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      Introduction and Background                     

     Luigi     Pirtoli     ,     Giovanni     Luca     Gravina    , 
and     Antonio     Giordano   

      Glioblastoma (GB) accounts for 54 % of primary 
brain tumors, with an incidence of about fi ve new 
cases for every 100,000 per year, and after aggres-
sive multimodal treatments, prognosis remains 
poor, with a 5-year Overall Survival (OS) rate 
barely reaching 5 %, as extensively documented 
in the section of this book dedicated to prognostic 
parameters of GB. Maximum achievable safe sur-
gical resection, and limited- volume radiotherapy 
(RT) with concurrent and sequential chemother-
apy (CHT) based on the alkylating agent 
Temozolomide (TMZ) [ 1 ], achieve 40, 15, and 
7–8 % OS rates, respectively at 1-, 2-, and 3-years. 
These present standards of treatment mostly stem 
from studies dating back to the seventies of the 

last century [ 2 ,  3 ], and progressively evolving 
through subsequent clinical trials. 

 A great deal of medical literature is dedicated 
to GB, with increasing frequency over time. Most 
recent articles on GB, in fact, begin with the 
statement that prognosis has not improved, 
despite the numerous research fi ndings on its 
underlying genomic and molecular mechanisms. 
This is due at least in part to the diffi culty in 
improving patient outcomes, given the elusive 
nature of this disease with respect to therapeutic 
innovations, including those in the RT domain. 
Radiation is one of the most used and useful tool 
against cancer, including GB, and knowledge of 
its mechanisms of action on biological substrates 
is of the utmost importance in oncology. 
Radioresistance of GB is one challenge for 
Radiation Biology (RB) that has emerged from 
the clinical setting, and important questions 
raised by clinical experiences are addressed by 
basic RB laboratory research. However, RB is a 
scarcely known discipline outside of the inner 
circle of the radiological science scholars, and we 
are convinced that a comprehensive and updated 
coverage of this subject is warranted, that is, the 
aim of this book. The researchers and the practi-
tioners studying GB in the domains of radiation 
and medical oncology, pathology, biology, and 
physics may profi t from reciprocal scientifi c con-
tributions collected in a lineup fi tting the present 
state-of-the-art. 
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 We dedicated the fi rst section of the book to 
RB topics emerging from clinical studies on 
GB. These include research regarding RT dose, 
volume and fractionation, CHT associated with 
RT, RT modalities alternative to the current pho-
ton irradiation, mathematical modeling of treat-
ment parameters, prognostic parameters and 
markers, and radiation tolerance of normal brain. 
The second part addresses preclinical research 
domains of particular relevance for GB. These 
include related basic experimental RB; immune 
system and GB microenvironment; genetic and 
epigenetic determinants in tumor initiation and 
progression; GB microenvironment in its rela-
tionship with hypoxia and glioma stem cell- 
related radiation resistance; cell-death pathways 
and radiation; miRNA manipulation in modify-
ing radiation resistance of GB; and nanoparticle 
research. The third and last section of the book 
deals with translational issues, specifi cally pre-
clinical models for GB RB, present attempts to 
correlate molecular RB with clinical RB, and the 
perspectives of large databases and ontologic 
models for the correlation of results derived from 
preclinical and clinical data. Many of these con-
tributions are unavoidably overlapping, refl ect-
ing contiguous fi elds of research and the scientifi c 
interests of the authors, who are often watchful 
for collateral disclosures infl uencing their work. 
In our opinion, this is an added value and not 
redundancy. 

    Prognostic Markers and Treatment 
Strategies 

 The largely incomplete information on tumor ini-
tiation and progression of GB and its almost uni-
versally fatal course have driven research for 
many years towards an analytic approach of both 
patient- and treatment-related prognostic factors 
conditioning life expectancy. Respectively, these 
include age, performance, and neurological sta-
tus, as well as extent of surgical resection, RT 
and CHT [ 4 ], which have been analyzed in the 
past in an attempt to identify parameters for the 
best benefi t/risk ratio of therapy. The traditional 
approach to biological and clinical radiation 

oncology investigation in this fi eld for a long 
time consisted mainly of mathematical modeling 
of in vitro and in vivo experimental results, or of 
data from clinical series. The vast majority of 
available reports show that RT acts as a prognos-
tic factor just as a dichotomic parameter: the 
related survival advantage exists, as compared to 
surgery alone, but this is not dose-dependent 
according to a continuous dose-effectiveness 
function above 60 Gy, as normally happens in 
solid tumors. A recent mathematical analysis of 
GB patients undergoing RT-CHT seems to theo-
retically indicate that increments of outcome 
might occur up to a tumor control probability of 
85 % with a RT total dose of 74 Gy in 30 daily 
fractions of 2.2 Gy each over 6 weeks [ 5 ]. This 
hypothesis needs to be confi rmed in a clinical set-
ting, but it is unlikely to deliver such an RT treat-
ment without increasing the probability of normal 
tissue complication beyond acceptable levels, 
even using the most advanced irradiation 
techniques. 

 Only recently, pathobiology research has 
unveiled information that is conceivably suitable 
for identifying prognostic parameters. We are 
aware, in fact, that GB is a biologically complex 
disease, and that patient- and treatment-related 
prognostic parameters may refl ect inherent tumor 
initiation and progression features, and different 
response to treatment. GB regrowth in the pri-
mary site, that is, in the full-dose RT region, is 
the most common failure of RT, even if it 
improves survival over surgery alone, as previ-
ously mentioned. 

 The recent assessment of the “genomic land-
scape” of GB [ 6 ], and the improved knowledge 
of signaling pathways, have led to great expecta-
tions from biologically targeted therapies, spe-
cifi cally monoclonal antibodies (mAb) and 
tyrosine-kinase inhibitors (TKI), as well as active 
and passive immune therapy [ 7 ,  8 ]. However, the 
numerous clinical trials undertaken on these 
grounds have generally yielded unsatisfactory 
results. Possible hypotheses for explaining these 
failures include molecular signaling redundancy 
and cross-talk; clonal selection (or emergence) of 
resistant phenotypes under treatment; preclinical 
studies mainly addressing tumor-initiating or 
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early growth factors and not late tumor progres-
sion mechanisms; diffi culty of the drugs in pen-
etrating the blood–brain barrier (BBB), etc. [ 9 ]. 
In addition, integrating the above-mentioned 
agents with radiation, as well as modern refi ne-
ments of imaging and radiation-dose delivery 
techniques, have not produced substantially 
improved outcomes. However, molecular radio-
biology, in general, has rapidly evolved over the 
last two decades, paralleling the improved 
knowledge of DNA damage and repair mecha-
nisms, intra- and intercellular signaling pathways 
and microenvironmental factors, as well as tumor 
profi ling biomarkers and molecular targeting 
[ 10 ]. GB, in particular, is presently the subject of 
much scientifi c discussion regarding ionizing 
radiation under this new perspective. The recent 
molecular classifi cation of GB TCGA (The 
Genome Cancer Atlas) addressed recurrent 
genomic abnormalities in GB, which resulted in a 
gene-expression/molecular classifi cation of GB 
into proneural, neural, classical, and mesenchy-
mal subtypes [ 11 ]. An aggressive postsurgical 
therapy (that is, RT with > 3 cycles of chemother-
apy, vs. a less intensive management), yielded a 
signifi cantly reduced mortality in the classical 
and mesenchymal subtype, a borderline impact 
on survival in the neural subtype, and no effect on 
the proneural subtype.  

    Inherent GB Radiation Resistance 
and Failure in Radiosensitizing GB 
by Targeting Key Signal Molecules 

 Radioresistance of GB is attributable to both 
intracellular and microenvironmental factors 
[ 12 ]. Radiation-induced cell death in solid tumors 
is mostly due to DNA double-strand break 
(DSB), and enhanced DNA DSB repair may 
occur and improve radiation resistance: the 
PI3K-Akt pathway, downstream of several mem-
brane receptors (particularly the erbB family 
members) may be activated and potentiate DSB 
repair after radiation, besides constitutively stim-
ulating tumor growth and invasion [ 13 ].  EGFR  
amplifi cation (present in about 40 % of GBs) pro-
motes resistance to RT in preclinical studies 
through the activation of DNA PKcs (DNA- 

dependent protein kinase catalytic subunit) lead-
ing mainly to nonhomologous end joining 
(NHEJ) DNA DSB repair. Furthermore, experi-
mental evidence indicates that the link between 
EGFR signaling and DSB repair occurs by the 
PI3K-Akt or MAPK (mitogen-activated PK) 
pathways [ 14 ]. A frequent (30–50 %) mutant 
form of EGFR is expressed in GB, specifi cally 
the EGFR variant III (EGFRvIII or ΔEGFR). Its 
deletion of the extracellular domain (exons 2–7) 
constitutively activates a high stimulation of the 
PI3K/Akt/mTOR pathway, and confers radiation 
resistance [ 15 ]. Some authors [ 16 – 18 ] have con-
sidered the relationship between increased cell- 
survival signaling by EGFR and  TP53  mutations 
and apoptosis. For a long time, in fact, apoptosis 
has been supposed to be the main type of pro-
grammed cell death (PCD) after anticancer treat-
ments, including RT [ 19 – 22 ]. However, evidence 
exists that other types of PCD are induced by 
CHT and RT, such as autophagy-related or type-
 II PCD, and regulated necrosis (including necrop-
tosis, type III PCD) [ 21 – 23 ] These pathways are 
not necessarily mutually exclusive, as previously 
believed. Even if autophagy is important in many 
cancers as a protective mechanism against radia-
tion [ 10 ], it can act both as a pro-survival mecha-
nism and as a pro-death mechanism, the latter 
observed in GB [ 24 ]. Autophagy-related cell 
death is one of the metabolic pathways inhibited 
by EGFR, which can act via mTOR or by direct 
inhibition of Beclin1, a cytoplasmic protein that 
induces autophagy by binding to the Vps34- 
Vps15 core [ 25 ,  26 ]. We could experimentally 
demonstrate, for instance, that combined EGFR 
and autophagy modulation impact on radiation 
and TMZ sensitivity (that is, clonal inhibition) in 
human GB cell lines [ 27 ]. Similarly, in patients 
undergoing RT and TMZ, low-EGFR- and high 
Beclin1-expressing GBs have a signifi cantly bet-
ter median survival, as compared to other ones 
showing high-EGFR and both high- and low- 
Beclin1 expression, after standard RT-TMZ [ 28 ]. 

 Some failures of mAb or of TKI against EGFR 
in achieving favorable results in clinical trials 
might be due, at least in part, to the lack of a con-
current inhibition of the downstream cell-death 
pathway’s activity. PI3K-mTOR and EGFR 
inhibitors, as well as PDGFR, VEGF, and p53 
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inhibitors, are the subject of very recent, exten-
sive, and thorough reviews (e.g., [ 9 ]). Some 
authors considered, in particular, the relation-
ships of these pathways with the related genomic 
signifi cant mutations [ 8 ], as identifi ed in TGCA 
of GB [ 6 ]. 

 However, these studies do not primarily 
address RT enhancement, but in general the 
effectiveness of biological targeting drugs, both 
as single- or dual-agents, or in combination with 
current RT-CHT schedules. From a radiobiologi-
cal point of view, further study is necessary: in 
fact, many trials associate “targeting” drugs with 
RT without previous preclinical in vitro and 
in vivo investigations exhaustively grounding 
their effectiveness as radiation enhancers on 
sound proofs-of-principle [ 12 ].  

    Glioma Stem Cells 

 Another main factor causing GB resistance to 
radiation therapy is its intrinsic composition 
including heterogeneous cell populations—that 
is, a cellular hierarchy deriving from glioma stem 
cells (GSCs) through multiple genetic and epi-
genetic events [ 29 – 31 ]: inducing quiescence, 
altered cell-cycle control, activation of the DNA- 
repair pathways and complex interactions with 
the tumor microenvironment. Irradiated GBs 
contain more GSCs than unexposed ones, thus 
suggesting that GSCs have a role in radiation 
resistance [ 32 ]. GSCs may also have a funda-
mental role in promoting tumor neo-angiogenesis 
[ 33 ,  34 ], as suggested by high VEGF expression, 
and by their possibility to differentiate into endo-
thelial tumor cells [ 35 ,  36 ] or pericytes [ 37 ]. 
Neo-angiogenesis may also depend on hypoxia- 
inducible factor (HIF)-mediated recruitment of 
bone marrow-derived cells restoring GB vascu-
larity damaged by radiation [ 38 ]. 

 Hypoxia, due to its general and well-known 
property of reducing the effect of radiation- 
induced reactive oxygen species (ROS) damage 
on DNA by restraining their combination with 
oxygen [ 39 ], has a relevant role in radiation resis-
tance of GB, which is a highly hypoxic tumor. 
Furthermore, specialized hypoxic sites (the so- 

called “niches”) composed of GB-associated 
stromal cells, immune cells, and non-cellular 
components provide signals promoting the GSC 
phenotype [ 40 – 43 ]. GSCs located in these niches 
usually express the CD133/prominin-1 marker, 
used for their identifi cation, enrichment, and as a 
prognostic marker. However, it is questioned 
whether glioma and normal brain stem cells can 
be univocally discriminated by CD133 positivity. 
Genome-wide-based analyses have demonstrated 
that GSCs express a multiple-gene signature, 
existing in GSCs but not in normal brain SCs, 
correlating with survival [ 44 ]. This report also 
shows that characteristic Hedgehog- and Wnt- 
pathway alterations, such as active β-catenin, 
were present only in GB GSCs. Interestingly 
β-catenin, as well as Gli-1 enhanced immunohis-
tochemistry expression level, negatively condi-
tioned GB patients’ survival after standard 
RT-TMZ in our experience [ 45 ]. 

 The clinical implications of the radiobiologi-
cal research on cancer SC are currently the sub-
ject of ongoing studies, both for predictive 
bioassays and for combination of novel systemic 
treatments with RT [ 46 ].  

    Epigenetic Events 

 Radiation and CHT resistance, as well as other 
features of the aggressiveness of GB, may result 
from epigenetic events, such as alterations in the 
gene methylation status, conditioning the radia-
tion or CHT effect in DNA gene sequence dis-
ruption and repair. Different DNA methylation 
alterations exist between radiation-sensitive and 
-resistant cells [ 47 ]. Furthermore, radiation may 
induce modifi cations, such as phosphorylation or 
changes in the methylation status of histones 
[ 48 ]. About half of GBs harbor somatic  mutations 
determining DNA methylation, histone modifi ca-
tion, and nucleosome positioning [ 49 ]. 

 Methylation of the O6-methylguanine-DNA 
methyl-transferase (MGMT) gene showed a sig-
nifi cant median survival benefi t for GB patients 
undergoing RT-TMZ, as compared to those with 
the same feature undergoing RT only (21.7 vs. 
15.3 months, respectively;  p  = 0.007). On the con-
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trary, the difference between the same treatment 
groups, out of nonmethylated-MGMT GB 
patients, did not attain statistical signifi cance, in 
206 patients included in an EORTC-NCIC trial 
[ 50 ]. A meta-analysis study on 2018 high-grade 
glioma patients included in 20 reports showed that 
MGMT gene silencing was signifi cantly associ-
ated with improved survival in patients undergo-
ing RT-TMZ; this advantage was less signifi cant 
in those receiving only RT, and null in those 
receiving neither TMZ nor RT [ 51 ]. However, 
causal interpretation of these results requires cau-
tion: a sample classifi cation only according to the 
methylated and nonmethylated status for a gene 
may be dependent on the relationship between the 
overall CpG island methylation, the CpG meth-
ylation at individual sites, and the effectiveness 
of gene silencing, that is dependent in turn on 
the location within the gene [ 52 ]. DNA methyla-
tion may also involve other epigenetic modifi ca-
tions of chromatin, and the methyl-CpG-binding 
domain (MBD) proteins connected with histone 
deacetylases (HDACs) and histone methyl-trans-
ferase (HMTs), functionally affecting the regula-
tion of transcription. Furthermore, these events 
may regulate HIF effects at the DNA and histone 
levels, as extensively reported by Cimini et al. in a 
dedicated section of this book. 

 Antiepileptic drugs may affect therapeutic 
outcome of GB patients undergoing current 
RT-TMZ schedules, by MGMT-independent 
mechanisms, and due to HDAC inhibition and 
the consequent histone acetylation that loosens 
up the chromatin structure, making DNA more 
accessible to anticancer drugs and enhancing the 
cytotoxic effect of radiation. This is the case of 
Valproic acid (VPA) [ 53 ], which also induces 
apoptosis independently of the p53 status [ 54 ], 
induces autophagy as a cell-death pathway in 
GB, and may increase the bioavailability of TMZ 
by reducing the clearance of the metabolite that 
methylates DNA. GB patients submitted to 
RT-TMZ and treated with VPA, in fact, have 
enjoyed a better survival benefi t, as compared to 
those not undergoing VPA medication or receiv-
ing other antiepileptic drugs in an EORTC/NCIC 
trial [ 55 ]. Further studies are warranted, in order 
to assess whether the activity of VPA in enhanc-

ing RT-TMZ in GB is mainly due to HDAC inhi-
bition, or to an increased TMZ bioavailability or 
to other bioeffects, as indicated above. Other 
antiepileptic drugs are presently under evaluation 
in this area of research, but the main interest at 
the moment is focused on TMZ- and not on 
radiation- enhancement, which, however, 
deserves consideration. 

 MicroRNAs (or miRs, small noncoding RNA 
sequences of an average of 23 nucleotides) may 
exert an epigenetic downregulation of target 
genes. Overexpression of miR-181a sensitizes 
U87-MG (malignant glioma) cells to radiation 
and downregulates mRNA and protein expres-
sion of BCL-2, a protein that regulates apoptotic 
cell death. MiRNA expression profi les after IR 
exposure in the U87-MG cells showed downreg-
ulation of miR-181a. Transient overexpression of 
miR-181a sensitized these cells to IR and led to 
downregulation of mRNA and protein level of 
BCL-2. BCL-2 is associated with radioresistance 
but also it plays a protective role against apop-
totic cell death and is frequently overexpressed in 
human tumor cells [ 56 ,  57 ]. Growth arrest and 
apoptosis, due to radiation, can be enhanced by 
inhibition of miR-21 in U251GBM cells through 
overriding G2-M arrest [ 58 ]. GB cell line radia-
tion resistance can be mediated through regula-
tion of cell-cycle genes, such as PDCD4 and 
hMSH2 by miR-21 [ 59 ]. There is sound preclini-
cal evidence showing that also many other miR-
NAs may modulate the radiation resistance of 
GB, conditioning downstream both the PI3K/Akt 
and the ATM/Chk2/p53 pathways, as reported by 
Comincini et al. in this book. These authors spec-
ulate that, given the short time in which a large 
number of radiobiological studies on miRNAs in 
GB have been published (that is, over the past 10 
years or so) it is reasonable to expect rapid and 
signifi cant clinical developments.  

    Immunity and Radiation Response 
of Glioblastoma 

 Differently from a former concept, brain is not 
immune-privileged, particularly if a breakdown 
of the BBB takes place, like in the case of GB, 
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which develops abnormal vasculature and tumor- 
associated infl ammation. Immunotherapy of GB 
has been developed, through passive (mAb, 
cytokine- mediated therapies and adoptive cell 
transfer) and active immunity agents (peptide- 
and cell-based approaches). Immunology sub-
jects and immunotherapy are dealt with in most 
recent updates on emerging strategies against GB 
[ 60 – 63 ] and many prospective phase-I to -III 
clinical trials are presently ongoing on this sub-
ject. However, the topic of an immunity-based 
approach to overcome GB refractoriness to radia-
tion is specifi cally addressed more rarely, both in 
laboratory and clinical experimental contexts. In 
this book, Cooper et al. deal specifi cally with 
radiation-induced immune response against GB, 
as well as with the interference of the brain/tumor 
microenvironment with effective antitumor 
immunity. Radiation may have several adverse 
effects on immunity, such as those systemically 
occurring during limited-volume, fractionated 
RT for GB, due to exposure to circulating lym-
phocytes. Over a complete RT course (60 Gy in 6 
weeks, 5 fractions of 2 Gy per week) lympho-
cytes may drop by 50 % of the baseline count 
[ 64 ] due to radiation-induced apoptosis. 
Immunosuppressive effects may also be due to 
TMZ- and steroid-induced leukopenia. 
Furthermore, the GB microenvironment itself 
may exert an immunosuppressive infl uence, and 
immune checkpoints may inhibit immune cell 
proliferation and activity. 

 These effects make it diffi cult to detect a pos-
sible antitumor immunity in the clinical setting 
and the role of radiation in its modulation. 
Preclinical experimental radiobiology approaches 
are therefore necessary, such as those undertaken 
in mice submitted to a focally collimated, stereo-
tactic single-fraction 10 Gy irradiation of an 
orthotopic tumor deriving from GL261 glioma 
cells, followed by activation of 4-1BB (or 
CD137, a member of TNF superfamily, a co- 
stimulatory molecule), and blockade of CTLA-4 
(or CD 152, Cytotoxic T-lymphocyte Antigen 4, 
an immune checkpoint downregulating the 
immune system) [ 65 ]. This triple-therapy sched-
ule achieved a median survival of 66.5 days, vs. 
22.5 days ( p  < 0.05) in mice undergoing only the 
4-1BB/CTLA-4 manipulation, and 24 days 

( p  < 0.01) in those submitted to irradiation alone. 
The primary tumor site showed increased CD4+ 
and CD8+ infi ltrating lymphocytes after triple- 
therapy; depletion by monoclonal Abs of CD4+ 
inhibited the antitumor effi cacy of triple-therapy, 
whereas depletion of CD8+ did not interfere with 
triple-therapy effi cacy and allowed a longer sur-
vival compared with controls. Long-term- 
surviving animals achieved also memory 
response and rejected a subsequent growth of 
GL261 glioma cells, implanted in the fl ank. Some 
clinical trials are presently ongoing, taking into 
account also similar co-signal balances in other 
animal-model experiments [ 66 ,  67 ], and adopting 
programmed cell death (PD-1) immune 
checkpoint- inhibiting monoclonal Abs, such as 
Pidilizumab and Nivolumab. However, RT exerts 
multiple favorable and sometimes unfavorable 
effects on GB, based on different domains of 
cell-mediated and humoral immunity, which 
need in-depth evaluation and are the subject of 
intensive research [ 7 ]. 

 Vaccination with DCs loaded with an 
 EGFRvIII  (a mutant form of  EGFR  present in 
about 30–40 % of GBs) specifi c peptide, induced 
immune response and a relevant improvement in 
prognosis out of a small series of patients [ 68 ]. 
This led to the development of a prospective trial 
in the adjuvant setting after chemoradiation [ 69 ], 
showing good results in a comparison with 
matched controls. The preliminary results of the 
ACT-III trial, addressing Rindopepimut (a vac-
cine consisting of the unique EGFRvIII peptide 
sequence conjugated with keyhole limpet hemo-
cyanin), delivered in conjunction with TMZ and 
after chemoradiation in GB, were published very 
recently [ 70 ]. This study raises remarkable 
 interest, due to a median overall survival of 21.8 
months and 3-year survival of 26 %, out of 65 
EGFRvIII+ GB patients, to a fourfold anti-EGFR 
antibody increase in 85 % of patients, and to the 
EGFRvIII+/EGFRvIII-conversion in 4/6 recur-
ring patients. These outcomes are under evalua-
tion in a random phase-III trial (ACT-IV). 
However, the above results derive primarily from 
investigating the subject of vaccine therapy 
against  EGFRvIII  in GB, with no particular 
radiobiological meaning. The subject of immu-
notherapy against  EGFRvIII  in conjunction with 
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radiation is stimulating, and not yet suffi ciently 
addressed in preclinical experiments that are suit-
able for specifi c therapeutic developments.  

    Evolving Radiation Techniques, 
Particle Therapy, and Immunity 

 The recent evolution of image tools (CT, MRI, 
radionuclide methods) and radiation therapy 
planning and dose delivering has generally pro-
vided high conformality in RT of GB. Ionizing 
particle beams, as compared to photons, have the 
peculiarity of more selective dose deposition at a 
defi nite depth (Bragg’s peak). Proton beam irra-
diation of GB has a better conformity index (CI, 
which is the ratio between the planned target vol-
ume of a tumor and the healthy tissue volume 
that receives a signifi cant dose as regards radia-
tion tolerance) compared to the most sophisti-
cated photon RT techniques presently available 
[ 71 ]. This may spare critical structures of the 
healthy brain from severe damage, thus allowing 
very high-dose irradiation of GB and possibly 
improving local tumor control. Heavy ion beams 
(e.g., carbon ions) add to this selective dose 
deposition, also producing the advantage of a 
high ionization density (expressed as Linear 
Energy Transfer, or LET). This achieves a high 
relative biological effectiveness (RBE), due to 
inactivating events very close to each other along 
particles’ paths, spaced out ranges comparable 
to the size of biological molecules like 
DNA. Therefore, more effects of charged parti-
cle irradiation are direct and irreparable, with a 
lesser dependence on parameters like dose frac-
tionation, oxygenation, stem cell resistance, etc., 
than X- or γ-ray photon irradiation. However, it 
is diffi cult to demonstrate the clinical benefi ts of 
ion- beam methods, mainly due to the very lim-
ited availability of dedicated facilities. 
Nevertheless, the present trend towards hypo-
fractionated photon RT, which derives from the 
selective, high- gradient linear-accelerator-based 
RT techniques and image-guided irradiation, 
might further develop in the near future with 
charged particles. 

 From a radiobiological standpoint, the focal 
RT high-dose deposition with stereotactic RT or 
particle therapy is attractive for many reasons. At 
very high doses, vascular radiation damage may 
become dominant, impairing tumor nutrient sup-
ply and oxygenation. Endothelial cell apoptosis 
steeply increases above fractions of 10 Gy [ 72 ], 
and a devascularizing effect becomes evident at 
image studies after doses of 18–24 Gy [ 73 ]. 
Further, radiation may induce cell necrosis in 
tumors [ 74 ] besides apoptosis and autophagy- 
related cell death, especially after high-dose 
delivery, and infl ammation response is always 
present in this case. Immunity is a main patho-
physiological domain involved in this context, as 
infl ammatory status may promote the antigen- 
specifi c immunity through DC maturation, inter-
nalization of apoptosis- and necrosis-derived 
tumor cell molecules, and presentation of anti-
gens to T cells, thus countering the poor immu-
nogenicity of clinically developed tumors [ 75 ]. 
The presence in the microenvironment, after irra-
diation, of the so-called DAMPs (damage- 
associated molecular patterns) [ 76 ], like ATP and 
the high-mobility group protein 1 (HMGB1), 
activates TLR4 (toll-like receptor 4) in CD8+ 
T-lymphocytes (shown to be correlated with 
radiation success). Calreticulin translocation to 
the cell surface (CRT) may in turn induce the 
capture of tumor antigens by dendritic cells (DC), 
which also mature due to HMGB1, thus initiating 
an immune response against the tumor [ 77 ]. In 
tumors characterized by systemic metastases, 
these processes are involved in the so-called 
“abscopal effect”, which is a regression effect 
beyond direct cytotoxicity of radiation on tumor 
cells, occurring on primary or metastatic sites 
after focal irradiation of a single tumor site 
(revised in [ 78 ]). However, many mechanisms 
are involved in radiation-induced immunity 
against cancer, which are the subject of intensive 
preclinical research for its enhancement also in 
the clinical setting, e.g., through vaccination, 
immunomodulation, and adoptive cell transfer 
for a synergic approach with RT. These studies 
are ongoing also for GB [ 77 ] and are the subject 
of a dedicated section of this book.  
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    The State-of-the-Art in GB 
Radiobiology, Related 
Pathobiology, and Their Clinical 
Relevance 

 It is becoming a truism to state that the progress 
made in clinical and molecular oncology and 
radiobiology has made it possible to switch from 
a population-based approach to a personalized 
treatment. The main advantage of combining 
information derived from both preclinical and 
clinical settings lies in the real opportunity of 
selecting specifi c molecular-oriented subjects, 
who will most likely benefi t from a particular 
treatment in accordance with their “molecular 
profi le”, or to select patients at risk of adverse 
events. For instance, the close integration 
between molecular biology and imaging may 
favor a reliable functional clinical evaluation of a 
number of biological events, previously identi-
fi ed only by pathology or laboratory assays, 
allowing a proper patient selection for the most 
effective therapeutic approach. 

 We now have a better understanding of the 
mechanisms sustaining the processes responsi-
ble, at the biological and clinical levels, for the 
aggressive radioresistant phenotypes of GB. At 
the same time, the important advances being 
made in our knowledge of biological processes 
might ground strategies for enhanced radiation 
response, as well as reduced toxicity of organs at 
risk. With particular regard to GB, progress in 
characterization, quantifi cation, and timing of 
biological processes might improve the growing 
body of current evidence in the diagnostic and 
therapeutic fi elds, such as imaging and RT. This 
hopefully will allow for both the identifi cation of 
subjects with specifi c molecular profi les and for 
this reason more responsive to ionizing radiation 
and strategies suitable for enhancing GB radia-
tion sensitivity in radioresistant phenotypes. 

 However, advances in molecular-based 
approaches presently have the most striking con-
sequences in an overwhelming amount of new 
drugs, able to modify cellular systems at the 
genetic, epigenetic, and signaling pathway levels 
in the preclinical setting, and in the introduction 
of a multitude of diagnostic tools able to monitor 

individual molecular and biological processes 
with improving sensitivity and specifi city. These 
achievements have dramatically augmented our 
understanding of the molecular bases of GB, and 
putatively should improve clinical outcomes, but 
this is not yet the rule. The presently available, 
enormous body of biological knowledge likely 
requires reliable processes for translation into the 
clinical setting. This might be a major challenge 
for the near future. In this regards, as previously 
stated, the aim of this book is to provide some 
selected contributions that might facilitate recip-
rocal understanding and communication among 
the main players in radiation research and clini-
cal management of GB.     
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