and the nuclear centroid vector is
zero, suggesting the nucleus has three perpendicular planes of symmetry. Thus,
overall size is the main component of morphological variation in the nucleus of
static endothelial cells. The size variation of the nucleus is relatively small compared
to size variation in the overall cell. Taken together, this suggests that computational
mechanical estimates of the isolated nucleus can be generalized as there is little
morphological variation.

We found that there was significant morphological variation in overall cell shape.
If one of the five non-typical morphology cells had been selected for a cell-specific
analysis, the findings could not be generalized.

Our estimated stress findings were in agreement with that of Ferko et al. (<60 Pa)
[5]. Even with a simple finite-element analysis (linear, elastic, homogenous, and
compressible) we found substantial differences in the stress distribution between
the typical and non-typical morphology cell models (Fig. 6.5). The trend in model
development is towards increasing sophistication and the inclusion of more discrete
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Fig. 6.5 Comparison of Von Mises stress estimates in typical versus non-typical morphology.
(a) Synthetic “typical” cell with the first eight shape modes within one standard deviation of the
average. Cross-sectional plane is indicated, as is nuclei position within the cell. Stresses are evenly
distributed within the nucleus, and concentrate on the upstream side below the nuclei. (b) Synthetic
“non-typical” cell with the first four shape modes between one and two standard deviations away
from the average. Stress is concentrated on the upstream side of the nucleus, and above the nucleus
(on upstream side). We no longer observe stress concentration below the nucleus. To isolate the
effect of different cell edge morphology and nuclei position within the cell, the same nucleus
was used in both models. Identical computational parameters were used for both models with the
exception of the spatial domain (the same minimum element lengths, simulated flow, etc.). (c) Von
Mises stress along the dotted lines shown in (a, b). Typical cell is in blue, atypical in red; thick lines
with round data points correspond to the path parallel to flow direction. Thin lines with square data
points correspond to basal–apical axis path. Each path has been normalized to the typical cell’s
length (upstream to downstream, basal surface to apical). Nuclei boundaries cause sudden jumps
in the Von Mises stress profile. Stresses are symmetrical upstream and downstream of the nuclei in
the typical cell, but are highly asymmetrical in the atypical cell
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additional sub-cellular components [6, 12–14]. We suggest that morphological vari-
ation of these components will have a substantial impact on mechanical estimates.
Furthermore, this morphological effect is likely to increase with increasing model
sophistication.

In this study, we have examined endothelial cells in particular. However, the use
of computational modeling to characterize cell mechanics is common in a number of
other cell types [12–14]. The population-based shape description methods detailed
here could be readily applied to these cell types, in particular, to adherent cells.

The cell membrane was not explicitly modeled in our analysis: given limitations
of the overlapping antibody spectra, it was decided that imaging cytoskeletal
components would be of more use in future, when the study is extended to
incorporate cytoskeletal morphology. However, using the outline of the cytoskeleton
to approximate the boundary of the cell is valid for the purposes of computa-
tional modeling, because the actin cortex is rich in f-actin and is located within
128 ˙ 28 nm of the plasma membrane [15]. The slight difference is accounted for
by our Gaussian blurring.

We have demonstrated how morphological variation in the cell membrane has
significant effect on the mechanical estimates of endothelial cell behavior. In future,
we aim to extend our study to incorporate spatial variation of the cytoskeleton:
including alpha-tubulin, f-actin, and intermediate filaments. We also aim to extend
our study to incorporate focal adhesions. Because they have the function to adhere
the cell to the extracellular matrix, the size and spatial distribution of focal adhesions
directly affect computational estimates of endothelial mechanics [5].
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