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Functions
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Abstract Hans Jenny stated that the anisotropy of soil with depth means that the
soil has a unique profile. Therefore, naturally every soil property has its specific
depth function. The changes of soil particle size distribution in a soil profile can be
used as an indicator of soil formation and processes and has been used as a proxy
for soil age or degree of development. Uniform, gradational and rapidly changing
(duplex) soil textures are examples of soil profile forms used for soil classification
in Australia. Various parametric and nonparametric depth functions have been used
to describe the variation of soil properties with depth. We have identified 7
typologies of depth functions: uniform, gradational, exponential, wetting front,
abrupt, peak and minima–maxima. These depth functions are related to soil-forming
processes. To test these functions, a proximal soil sensor was used to perform in situ
digital morphometrics by which soil properties are measured along a soil profile
wall at small depth increments. We explore the possibility of horizon boundary
detection based on the changes in elemental concentrations. It was concluded that
digital morphometrics enables soil scientists to measure the soil’s depth functions
and weathering history quantitatively directly in the soil pit and assists in more
objective delineation of soil horizons.
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14.1 Introduction

Hans Jenny (1941) noted that naturally, every soil property has its own vertical
distribution pattern or specific “depth function”. Most soil scientists work on data
collected from soil horizons. Jenny (1941) and (Arkley 1976) stated that the
assignment of horizons and their names is difficult and can be subjective. Jenny
suggested the use of the soil indicatrix (a laterally isotropic 3-D depth function) for
clarification and refinement of soil profile descriptions.

Measurements of soil properties in a soil profile are usually made based on the
horizons, or defined depth intervals. Samples or measurements are usually bulked
based on the horizons, resulting in “stepped” data which may mask the continuity of
soil properties (Hartemink and Minasny 2014). Soil scientists also measure soil
properties at fixed depth intervals (e.g. every 10 cm) to reveal the depth functions of
certain soil physical and chemical properties [e.g. (Walker and Green 1976)]. For
example, soil organic carbon and total nitrogen, representing biotic components,
commonly decrease exponentially with depth, whereas clay and iron, representing
mineral components, can be low in the A horizon and highest in the B horizon.
Colwell (1970) noted that most chemical properties show continuous trends
throughout the soil profile. Depth function characterisation of soil properties is thus
needed to show profile trends in addition to particular horizons.

This paper first reviews soil depth functions found in the literature, from
pedological observations, to mechanistic models. We then suggest some common
soil depth function typologies and reason how they relate to soil-forming processes.
We will present examples of depth functions of soil elemental concentration
measured in the field using a pXRF instrument.

14.2 A Review of Soil Depth Functions

14.2.1 Pedological Models

Northcote (1971) introduced principal soil profile forms resulting from his obser-
vations of many soil profiles in Australia. His book Factual Key for the Recognition
of Australian Soils’ first division of soil profile is based on its primary profile forms:
organic, uniform, gradational and duplex. Mineral soils are distinguished by the
depth trend in texture. Uniform profiles have little or no change in texture; gra-
dational profiles show a steady increase of clay content with depth, and duplex
profiles have layers of contrasting texture within the solum (Fig. 14.1). The profile
forms also imply the degree of soil development from minimum development
(uniform), to moderate development with some illuviation process (gradational),
and pronounced development with heavy illuviation (duplex).

For young soils developed from till (Madsen and Munk 1987), as reported in
Adhikari et al. (2014), the degree of soil development can be estimated from the
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trend of pH with depth. A soil after the deposition of carbonate rich parent material
will have a uniform high pH and was considered young (Fig. 14.2a). With time,
leaching of carbonates created a gradational (b) and duplex (c) soil pH which
increased with depth. When these soils (b and c) are limed, the depth function
changed towards profile (d and e), respectively (Adhikari et al. 2014).

14.2.2 Analytical Models

Kirkby (1977) proposed several depth functions which relate to the distribution of
organic material, water, and evaporation and transpiration processes. The shapes of
the functions included the following: exponential decay, convex and minima–
maxima (Fig. 14.3). The exponential function assumes the distribution of organic

Uniform Gradational DuplexFig. 14.1 Principal soil
profile form as recognised by
Northcote (1971)

Fig. 14.2 Leaching and
liming effect on soils
developed in lime-rich till in
Denmark. Soil profile a newly
deposited till; b weakly
leached soil; c strongly
leached soil; d soil b limed;
and e soil b limed (adapted
from Madsen and Munk
1987)
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matter that was added to soil via plant litter or decaying of roots. The bell-shaped
function assumes the distribution of water and the movement of solutes, and their
extraction by plant roots. Mixing in the surface layer can create minimum–maxi-
mum peaks. We will discuss these functions in the next sections.

14.2.3 Exponential or Power Functions

The most widely used model for soil depth functions is the exponential or power
function, which is mainly used to describe the distribution of soil organic matter or

Fig. 14.3 Features of equilibrium soil profile predicted by an analytical soil profile development
model [from Kirkby (1977)]
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organic carbon content with depth. The function describes the decline of soil organic
matter or carbon with depth (highest in the A horizon, and low in the subsequent
horizons). Russell and Moore (1968) proposed a simple exponential function:

C zð Þ ¼ C0exp �kzð Þ

where C0 is the carbon concentration at the soil surface and k is the rate of decrease,
and z is depth. They mentioned that this function is similar to the profile depth of
biological properties, e.g. plant roots. This function can model a range of shapes,
from a highly exponential to a linear decrease of concentration with depth.
Variations of this exponential function have been proposed to describe the decrease
of soil carbon with depth (Bernoux et al. 1998). A power function can also display
such trend with depth (Fig. 14.4):

C zð Þ ¼ C0z
b

The soil organic carbon content in the plough layer of cultivated fields is often
relatively uniform, and a constant can be introduced for that zone as shown in
Fig. 14.4b (Mikhailova et al. 2000; Meersmans et al. 2009). In spodosols, a second
maxima of SOC often occurs in the spodic horizon (Webster 1978). A similar
pattern also occurs in the presence of buried horizons and in palaeosols (Fig. 14.4c)
(Grauer-Gray and Hartemink 2016).

Fig. 14.4 Depth function of soil organic carbon, a an exponential function in an alluvial soil in
New South Wales, Australia (Walker and Green 1976), b a grassland (circle) and a continuously
cropped field (triangle) of Chernozems from Russia (Mikhailova et al. 2000), and c a Mollisol with
a buried A horizon at 70 cm depth from South Central Wisconsin, USA (Grauer-Gray and
Hartemink 2016)
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The negative exponential depth function can also be used to describe soil
temperature as an analytical solution to heat transport. The incorporation of organic
matter through bioturbation in soil modelled as a diffusion process often results in
an exponentially shaped depth function. The depth-exponential relation is also
found in the soil production function, where the soil weathering rate decreases with
increasing soil thickness (Stockmann et al. 2014).

14.2.4 Wetting Front

The movement of water through a soil profile creates wetting front-type depth
functions. A mechanistic model by Kirkby (1985) with diffusion processes results
in the weathering profile that resembles a wetting front. Brantley et al. (2008)
observed that most chemical and mineralogical profiles display reaction fronts that
show depletion of leachable elements or minerals (Fig. 14.5). They modelled the
depth function in the form of a sigmoidal function:

C zð Þ ¼ Cm

1þ Cm�C0
C0

exp a zð Þ

where C is the concentration at depth z, with an empirical parameter a.
Beaudette et al. (2016) modelled the depth distribution of soil horizons using a

proportional odds logistic regression which has a form similar to the sigmoid

Fig. 14.5 Wetting front-type depth functions for: a Concentration of Na in Panola granite soil in
the Piedmont Province of Georgia, USA, exposed to weathering for approximately 250–500 ka
[data from Brantley et al. (2008)], b Soil pH from an intensely cultivated Udic Psamments from
the Central Sands of Wisconsin, USA (Adhikari et al. 2016)
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function. Leblanc et al. (2016) found a wetting front-type depth function for gleyed
horizons, but a peak function for spodic horizons.

14.2.5 Peak Functions

Some soil properties such as clay content show accumulation (maxima) with depth
as a result of eluviation and illuviation processes, in situ formation or discontinuity
in soil parent materials. This accumulation can depict a bell-shaped curve, which is
a characteristic of solute transport. Solute transport in soil can exhibit a normal
distribution for dispersion and diffusion processes (Wetselaar 1962) or a lognormal
distribution function for convective processes (Jury 1982) (Fig. 14.6). The ana-
lytical solution for a convective-diffusion transport during weathering by (Kirkby
1985) suggests a double exponential function. Myers et al. (2011) observed that
some soil profiles showed highly asymmetric peak-shaped depth distributions for
some soil properties. The asymmetry occurred mainly due to the gravitational
vector of profile weathering and development. They proposed the use of the
Pearson-type IV (PIV) asymmetric probability density function or logistic peak
function. The parameters of the model can be related to properties’ maximum,
depth to the maximum, abruptness, and profile anisotropy. Peak functions can also
indicate compaction, and anthropogenic influences can create variations such as
multiple peaks (Fig. 14.7a).

An extension of the peak model is observed in properties such as clay content or
electrical conductivity (Bishop et al. 1999), where its value reaches a minimum and
increases to a maximum (Fig. 14.7b). This minima–maxima (minimax) depth
function can be related to mixing processes in the surface and translocation to the

Fig. 14.6 a Theoretical depth
distribution of solute transport
in soil; solute initially follows
the wetting front and displays
a bell-shaped distribution
following convection–
dispersion processes. b An
example of peak distribution
function for clay content
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subsurface, through excessive bioturbation, or textural discontinuities resulting
from different parent materials within the soil profile.

14.2.6 Abrupt or Lithologic Discontinuity

Abrupt changes in the soil properties in the profile can be due to changes in the
lithology of soil parent materials (Schaetzl 1998). When they occur within or near
the solum, they can impact pedogenesis. Sudden increase in coarse sand or layers of
gravel are common indicators of lithologic discontinuity. In environments with
sharp discontinuities due to deposition or human influences, the depth functions of
soil properties change abruptly. Kempen et al. (2011) modelled the depth functions
for soil organic carbon of soils that have composite or stacking of discontinued
horizons, where each horizon has either a linear or an exponential function. This
resulted in discontinuous depth functions with abrupt boundaries.

14.2.7 Polynomials and Splines

Linear regression and orthogonal polynomials of 2nd-degree to 5th-degree have
been fitted to soil depth data (Colwell 1970). This allows a degree of variation
within the depth, but there are disadvantages as there is no theory from which to
determine a suitable degree of polynomial and local variation can affect the quality
of fit elsewhere in the soil profile (Webster 1978). Erh (1972) proposed the use of
splines as a flexible function that can fit a piece wise a series independent poly-
nomial functions over small intervals of a soil profile and also produces a

Fig. 14.7 a Penetration
resistance from a cone
penetrometer for a cultivated
field showing multiple peaks
[data from (Minasny 2012)],
and b electrical conductivity
from a red podzolic soil
(Alfisol) in New South Wales,
Australia, showing a minima–
maxima pattern [from Bishop
et al. (1999)]
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continuous derivative function. Webster (1978) demonstrated that the spline
interpolators are better for some organic matter profiles of soils in Britain, espe-
cially for Spodosols where the exponential decrease assumption is invalid.

Ponce-Hernandez et al. (1986) pointed out that many of the proposed methods fit
the depth functions or curves through the depth of horizon averages. This can
produce unreliable results as it smoothens out the variance of the data. The fitted
curves can be smoother than the true variation of the properties with depth. They
proposed equal-area splines to reconstruct profiles more accurately from stepped
data and the approach was used by Slater (1994) to reconstruct soil horizon data
into a more regular depth interval for a continuous classification. Bishop et al.
(1999) proposed the equal-area quadratic smoothing splines and tests of their model
indicated the superiority of equal-area splines in prediction of depth functions.

The development of proximal soil sensors allows measurements of soil prop-
erties at small depth increments with depth. Invasive, in situ technologies include
penetrometer with penetration resistance measurement (Arriaga et al. 2016) which
can be coupled with moisture content and bulk electrical conductivity sensors.

14.2.8 Typologies of Depth Functions

Based on the above review, we have identified common typologies of soil depth
functions. The shape of the functions imply physical processes as described above.
In essence, there are 7 typologies that describe soil property change with depth:
uniform, gradational, exponential, wetting front, abrupt, peak, and minima–maxima
(minimax) (Fig. 14.8). The curves have mirror images reflecting properties that

Fig. 14.8 General typologies of depth functions
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might be compositional or complementary. The patterns may or may not reflect soil
horizon boundaries.

14.3 Profile Development Indices

Pedologists study the depth functions to infer soil processes and development.
Profile development indices were developed based on the horizons’ morphological
and chemical data as quantitative measures of stages of soil profile development.
For example, Harden (1982) developed a soil profile development index that was
related to the age of the soil. The index was calculated as a sum of field and
laboratory data weighted by the horizon thickness.

Another index related to profile development is the Index of Profile Anisotropy
(IPA) was developed by Walker and Green (1976) which provides a single value to
describe the anisotropy of a profile with laboratory-measured soil data. When a soil
is very young, its properties are assumed to be isotropic in nature (such as a uniform
texture). When a soil matures and is more intensely weathered, the anisotropy value
is increased. IPA is defined as follows:

IPA = |Deviation|/mean

At time = 0 soil properties are isotropic; with time, soil properties change with
depth, the degree of anisotropy increases with time. The depth functions can now be
used to calculate these indices as a quantitative measure the degree of soil profile
development.

14.4 Soil Depth Function Examples

To demonstrate the idea of depth functions, we show the measurement of elemental
concentration of soils in the field. Measurements were made every 5 cm along the
profile wall of an Alfisol and an Entisol in Wisconsin, USA, using an Olympus
pXRF operated in GEOCHEM mode.

14.4.1 Mollic Hapludalfs

The Mollic Hapludalfs from West Madison has developed in loess over coarse and
calcareous outwash and the soil has 5 soil horizons. The plough layer is 24 cm deep
with a silt loam followed by a silty clay loam Bt horizon (24–55 cm). There is a
transitional BC horizon (55–91 cm) adjacent to the outwash (horizon 2 C) where
the texture is a loamy sand. Figure 14.8 shows depth functions of some major
elements measured in the soil pit. The Al and Fe concentrations show a similar
pattern with a peak in the Bt horizon, indicating that there is enrichment with
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alumino-silicates—an indication of clay illuviation. The Mn concentration varies
gradually down the profile with an increase in the Bt horizon. There is a colour and
morphology change from the Ap to the Bt horizon, but most elements measured by
pXRF varies smoothly down the profile.

Elemental concentration from pXRF allows calculation of soil chemical
weathering indices that were developed for pedological studies (Sauer et al. 2007).
The main assumption of these indices is that the concentration and movement of
chemical elements are controlled by the degree of weathering. It is assumed that
during the weathering process, major oxides such as TiO2 and Fe2O3 and Al2O3 are
considered immobile, and Si2O, K2O, Na2O, MgO and CaO are mobile. Most of
these weathering indices are expressed as a ratio of molecular or weight percentage
between different elements or groups of major oxides (Sauer et al. 2007). The
simplest weathering index is SiO2/Al2O3 (Ruxton 1968) which captures the loss of
silica during weathering. It is assumed that the amount of alumina in weathered soil
is immobile and constant and the amount of oxides (zirconia, titanium and total iron
oxides) is constant. The index ranges from a high value (around 10 for unweathered
material) to a low for weathered soil. It is mostly used for studying highly
weathered soils. Another index is the Ti/Zr ratio, and these immobile elements are
highly correlated and have been used to test the homogeneity of parent materials
(Maynard 1992). The Ti/Zr ratio is not much affected by primary alteration or
weathering and can be used as indicator of major igneous rock types.

We calculated these two weathering indices for the Alfisol (Fig. 14.9). Although
the 2C horizon is a parent material discontinuity (starting at 60 cm), most elements
did not reflect this abrupt change except for elemental Ca concentrations. The Zr
concentration shows a wetting front-type depth function with a constant value to a
depth of 50 cm and gradually decreasing at 80 cm depth where the Zr concentra-
tions are low. The Ti/Zr ratio shows a convex or peak function with a spike at the
horizon boundary at 90 cm depth. The SiO2/Al2O3 ratio is low and around 5 up to
80 cm soil depth and increases from 8 to 14 to a depth of 150 cm. The elemental
concentration that mostly shows a smooth variation across the 2 parent materials
indicates that there has been mixture through diffusion process.

14.4.2 Typic Udipsamments

The Typic Udipsamments from the Wisconsin central sand plain is characterised by
a blanket of sandy and gravelly outwash. The soil is the plainfield sand series
consists of very deep excessively drained soils formed in sandy drift on outwash
plain, glacial lake basins, stream terraces, and moraines.

The profile has an Ap horizon of 24 cm which is reflected in the variation of Fe
and Mn. The depth function of Fe shows a constant value for the Ap horizon
followed by a peak at 60 cm. The depth function of P follows an exponential form,
decreases with depth, with P sourced from inorganic fertiliser input. The Al and Si
concentrations show a bowl-shaped depth function indicating some mixture of
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materials in the Ap horizon, leaching of materials in the Bw1 and Bw2 horizons and
unweathered materials in Bw3. This pattern is reflected in the SiO2/Al2O3 ratio,
where the pattern is a reverse of a weathered soil profile (increasing weathering
down the profile). The index reflects leaching of Si, and the assumption of Al as
constant is invalidated. The Ruxton index may not be suitable for this soil as an
indication of weathering. The Ti/Zr ratio is uniform throughout the profile with an
increasing value in the Bw3 horizon indicating less weathered soil materials
(Fig. 14.10).

Fig. 14.9 Depth functions of a Mollic Hapludalfs from West Madison, Wisconsin, USA.
Concentration of Al, Fe, Ca, Zr, Ti/Zr and SiO2/Al2O3 was measured using a pXRF in the field at
5-cm-depth intervals along the soil profile wall. The lines are fitted smoothing splines
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14.4.3 Horizon Boundary Detection Using Soil Depth
Function Data

The depth functions of the elements are mostly continuous as opposed to the
discrete appearance and assumptions in soil horizons. We can use pedometric
techniques to segment these into layers and reconcile the layers with field observed
horizons (Weindorf et al. 2012). The depth functions can be treated as transect with
multivariate measurements of elemental concentration. The horizon boundaries can
be identified based on the Mahalanobis distance of a split moving window approach
of (Webster 1973) or the difference between subsequent pXRF readings as pro-
posed by (Weindorf et al. 2012). We can also apply a fuzzy k-means clustering of
the elemental concentration to create soil material classes (Fajardo et al. 2015). In
this example, fuzzy k-means clustering was applied to identify layers of similar
characteristics within each profile. In our example (Fig. 14.11), both profiles were

Fig. 14.10 Depth functions of a Typic Udipsamments from the Central Sands, Wisconsin, USA.
Concentration of Fe, P, Mn, Ti/Zr, Si, Al and SiO2/Al2O3 was measured using a pXRF at
5-cm-depth intervals along a soil profile wall. The lines are fitted smoothing splines
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grouped individually into 5 classes based on their elemental concentration. The
membership for each class occupied a unique layer within the profile, and some of
the numerical classes correspond to the horizons observed in the field. For example
in the Alfisol, the numerical class corresponds to the Ap, (Bt + BC), BC, 2C1 and 2
C2. Whereas in the Entisol, the Ap horizon is separated into 2 classes.

14.5 Conclusions

We identified 7 typologies of soil depth functions: uniform, gradational, expo-
nential, wetting front, abrupt, peak/convex and minima–maxima. These depth
functions represent major soil processes. Field measurements using tools such as
pXRF and NIR allow measurement of soil properties and elemental concentration at
small depth increments and thus enable estimation of depth functions readily and
rapidly without the need to collect bulk soil samples from horizons. The examples
presented here showed that most soil elemental concentration vary continuously
with depth. Although the data are few, the depth functions reflect the age of the soil,
some major soil processes, parent materials, and soil textural changes. Horizon

Fig. 14.11 Elemental concentration data (Fe, Mn, Al, Ca, Si) for each profile were grouped using
a fuzzy k-means clustering method. The data for each profile were clustered into 5 classes
individually, and the plot shows the membership for each of the class
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boundaries based on elemental concentration can be derived using, for example,
moving window Mahalanobis distance or fuzzy k-means clustering. Proximal soil
sensors allow measurement of soil development indices in the field, which has the
potential for a more objective delineation of soil horizons and description of the soil
profile. A more objective measurement of the soil properties can lead to a better
understanding of soil processes and within soil horizon variation.
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