
Chapter 12
Mapping a Profile Wall of a Typic
Udipsamments from the Central Sands
in Wisconsin, USA

Kabindra Adhikari, Alfred E. Hartemink and Budiman Minasny

Abstract We measured and mapped the spatial distribution of Al, Si, Fe, Mn, Ca,
pH, soil moisture content (θ), and color of a soil profile wall of a Typic
Udipsamments. A 10 × 10 cm grid was laid on the soil profile wall, and 70 soil
samples were collected from the grid centers. The spatial distribution of these
properties was mapped with block kriging. The kriged values of the elements and
red color were used in k-means clustering to identify soil horizons. Variation in the
profile was considerable, but we observed that Fe, Mn, Ca, pH, and θ decreased
with soil depth, while red color increased. The concentration of Al and Si increased
at depth between 30 and 60 cm from the soil surface. The k-means clustering was
able to locate three soil horizons in the profile, which was comparable to the
standard soil profile description. We found that pXRF and soil color index coupled
with clustering could be useful in digital soil morphometrics for the identification of
soil horizons.

Keywords Digital soil morphometrics � Soil horizons � pXRF � k-means
clustering

12.1 Introduction

Soil profiles comprise of a number of layers or horizons, which are often parallel to the
land surface and are less heterogeneous in terms of properties and processes by which
they are formed. The horizons are more or less continuous one to another in geo-
graphic, temporal, and character space (FitzPatrick 1988). Generally, soil horizons are
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formed by the addition or removal of materials and its translocation or transformation
within the profile. Inmost profiles, horizons are distinct in color with sharp boundaries
making it straightforward to differentiate, but in many soils, the color or other diag-
nostic property changes gradually so that the boundaries are difficult to establish
(Brady and Weil 1996). Delineation of horizons in a soil profile needs a careful
examination of soil properties, understanding of the physicochemical and biologic
processes involved, and information on soil–landscape relations of the area where the
profile is located. Bridges (1993) stated that it is impossible to ignore soil horizon
designations, as they have become an integral part in soil science communications
from local, national, and international levels.

In pedology, where describing soil profiles and horizons is important (Bockheim
et al. 2005; Butler 1980; Kellogg 1974), a number of tools and techniques have
been developed to observe and measure soil properties in situ or in the laboratory.
The application of such tools and techniques for measuring and mapping soil
properties, such as texture, structure, color, carbonates, moisture, mottles and
redoximorphic features, pores and roots, and horizon depth and boundaries, is
called digital soil morphometrics (Hartemink and Minasny 2014). Digital mor-
phometrics employs tools such as electrical resistivity, ground-penetrating radar,
portable X-ray florescence spectrometry (pXRF), Vis–NIR, digital cameras, and
profile cone penetrometer to measure soil properties and in the identification and
mapping of soil horizon depths and boundaries (e.g., Chaplot et al. 2001; Doolittle
and Collins 1995; Fajardo et al. 2015; Rooney and Lowery 2000; Steffens and
Buddenbaum 2013; Tabbagh et al. 2000; Weindorf et al. 2012). Among all, pXRF
offers a way of quantifying elemental concentration in the soils and has been used
for soil horizon identification (Weindorf et al. 2012). Similarly, usefulness of Vis–
NIR coupled with fuzzy clustering has been reported to recognize soil morpho-
logical horizons from Australia (Fajardo et al. 2015). As the soil varies continu-
ously with depth, modeling and mapping soil depth functions is important in digital
soil morphometrics. Minasny et al. (2016) provide some insights into the distri-
bution of soil properties as a function of depth, and Adhikari et al. (2013, 2014)
report some examples of modeling and mapping soil properties’ depth functions.

Soil profile data collected with different morphometric tools and its grouping or
clustering based on similarities could be used to identify soil horizon boundaries.
The use of k-means clustering has been used in soil horizon classification
(McBratney and Gruijter 1992; Triantafilis et al. 2001). Data clustering is mostly
done for grouping soil class on a lateral spatial extent. For example, Webster (1973)
determined soil boundaries along transects automatically by calculating the
Mahalanobis distance of the soil properties along a width “window.” We use this
principle for identifying horizon boundaries based on vertical measurements of a
profile wall. This study aims to map the soil profile wall of a Typic Udipsamments
using digital soil morphometrics. The objectives were (i) to map the spatial dis-
tribution of Al, Si, Fe, Mn, Ca, pH, θ, and soil color in the soil profile wall of
100 cm × 70 cm dimension and (ii) to use elemental concentration and soil color to
identify soil horizons.
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12.2 Materials and Methods

12.2.1 Study Site Description

The study site was located in Adams County in the central-south part of Wisconsin,
USA (latitude 43° 53′ 41.82″N; longitude 89° 41′ 30.66″W). The area is known as
Central Sands where soils are developed on glacial outwash and are relatively
young (<15,000–17,000-year-old). Soils of this area were Plainfield series and
classified as Mixed, mesic Typic Udipsamments (USDA 1999). A typical soil
profile of a Plainfield series consists of four to five soil horizons: Ap (*0–18 cm),
Bw1 (*18–41 cm), Bw2 (*41–71 cm), BC (*71–92 cm), and C (>92 cm). We
have found that these soils under intensive agriculture have a topsoil depth of
29 cm. Topography in the study area is flat (1 % slope) with an elevation of about
325 m asl. These soils are under agriculture with sweet corn, potatoes, and soybean
as main crops. The soils are irrigated with 200–300 mm of water annually.
Figure 12.1 displays the location of the study site in the Central Sands with the
distribution of entisols, including Udipsamments, in Wisconsin.

12.2.2 Soil Sampling

A soil profile of 1 m3 dimension was opened in July. A 10 × 10 cm grid net was laid
down on the profile wall covering 0.7 m2 area, and the grid corners were marked
with pegs (Fig. 12.1). Soils were sampled from each grid center and in total 70
samples were collected from the profile. Colors were determined with the Munsell
color chart, and volumetric soil moisture content (θ) was measured with a
time-domain reflectometry (TDR) (Spectrum FieldScout TDR 300). Each sample
was air-dried, ground, and scanned in the laboratory with a Delta Professional
pXRF Analyzer (Olympus Scientific Solutions Americas, Inc.) for 30 s in geo-
chemical mode, and the data on elemental concentration of aluminum (Al), silica
(Si), iron (Fe), manganese (Mn), and calcium (Ca) were collected. For the color,
hue, value, and chroma obtained from the Munsell color chart were converted to
red, green, and blue color coordinate using the algorithm for quantitative pedology
package (Beaudette et al. 2013). Samples were analyzed for soil pH measured in
water at a soil-to-water ratio of 1:1.

12.2.3 General Statistics and Mapping

The distribution of soil properties by depth was analyzed considering mean, stan-
dard deviation, median, CV, and interquartile range. Box plots of each soil property
at each 10-cm soil depth interval were generated (SAS Institute Inc. 2013).
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Autocorrelation and spatial distribution of the selected soil properties on the profile
wall were analyzed and mapped using isotropic variogram and block kriging using
Vesper (Minasny et al. 2005). We used block kriging of 10 cm × 10 cm size over
the point kriging because we assumed it represents the average value of the property
for that grid. Spatial dependency of the soil properties was evaluated with
nugget-to-sill ratio (NSR) with NSR < 0.25, strong; 0.25 < NSR > 0.75, moderate;
and NSR > 0.75, weak spatial dependence (Cambardella et al. 1994).

NSR ¼ C0

C0 þC1
ð12:1Þ

where C0 and C1 are the nugget and partial sill of the variogram model.

Fig. 12.1 Distribution of Udipsamments and the location of soil profile in Wisconsin. The profile
wall displays the 10 × 10 cm grid net established for soil sampling
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12.2.4 k-Means Clustering

We grouped the values of the measured soil properties based on similarities using
k-means clustering algorithm (MacQueen 1967). The k-means is a common unsu-
pervised learning algorithm to classify a given data set through a certain number of
clusters fixed a priori. The objective function of the k-means aims at minimizing the
squared error function (Eq. 12.2):

J ¼
Xk

j¼1

Xk

i¼1

xðjÞi � cj
���

���
2

ð12:2Þ

where xðjÞi � cj
���

���
2
is a chosen distance measured between data point xðjÞi and the

cluster center cj and indicates the distance of the n data points from their respective
cluster centers.

The clustering analysis was done in JMP software (SAS Institute Inc. 2013)
using the block-kriged values of Al, Si, Fe, Mn, Ca, and red color as inputs. The
procedure was as follows:

1. Define the number of clusters or seeds (k-cluster);
2. Assign each observation to the closest cluster;
3. Calculate the centroid of each cluster (k centroid);
4. Replace seeds with centroid and reassign the observations; and
5. Continue until the clusters are stable.

We clustered the soil properties’ values with the initial cluster set to two and then
repeated the process with subsequently increasing the cluster numbers to five
assuming two to five soil horizons within 70 cm depth.

12.2.5 Selecting the Cluster

Once the values were partitioned into four different cluster sets (k = 2, 3, 4, 5), they
were displayed as corresponding cluster maps. Among the four different cluster
maps, the best map that represents the observed soil horizon boundaries was selected
using the cubic clustering criterion (CCC). The CCC can be used to estimate the
optimum number of clusters in k-means clustering. It compares the R2 of clusters
with the R2 of a uniformly distributed set of points with the highest CCC value for
the most optimal cluster set. The CCC can be computed from the observed R2.

CCC ¼ ln
1� EðR2Þ
1� R2

� �
ffiffiffiffiffi
np�
2

q

ð0:001þEðR2ÞÞ1:2 ð12:3Þ
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where E(R2) the expected value of R2 derived from extensive simulations, n the
number of observations, and p* the between cluster variation.

12.3 Results

12.3.1 Soil Properties

Descriptive statistics of soil properties from the soil profile wall are given in
Table 12.1. Among the soil properties, Mn was most highly variable (CV = 48 %)
followed by Al and Si (CV = 33 and 32 %, respectively), whereas the pH was least
variable (CV = 5 %). Average Fe content of the profile was 5197 mg kg−1 with a CV
of 32 % which is comparable to Si (CV = 32 %) but was slightly higher than that of
Ca (CV = 26 %). With soil depth, the average value of Al and Si increased to
50/60 cm below the surface and decreased thereafter. The Fe levels decreased with
soil depth, but the decrease was gradual with the lowest Fe levels at 60–70 cm depth.
The levels of Mn and Ca were high in the surface layer and decreased with depth.
The maximum variation of Fe and Ca was observed at 0–10 cm depth. Similarly, pH
and soil moisture were higher and less variable in the surface layers, but variation
increased below 30 cm. The red color was at lowest and more variable in the surface
and increased sharply with depth, with maximum values at 60–70 cm soil depth. The
variation of Al and Si was maximum at 20–30 cm soil depth and minimum at 30–
40 cm. Figure 12.2 shows the box plots of the soil properties at 0–70 cm depth.

12.3.2 Maps of Soil Properties

The variogram parameters used for each soil property mapping are listed in
Table 12.2. The levels of Ca showed a short limited variation compared to other

Table 12.1 Descriptive statistics of measured soil properties from the profile wall (dimension
100 cm × 70 cm)

Soil
property

Aluminum
(mg/kg)

Silica
(mg/kg)

Iron
(mg/kg)

Manganese
(mg/kg)

Calcium
(mg/kg)

Red
color
index

pH Moisture
(cm3/
cm3)

Minimum 3000 15,018 1955 0 2522 111 5.3 6.2
Maximum 11,800 104,300 10,890 479 8480 201 6.5 18.1
Mean
(± SD)

7267
(±2451)

73,726
(±23,518)

5197
(±1608)

121
(±107)

3947
(±1033)

152
(±26)

5.9
(±0.3)

12.1
(±2.5)

CV, % 33.7 31.9 30.9 48.7 26.2 17.1 5.3 21.1
Median 7600 81,950 5715 98 3619 148 5.8 12.5
IQ range 4275 23,049 1893 213 1114 33 0.5 4.1
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Fig. 12.2 Box plots showing the depthwise distribution of aluminum (Al), silica (Si), iron (Fe),
manganese (Mn), calcium (Ca), red color index, pH, and soil moisture (θ) at each 10 cm depth
increment in the soil profile. The continuous line represents the average value of measured soil
properties and the values increases from yellow to dark red

Table 12.2 Variogram parameters of soil properties

Soil property Variogram model C0
a (mg/kg)2 C1

a (mg/kg)2 A, cm NSRa

Aluminum Exponential 851,364 6,002,548 37 0.12
Silica Spherical 209 × 105 377 × 105 39 0.26
Iron Gaussian 208,183 3,249,967 38 0.06
Manganese Gaussian 1689 15,787 42 0.10
Calcium Gaussian 2262 10,000 33 0.18
Red color index Gaussian 80 1006 45 0.07
pH Spherical 0.01 0.12 50 0.08
Soil moisture Gaussian 0.62 8.6 35 0.07
aC0 nugget; C1 partial sill; A range; and NSR nugget-to-sill ratio
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elements, all sharing a comparable range between 33 and 42 cm, but pH had the
highest range of 60 cm and was least variable (CV = 5.3 %). All soil properties had
strong spatial dependence (NSR < 0.25) except for Si which showed a moderate
spatial dependence (NSR = 0.36). The predicted maps (Fig. 12.3) of Ca, Mn, and Fe
showed that these elements were mostly confined to the surface horizons with Ca
mostly within the top 20 cm, Mn to 40 cm, and Fe to 50 cm depth. The red color
increased with depth where maximum values were recorded below 60 cm. The
concentration of Si, and Al, was higher at 25–60 cm, and a lower level of Al was also
recorded below 60 cm. Soil pH was higher at 0–20 cm and decreased below 30 cm.
The pH map was irregular and patchy. Soil moisture showed a similar pattern with
higher values at the surface. The soil moisture map also reflected the crop row
(soybean) influence with relatively lower moisture content between the crop rows.

12.3.3 Cluster Maps and Soil Horizons

Clustering of the kriged values of soil properties produced four maps (Fig. 12.4),
each for one set of a defined cluster (k = 2, 3, 4, and 5). For cluster two and three,
the first horizon boundary is at a depth of about 30 cm (Fig. 12.4a, b) and the
second horizon boundary at about 55 cm depth (Fig. 12.4b). Cluster four divides
each of the first and second horizons of cluster two (Fig. 12.4a) into two new
horizons (Fig. 12.4c). Cluster five defined a small portion of the first horizon as a
possible new horizon (Fig. 12.4d). For all cluster maps except cluster two, the last
horizon boundary is at a same depth of about 55–60 cm from the soil surface.

Among the four cluster maps, the highest CCC was found for cluster three
(CCC = 49.6) (Fig. 12.5a). Cluster two had the lowest CCC of about 15 and that for
cluster five was 46. Cluster three was selected to represent soil horizon boundaries
in the profile. Figure 12.5b plots the points and clusters in the first two principle
components of the input data (i.e., PC1 and PC2) that exceeded the eigenvalue of 1.
The eigenvalues for PC1 and PC2 were 4.2 and 1.4, respectively. Soil properties
falling along PC1 axis were Ca, Mn, and red color index, whereas those along PC2
were Al and Si with higher loadings of these elements. Fe content, however, was
between the two PCs with a moderate loading.

For the selected cluster, Table 12.3 lists the mean and standard deviation of the
soil properties in each cluster. For cluster one, Mn was the most variable element
(CV = 75 %) followed by Fe (CV = 25 %). Ca and red color index both shared a
similar variability (CV = 4.3 %). Cluster one had the maximum average for red
color index, whereas cluster two had the lowest Si but highest Fe, Mn, and Ca.
A maximum level of Si and Al was present in cluster three.

A positive correlation was found between the elements Al and Si, and Fe with
Mn and Ca. Red color index had a negative correlation with Mn, and Ca, and a
positive correlation with Si. Similarly, both Al and Si were negatively correlated
with Ca and Mn. The Al levels showed no relation with Fe, with the red color index
(Fig. 12.6).
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Fig. 12.4 Map of four different sets of k-clusters; a k = 2; b k = 3; c k = 4; and d k = 5, showing
possible horizon boundaries in the profile wall

Fig. 12.5 a Plot of cubic clustering criterion versus number of k-cluster sets and b the first two
principle components (PCs) of the points (dark color) and of the most appropriate cluster set
(k = 3) indicated as light color

Based on the observations, the soil profile had three horizons, namely Ap
(*0–18 cm), Bw1 (*18–41 cm), and Bw2 (*41–71 cm). The cluster map sug-
gested the three horizons, but the depth of these horizon boundaries was deeper than
that of the observed horizon depth. We found that the depth of Ap horizon ranged
between 0 and 27/30 cm, Bw1 between 27 and 30/54 cm, and Bw2 from 54 to
>70 cm (Fig. 12.4b).
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12.4 Discussion

12.4.1 Digital Soil Morphometrics

This study applied digital soil morphometric tools and techniques to collect soil
data and identify soil horizon boundaries of an Udipsamments profile wall.
A grid-based soil sampling design ensured capturing the variations of soil prop-
erties across the profile wall. Data collection using pXRF and TDR helped to
understand soil properties’ variations in a profile wall both in horizontal and in
vertical dimensions. The use of pXRF in soil properties’ data collection and
evaluation has been reported in other studies (e.g., Grauer-Gray and Hartemink
2016; Stockmann et al. 2016; Weindorf et al. 2012). A benefit of using morpho-
metrics is in the exploration of within-horizon soil variations, which is often

Fig. 12.6 Scatterplot matrix of soil attributes for the most appropriate cluster (k = 3). Light color
represents the cluster of the points in darker color
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overlooked in traditional soil pit descriptions. As an example, the first 27 or 30 cm
of our soil profile was identified as Ap horizon, but the distribution of Ca con-
centration within this horizon was heterogeneous; the mean value ranged between
5908 mg kg−1 at 0–10 cm and 3753 mg kg−1 at 20−30 cm. Similarly, the mean pH
also dropped from 6.3 at 0−10 cm to 5.9 at 20–30 cm. In case of Si, the upper
10 cm of Ap horizon was least variable (CV = 7 %) than the lower most 10 cm of it
where the maximum variation was found (CV = 62 %). Grauer-Gray and Hartemink
(2016) reported similar within-horizon variations in soil properties of a Mollisol
profile wall.

Use of geostatistics, which is common in soil science (Burgess and Webster
1980; Goovaerts 1999), allowed us to evaluate autocorrelation and spatial variations
of soil properties in the profile wall. Spatial prediction with block kriging repre-
sented our sample grid dimension. Grouping similar values of soil properties into
more homogeneous classes is a key to clustering and it has been used in soil
classification studies (e.g., Fajardo et al. 2015; McBratney and Gruijter 1992;
Powell et al. 1992; Webster 1973).

12.4.2 Variation in Soil Profile Wall

Soil properties were variable in the profile wall and displayed a well spatial
structure. Top 30 cm of the profile showed higher variation compared to lower
horizons. All elements and θ displayed short-range variations compared to pH and
red color which had a maximum range. All properties except Si had a strong spatial
dependence. The level of Al and Si was lower in the surface and higher at 20 to
60 cm, whereas the levels of Fe, Mn, Ca, pH, and θ gradually decreased.
Grauer-Gray and Hartemink (2016) found a lower Al in the surface soil horizons
where the levels of Ca and soil pH were higher. The nature of Al and Si, which are
related to clay minerals and their distribution in the profile, indicated that these soils
have lost some clay from the surface horizons, which is illuviated below 40 cm.
A second explanation is that the subsoils are enriched with aluminosilicate minerals
through mineral weathering. The higher levels of Mn, Fe, Ca, and pH in the surface
and their reduction with depth might be due to fertilizer application, irrigation,
liming or leaching. Similar effect of liming and leaching on the depth function of
pH and soil development has been reported from Denmark (Adhikari et al. 2014;
Madsen and Munk 1987). Likewise, higher moisture in the surface could be linked
to the irrigation. Although soil moisture is a dynamic property that is related to
texture, structure, soil carbon, irrigation, and precipitation, its content as measured
in the field is related to variation in soil texture and water-holding capacity (Mulla
1988; Reynolds 1970).
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12.4.3 Identifying Horizon Boundaries

The k-means clustering identified three soil horizons in the profile. The boundary
between cluster two (horizon Ap) and three (horizon Bw1) was determined by the
levels of Si, Al, and Ca. Horizon Ap had the lowest levels of Al, and Si, but the
highest level of Fe, Mn, and Ca. Horizon Bw1 was associated with the highest
concentration of Al and Si. Horizon Bw2 had minimum Fe, Mn, and Ca. These
findings suggest that aluminosilicate minerals, which are mostly related to clay
content, were leached from Ap and illuviated in lower horizons, mostly in Bw1 or
in situ formation of such minerals. The clustering technique was able to capture the
influence of agricultural activities such as fertilization, irrigation, and liming that
has increased the levels of Fe, Ca, and Mn on the surface soils for horizon boundary
designation.

12.5 Conclusions

This study demonstrated the usefulness of digital soil morphometrics for mapping a
profile wall with emphasis on the soil horizon boundary identification. The
methodology presented is a way of identifying and locating soil horizon boundaries
that would complement our pedological understanding. Based on the study, the
following can be concluded:

• Fe, Mn, Ca, pH, and soil moisture decreased with soil depth, while red color
value increased. Al and Si increased at a depth between 30 and 60 cm.

• Clusters of the kriged values of soil properties were able to locate three most
probable soil horizons in the soil profile.

• The pXRF and soil color can be useful tools for soil horizon delineation.
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