
Chapter 6
Estimating Soil Texture from a Limited
Region of the Visible/Near-Infrared
Spectrum
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Abstract Soil particle size is an attribute of fundamental importance when defining
soil horizons. Proximal soil sensors can facilitate the acquisition of a larger amount of
soil data using a faster and less laborious technique. Thus, the objective of this study
is to evaluate the capacity of a limited spectral acquisition region (325–1075 nm) for
estimating soil texture. Soil samples were collected in the southwest part of
Marombas river watershed located near the center of Santa Catarina State, south of
Brazil. A total of 42 soil profiles were sampled according to the GlobalSoilMap
specification. A dataset of 166 samples was used for model calibration and another
set of 71 samples was used for model validation. Diffuse reflectance spectroscopy of
sieved samples (2 mm) was collected with a spectrometer FieldSpecHandHeld II
(ASD Inc.). Savitzky–Golay second derivatives were calculated and used in partial
least-squares regression modeling. Calibration and validation datasets showed
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statistically similar mean and variance. The root-mean-square error of prediction for
sand, silt, and clay content is 5.47, 5.18, and 5.39 g 100 g−1, respectively. The R2 for
validation is 0.30, 0.59, and 0.69 for the same attributes. Partitioning the model by
depth did not improve the predictions significantly. The results show that estimating
soil texture from a limited spectral region is promising and can contribute toward the
development of cheaper spectrometers or infrared cameras that can be used for digital
soil morphometrics.

Keywords Diffuse reflectance spectroscopy � Soil reflectance � Proximal soil
sensing � Soil attribute � Digital soil morphometrics

6.1 Introduction

During the last two decades, a growing interest on the quantification of soil attri-
butes by means of soil sensing techniques has emerged (Ramirez-Lopez et al. 2014;
Vasques et al. 2008) using visible–near-infrared (Vis–NIR) diffuse reflectance
spectroscopy to provide data for digital soil mapping (Viscarra Rossel and Behrens
2010; Wetterlind et al. 2010) and soil morphometrics. Visible and near-infrared
spectroscopy (Vis–NIR, 400–2500 nm) can be used as a tool to acquire more data
rapidly and consequently increases mapping accuracy. Vis–NIR has potential to
analyze several soil attributes simultaneously without considerable increase in costs
(Viscarra Rossel and Lark 2009; Wetterlind et al. 2010), time and with less pro-
duction of reagents residues (Viscarra Rossel et al. 2006; Demattê and da Silva
Terra 2014).

Vis–NIR spectra contain information on minerals, organics, water, color, and
particle size, which are fundamental components of the soil (Viscarra Rossel and
Chen 2011). Reflectance spectroscopy can be very useful in the assessment of soil
variations in depth (from different layers and/or horizons) due to the interaction of
light with soil attributes reflecting intrinsic data related with soil (Demattê and da
Silva Terra 2014).

Recent studies also investigated the relationships between soil attributes and its
spectral reflectance aiming into predicting physical–chemical soil attributes
(Summers et al. 2011). Using a laboratory spectrometer, Demattê et al. (2012)
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analyzed the relation between the reflected electromagnetic energy and soil attri-
butes. They observed features between 450 and 600 nm caused by subtle differ-
ences in the absorption intensity, which can be used to separate the subhorizons in
the field from their color.

The studies of soil reflectance spectra across the whole visible, near-infrared, and
shortwave infrared (Vis–NIR–SWIR) have been successfully applied by Dotto et al.
(2014) who developed models using multiple linear regression analysis to predict
the content of sand, silt, and clay. The models produced good results, explaining 77
and 72 % of the variance for sand and clay, respectively. In a study carried out by
Viscarra Rossel et al. (2006), the authors have shown that a spectrometer operating
in visible region of the spectra (400–700 nm) can be used for soil organic carbon
prediction. Their results achieved a RMSE of 0.18 % and R2 of 0.60. The authors
highlighted that the predictions using only the visible part of the spectra can be
comparably accurate and not as expensive as the infrared spectrometer.

Considering that spectrum of the visible region (400–700 nm) is used for
morphological in field soil classification, this paper has the hypothesis that, even
using a spectrometer capable of acquiring a limited region of the spectrum, the soil
signatures collected with such equipment is suitable for estimating soil texture.
Thus, the main objective of the paper is to predict soil texture using second
derivatives of the reflectance in a limited region of the spectrum (325–1075 nm). It
is anticipated that lower-cost near-infrared camera or spectrometer with a limited
range of spectra can be used for digital soil morphometrics.

6.2 Materials and Methods

6.2.1 Soil Sampling and Laboratory Analysis

Samples were collected in the southwest part of Marombas river watershed, located
near the center of Santa Catarina State, south of Brazil (Fig. 6.1). Parental material
in the region consists mainly of basaltic igneous rocks of Serra Geral formation.
A small area of the watershed, located toward east, consists in consolidated sedi-
mentary rocks of the Botucatu Formation. The climate is subtropical with mild
summer and mean annual temperatures of 16 °C. Köppen climate classification
system for the area is Cfb. Annual precipitation is about 1600 mm. Altitude of
watershed varies from 900 to 1300 m above sea level. Natural vegetation belongs to
the mixed ombrophylous forest. The total area of the watershed is approximately
950 km2, and predominant land cover consists of 22 % of agriculture (garlic, onion,
soy beans, and maize), 37 % of cultivated forest (Pinus taeda), 33 % of natural
forest (with Araucaria angustifolia), and 8 % of grassland and pasture. Prevalent
soil types in the area are Oxisols, Inceptisols, and Entisols (Latossolos,
Cambissolos, and Neossolos in the Brazilian classification system).
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A total of 42 soil profiles were sampled following the GlobalSoilMap specifi-
cations (Arrouays et al. 2014). In every profile, samples were collected until 2 m
depth (when possible) in the intervals of 0–5, 5–15, 15–30, 30–60, 60–100, and
100–200 cm. Soil analyses were conducted in the Pedology Laboratory of the
Federal University of Santa Maria (Santa Maria, RS, Brazil). Soil organic carbon
(SOC) and soil texture were determined for the 237 soil samples after air-dried,
ground, and sieved through a 2-mm mesh according to Embrapa (1997). Sand, silt,
and clay (g kg−1) were determined by the pipette method, and SOC (g kg−1) by
Walkley–Black wet digestion as described by Tedesco et al. (1995).

6.2.2 Spectral Analysis

In the laboratory, in a controlled setting, the 237 air-dried grounded samples were
scanned using a FieldSpec HandHeld II (ASD Inc.) spectrometer, with a spectrum
range acquisition of 325–1075 nm and spectral resolution of <3 nm at 700 nm. Soil
scanning was conducted inside a black painted box (dimensions
L/750 × H/400 ×W/400 mm), to allow for a controlled light illumination. Inside the
box, soil samples were put in a Petri dish. Spectrometer was installed on top of the
box with a conical field of view of 10° at a distance of 400 mm from samples. With
this configuration, the spectrometer sampling area in the Petri dish was 40.7 cm2.

Fig. 6.1 Study area and sampling locations (dots) in the Marombas river watershed (red polygon).
Small inbox shows the location of the watershed in south of Brazil
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A light source of 70 W quartz–tungsten–halogen lamp with integrated reflector was
placed inside the box. Light source was placed 400 mm away from the soil sample
and inclined 30° from lamp nadir. Four composite scans (each one is an average of
100 internal scans) were obtained for each sample from the four quadrants of Petri
dish by rotating it 90°. Reference spectrum using a white Spectralon® panel was
collected prior to the first scan and at every new group of samples from a different
profile. Final spectrum was calculated by averaging the four composite scans.

6.2.3 Spectral Data Analysis

This study applied three preprocessing steps to soil reflectance spectra. First, spectra
with high noise-to-signal ratio at the edges were removed (325–400 and 980–
1075 nm) which were confirmed by visual observation. Second, the reflectance
spectra were smoothed by a Savitzky–Golay second-order polynomial using a
moving window of nine values (Savitzky and Golay 1964). Third, to reduce the
dimensionality of the data, the reflectance values were averaged across a 5-nm
window. This pretreatment reduced the soil spectral curves to 116 reflectance
values (400–980 nm) which were then used for modeling.

Savitzky–Golay second derivatives were calculated on the 116 soil reflectance
spectral values using a second-order polynomial across a 9-nm window. This
derivative procedure followed the recommendation by Vasques et al. (2008). The
modeling dataset was formed by sand, silt, and clay values and second derivatives
of the air-dried grounded samples, using partial least-squares regression (PLSR)
with The Unscrambler®X 10.3 software (CAMO Inc., Woodbridge, NJ).

6.2.4 Partial Least-Squares Regression Modeling

For each Vis–NIR spectral pretreatment, a PLSR model was tested. PLSR is the
most common algorithm used to calibrate Vis–NIR spectra to soil properties
(Viscarra Rossel et al. 2006) where there are many predictor variables that are
highly collinear (Viscarra Rossel and Behrens 2010). PLSR handles this multi-
collinearity and is robust in terms of data noise and missing values (Summers et al.
2011; Viscarra Rossel et al. 2006). The PLSR algorithm integrates the compression
and regression steps, and it selects successive orthogonal factors that maximize the
covariance between predictor and response variables (Viscarra Rossel and Behrens
2010).

Dataset was also further partitioned in three subsets related to soil depth. In all
PLSR models, the quality of prediction was assessed by randomly dividing the
datasets in two groups (70:30 split) for calibration (C) and validation (V). Thus,
there were four groups of data formed by soil texture and reflectance second
derivatives: whole dataset (i.e., 166C/77 V), 0–15 cm (i.e., 59C/25 V), 15–60 cm
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(i.e., 58C/24 V), and 60–200 cm (i.e., 51C/20 V). For modeling, soil texture clay,
silt, and sand content were expressed in g 100 g−1 or %. Models were evaluated
based on the coefficient of determination of validation (R2, Eq. (6.1)).
Complementary error statistics were also provided, including the root-mean-square
error (RMSEP, Eq. (6.2)) for models accuracy, and mean error (ME, Eq. (6.3)) for
its bias:

R2 ¼
Xn

i¼1

ðŷi� �yÞ2
,

Xn

i¼1

ðyi� �yÞ2 ð6:1Þ

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðŷi� yiÞ2
,

n

vuut ð6:2Þ

ME ¼ 1
n

Xn

i¼1

ðŷi� yiÞ ð6:3Þ

where ŷ = predicted values, ȳ = mean of observed values, y = observed values, and
n = number of predicted/observed values with i = 1, 2,…, n.

Homogeneity of variance test, between soil texture calibration and validation
sets, was carried out with Levene’s test. Following results of homogeneity of
variance (i.e., groups had equal or unequal variances), a comparison between the
mean was conducted with Student’s t test. All tests were done with a critical p-value
of 0.05 (95 % confidence).

6.3 Results and Discussion

6.3.1 Descriptive Statistics

Soil textures in the Marombas river watershed are predominantly clay and silty clay
(Fig. 6.2). There are also a few samples of clay loam and silty clay loam. Those
soils are deeply weathered with strong presence iron oxides with particles diameter
less than 0.002 mm. Soil clay content of the 237 samples ranges from 31.79 to
78.48 % and sand content ranges from 1.38 to 35.48 % (Table 6.1). The mean clay
content increases from 51.73, 56.49, and 63.82 % within the increasing soil depth
of 0–15, 15–60, and 60–200 cm, respectively. This small increase in clay with
depth is due to translocation. The dominant minerals are calcic plagioclase and
pyroxene basalt which weathered completely and formed clay minerals through
oxidation process of the parental material contributing to this fine texture. The
profiles were classified as Oxisols (Latossolos in Brazilian classification).

Sand, silt, and clay contents were tested for normality with Shapiro–Wilk test at
a 0.05 significant level. The test indicates that sand, silt, and clay were normally
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distributed, and thus, no transformation was applied to the attribute datasets before
modeling. To verify whether there was similarity between calibration and validation
datasets, tests of homogeneity of variance (Levene’s test) and comparison of the
mean (Student’s t test) were carried out with a 0.05 significant level. The Levene’s
test indicated no homogeneity of variance between sand datasets for depth of 0–15
and 60–200 cm (Table 6.2). All remain groups of data had equality of variances
between calibration and validation samples. Due to the lack of homogeneity of
variance, the Student’s t test for comparison of the mean in those two groups (0–15
and 60–200 cm) was carried out with non-equal variance assumption. Comparison
between the mean for sand, silt, and clay values for calibration and validation sets
did not show a significant difference (Table 6.2). Sand, silt, and clay are compo-
sitional data which needs to sum to 100 %. In this study, we model the components
independently to study the relative predictability of the content using NIR. Future
work will look into additive log-ratio transformation.

6.3.2 Qualitative Description of the Spectral Data

Spectra of all soils were similar with minor features apparent in visible and
near-infrared region. An increase in soil reflectance could be noticed toward deeper
soil samples (Fig. 6.3a). Samples located near the surface have higher SOC content
which absorbs radiation. Sousa Junior et al. (2011) found similar results on cor-
relation between soil attributes and its reflectance showing that soil organic matter
has a high influence on the spectral behavior, resulting in a significant negative

Fig. 6.2 Soil texture of the
samples following the USDA
triangle
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correlation in all evaluated bands. The organic matter can also mask features of the
reflectance (Demattê et al. 2012).

The SOC content varied from 0.03 to 8.32 % in the dataset of 237 samples.
High SOC presence is due to constant supply of new organic material in vegetated
areas. The altitude of the region has annual average temperature to be around 16 °C,

Table 6.1 Entire and segregated by depth datasets descriptive statistics

Descriptive statistics (%) Sand Silt Clay Sand Silt Clay

Calibration Validation
Whole dataset
n = 166 n = 71

Min 1.38 18.91 31.79 1.38 18.50 33.85
Q1 3.32 28.51 52.09 3.00 29.37 50.87
Median 5.12 33.26 57.92 6.09 36.77 56.78
Mean 7.82 34.12 58.06 7.60 35.59 56.81
Q3 9.19 38.67 66.19 10.98 40.82 62.89
Max 32.81 59.40 78.16 35.48 52.76 78.48
Range 31.43 40.49 46.37 34.10 34.27 44.62
SD 7.05 7.52 10.05 6.29 8.03 9.69

Depth 0–15 cm
n = 59 n = 25

Min 3.00 20.27 33.85 2.60 25.93 39.51
Q1 5.12 33.20 46.57 4.26 33.11 47.89
Median 6.77 38.26 53.30 6.39 37.91 53.69
Mean 10.51 37.75 51.73 7.86 37.91 54.23
Q3 12.86 41.19 56.93 9.08 43.86 58.17
Max 35.48 51.94 69.48 19.91 52.76 70.39
Range 32.48 31.67 35.62 17.31 26.83 30.87
SD 8.25 6.49 8.54 4.72 7.27 8.13

Depth 15–60 cm
n = 58 n = 24

Min 2.00 18.50 36.78 1.56 24.10 38.90
Q1 3.62 29.47 52.48 2.58 31.18 51.71
Median 5.65 34.74 57.90 4.79 34.66 56.22
Mean 7.66 34.80 57.54 8.43 35.07 56.49
Q3 9.50 39.59 63.00 10.69 40.02 63.04
Max 30.61 48.52 78.48 28.69 47.12 73.36
Range 28.61 30.02 41.70 27.14 23.02 34.46
SD 6.14 6.51 8.52 8.40 6.31 9.02

Depth 60–200 cm
n = 51 n = 20

Min 1.38 18.91 31.79 1.38 19.06 37.05
Q1 2.25 24.79 59.34 2.35 23.50 60.85
Median 3.23 28.38 64.86 3.09 27.62 68.35
Mean 5.60 30.58 63.82 4.42 29.79 65.79
Q3 6.64 36.14 71.42 6.25 35.27 72.70
Max 25.29 59.40 78.16 10.21 54.38 74.62
Range 23.91 40.49 46.37 8.83 35.32 37.57
SD 5.74 8.22 9.23 2.74 8.51 9.11

80 E.B. Silva et al.



thus maintaining a high SOC content on top layers. Clay soil texture also plays a
role in protecting organic carbon from decomposition through physical protection.
The 71 samples from depth of 60–200 cm showed an amount of 0.03 to 3.78 % of
SOC, indicating a decrease of SOC with depth.

First and second spectra derivatives highlighted features related to soil samples
mineralogical composition (Fig. 6.3b, c). According to Torrent and Barrón (2002),
soil reflectance of weathered Oxisols shows features related to the presence of iron
oxides goethite and hematite around 480 and 530 nm, respectively. Those features
are a product of various electronic or vibrational transitions in the atoms and
molecules of minerals. In the case of Oxisols, this is of decisive influence for
morphological description and soil color determination. Summers et al. (2011)
found some contributions from the visible (400–700 nm) and near-infrared region
(700–1300 nm) in the clay absorption feature at 2200 nm and the features at 1400
and 1900 nm, indicating there may be some covariation between the clay content
and the color of the soil. The second derivative spectra showed similar behavior in
all depth except for the presence of different amounts of SOC. Samples with higher
amount of SOC showed smaller amplitude. Another effect of increasing amounts of
SOC is the obliteration of a concavity feature around 880 nm which is related to the
presence of iron oxides (Fig. 6.3a). Demattê et al. (2004) reported that the depth of
this concavity is related to the degree of the crystallization of iron oxides, and the
presence of SOC will diminish this spectral feature.

Second derivative (Fig. 6.3c) shows the absence of goethite from the concavity
around 450–480 nm. On the other hand, a strong peak in the second derivative
values near 540–560 nm is related to the samples that reach content of hematite
(Fig. 6.3c). These features can be used for soil texture and spectral signature
modeling with PLSR.

Table 6.2 Values of p for the
tests of homogeneity of
variance and comparison of
the mean

p at 0.05 Sand Silt Clay
Whole dataset

Homogeneity of variance 0.90 0.31 0.44
Comparison of the mean 0.98 0.75 0.66

Depth 0–15 cm
Homogeneity of variance 0.03a 0.30 0.63
Comparison of the mean 0.07 0.92 0.21

Depth 15–60 cm
Homogeneity of variance 0.07 0.74 0.68
Comparison of the mean 0.64 0.86 0.62

Depth 60–200 cm
Homogeneity of variance 0.04a 0.89 0.87
Comparison of the mean 0.25 0.72 0.42
aIndicates no significance
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Fig. 6.3 Reflectance data and 1st and 2nd derivatives. Data collected in 6 depths at soil profile
number 1
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6.3.3 Development of Calibration Model

Overall, best PLSR predictive values were achieved for clay (mean R2 = 0.58),
followed by silt (mean R2 = 0.56), with worst predictive values achieved for sand
(mean R2 = 0.24) (Table 6.3).

Considering PLSR results separately in each of the four datasets, the best pre-
dictive values can be achieved by modeling soil clay content using data from all
depths. When this whole dataset was used, the R2 = 0.69, RMSEP(%) = 5.39 and
ME(%) = −0.01. Small bias was found when the validation set is carried out on
samples very similar to the ones which have used for calibration procedures. Worst
results for clay PLSR prediction is obtained for soil samples from 60 to 200 cm,
with R2 = 0.46, RMSEP(%) = 6.56 and a clay underestimation of ME(%) = −0.86.
Those results are somehow the opposite of what was expected. Since at this depth,
SOC is lower, it was expected that a less interference of organic molecule on the
spectra would allow a higher clay content prediction. However, one has to bear in
mind that the 60–200 cm dataset had only 51 samples for calibration and 20
samples for validation of the models, with similar clay content, thus causing the
model to underperform due to the lack of the representativeness of the information.
Clay variability remained high in this dataset shown by the range values of 46.37
and 37.57 % for 51C and 20 V, respectively (Table 6.1).

For sand prediction, poor performance with R2 = 0.09, RMSEP(%) = 4.14, and
ME(%) = 0.26 was found for soil samples form 60 to 200 cm depth. This might also
be due to the smaller amount of information in this dataset. Nevertheless, when
modelled using the whole dataset (237 samples), PLSR for sand prediction also
achieved poor results with R2 = 0.30, RMSEP(%) = 5.47 and ME(%) = 0.59. Future
work should rely on datasets with a broader range of sand content. This could be an
evidence that sand prediction in Oxisols, using a limited spectral region, could be a
challenge. Model adjustment might demand higher sample datasets to cope with
soil variability, in addition, the high soil clay content might coat the sand particles,
thus making sand prediction more difficult.

In PLSR modeling, a specific region of the spectrum may be important for
modeling of soil attributes. Such attributes are identified by large PLS regression

Table 6.3 Statistics of PLSR modeling

Soil
attribute

R2 RMSEP
(%)

ME Factor
(no.)

R2 RMSEP
(%)

ME Factor
(no.)

Whole dataset Depth 00–15 cm
Sand 0.30 5.47 0.59 7 0.10 5.30 −0.48 6
Silt 0.59 5.18 −0.58 6 0.72 4.27 −0.73 7
Clay 0.69 5.39 −0.01 5 0.60 5.07 0.09 2

Depth 15–60 cm Depth 60–200 cm
Sand 0.45 6.14 0.19 7 0.09 4.14 0.26 7
Silt 0.53 4.37 1.09 6 0.38 6.52 0.03 3
Clay 0.58 5.84 −1.23 7 0.46 6.56 −0.86 3
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Fig. 6.4 Regression coefficients of the partial least-squares regression model with whole dataset
for soil attributes: a sand, b silt, and c clay
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coefficients. The regression coefficients for the three soil attributes are shown in
Fig. 6.4. The magnitude of those regression coefficients, negative or positive,
represents the importance of the reflectance band in terms of the explanation of
variance in soil analysis data. Positive peaks are due to the component of interest,
while negative peaks correspond to interfering components (Haaland and Thomas
1988). Spectra with a coefficient near zero do not have predictive capability.

For sand prediction, regression coefficients with positive values can be found at
432, 512, 582, and 882 nm. A significant negative peak can be seen at 457 nm.
Looking into the whole spectrum of clay regression coefficients (Fig. 6.4c), its peaks
are much better defined than the ones for sand and silt (Fig. 6.4a, b). This could be due
to the strong presence of iron oxide characteristics (i.e., soil color within 400–700 nm)
in the analyzed Oxisols samples. For clay prediction, positive regression coefficients
were 462, 547, 627, and 752 nm.On the other hand, negative coefficients were located
at 492, 512, 587, 662 and 867 nm. This last negative peak around 867 nm could be
associated with the presence of higher amounts of SOC in the soil surface. The
presence of organic material diminishes the perception of the iron oxide concavity
around 880 nm, which in turn makes it more difficult to the PLSR models to predict
clay content. All the negative and positive peaks of regression coefficients are spectral
regions which deserve more attention toward selecting, and possible model recal-
culation, focusing in more significant variables for PLSR models.

6.4 Conclusions

Soil attribute prediction with PLSR using a limited spectral region (325–1075 nm)
performed poorly for sand. The results were more promising when considering the
capabilities to predict silt and clay.

The application of visible and part of the near-infrared region (400–980 nm) for
clay prediction in Oxisols achieved relative good results when all dataset (n = 237)
was used for modeling with no stratification by depth with R2 = 0.69, RMSEP
(%) = 5.39, and ME = −0.01 %. Regression coefficients showed good relation to the
spectral behavior of weathered soils in visible and near-infrared region. They
should be used in future studies as a filtering approach toward selecting more
significant variables (i.e., spectral regions) for modeling.
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