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Preface

The field of computational biomechanics continues to progress toward clinically
relevant simulations. Personalized medicine will play a major role in the future of
healthcare, and personalized computational simulations have a clear part to play.
We, the computational biomechanics community, are making real advancements
toward this ultimate goal of comprehensive patient-specific modeling, but there is
of course much more work to do yet.

The first volume in the Computational Biomechanics for Medicine book series
has been published in 2009. Since then, the book has become an annual reference for
the community to read about the latest advancements in the field. The book series
provides an opportunity for specialists in computational sciences to describe their
latest results and discuss the possibility of applying their techniques to computer-
integrated medicine.

This seventh volume in the Computational Biomechanics for Medicine book
series comprises 18 of the latest developments in solid biomechanics, vascular
biomechanics, and brain biomechanics, from researchers in Australia, New Zealand,
USA, UK, Switzerland, Scotland, France, and Russia. Some of the exciting topics
discussed are:

• Tailored computational models
• Traumatic brain injury
• Soft-tissue mechanics
• Medical image analysis
• Clinically relevant simulations

The Computational Biomechanics for Medicine book series does not only
provide the community with a snapshot of the latest state of the art, but more
importantly, when computational biomechanics and patient-specific modeling is a
mainstay of personalized healthcare, it will serve as a key reminder of how the field
has developed over the years.
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vi Preface

We would like to thank the authors for submitting high-quality work and the
reviewers for helping with paper selection.

We hope you enjoy this year’s edition.

Perth, WA, Australia Grand R. Joldes
Perth, WA, Australia Barry Doyle
Perth, WA, Australia Adam Wittek
Auckland, New Zealand Poul M.F. Nielsen
Perth, WA, Australia Karol Miller
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Chapter 1
Computer Assisted Planning of Periacetabular
Osteotomy with Biomechanical Optimization:
Constant Thickness Cartilage Models
vs. Patient-Specific Cartilage Models

L. Liu, T.M. Ecker, S. Schumann, K.A. Siebenrock, and G. Zheng

1.1 Introduction

Periacetabular osteotomy (PAO) is an effective approach for surgical treatment of
hip dysplasia in young adults [1]. The aim of PAO surgery is to increase acetabular
coverage of the femoral head and to reduce contact pressures by realigning the hip
joint. It was reported [2] that PAO planning approach is mainly based on two types
of optimization strategies which are morphology-based and biomechanics-based
optimization, respectively.

Both 2D and 3D images have been used in morphology-based planning of
PAO surgeries. Clohisy et al. [3] reported that hip specialists identify important
radiographic features of the hip on plain radiographs for diagnosis of pathological
hips. As it is known that one dimensional information is missing with X-ray imaging
due to the nature of projection, CT has been used as a more accurate and informative
way of analyzing the morphology of the hip. Klaue et al. [4] proposed a CT
evaluation method estimating coverage and congruency of hip joint. They made
a topographical map of the acetabulum and the femoral head from the cross section
images of CT scan and calculated the acetabular coverage. More recently, Dandachli
et al. [5] described a new CT-based evaluation method for dysplastic hip from the
weight bearing surface point of view. All these previously introduced methods [4, 5]
quantify the morphology of dysplastic hips with pure geometrical measurements.

L. Liu (�) • S. Schumann • G. Zheng
Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78,
Bern 3014, Switzerland
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The other type of planning strategy is based on biomechanics optimization.
Zhao et al. [6] conducted a 3D finite element (FE) analysis of acetabular dysplasia.
The effects of dysplasia and PAO were both investigated by analyzing the change
of Von Mises stress in the cortical bone before and after surgery. They showed that
the PAO may be beneficial. One limitation of this method lies in the fact that the
acetabular dysplastic model representing different levels of severity of dysplasia
were generated by deforming the acetabular rim of a normal hip. Thus, it ignores
the influence of the abnormal acetabulum of the real dysplastic hip. In contrast, the
computer assisted Biomechanical Guidance System (BGS) introduced by Armand
et al. [2] combines geometric and biomechanical feedback with intra-operative
tracking to guide the surgeon through the PAO procedure. During the planning stage,
the PAO planning computes contact pressures via Discrete Element Analysis (DEA)
in order to suggest a reorientation of the acetabulum that minimizes simultaneous
peak contact pressure in sitting, standing, and walking positions [7]. Recently, Zou
et al. [8] developed a 3D FE simulation of PAO and validated their method on five
models generated from CT scans of dysplastic hips. The acetabulum of each model
was rotated in 5ı increments in the coronal plane from original lateral center edge
(LCE) angle, and the relationship between contact area and pressure and Von Mises
stress in the femoral and pelvic cartilage were investigated until the optimal position
for the acetabulum following PAO was found. However their virtual PAO procedure
was performed with commercial FE analysis software Abaqus (Dassault Systèmes
Simulia Corp., USA) which does not have a precise virtual reorientation planning
tool for an accurate quantification of patient-specific 3D hip joint morphology.

Previously, we have developed a computer assisted planning and navigation
system for PAO [9], which allows for not only quantifying the 3D hip morphology
with geometric parameters such as acetabular orientation (expressed as inclination
and anteversion angles with respect to the so-called Anterior Pelvic Plane (APP)
[10]), LCE angle and femoral head coverage for a computer assisted diagnosis of
hip dysplasia but also virtual PAO surgical planning and simulation (Fig. 1.1). In
this paper, based on this previously developed PAO planning system, we developed
a patient-specific 3D FE model to estimate the optimal acetabulum reorientation for
planning PAO. One key factor that may influence the biomechanical optimization
results is related to the cartilage models used in the FE simulation. In the
literature, both constant thickness cartilage models [8] and patient-specific cartilage
models [11] have been suggested. However, little is known about how different
cartilage models used in the FE simulation may further affect the biomechanical
optimization-based PAO planning. Our aim is to investigate the influence of these
two different cartilage models on the biomechanical optimization results.



1 Computer Assisted Planning of Periacetabular Osteotomy. . . 5

Fig. 1.1 Schematic view of our computer assisted planning of PAO with biomechanical optimiza-
tion. (a) computer assisted morphology-based PAO planning. Virtual osteotomy operation is done
with a sphere, whose radius and position can be interactively adjusted, and virtual reorientation
operation is done by interactively adjusting anteversion and inclination angle of the acetabulum
fragment; (b) biomechanical optimization; (c) the pre-operative planning output

1.2 Materials and Methods

1.2.1 System Overview

The workflow of the computer assisted planning of PAO with biomechanical
optimization is shown in Fig. 1.1 The input is 3D surface models of pelvis,
femur and their respective cartilages generated from pre-operatively acquired CT
arthrography data using a commercially available segmentation program (AMIRA,
Visualization Sciences Group, Burlington, MA). The system starts with a fully auto-
matic detection of the acetabular rim, which allows for quantifying the acetabular
morphology with parameters such as acetabular version, inclination, LCE angle,
femoral head extrusion index (EI), femoral head coverage ratio (CO) for a computer
assisted diagnosis [9]. Afterwards, the system offers the possibility to perform a
virtual osteotomy (see Fig. 1.1a(1)) and reorient the acetabular fragment. During
the acetabulum fragment reorientation, acetabular morphological parameters are
computed in real-time (see Fig. 1.1a(2)). In order to estimate the optimal acetabulum
reorientation for planning PAO, our system is extended with a patient-specific
finite element prediction of cartilage contact stress change before and after PAO
reorientation planning. An optimal position of the acetabulum can be achieved,
which maximizes contact area and at the same time minimizes peak contact pressure
in pelvic cartilage (see Fig. 1.1b).
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1.2.2 Biomechanical Model of Hip Joint

1.2.2.1 Cartilage Models (Constant Thickness Cartilage
vs. Patient-Specific Cartilage)

In the literature, both constant thickness cartilage models and patient-specific carti-
lage models have been suggested. For instance, Zou et al. [8] created the cartilage
layer on acetabular surface by expanding a constant thickness of 1.8 mm. Harris
et al. [11] introduced a CT arthrography protocol for excellent visualization patient-
specific cartilage geometry. In our study, the patient-specific cartilage models
were generated from the CT arthrography data for the subjects with traditional
acetabular dysplasia [12]. The constant thickness cartilage models were generated
by expanding a constant thickness using 3D dilation operation on articular surface.

1.2.2.2 Mesh Generation

Bone and cartilage surface models of the reoriented hip joints were imported into
ScanIP software (Simpleware Ltd, Exeter, UK) as shown in Fig. 1.2a, c. Surfaces
were discretized using tetrahedral elements (Fig. 1.2b, d). Since the primary concern
was focused on the joint contact, a finer mesh was employed for the cartilage than
for the bone. Refined tetrahedral meshes were constructed for the cartilage models
(�106,672 elements for femoral cartilage model, and �55,476 elements for pelvic
cartilage model) using ScanFE module (Simpleware Ltd, Exeter, UK). Cortical bone
surfaces were discretized using coarse tetrahedral elements (�99,023 elements for
femoral model, and �128,745 elements for pelvic model). Trabecular bone was not
included in the models, as it only has a minor effect on the predictions of contact
stress as reported in [13].

1.2.2.3 Material Property

Pelvic and femoral cartilages were modeled as homogeneous, isotropic, and linearly
elastic material with Young’s Modulus ED 15 MPa and Poisson’s ratio �D 0.45 as
reported in [8]. Cortical bone of pelvis and femur were modeled as homogeneous,
isotropic material with elastic modulus ED 17 GPa and Poisson’s ratio �D 0.3 as
suggested in [8].

1.2.2.4 Boundary Conditions and Loading

Tied and sliding contact constraints were used in Abaqus/CAE 6.10 (Dassault
Systèmes Simulia Corp, USA) to define the cartilage-to-bone and cartilage-to-
cartilage interfaces, respectively. It has been reported in [11] that the friction
coefficient between articular cartilage surfaces was very low (0.01–0.02 in the
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Fig. 1.2 Biomechanical simulation of contact pressure on acetabular cartilage. (a) surface models
of a dysplastic hip; (b) volume meshes of a dysplastic hip; (c) surface models for a planned
situation after acetabulum fragment reorientation; (d) volume meshes for the planned situation;
(e) boundary conditions and loading for biomechanical simulation; (f) coarse meshes for bone
models, and refined meshes for cartilages

presence of synovial fluid) [14]. Therefore, it is reasonable to neglect frictional shear
stresses between contacting articular surfaces. The loading and boundary conditions
used in this paper resembled those used by Phillips et al. [15] (Fig. 1.2e). The top
surface of pelvis and pubic areas were fixed, and the distal end of the femur was
constrained to prevent displacement in the body x and y directions while being free
in vertical z direction (Fig. 1.2e). The center of femoral head derived from a least-
squares sphere fitting was selected to be the reference node. The nodes of femoral
head surface were constrained by the reference node via kinematic coupling. The
fixed boundary condition model was then subjected to a loading condition as
published in [16], representing a single leg stance situation with the resultant hip
joint contact force acting at the reference node. Although CT scan was performed
in the supine position and the loading condition of our biomechanical simulation
is based on one-leg stance situation [16], previous work [17] has shown that there
was no significant difference between the contact pressure in the one-leg stance
reference frame and those in the supine reference frame. In addition, as pointed
out by Armiger et al. [7], it is not an infrequent clinical practice to use models
derived from the supine frame to do biomechanical simulation of the standing frame.
Therefore we believe that our model makes good use of valuable, available data
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from the original Bergmann’s work [16]. Following the loading specification in [15],
the components of joint contact force along three axes were given as 195, 92, and
1490 N, respectively, by assuming a constant body weight of 650 N for all subjects
to remove any scaling effect of body weight on the absolute value of the contact
pressure. The resultant force was applied based on anatomical coordinate system
described in Bergmann et al. [16], whose local coordinate system was defined
with the x axis running between the centers of the femoral heads (positive running
from the left femoral head to the right femoral head), the y axis pointing directly
anteriorly, and the z axis pointing directly superiorly.

1.2.2.5 Statistics

Linear regression was used to determine associations between the biomechanical
results obtained by the constant thickness and the patient-specific cartilage models.
For linear regression analysis, independent variables were defined as the biome-
chanical results obtained by the constant thickness cartilages. Dependent variables
were defined as the biomechanical results obtained by the patient-specific cartilage
models. Pearson’s correlation coefficient r was interpreted as “poor” below 0.3,
“fair” from 0.3 to 0.5, “moderate” from 0.5 to 0.6, “moderately strong” from 0.6 to
0.8, and “very strong” from 0.8 to 1.0. Significance level was defined as p < 0.05.

1.2.3 Study Design and Results

Two studies were designed and conducted on CT arthrography data of three patients
with acetabular dysplasia [12]. The first study is designed to estimate the optimal
orientation after a computer assisted planning of PAO based on a 3D FE simulation.
Specifically, the acetabulum fragment is virtually rotated about the y axis (Fig. 1.2e)
in 5ı increment onto the APP from the original acetabulum inclination angle towards
lateral direction (see Fig. 1.2c). The predicted peak contact pressure and total
contact area are directly extracted from the output of Abaqus. We then compared
quantitatively the peak contact pressure and contact area on acetabulum cartilage
in different acetabulum position and estimated optimal orientation in static one-leg
stance loading scenario.

Figure 1.3 shows how contact pressure distribution of the pelvic cartilage
changed for a dysplastic hip when LCE angle was increased. The contact area
originally focused on the anterosuperior region and almost no contact area was in
the anterior and posterior regions. When the LCE angle was increased, the contact
area shifted from lateral region towards the medial region. Figure 1.4a, b shows
peak contact pressures and contact area at different LCE angles, respectively. An
optimal acetabulum fragment reposition with minimum peak contact pressure and
maximum contact area was achieved for three dysplastic hips. More importantly,
for each hip, both the minimal peak contact pressure and the maximum contact
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Fig. 1.3 Contact pressure distribution obtained by using two different cartilage models at different
acetabular reorientation position

area were achieved at the same acetabulum fragment reposition. A large rotation of
acetabulum does not guarantee low peak contact pressure and large contact area.

The second study is designed to investigate the effect of these two different
cartilage models on the biomechanical optimization results. Figure 1.3 qualitatively
shows that contact pressure distribution obtained by using two different cartilage
models was similar. Regression analysis quantitatively shows that the results
obtained by the constant thickness cartilage models are significantly correlated
with those obtained by using the patient-specific cartilage models. Specifically,
a very strong correlation is between the peak contact pressure obtained by two
different cartilage models (rD 0.93 > 0.8, pD 0.013 < 0.05) (see Fig. 1.4c), and a
moderate strong correlation is between the total contact area obtained by two differ-
ent cartilage models (rD 0.722 [0.6, 0.8], pD 0.16). Furthermore, biomechanical
optimization-based planning of PAO using these two different cartilage models
achieved the same optimal orientations (see Fig. 1.4d, e).

1.3 Discussion and Conclusions

In this paper, we developed a patient-specific FE model for optimization of the
acetabulum reorientation based on our previously developed computer assisted plan-
ning system. Because articular cartilage is a key component to affect biomechanical
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Fig. 1.4 (a) Effect of LCE angle on hip joint peak contact pressure. Circled points represent
the lowest pressures for each subject. (b) Effect of LCE angle on hip joint contact area. Circled
points indicate the largest contact areas for each subject. (c) Scatter plot of peak contact pressure
obtained by constant thickness cartilage models against those obtained by patient-specific cartilage
models. The solid bar represents regression line. (d) Effect of LCE angle on peak contact pressures
predicted by two different cartilage models. (e) Effect of LCE angle on contact areas predicted by
two different cartilage models
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optimization results, we further investigated the influence of patient-specific and
constant thickness cartilage models on the biomechanical optimization results.
Regression analysis showed that the results obtained by the constant thickness
cartilage models are significantly correlated with those obtained by using the
patient-specific cartilage models. Furthermore, biomechanical optimization-based
planning of PAO using these two different cartilage models achieved the same
optimal orientations.

It is known that the purpose of PAO is to increase acetabular coverage of the
femoral head and thereby decrease contact pressure over the cartilage surface [18],
but a limitation common to all these previously introduced methods [3–5] is that
they only provide a pure morphology-based assessment and/or planning without
considering the biomechanical effect of the reorientation planning. This has motived
the recent introduction of various systems based on biomechanical optimization
[2, 6–8]. The BGS introduced by Armand et al. [2] performed DEA to estimate
the contact pressure on a patient-specific model which is a computationally efficient
method for modeling of cartilage stress while neglecting underlying bone stress.
Different from the method of Armand et al. [2], we developed a 3D patient-specific
FE model for biomechanical analysis derived from our computer assisted planning
system (see Fig. 1.1a(1)). The result of our FE simulation study shows that our
computer assisted planning system with biomechanical optimization indeed reduces
contact pressures and at the same time increases contact areas, which is consistent
with the study results reported by Armand et al. [2].

Compared to the results reported by Zou et al. [8], who developed a 3D FE
simulation of PAO in order to find optimal reorientation position by minimizing
peak contact pressure and at the same time maximizing contact area of the cartilage
surfaces, our results are also consistent with theirs. Both studies have proved that
3D FE model is an efficient tool to predict cartilage contact stress change before
and after PAO reorientation planning [8].

Another contribution of our paper is the investigation of the effect of these two
different cartilage models on the biomechanical results. In the literature, little is
known about how different cartilage models used in the FE simulation may further
affect the biomechanical optimization-based PAO planning. Niknafs et al. [17]
investigated the effects of four different cartilage thickness profiles (one uniform
and three non-uniform) and two sets of compressive properties on optimal alignment
planning for PAO based on the BGS introduced by Armand et al. [2]. The result
of their study shows that the predicted optimal alignment of the acetabulum was
not significantly sensitive to the choice of cartilage thickness distribution over the
acetabulum. Our experimental results found that there was no statistically significant
difference for two different cartilage models, which is consistent with the findings
of Niknafs et al. [17]. Another study was introduced by Anderson et al. [19], who
analyzed 3D FE models of hip cartilage mechanics with simplified geometrical
model to investigate the effects on predictions of cartilage stress. Their study showed
that pressures were slightly different and pressure distribution was similar for
patient-specific and constant thickness models in normal hips. However, their study
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did not investigate the effect of different cartilage models on the biomechanical
optimization results during virtual reorientation of dysplastic hips.

It is worth to mention the limitations of the present method. The main limitation
is that the acetabular labrum was neglected to be included in our FE models
of dysplastic hips. The role of the labrum during load distribution has been
debated. Based on the measurements from pressure-sensitive film, Konrath et al.
[20] concluded that there were slight changes in contact area, mean pressure, or
maximum pressure in the anterior or superior acetabulum. The only significant
change was a decrease in the maximum pressure in the posterior aspect of the
acetabulum. In contrast, an in vitro study by Ferguson et al. [21] found that the
labrum has an influence on intra-articular fluid pressurization and cartilage layer
consolidation in the hip joint. A recent study by Henak et al. [22] found that
the labrum supported less than 3 % of the total load across the joint in normal
hips. More recently, Henak et al. [12] found that the labrum in dysplastic hips
has a far more significant role in hip mechanics than it does in normal hips.
Their study demonstrated that cartilage contact stresses in dysplastic hips are not
increased significantly compared to normal hips because the labrum supports a large
percentage of the load transferred across the joint. Therefore inclusion of labrum
geometry is necessary for more realistic and accurate FE model.

Another limitation is that a fixed body weight of 650 N derived from Bergmann
et al. [16] was applied to all three dysplastic hips for 3D FE simulation, which is
not patient-specific. The argument why we adopted such a strategy is that we are
aiming to compare the relative change of contact pressure before and after PAO
reorientation planning. Thus, it makes sense to use a constant loading, which was
originally proposed by Zou et al. [8]. The last limitation of our study is also related
with the loading conditions for our 3D FE prediction. In our study, data reported
by Bergmann et al. [16] was used as in vivo contact force for FE simulation, which
was obtained from patients underwent total hip arthroplasty (THA). This may be
overcome by using in vivo contact force of dysplastic hip derived from force sensor,
which is beyond the scope of this paper.

In conclusion, this study suggested that our computer assisted planning with FE
modeling can be a promising PAO planning tool even when it is not feasible to
obtain CT arthrography data in clinical routine.
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Chapter 2
Role of Ligaments in the Knee Joint Kinematic
Behavior: Development and Validation
of a Finite Element Model

F. Germain, P.Y. Rohan, G. Rochcongar, P. Rouch, P. Thoreux,
H. Pillet, and W. Skalli

2.1 Introduction

The management of knee instability is a complex problem in orthopedic surgery.
It usually involves the tear or the rupture of a cruciate or collateral ligament of
the articulation and, in many cases, necessitates surgical operation and ligament
reconstructions. The rupture of the ACL, in particular, is one of the most frequently
occurring ligament injuries affecting about one person in 3000 every year and this
trend has been constantly increasing with the rise of participation in sports in the
general population [1]. Knee ligamentoplasty has become an issue of high clinical
interest.

The current standard of care is based on ligament reconstruction by autografts
from tendon tissues, allograft, or ligament substitutes. The assessment, however, of
the long-term performance of the surgery is complicated by the complex interaction
between the graft parameters (pretensioning, fixation method, etc.), knee anatomy,
and the mechanical interaction between the graft and the passive anatomical
structures. To this day, no diagnostic tool is available in clinics to quantitatively
evaluate and predict the impact of surgery on knee kinematics. This highlights the
need for the development of tools to investigate the contribution on knee joint
mobility of the ligaments in the normal knee and to establish proper treatment
strategies.

In that respect, many studies have been performed both in vitro [2–5] and in vivo
[6–9] to study knee kinematics, some of them focusing on influence of the main
knee ligaments [10, 11]. The results varied greatly across studies highlighting the
high inter-individual variability.
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Several finite element (FE) knee models have also been developed in an effort to
comprehensively investigate various aspects of knee mechanics including contact
pressure under various loads [12–18], ligament stress [19–21], or the dynamic
behavior [14, 22, 23]. A few of them studied knee kinematics [12, 14, 24, 25]. The
high numerical costs associated with the computation of the biomechanical response
of the knee joint and the full validation of these models against tibio-femoral and
tibio-patellar kinematic data, however, are still a main issue [14], particularly for
patellofemoral motion because of uncertainty in patellar tracking.

A new experimental setup was recently developed combining 3D reconstruction
imaging with the use of a motion capture system for accurate analysis of knee joint
kinematics at our laboratory [2]. The aim of the present study was to develop an FE
model capable of reproducing the kinematic of the knee in flexion/extension and,
building upon the work of Azmy, to validate it with in vitro experimentations for
investigating the impact of ligament properties on the knee kinematics.

2.2 Materials and Methods

2.2.1 Finite Element Model

Geometry The model developed in this study is an adaptation of the one proposed
by [26]. The 3D geometry of the bony structures was acquired using a sensor pen
(Fastrak system, Polhemus, Olchester, USA), and was carried out on a left 63-year-
old female lower limb.

Elements and Meshing The FE mesh, represented in Fig. 2.1, consists of the
distal and proximal part of the femur and tibia, respectively, the patella, the
quadriceps tendon, the cartilage, and knee ligaments. Bones and cartilage were
meshed with low-order (four-nodes) shell elements, the quadriceps tendon with low-
order membrane elements, and the ligaments with tension-only cables.

The different ligament bundles were represented: (1) two bundles for each
cruciate ligament (antéro-médial (AM) and postéro-lateral (PL) bundles for the
Anterior cruciate ligament (ACL); antéro-latéral (AL) and postéro-médial (PM)
bundles for the Posterior cruciate ligament (PCL)), (2) four bundles for the
Collateral Ligaments (CoL) (three for the medial collateral ligament (MCL) and one
for the lateral collateral ligament (LCL)), (3) five bundles for the patellar ligament,
and (4) seven for the articular capsule.

Material Properties The material properties used for each component are sum-
marized in Tables 2.1 and 2.2. Bones and cartilage were defined as linear elastic
isotropic material in accordance with the literature [27, 28]. The regions covered
with cartilage were modeled as a homogeneous bone cartilage material, with
average properties. A thin strip of elements between the bones and cartilage
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Fig. 2.1 FE knee model. (a)
Isometric view (front); (b)
isomeric view (back). The
femur and tibia were limited
to their respective distal and
proximal parts

Table 2.1 Material
properties of bones and
cartilage

E (MPa) �

Cortical bone and patella 12,000 0.3
Bone/cartilage inter 2000 0.4
Bone/cartilage 250 0.4
Tendon 90 0.4

Table 2.2 Material properties of the different ligament bundles

K (N/mm) Initial strain (%)

Anterior cruciate ligament (ACL) 75 5
Posterior cruciate ligament (PCL) 75 �3
MCL 70 0
LCL 20 0

regions were also defined with intermediate properties in order to avoid important
mechanical discontinuity.

The stiffness of the different ligament bundles was chosen in accordance with
the experimental data reported in literature [29–34]. Negative initial strain for PCL
indicates a slack condition.

Contact Four frictionless surface-to-surface contact zones were created:
femur (lateral)/tibia (lateral), femur (medial)/tibia (medial), femur/patella, and
femur/quadriceps tendon. The interactions between the ligaments and bones
represented in the model are not modeled in the present study.

Boundary Conditions The experimental boundary conditions [2] were imposed:
the femur was fixed, the rope and pulley system was represented as two cables driven
by temperature, and a set of 130 consecutive displacements of 0.5 mm were applied
to the quadriceps tendon. This allowed to generate forces in the cables that were
always directed toward the center of the femoral head.
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Fig. 2.2 Validated
experimental setup used for
testing the lower limbs in
flexion/extension. (a) Whole
setup with the rope and pulley
system for applying the
flexion. (b) Position of the
tripods

Solution The large deformation static response was computed using an implicit
solver in ANSYS.

2.2.2 Model Evaluation

Sample Preparation Twenty-three fresh frozen lower limbs were used. The
subjects from whom they were harvested were 47–97 years old. Absence of
osteoarthritis and ligament laxity was checked. Specimens were disarticulated at
the head of the femur and at the distal epiphysis of the tibia. All the soft tissues
were removed except for the articular capsule of the knee, the quadriceps tendon,
the CoL of the knee (medial and lateral), the patellar ligament, and the proximal
and distal ligaments between the tibia and the fibula. The samples were frozen at
�20 ıC then thawed at room temperature 12 h before experimentation.

Test Bench The validated test bench, represented in Fig. 2.2, was adapted from [2].
The femur was fixed and the tibia was free. Tension was applied to the quadriceps
tendon using a weight of 9.8 N. A motor was connected to the tibial pilon by a
rope and was used to perform the flexion movement. A progressive displacement
was applied at the centroid of the malleolus and directed toward the center of the
femoral head.

Movement Tracking Tripods were fixed on the femoral diaphysis, the proximal
epiphysis, and the patella. During the cycles of flexion/extension, the position of the
bony segments was tracked with a Polaris optoelectronic system (NDI, Waterloo,
Ontario, Canada).

Anatomical Frames The position of the tripods in their respective anatomical
frames was calculated from 3D reconstruction made with the EOS

®
bi-planar
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Table 2.3 Stiffness and initial strain chosen for the sensitivity cases on
the ACL

K (N/mm) Initial strain (%)
Min Mean Max Min (%) Mean (%) Max (%)

ACL bundle 40 75 150 0 3 6
PCL bundle 40 75 150 3 0 �4
MCL 70 100 120 0 2 4
LCL 20 60 120 0 2 4

X-ray system. The experimental setup was put in the EOS cabin and bi-planar
radiographies were acquired. A geometric reconstruction of the bony structures was
performed and used for the calculation of the anatomical frames.

Movement Analysis The variation of relative position tibia/femur and patella/
femur was extrapolated using a MATLAB

®
routine. The rotations were calculated

on mobile axis, with the following sequence (center of rotations): zy0x00 (y0 denoting
the mobile y axis after the first rotation about z, and x00 denoting the mobile x axis
after the first two rotations).

2.2.3 Sensitivity Analysis

A sensitivity analysis was conducted to investigate the impact of ligaments on the
knee kinematics. The stiffness and initial strain of one or several bundles of ligament
were modified and the impact in the tibia position was computed. Ten cases were
considered. These are summarized in Table 2.3. Stiffness values were defined based
on data reported in the literature [29–34]. Initial strain values were chosen so that
strains remained below the physiological limit whilst being sufficiently different
from one another.

2.3 Results

2.3.1 Experimental/Numerical Comparison

Tibial Kinematics Both the experimental corridor of the tibial kinematics with
respect to the femur and the numerical results computed with our model are shown
in Fig. 2.3. Our results show that the angular position of the tibia of the finite element
model is in the physiological corridor. During flexion, the tibial movement predicted
by the FE model does an internal rotation (Fig. 2.3) of up to �11.9ı at 70ı flexion
(while the in vitro experiment is in the corridor [�18.3ı; �7.2ı]). Our results also
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Fig. 2.3 Tibial kinematics (with respect to the femur) during the range of motion

show a slight adduction: down to �1.71ı at 20ı flexion and then back to �0.26ı at
70ı of flexion ([�7.1ı; �0.9ı] for the in vitro experiments).

Patellar Kinematics Both the experimental corridor of the patellar kinematics
with respect to the femur and the numerical results computed with our model are
shown in Fig. 2.4. The results obtained using the finite element model are within the
physiological corridor of the x, y, and z rotations and the z translation.

2.3.2 Influence on the Femoro-Tibial Kinematics

The influence of the ligament parameters on the femoro-tibial kinematics is reported
in Table 2.4, mean value and standard deviation of tibia position at 60ı flexion for
each case. Concerning the Rx rotation (abduction/adduction), the ligament that had
the most influence was the ACL, followed by the LLE, the PCL, and the MCL
holding a smaller influence (SD < 0.35ı). The Ry rotation is mainly influenced
by the PCL and the LCL, the PL bundle of ACL holding a smaller influence
(SD < 1.01ı). The Tx translation was influenced mainly by the ACL and the PCL
when both bundles are modified at the same time. The Ty translation was influenced
mainly by the AM bundle of the MCL and the cruciate ligaments when the four
ligaments are modified at the same time. The Tz translation is influenced mainly by
the ACL, the AL bundle of the PCL, and the LCL.



2 Role of Ligaments in the Knee Joint Kinematic Behavior: Development. . . 21

0
–5

–10

–20

–30

–40

–50

–45

–35

–25

–15

–70 –60 –50 –40

Flexion (°)

A
n

g
le

5

–5

–10

10

–15

–20

–30

–40

–35

–25

0

m
m

–30 –20 –10 0

–70 –60 –50 –40
Flexion (°)

–30 –20 –10 0 –70 –60 –50 –40
Flexion (°)

–30 –20 –10 0

20

25

15

10

5

–5
–10

–20

–15

–25

0

m
m

m
m

–70 –60 –50 –40
Flexion (°)

–30 –20 –10 0

–70 –60 –50 –40

Flexion (°)

–30 –20 –10 0 –70 –60 –50 –40

Flexion (°)

–30 –20 –10 0

30

20

10

–10

–20

–30

–40

0

A
n

g
le

A
n

g
le

30 10

–10

–20

–30

–40

–50

–60

020

10

–10

–20

–30

–40

0

Rotation(x)
(+Abduction, -Abduction)

Translation(x)
(+Anterior, -Posterior)

Translation(y)
(+Superior, -Inferior)

Translation(z)
(+Lateral, -Medical)

Rotation(y)
(+Lateral rotation, -Medial rotation)

Rotation(z)
(+Extension, -Flexion)

In vitro Experiments
Modéle éléments fins

Fig. 2.4 Patellar kinematics (with respect to the femur)

Table 2.4 Mean value and standard deviation of tibia position at 60ı

flexion for each sensitivity case (the ligament column shows which ligament
was modified)

Ligament Rx (ı) Ry (ı) Tx (mm) Ty (mm) Tz (mm)

Mean �1.2 �13.9 �17.3 5.9 3.0ACL (AM)

SD 1.0 0.5 0.5 0.5 0.2
Mean �0.5 �15.5 �16.8 5.0 3.0ACL (PL)

SD 0.6 1.0 0.9 0.2 0.2
Mean �1.3 �14.2 �17.2 5.9 2.9ACL (all)

SD 1.0 0.3 0.4 0.6 0.2

Mean 0.0 �15.6 �17.9 5.1 3.1PCL (AL)

SD 0.1 1.8 0.3 0.1 0.1
Mean 0.1 �15.2 �17.7 5.1 3.2PCL (PM)

SD 0.3 1.4 0.2 0.3 0.0
Mean 0.3 �14.8 �17.2 5.0 3.2PCL (all)

SD 0.3 3.0 0.8 0.4 0.1

Mean 0.2 �14.2 �17.7 5.2 3.2MCL (all)

SD 0.2 0.3 0.1 0.1 0.1
Mean 0.2 �14.6 �17.6 5.1 3.2LCL

SD 0.7 1.7 0.2 0.1 0.2
Mean 0.2 �14.3 �17. 5.1 3.0CoL (all)

SD 0.7 1.3 0.1 0.1 0.1
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Table 2.5 Comparison of the experimental and computational results with literature: kine-
matics of the femoro-tibial articulation at 60ı flexion

Study Specimens Rx (ı) Ry (ı) Tx (mm) Ty (mm) Tz (mm)

FE model – 0 �11.5 �17.2 7.5 4.9
In vitro exp 23 �3 ˙ 3 �12 ˙ 5.2 �22.5 ˙ 2.5 5.5 ˙ 2.5 3.3 ˙ 2.7
[35] 15 �3 ˙ 3 �16.5 ˙ 5 �16.7 ˙ 3.7 7.5 ˙ 3 4 ˙ 1.5
[5] 8 – �11 ˙ 4 – – –
[36] 15 – �17.1 ˙ 1.8 – – –
[3] 13 – �6.5 ˙ 3 �14 ˙ 5 – –

Despite the numerous contact elements in the model, the computation time was
below 1 h. Model-predicted response was within the experimental corridors for all
translations and rotations of tibia and patella with respect to the femur, except
for a ˙2ı max discrepancy in the abduction/adduction rotation of the patella.
The different ligament parameters appeared to have little effect on the patellar
anterior/posterior and inferior/posterior shifts while the kinematic response of the
tibial anterior/posterior shift was more sensitive.

2.4 Discussion

Very few FE models reported in the literature feature extensive validation against
both tibio-femoral and tibio-patellar kinematic data. These are paramount to
comprehensively assess the biomechanical role of the knee joint and to investigate
various aspects of knee instability such as knee ligament injuries, ligament replace-
ment, and ACL graft design.

In this contribution, an FE of the knee joint capable of reproducing the kinematics
of the knee in flexion/extension for the investigation of the role of ligaments in the
joint kinematic behavior was created and validated against the experimental data of
23 cadavers. Special attention was paid to keep the numerical cost as low as possible.
Low-order shell elements and cable elements were therefore used to discretize the
components of the geometric model.

For both the tibial and patellar kinematics, the results computed with our model
are inside or at the limit of the experimental corridors. Both the experimental
and computational results obtained for the femoro-tibial and the femoro-patellar
kinematics are comparable to the literature. Tables 2.5 and 2.6 summarize and
compare the kinematic values reported in this study with the main values reported
in the literature.

As for model evaluation, Kiapour et al. [14] presented extensive validation using
16 lower limbs and investigation of several parameters. However, patellofemoral
kinematics was not evaluated.
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Table 2.6 Comparison of the experimental and computational results with literature:
kinematics of the femoro-patellar articulation at 60ı flexion

Study Specimens Rx (ı) Ry (ı) Tx (mm) Ty (mm) Tz (mm)

FE model – 0 0.5 –41.5 –20 –34
In vitro exp 23 �3 ˙ 3 �3.5 ˙ 4.5 �41.5 ˙ 3.5 �17 ˙ 3 �41 ˙ 4
[2] 8 �3 ˙ 3 0.5 ˙ 7.5 �38 ˙ 4 �14 ˙ 4 �40 ˙ 8
[5] 8 1.5 ˙ 3 3 ˙ 5.5 – – –
[37] 6 1 ˙ 5.5 �1 ˙ 10 – – –
[4] 7 0 ˙ 4 �2 ˙ 5 – – –

The sensitivity analysis conducted on the main ligaments of the tibio-femoral
articulation highlighted the importance of distinguishing the two bundles of the ACL
and the PCL, since they do not impact the femoro-tibial kinematics in the same way:
the AM bundle of the ACL exerts more than twice as much influence on Ry and Tx,
but less than twice as much on Rx and Ty as compared with the PL bundle. Likewise,
modifying both bundles of the PCL significantly increases the influence on Rx, Ry,
and Tx, but doesn’t have much effect on Ty and Tz.

Two main limitations of our model are the omission of (1) the meniscus, the
popliteal tendon, and the popliteo-fibular ligament, in order to keep the computation
time as low as possible. This might explain the small experimental–numerical
kinematic discrepancies and could be taken into account to improve the realism
of the model. The simplification of the ligament insertion and the absence of
ligament/ligament contact could also explain the fact that, in the simulation results,
the ligament effect remains small. (2) The geometry of the finite element model is
not personalized. Yet the geometry has a strong impact on the femoro-tibial and
the femoro-patellar kinematics for at least two reasons: it affects the morphology of
the contact surface, and it can determine the position of anatomical landmarks from
which the boundary conditions are defined (center of the femoral head, center of the
malleoli).

Nonetheless, the model appears consistent with in vitro kinematics and the
computational cost remains reasonable (1 h). From a clinical perspective, the
developed knee model constitutes a valuable tool for exploring new treatment
strategies, such as the development of ACL substitutes for ligament reconstructions
where it can be used to test different designs and evaluate the restoration of knee
kinematics right after implantation.

2.5 Conclusions

An FE of the knee joint capable of reproducing the kinematic of the knee in
flexion/extension for the investigation of the role of ligaments in the joint kinematic
behavior was created and validated against the experimental data of 23 cadavers.
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Special attention was paid to keep the numerical cost as low as possible. For both
the tibial and patellar kinematics, the results computed with our model are inside the
experimental corridor. Both the experimental and computational results obtained
for the femoro-tibial and the femoro-patellar kinematics are also comparable to
data reported in the literature. From a clinical perspective, the developed knee
model constitutes a valuable tool for exploring new treatment strategies, such as
the development of ACL substitutes for ligament reconstructions where it can be
used to test different designs and evaluate the restoration of knee kinematics right
after implantation.
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Chapter 3
Challenges to Validate Multi-Physics Model
of Liver Tumor Radiofrequency Ablation
from Pre-clinical Data

Chloé Audigier, Tommaso Mansi, Hervé Delingette, Saikiran Rapaka,
Tiziano Passerini, Viorel Mihalef, Raoul Pop, Michele Diana, Luc Soler,
Ali Kamen, Dorin Comaniciu, and Nicholas Ayache

3.1 Introduction

Subject-specific modeling of liver tumor radiofrequency ablation (RFA) can
provide additional guidance to radiologists during the intervention and improve
the planning of the procedure, which are challenged by inter-subject variability
in tissue characteristics, the heterogeneous cooling effect of large neighboring
vessels, porous circulation, and blood coagulation. More specifically, such models
could help clinicians in deciding where to place the heating probe and for how
long heating must be applied. Several approaches have been developed to describe
and simulate RFA of liver tumors. They differ in their choice of the biophysical
phenomena that are considered and the type of experimental data used to design
and validate them. All simulations are based on the bioheat equation considering
a cooling effect that is either diffuse [1] or localized at neighboring vessels [2–5].
Furthermore, the cooling effect due to venous flow in the liver parenchyma is also
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considered in [4, 5]. Few authors [2, 4, 5] have proposed to simulate RFA on realistic
subject-specific geometries extracted from images and only [6] has personalized
biophysical parameters on patient data in order to minimize the discrepancy between
simulated and measured necrotic (ablated) regions.

Up to now, the comparison between simulated and measured necrotic regions
has been used by several authors [2, 4–6] as the main criteria of success in
predicting the effect of RFA on abdominal tumors, for either model validation or
personalization. However, the necrosis of tissue is the resultant of several combined
physical phenomena, mainly the heat transfer and cell death mechanisms, meaning
that a given ablated region may be explained by several combinations of parameters.
In addition to this identifiability issue, the size of the tumor extent can only be known
reliably from post-operative imaging which makes it difficult to eventually update
the ablation plan during the procedure. A method that relies also on pre-operative or
interventional data for parameter identification is therefore required for RFA models
to be clinically useful.

In this paper, an extended validation strategy of RFA is introduced, based also
on delivered electrical power during ablation and temperature drop during cooling
in addition to the extent of ablated regions. This approach leads to an increased
confidence in the computed temperature map, a clinical surrogate for tissue damage
during intervention. Furthermore, the probe temperature and delivered power are
information that are readily available, in real-time, from the RF system and therefore
could be used to update the therapy plan during the intervention.

The RFA computational model becomes subject-specific after three levels of
personalization: anatomical, heat transfer, and cellular necrosis. The computa-
tional model, implemented using the Lattice-Boltzmann Method (LBM), relies on
anatomies extracted from CT and device-based measurements (Sect. 3.3).

The proposed approach was successfully tested on seven surrogate hepatic
tumors implanted on three healthy swine. Following the validation, we showed
how this framework can be used for personalization. Parameter estimation was
performed on two tumors to select a subject-specific set of parameters (Sect. 3.4).
It leads to accurate predictions for both temperature evolution and necrotic region
extension: mean error between measured and simulated temperature of 12.0 ıC,
mean point-to-mesh error between predicted and actual ablation extent of 3.5 mm.

3.2 Pre-clinical Study for Model Validation

3.2.1 Experimental Setup

Pigs are considered as a relevant animal model as their hepatic system is similar
to the human one. The extensive pre-clinical study includes three swine. Several
surrogate tumors (diameters < 3 cm) were inserted at various locations of the liver
(close to vessels or Glisson capsule) under ultrasound (US) guidance, followed by
the acquisition of pre-operative CT images including portal, venous, and arterial
phases. The surrogate tumors were made of a specific gel which exhibited a
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Fig. 3.1 (Left): mesh model of the probe with the nine tips derived from a CT image of the probe
only; (Right): photo of the probe inside the pig liver

Fig. 3.2 Segmentation of the liver, arterial vessels, portal and hepatic networks, surrogate tumors,
and biliary vesicle. (Left): overlay of the segmented areas on pre-operative CT image. (Middle):
creation of the 3D model. (Right): vessels and liver parenchyma

hyper-intense signal in CT. An MR-compatible RFA probe (RITA, AngioDynamics)
was deployed at 2 cm of diameter under US guidance (Fig. 3.1, right panel). An MR
image was then acquired to get the position of the probe in the liver. The temperature
and delivered power were monitored and recorded intra-operatively during and after
the ablation. Finally, a post-operative CT or T2 MRI was acquired 2 days after the
ablation to assess the extent of the necrotic areas. Overall, pre-, intra-, and post-
operative images were available, along with interventional device measurements.
To the best of our knowledge, no such validation setup has been reported in the
literature.

3.2.2 Data Preprocessing

From the pre-operative CT data, the following anatomical structures were seg-
mented semi-automatically by experts (Visible Patient, Strasbourg, France) and
meshed (Fig. 3.2): the parenchyma, all tumors, hepatic veins, vena cava, portal vein,



30 C. Audigier et al.

biliary vesicle, and hepatic arteries. From post-operative CT or MR data, necrotic
areas were segmented and meshed as well. Due to ethical reasons, CT with contrast
agent could not be acquired 2 days after intervention, making accurate pre- to post-
operative registration nearly impossible.

3.2.3 3D Modeling of the RFA Probe

The geometry of the probe when deployed at 2 cm (the diameter of the area defined
by the tips of the probe is 2 cm) was acquired from a CT image of the probe only.
A 3D mesh was then reconstructed (Fig. 3.1, left panel) and manually registered on
the pre-operative CT using the main axis of the probe and the intra-operative MR
data. The rigid registration was visually checked by an expert up to a rotation along
its axis since the MR resolution did not allow to distinguish the nine tips of the
probe.

3.3 Subject-Specific RFA Model

3.3.1 Heat Transfer Model

The bioheat equation describes how the heat flows from the probe through the liver
while taking into account the cooling effect of the main vessels, as proposed in
the Pennes model [7]. The temperature T is computed by solving the following
reaction–diffusion equation:

�tct
@T

@t
D QCr � .dtrT/C R.Tb0 � T/ (3.1)

where �t, ct, dt are the density, heat capacity, conductivity of the tissue, Q, the
source term, R, the reaction coefficient, and Tb0, the blood temperature (assumed
constant) in large vessels. In this study, the blood flow within the parenchyma
considered as a porous medium is not taken into account as how it affects the
overall cooling has not been clearly quantified in the literature, in particular when
compared to the diffusive effect. Nonetheless our model includes the cooling
effect, also called heat sink effect, of all hepatic large vessels (veins and arteries).
Equation (3.1) is solved using the LBM for fast computation on general purpose
Graphics Processing Units (GPU). LBM has been developed for CFD and is now a
well-established discretization method. Verification of the implementation has been
performed through a comparison with an analytical solution and it has the advantage
over FEM to be easily parallelized in GPU [4]. An isotropic Cartesian grid with 7-
connectivity topology and Neumann boundary conditions at the boundaries of the
liver is employed. A Multiple-Relaxation-Time (MRT) model is used for increased
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stability [8]. For a time step of �t D 0:5 s, faster than real-time computation can be
achieved on a standard desktop machine (Windows 7, Intel Xeon, 3.30 GHz, 16 GB
RAM, 12 CPUs, Nvidia Quadro K5000 4.0 GB).

3.3.2 Cellular Necrosis Model

A three-state model [9] is coupled with the bioheat equation to compute tissue
necrosis. Each cell has a probability to be either undamaged (U), vulnerable (V),
or necrotic (N). Those probabilities vary with the simulated temperature over time
according to the following state equation:

U
ˇ.T/��! �
�

V
ı.T/��! N (3.2)

where ˇ.T/ D ŇeT=Tk , ı.T/ D NıeT=Tk.1 C 10N/, and � are the transition rates.
Unlike in [10], three distinct transition rates are considered to allow cells to reach
the vulnerable state. Figure 3.3 represents the solution at one vertex over time if a
constant temperature of 105 ıC is applied. The cell death model is strongly coupled
to the bioheat equation. More specifically, it depends on the temperature computed
based on the bioheat model (the transition rates ˇ.T/ and ı.T/ are temperature
dependent), whose parameters depend on the state of the cell (the heat capacity
depends on the state of the cell: cU

t , cV
t , and cN

t correspond, respectively, to the heat
capacity of undamaged, vulnerable, and necrotic tissue).

Equation (3.2) gives three coupled ODEs that are solved with a first order explicit
scheme on the same grid and with the same time step as the bioheat equation.
For the heat transfer and cell death models, parameters are initially set to values
from the literature [7], Table 3.1 reports them. The conductivity dt depends on the
temperature through dt D Ndt � .1C 0:00161 � .T � 310// as in [5].

Fig. 3.3 Cell state evolution
over time when tissue is
heated at 105 ıC
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Table 3.1 Nominal value of model parameters

Notation Parameter name Nominal value

� (s�1) Recovery rate coefficient 7.7�10�3

Ň (s�1) Damage rate coefficient 3.3�10�3

Nı (s�1) Vulnerable rate coefficient 3.3�10�3

cV
t (J(kg K)�1) Heat capacity of vulnerable tissue 3.6 �103

cN
t (J(kg K)�1) Heat capacity of necrotic tissue 0.67�103

cU
t (J(kg K)�1) Heat capacity of undamaged tissue 3.6 �103
Ndt (W(m K)�1) Heat conductivity 0.512

3.3.3 Parameter Estimation from Probe Measurements

Computation of Heating Power During the intervention, the delivered power and
the temperature distribution are measured by the ablation probe itself. We assume
that the measured power is actually strongly correlated (proportional) to the heat
power P.t/ delivered through radiofrequency to heat the liver tissue. Proportionality
is assumed to account for power dissipation due to electrical resistance, and the
unknown surface ratio of the probe being heated. The heat power P.t/ delivered to
the tissue can be computed at each time step of the simulation from the bioheat
equation according to Fourier’s law:

P.t/ D
Z

S
dt
@T.t/

@n
dS (3.3)

where S is the probe surface and n is the outer normal at that surface. During our
experiments, the measured electrical power appeared to reach its maximum during
the increase in temperature, before reaching the plateau of 105 ıC (Fig. 3.6). These
phenomena cannot be explained by a constant heat capacity which would lead to
a peak after the plateau is reached. Instead, this observation suggests that the cells
reach their vulnerable state faster. Thus we update our necrosis model accordingly:
after studying the ODEs of the model and a sensitivity analysis on its parameters,
Nı has been modified such that tissues reach very fast their vulnerable state which
entails a significant change of heat capacity (Table 3.3).

Cooling Stage RFA is simulated by imposing the measured temperature at the tips
of the probe (Dirichlet boundary condition) until the heating stops at a given time
t D ta. In the absence of any delivered heat power, the nine tips of the probe cool
down at a speed which depends on the conductivity dt and the heat capacity ct.
Thus during the cooling period tc � ta (cooling stops at time t D tc), the simulated
temperature Ts can be compared with the measurements Tm read from five tips of
the probe (four tips do not have any thermistors).

Personalization After a sensitivity analysis, we chose to estimate the heat capacity
cU

t and the constant part of the conductivity Ndt as they mainly influence the delivered
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power, the temperature distribution, and the size of ablated regions. These two
parameters are personalized from probe measurements (temperature and power) by
minimizing the following cost function:

f D 1

ta

tDta�1X
tD0

.Pm.t/ � Ps.t//2

�2Pm

C 1

tc � ta

tDtaCtcX
tDta

.mTm.t/ � mTs.t//
2

�2Tm

(3.4)

where �Pm and �T m are the standard deviations associated with the heat power
and the temperature, both of them evaluated from the variability in the available
observations (equal to 13.3 and 5 in our experiments). To cope with the uncertainty
in the rotation of the probe along its axis, the mean tip temperature mT is used for
the personalization.

Using DAKOTA,1 a gradient-free optimization method, the Constrained Opti-
mization BY Linear Approximations (COBYLA), is used to minimize the cost
function Eq. (3.4) as only a few forward simulations (typically 20) are required.
COBYLA is a sequential trust-region algorithm. Initially, the total domain of
parameters is visited (here, dt: 0.51 to 6.14, cU

t : 18 to 3618) and then the region
is contracted. The estimation took around 13 h (25 iterations).

3.4 Evaluation on Swine Data

3.4.1 Model Validation

The model was evaluated on seven ablations performed in three swine. The applied
RFA protocol was not exactly the same for all ablations. Five ablations were
performed through several short cooling and heating periods, whereas the other
two ablations included only one long final cooling stage after a continuous heating
period. For all pigs, nominal value of parameters (reported in Table 3.1) was
employed. In each case, the simulated lesion was compared with the registered
ground-truth. Due to the uncertainty in the registration of the post-operative image to
the pre-operative image, the necrotic lesion segmented on the post-operative image
is registered rigidly to the pre-operative image by aligning its barycenter with the
barycenter of the simulated necrosis. Figure 3.4 shows results for tumor 2-1, in
this case, the model under-estimates the lesion size. Quantitatively, point-to-mesh
errors [11] computed between the simulated lesion and the registered post-operative
ground-truth showed good prediction of the necrotic extent (3.5 mm of mean point-
to-mesh error). Values are reported in Table 3.2. The prediction of the necrosis extent
was valid up to 5mm which can be considered as sufficient for clinical applications.
Qualitatively, as one can see in Fig. 3.5, the simulated heat power and temperature
were close to the heat power and the temperature given by the RFA probe itself.

1http://dakota.sandia.gov—multilevel framework for sensitivity analysis.

http://dakota.sandia.gov
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Fig. 3.4 Comparison between the simulated and the post-operative necrotic areas on tumor 2-
1. (Left): the simulated lesion is showed around the RFA probe in the subject-specific geometry.
(Right): zoom on the ablation area, the simulated lesion is qualitatively close to the registered
post-operative lesion

Table 3.2 Evaluation on pig
data

Pig Necrotic point-to-mesh error (mm)

1 3.71 ˙ 2.49

2-1 4.06 ˙ 1.59

2-2 4.02 ˙ 1.35

2-3 2.46 ˙ 1.35

3-1 3.80 ˙ 2.39

3-2 4.85 ˙ 2.13

3-3 2.13 ˙ 1.71

3.4.2 Towards Model Personalization

As the data came from healthy pigs of similar age and weight, we hypothesized
that the parameters would be the same for all of them. The personalization based
on the probe temperature and power was performed for the two tumors with final
cooling stage as it was long enough to observe reliably the effect of the conductivity
dt, yielding two sets of personalized heat capacity and conductivity values, reported
in Table 3.3. We validated not only the ability to personalize the model but also
its predictive power by evaluating the simulation results on five different tumors.
Briefly, the minimization of the error between measured and simulated values
of power and temperature was done only on two tumors (two different pigs). In
both cases, the values independently found were really close: the same value of
heat capacity was estimated, and the conductivity values were almost equal to the
nominal value, as expected as the pigs were healthy.
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Table 3.3 Parameters values

Nominal Personalized values
Notation Parameter name value on tumor 1 on tumor 2-3
Nı (s�1) Vulnerable rate coefficient 3.3�10�3 1�10�4

cU
t (J(kg K)�1) Heat capacity of undamaged tissue 3.6 �103 3.6 �101 3.6 �101
Ndt (W(m K)�1) Heat conductivity 0.512 0.614 0.512

Table 3.4 Quantitative evaluation of model prediction: on average, mean errors of 14.8 W and
12.0 ıC

Pig Power error (W) Temperature error (ıC)
Necrotic point-to-mesh
error (mm)

1 (perso) 7.9 19.3 3.71 ˙ 2.49

2-1 16.5 and 19.2 18.9 and 4.7 4.06 ˙ 1.59

2-2 14.1, 15.5, 12.7 11.4, 7.3, 11.4 4.02 ˙ 1.35

2-3 (perso) 8.9 0.5 2.46 ˙ 1.35

3-1 10.3, 31.8, 20.2, 16.8 19.1, 21.9, 6.8, 3.7 3.80 ˙ 2.39

3-2 18.4, 16.2, 6.4 23.4, 13.0, 9.6 4.85 ˙ 2.13

3-3 8.5 and 14.4 19.4 and 1.1 2.13 ˙ 1.71

The mean errors between simulated and measured values are computed for each ablation. For the
five ablations which were performed through several cooling and heating periods, the different
error values for each period are reported

The estimated heat capacity and the nominal conductivity were then used to
simulate RFA on the five remaining cases and errors in temperature, heat power, and
necrosis size were evaluated. Small errors were obtained in those cases too, without
previously having fit the parameters for those tumors. As detailed in Sect. 3.3.3, the
vulnerable rate coefficient was also adjusted to match the raise in delivered power.
These results confirmed the stability of the personalization framework. As reported
in Table 3.4, the use of personalized parameters instead of nominal parameters led to
good predictions of the necrosis extent, the heat power, and the temperature (mean
errors of 14.8 W and 12.0 ıC, respectively). However, by fitting the temperature and
the delivered heat power, the novel approach could estimate the temperatures around
each tumor at any time during the ablation. This additional information could be
used as surrogate to assess the amount and location of damaged tissue (cells that
received excessive heat but without being necrosed) surrounding the ablated region.

The extent of the necrotic area is mainly controlled by the conductivity dt and the
heat capacity of vulnerable cells cV

t (not of undamaged ones cU
t ). Since dt was not

changed after optimization, there was no significant difference in terms of necrotic
area after personalization, despite a better match for the measured power and cooling
temperature as illustrated in Fig. 3.6. It was actually not surprising that the nominal
dt value was optimal since all pigs were healthy, of similar age and weight. Moreover
the point-to-mesh errors were less than 5 mm; it suggests that simulations with
optimized dt and cU

t are realistic in terms of necrotic area, power, and temperature
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Fig. 3.6 Personalization of the heat capacity and the conductivity using (Left) the delivered power
curve over ablation and (Right) the temperature distribution after ablation from tumor 1 (here, the
red and blue curves are superimposed). The error between the measurement and the computation
is reduced from 22.9 to 7.9 W for the power and is equal to 19.3 ıC for the temperature

predictions which was the objective. In clinical settings, due to the large variety of
diseases treated by RFA (cirrhosis, fibrosis, etc.), the proposed method should be
suitable to get subject-specific parameters from easily accessible data.

3.5 Conclusion

In this paper, we proposed a novel approach to validate computational models of
RFA based on pre-, intra-, and post-operative images and device-based measure-
ments, in close-to-clinical settings. The approach was successfully evaluated on
three swine and seven ablations. We presented a pre-clinical validation of a detailed
model, required prior to any clinical study for which personalization would occur
during the intervention.

In clinical RFA of liver tumors, we cannot assume that the biophysical parameters
are the same for all patients, as assumed in this experiment for the three pigs,
and personalization is therefore required. However, by evaluating the discrepancy
in terms of temperature and delivered power, key biophysical parameters (the heat
capacity and the conductivity of the bioheat model) could be estimated leading to
promising predictions. Here, we just relied on information localized at the tips of the
probe, the cooling temperature and the delivered power, during the intervention (no
temperature maps, no post-op images required) and we showed that the model can
be personalized from patient data, which was not granted. We limited the number of
personalized parameters (2). However by estimating more parameters like cV

t , cN
t ,

current errors like the lesion size around tumor 2-1, for example, could be reduced.
This opens new perspectives for updating intra-operatively the RFA model

prediction of each lesion based on those two probe measurements. Because they
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are available in real-time during the intervention, this appears as a far better option
than using the necrosis extent which is mostly visible post-operatively. Future
work will attempt to optimize the computation time to estimate on the fly key
parameters from readily available probe measurements, to include additional cases
and observations quantities (MR thermometry, for instance) in order to further
improve the personalization and to reliably estimate the deformation between pre-
and post-operative imaging for a precise validation of the necrosis extent prediction.
Further refinements in the model can be added such as the advection effect of the
porous circulation in the parenchyma [6].
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Chapter 4
Robust Landmark Identification for Generating
Subject Specific Models for Biomechanics

Duane T.K. Malcolm, Habib Y. Baluwala, Poul M.F. Nielsen,
and Martyn P. Nash

4.1 Introduction

Tracking breast tumours between different imaging modalities and positions within
the breast can provide important clinical information. Tracking can be aided by
using predictive biomechanics models that compute the deformation of the breast
between different states. Typically, finite element methods (FEM) are used to
simulate deformations of the breast [1], however generating the mesh for the sim-
ulation is a manual and laborious process. As medical imaging and computational
biomechanics become more common, so will the need for robust automated methods
to generate meshes in a reasonable amount of time. This study describes a robust
automated method for identifying landmarks in a magnetic resonance (MR) scan.
The position of landmarks can guide image segmentation [2] and the placement of
nodes for mesh generation.

Landmarks can be defined as distinct anatomical points in the body or as edges
that can be used as feature points [3]. Landmark detection in medical imaging is
focused on three approaches: (a) machine learning algorithms [4, 5]; (b) image
intensity models [6]; and (c) invariant geometric measures such as curvatures
and extreme points based on their shapes [7]. Hartkens et al. [8] investigate 3D
differential operators for the detection of point landmarks in 3D MR and CT
images. Frantz et al. [9] implemented a statistical approach for landmark detection
that requires the user to set an initial region of interest in the vicinity of the
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landmark. Most of these methods are either semi-automatic or cannot accurately
detect landmarks on the skin surface from torso MR images due to the wide dynamic
intensity range or variability of torso shapes across patients and populations.
Furthermore, some of these methods are sensitive to noise and result in large errors
in identifying the position of landmarks.

Baluwala et al. [10] used statistical shape models [11] to improve the reliability
of template matching techniques for identifying landmarks. This study extends this
method to three-dimensions and improves the reliability by using a partial least-
squares regression (PLSR) model to predict the positions and the template images
of the landmarks. This reduces the search region, which reduces computational time;
provides better initial conditions for the search method; and increases the likelihood
of correlation with the actual landmark.

In this paper, we describe the data set used to train the statistical models, the
training methods, the landmark search methods, and the application and analysis of
the predictive ability of this method. This proposed method is compared with the
standard template matching method in order to contrast the accuracy and robustness
of the proposed method. The tracheal bifurcation and jugular notch at the top of the
sternum are used as test landmarks.

4.2 Methods

4.2.1 Overview of the Data

The landmark detection process was trained and tested on 51 MR scans (Fig. 4.1a)
acquired with the subject lying prone (face-down) in a clinical MR scanner (Siemens
Skyra T1-weighted, pixel size: 0.84–1.07 mm, and slice thickness: 0.9–1.1 mm).
The subjects were all females with the metrics shown in Table 4.1.

The proposed method was tested using two landmarks, the tracheal bifurcation
and the jugular notch. The landmarks were manually identified in each of the 51 MR
images. This is the only manual process which is required for the training process.

4.2.2 Training the Process

The training process involved the generation of statistical models of the relative
landmark positions and landmark template images, four partial least-square regres-
sion (PLSR) models to predict the centre of shape model, the relative landmark
positions, and the weights for the statistical template image for each landmark. The
statistical models of the shape models are used to predict the initial search region
and search for the landmark positions in the template matching process. The PLSR
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Fig. 4.1 Sagittal MR image of the female torso. Respectively, the red, blue, and green spheres
indicate the initial prediction, final prediction, and actual positions of the tracheal bifurcation
(right) and jugular notch (left). Superimposed are the overlapping correlation fields from cross-
correlating the predicted landmark template images with the search regions. The correlation fields
are normalised between 0 and 1

Table 4.1 Statistics relating
to the subjects used in this
study

Metric Mean ˙ SD Range

Age 40 ˙ 15 yo 19–69 yo
Height 1.65 ˙ 0.07 m 1.48–1.78 m
Weight 67 ˙ 10 kg 42–89 kg

models of the template image weights are used to predict the template images based
on the image metrics. These statistical models are described in more detail below.

For thetracheal bifurcation (TB) and jugular notch (JN) landmark set, the relative
landmark locations (XS) and the centre of the landmarks (xc) were computed by

XS D ŒxTB � xc; xJN � xc�

xc D .xTB C xJN/ =2

A statistical shape model of the relative landmark positions (XS) was generated with
three components using principal components analysis (PCA).
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Additionally, a 48 pixels cubed (1 mm3 voxels) template image (IT) was extracted
for each landmark where the image was centred on the landmark position. The
population of template images are used to generate a statistical template image
with two components using PCA. The template image for each landmark was then
projected back into the PCA model to predict the component weights (wTB, wJN).

Finally, the image metrics (MI), which included the histogram of the pixel
intensities and the mean and variance of the pixel intensities for each axial, coronal,
and sagittal slice, was computed for each MR image. These image metrics are used
as inputs for the PLSR models. The justification for using the histogram is that
it is expected to be related to the contrast and brightness in the scan, the size of
the subject, and the composition of different tissues, e.g., fat and muscle. The slice
metrics (mean and variance of each slice) are expected to be related to the position
of the body in the scan.

Using the image metrics as inputs and the shape model centres, relative landmark
positions, and the landmark template image weights, four PLSR models were
generated:

MI ! PLSRC ! xc (4.1)

MI ! PLSRS ! XS (4.2)

MI ! PLSRTB ! wTB (4.3)

MI ! PLSRJN ! wJN (4.4)

4.2.3 Identification of Unseen Landmarks

Given a new MRI scan (the “unseen” image), there are three steps to identify the
locations of the tracheal bifurcation and jugular notch: (1) make initial predictions
of the shape model centre, relative landmark positions, and template image for
each landmark; (2) cross-correlate the template image with the search region; and
(3) search of the correlation fields for the maximum combined correlation where
the sampled locations are constrained by the statistical shape model. Each step is
described in more detail below.

4.2.3.1 Initial Predictions

First, the image metrics (MI) of the unseen MR image were computed and fed into
the PLSR models described in Sect. 4.2.2 to predict the shape model centre (xc), the
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relative landmark positions (XS), and weights (wTB, wJN) for the statistical template
models of the tracheal bifurcation and jugular notch.

The predicted landmark positions (XL) in the MR scan were then given by

XL D XS C xc

The landmark template images (IT) for the tracheal bifurcation and jugular notch
were reconstructed from the associated statistical template images using the weights
(wTB, wJN) predicted above.

4.2.3.2 Cross-Correlation

Cross-correlation was performed using the template matching methods described
in OpenCV library [12] but extended to three-dimensions. The cross-correlation
method was used with normalisation and the mean of the image subtracted. The
search region was centred on each of the predicted landmark positions (XL) where
the region was 160� 160� 160 mm (1 mm3 voxels). The predicted landmark
template images were cross-correlated with their respective search regions to obtain
correlation fields of each landmark (see Fig. 4.1).

4.2.3.3 Statistical Shape Model Search

The final predictions of the landmark positions were obtained by performing a
search where the objective function was to maximise the product of the correlation
values samples at the positions reconstructed from the statistical shape model and
where the degrees-of-freedom were the shape model centre (xc) and statistical shape
model weights (ws).

Prior to the search, a better prediction of the centre of the shape model (xc)
was obtained by multiplying the correlation fields and searching for the position
of the maximum correlation product (see Fig. 4.2). The initial statistical shape
model weights (wS) were predicted by projecting the predicted relative landmark
positions (XS) into the statistical shape model. The “fmin_l_bfgs_b” function in the
scipy.optimize module [13] was used to minimise the negative of the product of the
correlation values sampled at the landmark positions. The minimisation function is
a multivariate bound constrained method that uses the L-BFGS-B algorithm [14].
This function is used in order to constrain the weights of the shape model to within
˙3 standard deviations.
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Fig. 4.2 The product of the normalised correlation fields for the tracheal bifurcation and jugular
notch landmarks (shown in Fig. 4.1). The red spheres are the initial landmark positions predicted
using PLSR. These are adjusted to the magenta spheres based on the maximum of the combined
correlation fields. The green spheres are the actual landmark positions identified in the image

4.2.4 Testing the Algorithm

The predictive ability of the proposed method was tested using a leave-one-
out approach. Each subject in turn was selected as the unseen subject, and the
remaining subjects were used to train algorithm. This trained algorithm was then
used to predict the positions of the landmarks in the unseen MR image. The error
for each landmark prediction was calculated as the Euclidean distance between
predicted and manually identified landmark positions. The leave-one-out approach
was applied in turn to each of the 51 MRI scans. The histogram of the errors
and the percentage of errors over 10 mm for the leave-one-out cases provided
an indication of the predictive ability (accuracy and robustness) of the landmark
identification algorithm. The 10 mm failure rate threshold was chosen near the tail
of the distribution of errors (see Figs. 4.3 and 4.4) in order to categorise the cases
that failed to find the landmark. This threshold was simply used to indicate the
robustness of the method, rather than the accuracy of the method.

The proposed method was compared to the template matching method for each
individual landmark where the position of the landmark was taken as the position of
the maximum correlation.
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Fig. 4.3 The distribution of errors for the prediction of the tracheal bifurcation and jugular notch
when using the individual (top) and combined (bottom) landmark search methods. The template
landmark images and initial positions and shape model was based on the average across the
population (n D 51)

4.3 Results and Discussion

4.3.1 Identifying the Landmark Positions

Two landmark search methods were compared:

1. Individual landmark search, which uses template matching of individual land-
marks where the landmark positions are identified by the locations of maximum
correlation from the template matching.

2. Combined landmark search, which uses template matching and statistical models
where the landmark positions are identified by the locations of maximum
combined correlation from the template matching using the fitted statistical
model.

For each method, the template landmark image and initial landmark positions
were taken as the average from the population in the first case, and are predicted
using PLSR in the second case. Each search took between 15 and 20 s on an Intel
Core i7-2620M 2.7 GHz CPU.
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Fig. 4.4 The distribution of errors in the prediction of the tracheal bifurcation and jugular notch
when using the individual (top) and combined (bottom) landmark search methods. The template
landmark images and initial positions and shape model was based on the average across the
population

Table 4.2 The error and failure rate (error > 10 mm) using average and
predicted initial conditions and template image for individual and combined
landmark search methods

Error (mm) Average Predicted using PLSR

Individual 18.9 ˙ 24.7 33 % > 10 mm 13.9 ˙ 19.1 28 % > 10 mm
Combined 10.2 ˙ 11.7 31 % > 10 mm 6.2 ˙ 5.2 9 % > 10 mm

The results are summarised in Table 4.2, which shows the mean error and
percentage of errors above 10 mm for each search method with and without
predicted initial landmark positions and template image. The worst result was
given by the template matching method for individual landmark using the average
landmark locations and mean template image. The best result was given by the
combined landmark search method with predicted initial landmark positions and
predicted template image. The improvements in the error and the percentage over
10 mm were over threefold.

Figures 4.3 and 4.4 provide a better indication of the distribution of the errors and
failures for the average and predicted initial conditions, respectively. The histograms
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show progressive improvements given by each method, and with or without
predicted landmark positions and template images.

We investigated the influence of two factors - predicting the initial landmark
positions, and predicting the template landmark image - on the accuracy and
robustness of the combined search method. Predicting the template image, but not
the initial landmark positions, gave a predicted landmark error of 8.5˙ 10.0 mm
where 21.6 % of the errors were greater than 10 mm. Predicting the initial
landmark positions, but not the template image, gave a predicted landmark error of
7.7˙ 8.5 mm where 20.6 % of the errors were greater than 10 mm. Individually, the
use of predictions gave similar improvements in accuracy and robustness, however
predicting both the initial landmark positions and the template landmark image gave
a significantly better cumulative result.

4.3.2 Future Work

The results from this study are promising, but the proposed method involves
many variables that can be tuned to improve the accuracy and robustness of
the predictions. These factors include the number and choice of landmarks, the
resolution, voxel size and processing (gradient and smoothing) of template images,
the types of metrics used in the PLSR models, the number of modes used in the
statistical shape models, and the type metric used in the template matching (cross-
correlation, Mahalanobis distance, squared-errors, or a combination). Given the
improvement seen related to predicting the initial landmark positions and template
images, it would be worth investigating other metrics for the PLSR model, such as
Haar features [15], and other prediction techniques.

Given that the proposed method provides robust and accurate identification of
the tracheal bifurcation and jugular notch, these landmarks can be used to perform
a subsequent search for additional landmarks. This work is in progress and is
providing robust and accurate identification of the sternal angle, intervertebral joints,
the location of the armpit, the centre line of the ribs, and the skin surface (see
Fig. 4.5). The intention is to use these landmarks to generate subject specific finite
element meshes for biomechanical simulations.

The proposed method was developed and tested on 51 images with well
controlled imaging parameters, but it was less robust with MR images that exhibited
significant imaging artefacts. However, with future development we are optimistic
that the robustness of this method can be improved to cope with the imaging
artefacts and variations, and possibly, various imaging modalities.
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Fig. 4.5 Work in progress to
extend this method to identify
other landmarks (sternal
angle and intervertebral
joints), the centre lines of the
ribs, and the skin surface with
a fitted mesh

4.4 Conclusions

The presented landmark identification method that combines template matching
and statistical models, and uses PLSR to predict the initial landmark positions
and template landmark images, was able to predict the landmark positions with
an error of 6.2˙ 5.2 mm with 9.1 % of the errors over 10 mm. This is a
significant improvement over template matching alone, which gave a prediction
error of 18.9˙ 24.7 mm with 33 % of the predictions over 10 mm. It was found
that predicting both the initial landmark positions and template landmark images
significantly improved the robustness of the method. Work in progress to extend
this method to other landmarks including the spine, ribs, and skin surface has given
promising initial results. It is expected with further development and the use of
other feature detection and learning techniques, the accuracy and robustness of this
method can be improved.
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Chapter 5
Forward Problem of Time-Resolved Diffuse
Optical Tomography Considering Biological
Tissue Deformation

A.Y. Potlov, T.I. Avsievich, S.V. Frolov, and S.G. Proskurin

5.1 Introduction

Near infrared optical irradiation which is usually used in diffuse optical tomography
(DOT) is diffusely transmitted through a biological tissue carries useful information
about the shape, size, location, and optical properties of the tissue internal structure,
i.e. gives possibility to map tissue optical properties [1, 2]. However, to use this
information it is necessary to solve forward and inverse problems of irradiation
propagation in such media.

Because of complex distribution of scattering and absorption properties, that
have different shape, size, location, etc., in general case the inverse problem doesn’t
have the exact solution [1–4]. Therefore, it is necessary to study the regularities of
light propagation through simulated objects, that describe the simplified standard
cases that correspond to location of tumors, hematomas, hygromas, and other
inhomogeneities. On this basis, we have developed and optimize approximate
radiative transfer models, according to which, absorption or scattering are the key
factors of light attenuation which is passing through a biological tissue.

The importance of such regularities and approximate radiative transfer models is
that they allow to understand better the impact of various factors on propagation and
attenuation of optical radiation in biological tissues. It is known that the external
shape of the tissue can significantly affect the quality of image reconstruction in
DOT [4]. Therefore, it is necessary to provide a good, tight contact of optical
fibers to inject and detect diffusely transmitted photons in the investigated area.
It can significantly reduce the loss of the useful signal, and thus to improve the
accuracy of absorption and scattering properties mapping. However, in some cases,
this also leads to a change of the shape (deformation) of the tissue. In this regard,
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compression plates usually appear as the cause of the deformation [5]. In our
case it is an elastic bracelet to fixture the irradiation source and detector fibers.
Application of these plates or the bracelet leads to the image artifacts, caused by the
discrepancy between the actual boundaries of investigated area and its mathematical
model representation [6–8]. Because of susceptible to deformation, these artifacts
can cause a significant problem in the study of a soft tissue such as breast [9, 10].

Considering spatial distribution of scattering and absorption coefficients, authors
of paper [6] describe influence of the female breast deformation to the results of
DOT inverse problem solution. To reduce the number of artifacts in the recon-
structed image, in the iterative process of forward problem solution it is suggested
to consider change of the object’s shape [6]. For this purpose, the shape of the breast
is determined using 3D camera. Then, using computer simulation, deformations due
to the pressure of the source and detector fibers are predicted. Mathematical model
for the simulation is based on the basic equation of the theory of elasticity.

Interesting approach of mammography-based elastography is suggested in the
paper [8] for breast tumors diagnostics. The key feature of the method is the female
breast elastogram simulation on the basis of the traditional X-ray mammography
or DOT. The special attention in this method is paid to the criterions which help to
distinguish malignant tumors from the healthy tissue by their elastic properties [8].

Paper [11] describes computer methods to make simulation of elastic properties
of the breast tissue for the purpose of surgical biopsy. Suggested model allows
to determine tumor position in the deformed object using MRT data for the
undeformed object. This approach is based on the small deformation theory,
considering that big area deformations are to be divided into small ones.

The purpose of this work is to analyze influence of biological tissue deformations
on the optical properties, propagation and attenuation, of infrared irradiation in it.

5.2 The Model of Diffuse Migration of Photons

To describe the diffusion of photons in biological tissues we used the Model of
a Drop—the calculation and visualization of photon density normalized maximum
(PDNM) motion in a slice of a biomedical object. After being injected, a single ultra
short pulse of irradiation with predetermined number of photons diffusely moves
inside an object like a drop of ink in the water [12–14].

This model allows to describe the experimental data for homogeneous and
inhomogeneous cases, and to visualize PDNM. It is based on the numerical solution
of radiative transfer equation (RTE) in the diffusion approximation for a light pulse
with a fixed number of photons.The diffusion approximation for RTE describes the
balance of energy in a medium containing scattering particles [4] and expressed in
partial differential equations of parabolic type:

1

c

@� .x; y; z; t/

@t
� D .x; y; z/r2� .x; y; z; t/

C 	a .x; y; z/ � .x; y; z; t/ D S .x; y; z; t/ ;8x; y; z 2 
;
(5.1)
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where c D c0
�object

—speed of light in the medium; Ô0—speed of light in vacuum;
�object—the relative refractive index of the simulated object (
) and its boundaries
(@
); x, y, z—coordinates of all points of the final simulated area, consisting of
an inner part of the simulated object 
, its boundaries @
, radiation source
(q), detectors, and the medium, that is surrounding the object; D .x; y; z/ D
f3 Œ	a .x; y; z/C .1 � g .x; y; z// 	s .x; y; z/�g�1 and 	a(x, y, z)—diffusion and
absorption coefficients, respectively; 	s(x, y, z)—the scattering coefficient; point of
interest is determined by the coordinates—x, y, z; g—anisotropy factor (the average
cosine of the scattering angle); �(x, y, z, t)—the photon density at the point with
coordinates x, y, z at a time t; and S(x, y, z, t)—photon source function.

Robin boundary condition is used for a description of the photon flux at the
boundary 
 of the simulated object [15–17]:

� .x; y; z; t/C 2D .x; y; z/F
@� .x; y; z; t/

@
_
n .x; y; z/

D 0;8x; y; z 2 @
; x; y; z … q; (5.2)

here
_
n .x; y; z/—direction of the outer normal to the boundary @
 at the point with

coordinates x, y, z. F—Fresnel reflection coefficient [3, 15], calculated as:

F D
2

1�R0
� 1C jcos .Qc/j3
1 � jcos .Qc/j2

;

where R0 and Qc coefficients, respectively, equal to:

R0 D
�
�object

�medium
� 1

�2
�
�object

�medium
C 1

�2 and Qc D arcsin

�
�medium

�object

�
;

where �medium—the relative refractive index of the medium surrounding the object
(for the air �medium D 1).

After completion of the simulation iterative process PDNM function, �(x, y, z, t),
is normalized with respect to its maximum �max(x, y, z, t):

�norm .x; y; z; t/ D � .x; y; z; t/

�max .x; y; z; t/
;

and represented as follows:

�PDNM .x; y; z; t/ D
ˇ̌
ˇ̌1; �norm .x; y; z; t/ � P
�norm .x; y; z; t/ ; else

;

where P is the experimentally determined minimum of photon density level 0 <
P � 1 [18].
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5.3 Biomechanical Properties Modeling of Soft Biological
Tissues

In terms of biomechanics, soft biological tissues are nonlinear elastic media.
Nevertheless, in some cases, for example, when the deforming forces cause small
bending (� 5%), the soft tissues can still be considered as a media with linear
properties [6–8]. For example, in DOT, the breast tissue should be presented as a
linear isotropic pseudo-incompressible medium.

In this case, the basic equation of the elasticity theory for quasi-static deformation
on the internal nodes of the simulated area is given by [6, 8]:

.�C 	/r .ru/C 	r2u D 0; (5.3)

and the same equation for nodes on the boundary @
 of the studied area is
represented as follows [6]:

�
.�C 	/r .ru/C 	r2u� �^n D h; (5.4)

where
^
n—a unit vector directed outwards from 
; h—represents the tension on

the surface and boundary of the simulated area; u D .u1; u2; u3/—the displacement
vector components at the axes x, y, z in the Cartesian coordinate system; and 	 and
�—Lame’s elastic constants. These constants for isotropic medium (first and second
Lame’s elastic constants) are associated with the Young’s modulus E and Poisson
ratio � as follows [8–10]:

	 D E

2 .1C �/
and

� D �E

.1C �/ .1 � 2�/ :

Thus, the simulated object is considered to be free of any initial deformations
and an influence of the internal deforming forces (such as muscle activity). All
deformations are considered to be caused by external loads, such as source and
detection fibers and their fixtures.

Note that, scattering and absorption coefficients of the tissue under the deforma-
tion should change but insignificantly [6, 8]. The suggested model does not consider
these changes.

To describe the mathematical model it is necessary to give consideration to
the experimental setup for time-resolved DOT (Fig. 5.1) as well as bracelet
technicalities which could cause female breast deformations in the points of source
and detector fibers attachment:
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Fig. 5.1 Block diagram of the experimental setup for time-resolved diffuse optical tomography

1. By the signal of Processing and visualization unit [1] 3D camera [2] reads and
determines the surface of the investigated object;

2. Weak reflecting and partially elastic bracelet is attached to the investigated object
[3, 4];

3. Broadband light source [5] and Streak camera [6] are activated by the signal from
Processing and visualization unit [1];

4. Broadband light source [5] generates a light pulse which goes to the Injection
port [8] through the fibers. Part of the optical irradiation goes to the Optical
oscilloscope [9] and Optical synchronization unit [10];

5. Diffusely transmitted through the object irradiation goes to the Detecting ports
[11] then goes to the Detectors fibers [12] and to the detecting array of the Streak
camera [6]. The latter registers the full set of time-resolved data—Time Point
Spread Functions (TPSF);
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6. All TPSF from the Streak camera [6] and data from Optical oscilloscope [9] go
to Processing and visualization unit [1];

7. Processing and visualization unit [1] using the designed software makes cal-
culations, processes data, solves the inverse problem, and maps absorption and
scattering properties distribution hidden inside the object.

The important feature of the experimental setup is that the fibers are located on
slightly reflective elastic band with adjustable diameter consisting of two identical
halves. It allows fixing painlessly the source and detection fibers on the investigated
biomedical object.

Only one fiber is used for the injection of photons, detection fibers surround the
investigated object, and are located at the equal angles to each other to the right and
left from the source fiber.

In this case, the investigated object will be subject to deformations in a plane of
the fibers only. Cross-section made at this height will appear as an ellipse rather than
a circle. In the simulation of elastic properties of biological tissue it will be assumed
that Poisson ratio � D 0:495 and Young’s modulus E D 20 kPa.

5.4 Results and Discussion

Our study has the purpose to analyze the influence of tissue deformation on
the optical irradiation propagation and attenuation. Therefore, to minimize 3D
numerical simulation interpolation distortions, the FDM grid should be uniform; i.e.
distance between the nodes should be the same in all three directions. To realize this
the numerical solution of the Eqs. (5.1)–(5.4) was performed using Finite Difference
Method, using the implicit difference scheme built on seven-point grid pattern [14].

The results of the simulations in a homogeneous and inhomogeneous non-
deformed conical object are shown in Fig. 5.2. Distribution of optical properties
of the slice of the object is shown in Fig. 5.3. It is taken at the half height of the
object and in the plane of the fibers.

Several series of computer simulations have been performed to determine
influence of deformation to the character of PDNM movement. Photon density
distribution was consequently simulated (P D 0:995 � 0:999) for the time-resolved
cases using the pulsed irradiation in homogeneous and inhomogeneous, deformed
and undeformed conical objects with optical properties of breast tissue.

It has been found that, in all homogeneous cases PDNM moves to the geometric
center of the conical object, regardless of the presence or absence of deformations,
and also the values 	a(x, y, z) and 	s(x, y, z) [18].

The simulation results of the photon distribution in the plane (made at the level
of the source and detector fibers) of homogeneous undeformed object at different
moments of time t are shown in Fig. 5.4.
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Fig. 5.2 The distribution of photons in homogeneous (a) and inhomogeneous (b) coni-
cal objects in 0.75 ns after the light pulse injection. Dimensions of the pictures are
136 mm � 136 mm � 136 mm

Fig. 5.3 Optical properties distribution in the plane taken at the half height of heterogeneous
conical object. Inhomogeneity is considered to be spherical

Absorption, 	a(x, y, z), and reduced scattering, 	
0

s(x, y, z), coefficients for 8r 2

 are equal to 0.004 and 0.5 mm�1, respectively. Similar results for the optically
homogeneous deformed object are shown in Fig. 5.5.

In the case when object has an absorbing inhomogeneity, the character of
PDNM movement considerably varies in comparison with the homogeneous cases.
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Fig. 5.4 Photon density distributions in the slice of the homogeneous conical object at the
following times after the injection of the pulse: 0.7 ns (a), 2.1 ns (b), 3.5 ns (c), and 4.9 ns
(d). Purple spot represents photon density normalized maximum in all cases. Dimensions of the
pictures are 102 mm � 102 mm

Figure 5.6 shows photon density distributions in the plane at the half height of the
inhomogeneous undeformed conical object at different time points. The size of the
object is the same as in the homogeneous case [18].

Absorbing inhomogeneity with 	a .x; y; z/ D 0:01 mm-1 is located at the angle
of 135ı with respect to the axis of the incident irradiation, at the depth of 0.25 of the
plane radius, R. It represents a sphere with the diameter of 0.4 of the radius.

Figure 5.6 shows that in the case of absorbing inhomogeneity, PDNM moves
toward the point, which is symmetrical to geometrical center of the heterogeneity
relative to the center of the investigated object.

As a result of additional simulations, it was found that the speed of PDNM
movement increases with the increasing of the inhomogeneity absorption coefficient
and its size [19].
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Fig. 5.5 Photon density distributions in the slice of the deformed conical homogeneous object at
the following times after the injection of the pulse: 0.7 ns (a), 2.1 ns (b), 3.5 ns (c), and 4.9 ns (d).
PDNM moves to the center. Dimensions of the pictures are 51 mm� 102 mm

Similar results were obtained for the deformed object, see Fig. 5.7. The figure
shows that PDNM moves similarly, i.e. deformation of the object and the imbedded
inhomogeneity, has no significant influence on the photon density and its normalized
maximum.

However, rate of the radiation intensity decay in the cases with undeformed
objects is slightly higher (8–10 %) than that in the cases with deformations. That
means the deformations influence significantly on the overall distribution of the
photon density except for the location of its maximum. Therefore they should be
taken into account when solving the DOT inverse problem [6–8, 20].
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Fig. 5.6 Photon density distributions in the slice of the inhomogeneous conical object at the
following times after the injection of the pulse: 0.7 ns (a), 2.1 ns (b), 3.5 ns (c), and 4.9 ns (d).
Dimensions of the pictures are 102 mm � 102 mm

5.5 Conclusion

The described model and computer simulations were able to identify the following
regularities of PDNM movement in a conical object:

1. In all homogeneous cases PDNM moves to the geometric center of the object,
regardless of the presence or absence of deformations, and values of the
absorption and scattering.

2. In presence of an absorbing inhomogeneity, PDNM moves toward the point
that is symmetric to its geometric center, relative to the center of conical object
regardless of the presence or absence of deformation.

3. Diffuse transmittance intensity decay in the cases with the undeformed object is
slightly higher than in those with deformations. The difference is about 8–10 %
for the cases described in here.
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Fig. 5.7 Photon density distributions in the slice of the deformed conical inhomogeneous object
at the following times after the injection of the pulse: 0.7 ns (a), 2.1 ns (b), 3.5 ns (c), and 4.9 (d).
Dimensions of the pictures are 51 mm � 102 mm

The described properties allow assessing influence of deformation along with
optical properties of the object on the photon density distribution and attenuation.
They will be useful in developing more effective methods for solving DOT inverse
problem.
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Chapter 6
Mechanical Models of Endothelial
Mechanotransmission Based on a Population
of Cells

Yi Chung Lim, Michael T. Cooling, Sue R. McGlashan, and David S. Long

6.1 Introduction

Endothelial cells (ECs) detect and respond to blood flow-induced forces in a
process known as mechanotransduction. Dysfunctional mechanotransduction has
been implicated as one of the causes of cardiovascular diseases such as atheroscle-
rosis [1]. Hence, studying mechanotransduction processes is motivated by the
possibility of improving the diagnosis and prevention of cardiovascular diseases.
Davies et al. proposed a decentralized model in which mechanotransduction occurs
as the sum of two processes. First, mechanotransmission, whereby forces from
blood flow are transmitted internally into the cell via the cytoskeleton. Second
transduction, where force-sensitive transducers located throughout the cell are
activated, causing a biological response such as release of vasodilators [2]. Hence
there is no central transducer responsible for overall mechanotransduction: cell
signaling is the aggregate output of all transducers within the cell.

Both mechanotransmission within and mechanical behavior of endothelial cells
have been examined using computational modeling [3–6]. The spatial domain of
these studies is typically based either on images of a single cell [5] or on idealized
geometry [3, 4, 6], where the cell is represented by simple shapes and solids (for
instance, the nucleus as a spheroid). These approaches do not consider the effect of
cell shape variation on their predicted outputs. As such, it is uncertain whether the
findings of cell-specific studies can be applied to the overall cell population.

There is reason to suggest they cannot be: Ferko et al. demonstrated that the
spatial distribution of focal adhesions causes heterogenous stress/strain distribu-
tions. They also found that stresses concentrated at the interface of the nucleus and
cytoplasm [5]. This suggests that varying focal adhesion and nuclei morphology
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would have resulted in substantially different stress/strain estimates. Caile et al.
found that rounded cells had an elastic response to compression, whereas spread
cells of identical elastic moduli exhibited hysteresis [3]. Taken together, this
suggests that individual endothelial morphology is an important determinant of
cell mechanical behavior. Thus it is important to consider spatial variation in the
population of cells when performing single cell mechanical simulations.

In this study we aimed to quantify the morphological variation in an EC
population. We also aimed to determine if this variation leads to substantially
different estimates of mechanical behavior. The starting point for our methods to
quantify spatial variation was based on a range of studies carried out by Murphy
et al. [7–9]. They proposed a generative model approach, whereby a population of
cells are imaged and used to build up a dataset of spatial descriptors. From these
descriptors, new virtual cells can be generated that display characteristic patterns
learned from the cell images.

6.2 Materials and Methods

We imaged a population of endothelial cells cultured under identical condi-
tions (nD 15). The nucleus, f-actin, and acetylated ’-tubulin components of the
cytoskeleton were imaged. Shape descriptors were formulated to numerically
describe the morphology of the nucleus and cell edge. The statistical variation in
each descriptor was analyzed and used to create generative cells: virtual cells with a
morphology sampled from the shape descriptor distribution of the entire population
of endothelial cells. These generative cells were then used as the spatial domain
for our finite-element analysis to generate stress estimates. Physiological levels of
flow-induced shear stress formed the boundary conditions of our simulation.

6.2.1 Cell Culture and Imaging

Unless otherwise stated all materials were obtained from Life Technologies
(Carlsbad, CA, USA). Human microvascular endothelial cells (HMEC-1s) were
kindly provided by Dr. Edwin Ades, Mr. Francisco J. Candal (CDC, Atlanta
GA, USA), and Dr. Thomas Lawley (Emory University, Atlanta, GA, USA) [10].
HMEC-1s between passages 5–7 were seeded (1� 105 cells/ml concentration) onto
fibronectin-coated 6-well plates (fibronectin, 20 �g/ml, #33016-015). They were
grown to confluence at 37 ıC in 5 % CO2. Cells were maintained daily in MCDB131
(#10372019) media with 10 % L-glutamine (#25030081), 2 % FBS (#10091148),
and 1 % penicillin/streptomycin (#15140122).
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Immunofluorescent Labeling Due to overlapping wavelengths of absorption and
emission only three distinct sub-cellular components could be imaged simultane-
ously. Thus we stained and imaged the nucleus, acetylated ’-tubulin, and f-actin.
The protocol is as follows:

Upon confluence cells were fixed with 4 % paraformaldehyde (#158127-100,
Sigma-Aldrich, St Louis, MO, USA) for 30 min at 37 ıC, then washed with PBS
(3� 5 min, #00-3000). Next, cells were permeabilized in triton X-100 (0.5 %,
5 min, #T9284, Sigma-Aldrich), followed by PBS wash (3� 5 min). To image
the nucleus, cells were stained with Hoechst 33258 (1:1000, #B2883, Sigma-
Aldrich) for 5 min at room temperature and washed with PBS (3� 5 min). To image
acetylated ’-tubulin, cells were blocked with goat serum (1:20, #G9023 Sigma-
Aldrich) for 30 min at room temperature. They were then incubated overnight with
611b (1:500, #T7451 Sigma-Aldrich). This was followed by a 2 h incubation with
secondary antibody goat antimouse Alexa Fluor 594 (1:500, #A11005), and a PBS
wash (3� 5 min). To image f-actin, cells were incubated with Alexa Fluor Phalloidin
488 (1:500, #A12379) for 30 min at room temperature, followed by PBS washes
(3� 10 min). Next, coverslips were mounted directly onto six well plates using
ProLong Gold (#P36934). The bottom of each well (with coverslip attached) was
then removed with a heated scalpel to allow direct imaging.

Microscopy An Olympus FV1000 laser scanning confocal microscope with a
60�/1.35 NA oil immersion lens was used to image the cells. Diode-pumped 405 nm
(to image the nuclei), helium neon 543 nm (acetylated ’-tubulin), and an argon ion
multiline 458 nm (primary cilium and f-actin) lasers were used to sequentially excite
samples. Acquired image resolution was 1600� 1600 pixels, with an XY spatial
resolution 0.132 �m/pixel.

6.2.2 Generating Virtual Cell Components

Image processing and image analysis of the nucleus and cell edge were carried out
in MATLAB (version R2013b), ImageJ (version 1.48o), and AMIRA (version 5.6).
Nuclei morphology was quantified first, as the nucleus is an easily identified feature
present in every cell. Thus the nucleus functions as a useful reference point for shape
descriptors of the other sub-cellular components.

Quantifying Spatial Variation of Nuclei To quantify nuclei morphology we used a
modified version of the method described by Buck et al. [9]. This method involved
four spatial descriptors: median axis, nucleus width, nucleus length, and centroid
vector (see Fig. 6.1). Both median axis and nuclei curves were normalized by the
length of the central axis, and fitted with a 10th order polynomial. Finally in every
2D slice, we defined the centroid vector: the vector between the centroid of the
slice and the centroid of the whole nucleus. Hence any nucleus can be described
by the 1� n vector of central axis lengths where n is number of slices, two 11� n
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Fig. 6.1 Quantifying nuclei morphology using spatial descriptors. (a) Triple-labeled co-image of
a human microvascular endothelial cell, with the nucleus in blue, f-actin in green, and acetylated
’-tubulin in red. (b) Thresholded image of cell shown in (a) with the central axis in blue and the
nucleus centroid in green. The central axis length is the nucleus length. (c) Cells were rotated so
that the central axis runs top-to-bottom. (d) Cells were rotated a 180ı if needed, to ensure majority
of cell area was on the right-hand side of the central axis. All slices in stack were rotated by the
same angle as the central slice. (e) The median axis was found, as the point along the row (shared
y coordinate) that is equally distant from either edge of the nucleus. (f) This distance is known as
the nucleus width. (g) Median axis position in pixels, normalized by dividing by nuclear length.
(h) Nuclear width in pixels normalized by dividing by nuclear length

vectors (fitted coefficients of a 10th order polynomial to describe the median axis
and nuclei width), and the 3� n array of centroid vectors. A distribution for each
shape descriptor was gathered from a population of cells (nD 15). By sampling
from this distribution, it is possible to generate a nuclei representative of the entire
population.

Quantifying Spatial Variation of Cell Edge The cell membrane was not explicitly
imaged in this study. Instead the edge of the cell was approximated as being one
pixel (132 nm) beyond the edge of the f-actin and acetylated ’-tubulin features. This
was achieved by adding these channels together and Gaussian blurring the resulting
image. The shape descriptors of the cell membrane were adapted from Buck et al.
[9]. First, the nuclear centroid of the central slice within the cell was defined as the
origin of the cell. Every cell image stack was rotated so that the nucleus central
axis ran top-to-bottom and majority of cell area was on the right-hand side of the
central axis (Fig. 6.1b–d). The centroid of each slice was also determined, and the
x and y displacement between the slice centroid and the origin was recorded. In
each slice the cell boundary was detected by finding the boundary at 240 equally
spaced points, radiating outwards 1.5ı apart from the slice centroid (see Fig. 6.4).
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Instead of storing these points as x, y, and z coordinates, they were converted to a
polar coordinate system, hence only 240 radial lengths were needed (as the angle is
known).

Hence the cell membrane spatial description could be stored as a 241� n cell
edge vector, where n is the number of slices, and there are 240 radial lengths, and
a single z coordinate that all the points in each slice share. Prior to calculating
radial length, each x and y coordinate in the cell edge vector was normalized by
the displacement of the slice centroid relative to the origin (Fig. 6.3).

To analyze the variation in these cell edge vectors, we used principle component
analysis. Firstly the 241� n cell edge vectors were converted back into Cartesian
coordinates resulting in a vector of 1� 720n, whereby each slice, n, has 240 x, y,
and z coordinates. A matrix was formed from the edge vectors of all cells, 15� 720n.
Each column was centered by subtracting the mean cell edge vector. PCA was then
performed using singular value decomposition algorithm. The PCA method finds
shape modes that can be linearly combined to recreate any cell shape from the
original data.

Hence cell membrane shapes can be generated by randomly generating shape-
mode weightings. The square root of the eigenvalue is the standard deviation of
that particular shape mode (corresponding eigenvector) in the population. Hence
the weightings can be sampled from a normal distribution with a mean (zero, as
data is centered), and standard deviation, to generate “typical” cells, or sampled
from a standard deviation above or below the mean to generate “unlikely” cells.

To deconstruct our actual cell shapes into a linear combination of shape modes,
we used the Open Genetic Algorithm Toolbox, implemented in MATLAB [11].
The parent solutions of the genetic algorithm were a 1� 8 vector of shape-mode
weightings. The fitness function of the algorithm was to minimize the root-mean-
squared difference between the 240 points in the original cell and the 240 points of
the cell created from the genetic algorithm. Rank scaling method and satellite range
scheduling selection method were used, with a single crossover point, crossover
probability of 90 %, mutation probability of 6–9 %, and an elitism of 10 %. Note:
the genetic algorithm parameters reported here were used in this study to analyze all
the cells. However, the genetic algorithm converged to a similar solution when top
scaling was used and when the elitism and mutation rate was varied.

6.2.3 Finite-Element Model of Solid and Fluid Domains

Computational modeling was carried out in ANSYS (version 16), using geometry
files processed in SolidWorks (version 2011).

Fluid Domain We simulated a single cell within a flow chamber. Flow inlet and
outlets were 300 �m up- and downstream of the cell. The side and upper walls
were 200 �m away from the cell. This geometry approximates the flow chamber
we intend to use in future experiments. Pressure boundary conditions of 6 and 0 Pa
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Table 6.1 Constitutive
properties of computational
model

Parameter Value Reference

Poisson’s ratio, nucleus 0.33 [3, 5]
Poisson’s ratio, cytoplasm 0.33 [3, 5]
Young’s modulus, nucleus 5100 Pa [3–6, 17]
Young’s modulus, cytoplasm 775 Pa [3–6, 17]

were applied to the inlet and outlet, respectively, resulting in a pressure drop of
0.009 Pa/�m. This resulted in a maximum fluid velocity of 4.7� 10�2 ms�1, and
a maximum wall shear stress of 2.4 Pa on the cell surface and �0.8 Pa on the
chamber walls. Our boundary conditions were selected to result in a similar wall
shear stress as simulated by Ferko et al. (1 Pa wall shear stress on the chamber
walls with �1.5 Pa maximum wall shear stress on the apical cell surface) [5]. The
Reynolds number was �9, indicating laminar flow. The forces acting on the cell
surface were exported from the fluid domain into the solid domain (one-way fluid–
structure interaction).

Solid Domain The basal surface of the cell was constrained in all directions,
simulating cell attachment with the extracellular matrix. We treated both the nucleus
and the cytoplasm as compressible isotropic linear elastic materials, as assumed by
Ferko et al. [5]. The full list of material properties is shown in Table 6.1.

Meshing and Solution Procedure The fluid domain was meshed with 4-node
tetrahedron elements. The solid domain was meshed with 10-node ANSYS solid
187 elements (4 vertices, 6 mid-edge nodes). Both fluid and solid domains were
meshed using the patch conforming method, which firstly generates a surface mesh,
then uses the Delaunay advancing front approach to mesh the remaining volume.
Mesh independence analysis was conducted on both the solid and fluid domain (see
Fig. 6.2).

6.3 Results

6.3.1 Shape Variation of Endothelial Cell Components

Nucleus The median axis and nucleus width are shown in Fig. 6.3. The mean
centroid vector was 0˙ 1.5 pixels in both x and y, indicating that each slice of the
nucleus had a centroid directly above the middle slice centroid. The average nuclear
length was 144˙ 20.4 pixels. By sampling from these distributions it was possible
to generate a typical nucleus as shown in Sect. 6.3.2.

Cell Edge Each cell in the population was deconstructed into a linear combination
of shape modes. Of the 15 cells, 5 had non-typical morphology. They had a first
shape modes weighting greater than one standard deviation away from the average
(the first shape mode explains 40 % of the shape variation, Fig. 6.4).
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Fig. 6.2 Mesh independence analysis of the fluid (left) and solid domain (right). The fluid domain
solution stabilized at 1.4 � 105 number of elements. The plotted point is the velocity in the middle
of the channel 100 �m downstream of the cell. Because the system Reynolds number is �9, we
can approximate the system using a numerical solution to laminar flow in a rectangular duct, as
described by Spiga and Morino [16]. We estimate a maximum velocity of 0.50 ms�1 which is in
close agreement with our simulated value of 0.49 ms�1. To analyze the solid domain we monitored
the Von Mises stress at two points: a point on the apical surface of the nucleus near the maximum
stress concentration (red) and a point on the basal surface of the nucleus (green). The solid domain
solution stabilized at 5.7 � 104 number of elements with an element sizing of 2.5 �m. This sizing
was used in both the typical and atypical cell models

Fig. 6.3 Variation in nuclei shape descriptors. The average median axis and nucleus width are
shown in red. The green and blue lines represent an envelope of two standard deviations above and
below the average, hence nearly all nuclei fall within the envelope. The maximum average width
of the nucleus is at the center, and is 40 pixels � 0.132 �m/pixel resolution D 5.28 �m (on each
side of the median axis)
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Fig. 6.4 Spatial descriptors of the cell edge. (a) Illustration of polar coordinate description of the
cell outline. There are 240 data points shown on the outline in blue, numbers refer to the point
number. Hence each slice can be represented by a 1 � 241 vector. (b) Percentage of shape variation
explained by each of the shape modes found using PCA. To analyze our data set we considered
the first eight modes which accounted for >95 % of the total variation. (c) Goodness of fit of the
genetic algorithm (blue) versus the actual cell outline (red). The actual nucleus is shown in green.
To generate the blue cell outline the weightings found using the genetic algorithm were multiplied
with the shape modes and added to the average cell outline. PCA analysis and genetic algorithm
fitting have been extended to three dimensions, but for illustrative purposes are shown here in two
dimensions

6.3.2 Computational Model Estimates of Stress Depend on Cell
Morphology

6.4 Discussion and Conclusions

Overall we found littlevariation in nuclear shape in the population: both the median
axis and median width curves are symmetric, and the nuclear centroid vector is
zero, suggesting the nucleus has three perpendicular planes of symmetry. Thus,
overall size is the main component of morphological variation in the nucleus of
static endothelial cells. The size variation of the nucleus is relatively small compared
to size variation in the overall cell. Taken together, this suggests that computational
mechanical estimates of the isolated nucleus can be generalized as there is little
morphological variation.

We found that there was significant morphological variation in overall cell shape.
If one of the five non-typical morphology cells had been selected for a cell-specific
analysis, the findings could not be generalized.

Our estimated stress findings were in agreement with that of Ferko et al. (<60 Pa)
[5]. Even with a simple finite-element analysis (linear, elastic, homogenous, and
compressible) we found substantial differences in the stress distribution between
the typical and non-typical morphology cell models (Fig. 6.5). The trend in model
development is towards increasing sophistication and the inclusion of more discrete
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Fig. 6.5 Comparison of Von Mises stress estimates in typical versus non-typical morphology.
(a) Synthetic “typical” cell with the first eight shape modes within one standard deviation of the
average. Cross-sectional plane is indicated, as is nuclei position within the cell. Stresses are evenly
distributed within the nucleus, and concentrate on the upstream side below the nuclei. (b) Synthetic
“non-typical” cell with the first four shape modes between one and two standard deviations away
from the average. Stress is concentrated on the upstream side of the nucleus, and above the nucleus
(on upstream side). We no longer observe stress concentration below the nucleus. To isolate the
effect of different cell edge morphology and nuclei position within the cell, the same nucleus
was used in both models. Identical computational parameters were used for both models with the
exception of the spatial domain (the same minimum element lengths, simulated flow, etc.). (c) Von
Mises stress along the dotted lines shown in (a, b). Typical cell is in blue, atypical in red; thick lines
with round data points correspond to the path parallel to flow direction. Thin lines with square data
points correspond to basal–apical axis path. Each path has been normalized to the typical cell’s
length (upstream to downstream, basal surface to apical). Nuclei boundaries cause sudden jumps
in the Von Mises stress profile. Stresses are symmetrical upstream and downstream of the nuclei in
the typical cell, but are highly asymmetrical in the atypical cell
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additional sub-cellular components [6, 12–14]. We suggest that morphological vari-
ation of these components will have a substantial impact on mechanical estimates.
Furthermore, this morphological effect is likely to increase with increasing model
sophistication.

In this study, we have examined endothelial cells in particular. However, the use
of computational modeling to characterize cell mechanics is common in a number of
other cell types [12–14]. The population-based shape description methods detailed
here could be readily applied to these cell types, in particular, to adherent cells.

The cell membrane was not explicitly modeled in our analysis: given limitations
of the overlapping antibody spectra, it was decided that imaging cytoskeletal
components would be of more use in future, when the study is extended to
incorporate cytoskeletal morphology. However, using the outline of the cytoskeleton
to approximate the boundary of the cell is valid for the purposes of computa-
tional modeling, because the actin cortex is rich in f-actin and is located within
128˙ 28 nm of the plasma membrane [15]. The slight difference is accounted for
by our Gaussian blurring.

We have demonstrated how morphological variation in the cell membrane has
significant effect on the mechanical estimates of endothelial cell behavior. In future,
we aim to extend our study to incorporate spatial variation of the cytoskeleton:
including alpha-tubulin, f-actin, and intermediate filaments. We also aim to extend
our study to incorporate focal adhesions. Because they have the function to adhere
the cell to the extracellular matrix, the size and spatial distribution of focal adhesions
directly affect computational estimates of endothelial mechanics [5].
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Chapter 7
Investigation of Modelling Parameters
for Finite Element Analysis of MR Elastography

Lyam Hollis, Lauren Thomas-Seale, Noel Conlisk, Neil Roberts,
Pankaj Pankaj, and Peter R. Hoskins

7.1 Introduction

Changes in the material properties of tissue are common in many disease states.
Indeed in certain conditions such as breast cancer manual palpation to detect a
change in material properties has long been used as a method of diagnosis [1]. This
method however is only appropriate for superficial abnormalities, dependent on the
skill of the individual clinician [2] and is not quantitative. As such the potential
benefits of an imaging technique that could quantify material properties are great.

Magnetic resonance elastography (MRE) is an MRI based technique that aims to
achieve this [3]. A motion-encoding gradient is utilized to characterize the displace-
ments of shear waves induced into in vivo tissue using an external harmonically
oscillating source. Filters are typically applied to remove noise and an inversion
algorithm is then used to calculate a map of the material properties from these
displacements [4].

Testing and development of MRE post-processing software requires knowledge
of the material properties of the test object such that the resulting MRE measure-
ments can be validated. To this end there are a number of commercial phantoms
available with quoted stiffness values [5]. Such phantoms are however limited
since they do not allow the user variations in geometry or material properties.
To overcome this several studies have described creation of in-house phantoms using
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agar gel [6, 7]. However this process is also time consuming and generally requires
mechanical testing of the material to attain its true properties, a process requiring its
destruction.

Use of synthetic in-silico phantoms is a potential solution to these problems.
Material properties are defined within the pre-processing stage of finite element
analysis (FEA). This enables a direct comparison between the prescribed material
property values and the values attained through analysis of the data using the MRE
post-processing software. Using FEA in this manner offers the potential to iterate
over a large range of geometries and material properties allowing optimization of the
MRE methodology and the ability to obtain quantitative data on issues of clinical
interest such as minimum lesion size which may be observed on the elastogram.

To date a number of MRE simulation methodologies have been described in
detail. Chen et al. [8] used a two-dimensional model to show increased accuracy
in simulated shear wavelengths at higher densities and lower shear moduli. Leclerc
et al. [9] iteratively altered 3-dimensional FEA model parameters to match with
wave propagation in a phantom. Meanwhile Kolipaka et al. [10] compared uniform
beam, plate and shell phantoms with 3-d FEA models of the same structures
showing good agreement between MRE scans and FEA datasets. The purpose of
FEA development here was to create a technique that could validate inversion
algorithms. A more clinically driven study by Thomas-Seale et al. [11] investigated
idealized atherosclerotic plaques to show frequency dependent wave disruptions in
such geometries.

Despite its use in MRE development there has been little research into the
influence of modelling parameters on inversion of FEA datasets. This paper
aims to investigate the effects of varying boundary conditions, element type and
constraints in modelling of MRE.

7.2 Methods

All simulations have been performed using Abaqus Version 6.10-1 (Dassault
Systèmes Simulia Corp., Providence, Rhode Island, USA). An explicit method was
used with fixed time increments. The size of these increments was derived using
the element-by-element stable increment estimator inbuilt to Abaqus. Whilst the
increment was dependent upon the type of element used and the size of the mesh it
was of order 10�5–10�6 s for all simulations.

7.2.1 Geometry

The geometry was created using the inbuilt computer aided design (CAD) package
in Abaqus/CAE (Fig. 7.1). A cylindrical insert with a radius of 10 mm was placed
in a cuboid of dimensions 80� 80� 50 mm3 (Fig. 7.2). Harmonic loads of 100 Hz
were applied in the z-direction over a nodal region on the upper surface of the model.
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Fig. 7.1 Modelling workflow showing integration of FEA data with MRE post-processing
software

Fig. 7.2 The model
geometry (a), and masks
applied to the (b) background
and (c) insert region for
calculation of the respective
shear modulus values
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7.2.2 Material Properties

The background material was assigned a shear modulus of 3 kPa whilst the shear
modulus of the insert was varied from 4 to 9 kPa. Both materials were prescribed
a density of 1047 kg m�3 and were defined as viscoelastic using the Kelvin–Voigt
model of viscoelasticity with a shear viscosity of 1 Pa s throughout. The purpose
of this viscosity was to induce damping in the model and reduce the effects of
reflections.

7.2.3 Boundary Conditions

Boundary conditions were applied to all surfaces aside from that over which the
load was applied. Simulations were performed with displacements fixed in each
direction independently whilst the remaining two directions were unconstrained,
and with displacements fixed in all directions simultaneously.

7.2.4 Constraints

Three methods of constraining the two regions of the model to each other were
investigated. Firstly the two regions were merged together in the assembly module
with the intersecting boundaries retained. Secondly the two regions were tied
together using the constraints tool. Finally a frictional interaction was defined
between the different regions of the model. Values of 0.5, 0.75, 1 and 1.25 were
tested for the coefficient of friction.

7.2.5 Mesh

Eight-noded hexahedral (C3D8R), 4-noded linear tetrahedral (C3D4) and 10-noded
quadratic tetrahedral elements (C3D10M) were compared. The C3D8R and C3D4
elements were meshed defining a 1 mm element length on all edges. Since the
C3D10M elements are of higher order in comparison to the C3D8R and the C3D4
elements a lower mesh density was used with a 1.25 mm element length defined.
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7.2.6 Post-Processing

Displacements in the z-direction were extracted at eight time points 1.25� 10�3 s
apart starting at 0.08 s from the central xy-plane with pixel sizes of 1 mm2. This
data was then exported to Matlab R2013a (MathWorks, Natick, Massachusetts,
USA) where it was reformatted to represent a set of displacement images at each
time point. A 1-D Fourier transform was then applied to the data in the temporal
direction creating a set of frequency dependent complex wave images. The second
of these images corresponds to the frequency of the induced waves and was therefore
selected for further analysis. The 2-D direct inversion algorithm was then applied to
this image to create a map of the shear modulus, more commonly referred to as an
elastogram [12].

Regions of interest were then identified and masks created to isolate these.
The areas of these masks were selected avoiding pixels that were within 2 mm
of boundaries between the different regions within the model and pixels that were
within 5 mm of the edge of the region over which the inversion was performed. The
mean value within each region of interest was calculated.

7.2.7 Convergence Studies

Convergence studies for each different element type used and convergence assumed
to have been achieved when the change in mean value from one increment in mesh
density to the next was below 2 % (Fig. 7.3).

7.3 Results

7.3.1 Boundary Conditions

Measurements in both the background and the insert were overestimated for all
prescribed shear moduli with all the boundary conditions (Fig. 7.4). In the inserts
the greatest errors were obtained when displacements were fixed in the x-direction,
with errors larger than 20 % for all prescribed insert values. Similar overestimations
were also shown when displacements were fixed in all directions. The size of the
overestimations was greatly reduced when fixed in the y- and z-directions with errors
in the range of 7–13 %.

The size of the overestimations was reduced in the background. The largest
overestimation for the majority of the prescribed background values was obtained
when displacements were fixed in all directions (7–13 %). The range of error values
was similar for all three directions fixed independently (6–9 %).
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Fig. 7.3 Examples of the complex wave images and respective elastograms from the models
prescribed with shear modulus values of 4, 6 and 9 kPa for the insert

7.3.2 Constraints

The background and insert measurements from the tied constraints and the merged
parts simulations matched each other almost exactly. Visual inspection of complex
wave images showed propagation of the wave in both sections of the model
(Fig. 7.5). In all of the frictional interaction simulations the measurements in
the background were slightunderestimations of around 2.5 %. Large errors were
obtained in the inserts, however, with overestimations typically in excess of 300 %.
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Fig. 7.4 Graphs depicting the shear modulus measurements with the different boundary condi-
tions investigated in this study. The encastred boundary condition leads to large overestimations in
both the background and insert regions of the model

Fig. 7.5 Complex wave images from the different constraint conditions. Whilst there is clear wave
propagation when the parts are tied and merged together, wave propagation in the insert is greatly
reduced when the constraint is defined using a fractional coefficient
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Fig. 7.6 Measured values of the shear modulus for the background and insert regions of the model
when meshed with different elements. Whilst the C3D8R and C3D10M elements produce similar
measurements, the C3D4 elements result in large overestimations in both regions of the model

Inspection of the complex wave images showed that whilst wave propagation could
be observed in the background, the amplitudes of the waves within the inserts were
minimal.

7.3.3 Mesh

There was good consistency between the shear modulus measurements in the
C3D8R and C3D10M elements (Fig. 7.6). There were large overestimations for the
C3D4 elements in both regions of the model (25–30 %).

7.4 Discussion

Modelling parameters can have a significant effect on the accuracy of the shear
modulus measurements produced by the inversion algorithm. To this end the use of
C3D4 elements dramatically increased the size of overestimations. It is likely that
this effect was due to tetrahedral elements being structurally stiffer than hexahedral
elements and has important implications when meshing more complex structures
that are incompatible with a hexahedral mesh [13, 14]. It was shown here that the
problem can be resolved by using the quadratic tetrahedral C3D10M elements,
though this increases computational time.

The method by which the boundary between two parts within the model is
defined also has an impact in this respect. Whilst the tied condition and merging
of parts are unlikely to truly represent the conditions in the human anatomy where
sliding of organs with respect to the surrounding tissue is common [15], a frictional
interaction prevents transfer of the wave from one region to another. In this paper
the resulting lack of wave propagation in the insert leads to large overestimations of
the shear modulus.
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The choice of boundary condition in MRE modelling is important and has a clear
impact upon results. Fixing displacements in all directions has often been used in
FEA simulations of MRE [9–11], though in reality the boundaries in MRE will not
be totally fixed: waves will pass through a patient into the scan table and with respect
to phantoms, the waves will also be transmitted into the phantoms case. Applying
a boundary condition where motion is fixed in just one direction and uninterrupted
in the other two is also not representative of reality, though also commonly used
[8, 16]. Unfortunately the range of boundary conditions offered by Abaqus, and
indeed most other FEA software packages, is fairly limited typically allowing
displacements to be either fixed or unconstrained in each direction. More realistic
boundary conditions would take into account the interaction between the model and
the surrounding world, though further work is required to determine the nature of
such an interaction. The boundary conditions investigated in this study produced
a wide range of results with fixing in all directions seeming to result in large
overestimations of the stiffness in both the background and insert of the model.
To this end fixing in the y-direction alone typically produced the most accurate
results in both regions. This was perhaps because motion of the wave in the shear
planes was undisturbed when the boundary condition was applied in this direction.

Whilst boundary conditions present a clear problem in the definition of the model
and attempting to represent realistic conditions, they also present a problem in
the MRE inversion. Firstly the existence of a boundary invalidates the assumption
of an infinite homogenous medium upon which the algorithm is derived [17].
Additionally waves reflected off the boundary interfere with those induced and
result in interference patterns appearing in the wave image. Whilst reflections and
scattering are prevalent in the human body, they are typically more noticeable in
phantoms and FEA simulations, where the external boundaries of the model and
the boundaries between regions within the model are clearly defined [18, 19]. It
is therefore likely that in order to accurately model these regions more complex
boundary conditions and constraints than those currently used are required.

7.5 Conclusions

This paper shows the importance of modelling parameters in FEA of MRE. In par-
ticular the selection of boundary condition has a significant impact on simulations
with large variations between the commonly used conditions used throughout the
literature.
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Chapter 8
Fuzzy Tissue Classification for Non-Linear
Patient-Specific Biomechanical Models
for Whole-Body Image Registration

Mao Li, Adam Wittek, Grand R. Joldes, and Karol Miller

8.1 Introduction

Radiographic image registration is important for disease diagnosis, treatment
assessment and surgery planning [1–3]. In recent years, numerous image
processing-based registration methods have been successfully developed [3–5].
However, many of those methods were proven to be effective for selected body
segment, such as the brain, the breast, lungs and prostate [2, 6, 7]. Problems
involving large differences between the source and target images (i.e. whole-body
CT images) still remain a challenge. Therefore, biomechanical modelling, in which
predicting the deformation of organs/tissues is treated as a computational problem
of solid mechanics, has been recommended by many researchers [8–10].

The finite element (FE) method has been historically used to predict deformations
of body organs/tissues [11–13]. However, creating a patient-specific finite element
model is a time-consuming process which involves image segmentation, mesh
generation and material property assignment [14, 15]. Despite substantial research
effort, automatic medical image segmentation remains an unsolved problem [16];
in particular, when anatomical features depicted in the images are affected by
disease/pathology and boundaries between different tissues and organs are difficult
to distinguish (which is the case for whole-body CT images and abdominal
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organs). Determining patient-specific constitutive properties of the human body
tissues is another challenge; despite recent progress in magnetic resonance (MR)
and ultrasound elastography [17], reliable non-invasive method to determine such
properties in-vivo has not been created yet [18].

In our previous studies, the Fuzzy C-Means (FCM) cluster algorithm was
proposed to assign material properties at integration points of the computational
grid directly from medical images, without time-consuming image segmentation
[19]. As a further development, we applied the FCM algorithm to create a patient-
specific whole-body model for computing deformations of body organs/tissues for
whole-body CT image registration [20, 21]. The FCM determines the cluster centres
(tissue types) for the given data samples (image intensity of pixels in the CT/MR
scans) and probabilities (membership functions) for each data (image intensity of a
pixel) belonging to the calculated cluster centres [22].

Once the tissue types (cluster centres) are determined, the material properties
at the integration points of the computational grid can be calculated using the
membership functions (probabilities) for each pixel (intensity at the integration
point) and all tissue types (cluster centres) [19]. The computed material properties
are ‘fuzzy’ rather than ‘exact’ values and there are no clear boundaries between
tissues [20]. However, such ‘fuzzy’ material properties do not compromise the
accuracy of prediction of tissue/organ deformations as it has been indicated in our
previous studies that the material properties make a weak impact on the predicted
deformations for problems where loading is prescribed as forced motion of the
boundaries [14, 18].

A challenge in application of FCM for tissue classification is how to determine
the tissue types in a given set of medical images. There is no standard criterion to
determine how many tissue types (cluster centres) are needed to predict deforma-
tions with the accuracy sufficient (typically two-times the in-plane voxel size) for
whole-body CT registration [20].

This chapter presents an application of the fuzzy tissue classification using the
FCM algorithm for creating patient-specific whole-body biomechanical models for
predicting tissue/organ deformations for registration of whole-body CT images and
analyses sensitivity of the registration accuracy to the FCM algorithm parameters.
For a whole-body CT image dataset, five major abdominal body organ/tissue types
can be recognised from the CT images. As the lung is a large body organ and
it can be easily distinguished from the CT images, we evaluated the accuracy of
whole-body image registration using the patient-specific finite element model and
the proposed fuzzy tissue classification method by comparing contours of the lung
in the registered images (source images warped using deformations predicted by
patient-specific biomechanical model) and target images, and the results show that
misalignments are within two-times the image voxel size.
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8.2 Methods

8.2.1 Whole-Body CT Image Dataset

The whole-body CT image dataset analysed in this study was acquired
from the publicly available Slicer Registration Library (Case #20: Intra-
subject whole-body/torso PET-CT http://www.na-mic.org/Wiki/index.php/Projects:
RegistrationLibrary:RegLib_C20b). One image set is treated as moving/source
image and another one is fixed/target image.

The original image dataset has resolution of 0.98 mm� 0.98 mm� 5 mm.
Following our previous study [23], we resampled the image-sets to 1 mm� 1 mm�
2.5 mm using the built-in ‘Resample Scalar Volume’ tool in the 3D SLICER
(http://www.slicer.org/)—an open-source software for visualisation, registration,
segmentation and quantification of medical data developed by Artificial Intelligence
Laboratory of Massachusetts Institute of Technology and Surgical Planning Labo-
ratory at Brigham and Women’s Hospital and Harvard Medical School [24].

8.2.2 Geometry Discretisation

The 3-D patient-specific geometry was extracted from CT images using the
‘Intensity Threshold Segmentation’ module available in the 3D SLICER software
package [24]. Following [25], we used 8-noded hexahedral elements with one
integration point to build the computational grid. Although tetrahedral meshes are
popular [26], 8-noded hexahedral elements with one integration point do not exhibit
volumetric locking that occurs when 4-noded tetrahedral elements are applied to
incompressible/nearly incompressible continua such as soft tissues [27] and tend
to offer better computational efficiency than tetrahedral meshes (for the same
characteristic size of an element, less hexahedrons than tetrahedrons are needed
to mesh a given volume). The computational grid consists of 51,479 elements and
55,944 nodes, as shown in Fig. 8.1.

8.2.3 Fuzzy C-Means Method for Tissue Classification

The FCM algorithm is used to calculate cluster centres for given data samples
[22]. We have successfully used it in our previous studies to assign material
properties at the integration points when computing brain deformations caused by
craniotomy-induced brain shift [19], and for predicting the deformation field of body
organs/tissues for whole-body CT image registration [20]. For tissue classification,
the data samples are image intensity of all pixels in the image. Once the number
of tissue types is selected, the FCM algorithm classifies pixels (data samples) as

http://www.na-mic.org/Wiki/index.php/Projects:RegistrationLibrary:RegLib_C20b
http://www.na-mic.org/Wiki/index.php/Projects:RegistrationLibrary:RegLib_C20b
http://www.slicer.org/
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Fig. 8.1 Spatial
discretisation of the
whole-body geometry using
hexahedral elements. The
computational grid consists
of 51,479 elements and
55,944 nodes. This grid was
also used in our previous
study [20]

belonging to different groups and calculates the cluster centre (image intensity) for
each group by computing the membership functions (probabilities) that link image
intensity at each pixel with all the specified tissue types, by minimising the objective
function JFCM [19, 22]:

JFCM D
NX

iD1

CX
jD1

uq
ijd

�
xi; j

�
(8.1)

where N is data samples (i.e. pixels in CT images), C is the number of cluster
centres (tissue types/classes), q is the weighting factor referred to in the literature
[28] as the fuzziness degree of clustering, 	ij is the fuzzy membership function
that expresses the probability of one data sample xi (pixel) belonging to a specified
cluster centre  j (tissue type/class) and d is the spatial distance between data sample
xi and cluster centre  j We used the fuzziness degree of clustering q of 2 which is a
value commonly applied for soft tissue classification [29, 30].

The cluster centres  j (tissue classes) and the fuzzy membership functions 	ij

can be calculated by minimising the objective function (1). But, the number of
cluster centres (tissue types/classes) C remains unknown. Therefore, we use a
patient’s whole-body CT image dataset as an example to analyse the selection of
this parameter in detail in Sect. 8.3.
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8.2.4 Loading and Boundary Conditions

In this study, computation of deformation field within the body organs/tissues is
formulated as a displacement-zero-traction problem of computational mechanics
where whole-loading is prescribed as forced motion of the boundary. For such
formulation, the predicted deformations within the analysed continuum depend very
weakly on the mechanical properties [11]. We select the spine (vertebrae) as the
boundary to apply the forced motion as the spine can be easily distinguished from
surrounding soft tissues in CT images. The displacement (forced motion) to align
the spine in source and target images can be determined using rigid registration (we
used ‘Rigid Registration’ function in the 3D SLICER [24]) for each vertebra.

We also considered using landmarks located on the skin as a source of infor-
mation about motion of the boundary. However, as there are too few features on
the abdominal skin to define such landmarks and they proved to be rather difficult
to reliably locate/distinguish in the source and target images, no constraints and
contact were applied to the body surface (skin) when conducting registration of the
whole-body CT images. The proposed biomechanical model, however, allows for
adding correspondence between easily distinguishable surface points as constraints
if desirable.

8.2.5 Numerical Solutions

The non-linear patient-specific finite element model is solved using our previously
developed Total Lagrangian Explicit Dynamics (TLED) finite element algorithm
[25, 31, 32]. The algorithm utilises central difference method to discretise the
temporal derivatives so that the discretised equations are integrated in stepping
forward manner without any iteration. To accelerate the convergence to steady
state, a dynamic relaxation is used [32]. For further improvement of computation
efficiency, the TLED has been parallelised to harness computational power of
Graphics Processing Units (GPUs) as shown in [33].

8.3 Results and Discussion

8.3.1 Image Intensity Distribution of Whole-Body CT Images

The FCM algorithm we applied to assign material properties at the integration points
of the computational grid (finite element mesh) is a statistical feature classification
method [34]. It calculates cluster centres (tissue types) and membership functions
for data samples (i.e. image intensity of pixels depicted in CT images) using
Eq. (8.1). As pointed out in Sect. 8.2.3, the number of cluster centres (tissue
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Fig. 8.2 Statistical distribution of image intensity for a patient’s whole-body CT image dataset

Table 8.1 Tissue types and associated image intensity

Intensity �900 �300 �80 �20 80 950
Statistical
classification

Group A Group B Group C Group D Group E Group F

Anatomical
classification

Class 1:
Gas-filled spaces
(abdominal
cavities)

Class 2: Fat Class 3: Muscles
(abdominal
organs)

Class 4:
Intestines
(stomach)

Class 5: Bones

types/classes, parameter C in Eq. (8.1)) is an unknown parameter. Determining this
number requires analysis of the statistical constituents of the CT images represented
by distribution of the image intensity. Figure 8.2 shows the statistical distribution of
image intensity for all pixels within a given patient’s whole-body CT image dataset.

As can be seen in Fig. 8.2, in the image dataset analysed here, the intensity varies
from �1200 to 1500 and divides into six groups: (1) most pixels are concentrated at
four clusters (i.e. group A, C, D and E in Fig. 8.2, with the cluster centres at �850,
�80, �20 and 80, respectively); (2) the remaining pixels are equally distributed
between two groups (i.e. group B from �600 to �200 and group F from 400 to
1500). Therefore, a total of six statistical groups (clusters) can be distinguished and
used for tissue classification (see Table 8.1).
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Fig. 8.3 A typical transverse section slice from a whole-body CT image dataset

Table 8.2 Material properties for tissue types

Class 1 Class 2 Class 3 Class 4 Class 5

Shear modulus (kPa) 0.53 1.07 3.57 4.05 rigid
[35] [36] [37–39] [40]

8.3.2 Tissue Classification

In Sect. 8.3.1, we analysed the statistical distribution of image intensity for a
patient’s whole-body CT image dataset. In this section, we relate this distribution
to the anatomical constituents (i.e. major body organs/tissues) of the human body.
Figure 8.3 shows a typical transverse slice of whole-body CT image. Average
positions to different classes are: (1) gas-filled spaces (abdominal cavities); (2) fat;
(3) muscles and abdominal organs (i.e. liver, kidneys); (4) intestines (stomach) and
(5) bones. These five anatomical tissue types and their corresponding average image
intensity are listed in Table 8.1. The shear modulus for these five anatomical tissue
classes calculated using the FCM algorithm is given in Table 8.2.

The number of cluster centres (parameter C in Eq. (8.1)) is one of the parameters
controlling the results of tissue classification in the FCM algorithm.

8.3.3 Parametric Study

Following Li et al. [20] and Mostayed et al. [41], we evaluate the registration
accuracy by comparing the edges/contours of a body organ in registered (i.e. source
image warped using the deformations predicted by the non-linear patient-specific
finite element model) and target images. As the lung is a large body organ that can



92 M. Li et al.

Fig. 8.4 Comparison of lung contours from the registered images (i.e. source image warped using
deformations predicted by the non-linear patient-specific finite element model and the fuzzy tissue
classification method). The red dashed line represents predicted deformations using 5 cluster
centres; the blue dashed line represents predicted deformations using 6 cluster centres; the pink
solid line represents predicted deformations using 7 cluster centres and the blue star line represents
predicted deformations using 8 cluster centres

be reliably distinguished from the surrounding tissues, in this study we qualitatively
evaluate the registration accuracy by comparing the contours of the lung extracted
from the registered and target images. Following previous studies [15, 41], we
consider any misalignment less than two-times the voxel size of the original source
image to be successfully registered.

Sensitivity of the accuracy of whole-body image registration using non-linear
patient-specific finite models to the number of cluster centres used by the FCM
algorithm (parameter C in Eq. (8.1)) is demonstrated in Fig. 8.4. When the number
of cluster centres is equal to eight (Table 8.3), the five major tissue classes can
be successfully distinguished and the contour of the lung extracted from the
registered images is very close to that extracted from the target image (i.e. distance
between these two contours is within two-times the image voxel size, see Fig. 8.4).
More cluster centres (i.e. 9, 10...) would increase the computational cost of the
FCM algorithm without affecting/improving the results of tissue classification. For
less than eight cluster centres the FCM algorithm is not able to distinguish five
major tissue types, which results in somewhat poorer accuracy when predicting
deformations of the body organs/tissues.
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Table 8.3 Tissue classification with different cluster centres (tissue types)

Cluster centres Image intensity

5 �750 �400 �98 40 400
6 �750 �600 �350 �96 40 400
7 �750 �600 �350 �97 30 250 600
8 �750 �600 �350 �105 �30 40 250 600

8.4 Conclusions

Patient-specific biomechanical modelling for whole-body CT image registration
often involves subjective and time-consuming image segmentation that divides
whole-body CT scans into non-overlapping constituents with different material
properties. To eliminate the need for tedious image segmentation, we have suc-
cessfully developed a fuzzy tissue classification for creating the non-linear patient-
specific biomechanical models without image segmentation. In this paper, we
analysed the statistical and anatomical constituents for a patient’s whole-body CT
image dataset, and sensitivity of the registration accuracy for whole-body CT images
using non-linear patient-specific finite element models to the FCM classification
parameter.

The results suggest that when applying the FCM algorithm to assign material
properties at the integration points of finite element mesh directly from the whole-
body CT images. The number of cluster centres needs to be larger than the number
of tissue types that needs to be distinguished. The accuracy of prediction of
organ/tissue deformations when applying such models in whole-body CT image
registration tends to be affected by the number of cluster centres and associated
tissue classification. However, the effect is moderate and even for relatively small
number of cluster centres prediction can be obtained.

To validate the accuracy of registration for whole-body CT images, in this
study one patient’s whole-body CT image dataset was analysed using the patient-
specific non-linear finite element model and fuzzy tissue classification. Registration
accuracy was qualitatively evaluated by comparing contours of the lung from the
registered (i.e. source image warped using deformations predicted by non-linear
patient-specific finite element model) images and target images. The misalignments
were within two-times the image voxel size.
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Chapter 9
GPU-Based Fast Finite Element Solution
for Nonlinear Anisotropic Material Behavior
and Comparison of Integration Strategies

Vukašin Štrbac, David M. Pierce, Jos Vander Sloten, and Nele Famaey

9.1 Introduction

Finite element (FE) simulations are increasingly employed to assess and improve
the performance of biomedical devices and procedures. Examples are performance
analyses of stents [1, 2] or arterial clamping device design optimization [3].
Speed requirements are less stringent when these analyses are performed pre- or
postoperatively. Even so, for models with noteworthy geometrical and material
complexity, solution speed is an important barrier keeping these simulations from
being integrated into the clinical workflow. Moreover, also intraoperative utilization
of finite element analysis is increasingly proposed as a solution, i.e. for soft tissue
overload prevention [4] or for brain shift estimation [5]. For these situations, but
also for virtual surgical simulators, a continuum-mechanical representation has long
been impossible due to the required update rates. In the past decade, alongside the
evolution of computational architectures and advancement of computational power,
a number of fast FE solvers have appeared in the literature [6–8]. To the best of the
authors’ knowledge, Miller et al. [9] were the first to publish research on an efficient
nonlinear real-time FE solution to intraoperatively provide information about tissue
response on patient-specific anatomy during actual surgery. The current paper
expands upon the Total Lagrangian Explicit Dynamic (TLED) algorithm proposed
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by this research group, presenting results of an efficient 3D implementation on
the GPU using Nvidia CUDA technology. In particular, the accuracy and solution
speed of the simulation of an expansion of an artery modeled with a nonlinear
anisotropic material using our implementation are compared to that of an established
implicit FE solver FEAP (University of California, Berkeley, USA). Furthermore,
differences in computation speed between different element integration types and
between isotropic or anisotropic material models are evaluated.

9.2 Materials and Methods

9.2.1 3D TLED Algorithm on the GPU

TLED is an explicit dynamic, large strain solver that uses the initial configuration
of the domain as the reference configuration. The work-conjugate Second Piola-
Kirchhoff stress and Green strain are used, and the primary kinematic variables
are the deformation gradient and displacements. This combination is suitable for
hyperelastic materials which are generally given in total rather than rate form.
An additional advantage of the algorithm is that shape function derivatives with
respect to the initial configuration are constant and can be computed before the
time-marching phase. For a detailed description of TLED, see [9, 10].

The conventional implementation of TLED on GPUs is split into several kernels
(parallel functions running on the GPU hardware) enabling the processing of large
numbers of elements concurrently. This paradigm is used in all phases of the solver
algorithm: computation of internal forces, time-marching, and the imposition of
boundary conditions. Similar in function and benefits to distributed computing
systems used for large simulations, CUDA parallelization is light-weight, tightly
coupled and has much higher granularity in the work units and threads executing
together. The management of GPU internals are left largely to the programmer.
These involve single and double precision computing units, different memory types
of different bandwidths, latencies, and capacity, instruction issue pipelines and
schedulers, etc. For a more detailed description of CUDA TLED implementation,
consult, e.g., [11, 12] and for in-breadth testing of TLED on GPUs, see [4].

9.2.2 Element Implementations

Three element types were implemented into the current platform, all of which are
of the tri-linear hexahedral type, with varying integration procedures.

Under-Integrated Linear Hexahedron Classically used in TLED, the under-
integrated (UI) linear hexahedron uses first order integration of the stress tensor
at the centroid of the element. The combination of the single integration point and
the first order isoparametric formulation leads to some strain modes of the element
being stressless—a phenomenon called hourglassing. Hourglassing can be remedied
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to an extent, however, by applying one of several additional algorithms: basic
orthogonal hourglass control [13] and its shift to a total Lagrangian worldview [14],
or the more advanced assumed strain stabilization [15] used in several commercial
tools. Suboptimal behavior for complex anisotropic materials can be expected,
which can be remedied by increasing the mesh density used to discretize the
boundary value problem. Under-integration is the cheapest solution in terms of both
memory utilization and mathematical operations required, even when accounting
for basic hourglassing schemes. This element is used as a benchmark reference for
computational requirements and speed.

Fully Integrated Linear Hexahedron Full integration (FI) was also implemented
into the TLED code, using the conventional second order Gaussian quadrature
formula. Being the quintessential integration scheme for the tri-linear hexahedron,
it proves very practical for validation and comparison purposes to other solvers.
A great benefit of performing the integration in the element’s natural coordinate
space is the fact that in this configuration the shape function derivatives at points
sampled by the full integration method are a simple function of the shape function
derivatives at the centroid, and can easily be computed on-the-fly rather than being
brought in by expensive memory fetching operations. Despite the accuracy provided
by this element formulation, incompressibility or near-incompressibility of this
element formulation often leads to pressure locking, increasing the volumetric
stiffness unnaturally, and significantly deteriorating the quality of the results. From
a computational standpoint, relative to the UI linear hexahedron, this element is
eight times more expensive (conservative) in terms of operations and carries a
minimum of twice the expense in memory. The latter point depends heavily on the
implementation.

Selective-Reduced Linear Hexahedron The third element formulation that was
implemented is the selective-reduced integration (SRI) element. Here, a full inte-
gration of the deviatoric terms of the stress tensor is performed in the eight
integration points of the element and, additionally, a first order integration is done
at the centroid for volumetric terms. The two phases are integrated separately and
added to the total internal force vector. This element does not experience pressure
locking, but is susceptible to shear-locking. As with the fully integrated element,
it benefits from the same on-the-fly calculation of the shape function derivatives
at the points sampled for the deviatoric terms, while central values are ready for
use. Nevertheless, it is the most demanding element type to compute, requiring
approximately nine times more operations than the under-integrated element and
slightly higher memory requirements than the fully integrated element.

For all elements, per the mathematical theory of Gaussian integration, the actual
integration is performed in the element’s natural coordinate space. A pull back of the
initial configuration (used in total Lagrangian) is necessary by way of the element
Jacobian, previously computed for the deformation gradient.

Pressure Quadrilateral Pressure loading has also been added to the base TLED
algorithm. Quadrilaterals belonging to the loaded surface are processed and final
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discrete force contributions are computed using full integration over elements’
surfaces. This deformation-dependent distributed load is the only segment of the
solver computed using updated Lagrangian values.

9.2.3 Material Implementations

Two nonlinear hyperelastic material models are implemented, both of which are
described by their strain energy density function (SEDF) ‰. This function can be
additively decomposed into a deviatoric and a volumetric part as

‰ D ‰dev C‰vol: (9.1)

For both material models, the volumetric component of the SEDF was defined as

‰vol D K

2
.J � 1/2; (9.2)

with K the bulk modulus and J the determinant of the deformation gradient.
The second Piola-Kirchhoff stress tensor S can be derived from the SEDF as

S D 2@‰
@C
: (9.3)

neo-Hookean Material The first material model implemented is the isotropic
hyperelastic neo-Hookean model ‰dev D ‰iso

dev, using the following form for the
deviatoric part of the SEDF:

‰iso
dev D

	

2
.I1 � 3/; (9.4)

where 	 is the shear modulus and I1 is the first invariant of the deviatoric part of the
right Cauchy-Green deformation tensor C.

GHO Model The second material model implemented is the Gasser–Holzapfel–
Ogden (GHO) model, which describes a fiber-reinforced anisotropic material that
also accounts for dispersion of the fibers. The deviatoric component of the SEDF
contains an isotropic and an anisotropic term,‰dev D ‰iso

devC‰ani
dev, corresponding to

the matrix material and to the collagen fiber families, respectively [16]. The isotropic
term corresponds to the deviatoric term of the neo-Hookean material [Eq. (9.4)]
while the anisotropic term corresponds to

‰ani
dev D

X
iD4;6

k1
2k2

h
ek2.�I1C.1�3�/Ii�1/2 � 1

i
; (9.5)

where k1 > 0 is a stress-like parameter, k2 > 0 is a dimensionless parameter, and
� 2 �

0; 1
3

	
is a parameter related to the dispersion of the fibers, with the lower
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Fig. 9.1 Initial and final geometry of a test cylinder, using locked (top and bottom planes fixed
in all degrees of freedom) boundary conditions, under-integrated elements, and a neo-Hookean
material model

and upper limit corresponding to no fiber dispersion and fully dispersed fibers (i.e.,
isotropy), respectively. The material parameter, angle (�), is defined between the
local circumferential direction and the two fiber directions, symmetrically, in the
plane of the material.

9.2.4 Sample Problem

A cylindrical mesh consisting of 540 elements (three layers of 180 elements) and
800 nodes was created to test the performance of different material implementations
and elements w.r.t. accuracy and their relative speed of execution (Fig. 9.1). The total
height of the cylinder is 90 mm, inner and outer diameters are 40 mm and 70 mm,
respectively. The simulation is driven by a pressure boundary condition on the inside
surface of the mesh, while the top and bottom kinematic boundary conditions have
two configurations: “free,” where nodes on the top and bottom planes (the extremes
in z-direction) are constrained in the z-direction but are otherwise free to displace,
and “locked,” where the top and bottom planes are fixed in all degrees of freedom.
The free boundary condition additionally has select nodes locked in the x- or
y-direction to prevent rigid body rotation, but does not disturb the expected symme-
try in the solution. The model with the locked boundary conditions accentuates shear
stresses in the results, as shear is largely absent in the free expansion configuration.

Materials used are the isotropic neo-Hookean and the anisotropic GHO fiber-
reinforced arterial tissue model. The material properties used can be found in
Table 9.1. Note particularly the relation of shear and bulk moduli, always yielding a
Poisson’s ratio of 0.4995 used to enforce near-incompressibility.
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Table 9.1 Material properties for neo-Hookean model, and the GHO model
in three discrete layers

Material 	 (MPa) K (MPa) k1 (MPa) k2 � �.deg/

neo-Hookean 0.010 10 – – – –

GHO layer 1 0.044 44 10.1 0.0 0.25 40.5

GHO layer 2 0.028 28 0.81 12.4 0.18 39.1

GHO layer 3 0.010 10 0.38 3.35 0.11 40.6

Pressure loading for models using the GHO material model is performed up
to 120 mmHg, whereas models including the neo-Hookean material model are
pressurized up to 8.5 mmHg, due to the significant difference in the stiffness of the
models. In this way results from both the stiffer and softer materials lead to similarly
large strains and ensure the stability of the explicit solver.

The solver uses a simple constant-step central-differences formula for time-
marching, as per initial work on TLED [9]. The standard termination criterion for
explicit dynamic simulations, based on the balance between internal, external, and
inertial work was circumvented here. A simpler criterion, based on the root-mean-
square error to an already known solution has been utilized. This method, however,
still necessitates a manual check as the current solution might pass through the
correct configuration during the solution phase, especially given the dynamic nature
of the solver and the selected sample problem. All runs present in this study are
performed in double precision floating point accuracy and use a time step of 5E�6 s.
Load is imposed using a smooth loading curve in the total time duration of 0.01 s.
Damping is implemented as per [4, 17] with a damping parameter (convergence
rate) of 0.999.

In a first phase, results were obtained for purposes of testing the accuracy of our
implementation. To this end, the aforementioned boundary value problems were
also run in the implicit solver FEAP v8.2.k, using fully integrated elements, such
that the final displacements could be compared.

The PC hardware used in this research contains an i7-4790K @4 GHz, 16 Gb
of RAM, and an Nvidia GTX980 GPU, built upon the Maxwell architecture. Both
FEAP and the CUDA code are run on the same machine.

9.3 Results

Accuracy is measured by computing the absolute (RMS) and relative root-mean-
square (RRMS) values between the ground-truth FEAP solutions and our solver.
As previously mentioned, the termination of CUDA simulations at a certain step
was determined manually, at the point where the RMS error is constant. Accuracy,
timings, and termination steps are shown in Table 9.2.

Comparative speed tests were performed on the set of CUDA results only. Due
to large amount of data output for post-processing, timing was separated into pure
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Table 9.2 Accuracy verification for the neo-Hookean (n-H, run for 1.5E4 steps) and GHO (run
for 1.5E4 steps) material models using full integration

Simulation RMS (mm) RRMS Wall-clock (s) GPU time (s) FEAP Wall-clock (s)

n-H locked 3.19E�6 1.14E�5 17.3 12.6 102.73

n-H free 3.15E�6 1.00E�5 20.4 12.6 108.50

GHO locked 4.68E�6 2.36E�5 14.2 11.2 92.68

GHO free 5.51E�6 2.72E�5 13.5 10.3 103.03

Root mean square and relative root mean square for accuracy verification, timings for general
comparison

Table 9.3 Execution speed
comparison between different
integration routines, relative
to the fastest solution, that of
the under-integrated element
with the neo-Hookean
material model

Simulation Wall-clock (s) GPU time (s) Speed

neo-Hooke UI 7.28 2.85 1.000

neo-Hooke FI 20.40 12.60 4.421

neo-Hooke SRI 18.16 13.44 4.715

GHO UI 7.59 3.15 1.105

GHO FI 20.08 15.32 5.375

GHO SRI 20.04 16.07 5.638

computational time performed by the solver and the total wall-clock time. Wall-
clock includes both the solver and input/output (I/O) operations (of user-controlled
frequency) that include DRAM-RAM and RAM-HDD (Hard Disk Drive) commu-
nication for post-processing. The solver run-time (GPU time) therefore includes the
aggregate durations of kernels stated in Sect. 9.2.1, including all communication
and arithmetic operations pertaining only to GPU internals and excludes all I/O
operations. In-effect, GPU time measures only the solver time, since the entirety of
the core solver is ported to the GPU. This time measurement was performed by an
event-driven high-resolution clock exposed to the user by the CUDA framework,
and provided by the GPU hardware (cudaEventElapsedTime(...)). All results in
terms of speed are normalized to the computation time of the fastest solution—
the under-integrated neo-Hookean (n-H)—and run for 15,000 steps. Speed testing
results are shown in Table 9.3.

9.4 Discussion and Future Work

The accuracy results presented in Table 9.2 demonstrate the correctness of the
implementation. The measured accuracy is at its realistic limit, given that FEAP
outputs five significant digits by default. Note that these measurements were
performed only between fully integrated elements in the two solvers since FEAP
does not have an under-integrated or SRI element. Comparison between elements
of different integration schemes would not result in accurate comparison of solvers,
rather in the testing of element formulations.
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The only difference between the presented material models is in the response of
the two fiber families, i.e. in the anisotropy of the GHO material model. In compari-
son to the base matrix material (serving as total material response in neo-Hookean),
the fiber response calculations are numerous. Additional memory transactions and
storage required for intermediate values associated with the response of the fibers
are substantial, exceeding those for neo-Hookean and suggesting that execution
speeds should be significantly slower. Interestingly, tests for FI and SRI between
the two materials show only a 10–21 % increase relative to UI, a result reflecting the
complex, redundant, and autonomous execution and memory management of the
CUDA GPU. It also reflects the fact that, when running in double precision, even
the neo-Hookean material and the most basic linear hexahedral element exceed the
available per-thread register memory of the device, resulting in register spilling and
heavy use of caching. For comparison, a single precision solution for the UI neo-
Hookean is approximately 1/4 (on the GTX980 [4]) that of the double precision
solution time for a mesh of similar size, and is the fastest solution if not for accuracy
considerations. Note that the presented mesh is not of sufficient density to induce
maximal occupancy of the device, as it was not considered pertinent to the current
work’s scope; larger meshes would invariably produce higher GPU-CPU speedups.
The above reference also shows results on a range of meshes, in conditions of under-
or full-utilization of the device.

Materials approaching incompressibility, nearly ubiquitous in soft tissue, have
a significant and adverse effect on the reduction of the critical time step used in
simulations solved with explicit schemes. The GHO model is particularly sensitive
to the ratio of bulk to shear modulus, i.e. the Poisson’s ratio, as it has to be set high to
keep the deformation nearly isochoric, particularly important in anisotropic material
models. This sensitivity is much higher in such models than for the isotropic
neo-Hookean [18, 19]. Future work should be aimed at an implementation of the
mixed-element formulations using assumed strain stabilization and an improved
termination criterion based on energy balance.
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Chapter 10
Fast Prediction of Femoral Biomechanics
Using Supervised Machine Learning
and Statistical Shape Modeling

Elham Taghizadeh, Michael Kistler, Philippe Büchler, and Mauricio Reyes

10.1 Introduction

Osteoporosis is a very frequent disease that affects the life of many people after the
age of 50. Osteoporosis causes annually more than 2.3 million fractures in Europe
and in the USA. In 2002, it was reported that in England and Wales, the osteoporosis
related fractures cost £942 million annually and this value would increase with the
ageing of the population in the western countries [1]. An accurate estimation of
bone strength and fracture risk can help the diagnosis of osteoporosis, leading to an
improvement of patient’s quality of life and reduced associated healthcare costs.

Dual energy X-ray absorptiometry (DEXA) scan is the standard clinical diag-
nostics tool to evaluate the level of osteoporosis and the related risk of fracture.
A T-score smaller than or equal to �2.5 of femoral neck or lumbar spine indicates
osteoporosis. T-score is the number of standard deviations (STD) that bone mineral
density (BMD) deviates from the average of BMD, measured in a healthy 30-year-
old population with the same gender and ethnicity as the patient [1].

To automate the diagnosis of osteoporosis from DEXA images, Whitmarsh and
colleagues used statistical shape and appearance models. They proposed a Fisher
Linear Discriminant Analysis (FLDA) method to classify bones having a high or
low fracture risk [2]. Sarkalkan and colleagues proposed 2D finite element models
built from DEXA images to predict the fracture risk of the proximal femur [3].

It has been shown that 3D (FE) analyses predict bone strength more accurately
than clinical methods such as DEXA [4]. However, the adoption of FE analyses into
clinical practice has been hampered by its computational complexity and required
technical competences. To analyze the bone behavior under a certain loading
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condition, an accurate segmentation of the bone is necessary, a valid finite element
mesh must be generated, and appropriate boundary conditions need to be applied
to the model. These preparation steps are followed by time-consuming calculations
to determine the biomechanical behavior of the bone. All of these steps are time
consuming and computationally demanding, which make the FE analysis less
appealing for clinicians [5]. As a consequence, up to now, the FE analysis techniques
did not reach the clinical workflow. Different research studies aimed to automate the
segmentation [6] and finite element mesh creation [7, 8], however to the best of our
knowledge no method has been proposed to bypass the computational complexity
of FE calculations. In this paper we aim at alleviating the aforementioned issues of
FE analysis to promote their adoption into clinical practice.

The two most important features describing bone biomechanics are shape
and BMD. Therefore, we hypothesize that machine learning techniques can be used
to predict the biomechanical properties of the bone using shape and density features
extracted from clinical patient scans, as well as patient anthropometric information.
To this end, we propose a supervised learning approach to predict the outcome
of FE analysis. As feature predictors for bone shape and density, we propose to
characterize this information in a compact way by using statistical shape modeling
of the anatomy [6]. In this way, we reduce the dimensionality of the feature space,
which leverages the building process of the machine learning model, and moreover,
allows us to exploit previous developments in statistical shape modeling (e.g., active
shape models [9]). We demonstrate this by predicting bone stresses from clinical
CT (FEP), where features are extracted from a statistical shape and statistical
intensity model of the human femur and patient’s anthropometric information. As a
second demonstration we present preliminary results on a simplified scenario where
FE femur biomechanics are predicted from 2D X-ray images. Morphometric and
density information available in the 2D image was used as predictors.

In the next section we describe in detail how the prediction models are built, how
features are defined and extracted, and one example scenario to demonstrate how the
approach can be adapted for X-ray scans. In the Results section, the databases used
for training and testing of the method are presented and the quality of the prediction
is quantified. We conclude the paper by discussing the advantages and limitations
of our proposed approach.

10.2 Method

In this section we explain the proposed method for finite element prediction, termed
here FEP. We then follow by exemplifying how the proposed method can be
employed for a different image modality, such as X-ray.
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Fig. 10.1 Schematic description of the FEP predictions. Using shape, density, and stress scores
of training data, we learn a random forest regression model. In the test phase, the trained random
forest predicts from anthropometric and SSM-based bone and density predictors, extracted for a
new image, the parameters of the statistical stress model

10.2.1 Finite Element Prediction Framework

The main framework for FEP is summarized in Fig. 10.1. Following the same
scheme as in supervised learning, our approach has two stages.

First, during the training stage, a statistical model of shape and intensity is created
as in [10]. In short, an iterative mesh morphing method [11] is used to compute
point correspondences for a dense volumetric mesh consisting of approximately
190,000 nodes and 130,000 tetrahedral elements. Bone density for each node is then
extracted from the original CT scans [10]. A principal component analysis (PCA) is
then performed separately on shape and density information, yielding two separate
models. As shown in Fig. 10.1 (training phase) each bone can then be modeled
through shape and density scores.

As response variables, FE computations are used to calculate stress values on
each node of the FE mesh. The FE analyses were performed with the commercial
package Abaqus/Standard (Abaqus v6.12, SIMULIA, USA). Boundary conditions
(BC) representing a walking situation were applied to the bone models. We chose
the loadings of the joint configuration proposed in [12], where the node constraints
are selected at the femoral head, the intercondylar femoral notch, and the lateral
epicondyle of the femur. The force values were calculated based on the body weight.
The calculated nodal stress values were used to build a statistical model of stress.

A statistical model of the stress in the model was built. The scores of this model
were used as output of the prediction algorithm. For the calculations, we considered
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only the top modes of shape, density, and stress obtained from the statistical models.
The number of modes included was based on the criterion to keep 98 % of the
variation that was in the dataset.

Using the set of aforementioned predictors and response variables, a random-
forest model [13] was trained to work as the regressor. Random forests are being
used for different classification and regression problems [14]. They are robust
to noise and more importantly are able to predict the output even when some
input information is missing. Besides, random forests are naturally conceived to
use nature of different data, as here anthropometric, morphometric, and BMD
information is used.

We note here that as the output of the prediction is the parameters of orthogonal
vectors, it is possible to train one random forest regressor for each stress parameter.
As suggested in [13], one-third of features are selected for each node-split, and the
maximum depth for the tree is selected based on a tenfold cross validation.

During the test phase, given a patient CT image of the anatomy, the feature
extraction process consists of projecting the patient’s anatomy into the shape space
to recover shape and density parameters [6, 10]. Here is where current and advanced
SSM-based technologies (e.g., active shape models, hierarchical shape models [6])
can be used to compute scores for shape and density information. For the sake of
simplicity we relied our experiments on a leave-one-out (LOO) scheme where these
parameters are extracted during model building. We also included anthropometric
features such as patient’s age, gender, height, and weight in the input features.
Finally, after feature extraction, FE predictions can be computed to yield stress
scores, which are converted into stress values by simply drawing the corresponding
sample values from the statistical model of stresses.

10.2.2 FEP for X-ray Images

By employing statistical shape and density scores to represent the anatomy and
predict bone biomechanics, it is possible to decouple the prediction model from
the input image modality. In other words, bone shape and density scores act as a
“bridge” connecting the image modalities used to capture bone shape and density
information of the patient to the image modality (CT scan) used to characterize
bone biomechanics. As an example of using FEP for a different image modality,
we demonstrate in this paper the case of having X-ray images as the input image
modality used to capture bone shape and density information. We then show how to
connect this information to shape and density scores used by FEP to predict bone
biomechanics.

For the sake of simplicity, in this study we built synthetic X-ray scans by
projecting the captured CT scans to two orthogonal planes. To characterize bone
shape and density information, we used a set of simple yet effective feature
descriptors. From two orthogonal X-ray images a total of 21 bone morphometric
dimensions, as shown in Fig. 10.2, are extracted by selecting a few landmarks from
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Fig. 10.2 The morphometric feature descriptors extracted from two orthogonal views. Diameters
(in green), distances (in white), and angles (in red) are shown for frontal and lateral views. By
selecting three landmarks for each circle fitting and two for each line we perform the measurements

both views. To model bone density information, the histogram of pixel intensities
is calculated for the frontal view, generating a feature vector of size equal to the
number of histogram bins.

From the triplets of (1) X-ray derived features, (2) patient’s anthropometric data,
and (3) corresponding bone shape and density scores, a random forest regression
model is built. During testing, a new set of previously unseen X-ray orthogonal
images is used to extract morphometric and bone density features to predict the
bone shape and density scores. By cascading this model with the stress prediction
model, described in the previous section, we are able to perform bone biomechanics
FEP from X-ray images.

10.3 Results

In this section we show the results of the proposed method for fast FE predictions.
First the database and tools used for the study are explained. It is followed by the
results of FEP method for CT and X-ray scans. Database and Tools.

The database used in this study consists of 89 left femurs CT images. The res-
olution of CT scans was between 0.61 mm� 0.61 mm and 1.171 mm� 1.171 mm,
with a slice thickness of 1 mm. The CT scans were acquired from 48 female and
41 male donors with average age, height, and weight of, respectively, 60.7˙ 16.2
years old, 165.70˙ 7.2 cm, and 70.1˙ 13.9 kg. Table 10.1 reports statistics about
patients and femur morphometric in our database.

To study the accuracy of FEP, we used LOO [15] methodology to train with the
maximum number of samples. The method was tested for one sample in the database
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Table 10.1 The statistics of the bones used in the database (n D 89)

Patients Morphological parameters
Age Height (cm) Weight (kg) Length (cm) Anterior curve diameter (cm)

Min 23 150 42 37:8 57:0

Max 90 180 140 50:9 297:2

Mean 60:7 165:70 70:1 44:5 123:4

STD 16:2 7:2 13:9 23:2 33:4

when the rest of samples were used for training. This approach was repeated until
every sample in the set was tested, which resulted in 89 different sets of training and
testing samples.

For each training set, we built statistical models of shape and density [10],
followed by FE computations. In the calculations, we considered the top modes
of shape, density, and stress statistical models with the sum of more than 98 % of
the variation in the dataset. As a result, 20 modes of shape and 46 modes of BMD
were used for predicting the parameters of 16 modes of statistical model of stress.
To tune the parameters of random forest, we performed a tenfold cross validation
using the scikit-learn toolbox [16].

10.3.1 Results of FEP for CT Scans

We evaluated the prediction accuracy of stress values for each test sample. We cal-
culated the correlation coefficient between the ground-truth stress values for each
mesh node (as generated by the FE computations, using Abaqus FE solver in the
normal walking loading situation) and the predicted Mises stress for those nodes.
The average correlation coefficient for 89 test cases was 0.984 with a standard
deviation of 0.008, showing the high accuracy of the proposed method.

We further evaluated the prediction performance by calculating the prediction
error as the difference between ground-truth and predicted stress values. The
ground-truth stress values, the predicted values, and the error distribution are shown
in Fig. 10.3 for the best and the worst results. Among 89 samples, the best result
was achieved with an average error (and standard deviation) of 0.058 (0.898) MPa
in the mesh. For the worst case, the average error (and standard deviation) of the
predicted stress values was equal to 1.316 (7.822) MPa. After examination of the
worst-case result, we found that it corresponds to a patient with a body weight of
140 kg, while the maximum weight seen in training dataset was only 110 kg. This
can be improved by using more samples for training to cover a larger variety of the
population.

To evaluate FEP for different regions of interest, we also examined its accuracy
in the femoral neck, femoral trochanter, and the femoral shaft, separately (see
Fig. 10.4). The prediction error of stress for the neck region, which is the region
of interest in fracture risk assessment, was smaller than 0.9 MPa in average.
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Fig. 10.3 The stress map predicted by FEP model for the best and the worst cases. From top to
bottom: the stress map calculated using FE calculations (ground-truth), the predicted stress values
for the corresponding bones, and the error distribution for these bones. The best result is achieved
for the bone on the left column with a correlation coefficient of 0.994, and the worst prediction
result in the database is in the right column with a correlation coefficient of 0.939. In absolute error
distribution plots, we zoom in on the range of [�10, 10] MPa for better visibility. The frequency
of error beyond this range is negligible (0.0003 and 0.0122, for the best and the worst case)

10.3.2 Results of FEP for X-ray Images

Based on features extracted from X-ray images we predicted the parameters of
statistical shape and density models. We then used these parameters as input to our
FEP. The average (standard deviation) correlation coefficient between the predicted
stress using this method and the ground-truth values was 0.976 (0.012).

We developed a test case to evaluate the benefit of cascading two learning blocks
(from X-ray to 3D data and from 3D data to stress parameters) as compared to
a single learning model that directly predict stresses from X-ray based features.
Similarly to the other models, the depth of trees is determined based on cross
validation on training data. In this case the average correlation coefficient values
dropped from 0.976˙ 0.012 to 0.956˙ 0.286. This shows that the cascading of two
regression models, as proposed herein, does not significantly alter the accuracy of
the prediction as compared to a single learning model. In addition, the cascading
scheme has the extra value that other modality-specific models can be easily
combined to FEP.
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Fig. 10.4 The absolute error of FEP for different parts of the bone, (top) in average, (bottom-left)
best case, and (bottom-right) for worst case. The different regions of interest are shown on the bone
with different colors. Red: neck, blue: trochanter region, and orange: shaft

10.4 Conclusion and Discussion

It has been shown that using 3D FE analyses improves the osteoporosis diag-
nosis [4]. However clinical adoption of FE analysis in bone biomechanics and
fracture risk assessment has been hampered by its computational complexity and
required technical competences [5]. In this paper we developed a random-forest
based regression framework to predict the results of the finite element prediction,
termed here FEP, by simply selecting a couple of landmarks on clinical images.
We proposed to use shape and density statistical model parameters to produce a
compact and predictive set of features. In addition, the approach allows other image
modalities to be used for prediction, and enables the incorporation of other emerging
technologies developed for statistical shape modeling.

Using LOO experiments, comprising a database of 89 clinical cases, our method
is capable of predicting the stress values for a walking loading condition with
an average correlation coefficient of 0.984 and 0.976, for CT and X-ray images,
respectively. These findings suggest that supervised learning approaches have the
potential to leverage the clinical integration of mechanical simulations for the
treatment of musculoskeletal conditions.

Motivated by the observed connections between the importance values obtained
by random forest and actual models for shape, we analyzed the most important
features in predicting the parameters of the stress statistical model. To predict the
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stress parameters, the body weight was found to be the most important parameter.
This can be explained by the fact that in our experiments all bones were loaded
in the walking situation when forces are scaled proportional to the body weight.
Hence, the weight directly affects the stress values.

We note that our motivation is to demonstrate that even with rather simple, yet
descriptive, selected features it is possible to yield a good level of prediction for
bone biomechanics in real-time. In this work we used simple feature predictors
for X-ray images. However, as proposed by the state-of-the-art approaches [17]
three-dimensional bone shape and density parameters can be estimated robustly
and accurately from X-ray images, which can further increase the predictive power
of FEP.

Our method predicts the output stress values of an elastic material model for
FE analysis from density and shape. However, it is flexible and can be easily
adapted to incorporate more advanced mechanical parameters for predicting the
bone fracture. For further improvement of FEP, we are planning to use existing
methods on predicting trabecular bone structure from CT scans [18–20] to improve
the estimation of biomechanical behavior of the bone.

This study has some limitations. First, the estimation of the scores of shape
and density from CT scans was obtained using mesh registration. This registration
task is time consuming and should be replaced by more effective methods such as
active appearance model. However, this intermediate step is not necessary when
the stress predictions are obtained from X-ray images. Another limitation results
from the choice of synthetic images to mimic patients’ X-ray images. This approach
has been chosen to establish the method and avoid uncontrolled source of error.
Clearly the accuracy of the predictions will decrease when clinical data will be used.
Further studies will investigate this effect, but the high correlations reported in this
study indicate that the prediction from clinical X-ray will provide accurate stress
estimations. Finally, we observed that the method is not as successful in predicting
the stress values for a bone of a patient who has the highest weight in our dataset.
This problem occurs because no other patient with a similar body weight exists in
our dataset. Similar to all other techniques that rely on machine learning, a large
database that samples the population more evenly helps tackling this issue.

Our proposed approach followed by further improvements (adding trabecular
bone structure to the analyses and using active shape modeling) shows a promising
path towards real-time biomechanical analysis of bones in different patient-specific
studies and brings an automated FE analysis to clinics. Since it is fast (the stress
values are calculated in less than 1 s), several loading cases can be analyzed to have
a better understanding of the patient’s bone, moreover it can be used to find the bone
strength and fracture risk for each individual patient.

The drawback of FEP is that for each loading case, i.e. walking, stance, side fall,
one different model has to be trained. Note that this process is done offline during
the training phase. The testing phase is fast and the stress values can be calculated
in less than a second.
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Chapter 11
Some Use Cases for Composite Finite Elements
in Image Based Computing

Lars Ole Schwen, Torben Pätz, and Tobias Preusser

11.1 Introduction

In the past decades mathematical modeling, simulation, and optimization have
become indispensable tools in systems biology, systems medicine, as well as med-
ical diagnosis and treatment-planning. In the “image based computing” paradigm,
radiological images like CT, MRI, ultrasound, etc. are analyzed to yield segmented
structures of organs, tissue, or other structures pictured. The consequent goal is
to simulate physiological processes, or to simulate and optimize treatments using
mathematical models and their numerical implementations. A particular challenge
in this is, however, the generation of computational meshes from the segmented
imaging data that is needed in the process of discretization of models.

In fact, structures in organisms have a complicated geometry. They are in general
irregularly shaped and show large intra- and inter-individual variations. Moreover,
it is often necessary to also resolve internal sub-structures or interfaces with a
computational mesh, thus to account for various bio-physical properties of the many
tissue-types that might be involved and which may be discontinuous at the internal
tissue interfaces. These facts make mesh generation for image based computing a
difficult task that, moreover, must respect constraints of a clinical workflow in case
of a true medical application in daily routine.

For the discretization of mathematical models that are characterized by partial
differential equations (PDEs) computational meshes are directly related to the Finite
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Element spaces spanning the space of solutions. In the case of irregular boundaries
or internal structures, it is known that the solutions have less regularity that may
result, e.g., in kinks and discontinuous gradients. The straightforward approach
to tackle these irregularities is mesh adaptivity, i.e., decreasing the size of the
mesh’s cells in areas with lower regularity of the solution and thus adapting the
associated Finite Element spaces. Other approaches avoiding mesh adaptivity that
have been discussed in the literature include generalized FEM (GFEM), extended
FEM (XFEM), immersed FEM, fictitious domain methods, WEB-splines, and
others. We refer to [18, 20, 26] for literature overviews and [3, 6, 7, 12, 16, 17, 25]
for selected more recent approaches.

In this paper we review the Composite Finite Element (CFE) approach to image
based computing. The CFE approach goes back to [9, 24]. This paper is a summary
of our work from the past decade originally published in [18, 20, 21, 23, 26–
30, 35]. The method works efficiently on regular hexahedral grids as they are
provided by the usual three-dimensional voxel grids of medical images. Still it
allows for the resolution of complicated geometries and interfaces by automatically
adapting standard linear Finite Element basis functions and thus modifying the
corresponding Finite Element space accordingly. In the remainder of the paper we
first explain the general idea of CFE in more detail in Sect. 11.2 and an approach
for numerical homogenization in Sect. 11.3. Then, in Sect. 11.4, we show two
applications from the field of medical image computing that demonstrate the use
of CFE: the simulation of radio-frequency ablation (RFA), the simulation of the
elastic deformation of vertebral trabecular bone, and numerical homogenization for
the latter. We close the paper with a summary and conclusions in Sect. 11.5.

11.2 Composite Finite Elements

We will describe the concept of CFE for the domain ˝ D .0; 1/3. The domain will
be discretized with a regular hexahedral grid G that has 23l elements of grid width
h D 2�l and a total of .2l C 1/3 nodes. We choose to work with the unit cube
here as it eases the presentation. The application of CFE to other cuboid domains
is of course possible straightforwardly. Working with piecewise affine-linear basis
functions, we subdivide each hexahedron in six tetrahedra in such a way that edges
are consistent with neighboring elements, resulting in the mesh G� denoted as the
regular tetrahedral mesh.

We assume that the domain ˝ contains ˝i 	 ˝, the object we are interested
in, and which has a complicated boundary. Consequently the solution to an elliptic
(or parabolic) PDE will be supported on ˝i and we will build a Finite Element
space whose basis functions are supported on˝i. If in addition the object comprises
complex interfaces between materials of different bio-physical properties, the
solution to the PDE will have kinks at the interface. Such kinks result from
discontinuities of material properties when they have different values on both sides
of the interface. The material properties enter the equations as coefficients (e.g., as
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diffusivities or elasticity parameters) and the kink in the solution will depend on
the ratio of the material property across the interface. Again, in CFE we will build
basis functions that are able to interpolate functions fulfilling the kink condition.
This approach to complex object boundaries and interfaces makes classical grid
adaptivity obsolete.

To proceed let us assume that ˝ D ˝i [˝e and further ˝i D ˝C [˝� where
˝˙ are disjoint sets. Thus, the domain ˝ is decomposed into the object ˝i and its
exterior ˝e. The object ˝i contains two material domains ˝˙. A generalization to
more objects and more materials is of course easily possible [27]. In image based
computing it is convenient to define these domains from 3D image data that is
provided on a regular hexahedral voxel grid. With image processing methodology
level-set functions can be provided such that the zero levelsets define the interfaces
of the domains, see below.

In the following we will describe how to construct CFE for complicated domains,
for complicated interfaces between different materials, and how to use CFE in
the context of homogenization. Note that our expositions will be brief and just
explaining the principal concepts. For more details we refer the reader to the original
publications that mentioned the respective sections below.

The treatment of different cases of boundary conditions (Dirichlet and Neumann;
on the bounding box and on the interface; zero and nonzero) is addressed in [27].
A key advantage of the underlying uniform hexahedral grids is their natural
hierarchy of coarse scales. These were used in a CFE multigrid solver for the case
of complicated domains [18]. Defining a suitable coarsening scheme for CFE for
discontinuous coefficients turned out to be challenging [20] and requires further
investigation. One possibility could be a hybrid approach combining standard
geometric, algebraic [33], and topological [5] coarsening.

11.2.1 CFE for Complicated Domains

Let us first consider the case of a domain with complicated boundary consisting of
only a single material, w.l.o.g. described by ˝C D ; and ˝i D ˝�. The interior
boundary is then given as � D @˝i \˝. Let ' W ˝ ! R be the level-set function
defining this domain, i.e., a function whose zero sub-levelset is ˝�.

In this case, CFE basis functions are constructed to be standard affine FE basis
functions restricted to ˝i as shown in Fig. 11.1 for the 2D case. This construction
is achieved by introducing an auxiliary mesh G4. For this purpose, tetrahedra of
G� intersected by the interior boundary � are further subdivided into four or six
sub-tetrahedra such that the a linear approximation to the boundary � is resolved.
In fact, the auxiliary nodes n4

i needed for the construction of the auxiliary mesh are
computed as the zero crossings of the affine-linear interpolation of ' on the edges
of G� that are intersected by � . From the standard, piecewise affine basis functions
G4, CFE basis functions are composed as a weighted sum, where the weights are
given by the barycentric coordinates of the auxiliary nodes n4

i on the respective
edges of G�.
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Fig. 11.1 2D CFE basis functions for complicated domains. For the domain (left, light blue
region), CFE basis functions in the interior are standard piecewise affine tent functions for the
nodes of the regular tetrahedral mesh G�. For the exterior (right, white region), there are no
degrees of freedom and no basis functions. Near the interface (red line), standard tent functions are
restricted to the interior of the domain. This applies to the nodes of G� adjacent to the intersection
of the interface (figure from [26, Fig. 3.11])

For a detailed discussion of the CFE construction including the description of a
multigrid solver, we refer to [18, 26].

11.2.2 CFE for Discontinuous Coefficients

For the case of discontinuous coefficients, let us assume that ˝ D ˝i, i.e., there is
no additional complicated domain boundary. In this case, let � D @˝C\@˝�, i.e.,
the interface between the two different materials, and let again ' W ˝ ! R be the
function defining this interface, i.e., ' is positive/negative in ˝˙ and � is its zero
levelset.

In this case, CFE basis functions are constructed such that they are capable
of interpolating functions satisfying the kink condition due to the parameter
discontinuity (denoted below as “admissible” functions). The construction starts
similar to the case above, introducing G� which now approximates the interface
between two material domains. Next, composition weights need to be determined
to obtain CFE basis functions as weighted sums of standard, piecewise affine basis
functions G4. For this purpose, we consider the problem of locally interpolating
admissible functions at nodes n4

i of the auxiliary mesh G4 from nodes n�
j of G�.

The admissibility condition (= kink condition) involves the local interface geometry,
the underlying PDE, and the values of its coefficients on both sides of the interface.
Using a Taylor expansion, known properties can be exploited, namely continuity of
(a) the function, of (b) its derivative in tangential directions, and of (c) coefficient
times derivative in normal direction of the function. Averaging over all adjacent
tetrahedra of G� provides the interpolation weight wi;j for the pair

�
n4

i ; n
�
j

�
. In

turn, wi;j is finally used as the composition weight with which the auxiliary basis
function for n4

i of G4 contributes to the CFE basis function for n�
j of G�.
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Fig. 11.2 2D CFE basis functions for complicated interfaces. For piecewise constant coefficients
in two domains (light blue and yellow regions) with a discontinuity across the interface (red line),
CFE basis functions far from the interface are again standard piecewise affine tent functions for the
nodes of the regular tetrahedral mesh G�. At the interface, CFE basis functions are constructed
in such a way that they can interpolate the local kink condition, in this case for isotropic scalar
coefficients with a ratio of 1 :10. These CFE basis functions at the interface may attain values
outside Œ0; 1� and may have extended support. Still, they form a partition of unity and their support
remains local and bounded (figure from [26, Fig. 3.12])

For diffusion as a scalar model problem, a 2D example is shown in Fig. 11.2. The
resulting basis functions remain a partition of unity and retain boundedness of their
supports. However, they may attain values below 0 (see Fig. 11.2) or greater than 1
near the interface.

In case of vector-valued elasticity with discontinuous material parameters, the
construction is more technical as the coupling condition at the interface then
involves three dimensions simultaneously. For nodes near the interface, this leads
to three CFE basis functions, each of which has contributions in all three space
dimensions. For a more detailed description of the construction for the scalar and
vector-valued model problems, we refer to [20, 26].

11.3 Numerical Homogenization with CFE

Being specifically designed for simulations on cuboid domains, CFE are well suited
for numerical homogenization, i.e., for determining effective macroscopic material
parameters. An approach for numerical homogenization for linear elasticity of
trabecular bone specimens was presented in [23], other approaches include [8, 13].
The basic idea of our approach [23] is to simulate six cases of uniaxial compression
and shearing (“macroscopic unit strains”) and determine the respective stress
response of a statistically representative cubic part of the trabecular bone. Together,
this provides the necessary information for the macroscopic linear elasticity tensor.
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11.3.1 Simulations on Representative Volume Elements

In case of microstructures with exact geometric periodicity, the “cell problem”
approach cf. [1, Chap. 1] could be applied. Here, one fundamental cell of the
microstructure can be used as the computational domain, and the deformation due
to macroscopic unit strains can be determined using periodic boundary conditions.
The stress response can then be evaluated by integration over the entire fundamental
cell.

As biological structures like trabecular bone do not have an exactly periodic
geometric structure, there is no geometrically fundamental cell of the object
on which to impose periodic boundary conditions. Thus, we modify the “cell
problem” approach and use a statistically representative part of the structure as the
computational domain, which we call representative volume element or RVE [14].
For simplicity, the RVE is assumed to be cube-shaped. Macroscopic unit strains
are imposed by corresponding Dirichlet boundary conditions on the entire outer
boundary of the RVE. Evaluating the stress response is then restricted to an inner
part of the RVE sufficiently far from the outer boundary. This is necessary to avoid
artificial stiffening due to boundary effects [20, Fig. 7.3]. A suitable thickness for
the boundary layer omitted for the stress evaluation turned out to be [20, Sect. 7.2]
approximately one eighth of the edge length of the RVE. Based on [10, 34], the
size of the interior used for stress evaluation was chosen to be at least five times the
intertrabecular distance (pore size).

11.3.2 Macroscopic Linear Elasticity Tensors

From the approach described above, the stress response for each unit strain is
obtained, providing all parameters of the macroscopic elasticity tensor, i.e., the
effective elasticity tensor.

For these, the question arises whether they are approximately orthotropic,
and if so, what is the orientation of the axes. For this purpose, we solve an
optimization problem, finding the rotation of the coordinate system for which the
deviation of the tensor from an orthotropic one is minimized. The objective function
representing this deviation is obtained from the tensor written in Voigt’s notation
where orthotropy is observed by certain entries being zero. Again, we refer the
reader to [23] for more details on the approach.

11.4 Applications

In the following we will briefly describe some use cases for the CFE approaches
described so far.
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11.4.1 Vaporization During Radio-Frequency Ablation

As a first application reported in [19], we consider a simulation of RFA. RFA
is a minimally invasive technique for the treatment of lesions, e.g., liver cancer
[2, 15]. For RFA, a thin probe carrying electrodes is placed percutaneously inside
the tumor and connected to an electric generator. Due to the electric resistance of
the tissue, heat develops and destroys proteins and thus cells. When the temperature
exceeds 100 ıC, the water inside the tissue vaporizes. This changes both the heat
conductivity and the electric conductivity, and thus the electric potential causing the
heating.

To simulate the temperature evolution during RFA, we couple models for
electrostatic fields and temperature diffusion with a model for phase changes to
account for the water evaporization. Thus, we have a free boundary problem with
a complicated boundary that is coupled with discontinuous material coefficients
across this interface. In the following, we discretize this problem with the CFE
approach. In the notation introduced above, we consider the liquid phase to be “the
object” ˝i D ˝l and the gaseous phase to be “the exterior” ˝e D ˝g. Here and in
the following, indices l denote quantities in the liquid phase, whereas the subscript
g denotes quantities in the gaseous phase.

Phase Change The phase change is modeled by a well-known Stefan problem [31]
that describes the discontinuity of the temperature gradient across an interface
between water in different phases, e.g., between liquid and vaporized water:

Œ��rT �N�
L

D �l

�
vl � D

�
; (11.1)

where � is the thermal conductivity, T the temperature, N the unit normal to the
interface pointing from the liquid to the vapor domain, L the latent heat of the phase
change, �l the density of the liquid, vl the liquid vapor speed at the interface, and D
the interface speed in normal direction. The jump operator ŒA� WD Ag � Al denotes
the difference between quantities on the liquid and vapor side of the interface. The
Stefan condition allows to decouple the heat transfer equations in the liquid and
vapor phase. Thus, for the heat diffusion we end up with the equations

�gcg@tT C �gcgV � rT D �div.�grT/C Qrf in ˝g �RC;

�lcl@tT D �div.�lrT/C Qrf in ˝l �RC;
(11.2)

with appropriate initial and boundary conditions and where Qrf is the heat source
according to the electric field caused by the RF current, see below. These equations
with complicated shaped domain boundary on the liquid–vapor boundary are
discretized and solved using the CFE approach presented above. For details, we
refer to [19].
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RFA Simulation The second main component of the RFA simulation is the solution
of the electrostatic equation

�div.�r˚/ D 0 in ˝ (11.3)

with appropriate boundary conditions. This equation provides the electric potential
and thus the heat source Qrf D �kr˚k2. Here, � is the electric conductivity that
has a discontinuity at the interface separating liquid and gaseous domain.

Thus, for the overall RFA simulation, we need to solve (a) two heat transfer
equations on the vapor and liquid domains of complicated shape, one for each
phase, and (b) the potential equation for computing the electric potential with a
discontinuous coefficient on the interface between the two domains. The evolution
of the interface is obtained through the Stefan condition from above.

With this RFA model, we were able to calculate the expansion of a vapor
bubble around the probe (see Fig. 11.3). With our simulation we achieve results
comparable to measurements from ex situ experiments. Additionally, we com-
puted the impedance during ablation in our simulations and compared them to
measurements from [32, Fig. 7-1], see Fig. 11.4. Indeed, the characteristics of
the curves for numerical simulation and experiment coincide, i.e., the impedance
slightly decreases at the beginning; it rises steeply when the vapor bubble around
the applicator is established; and the impedance remains constant afterwards.

Fig. 11.3 Expansion of the
vapor phase around an RF
probe. Arrows, color coded
by velocity, indicate the
vector field that drives the
evolution of the interface, i.e.,
the water bubble (image from
[19, Fig. 4.6]. Copyright
©2012 Society for Industrial
Mathematics. Reprinted with
permission. All rights
reserved.)
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Fig. 11.4 Comparison of the
impedance measured during
an ablation (grey curve,
experimental data from [32])
and computed from the
simulation (black curve)
(figure adapted from [19,
Fig. 4.7]. Original image
Copyright ©2012 Society for
Industrial Mathematics.
Reprinted with permission.
All rights reserved.)

Fig. 11.5 Vertebroplasty. For a porcine trabecular bone specimen virtually embedded in Poly-
methylmethacrylate (PMMA), compression was simulated. On a slice through the center of the
specimen, the displacements perpendicular to the slice are shown in units relative to the specimen
height. Moreover, the von Mises stress on that slice as well as the bone/PMMA interface is
visualized. These visualizations show the impact of the parameter discontinuity across the interface
of geometrically complicated shape (figure adapted from [26, Fig. 7.28] and [20, Fig. 6.5])

11.4.2 Elastic Deformation of Trabecular Bone

Vertebroplasty As an application involving linear elasticity with discontinuous
coefficients, we consider an example from [20, 26], a specimen of a porcine
T1 vertebral body virtually embedded in Polymethylmethacrylate (PMMA) subject
to 1% longitudinal compression. Material properties for the bone are assumed to be
those for human vertebral bodies, E D 13GPa and � D 0:32 [36], and E D 3GPa
and � D 0:38 for PMMA as in [20]. With an isotropic image resolution of 35 (�)m,
the resulting computational mesh had 143 � 143 � 214 nodes. Results of this
simulation are shown in Fig. 11.5.

Effective Elasticity Tensors of Trabecular Bone in Different Species As a second
application involving trabecular bone, we investigate differences in the macroscopic
stiffness of specimens taken from vertebrae of different species [23]. For this
purpose, cubic specimens of edge length 5:16mm were obtained from a young
male human, an osteoporotic female human, a porcine, and a bovine spine. The
values above, E D 13GPa and � D 0:32, were used as material properties for
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Fig. 11.6 Comparison of effective elasticity tensors. The four images in the top row show speci-
mens from a human T12, from an osteoporotic human T10, a porcine T1, and a bovine L1 vertebra
along with the effective elasticity tensors obtained by our numerical homogenization procedure
(images adapted from [26, Fig. 7.36]). The overall stiffness matches the visual impression of the
bone density, and the stiffness is largest in approximately the craniocaudal direction, corresponding
to the vertical axis in the specimens. The bottom left plot provides a comparison of longitudinal
stiffness and average stiffness in the transverse directions for multiple specimens of the species
above (adapted from [23, Fig. 2]). This shows a rather clear clustering in terms of both absolute
stiffness and ratio of longitudinal over transverse stiffness. The bottom right image comprises
the effective elasticity tensors obtained for different positions within an entire human L4 vertebra
(image adapted from [29, Fig. 6], original image Copyright ©2012 Taylor & Francis, http://www.
tandfonline.com/), possibly with special formatting for the URL?

the trabecular bone, this time viewed as a complicated domain without surrounding
medium. Using the numerical homogenization approach above, effective stiffness
tensors were obtained for each of the specimens, visualized in Fig. 11.6.

Here, in order to give a quick visual impression of the macroscopic elasticity
properties, we use the visualization presented in [4, 11]: A sphere is deformed
according to the compressive stiffness in different directions, and it is rendered
colored according to the respective bulk modulus, resulting in the colored “peanuts”
shown in Fig. 11.6.

Plotting the longitudinal and the average transverse stiffness for all specimens,
a clear clustering of the different species can be observed. In [29], intravertebral
variations were investigated further for multiple samples of an entire human
vertebra, also shown in Fig. 11.6.

A validation of the CFE elasticity simulation and the homogenization has
been discussed in [29]. There, local stiffness tensors have been computed for the
trabecular core of a female human lumbar vertebra (58 years) which had been
scanned by �CT. Figure 11.7 briefly summarizes the results in terms of a correlation

http://www.tandfonline.com/
http://www.tandfonline.com/
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Fig. 11.7 Correlations between experiment and CFE homogenization. Correlation lines for
resolutions below 168 (�)m were statistically significant (p < 0:05). Concordance coefficients
rc are given in the box for the varying resolutions. Ideal concordance would have been given by a
correlation straight falling together with the black, dashed line (image adapted from [29, Fig. 3],
original image Copyright ©2012 Taylor & Francis, http://www.tandfonline.com/, again possibly
with special formatting for the URL?)

plot for measured and experimental apparent stiffness for various resolutions of
the image data that shows the trabecular bones. Our investigations show that
there is a moderate but acceptable agreement between experiment and numerical
homogenization.

11.5 Conclusions

We have discussed a CFE approach to image based computing. The CFE method
is capable of resolving complicated structures or interfaces on hexahedral grids
as they are provided by standard voxel grids of three-dimensional medical image
data. In the paper we have presented possible use cases for CFE, when the domain
has a complicated boundary, when an interface between different materials has
complicated shape, or when the computation of efficient macroscopic quantities,
i.e., homogenization of complicated materials, is of interest. In contrast to standard
FE on hexahedral grids, approximate interfaces are resolved. Thus, a higher order
of convergence by CFE is expected and was verified in [19, 20, 27].

The method is based on a virtual sub-division of the hexahedral grids into
tetrahedra. The CFE discretization can be implemented efficiently and a multigrid

http://www.tandfonline.com/
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solver has been developed. The CFE implementation from [26] is open source and
available as part of the QuocMesh software library [22].

We have shown the application of the CFE discretization to the simulation
of radio-frequency ablation in which the electric conductivity is discontinuous
across a moving interface that has complicated shape. Also we demonstrate the
homogenization approach for the elastic deformation of trabecular bone. As said
before, for more details we refer the reader to the original publications mentioned
above.

Acknowledgements We acknowledge Martin Rumpf, Stefan Sauter, and Uwe Wolfram for their
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Chapter 12
Computational Simulation of Blood Flow
and Drug Transportation in a Large Vasculature

Clément Coutey, Maxime Berg, Harvey Ho, and Peter Hunter

12.1 Introduction

Modelling the blood flow in a cardio-vascular system remains as a popular research
topic due to its many clinical and physiological applications, and the complexity in
biomechanical and mathematical methods to solve it. Through computer simulations
we can investigate the blood flow in multiple spatial scales, from macro (cm) to
micro (�m) levels, and in multiple temporal scales, from seconds to a much longer
timeframe (e.g., months in case of chronic conditions), which are otherwise difficult
to observe in laboratory experiments or animal models. This is particularly true if
there are tiny vessels and control mechanisms involved. Indeed numerous models
have been proposed over the last several decades, often coupled with in vivo or ex
vivo experiments to validate the simulation results.

An investigation of the steady blood flow represents one of the modelling
strategies since it removes temporal dependencies from the blood pressure and
flow. In terms of computational cost, high efficiency can be achieved even for a
large vasculature containing thousands or more vessels. Previous work in this area
demonstrated real-time performance (in 50 ms) for a vasculature of 2337 vessels [1],
whereas the works solving the pulsatile flow in the time domain (e.g., in [2]) and the
frequency domain (e.g., in [3, 4]) rarely reached more than one thousand vessels.

We have several objectives in this study. Firstly we aim to implement a real-
time blood flow solver similar to that of [1] and then apply it to large vasculatures
containing up to thousands of vessels ranging from small arteries (diameter
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D D �1mm) to arterioles (D D �100�m) and further to capillaries (D D 10�m).
Secondly, we aim to simulate the transient flow of a drug or a contrast agent in that
vasculature. Thirdly, we model the diffusion of the drug in a tiny tissue block of
1 mm, which can be used in future drug metabolism studies. All the algorithms
have been developed using MATLAB (MathWorks, Natick, MA, USA) and the
visualisation tool was CMGUI (http://www.cmiss.org/cmgui).

12.2 Method

12.2.1 A Real-Time Steady Flow Solver

The classic Hagen–Poiseuille law relates the pressure drop �p to the flow rate q for
a laminar, incompressible and Newtonian flow in a long cylindrical pipe as:

q D �p

R
; (12.1)

where R represents the vessel resistance and is computed as:

R D 8	L

�r4
; (12.2)

where 	 is the dynamic viscosity of the blood, L is the length of the vessel and r
its radius. In order to solve the steady flow in a large tree, the flow at every branch
is included in the flow rate vector Q of size M which is the number of branches,
and the pressure p in the vector P of size N which is the number of nodes. Thus the
Poiseuille law was computed through an M � N matrix K, so that Q D KP. Each
line of K contains R.i/ which corresponds to the resistance of the branch i, and is
multiplied by the pressure at the node ending the branch.

In order to solve the system, two boundary conditions need to be configured.
Firstly the pressure at the beginning of the root vessel and the pressure at the end of
terminal vessels. They were incorporated in the vector Pe and we created a matrix
� to associate their values to the corresponding terms of P: Pe D � P. The second
condition is similar to the Kirchhoff’s first law which acts as an analog to blood
flow. This means that the sum of inflow arriving at a node is equal to the sum of
outflow leaving that node. The law was computed using a matrix  so that  P D 0.
 is rather large due to the large number of internal nodes of the tree and each line
contains

P
�P
R.i/ corresponding to the sum of flow of all branches leaving that node.

The final equation is:

2
4 Q

Pe
0

3
5 D

2
4K � T � T

� 0 0

� 0 0

3
5

2
4 P
�1
�2

3
5 ; (12.3)
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where �1 and �2 are Lagrange multipliers resulting from the boundary conditions
but treated as 1 in the actual implementation. In the first step the pressure P is
evaluated from boundary conditions and the Kirchhoff law according to:

2
4 P
�1
�2

3
5 D

2
4K � T � T

� 0 0

� 0 0

3
5

�1 2
4 Q

Pe
0

3
5 : (12.4)

The second step consists in using the matrix K in Q D KP. Name the first
matrix at the RHS of Eq. (12.3) as H, the inversion of the matrix H in Eq. (12.4)
is computationally expensive. However, since this step is performed before the
actual computation of Q, it is treated as a pre-processing step and is not taken as
the computational cost [1].

In order to check the computational time, we computed the steady flow in
symmetric binary trees of an increased number of vessels. The number of branches
in the tree was up to 8191 vessels and 14 generations, as shown in Fig. 12.1. The
desktop computer used had an Intel Xeon CPU @2.67 GHz, and 4 GB of RAM. The
computational time for these trees is shown in Table 12.1.

Fig. 12.1 Solve flow in a
binary tree of 8192 vessels in
real time (0.2 s)

Table 12.1 Computational time for arterial trees

Number of vessels (n C 1) 256 512 1024 2048 4096 8192

Time (ms) 0.5 1.6 5 16 56 206
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12.2.2 A Transient Flow Solver

Assuming the blood flow is steady, the flow velocity u is evaluated by:

u D Q

�r2
: (12.5)

The resulted u is then applied to the advection equation:

@C

@t
C u

@C

@x
D 0; (12.6)

where C is the concentration of a drug agent. The finite difference method was
used to solve the equation, which in turn requires a 1D mesh created for each
vessel. In order to reduce numerical diffusion the spatial step needs to be sufficiently
small albeit the computational time is higher. We used an implicit-scheme which is
an unconditionally stable scheme so that the constraints on the time step can be
loosened. The final scheme is:

Cn
i D CnC1

i .1C ˛/ � ˛CnC1
i�1 ; (12.7)

where i denotes the position in space and n in time. ˛ D u�t
�x is the Courant

number. With a different vessel length, �x can be different and therefore ˛ has
to be computed for each branch of the vasculature. Finally we have:

2
6666664

:::

Cn
i

:::

3
7777775
D

2
66666664

1C ˛
�˛

� � �
� � �
�˛ 1C ˛

3
77777775

2
6666664

:::

CnC1
i

:::

3
7777775
: (12.8)

As for the initial conditions, since a contrast agent is injected at the root of
the tree, and so a C0 can be configured for the root vessel. At bifurcations, the

concentration at the start (or proximal end) of the daughter branch is Cd D Cm
r2d
2r2m

where the subscript m denotes mother vessel and d denotes the daughter vessel.

12.2.3 CCO Tree Growing Algorithm

Assuming that a vasculature grows according to the principle of energy min-
imisation, i.e., the vasculature uses the minimum energy to perfuse a tissue, an
optimisation process namely Constraint Constructive Optimisation (CCO) can be
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used to generate the tree [5]. The core of this method is the minimisation of a target
function, which is the total blood volume as [5] suggested. Mathematical details
of the algorithm can be found in [5, 6]. In brief, the tree generation algorithm is
summarised as below:

1. Randomly generate a point within the perfusion volume;
2. Search for the closest segment to the point;
3. Perform an optimisation operation to create a bifurcation;
4. Check if all constraints are satisfied;
5. Generate a list of candidates which passed the test of Step 4 and
6. Use the one candidate which has the smallest tree volume.

With this algorithm we created arterial trees of different number of vessels (100,
200, 2000 and 4000) as shown in Fig. 12.2. The steady and transient flow solvers
described in the above two sections were then applied to the trees.

12.2.4 Tree Growing Algorithm Under the Fahraeus–Lindqvist
Effect

When the blood reaches the scale of arteriole (from 8 to 100�m), in order
to minimise the amount of energy required to move the blood, red blood cells
spontaneously migrate toward the centre of the vessel. This increases the shear rate
and lowers the viscosity. Since the diameter of red blood cells is comparable to the
diameter of arteriole, the blood viscosity becomes dependent on the vessel radius
as well. This phenomenon is called Fahraeus–Lindqvist effect, which was firstly
reported in 1931 (for a recent account of this effect please refer to [7]).

Fig. 12.2 Arterial trees generated from the CCO algorithm. The number of vessels in the tree is
100, 200, 2000 and 4000, respectively
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The Fahraeus–Lindqvist effect was also implemented in the vessel tree growing
algorithm. Specifically the following rule according to [6] was enforced:

	.r/ D 	1
.1C ı=r/2

(12.9)

with 	1 D 4:0 cP, ı D 4:29�m in the range r 2 Œ4150� �m. Therefore this rule
relates the blood viscosity with the vessel radius.

12.2.5 The 3D Diffusion Solver

While the tree generation algorithm can be applied to both macro- and micro-scales,
of particular interest is the tree generated for a tiny tissue block of 1 mm in size,
where the terminal vessels reached the �m scale, i.e., the size of capillaries. At
this spatial level the exchange of nutrients, oxygen and metabolism by-products
between the vascular network and the interstitial space needs to be considered,
where diffusion is the major transportation mechanism. The transient diffusion
equation in 3D can be expressed as [8, 9]:

@c.r; t/

@t
D D �

�
@2c.x; y; z; t/

@x2
C @2c.x; y; z; t/

@y2
C @2c.x; y; z; t/

@z2

�
� k.x; y; z/;

(12.10)

where D D 1:0�10�9 m2 s�1 is the diffusion coefficient for oxygen [8], c.r; t/ is
the transient concentration in the whole domain at location r and time t. k is the
consumption term describing drug uptake by cells in the tissue block.

In order to solve Eq. (12.10), an explicit Euler scheme was used whereby the
spatial step was fixed (10�m), and the temporal step was chosen to obtain a stable
scheme for diffusion. Stability criterions are given by ˇ D D��t

�x2
< 0:5, which gives

us �t < 5:0� 10�2 s and therefore �t D 1ms was chosen. The computational time
for a 3D grid of 100 � 100 � 100 (grid size 10�m) was 450 s for 1000 iterations.

More details of the numeric scheme were introduced in [9] and we refer the
interested reader to that literature for reference.

12.3 Results

12.3.1 Real-Time Steady Flow Solving for an Arterial Tree

The steady flow solver was applied to arterial trees generated from the CCO
algorithm. The computations were run in real time, as described in Table 12.1.
Figure 12.3 visualises the flow rate (ml/s) distribution in a tree of 512 branches.
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Fig. 12.3 Real-time flow
solving in an arterial tree
generated from the CCO
algorithm

The blood vessel radii in the tree range from 1 mm at the root vessel to 10�m in
terminal vessels.

Due to the law of mass conservation, the flow rate at each generation was
identical to other generations. Therefore the flow rate gradually decreases as the flow
diverged in downstream generations. At the root vessel, the flow rate is 1.35 ml/s.
Considering the radius r of the root vessel is 1 mm, translated into flow velocity this
is equivalent to 44.6 cm/s.

12.3.2 Drug Convection in the Tree

We assume that there was no leakage occurring in the tree before the terminal
capillary vessels. The flow velocities computed from the previous section were used
to simulate the evolution of a drug agent through the tree by setting u values in
Eq. (12.6).

In the finite difference scheme introduced in Sect. 12.2.2, each vessel in the
tree was split into 4000 nodes to solve the convection equation. Consequently the
computational time was much longer (�1000 s for 512 vessels) than the steady flow
solver. For a better visualisation of the agent distribution in the tree, a logarithmic
scale was used, as shown in Fig. 12.4. The concentration of the agent became lower
while it progressed in the tree. This is understandable because the total section area
of the vasculature is increasing.
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Fig. 12.4 Transient flow of a contrast agent in the tree. No leakage was assumed before terminals
of the tree

Fig. 12.5 Concentration of a drug agent in a tissue block due to diffusion effects from the micro-
vasculature. (a) Visualisation from a cut plane; (b) visualisation from the evolution of the isosurface
of drug concentration

12.3.3 Diffusion from the Tree

Figure 12.5 shows drug concentration C in the tissue as a result of diffusion
from the micro-scale vasculature. In Fig. 12.5a a cut plane was used to show C
at a cross-section of the tissue block. It can be seen that C decreases while the
distance from the vessels increases. Figure 12.5b shows an isosurface where the
drug concentration was identical on the surface.
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12.4 Discussion and Conclusion

In this paper we presented a multiscale computational pipeline which contains a
real-time steady flow solver, a transient agent flow solver and a diffusion solver.
This pipeline was applied to a tree generated from the CCO algorithm and different
flow phenomena were simulated.

One of the applications of this pipeline is to model the hepatic vasculature, where
the large liver vessels (portal and hepatic veins) are digitised from CT/MRI images,
and the CCO algorithm can be used to generate small (<1 mm) vessels downstream
the large vessels. The steady flow solver, introduced in Sect. 12.2.1, is suitable
for the venous flow as there are little blood pressure fluctuations in these veins.
The convection and diffusion algorithms may be applied to the study of nutrient
metabolism and drug detoxification, after incorporating some recently published
models (e.g., that for acetaminophen hepatotoxicity [10]).

It worths mentioning that the geometry of the arterial tree, including the nodes
and elements, was organised into a 1D finite element mesh. This approach is
different from the graph method described in [11]. When embedded in a 3D finite
element volume mesh the relative coordinates (or � coordinates) of the vasculature
can be evaluated dynamically and deformed in real time. This concept is also
called host-mesh fitting and has been described in other relevant studies, e.g., for
musculoskeletal modelling [12]. Its application for the vascular network, illustrated
in Fig. 12.6, is powerful in surgical simulations or computer aided surgeries where
organs are deformed due to surgical loads or breathing effects.

There are some limitations pertaining to the current pipeline. Firstly the diffusion
process introduced in Sect. 12.2.3 was rather idealistic. For example, the k term
in Eq. (12.10) which accounts for the cellular uptake is artificial but the actual
perfusion process across cellular membranes is very complex. Also the tissue
was modelled as a homogeneous media which indeed should have heterogeneous
resistance to oxygen perfusion. Secondly the blood was simulated as Newtonian,
i.e. with a constant viscosity which indeed should be a variable corresponding to the
shear rate, i.e. as a shear thinning non-Newtonian fluid. This assumption becomes
more questionable in tiny vessels where the diameter of red blood cells is close to the
vessel lumen. Thirdly the coupling between the different solvers is not implemented
yet, in particular between the extra-cellular and intra-cellular models.

Fig. 12.6 Real-time vasculature deformation based on the host-mesh fitting algorithm
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Nevertheless, the presented computational pipeline may be used in some biomed-
ical applications due to its computational efficiency and also the ability to model
drug transportation. Future work includes the investigation of cellular reactions and
metabolism functions, and strong coupling of the solvers.

Acknowledgements We thank Alexandre Muller and Alice Chapuis for their previous work in the
CCO algorithm and the 3D diffusion work.
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Chapter 13
Fundus Image Based Blood Flow Simulation
of the Retinal Arteries

Andreas Kristen, Lachlan Kelsey, Erich Wintermantel, and Barry Doyle

13.1 Introduction

The retina is affected by numerous systemic diseases related to the vascular
circulation, like diabetes, hypertension, and atherosclerosis, which are major health
problems in modern society [8]. Several studies have shown that narrowing of
retinal arterioles and widening of the retinal veins indicate cardiovascular health
risk including coronary heart disease (CHD), hypertension, and risk of stroke, even
before clinical symptoms of the disease occur [13, 27]. Therefore, the eyes represent
a window into the cardiovascular health of a person. The retinal vasculature has
blood vessels with diameters less than 150�m and includes the small resistance
arteries, arterioles, capillaries, and venules in the microcirculation [26]. These make
up the largest part of the circulation system of a person, but it is still not possible
to examine this system non-invasively, except in the retina. Compared to large
arteries, vessels of the microcirculation have different rheological properties due
to the physiological and physical limit [6].

Therefore, it is necessary to understand the hemodynamics of the retinal
vasculature and investigate the microcirculation system. Fundus photography is a
widespread and easy to perform imaging method to gain a view of the retinal blood
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vessel network, consequently, the microcirculation of a person. A realistic model of
the retinal vascular network can improve the knowledge of the hemodynamics and
may help physicians to detect abnormalities earlier.

The aim of this work is to investigate the blood flow in the retina by computa-
tional modelling and a computational fluid dynamics (CFD) simulation. The data
for the model are obtained from a fundus photograph. In all visible branches of the
plane 2D retinal artery network the velocity and pressure distribution is examined.

13.2 Methods

For this work we used a high-resolution fundus image from the free High-
Resolution Fundus (HRF) Image Database (Friedrich-Alexander Universitaet
Erlangen-Nuernberg) [3] of a healthy subject. The image of the retina were
taken by an expert with a CANON CF-60UVi camera and has a resolution of
3504 � 2336 pixels. The vessels were segmented with the method described by
Budai et al. [4] using the Frangi algorithm [32] for ridge detection. Frangi filter
method extracts tubular objects based on measurements of the eigenvalues of the
Hessian matrix. The Hessian matrix contains the second-order derivatives in a local
neighborhood. Before applying the Frangi filter, the RGB image was decomposed
into the green channel, because this offers the best illumination [4]. Then histogram
stretching and homomorphic filtering were performed to normalize and increase
the contrast as well as the brightness and remove noise. The Frangi algorithm was
applied on the image with � D 1; 2 : : : 8, on a rescaled image by the factor of 0.5
with � D 1; 2; 3; 4 and on a rescaled image by the factor of 0.25 with � D 1; 2.
The values were obtained from Frangi et al. [32] with empirical gained adaption
to get the best fitting results in relation of vessel detection and noise. � is the
standard deviation of Gaussian to approximate the second-order derivatives. The
filter correction constants ˇ1 and ˇ2 were set to 2 and 4. The images are converted
to binary images by a threshold and rescaled back to the original size. The final
segmented blood vessels are the result of the original and rescaled superimposed
images. An increase in the value of � increases the thickness of the segmented
vessels. Therefore, we used the superimposition of the original image to guide our
segmentation process to ensure the vessels remained true to the original geometry.
The original fundus image with the green channel and the segmented vessels are
shown in Fig. 13.1.

Since the CFD simulation is performed on the artery tree, the segmented vessels
have to be divided into arteries and veins. There are reports in the literature
and active research trying to automatically classify arteries and veins, like from
Kondermann et al. [12], but this is not the focus of this study. The classification
was done manually and the arteries were marked on the original image with red
lines and the veins with blue lines. A special written MATLAB (MathWorks, USA)
script compared the original image with the added lines and the segmented blood
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Fig. 13.1 (a) The basis fundus image of a healthy subject taken from the High-Resolution Fundus
(HRF) Image Database [3] extracted to the green channel. (b) Segmented blood vessels after
applying Frangi filter algorithm

Fig. 13.2 (a) Classification of the retinal blood vessel network into arteries marked red and veins
marked blue. (b) Arteries divided from the segmented blood vessels

vessels to generate a new binary image containing just the arteries or veins. The
classification into arteries and veins as well as the segmentation showing only the
artery network is displayed in Fig. 13.2.

With Mimics v18 (Materialise, Belgium) a mask was created of the binary
file shown in Fig. 13.2b, which was scaled into mm by using the standard optic
disc diameter assumed to be 1.85 mm [10, 11] and exported into 3-matic v10
(Materialise, Belgium) afterwards. A smoothed geometry curve was generated to
export the segmented blood vessels as an STL or CAD file containing a plane
surface. The geometry could then be imported directly into ANSYS Workbench
v15 (Ansys, USA) to mesh the structure, define the boundary conditions, and run
the CFD simulation with ANSYS Fluent v15.

For the mesh of the vessel structure, quadrilateral elements were used including
on each wall boundary inflation with 20 layers starting on the wall with a size
of 0.5�m and growing with a factor of 1.2 into the center [1]. The mesh in the
center contains elements with a constant size of 2�m. The final mesh had 2,551,978
elements. Figure 13.4b shows an extract of the mesh.
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The blood flow in the retinal arteries is assumed to be steady and governed by
the Navier–Stokes equation for incompressible fluid [2, 14, 21]

r �V D 0
%.V � r/V D �rpC 	r2V (13.1)

where V is the velocity of the blood, p the pressure, % the blood density, and 	 is
the dynamic viscosity of the blood. The vessel walls were assumed to be rigid [14]
and the density of the blood was set to 1055 kg/m3 [20]. Because the diameters of
the visible arteries are in the range of 15–120�m and the complex characteristic
of blood, a non-Newtonian fluid model has to be considered. In our simulation we
used the Carreau–Yasuda non-Newtonian fluid model where �0 D 2:5mPa s, �1 D
160mPa s, � D 8:2 s, n D 0:2128, and a D 1; 23 adapted from Cho et al. [5]
and we reduced the �1 component to approximate the viscosity according to Pries
et al [23].

As some of the smaller vessels are not visible on the image or were not detected
by the segmentation, the unresolved peripheral vessels were modelled by generating
structural fractal trees [19, 28]. The same was applied for the vessels ending abruptly
on the edge of the fundus image due to the limitation of 2D planar photographs. The
outlet diameters in the image are in the range of 14–86�m. All vessels terminating
with diameters larger or equal to 30�m are connected to an asymmetric binary
structured tree, where at each bifurcation the radius of the two daughter vessels is
scaled by factors ’ and “. The relationship across bifurcations between the radius
of the parent vessel rp and the two daughter vessels rd1 and rd2 can be described by
the power law

rp D rd1
� C rd2

� (13.2)

and the asymmetry index �

� D rd2
2

rd1
2

(13.3)

where � , the junction exponent, set to 3 [18] and � to 0.62 and 0.41, respectively,
depending on the vessel radius [16, 33]. A schematic structured fractal tree can be
viewed in Fig. 13.3.

To generate the vascular bed, the branches of a fractal tree terminate, when the
daughter vessel reaches a diameter below 30�m and has an equal relative pressure
Pend of 0 mmHg [14]. The outflow boundary condition at each outlet is given by the
pressure drop

�P D P0 � Pend D R0 � Q0 (13.4)

where R0 is the total resistance of each fractal tree, Q0 the volumetric outflow rate,
and P0 the outflow pressure at the outlet of the trunk arteries [14, 20]. The total
resistance of each fractal tree is calculated iteratively in recursive manner starting
from the terminal branch.
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a b

Fig. 13.3 (a) An asymmetric binary fractal tree. (b) Schematic structural fractal tree connected to
the trunk vessel

A constant velocity from the central retinal artery of 0.07 m/s [17] was assumed
as the inlet flow. The no-slip condition was used for the wall boundaries, where the
wall shear stress (WSS) at the wall interface is infinite and thus the velocity is zero
[7]. The Navier–Stokes equation was solved numerically by the commercial finite
volume solver ANSYS Fluent.

The visible arterial network has two inlets, where the central retinal artery (CRA)
enters the network in the optic disc and branches into the superior temporal and
inferior temporal arteriole [30]. The outflow occurs via 52 outlets (see Fig. 13.4). To
take account that the inlet flow of the CRA is divided into two arteries the velocity-
inlet boundary is set by the volume flow rate vCRA�ACRA D v1�A1Cv2�A2 with
v1 = v2 and A1 = A2. Resulting at each inlet a velocity of 0.037 m/s by using a mean
CRA diameter of 175�m [9].

13.3 Results

The computing time of the simulation was 1.5 h until the solution converged to
residual values of 10�3 for continuity and x and y velocity. We performed the
simulation using an Intel(R) Core(TM) i7 960 CPU 3.20 GHz personal computer
with 12 GB RAM. Figure 13.5 shows the blood flow velocity distribution in the
retinal arterial network. The velocity vectors at three bifurcations (junction J1, J2,
and J3) are displayed in Fig. 13.6. At each bifurcation the flow rate as well as the
velocity of the blood is reduced. At the ending branches after several bifurcations the
blood flow reaches a nearly zero velocity (1�10�5 m/s). Exceptions are vessels with
less bifurcations leaving the visible vascular network near the optic disc (e.g., O2,
O30). The velocity profiles were close to parabolic and became flatter downstream
(see Fig. 13.7).

Figure 13.8 shows the pressure distribution of the retinal arterial network. The
pressure drops further away from the optic disc to the terminating branches to
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a

b

Fig. 13.4 (a) Retinal arterial vessel network with 52 outlets represented by “Oi” and a split at the
optic disc for two inlets represented by “Ii.” (Rotated through 180ı compared to the raster image.)
(b) Extract of the mesh

around 14–15 mmHg, whereas the vessels leaving the visible vascular network near
the optic disc maintain a high pressure level. In Table 13.1 we show the pressure
drops and velocities for outlets with large diameters to small and outlets near the
optic disc to peripheral.

13.4 Discussion

The aim of this study was to create an initial step towards comprehensive patient-
specific models of the retinal vasculature based on readily available imaging. We
have investigated the blood flow of the retinal artery network by computational fluid
dynamics using geometry extracted from a high-resolution fundus image.

In previous studies in fundus image based CFD simulations from Liu et. al [14]
and Malek et al. [15] their arterial network had ten and nine outlets, respectively,
compared to 52 outlets in our study. Therefore, their vessel network represents



13 Fundus Image Based Blood Flow Simulation of the Retinal Arteries 149

Fig. 13.5 Contour plot of the velocity distribution of the retinal arterial network

Fig. 13.6 Vector plot of the velocity at junction J1, J2, and J3
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Fig. 13.7 Velocity profiles at section S1 and S2

Fig. 13.8 Contour plot of the pressure distribution of the retinal arterial network (1000 Pa �
7.5 mmHg)

a simplified geometry of the retinal arteries. In Liu et al. [14] and Malek et al.
[15] the inlet flow velocity in their simulation was set equal to the velocity in the
central retinal artery, which may be inappropriate, because the CRA branches when
entering the retina in the optic disc. This is the reason why our velocity values
are approximately half of their results. For instance, if we compare the velocity at
locations S1 and S2 (see Fig. 13.4) with the data from Malek et al. [15] we notice
that the velocity at S1 peaks at 0.025 m/s (compare to 0.06 m/s) and at 0.0075 m/s at
S2 (compare to 0.015 m/s). The parabolic form of the velocity profiles is similar to
the results from Liu et al. [14] and Malek et al. [15].

At each bifurcation the flow rate as well as the velocity of the blood is reduced,
which shows the calculated velocity distribution correctly. This is also in correlation



13 Fundus Image Based Blood Flow Simulation of the Retinal Arteries 151

Table 13.1 Calculated pressure drop and mean velocity at outlet

Location Diameter (�m) Pressure drop (mmHg) Mean velocity (cm/s)

O1 77 8:55 0:93

O2 39 12:38 2:31

O3 83 10:08 0:84

O4 74 9:47 0:52

O5 75 12:75 1:02

O6 26 15:38 2:25

O20 30 15:38 0:01

O21 34 15:38 0:04

O29 30 13:22 0:43

O30 50 7:80 1:80

O31 34 13:76 0:07

O40 24 15:38 0:03

O41 49 15:36 0:004

O43 60 15:27 0:02

O44 55 15:20 0:34

O45 86 13:91 0:23

with blood flow velocity measurements with bidirectional laser Doppler velocimetry
and calculated volume flow rates in the human retinal arteries performed by Riva
et al. [25].

Yet, there are still no direct measurements of pressure drops in human retinal
arteries [14], but Quigley et al. [24] estimate a pressure drop from the optical disc to
the peripheral vessels with diameters of 30–40�m to be around 15 mmHg, which
correlates well with our study. Also the pressure distribution shows similarities with
the results from Malek et al. [15], except that in our study the pressure around the
optic disc is higher (
15.4 mmHg (2050 Pa) compared to 14.8 mmHg). It is not
possible to compare vessels leaving the network near the optic disc as in Malek
et al. [15] they did not have any vessels with outlets near the optic disc.

Due to the aim of this study, that is, to use cheap and readily available imaging
methods, our geometry is limited to planar 2D. Thus, the 3D geometry, like the
curvature of the retina and the tubular form of the vessels, is ignored. Due to the
sphere geometry of the retina, the length and diameters of the vessel branches are
not represented correctly in a plane 2D model. Furthermore, the volumetric flow
rate behaves different in a 2D simulation and consequently the pressure (refer to
�P D R0 � Q0), because the cross section is calculated as a rectangle and not with
r2�� . Thus, the results related to the flow rate in the present study have to be taken
as qualitative values instead of quantitative. Using optical coherence tomography
(OCT) as the imaging input, 3D information would be available including blood
vessels down to the capillary bed. However, using OCT to image retinal vasculature
presents many challenges. Firstly, when the OCT device does not have a tracking
system, it is only possible to image a field of view up to 6�6mm. For better quality
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images, ophthalmologists usually scan even smaller areas. Furthermore, motion
artifact and phase-noise are visible in these images. Although, fundus images are
limited to 2D, they offer clear visible blood vessels and in high resolution. A fundus
image is limited to a field of view, which cuts the vessels on its edge abruptly.
This is a major problem within large vessels, which are ending with diameters of
70–85�m. Wide angle cameras with a large field of view could be a solution, but
these images would lose spatial resolution.

The assumption of a steady blood flow does not consider cardiac cycles. Wang
et al. [31] performed in vivo retinal blood flow measurements in the vessels entering
and leaving the optic disc by Fourier domain Doppler OCT. Furthermore, the
pulsatile flow was measured and averaged over one cardiac cycle resulting in a total
arterial flow of 53.89�l/min [31], which is similar to the total blood flow in our
arterial system with 53.57�l/min (QIn1 C QIn2), even with the 2D geometry. In
further studies, we plan on verifying this using transient simulations.

For this work we did not perform a mesh independence study, however, due to
the number of 2,551,978 elements, we assume that the mesh is refined enough.

In our simulation we used the Carreau–Yasuda non-Newtonian fluid model,
which is used in general blood flow simulations, but it does not consider the
Fahraeus–Lindqvist effect in microcirculation, where the viscosity depends on
the hematocrit and vessel diameter [23] and increases in vessels with diameters
below 40�m [22] (hematocrit HD D 0:45). However, in the diameter range of
40–120�m, which constitutes 70 % of our vessels, with shear rates of
1500–1800 1/s [29], both models provide nearly similar dynamic viscosities.
In a mathematical model about hemodynamic parameters in the human retina
vasculature [29], the apparent viscosity decreases even until a vessel diameter of
7.4�m, which covers our complete vessel network and thus the approximation of
the Carreau–Yasuda model should be valid.

The invisible vessels or ending vessels due to the limitation of planar 2D
photographs are represented by a structural tree, which makes it possible to generate
the outlet boundaries, but it does not adequately represent the real branching of
the vessels and their physical parameters. Further work is needed to perfect the
vessel segmentation method and high-resolution images to detect all vessels down
to the vascular bed of 4�m. Until then, the structural fractal tree is one of the
few reliable methods to model downstream resistance. In this study we used a
terminating criteria, like the previous blood flow simulation studies of Liu et al.
[14] and Malek et al. [15], of a vessel diameter below 30�m, where the pressure
is set to Pend D 0. Sixteen of the 52 outlets have diameters below 30�m and are
assumed as the final vessel bed, which generates an abrupt pressure change inside
the vessel system. As a consequence, the blood flow accelerates in front of the outlet
and creates unphysiological conditions (see outlets O6, O14, and O26). The attempt
to calculate down to 14�m as terminating criteria failed due to unrealistic results. In
further studies the structural fractal tree must be designed down to vessel diameters
below the smallest vessel in the model. Takahashi et al. [29] stated in their study that
the pressure drop of the vascular bed after the arterioles to the capillaries occurs only
within a vessel diameter of 5�m and before the intravascular pressure in the retinal
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arteries decreases from 38.9 mmHg at a vessel diameter of 108�m to 29.3 mmHg
at a vessel diameter of 5.1�m.

Further plans for our study are to connect this retinal artery network to the venous
network and create a 3D model of the retinal vasculature.

13.5 Conclusion

In this study we presented a CFD simulation of the blood flow in the retinal arteries
of a planar 2D vessel network model. The vessel network with 52 outlets and
visible branches with diameters in the range of 14–120�m were obtained from
high-resolution fundus photograph with the Frangi filter method. This is the most
comprehensive human retinal artery network reported in the literature, where a CFD
simulation was performed. Based on this initial model, further CFD studies can be
realised to better understand the hemodynamics in the retinal microcirculation.
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Chapter 14
Integration of an Electrophysiologically Driven
Heart Model into Three-Dimensional
Haemodynamics Simulation Using the
CRIMSON Control Systems Framework

Christopher J. Arthurs and C. Alberto Figueroa

14.1 Introduction

Lumped parameter network (LPN) models have been used extensively to simulate
behaviour within the cardiovascular system, either exclusively [3, 29] or coupled
with one-dimensional [1, 12, 13, 18] or three-dimensional [17, 24, 25, 30] vascular
domains. Vascular regions which have been investigated using LPN models include
the coronary arteries [7, 8], the heart [5, 9, 13, 14], the brain [1] and full closed-
loop simulations [17]. With a few exceptions [1, 6], these LPNs have used static
parameters. An awareness of the deficiencies of purely static or steady-state
simulation in computational haemodynamics means that there is interest in models
which can adjust their own parameters in a physiologically inspired manner. Recent
examples include using an autonomic nervous system reflex to control cardiac
parameters [9], or ensuring that oxygen delivery to the myocardium closely matches
cardiac metabolic demand [2]. Controlled models are important not only because
they reproduce key phenomena such as the change in heart rate when standing up
[9], or the changes in coronary flow that occur during exercise [2], but also because
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the study of the highly integrated networks that cardiovascular control systems
form is challenging in vivo or in vitro, from both the technical and the conceptual
perspective.

Despite the accepted need for control systems models, progress is hindered by the
time-consuming nature of implementing and testing control systems within existing
powerful simulation packages. In this work, we present the latest developments
made to our cardiovascular geometry creation and incompressible Navier–Stokes
haemodynamics simulation software, CRIMSON (CardiovasculaR Integrated Mod-
elling and SimulatiON) [28], which we assert can accelerate progress by making the
design of controlled physiological models faster, easier and more accessible, even to
users without a strong background in software development. In order to demonstrate
their flexibility, we use CRIMSON’s boundary condition and control system design
tools, the CRIMSON Boundary Condition Toolbox (BCT) and the CRIMSON
Control Systems Framework (CSF), to create an electrophysiologically driven heart
model, and use it as an inflow boundary condition as part of a multidomain,
multiphysics Navier–Stokes haemodynamics simulation in an example vascular
geometry. The model makes use of an existing biophysical model of the cardiac
myocyte and its active tension generation, which we obtain from the mathematical
cell model repository cellML [10, 27]. The benefit of using an electrophysiologically
driven heart model is that it allows us to leverage decades of modelling work on
the behaviour of the cardiac myocyte, with different desirable properties available
depending on the particular choice of myocyte model. The primary purpose of this
article is to demonstrate rapid model design and integration, so our heart model
follows previous work [19].

Previous non-electrophysiological LPN heart models generally employ a time-
varying elastance method [3, 16, 21], and include those that model flow-rate
dependent pressure losses in the left ventricle [9]. These models successfully repro-
duce aortic pressure and flow waveforms. Electrophysiological LPN models have
been shown to allow the effect of subcellular processes upon the haemodynamics
to be investigated, for example, aortic pressure can be seen to depend on L-
type calcium channel conductance and upon on pacing frequency [19]. Similarly,
appropriate electrophysiological heart models are capable of reproducing the Frank–
Starling mechanism, the effects of dyssynchronous contraction and choice of pacing
location [26]. In general, the use of the model means that the aortic valve inflow in
the fluid domain is dependent upon subcellular processes and parameters, including
transmembrane voltage difference, ion channel state and intracellular calcium
concentration.

14.2 Methods

14.2.1 Overview of CRIMSON

We perform our simulations using CRIMSON, which provides a complete software
pipeline for creating Navier–Stokes haemodynamics simulations from medical
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imaging stacks, with an emphasis on power and usability. It consists of two
main components: the intuitive image analysis and segmentation interface, and the
powerful flowsolver simulation package. The flowsolver is highly scalable, having
been used previously to simulate pulsatile flow on 16,384 cores of an IBM Blue
Gene/Q supercomputer. In the present work we discuss only two aspects of the
pipeline: the boundary condition control tool: CRIMSON CSF, and the closely
related arbitrary LPN condition design and specification tool: CRIMSON BCT. We
used CRIMSON to create a simple vessel geometry for our investigations, which
can be seen in Fig. 14.2.

14.2.2 Graphical Design of Arbitrary Lumped Parameter
Boundary Conditions

Lumped parameter components are assembled into a network using a drag-n-
drop interface. The available components include resistances, compliances, valves,
inductances and volume-tracking compliance chambers, and they can be arbitrarily
arranged, and attached at a point to a boundary of the 3D simulation domain, as
shown in Fig. 14.1. One circuit is created for each boundary, connected, for example,
as shown in Fig. 14.2, and if desired, a circuit to represent the venous system can
be created and attached to some or all of the boundary circuits, in order to create a
full closed-loop network. We used the BCT to create the heart model (Fig. 14.3) and
two downstream Windkessel models.

Fig. 14.1 The creation of a three-element Windkessel model using the drag-n-drop CRIMSON
Boundary Condition Toolbox
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Fig. 14.2 A complete set of boundary conditions, designed in the arbitrary boundary condition
toolbox and attached to a 3D domain. A heart model is shown on the right, and the three-element
Windkessel models on the left represent downstream vascular beds

Fig. 14.3 The CRIMSON Boundary Condition Toolbox, used here to design a heart model. Nodes
with prescribed pressure are tagged with the X symbol. The pressure prescription at the left-
ventricular pressure node (PLV) here will be set on each time-step by the electrophysiological
cell model, within the Python control script, using the volume stored in the LV component as input

We use a standard component layout for the heart model LPN; similar designs
have been used previously to simulate aortic inflow [6, 9]. However, because
we want to control pressure generation using an electrophysiological model, we
abandon the usual feature that the pressure within the ventricle is computed
using a time-varying elastance approach, and instead model the left ventricle by
a component which simply keeps track of the volume of blood that it contains. The
construction of the model in CRIMSON BCT is shown in Fig. 14.3.
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14.2.3 Powerful, Rapid and Accessible Control Systems Design

CRIMSON CSF has access to, and is able to adjust, any of the component param-
eters or nodal pressures within any of the CRIMSON BCT boundary condition
models, and it has access to all of the pressures, volumes and flows within each
boundary condition. This provides sufficient functionality for modelling many
physiological control mechanisms. Control systems themselves are described using
Python, a popular high-level language which is suitable for both beginners and
advanced users. While the CRIMSON flowsolver itself is written in Fortran and
C++, both of which require considerable expertise to work with, Python is similar
to MATLAB in terms of being much easier to learn and to use. The Python interface
with the CRIMSON flowsolver is simple, and works as follows. To design a control
system for a particular node or component, we annotate it with the name of the
Python controller script within the arbitrary boundary condition toolbox. We then
take the CRIMSON Python script template which contains all of the necessary
boilerplate code, including the automatically passed-in data on the state of the
system, and the return value (the new value of the controlled parameter that we
wish to set), and we write the code for the custom control system we wish to design
into the template. A simple example control script for controlling a resistor is shown
in Fig. 14.4.

Fig. 14.4 A simple example Python script that could be used to control a resistance in one of the
boundary conditions, dependent here on time and on a pressure within the boundary condition
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14.2.4 The Cardiac Myocyte Model

The use of the electrophysiological model follows a previous approach used for
zero-dimensional simulation due to Shim et al. [19], in which the authors took an
existing electrophysiological model of a cardiac myocyte, the ten Tusscher 2004
model [23] which, upon the application of an electrical stimulus, generates an action
potential caused by the flow of ions across the cell membrane. The model simulates
the concomitant calcium release within the cell, which is the internal signal which
causes the cell to generate active tension. This model was modified to be suitable for
connection to an intracellular cross-bridge dynamics model [15], which generates
the active tension in response to the calcium release. From this, Bo Shim et al.
created a pressure generation model by assuming the ventricle to be a thin-walled
hemispherical shell, and applying Laplace’s law to convert a known volume and
wall tension into ventricular pressure. Our approach uses the electrophysiological
model of Shirokov et al. [20] coupled with the Negroni and Lascano model for
active tension generation, as this combination was available in the cellML [10, 27]
repository, as the work of Matsuoka et al. [11]. We modified the model to include
the thin-shell-based ventricular pressure generation approach of Bo Shim et al.

14.2.5 Inserting the Cardiac Cell Model into the CRIMSON
Flowsolver Using the Control Systems Framework

We downloaded the Matsuoka model from the cellML model repository as Python
code [4], and inserted it into our CRIMSON–Python interface template script,
modifying it so that it would advance a single time-step each time it was called
to update the control. We did not adjust the parameters from the cellML exposure of
the model [4]. We introduced the shell-based pressure computation, using the left-
ventricular volume data automatically passed to the controller by the flowsolver, and
including the change of half-sarcomere length as the myocytes are stretched by the
volume within the ventricle. We further modified the model so that during diastole,
the filling is controlled by a constant diastolic elastance. The computed pressure
is returned to the flowsolver at the end of each update, and is used to set the left-
ventricular pressure within the heart model. When this prescribed pressure exceeds
the aortic pressure, the aortic valve opens and blood flows into the aorta, and the
volume in the left ventricle seen by the control system is reduced. The converse is
true during diastolic filling.

We relate active tension to left-ventricular pressure using the left-ventricular
volume, a spherical approximation of the ventricle, and Laplace’s law, and the
parameters of the Windkessel models at the two other boundaries of the domain,
seen in Fig. 14.2, were tuned to adjust the aortic pressure waveform and ventricular
ejection fraction.
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Fig. 14.5 Aortic pressure generated by the heart model. Note that changes in heart rate are handled
automatically and naturally by the cardiac cell model

14.3 Results

We were able to achieve our primary objective of creating a complex boundary
condition, an electrophysiological heart model, by making use of the CRIMSON
Boundary Condition Toolbox and Control Systems Framework. This demonstrates
the power of the tools, which enabled us to create the heart model from initial design
to full functionality in the space of 2 days.

Figures 14.5 and 14.6 show that the heart model successfully reproduces an aortic
pressure pattern and left-ventricular pressure–volume loop. Each beat is the result
of an electrical stimulus applied to the myocyte within the control script, and so we
can change the heart rate by changing the frequency of the electrical stimulus; we
do this 4 s into the simulation shown in Fig. 14.5.

14.4 Discussion

We successfully used the model to generate inflow pressure and flow in a Navier–
Stokes simulation domain, and to generate pressure–volume loops for the left
ventricle. The use of the cell model allows us to initiate each pressure pulse by
simulating the application of an electrical stimulus. The development of the model
was rapid, due to the novel tools which we have created.
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Fig. 14.6 The pressure–volume loop produced within the left ventricle by the electrophysiological
heart model, implemented using the control systems framework. Several beats are displayed

14.4.1 The Cardiac Cell Model

Using a cardiac electrophysiology myocyte model means that the effects of
changing the electrical pacing cycle length on the cell’s internal state variables are
naturally propagated to the generation of ventricular pressure. Cell models have
differing levels of realism in their ability to reproduce physiologically observed
phenomena. The model of Shirokov et al. [20], as modified by Matsuoka et al.
[11], is only one such possibility. One reason to investigate other modes is that
the duration of systole is too short. This is a limitation of the cell model used;
it is likely caused by the Matsuoka model using data from guinea pig myocytes.
This is something that we could improve upon by replacing the electrophysiological
component of the Matsuoka model with one for a human myocyte [22, 23].

14.4.2 Scope of Arbitrary Cardiovascular Control
Mechanism Design

CRIMSON CSF aims to provide a complete set of tools for controlling the parame-
ters within boundary condition models. For example, its access to the parameters
which determine physiologically important factors such as tissue perfusion and
oxygen delivery means that control systems which monitor and adjust to varying



14 Integration of an Electrophysiologically Driven Heart Model 163

tissue perfusion requirements can be created. Additionally, control systems which
do not rely on any such monitoring, such as the cardiovascular response to
psychological stress, could be simulated by creating a control system which does
not use any of these variables as input. We believe that the facility to in this manner
adjust any of the nodal pressures and any of the component parameters within
the boundary conditions should allow most physiological control systems to be
modelled.

14.4.3 Rapid Prototyping

One of the features which we found to be the most useful during this work
was the facility for rapid boundary condition design, testing and approximate
parameterization provided by the CRIMSON flowsolver’s pure zero-dimensional
prototyping mode. Enabled using a single input flag, this mode automatically
replaces the 3D simulation domain with an additional, simplified zero-dimensional
domain (Fig. 14.7), allowing many hundreds of cardiac cycles to be simulated in
a short period of time on a laptop, as opposed to achieving a few beats per hour
on powerful computing hardware. This is particularly useful for approximately
parametrizing a control system in order to study some state transition, as we
generally require the system to reach an equilibrium state before testing a control
perturbation, and then we require a further extended period of simulation to observe

Fig. 14.7 A schematic of circuit in pure zero-dimensional mode. In this mode, CRIMSON
flowsolver automatically generates a replacement for the 3D domain (red) with the same topology
(compare Fig. 14.2), and connects it to the boundary conditions, as prescribed for the 3D interface.
This allows very rapid prototyping simulations to be run
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the transitional behaviour. We note that because this mode neglects all 3D effects,
the resulting parameterization should only be seen as an approximate value, which
must be fine-tuned in full 3D simulation mode.

14.5 Conclusions

We performed multiphysics simulation of the cardiovascular system by using
an electrophysiological heart model to generate flow within a three-dimensional
Navier–Stokes haemodynamics simulation. The model allows an electrical stimulus
applied to the myocyte to trigger a blood pressure pulse. Creating this model
required the merging of models from different subfields of cardiovascular mod-
elling; due to the available tools we were able to do this with a minimum effort,
with the model design and integration taking 2 days of work.

In particular, this work demonstrates that our boundary condition design tools
and control systems framework enable rapid development of remarkably complex
enhancements of the CRIMSON flowsolver. While pressure generation in the
heart model is not typically considered to be a control system, using the control
framework allowed us to show that it is useful for more than just control systems,
and also, because fusing two models in this manner would otherwise be a time-
consuming task, it demonstrated the ease with which potentially difficult tasks
can be achieved. A key purpose of these new tools is that it gives researchers the
space to explore, so we do not expect to predict all possible uses, but to list a few,
potential applications include simulating haemorrhage, both by creating the bleed
in the first place and by simulating the response of the peripheral resistance and
venous compliance, modelling the exercise response in the peripheral vasculature
and in the heart, as coordinated by the neural central command, or implementing
autoregulation systems within individual tissue beds. Many potential control system
models will have a lower level of complexity than the electrophysiological heart, so
we believe that our framework will be of great use to workers as they design the
next generation of transitional physiological models in haemodynamics.
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Chapter 15
Simulating Patient Specific Multiple Time-Point
MRIs from a Biophysical Model of Brain
Deformation in Alzheimer’s Disease

Bishesh Khanal, Marco Lorenzi, Nicholas Ayache, and Xavier Pennec

15.1 Introduction

Alzheimer’s Disease (AD) is one of the most common types of dementia. It is
a neurodegenerative disease that progresses gradually over several years with the
accumulation of neurofibrillary tangles (NFTs) and amyloid-ˇ (A-ˇ) plaques [2].
These microscopic neurobiological changes are followed by the progressive neu-
ronal damage that leads to the atrophy of the brain tissue. The atrophy or the
volume changes of brain tissue are a macroscopic change that structural Magnetic
Resonance Imaging (MRI) can estimate in different brain regions. Many different
methods have been proposed to estimate atrophy in some particular regions of brain
that are known to be affected in AD [9].

In addition to estimating specific brain structures with atrophy, longitudinal
imaging data could also potentially be used to study the temporal inter-relationship
of atrophy in different structures. For instance, in [6], authors estimate per-
individual rates of atrophy in 34 cortical regions and in hippocampus. Then they
study the groupings of these structures based on the correlation of the atrophy rates.
In [8], authors define AD progression as a series of discrete events. Atrophy in
different parts of the brain is taken as different events along with clinical events.
Without any prior to their ordering, the model finds the most probable order for these
events from the data itself. They use Bayesian statistical algorithms for fitting in the
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event-based disease progression model. The objective of these kinds of studies is to
understand how different regions of brain interact during the neurodegeneration and
find its trajectory. Such studies can benefit with large number of longitudinal images
of AD patients. In this context, a model that can simulate many time-point images
from a few available longitudinal images can be a valuable tool.

Atrophy simulators [4, 11, 14, 18] have been proposed in the literature and used
mostly for the validation of registration or segmentation methods [5, 16], or to
estimate uncertainty in the measured atrophy [17]. The simulators in [11, 14, 16]
use a Jacobian based method where the desired level of atrophy is set at each voxel,
and the deformation that best approximates the desired level of atrophy is found.
Regularization is used in the optimization to enforce certain desired conditions
such as topology preservation. The advantage of these methods is the ability to
define atrophy maps at the voxel level. However regularization parameters used
to enforce topology preservation are generally difficult to relate to a plausible
biophysical process of AD and can create difficulties in simulating opening of
certain structures such as sulci. It is not trivial to consider different tissue behaviors
in such approaches. In [4, 18], authors propose a model of brain deformation based
on thermoelasticity. Volume changes are defined in particular structures/tissues
of a meshed brain by assigning different thermal coefficients. Simulation of the
images is done by first solving the thermoelastic model of tissue deformation with
Finite Element Method (FEM), and then by interpolating the obtained displacement
field from the mesh to the image. FEM involves moving back and forth from
voxels to meshes which creates numerical difficulties and inaccuracies in the model
personalization.

In [12] we proposed a new biophysical model of brain deformation due to atrophy
in AD that combines the advantages of the models mentioned in the previous
paragraph. The mechanisms of neuronal deaths and its evolution are not well known
for AD and are likely to be primarily guided by complex physiological processes.
However we believe that the biomechanics of brain tissue might play an important
role in determining the consequence of the neuronal deaths on brain shape changes.
Our biophysical model presented in [12] builds upon the assumptions that we relate
to the biophysical process of tissue shape changes as the consequence of local
volume loss. This model can be used to simulate time-series MRIs starting from
a real input baseline MRI.

In this work we use our biophysical model developed in [12] to present a
framework that allows to interpolate or extrapolate patient specific unseen time-
point images from at least two available time-point images of the subject and
to assess how closely these simulated trajectories follow real patient trajectories.
We also improve the implementation of the boundary condition of the model by
imposing zero deformation in the skull and all the regions outside of the skull. In
[12] the zero deformation was imposed at the image boundaries and not at the brain–
skull boundary.

The following section briefly explains the assumptions and implementation of
the biophysical model we presented in [12], and in Sect. 15.3 we present how we
interpolate new images between two acquisition time points.
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15.2 Biophysical Model of Brain Deformation
Due to Atrophy

The atrophy rate Qa.x; t/ at any position x at time t for a representative elementary
volume of V.x; t/ is defined as the negative rate of change of volume per unit
volume:

Qa D �1
V

@V

@t
:

For any time �t that results in sufficiently small displacement, the amount of
atrophy is a D Qa�t. Any deformation field that has atrophy a should satisfy the
following equation:

r �u D �a; (15.1)

where u is the displacement of material particles during the �t.
We do not explicitly model the neuronal loss and tissue remodeling at the

microscopic level which requires biochemical and cellular physiological knowledge
in detail. We abstract the phenomenon that evolves over several months or years in
the brain. In Creutzfeldt–Jakob disease, no gross brain shape changes are reported
and the imaging only shows hyperintense signals on T2-weighted images [10].
However, this is not the case in AD and longitudinal MRIs show a decrease of brain
volume instead [9] without any “holes.” That means the tissues should restructure
as the neuronal deaths increase with time. This leads us to a basic assumption
in the proposed model that after the death of neurons, remodeling of the tissue
occurs such that the tissue density remains constant while both the mass and volume
decrease. We further assume that the atrophy creates internal stress which results in
the deformation minimizing the strain energy.

Using Saint Venant–Kirchhoff model for an elastic material, this can be
expressed as the minimization of which results in the deformation of the tissue
minimizing the strain energy.

R.u; p/ D
Z
	tr.E.u/2/C �

2
.tr.E.u///2 �

Z
p .r �uC a/ (15.2)

where p is a Lagrange multiplier, 	 and � are Lamé constants, and E is Lagrangian
Green strain defined as: E D 1

2

�ruCruT CruTru
�
:

By taking a sufficiently small time step�t, this deformation could be reasonably
modeled as being linear elastic. For example, for a 2% global atrophy per year, we
have �t D 1 year, and the atrophy during the year as a D 0:02.
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Under linear elastic assumptions, minimizing the energy in Eq. (15.2) is equiva-
lent to solving the following set of equations.

	�u � rp D .	C �/ra

r �u D �a
(15.3)

where �u is a component-wise Laplacian of u. This equation is very similar to the
Stokes flow equation in fluid dynamics. The difference is in the non-zero divergence
term which corresponds the loss of mass and volume in the tissue. The momentum
equation shows that the gradient of the prescribed volume loss acts as the force term
that moves the tissue for the structural remodeling. The Lagrange multiplier p is
some sort of virtual pressure whose algebraic values can be seen as the sources and
sinks of fluid.

15.2.1 Modeling CSF Region

The timescale of CSF production is hours, which is much smaller compared to
the timescale of tissue remodeling due to atrophy. To allow the CSF to expand as
required when the brain deforms due to the prescribed atrophy, we release the strict
incompressibility constraint in (15.3). Furthermore, the force term of the momentum
equation in (15.3) is no longer required. Thus the combined equation for both the
brain parenchyma and the CSF regions is:

	�u � rp D .	C �/rf

r � uC kp D �f
(15.4)

where we have,

– Brain parenchyma region: k D 0, and f D a
– CSF region: k D 1, and f D 0.

Boundary Conditions: Dirichlet boundary conditions with zero displacement
are enforced at the skull.

Material Parameters � and œ: The deformation model here corresponds to
the structural readjustments due to cell loss, thus the Lamé parameters do not have
the same usual meaning as during an elastic deformation of the material due to
application of an external load/force. The voxel-wise volume change constraint and
the boundary conditions, i.e. the shape of the tissue–CSF and brain–skull interface
has much more impact on the deformation of the brain parenchyma than any specific
scalar values of 	 and �. In the present work these coefficients are set to 1 and 0,
respectively.
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15.2.2 Staggered Grid Discretization and Finite
Difference Method

Equation (15.4) requires a partition of the computational domain into different
regions. These regions are obtained by using skull stripping and segmentation of
the input baseline brain MRI. The solution of the PDE provides us a deformation
field that is applied to the baseline image to generate simulated follow-up image. We
use Finite Difference Method (FDM) with staggered grid discretization to solve the
system of PDEs in (15.4). Using staggered grid with proper placing of the pressure
and velocity variable ensures stability in the solution. FDM is chosen instead of
FEM to avoid brain meshing and the complexity of transporting computed variables
from mesh to image at each iteration. This allows us to solve the system in a grid
that is of the same size as the input image where the grid fits naturally to the image.
This also makes it easier to obtain the partition of the computational domain into
different regions directly by using a skull stripping and a segmentation algorithm.

For typical brain MRIs of 1mm3 resolution, this computational problem size
becomes so large that direct solvers are impractical due to memory limitations. The
set of equations in (15.4) is similar to Stokes flow equation which is a saddle point
system. It needs a suitable combination of an iterative solver and a preconditioner
to solve it. We use a Schur factorization to split the equations into the momentum
equation and the pressure equation. Each of these equations is solved using different
iterative solvers. Our implementation uses composable solvers for multiphysics with
PETSc library [1] using fieldsplit preconditioner, an approach detailed in [3]
with an example for Stokes flow solver with Schur complement factorization. The
momentum equation is preconditioned with hypre which is an algebraic multigrid
preconditioner and can be called from the PETSc interface. The implemented
system is run using distributed computing in a locally available cluster.

15.3 Experiments and Results

We use the MIRIAD dataset [13] that has multiple time-point T1 structural MRIs of
45 Alzheimer’s patients in the range of 2 weeks to 2 years. Since the dataset contains
several time-point scans, we can compare the simulated intermediate time-point
images to the corresponding real intermediate images. To prescribe personalized
atrophy patterns we need an atrophy estimation for each subject from the extremal
time points. We perform the whole brain segmentation using recon-all com-
mand in FreeSurfer [7]. For the segmentation, FreeSurfer’s longitudinal stream [15]
is used to create unbiased subject specific templates. This allows us to compare
the volumes of large number of regions in the baseline and the follow-up images
and estimate atrophy in each of these regions. This estimated atrophy can then be
modified and prescribed to each of the baseline MRIs to predict intermediate time-
point images. The setup of the experiment we performed is described as follows:
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1. Find available extremal time-point scans: baseline Ib and the final follow-up If .
Let tf be the time (in years) between the baseline scan and the final scan.

2. Find a mid-point scan Im that was scanned tm years after the first scan. This is
found by finding tm that is closest to tf =2.

3. Use FreeSurfer to estimate an atrophy map af . This is a scalar image such as the
one shown in bottom left of Fig. 15.1. The intensities are the atrophy estimated
from FreeSurfer for all the segmented brain regions.

Fig. 15.1 Top left is the input baseline MRI to which the atrophy shown in bottom left is
prescribed. A follow-up image is simulated using our model. The difference of the simulated
follow-up and the baseline MRI is shown in top right. Bottom right is the atrophy map associated
to the deformation field that was obtained as the solution of the model when using the atrophy map
on the left as input. As expected, in brain tissue region they are the same while in CSF there is
expansion to compensate the tissue loss keeping the skull fixed
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Fig. 15.2 Boxplot of the atrophy estimates for the real mid-point images in the cortical regions
and hippocampus. These are the regions that were used in [6]. The data shows the distribution of
FreeSurfer atrophy estimates in the AD population of the MIRIAD dataset when considering the
first and the mid-point scans

4. Simulate a follow-up image OIm that corresponds to the mid-point scan Im by
prescribing am where am D af � tm=tf .

5. Run the FreeSurfer whole brain segmentation on this simulated image OIm and
compute volumes of all the segmented regions.

6. Compare FreeSurfer computed volumes of all regions of the images Im and OIm.

In Figs. 15.2 and 15.3 we see that for most regions the difference in the atrophy
estimation of the interpolated mid-point image and that of actual mid-point image
has median close to zero. Higher variability in the difference seems to be mostly
in the regions where there is higher variability in the atrophy estimates of the
real mid-point images. The large inter-subject variation of the difference between
the atrophy estimate in the real mid-point image and the interpolated mid-point
image could be due to several reasons. One obvious issue is that the FreeSurfer
segmentation with the longitudinal stream expects all the images that are to be
segmented to be preprocessed in the same manner. However, in our case the
interpolated mid-point image has undergone an extra resampling step while the
real mid-point image has not. This extra resampling step is required because the
interpolated mid-point image was obtained by warping the real baseline image with
a displacement field. Furthermore, the choice of interpolation during the resampling
step can also affect the volume measurements by FreeSurfer. We used trilinear
interpolation for the resampling. The extra resampling step and the choice of
interpolation do have an effect on the estimation of volumes. This has been shown,
for instance, in [16] for other segmentation based atrophy estimation techniques.
Furthermore, the interpolated mid-point image has a noise (noise inherent in any
MRI) that is highly correlated with the real baseline image. However, the noise in
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Fig. 15.3 Boxplot of the difference in the FreeSurfer atrophy estimate in the real mid-point image
and the interpolated mid-point image for all the 45 AD subjects present in MIRIAD dataset. The
regions shown are the same as the one shown in Fig. 15.2 and are displayed in the same order.
The interpolated mid-point image is obtained by simulation using the pair of extremal time-point
images of each subject

real mid-point image is not correlated to the baseline image. This also affects the
atrophy estimation and hence contributes to the variability in the atrophy estimation
difference. A detailed analysis must be done to find out the regions that are the most
reliable ones in estimating volume changes for both the real and simulated images.
The performance of the atrophy measurement tools on simulated images should be
thoroughly evaluated to find out the best regions that we can rely upon to test how
closely we predict volume changes in new time-point images.

In this case we have interpolated the intermediate time point by linearly scaling
the estimated atrophy. For a small time window of a couple of years this is
reasonable but if we want to extrapolate, for instance, for several years we would
need a non-linear model of atrophy progression. The presented framework allows
one to compare the trajectory of brain shape changes with different models of
atrophy progression. The ability to prescribe any desired atrophy at any time point
allows one to introduce atrophy at different regions of brain at different times. This
can be exploited in evaluating the methods proposed in studies such as [8] which
order the events from time-series data.

15.4 Conclusions

We have proposed a framework to generate patient specific multiple time-point
images based on our biophysical model of brain deformation due to atrophy in
AD. The used model is motivated from biomechanical principles and it models the
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consequence of tissue loss in brain shape changes. From the available two scans of
MRI of a patient at two different time points we estimate atrophy in large number of
brain structures using FreeSurfer whole brain segmentation [7]. The derived atrophy
patterns are linearly scaled and prescribed to the biophysical model to simulate
another time-point image. Using the MIRIAD dataset [13] of 45 AD subjects with
multiple time points we compare the simulated time-point images against the actual
time-point images. The future works will include building the most reliable methods
to compare the volumes in simulated and real images. We will also explore the
possibility of evaluating methods that study the temporal relationships, ordering,
and co-evolution of atrophy in different structures of the brain.
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Chapter 16
Traumatic Brain Injury: An Investigation
into Shear Waves Interference Effects

Grand R. Joldes, Alesio L. Lanzara, Adam Wittek, Barry Doyle,
and Karol Miller

16.1 Introduction

Traumatic brain injury (TBI) is one of the leading causes of long-term disability
in both industrialised and developing countries around the world. The World
Health Organisation states that this type of debilitating injury will exceed many
diseases as the major cause of death and disability by the year 2020 [1]. What
is this ‘silent epidemic’ [2] and why is it so damaging? TBI, also known as
intracranial injury, results in temporarily or permanently impaired and structural
damage to the brain, caused by the application of external mechanical forces
to the head. These mechanical forces can be applied through various modes of
excitation—rapid accelerations and decelerations, impact loads, inertial loads, blast
waves and penetration-by-projectile. The environments these inputs can occur range
from the extremely common—road traffic accidents, falls and other unintentional
injuries, etc.—to those affecting a particular subset of the population—contact
sports, military activity, violence. The associated effects of TBI can range from
mild (mTBI), which can lead to cognitive problems such as headaches, memory
problems, mood swings and frustrations, to severe, which can lead to major causes
of unconsciousness and persistent vegetative state after trauma. The latter is a result
of diffuse axonal injury (DAI), involving damage of individual nerve cells (neurons)
and splitting of the axonal connection between neurons due to traumatic shearing
forces. It should come as no surprise now that there exists a vast amount of literature
in the field of TBI, and the research dedicated to reducing its impact ranges from
epidemiological studies [1] to the associated costs of TBI [3, 4], to tissue/single
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cell-based work in order to detect the key molecular signatures of the injury [5].
The main problem is the inability to accurately define the relationship between
kinetic inputs and subsequent brain injury and its associated effects.

While clinicians and neuroscientists focus on pathological and physiological
research, physicists and engineers use the principles of mechanics to study the
physical phenomena involved in the TBI process to provide explanations for the
cause of brain damage. Various methods have been employed to study the mechanics
of brain injury, including animal and human cadaver experiments [6, 7], magnetic
resonance imaging (MRI) and elastography (MRE) [8–11], physical modelling
[12, 13] and mathematical modelling [14–16]. In particular, finite element (FE)
modelling has become paramount in studying the mechanics of brain injury.
A critical review of the state-of-the-art brain modelling and simulation for injury
prevention together with practical guidelines for analysts creating finite element
brain models have been recently published by Yang and King [17].

The stress and strain from FE solutions may be taken as a quantitative mea-
sure of tissue damage and correlated with pathological results from clinical and
epidemiological investigations [18]. Once good correlations are proven and the FE
model is well validated against experimental data specific to the injury mechanism
being modelled, it may serve as a valuable tool for better understanding injury
mechanisms, injury diagnosis and design of preventive technology.

According to current literature, DAI in humans is estimated to occur at maximum
shear strains of 0.1–0.5 and strain rates of approximately 10–50/s [12, 13]. Further
studies also suggest that the brain cells are considerably damaged at strains >0.10
and strain rates >10/s [18, 19].

The stresses and strains created by impact loading of the head are the result
of dilatational (pressure) and distortional (shear) waves propagating throughout
the brain [20]. Dilatational waves exhibit particle motion along the direction of
propagation while distortional waves display particle motion transverse to the
direction of propagation. The two waves separate over time due to the large
difference in wave speeds [21]. It is observed that the dilatational strains are
approximately 1000 times smaller than distortional strains, with minor differences
between maximum shear strain and maximum principal strains in TBI events [22]. It
is also important to note that key membranous structures, the falx cerebri (separating
the cerebral hemispheres) and tentorium cerebelli (separating the cerebellum and
occipital lobe), are seen to affect the shear wave propagation patterns in the brain
due to the change in impedance, encouraging high reflection and attenuation [23].

Upon simulation of an angled frontal impact load to a 3D FE head of MRI
resolution, Chen identifies spherically converging shear wavefronts, propagating
from the skull boundary towards the inner regions of the brain [24] long after the
pressure waves have subsided (Fig. 16.1). What was not investigated nor discussed,
however, was the response of the brain in an extended time domain, as travelling
shear wavefronts of various frequencies interact with each other after reflection
from substructures. These are referred to as interference effects, as superposition of
shear wave amplitudes could create localised areas of high shear stress and strain,
contributing to the TBI damage mechanism. To date, no direct investigation of shear
wave interference has been made in the literature of TBI modelling.
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Fig. 16.1 Mid-sagittal view of Von Mises stress distribution depicting spherically converging
shear wave propagation (left to right) over 15 ms

This chapter aims to investigate the effect of shear wave interference as a key
mechanism to TBI, by identifying localised regions of the brain exhibiting high
strains using a comprehensive FE head model.

16.2 Finite Element Model of the Head

An MRI voxel-based FE mesh of the human head was obtained from Chen [24].
The very fine mesh makes it possible to capture stress wave propagation during
impact loading. The model is capable of describing important geometrical features
of the head due to the 1.33 mm� 1.33 mm� 1.30 mm voxel size. A Laplacian mesh
smoothing algorithm was used to achieve smooth outer surfaces and inner interfaces
between tissues. The model’s 1,061,799 elements and 1,101,599 nodes are separated
into four different tissue types: white matter, grey matter, cerebrospinal fluid (CSF)
and skull.

The profiles of the falx cerebri and tentorium cerebelli were carefully sculpted,
by reassigning elements from the CSF, grey matter and white matter sets based on
the geometry observed in coronal, sagittal and transverse MRI scans. The maximum
thickness was two elements (2.66 mm) in the falx cerebri and three elements
(3.99 mm) in the tentorium cerebelli, with at least four nodes shared between
membrane elements. The thickness used is essential in effectively transmitting
bending forces under dynamic simulations and is hence modelled slightly thicker
than the approximate membrane thickness of 2 mm [25]. The increased thickness is
taken into consideration by scaling the Young’s modulus of the membranes in order
to obtain the correct bending rigidity (Fig. 16.2).

The material data of the different tissues in the model were taken from [26].
The properties for the introduced falx cerebri and tentorium cerebelli are taken from
literature and listed in Table 16.1. All materials are modelled as linear elastic, except
the white and grey matter, which are modelled as hyper-viscoelastic (Neo-Hookean
with Prony series viscoelasticity).
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Fig. 16.2 (a) The cranial cavity showing the falx cerebri and tentorium cerebelli; (b) same view
of the structures interior to the skull in the FE model; (c) a frontal view of the membranes depicting
the tent-like profile of the tentorium cerebelli

Table 16.1 Material properties for falx cerebri and tentorium cerebelli

Tissue
Density ¡
[kg/m3]

Bulk modulus
K [Pa]

Short term
shear modulus
G0 [Pa] Reference

Falx cerebri 1130 4.47E C 7a 4.62E C 6a [25]
Tentorium cerebelli 1130 1.32E C 7a 1.37E C 6a

aScaled to account for difference in thickness

Fig. 16.3 (a) The loaded area of the skull. (b) Load pressure profile

A fixed boundary condition is used at the head/neck junction. This allows us to
capture the rotational motion of the brain, as a free boundary condition would lead
mostly to linear motion of the head model. The pulse load shown in Fig. 16.3b is
applied to the mid-frontal area of the model in the anterior-posterior direction as a
uniformly distributed load over an area of 1556 mm2, shown in Fig. 16.3a [7].
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16.3 Analysis Procedures

16.3.1 Natural Frequency Extraction

The natural frequency extraction step is used to extract the system’s modes to
be used for the subsequent modal dynamic analysis. The high-performance SIM-
based linear dynamics architecture is enabled in this step to ensure that element and
material damping factors related to the viscoelastic properties are taken into account
in the subsequent modal dynamic analysis. The eigenvalues and the eigenvectors of
the biomechanical head system are extracted in this procedure using the Lanczos
eigensolver coupled with the SIM architecture [27]. The number of modes used in
modal superposition is important in defining accurate dynamic response.

16.3.2 Transient Modal Dynamic Analysis

The transient modal dynamic analysis (TMDA) is used to investigate the shear
wave interference process under various input loading profiles and compare the
solution to the non-linear explicit dynamic analysis [explicit direct integration
method (EDIM)].

While the natural frequency extraction step is computational expensive, finding
the solution using TMDA is a relatively inexpensive procedure; therefore it is easy
to investigate the behaviour for different loading pressure profiles.

16.3.3 Explicit Dynamic Integration Method

The EDIM is used to investigate the shear wave interference while accounting
for non-linear effects. It is ideally suited for large model analyses of high-speed
dynamic events such as those seen in TBI. As the equations of motion for the body
are integrated using the explicit central-difference integration rule, a large number
of small time increments are used [27]. The integrity of the results generated using
this method relies on the specified time increment being smaller than the stability
limit for the operator, which is based on the highest element frequency in the model
and the associated dilatational speeds observed.

16.4 Results

The extracted modes in Table 16.2 show that there is an approximate 10 Hz
frequency span between the first 3–4 modes and, thereafter, increasingly smaller
increments, until a span of 45 modes from 15 to 60 yields a frequency range of
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Table 16.2 Natural frequencies of the head model and the identified modes of
interest (in bold)

Effective mass
Mode number Frequency [Hz] X-component Y-component Z-component

1 47.948 6.91E�02 0.42853 1.0844
2 59.661 3.21E�07 6.87E�05 1.86E�04
3 60.981 0.176 4.91E�03 1.59E�02
4 69.707 2.71E�02 9.25E�04 7.81E�04
5 70.873 2.05E�02 0.12154 0.23524
6 74.858 9.30E�03 8.29E�04 1.25E�04
7 76.616 9.98E�03 1.30E�02 5.13E�03
8 79.156 0.40435 6.81E�03 5.64E�03
9 80.436 1.69E�03 1.70E�03 3.82E�02
10 81.132 0.11532 5.24E�04 2.16E�03
11 83.051 0.26127 5.31E�04 1.34E�02
12 83.685 1.34E�02 1.09E�02 4.75E�04
: : : : : : : : : : : : : : :

60 124.41 4.94E�07 3.62E�03 3.62E�04
Total 2.3304 1.0706 1.7602
Percentage of total mass 8 3% 38 % 63 %

approximately 36 Hz. This is a by-product of the intricately complex structure
of the head system. Although there are many complex modes of vibration, each
contributing somewhat to the overall response, only a subset of these modes
dominates the response of the system under impact loading. This information
is contained within the modal effective mass in each kinematic direction, being
dependent on the modal participation factors and the modal generalised mass of
the system [27].

The effective mass in each kinematic direction for the first 60 modes is highest
in the x direction, representing approximately 83 % of the mass of the system. The
y and z global kinematic directions return 38 % and 63 % respectively. The number
of extracted modes is not sufficient to adequately represent the system under a large
range of transient inputs or impulse excitation. Approximately 90 % of total mass
in each kinematic direction is required for this.

The first natural frequency of the system is 48 Hz, contributing more than one-
third of the modal effective mass in the z direction. In fact, of particular interest in
the y–z plane are the first and fifth modes for the first 60 modes. Lateral movement
is dominated by modes 3, 8, 10, 11, 13 and 15. Figure 16.4 shows some of the
associated mode shapes.

It is important to note, however, that due to the rigidity of the skull, stress
waves travel much faster here than in the soft tissues of the head. This is well
represented by the spherically converging shear waves from impact loads, as a result
of indirect loading induced by structural dynamical deformation of the skull. Hence,
directionality of impacts may not be as significant in this study.
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Fig. 16.4 The mode shapes (left column) viewed from the mid-sagittal, mid-transverse and mid-
coronal cross-sectional cuts of the brain. Regions of largest generalised displacements are in red

Table 16.3 Regions of interest identified from the mode shapes

Movement Mode Region description Max. principal strain
% difference
from coup

Anterior/posterior 1 Left parietal lobe 0.21 �19 %
1 Right parietal lobe 0.21 �19 %

Mid cerebellar region 0.26 0 %
5 Inferior region of the

frontal lobe
0.33 C27 %

Lateral 3 Mid-parietal lobe,
directly right of falx
cerebri insertion

0.34 C31 %

8 Cingulate gyrus, close
to corpus callosum

0.28 C8 %

13 Right temporal lobe 0.15 �42 %

Regions of potential interference in brain tissue are identified by analysing
perpendicular cross sections (sagittal, coronal and transverse planes) of the 3D
generalised displacements and finding areas with the highest displacements. The
maximum principal strains for these areas and the comparison with the coup site are
presented in Table 16.3.
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Fig. 16.5 Spherically converging shear waves in both cerebral hemispheres, shown at (a) 6.5 ms,
(b) 8.5 ms and (c) 10.5 ms from the EDIM. Red dots denote the first two regions of interest
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Fig. 16.6 Maximum principal strain responses of (a) the left and (b) the right parietal lobes

The dynamic response is mapped graphically through time in Fig. 16.5 to
understand wave propagation behaviour. It is observed that wavefronts are not only
converging from the outer boundary regions of the brain, but also propagating
outwards from the falx cerebri. This creates two converging shear waves in each
hemisphere, the focal points of which are the regions identified in the first mode—
the mid points of each parietal lobe. The maximum principal strain time history
at these two locations is shown in Fig. 16.6. The dominant frequency is �48 Hz,
corresponding to the first natural frequency. Strain amplification is observed, over a
longer duration in the right hemisphere. The input load area slightly favours the left
hemisphere, which explains the difference in local maximums.

16.5 Conclusions

This study successfully identifies regions in the brain which display higher strains
than the coup and counter-coup sites for a frontal impact to the head. The wave
patterns are strongly influenced by the falx cerebri and tentorium cerebelli.

The use of modal analysis to identify regions of interference is very effective, by
taking into consideration the mode shapes (in strain and displacement) which have
strong contributions to the overall response of the system. The TMDA, while not
accounting for all solution nonlinearities, does provide an indication of interference
effects, as shown by the comparison to the more accurate EDIM solution.



16 Traumatic Brain Injury: An Investigation into Shear Waves Interference Effects 185

Acknowledgments The authors thank Prof. Martin Ostoja-Starzewski and Ms. Ying Chen from
University of Illinois at Urbana-Champaign for providing the mesh of the head.

References

1. A.A. Hyder et al., The impact of traumatic brain injuries: a global perspective. NeuroRehabil-
itation 22(5), 341–353 (2007)

2. J.A. Langlois, W. Rutland-Brown, M.M. Wald, The epidemiology and impact of traumatic
brain injury: a brief overview. J. Head Trauma Rehabil. 21(5), 375–378 (2006)

3. I. Humphreys et al., The costs of traumatic brain injury: a literature review. Clinicoecon
Outcomes Res. 5, 281–287 (2013)

4. J.L. Ponsford et al., Costs of care after traumatic brain injury. J. Neurotrauma 30(17), 1498–
1505 (2013)

5. D.M. O’Dell et al., Traumatic brain injury alters the molecular fingerprint of TUNEL-positive
cortical neurons In vivo: a single-cell analysis. J. Neurosci. 20(13), 4821–4828 (2000)

6. D.F. Meaney et al., Biomechanical analysis of experimental diffuse axonal injury. J. Neuro-
trauma 12(4), 689–694 (1995)

7. A. Nahum, R. Smith, C. Ward, Intracranial pressure dynamics during head impact, in
Proceedings of the 21st Stapp Car Crash Conference (Society of Automotive Engineers,
Warrendale, 1977), pp. 339–366

8. S. Chatelin et al., Computation of axonal elongation in head trauma finite element simulation.
J. Mech. Behav. Biomed. Mater. 4(8), 1905–1919 (2011)

9. A. Manduca et al., Magnetic resonance elastography: non-invasive mapping of tissue elasticity.
Med. Image Anal. 5(4), 237–254 (2001)

10. M.C. Murphy et al., Analysis of time reduction methods for magnetic resonance elastography
of the brain. Magn. Reson. Imaging 28(10), 1514–1524 (2010)

11. R.J. Okamoto, E.H. Clayton, P.V. Bayly, Viscoelastic properties of soft gels: comparison of
magnetic resonance elastography and dynamic shear testing in the shear wave regime. Phys.
Med. Biol. 56(19), 6379–6400 (2011)

12. S.S. Margulies, L.E. Thibault, T.A. Gennarelli, Physical model simulations of brain injury in
the primate. J. Biomech. 23(8), 823–836 (1990)

13. D.F. Meaney, L.E. Thibault, Physical model studies of cortical brain deformation in response
to high strain rate inertial loading, in International Conference on the Biomechanics of Impacts
(Lyon, France, 1990)

14. S. Holm, R. Sinkus, A unifying fractional wave equation for compressional and shear waves.
J. Acoust. Soc. Am. 127(1), 542–559 (2010)

15. R.J. Cloots et al., Biomechanics of traumatic brain injury: influences of the morphologic
heterogeneities of the cerebral cortex. Ann. Biomed. Eng. 36(7), 1203–1215 (2008)

16. P. Chadwick, R.W. Ogden, A Theorem of Tensor Calculus and Its Application to Isotropic
Elasticity (School of Mathematics and Physics, University of East Anglia, Norwich, 1971)

17. K.H. Yang, A.I. King, Modeling of the brain for injury simulation and prevention, in
Biomechanics of the Brain, ed. by K. Miller (Springer, New York, 2011), pp. 91–110

18. L. Zhang, K.H. Yang, A.I. King, A proposed injury threshold for mild traumatic brain injury.
J. Biomech. Eng. 126(2), 226–236 (2004)

19. B. Morrison 3rd et al., A tissue level tolerance criterion for living brain developed with an in
vitro model of traumatic mechanical loading. Stapp Car Crash J. 47, 93–105 (2003)

20. A.H.S. Holbourn, Mechanics of head injuries. Lancet 2, 438–441 (1943)
21. H. Kolsky, Stress Waves in Solids (Dover Publications Inc., New York, 1963)
22. D.R.S. Bradshaw, C.L. Morley, Pressure and Shear Responses in Brain Injury Models, U.o.S.

ISVR, UK, Editor (2001)



186 G.R. Joldes et al.

23. E.H. Clayton, G.M. Genin, P.V. Bayly, Transmission, attenuation and reflection of shear waves
in the human brain. J. R. Soc. Interface 9(76), 2899–2910 (2012)

24. Y. Chen, M. Ostoja-Starzewski, MRI-based finite element modeling of head trauma: spheri-
cally focusing shear waves. Acta Mech. 213(1–2), 155–167 (2010)

25. N. Yoganandan, Frontiers in Head and Neck Trauma: Clinical and Biomechanical (IOS Press,
Washington, 1998)

26. Y. Chen, Biomechancial analysis of traumatic brain injury by MRI-based finite element
modeling, in Mechanical Science & Engineering (University of Illinois at Urbana-Champaign,
2011)

27. DassaultSystèmes, ABAQUS 6.13 Documentation (Providence, 2013)



Chapter 17
Modeling of Bifurcated Tubular Structures
for Vessel Segmentation

Haoyin Zhou, Peng Sun, Seongmin Ha, James K. Min, and Guanglei Xiong

17.1 Introduction

Segmentation and geometric modeling of blood vessels from medical imaging is
a prerequisite for computational analysis of blood flow and wall mechanics [1],
which facilitates the diagnosis of ischemia and atherosclerosis. Currently, vessel
segmentation and modeling usually includes two steps: the first step is centerline
detection; and with the detected centerline [2], the second step is coronary lumen
and wall segmentation [3].

The centerline detection methods mostly start with heuristics-based [4, 5] or
learning-based [6] vessel enhancement filtering. Following this, Yang et al. proposed
a data-driven centerline tracing method. Zheng et al.’s method is not only data-
driven but also assisted with a prior shape model [7], which achieved high accuracy.

Conventional voxel-based coronary segmentation methods are useful for the
delineation of vascular geometry. For example, Wang proposed an automatic seg-
mentation method of vasculature that combines level-sets with an implicit 3D model
of the vessels [8]. Shahzad et al. performed lumen segmentation by using graph
cuts [9]. However, their slow computation speed and inability to incorporate expert
knowledge limit their wide use. Learning-based coronary lumen segmentation
methods have been proposed for the segmentation of cardiac structures by not
only increasing the speed but also learning from the manual annotations. For
instance, Lugauer et al. used a learning-based method to segment vessel lumen
by using supervised classification [10]. Vessel wall segmentation is much less
mature and is primarily performed by global or adaptive thresholding [11]. For the
machine learning methods, a water-tight base mesh is required as an initialization
for adaption to the unseen image to be segmented. This requirement is difficult
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for modeling the entire vascular tree, whose topology and connectivity vary from
patient to patient. Therefore, to our knowledge, all previous learning-based methods
assumed a loose combination of tubular structures and do not account for the
bifurcation geometry [6, 7]

In this chapter, we propose a novel method for the construction of complex lumen
vasculature with a focus on explicit modeling of bifurcation modeling problem for
learning-based vessel segmentation. Compared with those vessel decomposition
methods after level-sets [12], there are mainly two steps in our approach. Firstly,
the base mesh of bifurcations is modeled by using convex hulls to join extruded
tubular structures guided by centerlines. Secondly, subdivision and boosting-based
segmentation of the generated convex hull are performed to adapt the model to the
target vessel boundaries. Our experiments show that constructed coronary artery
models from CT imaging are in high fidelity by comparing to the manual annotated
ground-truths.

17.2 Structured Coronary Mesh Generation

Centerlines are widely used to represent the path and connectivity of blood vessels
including coronary arteries [13]. In order to characterize the geometry of the lumen
boundary, diameters or cross-sectional areas are combined with centerlines for
the detection of the presence of any narrowing or stenosis. On the other hand,
unstructured meshes (e.g. Fig. 17.1a) are also used to model vessel surfaces,
especially for detailed modeling of vascular shape and for generating the fluid
domain for computer simulations. Both approaches have limitations considering the
tubular and complex shape of blood vessels. Centerlines with diameter information
are inadequate to model vessels with asymmetric or noncircular cross-sections.

Fig. 17.1 Coronary modeling and segmentation. (a) Geometric model of the coronary arteries
with an unstructured mesh from the level-sets method. (b) The final result of our method: geometric
modeling of the same arteries by linking the centerlines with a structured mesh. The centerline
endpoints and bifurcation points (shown in red) are connected by centerline edges (shown in blue)
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Although unstructured meshes are excellent for representation of complex surface
details, it is challenging to handle queries for global topology and connectivity.

By combining both representations, we propose to model coronary arteries by
linking centerlines with structured surface meshes, as shown in Fig. 17.1b. By
resampling a given centerline (dense in our case), a list of uniformly distributed
nodes is generated as centerline nodes, c1, : : : ,cl, and a smoother centerline is
obtained by finding a spline curve interpolating them. We define a local coordinate
frame [t,u,v] at each node c using a rotation minimization technique, where t is
along the tangent direction of the centerline and [u,v] spans a 2D plane on the cross-
section. The lumen surface is modeled as a structured mesh by sweeping through the
contours on the 2D planes. Each contour is implicitly defined using a list of lumen
distances, d1, : : : dk, from c to the intersections on the lumen surface along k radial
vectors sampled uniformly on the circumference.

In our system, we firstly apply the Frangi filter [14] to extract the centerlines.
Then, for each center point c, we search for its lumen distances dk separately by
using a boosting-based segmentation classifier. Our boosting classifier is trained
from 119 manually annotated patients’ data.

17.3 Bifurcation Merging

At bifurcations, as shown in Fig. 17.2a, it is not nature to describe the meshes
by centerlines and lumen distances. Getting smooth meshes of the bifurcations, as
shown in Fig. 17.2b, can be seen as merging the bifurcating vessels. Our bifurcation
mesh generation algorithm includes the following steps: (1) selecting the end-faces
of the vessels; (2) generating the convex hull of the end-faces; (3) subdividing and
smoothing the convex hull and mesh intersection verifying. The above steps are
working in a loop way until the step no intersecting meshes. Finally, (4) boosting-
based segmentation is applied to obtain the bifurcation lumen.

Fig. 17.2 Bifurcating vessels before and after merging



190 H. Zhou et al.

17.3.1 End-Face Selection

The end-faces are the borders between the tubular vessels and the bifurcation. End-
faces must be located in appropriate locations relative to the bifurcation point on the
centerline because it may be impossible to generate the bifurcation mesh if it is too
close or cannot maintain tubular shape if it is further away.

Denote there are M bifurcating vessels and each has Ni contour points, iD 1, 2,
: : :M. The contour points are denoted as pij, where jD 1, 2, : : :Ni.

Condition 1 The selected end-faces of an bifurcation should satisfy that all points
pi0j0 should be on the same side of end face i, for all i0¤ i, j0D 1, 2, : : :Ni’.

Condition 2
ˇ̌
ˇ���!cipi0j0 � �!Zi

ˇ̌
ˇ > Threshold (17.1)

for iD 1,..,M, i’¤ i, j’D 1,2, : : :Ni’. Where
�!
Z i suggests the unit normal vector of

end-face i; ci suggests the center point of end-face i.

For any end-face that does not satisfy these two conditions, move it far away
from the bifurcation center one point at a time on the centerline, until all end-faces
satisfy these two conditions.

Condition 1 guarantees that the convex hull exists, and Condition 2 suggests
the cases that two mostly parallel end-faces are too close to each other should be
avoided.

17.3.2 Convex Hull

A fast and robust algorithm is proposed in this section to obtain the minima convex
hull of all M selected end-faces. To generate the mesh, all points pij for iD 1, 2,
: : :M and jD 1, 2, : : :Ni should be on the surface of the generated convex hull.
Hence, it is necessary to avoid the non-convex end-face cases. Our algorithm obtains
the maximum likelihood circle of all end-faces, the radius ri is obtained by:

ri D 1

Ni

X
rij (17.2)

where rij is the radius of pij. And the new points generated by ri are denoted as qij,
iD 1, 2, : : :M and jD 1, 2, : : :Ni. The convex hull of qij can be easily transferred
into a hull of pij by replacing the coordinate of the points.

The general idea of our convex hull generation algorithm is that every line
segment of this convex hull must have two, and only two adjacent planes. Since
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Fig. 17.3 Geometric
relationship used in our
convex hull generation
algorithm

Fig. 17.4 Convex hulls from M D 3, 4, 5, 6, 20 bifurcating tubular objects

every line segment qijqij C 1 is already included in the end-face i, one more plane
should be found. As shown in Fig. 17.3, for line segment of end-face i defined by
points qij and qij C 1, find qi’j’:

argmin angle
��!

X ij;
�!
Y ij;i0j0

�
; i0 ¤ i (17.3)

where
�!
X ij D ����!qijqijC1 � �!Zi and points outside, where Zi is the unit normal vector of

end-face i; angle(*) suggests the angle between two vectors
In most cases, the convex plane includes three points: pij, pij C 1, pi’j’. However,

sometimes when there are more than four points in this plane, the 2D convex hull
algorithms are employed to generate the contour.

After applying this to all line segments, including the new generated line, the
final convex hull is obtained. As shown in Fig. 17.4, our algorithm is capable of
joining any number of tubular objects by generating the convex hull.

17.3.3 Subdivision and Laplacian Smoothing

To make the generated bifurcation mesh editable, it is necessary to subdivide the
convex hull mesh to add some editable points. Here subdivide each line that connects
two end-faces into four sub-segments.
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Fig. 17.5 The generated bifurcation meshes

To avoid low quality meshes, an improved Laplacian method proposed by
Vollmer [15] is applied to make the generated mesh smooth and nature. Compared
with conventional Laplacian method, this can avoid the mesh shrink to the center.

To guarantee the generated mesh has no intersection, we introduced the algo-
rithms proposed in [16]. If intersection is detected, go to Sect. 17.3.1 and use a
larger Threshold in Condition 2.

17.3.4 Boosting-Based Bifurcation Lumen Segmentation

So far, no CT image information is used in the bifurcation part. To adapt the model to
the bifurcation boundaries, we apply the similar classifier as we used in the tubular
vessel lumen segmentation. Because the bifurcation mesh does not have centerlines
and radius, the boundary is segmented along the normal of the mesh (Fig. 17.5).

The bifurcation lumen segmentation classifier is trained on the manually anno-
tated bifurcation data, here we use 50 patients’ data with totally 244 bifurcations
and over 1 million points. We use some intuitive features, which is a 25� 1
vector includes the CT intensity, intensity � intensity, gradient, gradient � gradient,
gradient � normal of itself and its four neighborhood points along the normal.

17.4 Experiment

Coronary CT angiographic images are used to test our algorithms. To evaluate
our algorithm, the contracted bifurcations are compared with manually annotated
ground truths, as shown in Fig. 17.6. Data from 30 patients are used in our
experiment. The data were acquired using standard imaging protocol on GE
discovery scanners. Image volumes may contain 153–357 slices, while the size of
each slice is the same with 512� 512 pixels. For different volumes, the in-slice
resolution is isotropic and varies between 0.28 and 0.49 mm with slice thickness
from 0.30 to 0.63 mm. The average distance between the constructed bifurcations
to the ground truths is DD 0.299 mm.
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Fig. 17.6 Compared with manually annotated ground truths, the accuracy of our method is
evaluated. Patients’ coronary vessels are segmented and modeled from CT images as shown in
the first row, the bifurcation meshes are colored according to the error distance (D (mm)) between
the constructed bifurcations and the ground truths. The distance histograms of D of the bifurcation
mesh are shown in the second row. Some examples of detailed colored maps are shown in the third
and fourth rows. The last row is the color map parameters of D (mm). Each column represents one
patient

17.5 Conclusions

In this chapter, we propose a novel method for construction of complex lumen
vasculature with a focus on explicit modeling of bifurcation modeling problem for
learning-based vessel segmentation. Convex hulls are used to join tubular structures
guided by centerlines. Subdivision and boosting-based segmentation are performed
to adapt the model to the target vessel boundaries. Our experiments show that
the constructed coronary artery geometry from coronary CT imaging is accurate
by comparing to the manually annotated ground-truths. Our future work includes
support for interactive editing of the bifurcation geometry and application to other
tubular structures, e.g., trachea.
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Chapter 18
Modelling the Presence of Diffuse Axonal Injury
in Primary Phase Blast-Induced Traumatic
Brain Injury

Matthew Sinclair, Adam Wittek, Barry Doyle, Karol Miller,
and Grand R. Joldes

18.1 Introduction

Traumatic brain injury (TBI) has become one of the leading causes of death
in the modern world [1] and impacts society medically, socioeconomically and
emotionally [2]. Blast-induced traumatic brain injury (bTBI) has devastated military
personnel since World War I, cloaked under the misclassification of shell shock,
among other neurological disorders [3]. Recently, the necessity for understanding
the nature of bTBI has become increasingly prevalent due to the insurgence of
improvised explosive devices (IEDs) in the Middle East conflicts. The precise
mechanism of bTBI continues to evade the full comprehension of researchers due to
the difficulty in obtaining accurate in vivo results via human experimentation. The
nature and mechanisms that influence bTBI have been extrapolated from several
animal-focused tests in combination with interpretation of computer-simulated
models and finite element (FE) results. bTBI has become a key focus of military
studies as the prominence of IEDs in modern combat continues to threaten the lives
of war-fighters around the globe [4].

A primary objective of the investigative community is to determine numerical
thresholds that allow for reasonable prediction of the injuries sustained by an
individual due to either air or surface blasts. Through analysis of hemispherical
surface blast events that are considered survivable on the Bowen survivability curve
[5], an attempt at predicting the presence of diffuse axonal injury (DAI) under
primary phase conditions can be established and will serve as a foundation for
future research in methods of combating this devastating injury. The purpose of this
study is to assess the prevalence of DAI in IED scenarios by simulating the effects
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of primary phase surface blasts using a voxel-based comprehensive computational
model of the human head, and comparing the strain values within the brain to tested
DAI strain injury criterion. Determination of the presence of DAI in these conditions
will serve as a foundation for further study and has potential application within life-
saving combat technology research.

Multiple investigations have been performed for air blast scenarios, but only
few are accounting for the hemispherical blast surface events. Zhang et al. [6]
investigated the influence of blast load dampening via a combat helmet, but only
considered small explosives in close proximity to the head model, and only for
air blast events. It was discovered that wearing an advanced combat helmet may
reduce strain by up to 30 %, but these effects were not accounted for in this study.
Explosive impacts on buildings from surface blasts have been studied in [7]. Wang
[8] investigated air blast reflection for low mass explosives but primarily focused on
bridging vein rupture. To the authors’ knowledge, there has been no investigation
into the hemispherical surface blast influences on producing DAI using an MRI-
resolution head model.

Blast wave trauma has been categorised into four phases: influence from
the overpressure waves; collision with shrapnel and flying debris; impact with
surroundings from motion induced by blast force; and other factors such as chemical
burns or smoke inhalation. These are labelled as primary, secondary, tertiary and
quaternary phases respectively [9]. Secondary and tertiary phases are typically
compared to standard blunt-force induced TBI, whereas primary phase induced
trauma is synonymous with explosive events. The precise mechanisms by which
bTBI occurs are still unknown. Grujicic et al. [10] propose that rotational motion
and acceleration/deceleration are not applicable in blast-induced trauma scenarios.
Conversely, an investigation by Dagro et al. [11] supports the notion that rotational
loading is relevant to blast events. In addition, Elder [12] discovered injuries
reminiscent of DAI by exposing live animals to blast pressure events, and attributes
these injuries to rotational acceleration. Other injury mechanisms are hypothesised,
including transmission of the pressure waves via vasculature [13].

Axonal damage, cerebral contusion and subdural haemorrhaging are the three
most common forms of mild TBI (mTBI), or concussion as it is known in common
language [10]. Of these three forms of mTBI, DAI is the most difficult to detect
by conventional means such as computed tomography (CT) scan or magnetic
resonance imaging (MRI). DAI occurs when excessive stress or strain is applied to
the directional axons within the white matter of the brain, usually resulting from
accelerative and declarative forces caused by impact loads. Areas of particular
susceptibility include the white/grey matter interface, the brainstem and areas
around the falx cerebri. There is no agreement regarding the mechanical and tissue
thresholds used for diagnosis of DAI in computational simulations. Experimental
data produced by Bain et al. [14] by stretching tissue samples to the point at which
predicted morphological injury occurred resulted in DAI threshold strain values
ranging from 0.14 to 0.34, with an optimal value of 0.21. This was confirmed via
FE analysis by Kleiven et al. [15] whom concluded that a max principal strain of
0.21–0.26 was indicative of DAI through a recreation of both NFL impact events
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and motorcycle accidents. Although many thresholds have been calculated via
computational simulation, in vitro experimentation on human cadavers and human-
resembling animal tissue samples remains as a strong basis for DAI threshold
detection. For this reason, the empirical principal strain value of 0.21 was selected
for use in this study. This threshold was applied to the results obtained from the FE
simulation for multiple blast events to determine the presence of DAI.

18.2 Methods

18.2.1 Model and Material Properties

A finite element analysis was performed to determine the strains caused by blast
loading within the brain, thereby requiring the use of a computational model
of the human head. The model used was a 3D-voxel-based mesh generated
from an MRI scanning of an anonymous human brain by Chen [16]. The FE
mesh was constructed from hexahedral elements with approximate dimensions of
1.33 mm� 1.33 mm� 1.30 mm. The model consists of white and grey matter,
cerebrospinal fluid (CSF) and skull, with material properties derived from Zhang
[17]. Custom mesh smoothing algorithms were employed by Chen [16] to provide
a better approximate shape of the anatomical features.

The falx cerebri and tentorium cerebellum are extensions of the dura fold
separating the hemispheres of the brain and the cerebellum respectively. The
original model provided by Chen [16] excluded these anatomical components.
Their inclusion was deemed necessary in the simulations in an effort to improve
the completeness of the model and to account for their effect on the system
response to pressure waves. In addition, several studies empirically determined and
reinforced the notions regarding the structural rigidity provided by the falx cerebri
and tentorium cerebellum under cranial impacts: Smith et al. [18] demonstrated
that the falx cerebri can induce high strains due to impairment of motion of the
hemispheres and that the tentorium cerebellum can act as a physical obstruction
over which axons can tear, subsequently leading to DAI. In addition, Zhang et al.
[19] identify the falx cerebri’s strong effect on rotational loading and subsequently,
the innocuous effect under translational loading. The falx cerebri and tentorium
cerebelli were created by reassigning elements from the CSF, grey matter and white
matter sets based on the geometry observed in coronal, sagittal and transverse MRI
scans (Fig. 18.1). The maximum thickness was two elements (2.66 mm) in the
falx cerebri and three elements (3.99 mm) in the tentorium cerebelli, with at least
four nodes shared between membrane elements. The thickness used is essential
in effectively transmitting bending forces under dynamic simulations and is hence
modelled slightly thicker than the approximate membrane thickness of 2 mm [20].
The increased thickness is taken into consideration by scaling the Young’s modulus
of the membranes in order to obtain the correct bending rigidity.
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Fig. 18.1 (a) Mid-transverse section of the head model. (b) The introduced falx cerebri and
tentorium cerebellum

Table 18.1 Material properties for falx cerebri and tentorium cerebelli

Tissue
Density ¡
[kg/m3]

Bulk modulus
K [Pa]

Short term
shear modulus
G0 [Pa] Reference

Falx cerebri 1130 4.47E C 7a 4.62E C 6a [20]
Tentorium cerebelli 1130 1.32E C 7a 1.37E C 6a

aScaled to account for difference in thickness

The properties for the introduced Falx Cerebri and Tentorium Cerebelli are taken
from literature and listed in Table 18.1. All materials are modelled as linear elastic,
except the white and grey matter, which are modelled as hyper-viscoelastic (Neo-
Hookean with Prony series viscoelasticity).

A fixed boundary condition was imposed at the stem of the head-spine juncture
for this model. This boundary condition allows the introduction of rotational motion
of the head, which is a key aspect of producing the strains hypothesised to induce
DAI. Chen [16] has analysed the effects of both the fixed and free boundary
conditions via comparison with measurements published by Nahum et al. [21]. He
determined that the fixed boundary condition provides a reasonable approximation
of the rotational acceleration undertaken by the head due to frontal impacts.

18.2.2 IED Simulation

ABAQUS Explicit was used for simulating the explosive events. Two methods
of applying the blast loading are available in ABAQUS 6.13: interaction creation
with manual amplitude input or use of the Conventional Weapons Effects in
Blast Loading (CONWEP) system. The CONWEP system has been used, which
calculates a reasonable blast wave inclusive of positive and negative impulses with
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the input of a TNT equivalence mass and impulse time. Also, the auto-calculation of
reflection pressure is especially relevant in this analysis where hemispherical surface
blasts are the primary blast loading mechanism.

The guerrilla nature of homemade IEDs makes them crude and variant in their
constituents. A “typical” homemade IED is often constructed of 98 % ammonium
nitrate and 2 % fuel oil [22]. In combat environments IEDs are usually made of
either 105 mm or 155 mm artillery shells which cause more damage to vehicles and
convoys, with the 155 mm shell being more explosive than the 105 mm [23]. Their
explosive power is characterised by equating their mass specific energy to a TNT
mass equivalence [22]. This is achieved through the multiplication of an empirically
determined equivalency factor to determine a prediction for expected overpressure
and impulse time of a non-TNT based explosion [24]. For ammonium nitrate/fuel
oil, 105 mm artillery shell and 155 mm artillery shell, the TNT mass equivalents
are 4.5, 2.4 and 7.3 kg respectively. This scaled comparison to an equivalent mass
of TNT based on energy output allows for direct comparison between explosives of
various constituents.

Using a combination of iterative equations derived by Kingery and Bulmash
[25] and the Hopkinson-Cranz distance scaling equation (Eq. 18.1), the appropriate
standoff distance Z can be calculated to achieve the given blast parameters including
blast overpressure and positive impulse time:

Z D R

W1=3
(18.1)

where R is the actual distance between the detonation and contact points (m) and
W is the TNT mass equivalence for the explosive (kg). Table 18.2 details these
calculated values and the corresponding blast parameters. Values were chosen to be
positioned on the lung damage threshold and 99 % survivability curve [5]. These
points were chosen as they demonstrate situations where people exposed to IED
blasts would feel the impact, then presumably proceed with their duties without
receiving medical attention. It is these scenarios that pose the greatest risk for
patients induced with DAI as symptoms of concussions may exist but the full extent
of the injury may be underestimated, possibly leading to death. It should be noted
that no 2.4 kg explosion was analysed for the 99 % survivability instance. This is
because a standoff distance of 1.67 m was required, thereby placing the detonation
point above the ground. This reclassifies the explosion as an air blast and hence is
not in the scope of this study.

Table 18.2 Simulated blast parameters calculated for IED scenarios

Survivability curve
TNT mass
equivalent [kg] Standoff distance [m]

Reflected
overpressure [kPa]

Lung damage 2.4 3.439 506.92
4.5 4.123 549.20
7.3 5.329 420.01

99 % 4.5 2.340 2999.13
7.3 3.413 1557.96
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Fig. 18.2 Impact pressure acting on the skull for various TNT mass equivalencies and standoff
distances

18.3 Results

The impact pressures, computed at the site of initial impact with the skull, for the
various standoff distances and TNT mass equivalences are displayed in Fig. 18.2.
Consistent with the survivability curves and expected impacts, the impact pressures
depended on the standoff distance and TNT mass equivalence, with the 4.5 kg at
2.340 m having the quickest and highest magnitude impact pressure and the 7.3 kg
at 5.329 m conversely having the most delayed and smallest impact pressure. All
pressure responses have jagged fluctuations, but the general gradients are similar
to those predicted for the ideal Friedlander wave. This is most likely a result of
intracranial pressures destructively and constructively interfering with the impact
pressure as the results were probed from the impact site on the skull. The sites of
impact also varied according to the distance of the blast, suggesting that ABAQUS
Explicit has appropriately determined the pressure impact angles, since the closer
explosions impacted the head lower on the model. The 2.4 kg explosion at 3.439 m
was the only impact pressure that developed a significant negative value, and then
increased again above zero. This response was not as expected and could have been
caused by a number of potential factors including the particular site of impact or an
abnormality in the reflection of pressure waves within the head. Also, for all results,
the pressure was analysed directly from the response of the skull, so an oscillating
pattern is produced in the impact pressure. This is negligible since the main blast
parameter of interest is the peak impact pressure induced.
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Fig. 18.3 The strain induced by explosions located on the lung damage iso-curve at areas of
maximum principal strain in the brainstem and white/grey matter interface

Fig. 18.4 The strain induced by explosions located on the 99 % survivability iso-curve at areas of
maximum principal strain in the brainstem and white/grey matter interface

For each of the blast events the response of the model was analysed to determine
peak areas of strain (Figs. 18.3 and 18.4). It was noticed in all simulations that high
regions of strain were present at the white/grey matter interface and the brainstem.
This correlation demonstrates a realistic prediction from the model, as one may see
in head trauma events [26].
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For the lung damage simulations the maximum strains were generally lower than
the DAI threshold, indicating that DAI would generally not be induced by such
explosions. For the 99 % survivability simulations there is good indication that DAI
will result from such events.

18.4 Conclusions

Finite element simulations of different IEDs, for varying standoff distances accord-
ing to the 99 % survivability and lung damage iso-curves, were performed using
the CONWEP surface hemispherical blast calculations in ABAQUS. The response
of the brain was analysed and the predicted principal strains compared to an
experimental threshold of 0.21 determined from empirical investigations for the
presence of DAI. High regions of strain occurred at locations of the white/grey
matter interface and brainstem for all simulations, both areas where DAI will
typically be induced.

Strains lower than the threshold were computed for the lung damage curves,
suggesting that DAI would not be present in these events. Significantly higher strains
were computed for the 99 % survivability events, strongly suggesting that at least
mild DAI would be present in these events. This suggests that such an analysis could
be used for reasonable prediction of this injury in combat zones without the need
for intrusive or expensive medical imaging.
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