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          General Introduction 

 Over the past decade, remarkable advances in the 
medical fi eld, and in particular, in cancer care 
have occurred, leading to a tremendous transfor-
mation in the internal medical concept [ 1 ]. 
Starting from an infl exible “one size fi ts all similar 
groups” approach, where the same treatment is 
used for the same kind of tumor, clinical practice 
is moving towards a personalized medicine 
concept with an essential role of decision support 
systems (DSS). 

 Glioblastoma multiforme (GM) is the most 
common primary brain tumor with only few 
available therapies providing signifi cant improve-
ment in survival. Therefore, the development of 
new diagnostic and treatment technologies beside 
the concomitant research progress in pathology, 
biologic biomarkers (e.g., MGMT promoter, 
DNA metilation, IDH, EGFR, etc. [ 2 ]), genom-
ics, and proteomics justifi es the growing trend 
towards “individualized medicine”. 

 The use and role of medical imaging technolo-
gies in clinical oncology has also greatly 
expanded during the last decade from a primarily 
diagnostic and qualitative tool to award a central 
role in the context of individualized medicine 
with a quantitative value. Several studies have 
been developed to analyze and quantify different 
imaging features (e.g., descriptors of intensity 
distribution, spatial relationships between the 
various intensity levels, texture heterogeneity 
patterns, descriptors of shape, etc.) and the rela-
tions of the tumor with the surrounding tissues to 
identify their possible relationship with treatment 
outcomes or gene expressions [ 3 ,  4 ]. 

 Furthermore, multidisciplinary management 
of cancer patients has been proven essential to 
reach a highly individualized treatment. The inte-
gration between different specialists leads to a 
mortality reduction not only cancer-related, but 
also related to concomitant diseases [ 5 ,  6 ]. 

 In this context of progressive technologies and 
treatment innovation, the development of predic-
tive models can answer to the increasing neces-
sity of individualized medicine. Based on 
individual patient features, in fact, predictive 
models, complementing existing consensus or 
guidelines, allow physicians deliver tailored 
treatment. Patient care is transforming from an 
evidence-based treatment into a personalized 
medicine concept (build on an evidence base) 
going from prescription by consensus to pre-
scription by numbers.  
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    Personalized Medicine 

 Personalized medicine is defi ned by the National 
Cancer Institute as “a form of medicine that uses 
information about a person’s genes, proteins, and 
environment to prevent, diagnose, and treat dis-
ease. In cancer, personalized medicine uses spe-
cifi c information about a person’s tumor to help 
diagnose, plan treatment, fi nd out how well treat-
ment is working, or make a prognosis” [ 7 ]. 

 To date, in the medical fi eld and inherently 
also in oncology, clinical practice is based on 
evidence-based guidelines and protocols as 
results of the outcome of randomized clinical tri-
als (RCTs). Although in the past decades they 
have had a key role in the defi nition of the treat-
ment strategies in cancer care, RTCs’s popula-
tion is often constituted by a selective group of 
patients, very different from the population seen 
in routine clinical practice. Some patients groups 
are under-represented, including elderly, those 
with comorbidities [ 8 ,  9 ], and patients from 
under-represented ethnic and socioeconomic 
backgrounds [ 10 – 12 ]. Furthermore, the long time 
that it is usually requested to reach the pre- 
established outcome is an intrinsic limitation of 
this kind of research. As a result, the presented 
evidence is often valid for only a subgroup of 
patients and trial results are quickly outdated. 

 Beside RCTs, a complementary form of 
research is progressively emerging that has, in the 
population-based observational studies, its major 
expression. The role of this new research is mostly 
to ensure that the result of clinical trials translates 
into tangible benefi ts in the general population 
[ 13 ]. Given the differences between patients 
recruited to trials and those seen in routine prac-
tice, in fact, small benefi t observed in highly 
selected trial patients is likely to disappear when 
the same treatments are applied in routine prac-
tice. Observational studies are essential to identify 
whether practice has changed appropriately, to 
document harms of therapy in a wider population, 
in patients of different age and with different 
comorbidities, and to determine whether patients 
in routine practice are reaching the expected out-
comes with the expected toxicity [ 14 ,  15 ]. 

 In this new era of individualized medicine, it 
is more and more important to develop support-
ing decision tool, based on models able to pre-
dict different outcomes starting from large 
heterogeneous datasets. Essential, for the 
development of this kind of DSS, is the creation 
of large databases, archives of heterogeneous 
data coming from multiple sources. Numerous 
information that are routinely collected in clini-
cal practice as diagnostic and clinical imaging, 
laboratory data, treatment outcome data, bio-
logic environment, genomics, and proteomics 
are included into large databases. Using inno-
vative “rapid-learning” research techniques, 
these data are simultaneously analyzed in order 
to obtain, from the extraction of knowledge of 
the masses, a benefi t of the individual [ 16 ]. 
From a technical point of view, this large 
amount of data required to create a predictive 
model is necessary not only to provide suffi -
cient statistical power to act as an effi cient and 
reliable predictive tool, but also to validate the 
obtained model. Therefore, a secondary dataset 
is needed for validation of the model, prefera-
bly by external (from a different institution) 
datasets [ 17 ]. Only after external validation, a 
prediction model can be implemented as an 
acceptable decision support tool. 

 In this context, the idea of research is totally 
changed. Heterogeneity of data is now assuming 
a key role against the ab initio defi nition of the 
collecting variables (as in the RCTs). Large 
databases approach requires gathering data 
without knowing beforehand what would be the 
outcomes of the research, which is quite differ-
ent from the fi xed design of a prospective ran-
domized controlled trial. Therefore, a fl exible 
strategy for data collection, data mining, and 
outcome reporting is needed with the possibility 
to add new variables to the large databases in an 
ad-hoc manner. 

 Considering that large database can be created 
combining data coming from various depart-
ments of a single hospital or from multiple insti-
tutes different on a regional, national, and 
international level, integration of information is a 
big challenge for data-sharing initiatives.  
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    Ontology and Data Standardization 

 The standardization process, essential to univer-
sally defi ne data and procedures that will consti-
tute a large database, is obtained through the 
creation of an ontology. 

 “Ontology” is a compound word, composed 
of onto-, from the Greek ὄντος (òntos) which is 
the present participle of the verb   εἰμί     (eimi), i.e., 
“to be, I am”, and λόγíα (lògia), i.e., “science, 
study, theory”. Ontology formally represents 
knowledge as a set of concepts within a domain 
and the relationships between those concepts. In 
practice, an ontology is a terminological system 
where all the information, related in this case to 
medical disciplines and treatment, are specifi ed 
and organized in a well-defi ned data collection 
model. An ontology collects uniform and unam-
biguous defi nition for each variable and the rela-
tionship between different variables into the 
space and the time concept. Eventually, better 
and unambiguous understanding leads to an 
approach where the research data could be made 
available without differences in interpretation; 
for now and the future. From the perspective of 
computer science, different kind of data can be 
represented in any ontology starting from a 
generic “registry” layer with purely epidemio-
logic information, to a “procedural” level, where 
treatment information and related toxicities are 
reported, up to a higher “research” level where 
dimensional data, such as images, genomics, pro-
teomics, etc., are collected [ 18 ]. Therefore, in the 
development of an ontology, the information can 
grow both in terms of variety and granularity, 
until the idea of clinical large database [ 18 ]. 

 Furthermore, the formalization of any ontology 
can grow from a simple dictionary, where the 
meaning of the terms is described in natural lan-
guage, toward a more and more formal expression 
resulting also from the sharing of the defi nitions 
between different institutions on a local, national, 
or international level. At the cost of increasing 
complexity and formalism that enriches the lan-
guage with more and more complex constructs 
representing relationships between variables, dif-
ferent techniques can be used for representing 
richer knowledge contents. In this context, the 
most frequently used model to represent data dis-
tribution is the Semantic Web, developed by Tim 
Berners-Lee [ 19 ]. For the Semantic Web technol-
ogy, data is represented by triplets (subject, predi-
cate, object) using the Resource Description 
Framework (RDF) language [ 20 ]. 

 The interaction between elements of multiple 
triplets is defi ned inside an ontology through a 
different language (RDFS or OWL) allowing 
informatics system to automatically generate 
inference from any exploitable data source. 
Software agents can easily parse and make infer-
ence on big data repositories applying formal- 
ontologies on explicitly declared facts to infer the 
entire set of facts logically inferable. 

 The power of the semantic web is the extremely 
simple, however fl exible RDF representation (one 
table with three columns) (Table  18.1 ), as well as 
the federated nature of the web where both data 
and knowledge can reside at multiple locations 
on the internet and can be queried using SPARQL, 
the query language of the Semantic Web [ 21 ].

    Furthermore, a distributed learning approach is 
able to learn from the collected data creating a 

     Table 18.1    Examples of “semantic” triple representation [ 18 ]   

 Subject  Predicate  Object example (URL)  Reference 

 Patient  hasBeenDiagnosedWith  Malignant neoplasm of rectum,   http://purl.bioontology.
org/ontology/ICD10/C19     

 ICD-10 

 Patient  hasBiologicalSex  Male,   http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.
owl#C20197     

 NCI Thesaurus 

 Female,   http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.
owl#C16576     

 Disease  hasStageFinding  T1 Stage fi nding,   http://ncicb.nci.nih.gov/xml/owl/EVS/
Thesaurus.owl#C48720     

 NCI Thesaurus 
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model without the need for data to leave the 
individual hospital. A distributed machine learn-
ing algorithm is able, through a local learning 
application which is installed at each hospital, to 
create a local model that is sent to the central 
server. Starting from the integration of all the sin-
gle models, a consensus model is generated and 
sent back to each hospital for refi nement. After 
pre- established convergence criteria are met, it 
is possible to create a fi nal consensus model 
(Fig.  18.1 ). This method works for a variety of 
models as described in literature [ 22 ].

       Radiomics and Imaging Analysis 

 In medical fi eld and inherently also in oncology, 
the imaging technologies have always had a key 
role in the identifi cation and staging of a cancer 
disease being fundamental for the defi nition of 
the treatment procedure. During the last decade, 
we have witnessed an important change of the 

medical imaging concept coming from a diagnos-
tic, qualitative position to award a central role in 
the context of individualized medicine with the 
identifi cation of numerous measurable features. 

 The term “Radiomics” is a relatively new term 
that was used in several studies to indicate the 
extraction of large amounts of features from 
radiographic images with the intent of creating 
mineable databases [ 3 ]. The goal of Radiomics is 
to convert images into mineable data, with high 
fi delity and high throughput [ 4 ]. 

 Until last decade, texture heterogeneity, 
characteristics of shape, volume, and intensity 
distribution of the tumor, were only analyzable, on 
the acquired images, in a qualitative way. In this 
new Radiomics era, images are fractionated in 
order to identify specifi c patterns and/or descrip-
tor that could be quantifi ed and easily reproduced 
in a consistent manner in different institutions. 

 Considering the different gray scales inside the 
tumor image, it was possible to identify and 
quantify not only some descriptors (e.g., descriptors 

  Fig 18.1    Distributed machine learning fl ow [ 23 ]       
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of shape, texture, and optical porosity), but also 
the relationship between the tumor and the 
surrounding tissues in a bidimensional and tridi-
mensional way [ 3 ,  4 ]. 

 Despite all this technological progress, it is 
still a long way to identify the numerous hetero-
geneity’s patterns characteristics of different 
tumors. However, it is clear how these patterns 
could highly contribute to choose the better 
treatment strategy for each single patient.  

    Prediction Models 

 Over the past decade, medical doctor had to face 
numerous and remarkable challenges in oncology 
that have progressively moved toward a personal-
ization of the treatments. In this context of grow-
ing technologies and treatment’s innovation, 
predictive models achieve a relevant role, beside 
the existing consensus and/or  guidelines, in help-
ing clinicians in daily clinical practice. 

 The methodological process to develop a DSS 
is depicted in Fig.  18.2  [ 1 ].

   A large heterogeneous database is required to 
store all the information without knowing before-
hand what would be the research's topic. From 
the hypothesis, it is determined which features 
should be included in the learning effort. 
Bayesian network is usually considered the best 
approach [ 24 ] to impute for the missing data and 
to detect and correct bias into the initial dataset, 
to improve data quality. After this pre-processing 
step, it is possible, through a machine learning 
procedure, to analyze the different features listed 
in the large database and obtain a model repre-
senting the distribution of the same features and 
their relationship inside the dataset. 

 Beside common medical statistics approaches 
(Cox proportional hazard model [ 25 ], logistic 
regression [ 26 ] etc), the usage of different machine 
learning algorithms (Bayesian network [ 27 ,  28 ], 
decision trees [ 29 ], support vector machines [ 30 ], 
neural networks [ 31 ], genetic algorithm [ 32 ], etc.) 
leads to the possibility of creating predictors char-
acterized by different performance and usage 
related to the fi nal outcome. To obtain a reliable 
and consistent DSS and able to work properly 

also in a different environment from where it was 
created, it is necessary to validate the new model 
(training set) preferably by external dataset (vali-
dation set) [ 1 ,  17 ]. 

 Considering the performance, the Receiving 
Operating Characteristic (ROC) and its equiva-
lent Area Under the Curve (AUC) are the most 
used measurement units (Fig.  18.3 ). However, it 
is important to know that the ROC is not always 
applicable to all the predictor: in such cases dif-
ferent indicators could be used (accuracy, sensi-
tivity, specifi city, F-score, etc.).

   To date, European Organization for Research 
and Treatment Cancer (EORTC) has developed 
several interactive DSS related to either primary or 
recurrent glioblastoma (Table  18.2 ). These surviv-
al’s prediction models are currently used in clinical 
practice beside the existing consensus and/or 
guidelines, helping clinicians in choosing the better 
treatment strategy for each single patient. 

 Medical doctors and/or patients can use predic-
tive models in a variety of ways. Graphical calcu-
lating devices as nomograms [ 25 ,  33 ] are one of 
the most common forms of predictive device, 
beside the even more appealing interactive website 
(Table  18.2 ). Furthermore, in this era of techno-
logical progress, the possibility to create specifi c 
applications for devices of new generation is also 
very interesting (e.g., cell- phones, tablet, etc.).  

    Perspectives in Glioblastoma 

 GM is the most common primary brain tumor, but, 
even now, only few available therapies providing 
signifi cant improvement in survival are known. In 
the past decade, the possibility to use more and 
more sophisticated technologies allowed to deal 
with numerous challenges obtaining a tremendous 
infl ux of data describing molecular and genomic 
alterations in the pathogenesis of GM [ 34 ]. 
Notwithstanding this explosion of knowledge, the 
early clinical data from the usage of selective thera-
pies developed on these identifi ed aberrations are 
largely disappointing. The wide heterogeneous 
nature of this disease and the possibility for the 
tumor to change mutations during its progression, 
beside the well-known diffi culty of neuro-oncology 
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drugs to penetrate the blood–brain barrier, can par-
tially justify the large ineffectiveness of the most 
current molecular- targeted therapies. Despite these 
discouraging initial results, it is still very reasonable 
to believe that in the era of “individualized medicine” 
genomically and molecularly driven research in 

combination with multiple patients- specifi c 
data (clinical, pathological, biological, proteomics, 
imaging, etc.) will ultimately be successful. 

 Recent studies have demonstrated how the 
interaction between an imaging’s quantitative 
analysis and specifi c gene and microRNA tumor 

  Table 18.2    Examples of interactive decisional support systems (DSS) related to glioblastoma, currently used in clini-
cal practice   

 Institution  Prediction model  Web link (URL) 

 European Organisation for 
Research and Treatment of Cancer 
(EORTC) 

 Prediction of survival in general 
GMB population 

   https://www.eortc.be/tools/gbmcalculator/
model1.aspx     

 European Organisation for 
Research and Treatment of Cancer 
(EORTC) 

 Prediction of survival in patients 
treated by RT/TMZ (MGMT 
methylation status unavailable) 

   https://www.eortc.be/tools/gbmcalculator/
model2.aspx     

 European Organisation for 
Research and Treatment of Cancer 
(EORTC) 

 Prediction of survival in patients 
treated by RT/TMZ (MGMT 
methylation status available) 

   https://www.eortc.be/tools/gbmcalculator/
model3.aspx     

 European Organisation for 
Research and Treatment of Cancer 
(EORTC) 

 Prediction of survival in patients 
with recurrent glioblastoma 

   http://www.eortc.be/tools/
recgbmcalculator/calculator.aspx     

  Fig 18.3    Predictive models       
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expression can be useful as a robust initial prognos-
tic tool in order to personalize therapy for GBM 
patients [ 35 ,  36 ]. Therefore, only through the 
understanding of the gene regulatory network and 
the study of the interaction between molecular 
alteration and different GM’s characteristic fea-
tures, it will be possible to develop better  preclinical 
models that will help physicians to choose the best 
drug or the best combination of drugs for each 
patient in the most effi cient possible way.  

    Conclusions 

 The interaction between the implementation of 
new technologies and the usage of automated 
computer bots has allowed, in the last decade, a 
broad range of researches to be expanded, due to 
the very generalizable and fl exible technology uti-
lized. In oncology, the availability of reliable and 
consistent prediction tools makes possible to 
stratify population in specifi c risk groups for dif-
ferent selected outcomes, identifying patients 
who better than other can benefi t from a specifi c 
treatment procedure. Furthermore, it will also 
stimulate research focused on specifi c risk groups, 
trying to fi nd new treatment options or other com-
binations of treatment options for these sub-
groups. Therefore, personalized medicine can be 
expected not only to save patients from unneces-
sary toxicity and inconvenience, but also to facili-
tate the choice of the most appropriate treatment. 

 Clinicians are now facing two new challenges. 
The fi rst one is represented by the trend towards 
“individualized medicine” trying to consider sev-
eral potential options for each patient in place of 
infl exible “one size fi ts all similar groups” 
approach. Secondly, the new concept of “pre-
scription by numbers” support the moving 
towards a “shared decision making” approach, 
where doctors and patients, evaluating pros and 
cons of different treatment strategy, can actively 
discuss and decide on therapeutic interventions. 

 The development and validation of predictive 
models is a fundamental step to create new soft-
ware able to give the knowledge a different 
dimension. Guidelines and protocols currently 
used in a daily clinical practice will be optimized 

by the usage of predictive models, considering 
that medical doctor will have a more accurate 
idea of the treatment’s possibilities for each 
patient in terms of both survival and side effects. 

 The behavior of specifi c tumor is very diffi cult 
to predict due to their huge intrinsic heterogene-
ity. However, treatment can only become more 
personalized if accurate, science-based decision 
aids are developed, which can offer assistance in 
clinical decision-making in daily practice. 

 Therefore, the poor human cognitive capacity, 
able to discriminate and use not more than 5 
features in a daily clinical practice [ 37 ], can fi nd 
in DSS a valuable help able to compensate for 
this human intrinsic limitation. 

 Finally, considering the important role that 
predictive models could play in the clinical 
practice, clinicians must be aware that although 
they can be very useful with great performances 
and sometimes with a great  p -value, they remain 
only DSS, not decision-makers.     
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