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 Introduction

All treatment strategies are studied at the preclin-
ical and clinical level, and the related endpoints 
are used to extract radiobiological parameters in 
mathematical models. This chapter aims to pro-
vide an overview of these approaches based on 
clinical and cellular data.

As mentioned in the previous chapter, median 
survival of glioblastoma (GBM) patients is poor. 
In fact, the 1-year median survival rate of GBM 
patients is approximately 50 %, despite the use of 
aggressive standard treatments, i.e. macroscopic 
resection and radiochemotherapy followed by 
adjuvant temozolomide.

In particular, to date most patients die from dis-
ease progression, primarily local recurrence. In 
fact, the limited tolerance of normal tissues can 
lead to inadequate therapeutic radiation doses.

The use of modern treatment planning sys-
tems, combined with a multi-imaging modality 
and the possibility to use Image Guided 
Radiotherapy (IGRT) images in order to track 
dose deposits in the tumour, allows a reliable 
cumulated dose to be delivered to the tumour bed. 
One of the characteristics of this dose is, in many 
cases, the lack of homogeneity, due to the proxim-
ity of Organs at risk (OAR). Nevertheless, the 
dose grid dimension (8–12 mm3 voxel volume) 
and imaging resolutions limit the dose delivery 
tracking to a cellular level. The use of inaccurate 
dosimetric data is one of the main flaws of model 
parameter estimations obtained from literature on 
clinical findings from the last decade.

In addition, when deriving model parameters 
from meta-analysis, the heterogeneity in investi-
gated patient populations can lead to different 
values or produce contrasting results to those of 
individual studies. This is known as Simpson’s 
paradox [1].
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The effect of tissue, or cell, irradiation depends 
on the dose but in general is not proportional (in 
probability or intensity) to the dose. The inherent 
stochastic nature of the interaction of radiation–
matter, the cellular structure and the complexity 
of environmental interaction make it difficult to 
develop a simple and reliable model of cell kill-
ing [1–3].

The cumulative effect of dose delivery to tissue 
makes it impossible to derive the correct dose for 
each specific patient and cell type, which would 
maximize the benefit of irradiation in terms of 
probability of cure, severity of deterministic dam-
age and probability of stochastic side effects [1].

Therefore, the necessity to define an adequate 
population based pattern of temporal and spatial 
dose delivery has seen the development of vari-
ous models of cell killing and tumour control 
probability (TCP).

The first studies that involved the combined 
effect of dose per fraction and overall treatment 
time (OTT) were performed as early as the 30s 
[4, 5], but they were neglected in consequences 
of World War II. The first universally accepted 
model focused on the skin reaction was published 
in 1944 [6], accompanied by great uncertainty on 
energy and source to skin distance values limit-
ing its application to modern radiotherapy.

The first model of lethal doses based on radio-
sensitivity of tumour cells and Poisson statistics 
was presented in 1961 [7].

In 1969, Ellis suggested a formula which related 
total dose, number of fractions and OTT to a quan-
tity termed “Nominal Standard Dose”. The authors 
intended, this quantity to represent “the biological 
effect of a given treatment regime” and enable the 
comparison of various treatment schedules (with 
different dose fraction, total dose and overall treat-
ment times) [8]. Considering the poor prognosis 
for GBM patients in the late 70s, the scientific 
community paid greater attention to the dose effect 
for GBM [9] and the first attempts to correlate 
delivered dose and tissue damage by means of 
Computer Tomography scans were published [10].

In the past 20 years, an increased number of 
research projects aiming at simulating and formu-
lating the mechanisms of tumour response to radi-
ation treatment have been proposed. One of most 

simple and efficacious models for radiation 
response is the linear-quadratic (LQ) model pro-
posed by Fowler [11, 12]. The LQ model describes 
cell survival after exposure to ionizing radiation 
and is expressed by a linear radiobiology parame-
ter α (intrinsic whole tumour radiosensitivity) and 
a quadratic parameter β (repair capability) with 
reference to two forms of DNA damage.

The LQ model determines the relative contri-
bution of each selected dose schedule to the sur-
viving fraction. However, it could be optimized 
by taking into account cell repopulation parame-
ters, such as the kick-off time for tumour repopu-
lation (Tk), the repopulation doubling time (Td) 
and the effective tumour repopulation rate quan-
tified by γ = ln2/Td [3, 13–21].

 Cellular Dose Response Models

 Cell Killing

The basic assumption of the simple LQ model 
states that the surviving cell fraction after a 
homogeneous dose irradiation is [11]
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When assuming that more than a single fraction is 
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If the dose d is delivered in each fraction then 
(6.3) becomes
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It is easier to describe BED in terms of equivalent 
dose given at 2 Gy per fraction [14, 22]
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A graphical representation of the cell survival 
curve for the linear and quadratic component is 
shown in Fig. 6.1. The parameter α corresponds 
to the initial slope of the cell survival curve 
(i.e. the larger values of α correspond to the 
steeper initial slope) while β determines the 
degree of downward curvature of the cell sur-

vival curve (the larger value of β corresponds 
to the more “bent” curve).

 Incomplete Repair

The LQ model as described in (6.1)–(6.6) cannot 
correctly estimate incomplete repair and OTT 
[23]. A formula that includes appropriate correc-
tion factors that link EQD2 for a dose given within 
T days to one given in t is:
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Fig. 6.1 Cell survival 
against dose due to the 
linear (L), i.e. αD, and 
quadratic (Q), i.e. βD2 
component. The 
combined effect is 
shown as LQ. The used 
parameters are α = 0.12/
Gy and α/β = 8 Gy
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where Hm is the incomplete repair factor and the 
suffix m is equal to the fractions per day if it is 
assumed that there is a complete repair within the 
following day. Dprolif is a parameter that gives the 
“lost” dose per day of delay. Some authors prefer 
to use a different symbol, λ [24].

 Low-Dose Hypersensitivity

Although the LQ approach is widely used to describe 
tumour cell killing, at low doses (<1 Gy) the survival 
fraction does not monotonically decrease like the 

dose [25, 26]. In the range 10–30 cGy the surviving 
fraction is constant, while the radioresistance 
increases, reaching a maximum around 1 Gy and 
thereafter the curve shows a decreasing slope [25]. 
These results indicate a counter-intuitive effect, 
i.e. at low dose the cell surviving fraction increases 
with dose. Of note, the stated increased dose is not 
a subsequent irradiation, but a complete different 
irradiation with a different dose level.

Equation (6.1) can be corrected to take into 
account this effect [26]
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 Genome-Dependent Radiation 
Sensitivity

Haas-Kogan et al. [27], using LQ and repair- 
saturation mathematical models, showed that p53 
function influences the effect of fractionated 
radiotherapy on GBM tumours. They identified 
two distinct cellular responses to radiation, 
p53-independent apoptosis and p53-dependent 
G1-arrest, influencing radiobiological parameters 
that characterize the GBM radiation response. 
Some years later, a distinct genotype-dependent 
radiosensitivity group was identified in associa-
tion with mutant ATM (ataxia telangiectasia 
mutated), wild-type TP53 (tumour protein 53) 
and mutant TP53 linked to intrinsic cellular 
radiosensitivity of GBM cell lines that grouped 
into four different radiosensitivity categories. 
This suggests the existence of multiple genotype- 
dependent mechanisms underlying the intrinsic 
cellular radiosensitivity [28, 29].

The coexistence of glioma-differentiated can-
cer cells (GDCC) and glioma-cancer stem cells 
(GCSCs) has been proposed to explain the intrin-
sic tumour heterogeneity to radiation response. 
The GCSCs have been reported to be less sensi-
tive to radiation-induced damage through prefer-
ential activation of DNA damage checkpoint 
responses. Other authors [30, 31] have suggested 
that GCSCs can readily assume a quiescent state 
and later, following DNA repair, repopulate the 
tumour. DNA damage induced by radiotherapy 
treatment potently initiated activation of phos-
phorylation of the ATM, p53 and Chk2 check-
point proteins. Phosphorylation of these 
checkpoint proteins resulted significantly higher 
in the GCSCs compared to GDCCs and could 
explain the reported intrinsic radiosensitivity 
 difference [32, 33]. A model that simulates the 
coexistence of GCSC and GDCCs and their cell 
cycle phase in growth and radiation response has 
recently been proposed [34]. The authors inte-
grated the LQ model, extended to take into 
account the effects of inter-fraction tumour 
repopulation and α and β cell-specific radiosensi-
tivity parameters, with the introduction of ξ and λ 
as radiation protection factors for quiescent cells 
and GCSCs, respectively. The simulations per-

formed revealed that not only the higher intrinsic 
radioresistance of GCSCs but also the presence 
of a shift from asymmetric to symmetric division 
or a fast cycle of GCSCs after fractionated radio-
therapy may contribute to the frequently observed 
accelerated repopulation after irradiation. The 
survival and increase of the GCSCs population 
during radiation therapy may be a leading cause 
of accelerated and more aggressive GBM recur-
rence after radiation therapy.

 Dual Compartment Tumour Survival, 
Mathematical Model

In an attempt to model subpopulation GCSCs, 
dual compartment tumour survival, a mathemati-
cal model has recently been proposed by Yu et al. 
[35]. The model assumes the radiation response 
as the sum of two subpopulations deriving from 
the coexistence of GCSCs and GDCCs, each 
with their distinctive LQ parameters. Thus, the 
dual compartment cell survival model is con-
structed as

S D f e f e
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2
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where f is the fraction of GCSCs, (1−f) is the 
fraction of GDCCs, while αi and βi describe the 
radiobiological properties (intrinsic radiosensi-
tivity and repair capacity) of each population. 
The increased radioresistance has been explained 
by the rapid regrowth of the GDCC compartment 
triggered by its depletion while a viable GCSC 
population is maintained.

Figure 6.2 illustrates the surviving fraction of 
two populations with α1 = 0.12/Gy (cell line#1), 
α2 = 0.6/Gy (cell line#2) and of a mixed popula-
tion 50 % cell line#1 + 50 % cell line#2, with the 
same αi/βi ratio (i.e. 8 Gy).

The type of programmed cell death, as the 
response to treatment in glioma cells, has been 
widely debated in recent years, suggesting that 
cell autophagy is the main intracellular process 
involved and not apoptosis [36].

A dual compartment cell survival model has 
been proposed by Tini et al. [37] to explore the 
cell-autophagy role after in vitro irradiation of 
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glioma cells (T98G, U373) integrating the low- 
dose hypersensitivity effect in its formulation. 
This model assumes radiation response in glioma 
cells derived by activation of cell autophagy 
involved in both the pro-survival mechanisms and 
direct programmed cell death (i.e. programmed 
autophagy-related cell death) [38]. This model 
that fits complex survival curves in T98G and 
U373 glioma cell lines in the presence of multi-
modal response to radiation is formulated as

S D A e A esD D D( ) = × + -( ) ×-( ) - -( ) +é
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where the parameters represent
A = effect of low-dose hypersensitivity
αs = irreversible pro-death autophagy induced 

by DNA damage
αr = not irreversible autophagy pro-death
δ = autophagy pro-survival
β = repairable DNA damage

 TCP

Even in the simpler case of homogeneous irradia-
tion the use of Poisson statistics to describe the 

probability that all clonogenic cells are killed has 
proven to be incorrect [39], this has led to the 
development of models based on cellular killing 
[24, 40–42]. All these models are based, more or 
less explicitly, on some assumptions [41]:

 – Each tumour is made of a cluster of non- 
interactive clonogenic cells

 – Radiosensitivity may vary between tumour 
(and patients)

 – A tumour is controlled if all the clonogenic 
cells are inactivated

 – Clonogenic cell inactivation is a mutually 
independent event

The combination of these assumptions allows 
the development of a statistical model based on 
the probability of inactivation of all clonogenic 
cells. The number of clonogenic tumour cells is 
critical in determining the TCP and some authors 
have based it on the initial tumour volume, as 
given by the following equation:

 V a Nb= ×  (6.11)

where a and b are constant. Figure 6.3 illustrates 
the TCP against the dose when the number of 
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Fig. 6.2 The surviving 
fraction of two 
populations with 
α1 = 0.12/Gy (cell line#1), 
α2 = 0.6/Gy (cell line#2) 
and of a mixed 
population (50 % cell 
line#1 + 50 % cell line#2), 
assuming the same αi/βi 
ratio (i.e. 8 Gy)
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clonogenic cells in the volume V increases from 
106 to 1010.

These formulations are derived by statistical 
assumption as follows:

0
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Fig. 6.3 The TCP 
behaviour against the 
delivered dose when the 
number of clonogenic 
cells in the volume V 
increases from 106 to 1010
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where the parameters ln(k), α and λ represent the 
clonogenic number, cellular sensitivity and 
repopulation rate, respectively [41].
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where in the original model [40] the quadratic 
term βDi

2 was omitted for simplicity.
In (6.12b), Di is the dose received by a specific 

subunit and has to be considered fixed within the 
subunit, while ρj is the variable clonogenic cell 

densities within the volume, each having a relative 
volume fraction fj.

The third model uses a different EQD2 formu-
lation that considers the surviving fraction
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The TCP formulation includes radiosensitivity 
variability intra-patient (ind) and inter-patient 
(pop), assuming these variations can be described 
by the variability of S(2 Gy) [41].
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where NP is the number of dose bins, NC is the 
number of clonogenic cells, n the number of 

 fractions and νi the volume corresponding to the 
i-th dose point. The probability density functions 
are expressed as follows [42]:
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Models described above involve a wide number 
of parameters with statistical uncertainty. 
Notwithstanding this, the radiobiological models 
represent the only possible strategy to optimize 
treatment, compare rival plans or fractionation 
schemes or give an estimation of TCP at a given 
time after therapy.

Unfortunately, a radiobiological model able to 
overcome the poor GBM response to radiation is 
currently unavailable, due to the incomplete under-
standing of the underlying genetic and biomolecu-
lar alterations. Profiling studies based on gene or 
protein expression have revealed several altered, 
common, molecular pathways, resulting in the 
subclassification of distinct molecular subtypes 
(classical, mesenchymal, proneural, neural) that 
are different in terms of their prognosis and 
response to therapy [43]. This characterization is 
not currently in use in clinical practice. 
Furthermore, emerging evidence shows the exis-

tence of a stem like cell compartment in GBM, 
which demonstrates an increased resistance to ion-
izing radiation [16, 44, 45]. Due to the higher 
probability of killing radiosensitive cells with 
greater efficacy, all tumours during the course of 
treatment increase the mean radioresistance. GBM 
is characterized not only by an increase of the 
mean radioresistance, but also of the maximum.

There are other cellular models based on the 
possibility of a change in radioresistance during 
treatment [46] but their complexity is far beyond 
the aim of this chapter.

 Correlating Results of Cell-Culture 
SF with Clinical Empirical Data 
at Different Total Doses and Dose 
Per Fraction

The concept of isoeffective doses has been widely 
investigated in order to link the absorbed dose to 
the incidence of a specific biological effect attrib-
utable to irradiation. Survival curves have been 
obtained based on in vitro studies, providing 
some useful information on radiosensitivity of 
the investigated tumour and normal tissue cells. 
In particular, the α/β ratio has been derived to 
measure the sensitivity of the tumour or tissue to 
fractionation, i.e. to predict how the total dose for 
a given effect will change when the size of dose 
fraction is changed.

By using various treatment schedules for 
in vivo studies, the slope of the isoeffect curves 
has been determined, highlighting that they 
change according to the size of dose per fraction 
and depending on tissue type [47].

Also using in vivo data, the sensitivity to 
changes in fractionation schedule can be quan-
tified by using the α/β ratio. A high α/β ratio 
(range, 7–20 Gy), as in acutely responding tis-
sues and in tumours, indicates a more linear 
survival response of the target cells; a low α/β 
ratio (range, 0.5–6 Gy), as in late responding 
tissues, defines a significant curvature in the 
survival curve of the target cells. As a conse-
quence, the effects of fractionation are rela-

6 Mathematical Modelling of Radiobiological Parameters
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tively greater in the acutely responding than 
late responding tissues.

This suggests that acute responding tissues 
have flatter curves than late responding tissues, i.e. 
fractionation spares the late responding tissues. Of 
note α/β ratios could be different when calculated 
using (6.1) or (6.12b), as they are derived from dif-
ferent datasets with different weights to data, cor-
responding to low and high doses.

 Clinical Dose Response Models

 Poisson Hypothesis

In the clinical setting, TCP models derived from 
LQ based on the Poisson hypothesis have been used 
as a tool to estimate a radiobiological set of param-
eters from the available clinical outcome [47, 48].

The following equation predicts the 
progression- free survival based on the Poisson 
hypothesis

 PFS e N e
D d

Td
T Tk

= - ×
- +( )+ -( )a b ln2

 (6.19)

A graphical method to estimate the radiobiologi-
cal parameters in (6.19) by using a multiple step 
procedure has been proposed [48] and shown 
here in Fig. 6.4.

To combine the clinical outcomes from differ-
ent published studies, different irradiation sched-
ules need to be used. When comparing two 
fractionation regimens (e.g. a and b) (6.19) 
becomes:
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In this formula, the dependence by cell number N 
and Tk disappeared. Moreover, (6.20) takes into 
account the different radiotherapy schedules and 
the related clinical outcome.

Therefore, when a sufficient number of differ-
ent schedules and a large number of patients are 
enrolled (to reduce the stochastic fluctuations), 
an estimation of the cellular parameters (α, β and 
Td) can be made by the following equation:
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and C is named “clinical efficacy factor”.

Fig. 6.4 The relationship between α and α/β for glioblas-
toma multiforme. The black curves have been obtained 
from (6.19) using couples of clinical data and by varying 
Td value up to the coincidence for all curves. The intersec-

tions of the curves represent the best estimate of α, α/β 
and Td (a). The grey curves represent the 95 % confidence 
interval (only three curves shown) and the shaded area 
indicates the overall range of uncertainties (b)
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Equation (6.21) establishes an independent 
relationship between α and α/β from which it is 
possible to include and compare studies with dif-
ferent clinical outcomes when C ≠ 0.

The curves of different schedules are plotted 
in the α versus α/β graph. Td is varied until the 
coincidence of all curves is obtained, thus the 
intersection point provides an estimate of α, α/
βand Td. This expedient allows the values of N 
and Tk and their uncertainties in subsequent steps 
to be calculated.

Moreover, (6.21) is also substantially inde-
pendent from the impact of chemotherapy (i.e. 
temozolomide, TMZ, or bischloroethylnitro-
sourea, BCNU), which is unknown or indistin-
guishable when this approach is used, 
chemotherapy being generally adopted in all the 
investigated schedules or presenting limited dif-
ferences in terms of radiosensitivity when differ-
ent drugs are adopted.

Once the estimate of α, β and Td is made, an 
estimation of Dprolif, in fraction of 2 Gy, is 
obtained by the following equation:
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Subsequently, an estimation of Tk is obtained 
using the hypothesis of stem cells activation by 
the following equation [49]:
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Assuming that the process of stem cell activation 
for accelerated proliferation could begin when 
the tumour population has decreased to the order 

of a few thousand cells (e.g. ln(N0/NA)3000), thus 

T
d dk = +( )

11

a b
 [49].

Finally, the estimation of N is performed by 
using (6.19), in which α, α/β, Td and Tk are fixed 
at the best values. All the above steps produce the 
best fit parameters useful to compare predicted 
TCP curves and experimental data.

The best estimate and the CI95% for α, α/β, Td, 
N, Tk and Dprolif are shown in Table 6.1.

 Multivariate Logistic Regression

In order to consider the combined effects (e.g. of 
drug delivery and radiotherapy approach, as well 
as patient age, and other variables), a multivariate 
logistic regression can be adopted to predict the 
TCP following preoperative CRT. The TCP can 
be expressed as:

 
P z

e

e

z

z( ) =
+1  

(6.25)

where

Table 6.1 Model parameters entracte from Pedicini et al. 
[47]

Parameter Best estimate CI95 %

α(Gy−1) 0.12 0.10–0.14

β (Gy−2) 0.015 0.013–0.020

α/β (Gy) 8 5.0–10.8

Td (days) 15.4 13.2–19.5

Dprolif (Gy) 0.3 0.22–0.39

Tk (days) 37 29–46

N (clonogens) 9.1 × 103 4.0 × 103–2.1 × 104

z a a D a D d a OTT a age a FUdose a cisplatindose a= + + × + + × + × + × +0 1 2 3 4 5 6 75 ××mitomycinCdose  
(6.26)

In this approach, the LQ dose response model may 
incorporate not only the total radiotherapy dose 
and dose per fraction to estimate the α/β ratio [50], 
but also the other clinical and patient based covari-
ates. Although they have no theoretical biological 

rationale, they nonetheless provide a useful numer-
ical estimate of the true relationship for the range 
of values experienced in common practice. This 
model that in principle is applicable to GBM has 
so far only been applied to oesophageal cancer.
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 Time-Dependent TCP

The survival of GBM patients, usually about 50 
% at 1 year and decreasing over time, can be 
modelled [9] as follows including a time factor:

 ¢ =( ) - ×
- + - -( )é
ëê

ù
ûú
× -

S e
D N ej

D GD T Tk e a
,t a b g t2

 (6.27)

where τ is the time after the treatment completion 
for the given dose Dj.

Here, the authors assumed that the survival 
rate depends exponentially on relapse time and 
the parameter a has been estimated using a fitting 
procedure for survival rate at 0.5, 1.0 and 1.5 
years, using clinical data reported by Walker 
et al. [9] and by Salazar et al. [51, 52].

Finally, in the paper of Qi et colleagues, the α 
and α/β parameters have been provided for 
malignant gliomas with grade 3 or 4 [53] .

 Model Parameters

The selection of proper LQ parameters has been 
challenging particularly in the clinical setting for 
GBM. The repair half time for sublethal damage 
repair, T, is assumed to be 0.5 h [54].

An interpretation of the radiobiological 
parameters may help clinicians to identify an 
optimal fractionation schedule. In particular, an 
α/β of 8 Gy indicates high fractionation sensitiv-
ity while an α of 0.12 Gy-1 supports a high intrin-
sic radiosensitivity of this tumour. Consequently, 
these parameters correspond to a low β value 
(0.015 Gy−2), which represents a high capability 
of GBM cells to repair the radiation damage. 
Moreover, based on the fit of clinical data, the Td 
shows a moderate value (15.4 days), together 
with a very long Tk (37 days). This implies that 
the tumour radiation response with the OTT is 
substantially independent, thereby endorsing 
hypofractionation (doses greater than 2 Gy/frac-
tion) or hyper-fractionation (doses less than 2 
Gy/fraction with multiple daily sessions) sched-
ules. This is supported by the outcome of hypo-
fractionated studies that adopt a treatment of 
25 Gy in which the reduction of OTT did not 
improve overall survival or progression-free sur-
vival, PFS (with a 1 PFS of 29.42 %) [55].

From another point of view, a higher value of 
γ supports a strong dependence on OTT of the 
results can be explained by the selection of radio-
resistant stem cells, which are recruited during 
irradiation and tend to repopulate quickly [49, 
56–59].

The best fit curve (N = 9.1 × 103) and its confi-
dence interval (6.0 × 103–1.4 × 104) indicate that a 
limited number of aggressive cells are able to 
repopulate tumour. Moreover, a long Tk together 
with a moderate repopulation indicates substan-
tial independence of the therapeutic results from 
the duration of the OTT. However, this mecha-
nism appears to be negligible when compared to 
the mechanism of repair, which should be more 
pronounced in this cell type. This characteristic 
can be taken into account in favour of the time 
required by OAR in order to fully repair the radi-
ation damage.

Model parameters indicate a strong depen-
dence on total dose, thus an improvement of clin-
ical results might be obtained with an increase in 
the total dose rather than with a reduction of the 
OTT. Based on the estimated radiobiological 
parameters, an increase of the total dose up to a 
BED of approximately 92 Gy (total dose, 74.8 
Gy; dose per fraction, 2.2 Gy; 34 fractions) 
should lead to a TCP greater than 0.85. This 
result appears to be surprisingly higher than that 
obtained with standard fractionation (60 Gy × 30 
fractions with a BED of approximately 74 Gy), 
which is approximately 0.3. This optimistic pre-
diction by the model still requires mandatory 
confirmation. The fitted curve has γ50 = 3.31, 
which is very close to the mean γ50 of the clini-
cally relevant range (γ50 = 3.20) described in the 
literature [25, 60].

 Parallelism Between Classical 
and Biomolecular Modelling 
in Glioblastoma

Rockne and other authors included the effects of 
radiation therapy using the LQ radiobiological 
model in a tri-dimensional proliferation and infil-
tration (PI) model [61–65]. The PI model was 
developed in the early 1990s by Tracqui et al. 
[66] to describe the diffuse PI of glioma cells in 
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the human brain. In this model, the rate of change 
of tumour cell density over time is equal to the 
net migration plus the net proliferation of tumour 
cells. The model uses partial differential equa-
tions with two parameters: net rate of migration 
(D, mm2/year) and proliferation (ρ, year − 1), 
which can be calculated using routine patient- 
specific clinical images. This model mimics a 
virtual in silico tumour response to treatment 
with the same growth kinetics of an individual 
patient, thus predicting the in vivo treatment 
response.

In recent years, these mathematical models 
have been integrated with bio-simulation meth-
ods to improve fitting and predictive ability 
in vivo in terms of treatment-related response. 
Starting from biomolecular evidence, some 
authors have developed multiscale models of 
GBM progression that cover processes from the 
cellular to the molecular scale. Antipas et al. [67] 
introduced the oxygen enhancement ratio (OER) 
in models, and Kim Y. et al. [68] proposed a mul-
tiscale mathematical model where cell migration 
and proliferation are controlled through an intra-
cellular control system via microRNA-451 (miR- 
451)-AMPK complex in response to glucose 
availability and physical constraints in the micro-
environment. Schuetzet al. [69] also proposed a 
model integrating the molecular interaction net-
work (miR-451, LKB1 and AMPK) to cellular 
actions (e.g. chemotactic movement) to explain 
the regulation of GBM cell migration and prolif-
eration. Swanson et al. [70] tried to integrate 
tumour-microenvironment interactions of nor-
moxic glioma cells, hypoxic glioma cells, vascu-
lar endothelial cells, diffusible angiogenic factors 
and necrosis formation into a biologically based 
mathematical PI model for glioma. Specifically 
for radiotherapy treatment, Holdsworth et al. [71] 
included the patient-specific description of 
tumour growth and radiation response in the 
PI-RT model [64] to generate biologically guided 
treatment plans. Using an adaptive multi- 
objective evolutionary algorithm (MOEA), 
intensity modulated RT (IMRT) plans were opti-
mized using clinical objectives to maximize nor-
mal tissue sparing and taking into account the 
reduction of tumour burden at various time points 

in order to increase the TCP. Integrative biomo-
lecular mathematical models of kinetics of 
tumour growth and response to radiotherapy via 
more complex “biomolecular-integrated” LQ 
models [72, 73] considering the dynamic insta-
bility of radioresistance of GBM (cellular sub-
populations, kinetics growth and biomolecular 
alterations) could support better treatment man-
agement of the GBM patients as well as the 
design of more effective treatment strategies. 
These speculative investigations of alternative 
treatment strategies require further investigation 
before their introduction to clinical practice.

 Potential Confounding Factors

The contributions of several potentially con-
founding factors have not been fully taken into 
consideration in the currently proposed methods. 
These factors include: (1) data collection from 
institutes with different patient selection criteria 
and different treatment modalities; (2) the possi-
ble coexistence of different cell types within the 
target of enrolled patients, that may explain the 
variability of parameters and the need for more 
advanced models; (3) the different expression 
levels of molecular factors among patients, such 
as MGMT methylation and (4) other factors, 
such as hypoxia and reoxygenation that may 
influence the clinical outcome.

The role of molecular predictors is still under 
debate and might help in the design of new treat-
ment strategies particularly in older patients with 
Recursive Partitioning Analysis ≥3. Clinical data 
have been combined with other predictive factors 
to improve the recently proposed nomograms 
[74] with molecular and image-based classifiers.

Finally, the accelerated failure time model has 
been applied using data from 721 patients with 
glioblastoma to model factors affecting individu-
alized survival after surgical resection [75]. An 
increased 2-years survival was associated with 
age, Karnofsky Performance status, the exten-
sion of resection of enhancing tumour on 
T1-postgadolinium magnetic resonance imaging 
and adjuvant therapy with external radiotherapy 
and/or temozolomide.
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 Conclusion

In conclusion, mathematical models indicate that 
moderately hypofractionated, high total dose 
treatment schedules and use of TMZ deserve 
 consideration. Moreover, state-of-the-art modern 
multimodality imaging techniques permit a better 
tumour identification and contouring, as well as 
modern innovative linear accelerator and on- board 
imaging allow the delivery of high doses to the 
tumours, sparing the surrounding healthy brain.
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