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Foreword

Digital Soil Morphometrics: needed now because just seeing is not enough
anymore!
The visionary discovery by our pioneers in the late nineteenth century that soils
were more than dirt obscuring rocks has been the remarkable start of the devel-
opment of soil science as a separate and vital discipline. As the importance of soils
contributing to ecosystem services and sustainable development goals becomes
increasingly evident at this point in time, soil scientists should not only cherish their
existing knowledge and expertise but should also be alert as to new developments
that can increase the significance of their input into interdisciplinary programs
aimed at sustainable development.

Seeing, feeling, smelling, and tasting represented basic activities in the early
phases of soil science and they still are highly relevant. The “seeing” deserves
special attention, because our pioneers noticed elements that had apparently been
overlooked by earlier observers as they were restricted in their views by their
particular paradigms and hang-ups. I recall lectures at Wageningen University
where a vertisol expert mentioned many early profile descriptions of vertisols where
slickensides were not noticed. Once they were recognized, they became operational
morphological features, quite significant to illustrate swelling processes and soil
behavior and for soil classification. The lesson is to always keep an open eye when
“seeing” morphological features in soil: Allow yourself to be surprised.

Be that as it may, there still is a high variability among observations by different
observers. Standardization of description schemes has helped, and an excellent,
early, example are the Munsell color charts of 1938. This book on Digital Soil
Morphometrics represents a major step forward in “seeing” in at least two ways.
First, several innovative techniques are discussed that allow in situ characterization
of soil morphological features which is comparable, in principle, to use of the
Munsell charts. These techniques provide quantitative, reproducible data that are
crucial for modern applications. Second, data will be part of a digital environment
allowing statistical and spatial variability analyses and modern forms of
visualization.
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The analogy with soil survey is striking. In essence, empirical survey procedures
of the past have been strengthened by geostatistical spatial analyses and by the
introduction of innovative field techniques and digital landscape modeling. In a
comparable manner, Digital Soil Morphometrics closes an obvious gap in the
pedological toolkit because so far profile descriptions were just that: descriptions.
Of course, quantitative analyses have been a successful part of micromorphological
analyses over the years, but preparation of thin sections is costly and
time-consuming, and even though micromorphology has made major contributions
to soil genesis studies, it has never become a standard tool in soil survey inter-
pretations. Direct measurement of morphological features in soil profiles presents
therefore an approach with a much higher operational potential when facing modern
soil survey interpretations.

Finally, this is an age where scientists have to continually earn their “societal
license to research” and their particular “niche,” facing a critical population and
policy arena. Soil science has major contributions to make to research on food,
water and energy security, climate change, and biodiversity loss. What could be a
“niche” for Digital Soil Morphometrics? Chemical soil analyses of mixed samples
indicate what is there on average. Soil morphology explains why chemical reactions
are different when the compounds occur as, e.g., small or large concretions or as
cutans. Physical flow models still implicitly assume that soils are isotropic and
homogeneous. Soil morphology defines heterogeneous pore systems that are also
important for root functioning, etc.

Digital Soil Morphometrics will earn its place in the pedological toolkit when it
demonstrates that moving away from approaches based on “averages” or “simpli-
fications” provides new enlightening insights into the incredibly complicated but
highly fascinating ways of the living soil.

Johan Bouma
Em. Prof. Soil Science
Wageningen University

The Netherlands

vi Foreword



Preface

After years of diminishing investment and intellectual efforts, pedology is thriving
again. The reasons hereto are several fold, but increased interest and appreciation in
soils as well as a range of new instruments and techniques brightened soil research
across the globe. Although soils can be studied without digging a pit or taking a soil
core, the soil profile is at the heart of many soil studies. Rightfully so, much of our
understanding has come from careful and precise measurement and observations
along a soil profile wall. However, the observational and interpretative techniques
have not changed much in the past decades despite the technical revolution that is
taken place in many soil science subdisciplines. We have proposed the use of
digital soil morphometrics to expand and compliment the pedologists’s fieldkit to
observe soil profiles. Digital soil morphometrics is defined as the application of
instruments and techniques for measuring, mapping, and quantifying soil profile
properties and deriving depth functions of soil properties. The pedon is at the heart
of digital soil morphometrics.

In 2014, the International Union of Soil Sciences (IUSS) recognized the need for
a Working Group on Digital Soil Morphometrics. The IUSS Inaugural Global
Workshop on Digital Soil Morphometrics was held in June 2015 in Madison, USA,
and consisted of three days of presentations and discussions, preceded by a one-day
fieldtrip. There were 70 participants from over 15 countries. This book contains
selected papers from the IUSS Inaugural Global Workshop on Digital Soil
Morphometrics. The conference presentations (and this book) were structured along
four research topics: (i) soil profile properties, (ii) soil profile imaging, (iii) soil
depth functions, and (iv) use and applications of digital soil morphometrics. We
have selected 26 papers that focus on novel and exciting aspects of soil morpho-
metrics and included a few review papers and summary chapter.

We are greatly indebted to all conference participants and authors that helped
shape the conference and made excellent contributions to discussions and papers in
this book. We acknowledge the financial support from the University of Wisconsin
—Madison, College of Agriculture and Life Science (CALS), and the Department
of Soil Science. Special thanks to Bill Bland, Birl Lowery, and Carol Duffy, and to
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Leah leighty of CALS Conference Services for their kind assistance. It is our hope
that the ideas and results in this book will help to shape critical thinking about how
we look at soil profiles for we need to move forward and deepen our understanding.

Alfred E. Hartemink
Budiman Minasny
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Chapter 1
What Is Digital Soil Morphometrics
and Where Might It Be Going?

Edward J. Jones and Alex B. McBratney

Abstract A large number of devices exist that are able to provide quantitative and
objective representation of soil properties. Many of these devices are able to elu-
cidate properties unattainable to the human eye and may cause us to redefine what
we term “field observable” properties. We discuss possible meanings for, and
approaches to, digital soil morphometrics (DSMorph). Digital soil morphometrics’
relationship to other domains of research and practice such as proximal soil sensing
and conventional field soil description is explored, with the suggestion that
DSMorph has greatest potential as a special case of proximal soil sensing. The
application areas of DSMorph outside of routine soil description are canvassed, and
the technological gaps are discussed.

Keywords Pedology � Soil description � Proximal soil sensing

1.1 Introduction

The development of morphometrics in the biological sciences enabled the quanti-
tative analysis of form and revolutionised the description and statistical analysis of
specimens. To bring a similar revolution to soil description and to unite diverse
tools and techniques that are able to provide more objective and quantitative
description of soil attributes, the subdiscipline of digital soil morphometrics
(DSMorph) has been proposed (Hartemink and Minasny 2014). In general terms,
DSMorph has been defined as the “application of tools and techniques for mea-
suring, mapping and quantifying soil profile attributes and deriving continuous
depth functions” (Hartemink and Minasny 2014). DSMorph is thus at the forefront
of technology and innovation in soil science and promises to provide a much
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needed scientific and technological overhaul to field soil description, a discipline
which has been relatively technology stable, possibly averse, for decades.
DSMorph tools and techniques have untold pedological, edaphic and environmental
applications.

While mathematical approaches and the computing power to perform morpho-
metric analyses have greatly advanced in recent years, there remain two funda-
mental issues encumbering the supply of relevant input data: first, labour intensity,
as examining and recording appropriate attributes can be a time-consuming task
(Blackith and Reyment 1971, p. 286); second, subjectivity, as there is always
elements to the observation of natural forms that may be considered more of an art
than a science (Blackith and Reyment 1971, p. 1). These issues underlie the
development of DSMorph and highlight the value of any technique that may
provide less labour-intensive data collection and increased objectivism of soil
observations. The marriage of digital data collection with morphometric approaches
is crucial to the success of this new subdiscipline. However, key in recognising
DSMorph as a subdiscipline is the identification of which particular attributes or
contributions it may deliver that other subdisciplines cannot deliver independently.
DSMorph approaches can better represent variation within observed soil objects,
facilitate the quantification of uncertainties and will change the way we observe and
describe soils. Nonetheless, the offered definition is quite broad, and its boundaries
need to be better delineated so that we may clearly define what DSMorph is, what it
is not and where it might be going. To better understand DSMorph, we deconstruct
its component topics of digital data acquisition, soil form and morphometric
approaches, and investigate the unique contribution of each. As innovation in the
application of DSMorph tools and techniques as they pertain to routine soil
description has recently been reviewed (Hartemink and Minasny 2014), the second
half of this chapter is focused on highlighting a selection of novel and potential
applications of DSMorph techniques outside of routine soil description.
Technological and information gaps are identified and ways forward discussed.

1.2 Conventional Field Soil Description

Before we investigate DSMorph further, we must understand the need for its
development. Most people would agree that field soil description has largely
stagnated following rapid initial development. This development includes the for-
malisation of procedures for observing and classifying soils (Clarke 1936; Soil
Survey Staff 1937), as well as the codification of morphological classification of
soil structure (Nikiforoff 1941). This was a significant step towards the standardised
observation and reporting of soil attributes mandated by widespread soil survey
programmes beginning from the turn of the twentieth century. Pedology has his-
torically been a hands-on, technology limited discipline. During this period of
standardisation, it was noted that the most important tool for the soil observer was
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the humble spade (Soil Survey Staff 1937, p. 28). In fact, excluding a small number
of qualitative analyses involving HCl or H2O2, and basic tests for soil reaction, there
were “few reliable field tests of soils that serve a useful purpose in the soil survey”
(Soil Survey Staff 1937, pp. 30–32). Fast-forward eight decades and little has
changed. The field of soil description has remained largely technologically stable
since the 1950s, and to this day, the main modus operandi in soil description
remains trained human observation. Stagnation in itself is not a cause for action; in
fact, it may signify the successful maturation of a field. However, the reliance on
human observation brings into question sources of error, as although professional
observers may be trained and calibrated to one another, this training cannot com-
pletely eliminate inter- or intra-observer variation.

If we focus on soil colour, one of the most significant soil attributes, we can see
just how much variation in assessment can be introduced. In addition to differences
in light under which colour measurements are being made, it is also well established
that physiological differences in the eye mean that not everyone perceives colour in
the same manner, and that colour perception also drifts with ageing due to the
gradual yellowing of the eye’s lens (Billmeyer and Saltzman 1981, p. 174). The use
of reference charts is meant to eliminate the effects of these differences and stan-
dardise the reporting of soil colour. The Munsell chart is not free from variation.
Sánchez-Marañón et al. (2005) investigated these ubiquitous colour books and
found that manufacturer production differences and non-uniform fading charac-
teristics can significantly affect colour determination. The authors found that visual
judgement of soil colour between individuals using the same Munsell chart under
heavily controlled conditions was variable. Similar results were obtained by Shields
et al. (1966), leading them to suggest the use of spectrophotometry to standardise
colour observation and eliminate observer variability; a reasonable suggestion that
was never implemented. In fact, the use of a spectrophotometer system to eliminate
observer variation had been suggested another 35 years prior (Carter 1931).
Decades have passed since brewing industries dropped reference charts in favour of
spectrophotometric colour standards (ASBC 1949). It is absurd to imagine modern
medical studies and analytical assays using reference charts for quantitative anal-
ysis. So why is soil science so slow to change? When observing soils we should
strive to eliminate, or at least account for, the sources of variability. Thus,
approaches, such as DSMorph, that can give more objectivity are a useful way
forward.

1.3 Deconstructing DSMorph

In the appropriation of terms from other scientific disciplines, one must be sure to
clearly define how they translate to their new environment. To avoid confusion, we
need to deconstruct the component topics of this new subdiscipline to clarify
meanings for, and approaches to, DSMorph.
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1.3.1 Digital Data Acquisition

The digital component refers not to the devices themselves, but rather to the
quantitative data that they can deliver. Data obtained using DSMorph tools are
more objective and at times able to measure attributes that are unattainable using
traditional methods. To investigate the benefits of these approaches, we will look at
the progress made by observing some soil structural attributes using digital tech-
niques. The procurement of digital data is not new, with those who might be
considered pioneering digital soil morphometricians looking for new methods to
quantify treatment effects on soil surface condition. Currence (1969), for example,
quantified soil surface roughness under different tillage treatments using a pro-
filometer system. The automated system was able to record relief information
recorded on punchcards at a height resolution of 0.01 inch. Meanwhile,
O’Callaghan and Loveday (1973) were able to use digitised images to quantify the
effect of gypsum application on the length and width of crack skeletons (Fig. 1.1).
In both of these studies, digital quantification allowed investigation of attributes on
a scale that was not feasible using manual techniques, and in doing so discerned
treatment effects.

Digital data acquisition of structural properties then extended vertically into the
soil profile with a focus on micromorphology. Although not analysed directly in the
field, thin sections were taken and image analysers were used to study pore dis-
tributions and how they work (Bouma et al. 1977; Murphy et al. 1977). Then, CT
scanning was used to investigate undisturbed soil material (Petrovic et al. 1982;
Hainsworth and Aylmore 1983). Mesomophological analysis was introduced to
bridge the gap between these micromorphological approaches and field description,
which was largely qualitative and macromorphological (Koppi and McBratney
1991). This meant that instead of measuring discrete points, a continuous
description of properties such as pore size and porosity could be presented
(Fig. 1.2a). This allowed interpretation of the relationship between structural
properties and others such as redoximorphic features (Fig. 1.2c). When representing

Fig. 1.1 Section of original photograph showing a cracked soil surface (left), digitised crack
“skeleton” (middle) and “ballooned” discrete peds (right), adapted from (O’Callaghan and
Loveday 1973)
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soils in this continuous manner, we can see that soil properties are not uniform
within soil horizons. This may lead us to question the conventional horizon-based
representation of soil attributes and to ask whether the tools used to analyse soils are
updated and does this mean that the way in which we describe soils also needs to be
readdressed?

1.3.2 Soil Form

“The essential problem in morphometrics is to measure the degree of similarity of
two forms” (Blackith and Reyment 1971, p. 9). However, what does form mean
when applied to the soil profile? When assessing profile attributes, the concept of
form extends beyond its original biological definition concerning the size and shape
of a specimen. For our purposes, form encompasses two aspects: geometric, or the
disposition of attributes in a 2-3-4D space, and multivariate, or the various attributes
of interest within the space.

Fig. 1.2 Mesomorphological analysis of a Paleustalfs (Koppi and McBratney 1991): a smoothed
volumetric surface area of macropores; b image of macropores (black) and soil solids (white) with
horizon designations; c smoothed volumetric surface area of manganese-/iron-rich areas; d image
of manganese-/iron-rich areas (black) and other soil solids and pores (white) with horizon
designations. Images represent a 100 × 500 mm section of the soil profile with a resolution of
approximately 0.2 mm. Smoothed lines were produced using a 20 mm moving averages
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So how do we describe the geometric aspect of form? As suggested above,
currently we do not describe it very well. When samples are taken to the laboratory,
dried, ground and then analysed, we are only reporting an average value of the
sample and have lost the information on spatial variability. Some DSMorph devi-
ces, such as hyperspectral cameras (Steffens and Buddenbaum 2013) and laser
scanners (Eck et al. 2013), are able to scan in two dimensions and capture some of
this vertical and lateral variation. Do we capture this variation using point-based
devices such as portable NIR and XRF spectroscopy? To do so, we must rethink
how we spatially describe a soil. An expedient solution would be to include mul-
tiple vertical transects to allow the characterisation of variability within the
observed object. For standardisation of variation over a fixed distance, the vertical
transects need to be a set distance apart and cover a fixed area, or if you take
samples at right angles within a fixed volume (Fig. 1.3). Given the mean and the
range of values calculated with depth, you can recognise that there is variation
within that observed object (Fig. 1.4). The richness of information obtained if soil
properties are described in this way can then be manipulated in a model such as a
depth function or other laterally isotropic, vertically non-stationary random func-
tions (McBratney and Moran 1990).

1.3.3 Morphometric Analyses

After soil properties have been captured digitally, we can perform multivariate
statistics. Hole and Hironaka (1960) were able to represent soil profiles in a mul-
tidimensional space and quantify the degree of similarity between two profiles.
Around this time, numerically based taxonomic systems were developing in diverse
fields, the key advantages of these being repeatability and objectivity (Sneath and
Sokal 1962). Such systems attempt to remove subjectivity from decision-making
processes and should allow different scientists to arrive at the same conclusions,
while increasing the accuracy and precision of the results (Bidwell and Hole 1964).

Fig. 1.3 A potential standard soil volumetric object. Three transects are analysed on one wall and
others on adjacent wall orthogonal to the first
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These benefits translate to numeric soil classification systems, and such analyses
may also play an important role in the development of a universal classification
system (Brevik et al. 2015). However, morphometric analyses extend beyond
classificatory attempts. As they are able to connect both geometric and morpho-
metric attributes, morphometric analyses may also provide evidence for pedoge-
netic theories. Stockmann et al. (2016), for example, used variation of
pXRF-derived geochemical indices with depth to identify if a profile is polygenetic
or derived from uniform parent material. Morphometric analysis may also shed
light on soil-forming processes, connect properties and processes, and facilitate
identification of relationships between properties.

1.4 Delineating Digital Soil Morphometrics

One of the mantras of the subdiscipline seems to be to digitally enrich the toolkit of
the field pedologist. However, Hartemink and Minasny (2014) also list many
laboratory-based techniques, e.g. scanning electron microscopy and X-ray com-
puted tomography, as potential DSMorph tools. While these devices can provide
valuable information about soil profile attributes, they will probably not enrich the
toolkit of the field pedologist anytime soon. Their inclusion also blurs the definition
of what DSMorph is to such an extent that it encompasses laboratory analysis. We
believe the power of DSMorph comes with the capacity to objectively quantify soil
attributes in the field using methods that have the capacity to increase sampling
intervals and more readily quantify spatial variation compared to traditional

Fig. 1.4 Predicted organic carbon (%) of a Eutrudepts and b Udipsamments produced from NIR
readings of pit walls sampled with three vertical transects at 25-mm intervals to a depth of 100 cm.
Thin black lines represent predicted values for the three vertical transect; thick black lines indicate
the mean predicted value with depth; pink halos indicate the mean 95 % confidence interval; and
dashed horizontal lines indicate horizon designations
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methods. We put DSMorph at the confluence of pedology, pedometrics and
proximal soil sensing (Fig. 1.5). Subsequently, we will focus on techniques that
have been performed, or have the potential to be performed, in the field.

1.5 Novel and Potential Applications

When incorporating new tools and techniques into the field of soil science, we must
also ask ourselves, are we simply trying to update the technology of field soil
description, or are we seeking to pose and answer new scientific questions? A
review of the applications of DSMorph techniques as they apply to the prediction of
attributes commonly used in soil description is given by Hartemink and Minasny
(2014). Therefore, we will highlight some of the peripheral, novel and developing
fields that are progressing with potential to benefit from DSMorph techniques.
These include continuous depth functions, spectrally derived soil horizons, soil
inference systems, adaptive sampling procedures and monitoring soil change.

1.5.1 Horizons or Depth Functions?

A unique question for DSMorph is to what extent is the distribution of soil prop-
erties better described by horizons or depth functions and to which properties do
these pertain? Most of pedology as it relates to soil description identifies properties
based on horizons. This involves describing horizons and identifying the average

Fig. 1.5 Suggested relationship of digital soil morphometrics to pedology, pedometrics and
proximal soil sensing
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properties of these horizons, resulting in the representation of discrete property
distributions with depth (Fig. 1.6a). For some soil properties, it may be a reasonable
representation, but for many it is not. For example, Russell and Moore (1968)
showed that the decrease in OC with depth in a soil profile is better represented by
smooth exponential decay functions. Therefore, mass-preserving splines have been
fitted to obtained horizon data (Fig. 1.6b, c), signifying a movement from using
discrete horizon values to describing soil depth functions. The superiority of such
functions compared to average horizon values at describing the vertical
non-stationarity of profiles has been established (Bishop et al. 1999). However,
when converting horizon-based data to splines some, assumptions need to be made
to create this additional data, which may decrease accuracy. For example, splines
invariably dampen actual minima and maxima values, resulting in a smoother
predicted distribution (Ponce-Henandez et al. 1986). What can this loss of infor-
mation mean in terms of process or pedological understanding? If we to assess soil

Fig. 1.6 Comparison of current techniques used to represent soil profile data: a conventional
quantitative profile/pedon description; b fitting mass-preserving spline to horizon data
(lambda = 0.01); c fitted spline, horizontal lines indicate GlobalSoilMap depth intervals; d average
spline predicted carbon % fitted to GlobalSoilMap depth intervals
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permeability models, how would they benefit from continuous measurement of
properties such as clay, OC, pore size and connectivity, compared to models based
on average horizon values? While the concept of horizons must be conserved as
they are a unique feature of soil, it does not mean that they are the only unique
feature of soils. Going forward, we must determine whether we want to continue
collecting horizon-based data and convert it to continuous depth data. Alternatively,
we could take advantage of the finer sampling resolution enabled using DSMorph
techniques to capture more spatial variation (such as the example in Fig. 1.4) and
create more accurate depth functions directly.

1.5.2 Spectrally Derived Horizons

Nikiforoff (1931) lamented that “soil horizons and their nomenclature is probably
the most confused point in the technic of the description of the soil”. Nikiforoff’s
frustration was that the term “B” horizon was so broad that it did not convey any
real pedogenic meaning other than filling its place in the A-B-C horizon succession.
At the time, it was known that there was great diversity in the horizons from
different soil types, but the nomenclature was too simple to account for this richness
of interpretation. It was not until much later with the implementation of suffix
notation that succinctly distinguish differences (Soil Survey Staff 1951). Is this
nomenclature now sufficient to adequately describe the diversity of soil horizons?
Any horizon is a mixture of materials. Using current soil description, it is difficult to
capture this heterogeneity. With DSMorph techniques, we may advance the
boundaries of horizon identification and classification, and include measures to
describe profiles in a more continuous manner. One suggested method involves
identifying spectrally homogeneous zones from Vis–NIR-derived fuzzy cluster
memberships (Fajardo et al. 2015). This method eliminates observer bias and
allows direct investigation of class membership within and between profiles
(Fig. 1.7). Could spectrally derived horizons become the new nomenclature to
better characterise soils, and interclass memberships the new descriptors? Objective
horizon recognition is also being explored using XRF (Weindorf et al. 2012;
Minasny et al. 2016; Adhikari et al. this book) and hyperspectral cameras (Steffens
and Buddenbaum 2013).

1.5.3 Adaptive Sampling

DSMorph techniques have the potential to derive data in the field, but how can we
use this information to perform more meaningful operations in the field? A pro-
posed strategy for assessing soil contamination suggests taking advantage by
adapting sampling and analysis in real time (Horta et al. 2015). Calculations were
made to find the conditional probability density function of the contaminant and the
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loss function. From this information, an optimal remediation plan can be made
taking into account both sampling and remediation costs. The method facilitates
honing in on contaminated areas, prioritisation of areas of high uncertainty for
subsequent focussed sampling and continuous updating of the map until an overall
quality criterion is achieved. A similar approach can be envisaged for soil mapping
units, but how to do it? A methodology is required to couple imaging or other
techniques with point-based sampling devices to identify the next most valuable
point of a soil profile to investigate, and determine when sufficient information has
been gained for effective characterisation.

1.5.4 Monitoring Soil Change

The soil environment is not static, though it is sometimes represented as such.
Increasing global recognition of issues, such as C sequestration (Lal 2004),

Fig. 1.7 Left to right Photograph of soil core; fuzzy membership classes; digital gradient;
horizons observed using conventional techniques; spectrally derived horizons. Taken from
(Fajardo et al. 2015)
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provision of ecosystem services (Kreuter et al. 2001) or soil security (McBratney
et al. 2014), has generated a corresponding need for increased knowledge on the
variability of soil attributes in space and time. Monitoring soil condition indicators,
as well as elements of soil degradation such as contamination, loss of organic
matter, compaction, acidification and salinisation, is important. The monitoring of
soil requires the use of reliable, inexpensive and, at times, non-destructive tech-
niques. These issues have proved troublesome for soil monitoring programs,
especially when considering costs of sampling and analysis. As most DSMorph
techniques are quantitative and generate a wealth of data, more subtle changes can
be detected. We should identify how the application of DSMorph tools and tech-
niques can improve the efficiency and viability of soil monitoring programs.

1.6 Missing Technology

The future of DSMorph is tied to progress in pedology but in particular to proximal
soil sensing techniques. Current techniques need to be tested and utilised, new
technologies need to be adapted as they arise, and overlooked technologies resur-
rected. Large sections of the electromagnetic spectrum are being used, as well as
ultrasonics, electrical resistivity and physical measurements but others, such as
magnetic susceptibility, appear to be underexploited (Mullins 1977). We must
continue investigating what other technologies might be useful. Current techniques
are predominately intrusive. Ideally, we would be able to predict all soil attributes
from the surface using non-invasive techniques. Ground-penetrating radar and
electromagnetic induction are two such existing techniques, but they can predict
only a few properties of interest. While invasive techniques may fill the gap in the
near term as expedient intermediaries, the holy grail of soil observation would be
the development of a non-invasive sensor that could quantify all attributes of
interest from the soil surface.

In reality, such a device is a long way off, and currently no single sensor or
technique has the capacity to accurately predict all attributes of interest. The great
power in the near future will come from putting the information gained from
multiple sensors together. It is this data fusion combined with soil inference systems
that will provide the most useful information. When combining data from multiple
sensors, a number of approaches have been utilised. For example, input data may be
analysed individually and then results were combined using a model-averaging
procedure (Malone et al. 2014). Spectral data have also first been combined using
concatenation and then analysed concurrently (Viscarra Rossel et al. 2006; Wang
et al. 2015). Other techniques focus on exploiting the strengths of individual
devices. Jones and McBratney (2016) suggest combining NIR’s ability to provide
information on bonding environments with the elemental concentrations reported
from an XRF device to predict soil mineralogy using an integrated chemometric
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and mass balance approach. The potential data fusion methodologies are myriad,
but more focus needs to be given to the quantification of uncertainties. This will
offer more valuable input data for soil inference systems that may connect pre-
dictions with the wealth of existing soil knowledge and amplify the number of
predicted attributes (McBratney et al. 2006).

1.7 Conclusions

• DSMorph can provide more precise soil properties data with quantified spatial
uncertainty than conventional soil description. There are untold pedological,
edaphic and environmental applications to be gained from applying DSMorph
tools and techniques.

• If DSMorph is going to digitally enrich the toolkit of the field pedologist, then
DSMorph is probably best considered as a special case of proximal soil sensing.

• DSMorph can represent soil profiles in two different ways—depth functions or
horizons—but as yet we are not clear of the best approach for the various
properties.

• DSMorph can be used to make field inferences to optimise and adapt sampling
in real time.

• DSMorph can enable quantification of change in soil condition and prove useful
in soil monitoring programs.
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Chapter 2
Quantifying Soil Structure and Porosity
Using Three-Dimensional Laser Scanning

Daniel R. Hirmas, Daniel Giménez, Edison A. Mome Filho,
Matthew Patterson, Kim Drager, Brian F. Platt and Dennis V. Eck

Abstract Advancements in three-dimensional (3D) digital surface scanning have
opened up the possibility of capturing soil morphological information from irreg-
ular objects in high resolution. One of these advancements has been the develop-
ment of a multistripe laser triangulation (MLT) technique that sweeps a series of
laser stripes across a surface, while a camera offset from the laser source monitors
the deformation and intensity of the reflected laser stripes. MLT scanning can be
used to describe soil architecture (i.e., soil structure and porosity) from soil surfaces
and soil specimens. The technique allows for the geometry of both small (<1 cm)
and large (several meters) objects to be digitally captured in fine detail. In this
paper, we provide examples of how MLT scanning has been applied to 3D soil
specimens including the determination of bulk density from clods, the quantifica-
tion of ped geometries, and the development of morphometrics from casted bio-
pores. Examples of soil surface application of MLT scanning include the
quantification of soil structure and interpedal pores from the field (excavation walls)
and quantification of volume changes and crack formation in the laboratory
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(soil cores). When combined with other digital morphometric tools such as com-
puted tomography, 3D laser scanning has the potential to quantify the architecture
of soils across scales ranging from submicrometers to meters.

Keywords Soil structure � Quantitative pedology � Multistripe laser triangulation
scanning � Soil macroporosity � Digital soil morphometrics

2.1 Introduction

Noncontact optical methods utilizing lasers to map the topography of fine-scale
surfaces of soils have been developed and used in the study of soil roughness and
surface deformation since the 1980s (e.g., Harral and Cove 1982; Huang and
Bradford 1990; Eltz and Norton 1997; Darboux and Huang 2003; Zielinski et al.
2014). Most of these methods illuminate a spot on the soil surface that is detected
by an optical sensor offset from the laser source, the distance from which is
determined utilizing the geometry of the setup and the position of the spot on the
detection array of the sensor (Thwaite and Bendeli 1980; Huang et al. 1988).

Laser scanners utilizing laser stripe triangulation techniques have recently been
used in the investigation of soils, rocks, and sediments because of the ease of use,
accuracy, portability, and low cost (e.g., Aguilar et al. 2009; Platt et al. 2010).
These scanners project and sweep one or more laser stripes onto the surface of a
target and generate a high-resolution three-dimensional (3D) surface based on the
intensity of the laser stripes deformed on the surface of the object as observed from
an image sensing array offset from the light source (Knighton et al. 2005;
Usamentiaga et al. 2014). A 3D object is digitized when scans taken from multiple
angles are aligned and merged into a continuous surface (Rossi et al. 2008).

Three-dimensional laser scanning opens up the possibility to digitize and,
therefore, nondestructively measure both soil surfaces and 3D soil specimens (e.g.,
individual peds). These techniques are well suited to quantify soil structure and the
distribution of pores (i.e., soil architecture) of the soil profile. This is needed given
the paucity of techniques available to quantify macroscale soil architecture despite
its importance in pedological, hydrological, biological, physical, and chemical soil
processes (Eck et al. 2013; Hartemink and Minasny 2014).

The objectives of this paper are to: (i) provide a relevant overview of the
expanding literature on the application of 3D laser scanning techniques to quantify
soil architecture; (ii) provide several examples of how this technology is being
used; and (iii) guide future applications aimed at enhancing our understanding of
soil morphology. Although other laser scanning methods have been employed in
geosciences over the past three decades, we focus on multistripe laser triangulation
(MLT) because of its high resolution and applicability of quantifying in situ
interpedal macropores compared to noncontact spot methods.
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2.2 Three-Dimensional MLT Scanning of Soils

2.2.1 Bulk Density

Bulk density is used in part to convert measurements of soil properties on a mass
basis such as water content, soil organic carbon, NO�

3 –N, or calcium carbonate
equivalent into a volumetric basis. Bulk density can be used in combination with
soil texture as a predictor of soil hydraulic properties such as water retention and
hydraulic conductivity (e.g., Schaap et al. 2001). Bulk density is used to calculate
void ratio (i.e., ratio of pore volume to volume of the solids) and total porosity (i.e.,
a measure of the total volume fraction of pores in a soil). Total porosity is used as a
measure of saturated volumetric water content and necessary to calculate degree of
saturation in water retention measurements.

One of the first 3D applications of MLT scanning to soils was the accurate
determination of bulk density from clods (Rossi et al. 2008). The clod method is the
standard used by the USDA-NRCS when determining bulk density (Burt 2004) and
is useful when the excavation of cores is impossible or impractical. For instance, in
order to calculate the fine-earth bulk density of stony soils, the coarse fraction
(>2 mm) has to be removed, weighed, and used to correct the total mass of the clod.
Because the clod method is typically immersed in liquid saran or molten paraffin to
make it water tight for volume determination by displacement using Archimedes’
principle, separation of the coarse fraction can be problematic because the coating
agent often binds the coarse and fine-earth fractions together (Hirmas and Furquim
2006). Thus, the determination of fine-earth bulk density from the clod method
greatly benefits from a noninvasive procedure for obtaining clod volume.

The accurate determination of bulk density on very small (e.g., a few millimeters
in diameter) and irregularly shaped samples such as soil aggregates is limited by the
accuracy of the volume determination (Subroy et al. 2012). Several methods have
been developed to measure these small samples, but they require sealing the
aggregates by filling up the pores with an organic liquid and submerging the
saturated aggregate in either the same liquid used to saturate the aggregate or in a
liquid that is immiscible with it (Subroy et al. 2012).

Rossi et al. (2008) showed that the volumes obtained from the clod method (Blake
and Hartge 1986) were not significantly different from those obtained by MLT
scanning. Hirmas et al. (2013) compared aggregate volume measurements obtained
with a displacement technique (Subroy et al. 2012) against those obtained by MLT
scanning. They found no significant difference between the regression parameters.
When data from those two studies are combined on the same plot, the measurements
align close to the 1:1 line (Fig. 2.1), with a nearly perfect coefficient of determination
(r2 = 0.999). The axes in this figure are on a log scale to illustrate the 3-orders of
magnitude in volumes provided by the combination of the traditional clod method
and the aggregate displacement method, which indicates that MLT scanning can
extend the range of volumes that a single method can measure. In theory, there is no
upper limit for the scanner, provided there is enough storage and computational
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memory to process the resulting data. The lower limit is a function of the resolution of
the scanner, which, for this study, was 120 μm (Desktop 3D Scanner Model 2020i,
NextEngine, Inc., Santa Monica, CA) at its highest setting (macro).

Other methods for measuring bulk density such as the core method or excavation
method (Blake and Hartge 1986) may also benefit from the incorporation of MLT
scanning. The latter method is preferred where the loose consistence of a soil or the
abundance of coarse fragments precludes the use of core or clod methods. In the
excavation method, bulk density is obtained by excavating and weighing a dry
quantity of soil and measuring the excavation volume (Blake and Hartge 1986).
Variants of the excavation method primarily differ on the technique used to
determine the volume of the cavity. Thus, there are two possible ways that this
method could benefit from MLT scanning. First, the irregular surface of a cavity
could be digitized in 3D by scanning the excavation surface before and after
excavation of the material. This would allow for irregularities in the original surface
of the excavation to be accounted for as opposed to current methods, which assume
a previously leveled and smooth surface (Blake and Hartge 1986). Second, a
modification of the excavation method proposes that casts of the cavity be made in
dental plaster and volumes determined in the laboratory either by displacement or
by MLT scanning (Frisbie et al. 2014). Drager (2014) used this plaster cast-MLT
scanning modification of the excavation method to assess the effects of ant turbation
on bulk density within a centimeter of excavated galleries in a fine-textured soil.
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Fig. 2.1 Measured volume of aggregates and clods determined from a displacement technique
(Subroy et al. 2012) and the clod method (Blake and Hartge 1986) against calculated volumes
from MLT-derived digital scans. Data from Rossi et al. (2008) and Hirmas et al. (2013). The slope
of the regression for a model where the y-intercept was set to zero and the coefficient of the
determination are shown in the plot. Solid line represents a 1:1 relationship for reference
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The determination of bulk density by MLT scanning is also applicable when bulk
density is determined from core samples with an uneven soil surface, caused by, for
example, gravel, roots, or soil shrinkage (see also Sect. 2.3.3). Accurate volume
assessment is difficult in those situations due to the lack of a Euclidean shape.

Multistripe laser triangulation scanning has the potential to enhance analyses of
soil architecture by allowing repeated bulk density measurements (i.e., at each soil
water potential) on the same clod on which water retention is determined. This may
be important in the volumetric determination of water content for water retention in
swell and shrink soils (e.g., Vertisols).

2.2.2 Quantification of Ped Geometries

Rossi et al. (2008) showed that individual 3D peds could be digitized at high
resolution and volumes measured accurately. New measurements of ped geometries
and ped surface area can now be obtained from 3D laser scanning. Ped surface area,
in particular, may prove useful in the quantification of ped type and grade or for
assessing tortuosity of interpedal macropores. In addition, surface roughness may
be quantified using an approach proposed by Platt et al. (2010) for characterizing
irregular 3D target objects opening up possibilities to investigate the interface
between inter- and intrapedal pores.

Figure 2.2a illustrates an individual prism specimen extracted from the soil and
scanned using MLT. The ped is sliced in three orthogonal planes (Fig. 2.2b–d) to
reveal cross sections and cutaways of the ped. These cross sections can be quan-
tified from 2D measurements of size, shape, and orientation using standard image
analysis software such as ImageJ (Research Services Branch, National Institute of
Health, Bethesda, MD). Measurements of size include net, filled, and convex areas,
equivalent area circular diameter, minimum circumscribed and maximum inscribed
circle diameters, equivalent area ellipse major and minor axes lengths, caliper
dimensions (i.e., Feret diameters; Fig. 2.2d), and perimeter (Russ 2011). Orientation
measurements include the angle of the moment axis, longest caliper dimension, and
major ellipse axis (Russ 2011). Common shape descriptors include form factor or
circularity, roundness, aspect ratio, elongation, curl, convexity, solidity, compact-
ness, modification ratio, and extent (Russ 2011). The possibility of quantifying ped
shape is promising, as it is currently only characterized with subjective and cate-
gorical type classes (Schoeneberger et al. 2012). Quantifying shape can also be
important when comparing ped or aggregate sizes from samples with different
shapes (e.g., Hirmas et al. 2013).

2.2.3 Biopore Morphometrics

Biopores created from the movement of soil fauna and growth of soil flora have
been digitized by MLT scanning and have allowed the quantification of biological
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(a) (b)

(c)

(d)

Fig. 2.2 a Scanned prismatic ped showing cross sections through the approximate middle of the
aggregate and parallel to the b {100}-plane, c {010}-plane, and d {001}-plane. Numbers between
braces represent Miller index notation. Feret diameter calculations are shown in (d). Length of the
ped along the z-axis in (a) is approximately 4.5 cm
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macropore networks and identification of trace makers in paleosols for recon-
struction of paleo-environments (Platt et al. 2010). These pores often represent
complex and tortuous 3D geometries (Fig. 2.3a) and are typically casted with
fiberglass, epoxy, plaster, wax, concrete or molten metal (Hasiotis and Bourke
2006; Tschinkel 2010); the casts are subsequently allowed to harden, excavated,
and cleaned. The application of MLT scanning to these casted biopores will
increase the accuracy of metrics such as lengths, diameters, and angles (Fig. 2.3);
this is because pore measurements can be taken in the exact center of the digitized
biopores avoiding errors with lengths measured on the outside of casted pores (Platt
et al. 2010). Surface area of casted biopores can also be measured from MLT scans.
The current method proposes to wrap the cast with a single layer of foil and record
the foil weight. Surface area is then calculated from the known ratio of foil weight
to surface area (Atkinson and Nash 1990).

Accurate determination of surface area from MLT scanning allows for the cal-
culation of surface roughness over a range of scales (subcentimeter to meter). Platt
et al. (2010) termed this measure surface area index and defined it as the ratio of the
total surface area to the projected surface area of a biopore. The projected surface
area is calculated as the surface area of a biopore after it has been smoothed;

(a)

(b) (c)

Fig. 2.3 Scanned resin casts of a an Amphisbaena camurea burrow alongside a smoothed mesh
rendering of the cast, b desert skink (Egernia inornata) burrow with bounding box, and c a brown
scorpion (Urodacus sp.) burrow showing depth and ramp angle of the uppermost spiral. Modified
from Platt et al. (2010)
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smoothing is attained by coarsening the resolution of the digital mesh, which
effectively averages over the fine-scale variability. The resolution chosen to smooth
the surface of the biopore represents the scale over which the surface roughness is
calculated (Fig. 2.3a). Platt et al. (2010) plotted surface area index against mesh
resolution for a variety of biopores and used the inflection point of the relationship
to compare surface roughness of the casts. Results show that surface area index can
be used to identify the trace makers of ichnological specimens.

Other metrics developed as a result of the MLT scanning of biopores include
volume exploited (Fig. 2.3b)—defined as the ratio of volume of the biopore to
volume of a bounding box fit around the biopore expressed as a percentage—and
relative compactness—defined as the ratio of volume/surface area of the casted
biopore to the volume/surface area of a sphere that has the same volume as the
biopore (Platt et al. 2010). The relative compactness can be considered a measure of
sphericity. The volume limitation of the scanner reached by Platt et al. (2010) that
still preserved sufficient detail on the cast for ichnological interpretation was
approximately 0.8 cm3.

2.2.4 Aggregate Mass–Volume Relationships

Soils commonly exhibit a hierarchical organization in the arrangement of primary
particles where larger soil aggregates are formed from smaller and denser aggre-
gates (Rieu and Sposito 1991; Hirmas et al. 2013). The inverse relationship in
aggregate density and size stems from the “pore-exclusion principle,” which pos-
tulates that smaller aggregates selectively exclude larger interaggregate pores which
increases their density compared to larger aggregates. This relationship can be
described using a power-law relationship (Giménez et al. 2002):

MðdÞ ¼ kmdDm ð2:1Þ

where M(d) is the aggregate mass, d is the diameter of the aggregate, km is the mass
of an aggregate with unit diameter, and Dm is the slope of the relationship between
M(d) and d on a log–log plot also known as the fractal dimension of mass.

Previous attempts at examining the hierarchical organization in soils through the
fractal dimension of mass have been restricted to relatively small aggregate sizes—
often less than approximately 10 cm3. This is because it is difficult to measure the
volume of larger aggregates or clods with the conventional methods (displacement
techniques and/or clod method). Furthermore, as these methods either saturate the
aggregates with an organic liquid or coat their outer surfaces, it has not been
possible to investigate mass–volume relationships by sequentially breaking down
large soil volumes into smaller aggregates while measuring volumes of the resulting
fragments.

The ability for MLT scanning to nondestructively digitize aggregates down to
approximately 1 cm3 allows for the assessment of volumes over several orders of
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magnitude using aggregates that were originally part of the same sample volume.
For example, in a comparative study on the effects of tillage and erosion on the
mass–volume relationship, Hirmas et al. (2013) investigated surface and subsurface
horizons in two adjacent soils in northeastern Kansas. One of the soils was sampled
in an unplowed native tallgrass prairie and the other in a restored field where
erosion had exhumed the subsoil and a new shallow A horizon was forming in the
previous Btss horizon. Six large (*1000 cm3) clods were taken from each horizon
investigated, weighed, scanned to measure volumes, and broken down into smaller
aggregates that were weighed and scanned (Fig. 2.4a). This procedure was followed
until MLT scanning was no longer practical and a displacement technique described
by Subroy et al. (2012) was used for aggregates down to approximately 1 mm in
diameter. As the shapes of the aggregates varied considerably, nine independent
cross sections were digitally created for each aggregate and the roundness shape
parameter was calculated, averaged, and used to normalize the diameter of each
aggregate. The distribution of roots and organic carbon as controlled by the soil
morphology had a considerable effect on the fractal distribution of mass in different
aggregate size domains (Hirmas et al. 2013). The break point between aggregate
size domains with different fractal dimensions of mass was controlled by the
quantity of fines (silt + clay) and organic carbon in the soil. In addition, large
within-horizon variability was observed in the km and Dm parameters from samples
taken only centimeters to decimeters apart.

The study illustrated the usefulness of MLT scanning to investigate soil archi-
tecture at the horizon scale. Future MLT scanning should incorporate spatially
explicit designs in the sampling of horizon-scale clods and aggregates to quantify
the variability observed. In addition, the mass–volume approach would be enhanced
if soil constituents were assessed on each aggregate from which size was deter-
mined. One possible way to achieve this is to couple MLT scanning with proximal

Fig. 2.4 Multistripe laser triangulation (MLT) scanner in use in the a laboratory scanning a large
clod and b in the field scanning a prepared soil pit wall
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sensing (e.g., hyperspectral scanning; Steffens and Buddenbaum 2013) to map
binding agents such as organic matter or Fe-oxides on the surface of the aggregates.

2.3 Application of MLT Scanning for Digitizing Soil
Surfaces

2.3.1 Quantification of Soil Structure and Interpedal Pores
from Excavation Walls

An issue of MLT scanning is the formation of areas of missing data in the resulting
digital mesh. These data gaps result from the offset between the laser source and the
image sensing array in the triangulation arrangement. Sections of the laser stripes
projected and swept on the surface disappear from the field of view of the camera as
they are hidden in the recess of cracks.

Eck et al. (2013) took advantage of these data gaps to quantify interpedal
macropores from an in situ soil excavation wall by projecting them onto a 2D
surface and subsequently determining morphometrics using ImageJ (Fig. 2.4b).
Several challenges were overcome in the process of surface scanning of the soil
profile wall. First, the surface was prepared using a freeze and peel method fol-
lowing Hirmas (2013) to remove artifacts. Second, the surface was allowed to dry
for several days in order to maximize the exposure of interpedal pores on the
excavation wall. Third, scans were done at night to eliminate the effect of ambient
light, minimize differences in surface color between horizons, and keep the scanner
within its operational temperature range. Figure 2.5 illustrates a portion of a
carefully prepared monolith surface that was saturated, allowed to dry, and scanned
using MLT at various times during the drying process. The cracks became pro-
gressively more pronounced with time especially after 25 h of drying. The outlining
of soil structural units such as angular blocks and prisms also became more striking
as the soil surface dried (Fig. 2.5).

Size, shape, orientation, and abundance metrics were determined from the
projected map of the surface scan gaps and included area, perimeter, bounding box
width and height, ellipse axis lengths and angles, Feret diameters, circularity,
roundness, pore density, pore fraction, and relative surface area (Eck et al. 2013).
Probability distribution functions of these measurements within a depth zone can be
assessed and used to create continuous depth functions of macropore interpedal
geometries and quantify the uncertainty of these properties. Several of these metrics
correlated well to traditional descriptions of the grade, size, and type of soil
structure following Schoeneberger et al. (2012). The pore width obtained from
MLT scanning in combination with coefficient of linear extensibility measurements
can be used to predict the effective saturated hydraulic conductivity of the soil (Eck
et al. 2016).
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The ability to quantify interpedal macropore geometries and soil structure in the
field from a soil profile represents a step forward in understanding the genesis of
soil architecture and its interactions with hydrological and transport processes. As
with quantifying aggregate mass–volume relationships, quantifying and mapping
the spatial arrangement of macropores and soil structure would be enhanced if
coupled to high-resolution proximal sensing techniques. Here, the movement of soil
constituents such as clay and organic matter and the presence of redoximorphic
features could be consistently and quantitatively assessed in relation to soil structure
and proximity to macropores. This ability would aid the hydrological interpretation
of a site and likely enhance and standardize the assessment of soil quality.

2.3.2 Geostatistical and Multifractal Analyses of Soil
Surfaces

Surface roughness is the result of the structural organization of the soil at the
surface and is influenced by both extrinsic (e.g., tillage and topography) and
intrinsic (e.g., texture and aggregate size distribution) factors. Surface information
from MLT makes it possible to generate high-resolution (≤1 mm) digital elevation
models (DEMs; Fig. 2.6) suited to investigate intrinsic factors defining microto-
pography, such as the mapping of clods on freshly tilled surfaces (Chimi-Chiadjeu
et al. 2014).

Surface roughness is characterized by the statistical distribution of elevations
either considering or disregarding their spatial location. The semivariogram (Dalla
Rosa et al. 2012) and related fractal techniques (Huang and Bradford 1992; Vidal
Vázquez et al. 2005) are examples of considering spatial location. Multifractal
studies of soil surface elevations have been conducted, however, disregarding the
spatial location of the elevation points (García Moreno et al. 2008; San José
Martínez et al. 2009). Multifractal models consider the distribution of elevations as

Fig. 2.5 Scanned monolith at 0, 8, 25, and 128 h after prolonged visible saturation of the profile
surface. Depths are from 38 to 61 cm below the soil surface. White areas in the sections are data
not returned during the MLT scan and represent pores outlining structural units in the digital mesh

2 Quantifying Soil Structure and Porosity Using … 29



probabilities, Pi, and use it to calculate the partition function μi (q, L) (Chhabra and
Jensen 1989):

liðq; LÞ ¼
PiðLÞq

PNðLÞ
i¼1 Pq

i

ð2:2Þ

where L defines the scale and q the moments of the measure. The main expression
of a multifractal system is its f(α) spectrum, which represents the relationship
between the exponent α that characterizes the local behavior of Pi(L) and its fractal
dimension f(α), both calculated using the partition function (Fig. 2.6).

Figure 2.6 shows DEMs of soil blocks (10 × 10 cm) sampled from a freshly
tilled soil and after 120 mm of rainfall. Multifractal spectra were calculated
according to Posadas et al. (2003) with the software Multifractal Analysis System
3.0 (http://inrm.cip.cgiar.org/home/downmod.htm, accessed on June 27, 2015) after
rasterizing the MLT data. Semivariograms were calculated using the geoR package
(Ribeiro and Diggle 2015). Both the semivariogram and multifractal spectra were
sensitive to changes in the surface properties induced by rainfall. Rainfall reduced
the variation of elevation values as reflected by a decrease in the sill of the semi-
variograms and by a narrower range of α values in the multifractal spectra. The
disadvantage of the MLT method to generate surface elevations is the presence of
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Fig. 2.6 Surface digital elevation models (DEMs) with a resolution of 500 μm2 obtained in the
laboratory from the center (10 × 10 cm2) of soil blocks collected a immediately after tillage (heavy
disk + leveling harrow), and b after the application of 120 mm of simulated rainfall during a 1-h
period, and the corresponding c semivariograms and d multifractal spectra estimated from the
distribution of elevations. The experiment was located at the campus of the Luiz de Queiroz
College of Agriculture of the University of São Paulo in Piracicaba, Brazil. The soils are classified
as Rhodic Kandiudalfs. White areas are data gaps in the MLT mesh
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data gaps (Fig. 2.6) that could compromise the multifractal analysis. This problem
can be avoided by using techniques that do not define L by averaging increasingly
larger surfaces, but rather by considering L as the separation between elevation
points (Davis et al. 1994).

2.3.3 Soil Shrinkage and Volume Determination

In the investigation of soil surface deformation from shrinkage, laser triangulation
scanning has been useful in accurately assessing processes such as curling (e.g.,
Zielinski et al. 2014) and crack formation dynamics (e.g., Sanchez et al. 2013). In
these investigations, it is important that the surface be prepared to maintain the
features under consideration. Figure 2.7 illustrates a surface that was prepared with
the freeze and peel method (Hirmas 2013) leaving behind an irregular
micro-topography. Using the edge of the core as a reference, the surface of the core
was digitized by MLT and the missing volume determined to be 16.2 cm3 which
was 6.4 % of the core volume.

Soil shrinkage during desiccation has been studied using MLT (Sanchez et al.
2013). Volume changes were quantified as well as the dynamics of crack formation
at the surfaces of packed cores along with soil water content (estimated by
recording the loss of mass of the cores). By combining the morphological char-
acterization of the surface with soil water content, this approach allows the
development of mechanistic models of the evaporation process. Figure 2.8a shows
results of a similar experiment using a soil core sampled from the argillic (2Bt3)
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Fig. 2.7 A MLT-derived digital elevation model (DEM) of the surface of an approximately
250 cm3 core (8 cm diameter × 5 cm length) sampled from the National Ecological Observatory
Network (NEON) Konza Prairie Biological Station Relocatable site for bulk density, hydraulic
conductivity, and water retention determination. The exposed surface of the core was prepared
using a freeze and peel following Hirmas (2013) leaving behind a smear-free but irregular surface.
The volume between the end of the core ring and the irregular surface was calculated as 16.2 cm3

representing 6.4 % of the total volume of the core
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Fig. 2.8 a Pressure potential and cumulative evaporation measurements as a function of time from
an evaporation experiment. Pressure potential was measured using a tensiometer located at
3.75 cm depth in a cylindrical 8 cm diameter × 5 cm height core. The tensiometer failed at
approximately −800 cm. Blue dotted line is the projected pressure potential. Binary images (top)
are taken from MLT scans performed at times indicated by the black dashed lines. b Lateral and
vertical shrinkage trends. The lines are piecewise regression fits between soil pressure potential
and fracture areas from image analysis, Af, normalized by the total surface area of soil, At (blue),
and between pressure potential and mean vertical shrinkage (red)
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horizon of a fine, smectitic, mesic Pachic Argiudoll (Rosendale series). The core
was water-saturated and allowed to dry by evaporation. Water loss was measured
by frequently weighing the core, and pressure potential was recorded throughout
the duration of the experiment with a tensiometer placed 3.75 cm below the surface.
Similar to Eck et al. (2013), the area covered by the cracks was mapped with MLT
six times and the results quantified with ImageJ. The nonlinear nature of the
evaporation process can be seen at pressure potentials between −400 and −500 cm
where the rate of drying determined with the tensiometer increased, while the
evaporation rate declined. The evaporation rate decreased despite the increase in
evaporating surface area created by the continuous formation of cracks until the end
of the experiment (Fig. 2.8a). The MLT data allowed for comparison between the
rates of crack formation (lateral shrinkage) and vertical shrinkage, estimated as the
average reduction in sample height within the core (see Fig. 2.7). For this sample, a
similar rate was observed in both directions (Fig. 2.8b), suggesting an isotropic
process. High-resolution MLT scanning can be used to increase our understanding
of evaporation processes in soils using both the elevation data returned from the
scanner as well as the gaps in the digital mesh that can be used to map and quantify
the patterns and abundance of cracks.

2.4 Conclusions and Future Directions

Digital morphometrics is defined by Hartemink and Minasny (2014) as the, “…
application of tools and techniques for measuring and quantifying soil profile
attributes and deriving continuous depth functions.” To the growing list of tools and
techniques, we add laser stripe scanning technology as a means of quantifying soil
architecture, which has proven to be one of the most elusive soil profile attributes
for which to quantify and derive continuous depth functions. In particular, MLT
scanning can be used to quantify the spatial arrangement of soil particles and pores
at scales ranging from centimeters to meters (i.e., horizon to pedon scales). As MLT
is a surface scanning technique with no depth penetration and because constituent
information is not obtained about the surface being scanned, a coupled approach
using this scanning in combination with proximal sensing such as hyperspectral
scanning and fine-scale geophysical imaging with X-ray CT holds potential to
advance our understanding of soil morphology.

Other 3D digitizing methods such as time-of-flight scanning, structured-light
scanning, photogrammetry, and silhouette techniques have been used to digitize and
measure a variety of soil properties. We expect that most of the concepts discussed
in this paper will be equally applicable to these techniques in the investigation of
soil architecture.
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Chapter 3
Portable X-Ray Fluorescence (pXRF)
for Determining Cr and Ni Contents
of Serpentine Soils in the Field

Zeng-Yei Hseu, Zueng-Sang Chen, Chen-Chi Tsai and Shih-Hao Jien

Abstract Serpentine-derived soils have high concentrations of Cr and Ni from the
parent materials and pose a risk to human health and environmental quality. The use
of pXRF is a viable and effective technique for digital soil morphometrics. Soil
digestion by aqua regia (AR) is a common method for screening heavy metals in
contaminated soils. To provide in situ measurements, pXRF was performed for
quantifying Cr and Ni in 49 soil horizons from 11 pedons at 3 serpentine areas in
eastern Taiwan. Cr and Ni were also determined by the AR method for the samples.
The correlation between pXRF and AR methods was linear and significant (r = 0.90
and 0.99, respectively, P < 0.001). The metal contents by pXRF were, however,
higher than by AR. The difference is much larger for Cr than for Ni, because Cr was
mainly fixed in the chromite minerals which were resistant to the AR reagent, but
Ni was easily released from weatherable serpentine silicates. When additional 192
surface soil samples were used, the correlation was significant for Cr and Ni
(r = 0.89 and 0.98, respectively, P < 0.001, n = 241). It was concluded that the
pXRF was valid to rapidly screen Cr and Ni levels in serpentine soils in the field.
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3.1 Introduction

Hartemink and Minasny (2014) defined the term digital soil morphometrics as the
application of tools and techniques for measuring, mapping, and quantifying soil
profile attributes. They indicated the potential for in situ digital morphometrics for
all attributes of a soil profile to give continuous depth functions of soil properties,
when small depth increments were sampled and analyzed. Among the digital
morphometric techniques, X-ray fluorescence (XRF) spectrometry is a rapid,
proximal scanning technology which allows for total metal quantification in soils
within approximate two minutes. The operational theory concerning XRF uses
high-energy X-ray photons to forcibly eject an inner sphere (K or L orbital) electron
from the atom. This ejection causes electron shell instability whereby outer shell
electrons cascade down to fill the inner shell electron void. In doing so, a secondary
energy emission is produced, termed X-ray fluorescence (Jenkins 1999). The
energy emitted as fluorescence is element specific, allowing for nondestructive
elemental identification and quantification. For decades, XRF has been used in
traditional laboratory-based soil analysis. Recent advances in the technology have
made it field portable and useful in many soil science applications from pedology to
environmental quality assessment (Weindorf et al. 2012a, b, c).

Soil metal content can be detected by analytical techniques such as electro-
chemical methods, chromatographic separation, and spectroscopic techniques
(Radu and Diamond 2009). Analysis involves soil sample collection, subsequent
sample treatments such as extraction or digestion, and quantification using a flame
atomic absorption spectroscopy (FAAS), inductively coupled plasma atomic
emission spectrometry (ICP-AES), ICP-mass spectrometry, or atomic fluorescence
spectroscopy (Zhu and Weindorf 2009). However, XRF provides a multi-element
analytical method for the routine nondestructive analysis of soils with minimal
sample preparation (Kalnicky and Singhvi 2001; Herpin et al. 2002). The most
attractive feature of XRF is its wide dynamic range, from parts per million (or
milligrams per kilogram) to 100 %, for many elements in a given sample
(Hettipathirana 2004). Portable XRF (pXRF) technology can be implemented in
soil geochemical analysis for faster and more efficient testing of metals in soil
profiles. As pXRF can be applied directly in the field, sample treatments such as
extraction, digestion, or long mechanical stages of separation are no longer nec-
essary. Determination directly from soil samples provides a better representation of
the matrix in which metals naturally exist.

To date, pXRF has been used in soil science. Kalnicky and Singhvi (2001)
demonstrated the benefits of pXRF for rapid assessment of soil contamination.
Several official methods such as Environmental Protection Agency (EPA) Method
6200 in USA (USEPA 2007) and National Institute of Environmental Analysis
Method S322.60C in Taiwan (2006) include the use of pXRF technology for on-site
analysis of metal contaminants in soil and sediments to guide evaluation and
remediation programs. Radu and Diamond (2009) used pXRF for evaluating 17 soil
samples from abandoned mining sites in Ireland. They found excellent correlations
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with traditional FAAS results for As, Cu, and Zn in soils. For pedolocial and
archaeological use, Arnoldussen and van Os (2015) demonstrated the suitability of
pXRF analysis to extract paleo-geochemical information from lacquer-peel soil
sections that have been taken to document pedological information at archaeo-
logical sites. The values for Si, K, Al, Fe, Ti, Sr, Zr, and Rb in the lacquer peels
reflected lithogenic and pedological processes, and the contents of S, Ca, and P
were used as a proxy for anthropogenic influence. The lacquer peels provided
consistent and reliable geochemical readings with the pXRF. Most previous
applications of pXRF in soil science were focused on the determination of heavy
metal concentrations for environmental assessment, screening, monitoring, and
mitigation (Palmer et al. 2009; Radu and Diamond 2009; Stallard et al. 1995;
Weindorf et al. 2012b). Few studies have attempted to infer the enrichment of Cr
and Ni in serpentine soils by using pXRF (Panagopoulos et al. 2015).

Serpentine soils are often not only derived from ultramafics but also from
hydrothermal alternation of ultramafic minerals and a presence of serpentine min-
erals (Alexander et al. 2007). Most serpentine soils pose ecological or environ-
mental risk because of high levels of potentially toxic metals such as Cr and Ni
(Oze et al. 2004; Hseu 2006; Kierczak et al. 2007; Cheng et al. 2009, 2011;
Bonifacio et al. 2010; Becquer et al. 2010; Hseu and Iizuka 2013). The high
amounts of Cr and Ni in serpentine soils are harmful in crop production or result in
unique natural vegetation (Yang et al. 1985; Brooks 1987). Serpentine soils are
abundant in the ophiolite belts and are typically found within regions of the
Circum-Pacific margin and Mediterranean Sea (Oze et al. 2004). Mafic and ultra-
mafic rocks-derived soils are richer in Cr and Ni and up to 3400 mg/kg of Cr along
with 3600 mg/kg of Ni. The average concentrations of Cr and Ni in soils of the
world are about 84 and 34 mg/kg, respectively (McGrath 1995). Lithogenic heavy
metals are considered less mobile than those of anthropogenic origin in soils, but
their potential risk to the environment occurs through the increase of bioavailability
of Cr and Ni (Becquer et al. 2003; Chardot et al. 2007). Fernandez et al. (1999)
found that sugar beet, cabbage, and pasture on the serpentine soils in northwestern
Spain accumulated significant quantities of Cr and Ni, despite low to moderate
EDTA-extractable amounts in these soils. Miranda et al. (2009) evaluated Cr and Ni
accumulation in cattle raised in a serpentine area. Samples of liver, kidney, and
muscle of the 41 animals aged 8–12 months were collected. Accumulation of Cr in
the animal tissues was generally low and within the normal range, but 20 % of the
animals had toxic levels of Ni in their kidneys.

Serpentine landscapes are intensively found in eastern Taiwan, adjacent to the
convergent boundary of Eurasia Plate and Pacific Plate. The influence of pedo-
logical conditions on Cr and Ni concentration is an essential consideration when
analyzing the ecological functions of serpentine soils. The behavior of Cr and Ni
and their origin and vertical distribution in serpentine soils on different landscapes
need to be studied (Hseu 2006; Hseu et al. 2007; Hseu and Iizuka 2013). The
FAAS/ICP-AES measurement with aqua regia digestion is an official standard to
determine soil contamination with heavy metals in Taiwan. The pXRF technology
for on-site analysis of the metals is used as a rapidly screening approach for
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contaminated sites. The objectives of this study were to: (1) evaluate the effec-
tiveness of using pXRF for quantifying Cr and Ni concentrations through serpen-
tine soil profiles, (2) validate the results obtained from the pXRF using the aqua
regia method, and (3) verify the pXRF measurement of Cr and Ni for surface soils
at serpentine sites.

3.2 Materials and Methods

3.2.1 Description of Study Sites

The Huadong longitudinal valley (HLV) in eastern Taiwan was selected as the
study area. The HLV is a long and narrow rift stretching for about 180 km and
ranging from 2 to 7 km in width, flanked by the central ridge to the west and the
coastal range to the east. Three rural sites were selected in the northern part of HLV
(Fig. 3.1), which soil parent materials, serpentines, are exotic blocks of ophiolite
from the Philippine Sea Plate that developed during the Late Pliocene epoch (Ho
1988). They are Kuang-Shan (23° 02′ 18″N, 121° 11′ 24″E), Ruei-Shui (23° 30′ 27″

Fig. 3.1 Location of the study sites in Taiwan
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N, 121° 22′ 25″E), and Wang-Long (23° 42′ 54″N, 121° 24′ 41″E), which are
corresponding to 109, 427, and 127 ha in area for selecting reference soil profiles
and additional surface soils.

3.2.2 Sample Collection and Analysis

A total of 11 pedons were selected, and they were identified using the prefixes KS,
RS, and WL for the soils from the HLV at the sites of Kuang-Shan, Ruei-Shui, and
Wang-Long, respectively. For each pedon, morphological characteristics were
described according to Soil Survey Staff (1993). Cr and Ni were determined by a
pXRF directly in the soil profile. The pXRF instrument (X-50) was an Olympus
Innov-X (MA, USA) and used to scan the surfaces of the soil in situ. The X-50
pXRF was conducted with a Ta/Au X-ray tube operated at 50 keV and a current of
200 μA with quantification via ultra-high-resolution (<190 eV) silicon pin diode
detector. Prior to its use, various concentration ranges of the National Institute of
Standards and Technology (NIST) standard reference material (NIST 2702) were
scanned to assure the analytical quality of pXRF. The X-ray fluorescence signal
was collected for 30 s. To verify the effectiveness of pXRF for the studied soils, an
additional 192 surface soils at 3 serpentine sites were scanned.

Soil sample was also collected and air-dried, homogenized, and screened for
standard soil analyses and Cr and Ni. Soil particle size distribution was determined
with the pipette method (Gee and Bauder 1986). The soil pH was measured in a
mixture of soil and deionized water (1:1, w/v) using a glass electrode (McLean
1982). Total organic carbon (OC) content was determined using the Walkley-Black
wet oxidation method (Nelson and Sommers 1982). Cr and Ni were determined by
the digestion of soil with concentrated HNO3 and HCl (1:3, v/v) (aqua regia) for all
horizons and additional surface soil samples. The filtered suspension was measured
with an ICP-AES (Optimal DV 2100; Perkin-Elmer, USA), following the procedure
recommended by Taiwan EPA (Taiwan EPA 2015).

3.3 Results and Discussion

3.3.1 Soil Characteristics

All pedons are dark or gray colored and display no clear rubification. The particle
size distribution for the soils varied between pedons. Clay content ranged from 8 %
in the C2 horizon of Pedon RS04 to 78 % in the A1 horizon of Pedon KS01
(Table 3.1). The elemental composition of serpentine soils is not affected by
pedogenic processes and by the differences in ophiolite origin (Cheng et al. 2009);
thus, soil pH differs between pedons. Pedons at Wang-Long site had higher pH
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Table 3.1 Characteristics of the pedons

Pedon Horizon Depth (cm) Color Sand (%) Silt (%) Clay (%) pH OCa (%)
KS01 A1 0–10 7.5YR 3/2 15 13 78 5.8 4.10

A2 10–23 7.5YR 3/2 17 12 71 5.8 2.55
AB 23–40 7.5YR 4/3 13 13 74 5.7 1.98
Bss1 40–60 7.5YR 4/4 15 10 75 5.7 1.88
Bss2 60–80 7.5YR 4/6 18 13 69 5.9 1.96
Bss3 80–100 7.5YR 4/6 20 13 64 5.9 1.28
C >100 7.5YR 5/6 25 16 59 5.9 1.34

KS03 A 0–15 5YR 2.5/2 25 14 61 6.1 3.78
AB 25–30 5YR 2.5/2 37 14 49 6.2 2.60
Bss1 30–50 5YR 3/4 25 18 57 6.1 2.03
Bss2 50–70 5YR 4/4 33 11 56 6.1 1.50
Bss3 70–90 5YR 4/6 35 20 45 6.1 1.19
BSS4 90–110 5YR 4/6 33 16 51 6.1 1.38
C 110–130 7.5YR 4/6 40 16 44 6.2 1.09

RS01 A 0–18 2.5Y 3/2 72 14 14 5.4 1.53
C 18–28 2.5Y 4/2 79 11 10 5.4 0.92
2C1 28–42 2.5Y 4/4 66 24 10 4.7 1.71
2C2 42–62 10YR 3/2 62 23 15 4.8 1.92

RS02 Ap 0–15 2.5Y 4/2 59 24 17 5.1 2.14
C 15–35 2.5Y 3/4 60 28 12 5.9 1.50

RS03 Ap 0–12 10YR 3/3 56 26 18 5.0 1.95
C 12–32 10YR 4/3 61 22 17 5.1 1.52

RS04 Ap1 0–17 2.5Y 4/2 63 23 14 5.1 2.05
Ap2 17–32 2.5Y 4/1 67 23 10 5.1 1.23
Bw1 32–42 2.5Y 3/3 67 15 18 5.5 1.32
Bw2 42–60 2.5Y 5/2 71 15 14 5.8 1.71
Bw3 60–76 2.5Y 5/2 70 14 16 6.1 0.85
C1 76–100 2.5Y 5/1 77 10 13 6.3 1.15
C2 100–120 2.5Y 5/1 80 12 8 5.5 0.62

RS05 Ap1 0–15 2.5Y 3/3 80 6 14 5.6 2.52
Ap2 15–30 5Y 4/3 73 10 17 6.0 1.04
Bw1 30–50 5Y 5/2 62 24 14 6.2 0.61
Bw2 50–70 5Y 5/2 61 22 17 6.3 1.28
Bw3 70–90 5Y 5/3 42 41 17 6.1 1.48
Bw4 90–115 5Y 5/1 55 32 17 6.5 0.57
Bw5 115–130 5Y 5/1 60 26 14 6.4 1.08
C1 130–170 2.5Y 5/1 74 12 14 6.4 0.49
C2 170–190 2.5Y 5/1 75 11 14 6.4 1.31

WL01 A 0–10 2.5Y 3/1 70 10 20 7.2 2.65
C >10 2.5Y 5/3 69 8 23 7.5 1.11

WL02 Ap1 0–10 5Y 3/2 42 30 28 7.4 2.78
Ap2 10–20 5Y 4/1 26 59 15 7.6 0.77
Bw 20–35 5Y 3/1 38 44 18 7.8 1.98
C1 35–55 5Y 2.5/1 45 44 11 7.8 0.86
C2 >55 5Y 2.5/1 45 45 10 7.7 1.80

WL03 Ap 0–13 5Y 3/1 51 36 13 7.5 1.97
C 13–33 5Y 4/1 51 39 10 7.5 2.11

WL04 Ap 0–10 5Y 3/1 30 51 19 7.5 1.79
C 10–20 5Y 4/2 37 46 17 7.8 1.04

aOrganic carbon
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values than those at the other sites. Organic C (OC) contents were generally highest
in the surface horizon and decreased with depth. The OC content was below 5.0 %.
According to Soil Taxonomy, these pedons are Typic Hapluderts (KS01 and KS03),
Typic Udorthents (RS01), Lithic Udorthents (RS02, RS03, WL01, Wl03, and
WL04), and Typic Eutrudepts (RS04, RS05, WL02) (Soil Survey Staff 2014).

3.3.2 Comparison Between pXRF and the Aqua Regia
Methods

Concentrations of Cr and Ni in soil horizons were determined by the pXRF in situ,
and the results indicated very high Cr and Ni levels (Table 3.2). The highest
concentration of Cr was 2329 mg/kg and the lowest was 168 mg/kg. The mean
concentration of Cr (772 mg/kg) was much higher than the average Cr in worldwide
soils (McGrath 1995). The Cr concentration varied among horizons and pedons
(Fig. 3.2). The aqua regia soluble Cr was lower than Cr determined by pXRF, and
this difference increased with soil development from the Entisols to the Vertisols.
The difference in Cr between pXRF and aqua regia methods was high in the
topsoils. The pXRF analysis showed that the mean concentration of Ni was similar
to Cr, but the difference of Ni between pXRF and aqua regia methods was lower
than that of Cr (Table 3.2). The difference of Ni between the pXRF and aqua regia
methods appeared to be consistent in all soils (Fig. 3.3). On the other hand, the soil
with more Cr-spinels caused a larger difference of Cr determined between the pXRF
and aqua regia methods, like the Vertisols rather than the Entisols.

The Cr and Ni concentrations reflected the ultramafic characteristics of serpen-
tine soils. According to the soil control standards of heavy metals in Taiwan by
using the aqua regia method, 250 and 200 mg/kg of Cr and Ni would label the soil
as a potentially contaminated (Taiwan EPA 2001). The metal source was geogenic
in serpentine soils, but they posed the potential risk to human health and the
environment.

Table 3.2 Descriptive statistical parameters of Cr and Ni concentrations (mg/kg) in all horizons
(n = 49) of pedons determined by pXRF and aqua regia methods

Cr Ni

pXRF Aqua regia pXRF Aqua regia
Maximum 2329 1260 3338 3300
Minimum 168 88.4 60.0 62.6
Mean 772 435 748 676
Medium 528 309 372 187
Standard derivation 579 301 784 872
Skewness 1.39 1.20 1.72 1.63
Kurtosis 0.83 045 2.49 1.86
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Bonifacio et al. (2010) found that Ni showed a more homogeneous distribution
than Cr with a smaller range in 66 soil horizons of 19 poorly developed serpentine
soils of the Alps in northwestern Italy. In their study, Cr appeared to increase with
Ni and both metals had similar ranges, even if the differences in mineral sources
between Cr and Ni have been identified (Oze et al. 2004; Kierczak et al. 2007;
Cheng et al. 2011). Chromium (III) and Ni can substitute for Mg or Fe in the
octahedral sheet in olivine and pyroxene in peridotites, but chromium is substituted
into serpentine minerals in very low amounts (Oze et al. 2004). However, Cr is
mostly found in spinel minerals such as Cr-magnetite, chromite, and other
mixed-composition spinels containing Al, Cr, Mg, and Fe (Cheng et al. 2011; Hseu
and Iizuka 2013). These Cr-spinels are recalcitrant (Oze et al. 2004) and hardly
dissolved by the aqua regia reagent (Morrison et al. 2009). Hseu and Iizuka (2013)
found that Cr has localized high concentrations in serpentine soils because of
discrete bodies of chromite with strong resistance to weathering. Silicates were
reported as important Ni-bearing minerals in serpentine soils, and the Ni concen-
tration of serpentine minerals ranges from 0.2 to 0.4 % (Kierczak et al. 2007).
Chlorite and serpentine are the most common minerals in serpentine soils of eastern
Taiwan (Hseu et al. 2007), and thus, they influence the total metal contents. These
diverse mineral sources of Cr and Ni may justify the discrepancies in the differences
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of total contents in this study by using the pXRF and aqua regia methods
(Table 3.2). Kierczak et al. (2007) found, however, a weak and positive correlation
between Cr and Ni (r2 = 0.47, n = 22) for well-drained serpentine soils from Poland,
France, and Italy.

3.3.3 Validation of pXRF

For serpentine soil analysis, the aqua regia reagent can dissolve all metal fractions
outside silicate structures, but only partially Ni from silicates and Cr from silicates
and Cr-spinels such as chromite and magnetite (Cheng et al. 2011) The XRF
methodology obtained the total contents of metals in the soils. This is why the Cr
and Ni concentrations by the aqua regia method were lower than those by pXRF
(Table 3.2). Regarding the mean value of metal concentration, the aqua regia sol-
uble Cr and Ni was approximately 56 and 90 % of Cr and Ni determined by the
pXRF. However, Fig. 3.4 shows the correlation between the aqua regia and pXRF
measurements of Cr and Ni concentrations for all horizons. For both methods, good
correlation of the two techniques was found. The r values were 0.90 and 0.99,
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respectively. This confirmed an excellent performance over a range of concentra-
tion. The data of Cr concentration from the two methods followed a linear model:
y = 1.73x + 20.9, indicating a bias from the line of 1:1 ratio particularly when Cr
levels were high (Fig. 3.4a). The data of Ni from the two methods followed the
linear model: y = 0.89x + 144, but the bias was smaller than for Cr (Fig. 3.4a),
because the aqua regia reagent could dissolve the relatively weak frameworks of
silicate containing (i.e., Fe-chlorite and antigorite) predominant Ni compared to
Cr-spinels.

When an additional 192 surface soils at all sites were used for the comparison
between the two methods, the correlation was significant for Cr and Ni (r = 0.89
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and 0.98, respectively, P < 0.001, n = 241) (Fig. 3.5). For the 241 samples from
pedons and addition surface soils, the linear model was y = 1.66x + 26.3 for Cr and
y = 1.00x − 55.0 for Ni. These correlations established a reference for the pXRF
measurement for Cr and Ni in serpentine soils. The major concern of pXRF per-
formance is the non-homogeneity of efficiency for different elements (Kalnicky and
Singhvi 2001; Weindorf et al. 2012b). Although the studied soils varied in texture,
pH, and OC content, the pXRF offers quantitative results regarding Cr and Ni of
serpentine soils, as reported by Panagopoulos et al. (2015).
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3.4 Summary and Conclusions

The aqua regia soluble Cr was lower than Cr determined by pXRF, and this dif-
ference increased along with soil development from Entisol to Vertisols. Regardless
of soil development, the difference of Ni between the pXRF and the aqua regia
methods appeared to be consistent. The mean concentration of Ni was similar to Cr,
but the difference of Ni between pXRF and aqua regia methods was lower than that
of Cr. The correlations between the two methods established an adjustment refer-
ence of the pXRF measurement for Cr and Ni in serpentine soils. Although the
studied soils varied, the pXRF is able to offer acceptable quantitative results
regarding Cr and Ni of serpentine soils. The pedology community has accepted
pXRF methodology as viable and effective technique for analyzing soil samples. It
is a nondestructive technique, and the analyses can be performed with the same
samples. Detailed site investigation requires extensive sampling and subsequent
laboratory analysis. The main purpose for using pXRF is to guide on-site decision
making for identifying the enrichment of Cr and Ni in serpentine soils. The
application of pXRF to perform analyses in situ has the potential to decrease costs
and analysis time over formal laboratory methods of extraction and instrumental
measurement such as the aqua regia method.
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Chapter 4
In Situ Analysis of Soil Mineral
Composition Through Conjoint Use
of Visible, Near-Infrared and X-Ray
Fluorescence Spectroscopy

Edward J. Jones and Alex B. McBratney

Abstract Soil mineral composition impacts soil behaviour but field estimation of
the soil mineralogy has been difficult. Preliminary results of a model to rapidly
quantify soil mineral composition are presented. To investigate the efficacy of
predicting soil mineral composition in situ two soils under agriculture from New
South Wales, Australia, was scanned with visible–near-infrared (Vis–NIR) and
portable X-ray fluorescence (pXRF) spectrometers to a depth of 1 m at 2.5 cm
sampling increments. The Vis–NIR spectra were preprocessed and the presence of
individual minerals was assessed using pattern matching with mineral end-member
libraries. Rule-based iterative partitioning was then applied on the recorded pXRF
elemental compositions based on known stoichiometric ranges of the identified
minerals. This gave a mineral abundance prediction and distinguished between
mineral groupings not clearly differentiated by Vis–NIR spectra alone, i.e. kaolinite,
illite and smectite. Predicted mineral composition compared favourably to existing
mineralogical interpretation of horizon-based random powder and orientated clay
samples analysed using laboratory X-ray diffraction. This fine-scale mapping of the
distribution of soil minerals in situ has potential to enhance soil morphological
description, support site-specific pedogenetic theories and may be further used to
moderate properties predicted directly from the Vis–NIR and pXRF spectra.
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4.1 Introduction

Soil mineral composition directly or indirectly affects nearly all soil properties. As
such, soil mineral composition has a large impact on soil behaviour and to gain
insight into soil function, we must capture and explore its spatial variability.
Routine soil mineral analysis involves laboratory-based X-ray diffraction (XRD).
To provide more objective interpretations and enhance current field soil description
techniques, there has been a growing push to digitally capture and quantify soil
properties in the field (Hartemink and Minasny 2014).

In addition being confined to the laboratory, XRD analysis of random powder
samples and basally oriented clays with appropriate pretreatment (e.g. Mg/K sat-
uration, ethylene glycol, heating to 550 °C) is a time-consuming task. Although
some spectral interpretation software is available, expert interpretation is still
required and mineral estimation remains semi-quantitative. Field portable XRD
devices exist and have been used for lithological investigation both on Earth and on
Mars (Downs 2015). However, they require samples to be relatively dry and also
ground before analysis (Sarrazin et al. 2005). These devices can take several hours
to analyse complex materials (a complex material is an apt, basic definition of soil).
Non-destructive, in situ XRD devices are available although they commonly have a
reduced range and are limited to angles greater than 20° 2θ (Gianoncelli et al.
2008). This is problematic as most phyllosilicates have primary peaks at lower
angles (<10° 2θ), and thus, these devices are less equipped to estimate these
important soil constituents. Subsequently, portable XRD devices have been mostly
limited to archaeological and lithological investigations (e.g. Nakai and Abe 2012;
Uda 2004; Cannon et al. 2015).

Recently, there has been growing interest in using proximal soil sensors to
obtain information on soil systems. Two devices, visible–near-infrared (Vis–NIR)
and portable X-ray fluorescence (pXRF) spectrometers, have shown potential as
field diagnostic devices as they can provide a wealth of information in a timely
manner. Vis–NIR has been used to predict a diverse range of soil attributes
(Viscarra Rossel et al. 2011). As many soil minerals have characteristic absorption
features in the Vis–NIR range (Clark et al. 1990), studies have been able suc-
cessfully to predict a range of minerals including montmorillonite, kaolinite,
dioctahedral mica and calcite (e.g. Brown et al. 2006; Mulder et al. 2013). Although
these analyses were performed on dried and ground samples, it has been shown that
analyses are also possible under field conditions (Viscarra Rossel et al. 2009;
Malone et al. 2014). Applications of pXRF to pedology and soil science are
increasing (Weindorf et al. 2014). While no studies could be found that attempted to
quantify soil mineral composition using pXRF, Zhu et al. (2011) demonstrated
pXRF’s ability to predict soil textural attributes, which is of interest as texture is
related to mineral composition (McKenzie et al. 2004).

The benefit of combining the two devices is that Vis–NIR gives information on
sample colour as well as molecular overtones and combination vibrations (Burns
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and Ciurczak 2007), whereas pXRF can give an estimate of the concentration of
elements with atomic number ≥12 and is also relatively more stable under varying
moisture conditions (Stockmann et al. 2016). Thus, by using the data from both the
systems, we have access to information on the elemental constitution of a sample
via pXRF, as well as an idea of how some of these elements are bonded via Vis–
NIR. This study aims to investigate the potential of combining Vis–NIR and pXRF
data through model-averaging procedures and an elemental mass balance to char-
acterise soil mineral composition in situ.

4.2 Methods

4.2.1 Site Selection

Two sites were chosen with known pedogenetic variation. A Natrustalfs was
identified on a site near Spring Ridge and a Eutrudepts near Pokolbin in New South
Wales, Australia (Table 4.1). The Natrustalfs has a polygenetic profile comprised of
sandstone-derived alluvium and colluvium overlying previously deposited,
mudstone-derived alluvial and colluvial materials (Stockmann et al. 2016). The
Eutrudepts has formed from the weathering of the underlying marl.

Existing horizon-based XRD analysis of the two sites was performed using
monochromatic CuKα radiation at 30 kV and 28.5 mA using a GBC MMA
diffractometer. Basally oriented clay samples were also analysed after various
pretreatments for the identification of phyllosilicate species, as described by Brown
and Brindley (1980). Expert interpretation identified a large variation in mineral
composition between the two profiles:

Natrustalfs mineral composition

X-ray diffraction patterns of basally oriented clays show the presence of kaolinite, illite and
traces of an interstratified mineral. Illite content in the clay fraction increases slightly with
depth. In addition to the phyllosilicates, the random powder diffraction patterns also
identify quartz (increases with depth), anatase and goethite in the clay fractions (University
of Sydney 2010).

Eutrudepts mineral composition

Smectite and kaolinite throughout the soil profile. Small amount of illite are present in the
top two horizons. Smectite content increases with depth and the clay fraction of the C
horizon is composed of predominately smectite with small amount of kaolinite. Random
powder analysis showed the presence of calcite in the lower two horizons (University of
Sydney 2010) (Fig. 4.1).
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4.2.2 Sampling

Vis–NIR and pXRF were used to scan three vertical transects at each site, starting at
the soil surface and then at 2.5 cm intervals to a depth of 1 m. This gave 41 scans
per transect and 123 scans per site. The three transects were taken at 50 cm spacing
to give 1 m lateral coverage. Gravimetric moisture content ranged from 0.00 to
0.23 g g−1. An Agrispec portable spectrophotometer with a contact probe attach-
ment was used to take Vis–NIR spectroscopic measurements (Analytical Spectral
Devices, Boulder, Colorado). This particular instrument has a spectral range
between 350 and 2500 nm. The device was calibrated with a spectral on white tile
after every 15 scans. The pXRF used was an Olympus Delta Premium handheld
portable X-ray fluorescence analyser (Olympus InnovX-Systems, USA, 2010).
NIST soil standards were scanned before and after each vertical transect to test the
performance of the device. Samples were scanned in GEOCHEM mode, which
consisted of two 30 s beams, at 50 and 10 kV, respectively. The internal calibration
model returned estimated elemental mass values in mg kg−1.

4.2.3 Data Fusion

Mineralogical prediction was based on a data-fusion approach, utilising both the
model-averaging procedures and an elemental mass balance (Fig. 4.2). All statis-
tical analyses were performed in R Core Team (2014). First, the elemental ratios of
Si:Al:K:Ca:Fe:Ti were calculated from the received pXRF data. These seven
selected elements made a mean of 99.88 (s.d = 0.24) of the mass of total identifiable
elements. Prediction of phyllosilicates, kaolinite, smectite and illite, as well as Fe

Fig. 4.1 Oriented clay X-ray diffraction patterns of the C horizon of the Eutrudepts after various
pre-treatments: Mg saturated and air-dried (blue curve), Mg saturated and ethylene glycolated (Red
curve), K saturated and air-dried (green curve) and K saturated and heated at 550 °C (violet curve)
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oxides (haematite and goethite), was performed using a shape-fitting algorithm
across diagnostic wavelength ranges to quantify deviation from convex
hull-corrected reference mineral spectra. This method is defined by Malone et al.
(2014) and previously utilised in the Tetracorder decision-making framework by the
US Geological Survey (Clark et al. 2003). A prediction of total phyllosilicate was
also gained using a simple linear relationship with Rb concentration reported by
pXRF. Rb is readily adsorbed onto the surface of clay minerals and is higher in
clayey soils (Kabata-Pendias 2010). The Vis–NIR and pXRF total phyllosilicate
predictions were combined using an equal-weight model average. This model
average total phyllosilicate prediction was then used to scale phyllosilicate speci-
ation ratios to give quantitative predictions of each phyllosilicate species. Known
stoichiometry (Table 4.2) of these elements was applied to the predicted values to
give their respective elemental mass requirement. These values were then tested
against the reported elemental ratios by iteratively subtracting 1 % of the predicted
elemental requirement from the available elements until individual quotas are filled
or until a constituent element is exhausted in which case the partitioning of further
elements to that species is halted, but the remaining species may continue to draw
elements to fill their quota. For example, illite requires contributions from Si, Al

Fig. 4.2 The data-fusion approach. Vis–NIR and pXRF data are input into the model and the mass
contributions of individual species to total mineral mass is returned. Ka kaolinite; Sm smectite; Il
illite; He haematite; Go goethite; Ca CaCO3; and Q quartz
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and K. In the event that K runs out before the illite quota is filled, and Si and Al are
still available, the partitioning of elements to illite is halted but kaolinite may
continue to fill its quota as it only requires the presence of Si and Al. Once all
quotas have been filled or constituent elements exhausted, the moderated values are
recorded and the remaining elements are passed for Fe oxide prediction in a similar
fashion. The assumption made is that all remaining Ca is in the form of CaCO3 and
that all remaining Si is involved in siloxane bonds, simplified in the model to
quartz. The predicted identifiable element mass contributions are converted to
mineral mass contributions by including light elements based on known stoi-
chiometry (Table 4.2) to give the final mass contribution to mineral fraction.

4.2.4 CaCO3 Prediction

The CaCO3 values predicted using the above approach were modified for com-
parison with horizon-based values that were obtained by gravimetric loss of carbon
dioxide (Allison and Moodie 1965). The CaCO3 contribution to the mineral soil
fraction had to be converted to the CaCO3 contribution to total soil mass. This was
achieved by incorporating the mass of OM content using the following equation:

CaCO3½ �soil¼ CaCO3½ �mineral� 100� OC � 1:72ð Þ=100

Predicted soil contributions for each sample (123 totally) were then plotted by
horizon and the mean values obtained by horizon compared to laboratory results.

Table 4.2 Mass-based mineral stoichiometry used in the elemental mass balance

Mineral Element contribution to total soil mass

LEa Si Al K Ca Fe Ti
Quartz 53.3 46.7 0.0 0.0 0.0 0.0 0.0
Kaolinite 57.6 21.2 20.1 0.1 0.0 0.5 0.7
Smectite 58.8 27.9 9.8 0.3 1.1 2.1 0.1
Illite 54.5 24.3 11.8 6.3 0.3 2.6 0.4
Haematite 30.1 0.0 0.0 0.0 0.0 69.9 0.0
Goethite 37.1 0.0 0.0 0.0 0.0 62.9 0.0
CaCO3 60.0 0.0 0.0 0.0 40.0 0.0 0.0
aLight elements (LE) are those with atomic number ≤12, which are unidentifiable by pXRF
Stoichiometric relationships were calculated from compositional analyses accompanying the US
Geological Survey digital spectral library (Clark et al. 2007) and other sources (Brigatti et al. 2006)
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4.3 Results and Discussion

4.3.1 Predicted Mineral Contributions

Predicted minerals varied greatly between soils and also with depth, with notable
changes across most horizon boundaries (Fig. 4.3). In the Natrustalfs, phyllosilicate
speciation was dominated by kaolinite with contributions from smectite in the A
horizon and illite in the B horizons (Fig. 4.3a). Quartz was the dominant mineral in
the A and E horizons, making up a mean of 92 % of the mineral mass of the E
horizon. The expression of Fe oxides increases with depth and was strongest in the
mottled Btqn1 and Btqn2 horizons. Meanwhile, CaCO3 was noticeable absent in
the entire Natrustalfs profile.

By comparison, the Eutrudepts profile phyllosilicate speciation was dominated
by smectite (Fig. 4.3b). Significant amounts of kaolinite and illite were identified
but their relative contribution decreased with depth as smectite became increasingly
dominant. CaCO3 was found throughout the profile, increasing at horizon bound-
aries, with the highest concentrations found in the marly C horizon. The proportion
of quartz was relatively low and decreased gradually with depth, as did Fe oxides.

Fig. 4.3 Predicted soil mineral contribution to total mineral mass for a Natrustalfs and
b Eutrudepts. Ka kaolinite; Sm smectite; Il illite; He haematite; Go goethite; Ca CaCO3; and
Q quartz. Predictions cover a depth of 1 m at 2.5 cm intervals including a sample taken at the soil
surface. The average of three vertical transects is presented. Horizon designations are indicated
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4.3.2 Comparison to XRD Interpretation

The predicted mineral composition agreed well with the XRD interpretation pre-
sented in the Methods section. All major trends were represented and all minerals
were identified correctly with the exception of anatase which is not included in the
model. Phyllosilicate speciation was correlated with the documented XRD inter-
pretations. As the soils do not contain muscovite or biotite and given the fact that
the clay fraction in these soils consists mainly of secondary minerals (McKenzie
et al. 2004), we can assume that all phyllosilicates are found in the clay fraction and
this allows direct comparison with the basally oriented clay XRD analysis. Our
predictions agree with nearly all XRD phyllosilicate observations. For example, we
identify the dominance of kaolinite in the Natrustalfs and the increase in illite with
depth in this soil. In the Eutrudepts, we identified that there are large amounts of
smectite throughout the profile and that the relative proportion of smectite to
kaolinite and illite increases with depth. Further, we also identified the increased
proportion of illite in the A and AB horizons as described from the XRD analysis.
The one phyllosilicate XRD observation that our prediction did not match was the
presence of smectite in the A horizon of the Natrustalfs. This may have been
misinterpreted as the identified interstratified mineral. Previous investigations at the
same site identified the presence of smectite in the A horizon of the Natrustalfs,
with the hypothesis that it has been eroded from nearby Vertisol profiles and
deposited in the topsoil (Quilty 2007), suggesting that the mineral may have a high
spatial variation.

4.3.3 Comparison to Soil Properties

Some relationship can be seen between the predicted mineral composition and the
soil properties. The noticeable lack of CaCO3 in the Natrustalfs coincided with its
low pH (Table 4.1). The opposite was noted in the Eutrudepts where both predicted
CaCO3 and pH increased with soil depth. The lowest observed CEC of 21 mmolc
kg−1 was found in the E horizon of the Natrustalfs which coincided with the high
quartz content. The CEC observations in the Natrustalfs increased in the B horizons
where concentrations of kaolinite and illite significantly increased. However, the
highest CEC values occured in the Eutrudepts coinciding with the dominance of
smectite. Although these observations remain qualitative, they provided support to
the predicted values. If we are able to parametise these relationships, then the
data-fusion approach may provide a valuable means to validate or moderate pre-
dictions made directly using Vis–NIR or pXRF.
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4.3.4 CaCO3 Prediction Versus Laboratory Analysis

CaCO3 was chosen for further investigation as it can be readily quantified using
laboratory techniques (Allison and Moodie 1965). Our mean CaCO3 predictions for
the Eutrudepts with depth had a strong correlation with laboratory results (Fig. 4.4)
but the predicted values showed a large amount of spatial variation. The variation
increased with depth, with the A horizon displaying a relatively low observed
range, is possible due to increased bioturbation. In the saprolitic, marly C horizon,
the predicted values range from 108 to 851 (mg g−1). This exemplifies the strength
of our approach in capturing the spatial variation, which is lost when samples are
ground for homogeneity and mean values are reported. The benefits of fine-scale
soil profile mapping are unexplored and also demand further investigation.

4.3.5 Further Development

Although the model has achieved promising preliminary results, there is much to
improve on. Future work needs to be directed to incorporate more minerals into the
model, including feldspars, gibbsite, gypsum, anatase and rutile. The inability to
discriminate between feldspars and quartz is a limitation of the model. As neither
quartz nor feldspars has strong absorption features in the 350–2500 nm Vis–NIR
range, we need to investigate the pXRF data for a potential solution. An OC

Fig. 4.4 Boxplots of CaCO3 (mg g−1) predicted by horizon from three vertical transects for the
Eutrudepts. Hollow squares indicate mean predicted CaCO3 by horizon; meanwhile, filled circles
indicate laboratory-derived values by gravimetric loss of carbon dioxide (Allison and Moodie
1965). Predicted CaCO3 values are modified from those shown in Fig. 4.3b by correcting for OM
content (OM content was calculated as 1.72 * OC from Table 4.1)
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prediction could also be implemented and combined with the mineral prediction
and known CEC values to deterministically estimate soil CEC. A comparison of the
prediction using Vis–NIR or pXRF individually compared to the data-fusion
approach is crucial to quantify the benefits of the approach.

4.4 Conclusion

A new method for rapid, in situ quantification of soil mineral composition based on
Vis–NIR and pXRF spectroscopy was investigated. Preliminary results show a
good ability to differentiate between phyllosilicate species, as well as predicting
levels of inorganic C and quartz, although prediction of Fe oxides is less con-
vincing. Further study is needed to increase the range of predicted minerals and to
test the method on different soils.
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Chapter 5
The Effect of Soil Moisture and Texture
on Fe Concentration Using Portable
X-Ray Fluorescence Spectrometers

Uta Stockmann, Ho Jun Jang, Budiman Minasny
and Alex B. McBratney

Abstract Portable XRF (pXRF) instruments can be used in the field for mea-
surement of soil elemental concentrations. The pXRF measurements in the field,
however, are affected by several factors including soil texture, moisture and sample
heterogeneity. In this chapter, we investigated the effect of moisture on the Fe
concentration of pXRF laboratory and field measurements. In the laboratory study,
soil samples were analysed that were wetted to different moisture contents. In the
field study, pXRF measurements were made from topsoil samples and the data were
compared to samples that were air-dried and ground to pass a 2-mm sieve. Soil
moisture mainly dampens the X-ray intensity resulting in lower Fe concentrations,
and this effect is more pronounced for clayey soils (higher Fe content) as compared
to sandy soils (lower Fe content). In addition, the field moisture content is highly
related to clay and Fe content. Thus, the response of XRF intensity to soil moisture
content depends on soil texture and mineralogy. We could not find a general
correction factor for soil moisture and X-ray intensity but the relationship between
air-dried and field-moist Fe concentration is highly linear which allows to correct
for moisture content by establishing an empirical correction function.
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5.1 Introduction

Handheld portable X-ray fluorescence (pXRF) devices offer great opportunity to
enrich the in situ description of soil profiles by rapidly measuring the elemental
concentration of unprocessed soil materials and are therefore a highly valuable tool
in digital soil morphometrics and pedology studies (Hartemink and Minasny 2014).

XRF devices operate on the principle of energy dispersive spectrometry whereby
the amount of emitted fluorescence photons is directly measured by an X-ray
detector that simultaneously analyses their energy levels. The number of
element-specific characteristic X-rays produced (or intensity) determines the
quantity of a given element. Measurements by portable XRF measurements,
however, can be affected by soil particle size, moisture, the presence of coarse
organic residues, soil structure, smearing, stoniness, mottles and redoximorphic
features. For example, a soil sample ground to finer particle sizes can show higher
elemental concentrations when compared to the same soil sample unground or of
coarser particle sizes (Markowicz 2008). This effect is more pronounced for ele-
ments with small atomic numbers such as K, V, Cr, Mn and Ca (Laiho and
Perämäki 2005). There are two factors that affect the measurement of pXRF in the
field, i.e. sample heterogeneity and soil moisture (Ge et al. 2005; Horta et al. 2015).

In the laboratory, soil samples are usually ground to pass certain size fractions
(<2 mm) to homogenise the sample and eliminate coarse fragments. When the soil
particle size decreases, the XRF intensity is increased because of smaller incident
angles (Maruyama et al. 2008). Generally, sieving the soil to <2 mm is recom-
mended because it results in less variation (Laiho and Perämäki 2005). In the field,
the soil particle sizes can be variable, and pXRF measurements from the field can
be different from laboratory measurements.

Soil moisture affects XRF measurements in two ways (Ge et al. 2005). First, the
presence of water particles enhances the absorption of X-rays which reduces the
intensity of the X-ray signal. Secondly, the presence of water particles can cause
primary X-rays to scatter which results in the increase of the X-ray intensity.
Therefore, the elemental concentration in wet soil is generally lower than in dry
soil, and this can lead to a lower precision, poor detection limit and overall lower
accuracy. Kalnicky and Singhvi (2001) and Laiho and Perämäki (2005) recom-
mended scanning soil samples with gravimetric moisture content less than 20 %.
Most of these studies used samples from a single source with limited variability
(e.g. Parsons et al. 2013 and Bastos et al. 2012). They have not considered different
soil textures and soil water potentials. The 20 % moisture is rather arbitrarily
defined, as 20 % gravimetric water content in a clayey and a sandy soil is different
in terms of its water potential.

The aim of this study was to investigate the influence of soil moisture on the
pXRF spectrum, in particular Fe concentration and to explore the potential for
quantifying and removing this effect and to increase the accuracy of field pXRF
measurements.
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5.2 Materials and Methods

We conducted two studies to investigate the effect of soil moisture on the mea-
surement of elemental concentrations, particularly Fe. The XRF spectra were col-
lected in SOILMODE using an Olympus Delta Premium Handheld pXRF Analyzer
which operates at three beam configurations of 50, 40 and 15 kV, respectively
(Olympus InnovX-Systems, USA, 2010).

5.2.1 Laboratory-Based Study

Eleven soil samples with texture contents ranging from loam to medium clay were
collected from the Hunter Valley, NSW, Australia. The samples were air-dried and
ground to pass a 2-mm sieve. The air-dried samples were evenly wetted until they
reached a sticky consistency (*30 % wetness), and subsequently scanned with a
pXRF at different moisture conditions after air-drying the samples for 1 day in a
controlled laboratory environment. Wetness (%) was determined gravimetrically by
measuring the amount of water in the soil by drying in the oven at 105 °C for 24 h.
Maximum peak heights as well as the total peak area around 6.2 and 6.6 keV for Fe
were used to investigate the response of the XRF spectrum to different moisture
conditions.

5.2.2 Field Study

This study used 120 topsoil samples (0–7.5 cm depth) from Nowley Farm in the
Liverpool Plains, NSW, Australia. The samples were collected using a stratified
random sampling design. The samples were scanned with pXRF under field-moist
conditions. The samples were then dried in the oven at 40 °C for 24 h, ground to
pass a 2-mm sieve and rescanned under these air-dried conditions. All scans were
replicated thrice.

5.3 Results and Discussion

5.3.1 Laboratory Study

Figure 5.1 shows the intensity of the Fe peak at 6.40 keV at different moisture
contents for a sample from the Bt horizon of a Dermosol. The intensity decreases
with increasing moisture content. Ge et al. (2005) proposed a model for the cor-
rection of soil moisture on XRF measurement based on the principle that the
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reduction in X-ray intensity is proportional to the increment of water content of the
sample:

dIx ¼ �lwIxdw

where dIx is the reduction in the X-ray intensity, Ix is the X-ray intensity, dw is the
increment of gravimetric water content in the sample, and lw is the attenuation
coefficient of moisture. Integrating this equation from w = 0, gives:

I0 ¼ Ix exp lwwð Þ

where I0 is the intensity at w = 0. This implies that based on Beer–Lambert’s law,
the intensity will attenuate exponentially with increasing moisture content. Ge et al.
(2005) estimated w from the intensity of scattered radiation.

The laboratory study using different soils showed that the response of the
intensity (or Fe-peak height) decreases with moisture content but that the decrease
is not uniform (Fig. 5.2). Although the three soil samples can all be classified as
clay-rich Bt horizons (35–55 % clay content), and belong to the same soil order
(Dermosol), and also show the existence of an exponential relationship between
wetness and intensity, the attenuation factor is different for the three soil samples.
The correction factor as proposed by Ge et al. (2005) can therefore not be uniformly
applied.

5.3.2 Field Study

In the field study, we collected a range of topsoil samples with soil textures ranging
from sand to clay. Figure 5.3 shows the relationship between Fe-peak height for soil
samples collected under field and air-dried conditions. The Fe content (as estimated
by the maximum Fe-peak height) was underestimated for field-moist soil as

Fig. 5.1 Intensity of the Fe
peak at four different water
contents for the Bt horizon of
a clay-rich soil (Dermosol)
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compared to air-dry soils. The relationship of Fe content between air-dried and
field-moist conditions is linear. Some field-moist samples showed higher Fe con-
centrations compared to air-dry samples possibly due to the scattering effects.
Hürkamp et al. (2009) also found a solid linear relationship for Pb content between
field measurement and laboratory measurement (air-dried and ground to pass a
2-mm sieve). Tjallingii et al. (2007) who worked on marine sediments found that
heavier elements (such as K, Ca, Ti and Fe) are relatively unaffected by soil
moisture, but that lighter elements (such as Al and Si) are more sensitive to
moisture changes. In this study, we have not included any comparisons for heavy or
light elements yet.

Clay-rich soils (>40 % clay) showed higher concentrations of Fe compared to
sandy soils (>60 % sand). There is a tendency for the relative difference of the max
Fe peaks (or Fe content) to be larger (between the field-moist and air-dry soil

Fig. 5.2 The response of X-ray peak height to moisture content for three soil samples of the Bt
horizon of three Dermosols. Here, a light clay equates to about 35 % clay content, whereas a
medium clay equates to about 45 % clay content

Fig. 5.3 The Fe
concentration between air-dry
soil and field-moist soil. Here,
a clayey soil refers to a clay
content of >40 %. Loamy,
intermediate textures are
shown in black
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samples) in Fe-rich soils (Fig. 5.4). The general relationship proposed by Ge et al.
(2005) w� lw log I0=Iwð Þ is not observed which suggests that the attenuation
coefficient is soil-dependent.

As we measured three replicates for each soil sample, the standard deviation and
coefficient of variation of measurements can be calculated. Table 5.1 shows the
mean and standard deviation of measurements along with the average standard
deviation and coefficient of variation (CV) of the measurements. The concentration
of Fe is lower under field conditions as compared to air-dry conditions (Fig. 5.3).
However, the standard deviation and CV of the measurements are relatively similar
between field-moist and air-dry soil samples. This suggests that measuring the soil
under field conditions does not introduce much more variation when compared to a
more uniform dried and sieved sample. This differs from the findings of Laiho and
Perämäki (2005). We hypothesised that our samples are more variable, and thus, the
field variation is larger than the variation in measurement.

We mapped the Fe concentration using the 240 observations collected for the
study area (2083 ha) of Nowley Farm using ordinary kriging. As shown in Fig. 5.5,
the spatial pattern of Fe content between field-moist and air-dried conditions is

Fig. 5.4 The relationship between soil water content and the ratio of Fe concentration of air-dried
samples (C0) and field-moist samples (Cw). Here, a clayey soil refers to a clay content of >40 %.
Loamy, intermediate textures are shown in black

Table 5.1 Mean and standard deviation of the 240 observations of Fe concentration as measured
by pXRF under field-moist and air-dry conditions

Mean of
observations
(mg/kg)

Std. dev of
observations
(mg/kg)

Average std. dev of
measurements (mg/kg)

Average CV of
measurements

Field-moist 32,859 22,980 169.7 0.58
Air-dry 39,263 27,528 209.3 0.60
Each observation is the mean of three measurements. The average standard deviation and
coefficient of variation of measurements are also presented
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Fig. 5.5 Maps of Fe concentration in g/kg as measured using pXRF under a air-dried condition,
b field-moist condition, and c field-moist corrected to air-dried condition. The maps were created
using ordinary kriging of 240 top soil samples collected at Nowley Farm (2083 ha)
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similar. Since the relationship of Fe content between field and air-dried conditions
is linear, we can correct the observed offset using an empirical relationship. We
selected 10 samples from the whole range of Fe concentrations and fitted a linear
relationship:

Fe air-driedð Þ ¼ 1103þ 1:12 � Fe field-moistð Þ; R2 ¼ 0:99
� �

This relationship is applied to the field-moist map, which results in an air-dried
corrected map (Fig. 5.5c) that is identical to the map produced using samples
scanned in air-dried condition. Thus in practice, we can derive such correction
functions from field measured data by selecting a subsample (e.g. 10 samples)
covering the whole elemental concentration. These subsamples were air-dried and
ground and remeasured under laboratory conditions, and thus, a correction function
can be derived.

5.4 Conclusions

The response of XRF intensity to soil moisture content is affected by mineralogy
and clay content. The correction factor proposed by Ge et al. (2005) does not apply
for soil with varying clay content and mineralogy. The effect of moisture dampens
the X-ray intensity resulting in lower elemental concentrations. The effect of soil
moisture on Fe content is more pronounced for clayey soils than sandy soils.
Furthermore, the relationship between air-dried and field-moist Fe concentrations is
linear. As the coefficient of variation between air-dry and field-moist measurements
is similar, we can measure elemental concentrations directly in the field. We pro-
pose a pragmatic way to correct for the moisture effect during field pXRF mea-
surement by taking representative samples (from high to low elemental
concentration), and subsequently preparing and measuring those samples under
air-dried condition. From this, a linear correction factor can be developed to correct
for field-moist measurements.
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Chapter 6
Estimating Soil Texture from a Limited
Region of the Visible/Near-Infrared
Spectrum

Elisângela Benedet Silva, Alexandre ten Caten,
Ricardo Simão Diniz Dalmolin, André Carnieletto Dotto,
Walquiria Chaves Silva and Elvio Giasson

Abstract Soil particle size is an attribute of fundamental importance when defining
soil horizons. Proximal soil sensors can facilitate the acquisition of a larger amount of
soil data using a faster and less laborious technique. Thus, the objective of this study
is to evaluate the capacity of a limited spectral acquisition region (325–1075 nm) for
estimating soil texture. Soil samples were collected in the southwest part of
Marombas river watershed located near the center of Santa Catarina State, south of
Brazil. A total of 42 soil profiles were sampled according to the GlobalSoilMap
specification. A dataset of 166 samples was used for model calibration and another
set of 71 samples was used for model validation. Diffuse reflectance spectroscopy of
sieved samples (2 mm) was collected with a spectrometer FieldSpecHandHeld II
(ASD Inc.). Savitzky–Golay second derivatives were calculated and used in partial
least-squares regression modeling. Calibration and validation datasets showed
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statistically similar mean and variance. The root-mean-square error of prediction for
sand, silt, and clay content is 5.47, 5.18, and 5.39 g 100 g−1, respectively. The R2 for
validation is 0.30, 0.59, and 0.69 for the same attributes. Partitioning the model by
depth did not improve the predictions significantly. The results show that estimating
soil texture from a limited spectral region is promising and can contribute toward the
development of cheaper spectrometers or infrared cameras that can be used for digital
soil morphometrics.

Keywords Diffuse reflectance spectroscopy � Soil reflectance � Proximal soil
sensing � Soil attribute � Digital soil morphometrics

6.1 Introduction

During the last two decades, a growing interest on the quantification of soil attri-
butes by means of soil sensing techniques has emerged (Ramirez-Lopez et al. 2014;
Vasques et al. 2008) using visible–near-infrared (Vis–NIR) diffuse reflectance
spectroscopy to provide data for digital soil mapping (Viscarra Rossel and Behrens
2010; Wetterlind et al. 2010) and soil morphometrics. Visible and near-infrared
spectroscopy (Vis–NIR, 400–2500 nm) can be used as a tool to acquire more data
rapidly and consequently increases mapping accuracy. Vis–NIR has potential to
analyze several soil attributes simultaneously without considerable increase in costs
(Viscarra Rossel and Lark 2009; Wetterlind et al. 2010), time and with less pro-
duction of reagents residues (Viscarra Rossel et al. 2006; Demattê and da Silva
Terra 2014).

Vis–NIR spectra contain information on minerals, organics, water, color, and
particle size, which are fundamental components of the soil (Viscarra Rossel and
Chen 2011). Reflectance spectroscopy can be very useful in the assessment of soil
variations in depth (from different layers and/or horizons) due to the interaction of
light with soil attributes reflecting intrinsic data related with soil (Demattê and da
Silva Terra 2014).

Recent studies also investigated the relationships between soil attributes and its
spectral reflectance aiming into predicting physical–chemical soil attributes
(Summers et al. 2011). Using a laboratory spectrometer, Demattê et al. (2012)
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analyzed the relation between the reflected electromagnetic energy and soil attri-
butes. They observed features between 450 and 600 nm caused by subtle differ-
ences in the absorption intensity, which can be used to separate the subhorizons in
the field from their color.

The studies of soil reflectance spectra across the whole visible, near-infrared, and
shortwave infrared (Vis–NIR–SWIR) have been successfully applied by Dotto et al.
(2014) who developed models using multiple linear regression analysis to predict
the content of sand, silt, and clay. The models produced good results, explaining 77
and 72 % of the variance for sand and clay, respectively. In a study carried out by
Viscarra Rossel et al. (2006), the authors have shown that a spectrometer operating
in visible region of the spectra (400–700 nm) can be used for soil organic carbon
prediction. Their results achieved a RMSE of 0.18 % and R2 of 0.60. The authors
highlighted that the predictions using only the visible part of the spectra can be
comparably accurate and not as expensive as the infrared spectrometer.

Considering that spectrum of the visible region (400–700 nm) is used for
morphological in field soil classification, this paper has the hypothesis that, even
using a spectrometer capable of acquiring a limited region of the spectrum, the soil
signatures collected with such equipment is suitable for estimating soil texture.
Thus, the main objective of the paper is to predict soil texture using second
derivatives of the reflectance in a limited region of the spectrum (325–1075 nm). It
is anticipated that lower-cost near-infrared camera or spectrometer with a limited
range of spectra can be used for digital soil morphometrics.

6.2 Materials and Methods

6.2.1 Soil Sampling and Laboratory Analysis

Samples were collected in the southwest part of Marombas river watershed, located
near the center of Santa Catarina State, south of Brazil (Fig. 6.1). Parental material
in the region consists mainly of basaltic igneous rocks of Serra Geral formation.
A small area of the watershed, located toward east, consists in consolidated sedi-
mentary rocks of the Botucatu Formation. The climate is subtropical with mild
summer and mean annual temperatures of 16 °C. Köppen climate classification
system for the area is Cfb. Annual precipitation is about 1600 mm. Altitude of
watershed varies from 900 to 1300 m above sea level. Natural vegetation belongs to
the mixed ombrophylous forest. The total area of the watershed is approximately
950 km2, and predominant land cover consists of 22 % of agriculture (garlic, onion,
soy beans, and maize), 37 % of cultivated forest (Pinus taeda), 33 % of natural
forest (with Araucaria angustifolia), and 8 % of grassland and pasture. Prevalent
soil types in the area are Oxisols, Inceptisols, and Entisols (Latossolos,
Cambissolos, and Neossolos in the Brazilian classification system).
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A total of 42 soil profiles were sampled following the GlobalSoilMap specifi-
cations (Arrouays et al. 2014). In every profile, samples were collected until 2 m
depth (when possible) in the intervals of 0–5, 5–15, 15–30, 30–60, 60–100, and
100–200 cm. Soil analyses were conducted in the Pedology Laboratory of the
Federal University of Santa Maria (Santa Maria, RS, Brazil). Soil organic carbon
(SOC) and soil texture were determined for the 237 soil samples after air-dried,
ground, and sieved through a 2-mm mesh according to Embrapa (1997). Sand, silt,
and clay (g kg−1) were determined by the pipette method, and SOC (g kg−1) by
Walkley–Black wet digestion as described by Tedesco et al. (1995).

6.2.2 Spectral Analysis

In the laboratory, in a controlled setting, the 237 air-dried grounded samples were
scanned using a FieldSpec HandHeld II (ASD Inc.) spectrometer, with a spectrum
range acquisition of 325–1075 nm and spectral resolution of <3 nm at 700 nm. Soil
scanning was conducted inside a black painted box (dimensions
L/750 × H/400 ×W/400 mm), to allow for a controlled light illumination. Inside the
box, soil samples were put in a Petri dish. Spectrometer was installed on top of the
box with a conical field of view of 10° at a distance of 400 mm from samples. With
this configuration, the spectrometer sampling area in the Petri dish was 40.7 cm2.

Fig. 6.1 Study area and sampling locations (dots) in the Marombas river watershed (red polygon).
Small inbox shows the location of the watershed in south of Brazil
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A light source of 70 W quartz–tungsten–halogen lamp with integrated reflector was
placed inside the box. Light source was placed 400 mm away from the soil sample
and inclined 30° from lamp nadir. Four composite scans (each one is an average of
100 internal scans) were obtained for each sample from the four quadrants of Petri
dish by rotating it 90°. Reference spectrum using a white Spectralon® panel was
collected prior to the first scan and at every new group of samples from a different
profile. Final spectrum was calculated by averaging the four composite scans.

6.2.3 Spectral Data Analysis

This study applied three preprocessing steps to soil reflectance spectra. First, spectra
with high noise-to-signal ratio at the edges were removed (325–400 and 980–
1075 nm) which were confirmed by visual observation. Second, the reflectance
spectra were smoothed by a Savitzky–Golay second-order polynomial using a
moving window of nine values (Savitzky and Golay 1964). Third, to reduce the
dimensionality of the data, the reflectance values were averaged across a 5-nm
window. This pretreatment reduced the soil spectral curves to 116 reflectance
values (400–980 nm) which were then used for modeling.

Savitzky–Golay second derivatives were calculated on the 116 soil reflectance
spectral values using a second-order polynomial across a 9-nm window. This
derivative procedure followed the recommendation by Vasques et al. (2008). The
modeling dataset was formed by sand, silt, and clay values and second derivatives
of the air-dried grounded samples, using partial least-squares regression (PLSR)
with The Unscrambler®X 10.3 software (CAMO Inc., Woodbridge, NJ).

6.2.4 Partial Least-Squares Regression Modeling

For each Vis–NIR spectral pretreatment, a PLSR model was tested. PLSR is the
most common algorithm used to calibrate Vis–NIR spectra to soil properties
(Viscarra Rossel et al. 2006) where there are many predictor variables that are
highly collinear (Viscarra Rossel and Behrens 2010). PLSR handles this multi-
collinearity and is robust in terms of data noise and missing values (Summers et al.
2011; Viscarra Rossel et al. 2006). The PLSR algorithm integrates the compression
and regression steps, and it selects successive orthogonal factors that maximize the
covariance between predictor and response variables (Viscarra Rossel and Behrens
2010).

Dataset was also further partitioned in three subsets related to soil depth. In all
PLSR models, the quality of prediction was assessed by randomly dividing the
datasets in two groups (70:30 split) for calibration (C) and validation (V). Thus,
there were four groups of data formed by soil texture and reflectance second
derivatives: whole dataset (i.e., 166C/77 V), 0–15 cm (i.e., 59C/25 V), 15–60 cm
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(i.e., 58C/24 V), and 60–200 cm (i.e., 51C/20 V). For modeling, soil texture clay,
silt, and sand content were expressed in g 100 g−1 or %. Models were evaluated
based on the coefficient of determination of validation (R2, Eq. (6.1)).
Complementary error statistics were also provided, including the root-mean-square
error (RMSEP, Eq. (6.2)) for models accuracy, and mean error (ME, Eq. (6.3)) for
its bias:

R2 ¼
Xn

i¼1

ðŷi� �yÞ2
,

Xn

i¼1

ðyi� �yÞ2 ð6:1Þ

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðŷi� yiÞ2
,

n

vuut ð6:2Þ

ME ¼ 1
n

Xn

i¼1

ðŷi� yiÞ ð6:3Þ

where ŷ = predicted values, ȳ = mean of observed values, y = observed values, and
n = number of predicted/observed values with i = 1, 2,…, n.

Homogeneity of variance test, between soil texture calibration and validation
sets, was carried out with Levene’s test. Following results of homogeneity of
variance (i.e., groups had equal or unequal variances), a comparison between the
mean was conducted with Student’s t test. All tests were done with a critical p-value
of 0.05 (95 % confidence).

6.3 Results and Discussion

6.3.1 Descriptive Statistics

Soil textures in the Marombas river watershed are predominantly clay and silty clay
(Fig. 6.2). There are also a few samples of clay loam and silty clay loam. Those
soils are deeply weathered with strong presence iron oxides with particles diameter
less than 0.002 mm. Soil clay content of the 237 samples ranges from 31.79 to
78.48 % and sand content ranges from 1.38 to 35.48 % (Table 6.1). The mean clay
content increases from 51.73, 56.49, and 63.82 % within the increasing soil depth
of 0–15, 15–60, and 60–200 cm, respectively. This small increase in clay with
depth is due to translocation. The dominant minerals are calcic plagioclase and
pyroxene basalt which weathered completely and formed clay minerals through
oxidation process of the parental material contributing to this fine texture. The
profiles were classified as Oxisols (Latossolos in Brazilian classification).

Sand, silt, and clay contents were tested for normality with Shapiro–Wilk test at
a 0.05 significant level. The test indicates that sand, silt, and clay were normally
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distributed, and thus, no transformation was applied to the attribute datasets before
modeling. To verify whether there was similarity between calibration and validation
datasets, tests of homogeneity of variance (Levene’s test) and comparison of the
mean (Student’s t test) were carried out with a 0.05 significant level. The Levene’s
test indicated no homogeneity of variance between sand datasets for depth of 0–15
and 60–200 cm (Table 6.2). All remain groups of data had equality of variances
between calibration and validation samples. Due to the lack of homogeneity of
variance, the Student’s t test for comparison of the mean in those two groups (0–15
and 60–200 cm) was carried out with non-equal variance assumption. Comparison
between the mean for sand, silt, and clay values for calibration and validation sets
did not show a significant difference (Table 6.2). Sand, silt, and clay are compo-
sitional data which needs to sum to 100 %. In this study, we model the components
independently to study the relative predictability of the content using NIR. Future
work will look into additive log-ratio transformation.

6.3.2 Qualitative Description of the Spectral Data

Spectra of all soils were similar with minor features apparent in visible and
near-infrared region. An increase in soil reflectance could be noticed toward deeper
soil samples (Fig. 6.3a). Samples located near the surface have higher SOC content
which absorbs radiation. Sousa Junior et al. (2011) found similar results on cor-
relation between soil attributes and its reflectance showing that soil organic matter
has a high influence on the spectral behavior, resulting in a significant negative

Fig. 6.2 Soil texture of the
samples following the USDA
triangle
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correlation in all evaluated bands. The organic matter can also mask features of the
reflectance (Demattê et al. 2012).

The SOC content varied from 0.03 to 8.32 % in the dataset of 237 samples.
High SOC presence is due to constant supply of new organic material in vegetated
areas. The altitude of the region has annual average temperature to be around 16 °C,

Table 6.1 Entire and segregated by depth datasets descriptive statistics

Descriptive statistics (%) Sand Silt Clay Sand Silt Clay

Calibration Validation
Whole dataset
n = 166 n = 71

Min 1.38 18.91 31.79 1.38 18.50 33.85
Q1 3.32 28.51 52.09 3.00 29.37 50.87
Median 5.12 33.26 57.92 6.09 36.77 56.78
Mean 7.82 34.12 58.06 7.60 35.59 56.81
Q3 9.19 38.67 66.19 10.98 40.82 62.89
Max 32.81 59.40 78.16 35.48 52.76 78.48
Range 31.43 40.49 46.37 34.10 34.27 44.62
SD 7.05 7.52 10.05 6.29 8.03 9.69

Depth 0–15 cm
n = 59 n = 25

Min 3.00 20.27 33.85 2.60 25.93 39.51
Q1 5.12 33.20 46.57 4.26 33.11 47.89
Median 6.77 38.26 53.30 6.39 37.91 53.69
Mean 10.51 37.75 51.73 7.86 37.91 54.23
Q3 12.86 41.19 56.93 9.08 43.86 58.17
Max 35.48 51.94 69.48 19.91 52.76 70.39
Range 32.48 31.67 35.62 17.31 26.83 30.87
SD 8.25 6.49 8.54 4.72 7.27 8.13

Depth 15–60 cm
n = 58 n = 24

Min 2.00 18.50 36.78 1.56 24.10 38.90
Q1 3.62 29.47 52.48 2.58 31.18 51.71
Median 5.65 34.74 57.90 4.79 34.66 56.22
Mean 7.66 34.80 57.54 8.43 35.07 56.49
Q3 9.50 39.59 63.00 10.69 40.02 63.04
Max 30.61 48.52 78.48 28.69 47.12 73.36
Range 28.61 30.02 41.70 27.14 23.02 34.46
SD 6.14 6.51 8.52 8.40 6.31 9.02

Depth 60–200 cm
n = 51 n = 20

Min 1.38 18.91 31.79 1.38 19.06 37.05
Q1 2.25 24.79 59.34 2.35 23.50 60.85
Median 3.23 28.38 64.86 3.09 27.62 68.35
Mean 5.60 30.58 63.82 4.42 29.79 65.79
Q3 6.64 36.14 71.42 6.25 35.27 72.70
Max 25.29 59.40 78.16 10.21 54.38 74.62
Range 23.91 40.49 46.37 8.83 35.32 37.57
SD 5.74 8.22 9.23 2.74 8.51 9.11
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thus maintaining a high SOC content on top layers. Clay soil texture also plays a
role in protecting organic carbon from decomposition through physical protection.
The 71 samples from depth of 60–200 cm showed an amount of 0.03 to 3.78 % of
SOC, indicating a decrease of SOC with depth.

First and second spectra derivatives highlighted features related to soil samples
mineralogical composition (Fig. 6.3b, c). According to Torrent and Barrón (2002),
soil reflectance of weathered Oxisols shows features related to the presence of iron
oxides goethite and hematite around 480 and 530 nm, respectively. Those features
are a product of various electronic or vibrational transitions in the atoms and
molecules of minerals. In the case of Oxisols, this is of decisive influence for
morphological description and soil color determination. Summers et al. (2011)
found some contributions from the visible (400–700 nm) and near-infrared region
(700–1300 nm) in the clay absorption feature at 2200 nm and the features at 1400
and 1900 nm, indicating there may be some covariation between the clay content
and the color of the soil. The second derivative spectra showed similar behavior in
all depth except for the presence of different amounts of SOC. Samples with higher
amount of SOC showed smaller amplitude. Another effect of increasing amounts of
SOC is the obliteration of a concavity feature around 880 nm which is related to the
presence of iron oxides (Fig. 6.3a). Demattê et al. (2004) reported that the depth of
this concavity is related to the degree of the crystallization of iron oxides, and the
presence of SOC will diminish this spectral feature.

Second derivative (Fig. 6.3c) shows the absence of goethite from the concavity
around 450–480 nm. On the other hand, a strong peak in the second derivative
values near 540–560 nm is related to the samples that reach content of hematite
(Fig. 6.3c). These features can be used for soil texture and spectral signature
modeling with PLSR.

Table 6.2 Values of p for the
tests of homogeneity of
variance and comparison of
the mean

p at 0.05 Sand Silt Clay
Whole dataset

Homogeneity of variance 0.90 0.31 0.44
Comparison of the mean 0.98 0.75 0.66

Depth 0–15 cm
Homogeneity of variance 0.03a 0.30 0.63
Comparison of the mean 0.07 0.92 0.21

Depth 15–60 cm
Homogeneity of variance 0.07 0.74 0.68
Comparison of the mean 0.64 0.86 0.62

Depth 60–200 cm
Homogeneity of variance 0.04a 0.89 0.87
Comparison of the mean 0.25 0.72 0.42
aIndicates no significance
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Fig. 6.3 Reflectance data and 1st and 2nd derivatives. Data collected in 6 depths at soil profile
number 1
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6.3.3 Development of Calibration Model

Overall, best PLSR predictive values were achieved for clay (mean R2 = 0.58),
followed by silt (mean R2 = 0.56), with worst predictive values achieved for sand
(mean R2 = 0.24) (Table 6.3).

Considering PLSR results separately in each of the four datasets, the best pre-
dictive values can be achieved by modeling soil clay content using data from all
depths. When this whole dataset was used, the R2 = 0.69, RMSEP(%) = 5.39 and
ME(%) = −0.01. Small bias was found when the validation set is carried out on
samples very similar to the ones which have used for calibration procedures. Worst
results for clay PLSR prediction is obtained for soil samples from 60 to 200 cm,
with R2 = 0.46, RMSEP(%) = 6.56 and a clay underestimation of ME(%) = −0.86.
Those results are somehow the opposite of what was expected. Since at this depth,
SOC is lower, it was expected that a less interference of organic molecule on the
spectra would allow a higher clay content prediction. However, one has to bear in
mind that the 60–200 cm dataset had only 51 samples for calibration and 20
samples for validation of the models, with similar clay content, thus causing the
model to underperform due to the lack of the representativeness of the information.
Clay variability remained high in this dataset shown by the range values of 46.37
and 37.57 % for 51C and 20 V, respectively (Table 6.1).

For sand prediction, poor performance with R2 = 0.09, RMSEP(%) = 4.14, and
ME(%) = 0.26 was found for soil samples form 60 to 200 cm depth. This might also
be due to the smaller amount of information in this dataset. Nevertheless, when
modelled using the whole dataset (237 samples), PLSR for sand prediction also
achieved poor results with R2 = 0.30, RMSEP(%) = 5.47 and ME(%) = 0.59. Future
work should rely on datasets with a broader range of sand content. This could be an
evidence that sand prediction in Oxisols, using a limited spectral region, could be a
challenge. Model adjustment might demand higher sample datasets to cope with
soil variability, in addition, the high soil clay content might coat the sand particles,
thus making sand prediction more difficult.

In PLSR modeling, a specific region of the spectrum may be important for
modeling of soil attributes. Such attributes are identified by large PLS regression

Table 6.3 Statistics of PLSR modeling

Soil
attribute

R2 RMSEP
(%)

ME Factor
(no.)

R2 RMSEP
(%)

ME Factor
(no.)

Whole dataset Depth 00–15 cm
Sand 0.30 5.47 0.59 7 0.10 5.30 −0.48 6
Silt 0.59 5.18 −0.58 6 0.72 4.27 −0.73 7
Clay 0.69 5.39 −0.01 5 0.60 5.07 0.09 2

Depth 15–60 cm Depth 60–200 cm
Sand 0.45 6.14 0.19 7 0.09 4.14 0.26 7
Silt 0.53 4.37 1.09 6 0.38 6.52 0.03 3
Clay 0.58 5.84 −1.23 7 0.46 6.56 −0.86 3
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Fig. 6.4 Regression coefficients of the partial least-squares regression model with whole dataset
for soil attributes: a sand, b silt, and c clay
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coefficients. The regression coefficients for the three soil attributes are shown in
Fig. 6.4. The magnitude of those regression coefficients, negative or positive,
represents the importance of the reflectance band in terms of the explanation of
variance in soil analysis data. Positive peaks are due to the component of interest,
while negative peaks correspond to interfering components (Haaland and Thomas
1988). Spectra with a coefficient near zero do not have predictive capability.

For sand prediction, regression coefficients with positive values can be found at
432, 512, 582, and 882 nm. A significant negative peak can be seen at 457 nm.
Looking into the whole spectrum of clay regression coefficients (Fig. 6.4c), its peaks
are much better defined than the ones for sand and silt (Fig. 6.4a, b). This could be due
to the strong presence of iron oxide characteristics (i.e., soil color within 400–700 nm)
in the analyzed Oxisols samples. For clay prediction, positive regression coefficients
were 462, 547, 627, and 752 nm.On the other hand, negative coefficients were located
at 492, 512, 587, 662 and 867 nm. This last negative peak around 867 nm could be
associated with the presence of higher amounts of SOC in the soil surface. The
presence of organic material diminishes the perception of the iron oxide concavity
around 880 nm, which in turn makes it more difficult to the PLSR models to predict
clay content. All the negative and positive peaks of regression coefficients are spectral
regions which deserve more attention toward selecting, and possible model recal-
culation, focusing in more significant variables for PLSR models.

6.4 Conclusions

Soil attribute prediction with PLSR using a limited spectral region (325–1075 nm)
performed poorly for sand. The results were more promising when considering the
capabilities to predict silt and clay.

The application of visible and part of the near-infrared region (400–980 nm) for
clay prediction in Oxisols achieved relative good results when all dataset (n = 237)
was used for modeling with no stratification by depth with R2 = 0.69, RMSEP
(%) = 5.39, and ME = −0.01 %. Regression coefficients showed good relation to the
spectral behavior of weathered soils in visible and near-infrared region. They
should be used in future studies as a filtering approach toward selecting more
significant variables (i.e., spectral regions) for modeling.
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Chapter 7
Estimating Soil Properties
with a Mobile Phone

Matt Aitkenhead, David Donnelly, Malcolm Coull
and Richard Gwatkin

Abstract Several soil properties can be used to estimate soil health and suitability
for specific land use. These properties include, but are not restricted to, organic
matter content, pH, cation exchange capacity, C/N ratio, texture and structure.
These properties provide broad information about the capacity of the soil to provide
nutrients, water and physical support to crops. They also provide information about
soil erosion and compaction risk. The measurement of these properties is tradi-
tionally carried out through laboratory analysis which delays decision-making.
Some of these properties can be estimated from an understanding of the
soil-forming characteristics and visual analysis of the soil profile. Here, a method is
presented that automates estimating soil fertility properties using image analysis of
field-based topsoil images, including image morphometrics. A database of Scottish
soil samples has been used to generate a model, which links spatial data sets and
image analysis to produce estimates of soil fertility properties. A mobile phone app
has been produced that provides an estimate of soil organic matter rapidly and for
free.

Keywords Soil fertility � Indicators � Mobile phone � Apps � Image analysis

7.1 Introduction

The use of spectral information for estimating soil characteristics is a rapidly
growing research area, with much of the current effort directed at infrared or
visible–near-infrared wavelengths. The use of visible wavelength light alone has
been demonstrated to be useful (Liles et al. 2013; Ibanez-Asensio et al. 2013). Soil
colour attributes have been measured using a number of different ways, ranging
from naked eye comparison with Munsell colour charts (Aitkenhead et al. 2013) to
electronic measurement (e.g. Gunal et al. 2008). Proximal sensing of soil with
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digital cameras has also been used. Mausel et al. (1997) explored the potential of
digital photography for identifying spectrally distinct soil types. Levin et al. (2005)
used colour indices from digital photography to estimate iron oxide content and
textural parameters in sandy soils, whereas Gregory et al. (2006) estimated soil
organic matter content using a digital camera with visible and near-infrared
wavelength capacity.

There are some examples of research directed towards the engineering design of
soil proximal sensing systems, for example Rossel et al. (2008), but most are
targeted at soil or remote sensing scientists. Some work has considered the design
and practicalities of soil imaging systems from an agricultural perspective (e.g.
Chung and Joh 2012). There is also some research that crosses the boundaries
between standard digital cameras with visible wavelength range and the use of
sophisticated and expensive hyperspectral imaging systems (e.g. Zhao et al. 2012).
The field protocols, parameters estimated, data interpretation and presentation of
results tend to overlap between these two techniques, and it is mainly the cost of the
equipment and sometimes the quality of the results that separates them.

The use of mobile phone cameras with their additional functionality can add
processing capacity and other data interpretation and transmission abilities.
Moonrungsee et al. (2015), for example, demonstrated colorimetric analysis of soil
water using indicators for estimating available phosphorus, while El Kaoutit et al.
(2013) achieved something similar for mercury concentrations. Gomez-Robledo
et al. (2013) investigated the use of smartphone camera as a soil colour sensor,
using it to determine Munsell colour of soil samples. Field-based investigation of
soil biology has also been experimented with, for example Bogoch et al. (2013)
who used a smartphone coupled with a basic microscope to detect helminth species
from soil samples. Aitkenhead (2013) demonstrated a smartphone app linking
camera, image analysis and server-side processing for the estimation of soil carbon.

In this paper, an overview of the use of image colour and texture for charac-
terising soil, along with a discussion of image colour calibration and mobile phone
sensors, is given. This is followed by the use of spatial covariates and their inte-
gration into modelling frameworks for estimating soil characteristics. The devel-
opment of mobile phone apps that incorporate these modelling frameworks is
described, with examples given of systems that have been developed and for
ongoing work. Lastly, potential applications are explored.

7.2 Colour and Soil Character

Traditionally, soil scientists have determined the colour of a sample in the field by
matching a soil aggregate against a series of colour patches first produced by
Albert H. Munsell in the early twentieth century (www.munsell.com). The effects of
lighting are assumed to be the same on a Munsell colour card patch and a soil of the
same colour, eliminating the effects of lighting. There is some subjectivity in the
Munsell soil colour assessment.
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Complexity of soil colour–character relationships means that it is necessary to
have information regarding the soil-forming factors (e.g. topography, climate,
vegetation, parent material and land use). Modelling using legacy data is an
important component of this work. If no legacy data are available that include
colour and the parameter(s) of interest, then additional field sampling effort is
needed. Soil colour and other parameters are included in several national and
international data sets including the ISRIC–World Soil Information data set.

Soil parameters that have been estimated using colour include organic matter
content (Aitkenhead et al. 2013; Liles et al. 2013), texture (Ibanez-Asensio et al.
2013), water table depth (Humphrey et al. 2011), iron oxide (Gunal et al. 2008) and
others. Recent and ongoing work at the James Hutton Institute in the UK has
demonstrated the ability to estimate a number of soil physical and chemical
properties using soil colour and spatial covariates.

7.3 Mobile Phone Sensors

A number of sensors exist as standard in modern mobile phones that can be used to
provide sensor data for soil monitoring. Below, we describe the sensors a
smartphone/tablet device is equipped with, how they are relevant and how they can
be used to further this goal. The long-term goal of much of the work described in
this paper is to optimise the use of these sensors and the data they produce for
real-time soil and general environmental characterisation—turning the smartphone
into a Star Trek-style ‘tricorder’.

7.3.1 GPS

GPS (Global Positioning System) is a navigation system using satellite signals, with
the first fully working system being developed by the US military. Most models of
smartphone and tablet have GPS circuitry installed, giving them the same func-
tionality as a standard GPS device. The basic GPS location information is given in
latitude/longitude rather than in individual national grid reference systems and so
may need to be converted to match spatial data sets.

GPS positioning allows the user’s location to be captured at the time of making
other sensor readings. This positional information is then inserted into the header of
any photographs that are uploaded and can be extracted and used to determine the
parameter values of spatial covariates at the user’s location. This eliminates the
need for the user to record anything other than the image/sensor reading that they
are interested in and allows automation of site characterisation.

The accuracy of smartphone GPS locations is less than standard GPS devices,
largely due to the limited size of the built-in antenna. With a mid-range smartphone,
the location accuracy is usually within 35–40 m more than 95 % of the locations.

7 Estimating Soil Properties with a Mobile Phone 91



This level of accuracy is smaller than the spatial resolution of most of the spatial
data sets that are being used in parallel with the positional information, and so it is
considered acceptable for this kind of work.

7.3.2 Camera

Improvements to digital cameras in smartphones have resulted in high-quality and
consistent imaging. The number of pixels in a smartphone camera is now more than
needed to simply determine the soil colour although for texture there is never a
lower limit of requirement (some soil particles will always be smaller than the
imaging capabilities of a commercial digital camera). The spectral range of cameras
is an issue as they only provide colour information across broad spectral ranges.
This limits their application for spectroscopic analysis. Spectral sensitivity or the
response curve of the camera’s light-detecting sensors to different wavelengths is
another issue, as these response curves vary between devices and so do not produce
a uniform colour response.

Without specialist equipment, the shortest minimum focus distance varies from
approximately 5 to 20 cm across smartphone/tablet cameras. This means that the
minimum image pixel resolution that can be achieved is around 10 microns with up
to 100 microns for older models. Smartphone cameras are unable to produce images
that capture the full range of silt particle size and cannot acquire images of clay
particles.

Automatic image adjustment can present a problem, as the camera’s internal
software will attempt to adjust contrast and focus in ways that alter the colour
response. There are also implications of the digital sensor array design due to the
distribution of spectral filters on the pixel array. This can mean that the true RGB
(red, green, blue) characteristics of individual pixels are inaccurate as they contain
information from surrounding pixels.

So while cameras on smartphones and tablets can provide imagery of soil, they
are unable to satisfy all the requirements in terms of spectral resolution and spatial
scale, and are variable in terms of the images that will be acquired. It is necessary
therefore to consider methods that can deal with this relatively coarse and incon-
sistent imagery.

7.4 Calibrating Image Colour

7.4.1 Why Calibrate Image Colour?

The need for a colour ‘absolute’ standard in imaging soil is necessary if colour
information is to be used as a predictor of soil properties. Without this standardi-
sation, it is impossible to tell whether colour variation is due to differences in the
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appearance of the soil, or in the device used to image it. Spectral response is
measured in terms of the quantum efficiency (proportion of incoming light that is
detected) at different wavelengths, with response curves due to the filter/sensor
architecture and design usually having three distinct curves in the red, green and
blue sections of the visible spectrum. The shape of these curves varies between
devices and can alter over time in the same device, so calibration is required.

Loss of data from using multispectral instead of hyperspectral imaging systems
is considered likely to reduce the accuracy of soil property estimation. Many of the
comparisons that have been carried out (few of which have involved soil) have used
hyperspectral imaging systems with a different, usually greater, spectral range than
the multispectral system. Examples include Garrido-Novell et al. (2012), who
looked at automated grading of apples, and Taghizadeh et al. (2011), who examined
the quality evaluation of mushrooms.

A number of colour spaces exist (Munsell, RGB, LAB, etc.), often implying a
need to convert from the initial colour description of the soil to the colour space of
the model/calibration being used. Translation tables between the different colour
spaces are readily available online, but this translation can sometimes result in a
degradation of the colour information as colour spaces vary in the level of detail
with which they cover different parts of the represented colour space.

7.4.2 Lighting Conditions

The effects of lighting conditions on the digital image are various, difficult to
predict in advance and often seen in combination with one another. Lighting
intensity is obvious, with cameras operating within a fairly broad range of light
intensity. If light levels drop below a certain level, the camera will not produce
images with pixel intensities across the full range available, resulting in a loss of
data. For light levels that are too high, overexposure and glare from reflective
surfaces will produce a restricted intensity range at the upper levels. In pho-
tographing soil, we have found that during daylight hours (preferably with the Sun
well above the horizon), it is possible to produce adequate photographs.

The spectral distribution of daylight varies not only in maximum intensity but
also in distribution. The angle of the Sun above the horizon plays a major factor
with daylight being shifted towards the redder end of the spectrum when the Sun is
low. Overcast skies also produce a slightly different wavelength distribution, with
this variation depending on cloud thickness and other conditions. Below, we have
four images of soils photographed with the same device at different dates and times
within north-east Scotland. A colour correction card with the James Hutton Institute
logo is also shown in each photograph, and it is clear that there is substantial colour
variation between the images due to the lighting conditions (Fig. 7.1).
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7.4.3 Photography Requirements

A number of effects to be avoided can be easily produced in photography of soil.
These include shadows caused by trees or the observer themselves. Image cali-
bration becomes problematic if there are inconsistent lighting levels across the

Fig. 7.1 Examples of topsoil images taken of soils under different lighting conditions
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scene being photographed. Blurring caused by the movement of the camera while
taking the photograph will be a problem if image analysis is to be carried out but is
not an issue if only colour is being measured. Image focus will have a strong
influence on image morphology, but not on the soil colour.

Contrast in the image can be a problem for very low or high lighting levels, or if
there are highly reflective objects in the image that cause glare. If these problems
are avoided, then the automatic colour calibration will resolve variable contrast
levels. This means that automatic contrast adjustments made by the camera are
more of a help than a hindrance, as they tend to produce image intensity distri-
butions that are suitable for working with.

Some camera-induced image artefacts include faulty or damaged devices where
false image signals are caused by misalignment or poor operation of the optical
components. If an image contains unevenly distributed colours or rainbow-like
image artefacts, it is best to use another camera as these are difficult to remove from
the image.

File format effects can also be seen with devices that use Joint Photographic
Experts Group (JPEG) image compression although the use of the uncompressed
(RAW) file format is becoming more common. The JPEG compression format
reduces file size and thus makes it easier to upload and use, but can result in a loss
of image data and reduction in image quality. This is a problem with measurements
of image morphology, as the compression algorithm introduces image artefacts at
the pixel scale that cannot be distinguished from real image features.

7.4.4 Calibration Methodology

Colour calibration is required to produce a standard ‘true’ colour image that is
independent of lighting conditions, camera spectral response and other. The way to
do this is to determine the relationship of image colour to a standard colour sample
within the image and to use this relationship to adjust the colour distribution of the
rest of the image. We have developed an approach that uses a colour calibration
card containing a standard distribution of RGB pixel values and which can also be
used to determine the pixel resolution of the image.

The James Hutton Institute’s app development team has used two different
colour calibration cards for different apps. The first used the Institute logo as it
provided values across the RGB colour space while at the same time served as
promotional material for the Institute (see below). The calibration results achieved
with this card were good, but it did not provide a broad range of colour intensity
values. The second card contains several greyscale bands, each of which has known
RGB ratios while providing a range of reflectance values. This provides a spectral
response curve that can be matched to the values received in an image (Fig. 7.2).

Colour card recognition in the image is necessary and requires identification of
the edges of the card in order to isolate the pixels to be used for colour correction.
The approach that we have used is to identify lines and rows within the image that
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contains more than a certain number of ‘white’ pixels—that is, pixels for which the
red, green and blue values were all above 95 % of the maximum image intensity.
Once these lines and rows had been identified, it was relatively trivial to identify the

Card misaligned Card not fully visible

Line of shadow across image Correctly positioned

Fig. 7.2 Examples of images taken incorrectly and correctly with a colour correction card
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‘bounding box’ of the colour correction card as the colour correction card’s outer
surround is a large white area. Some trial and error was required to ensure that the
threshold value of ‘white’ pixels was set at a value that allowed the correction card
to be identified consistently. Calibration pixel extraction is carried out by selecting
specific areas within this bounding box and identifying the mean RGB values from
these areas. Development of the RGB calibration curve is done by calculating the
ratios between known colour values for the calibration pixels and the values
acquired from the image. This is done for a large number of pixels (several hundred
distributed across the colour space—we used between 200 and 1000 depending on
the colour correction card size in the image) to allow the correction across the full
range of RGB values. Accuracy of the calibration process for RGB values was
determined across a number of different lighting conditions, by comparing cali-
bration pixels with target values. It is estimated that for imagery acquired under
moderate and good lighting conditions, the RGB pixel value error is consistently
reduced to less than 10 % of precalibration values. Under lighting conditions that
are very dark or very light, the correction is less even but was found to always result
in some improvement in the RGB value distribution.

7.5 Image Texture

Several image texture analysis approaches exist that can provide information about
the relationships between the spatial distribution of image pixel intensity values and
soil characteristics. These include wavelets (detection of specific frequencies in
intensity variation within the image), GLCM (grey-level co-occurrence matrix)
(spatial relationships of similar greyscale values), edge detection and the calculation
of statistical parameters describing intensity values (e.g. range, mean, maximum,
standard deviation, entropy) within a moving window of selected size within the
image.

Removing non-soil pixels is the first step in the image analysis, followed by the
reduction of the image colour space to greyscale. The implementation of image
texture mapping with depth down the soil profile is carried out by calculating the
GLCM texture parameters across the whole image, at a number of different scales.
The image is sequentially reduced in pixel resolution by 2 (five times) and subjected
to texture analysis, resulting in six sets of image texture data. This was done in
order to capture variation in image texture with scale, which may be important for
characterising the soil texture.

Measuring image scale using the colour correction card allows the image texture
parameters to be given values in relation to real scales, which is important when
comparing soils with different structural properties. The procedure for this is to
measure image texture at the pixel/multipixel resolution, determine the resolution of
a single pixel in the image and then fit the curve of measured texture values to a
logarithmic range of preselected spatial scales. The scale values used in the work
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demonstrated here were 40, 80, 160, 320, 640, 1280 and 2560 µm, and the curve
fitting was carried out by fitting a third-order polynomial curve to the values
(Fig. 7.3).

7.6 Integration of Site Descriptors

7.6.1 SCORPAN

The concept of SCORPAN, which is an acronym of soil, climate, organisms,
topography, parent material, age and N (for geographical location), is an adaptation
of the concept described by Hans Jenny (Jenny 1994).

Nonlinear relationships between covariates and soil character make the imple-
mentation of SCORPAN within a modelling framework difficult. In practice, it is
used as a conceptual model rather than as an approach for predicting soil properties
(McBratney et al. 2003). Effects of non-SCORPAN drivers can confuse the issue,
with, for example, burial of a soil profile by sediments which cannot easily be
predicted.

7.6.2 Spatial Covariates

Examples of covariates that can be derived from spatial data sets and used in
SCORPAN-derived predictive models of soil character include elevation and slope
(topography), parent material from geological maps, vegetation classes from land
cover maps, monthly or annual mean temperature and rainfall (climate). Land
management and historical land cover data are also useful. Normalisation of

Fig. 7.3 Examples of image texture-scale curves adjusted to constant scale values. Raw textural
measurement of a parameter (contrast) is on the left, and the values derived from fitted curves for
different scales are on the right
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covariate values is often necessary, particularly for parameters that are biased
within their distribution (e.g. elevation, slope) or that have discontinuities in value
(e.g. aspect, in which the difference between 359° and 0° should have the same
impact as between 0° and 1°).

Location is useful because it allows other information about the soil’s envi-
ronment to be included in a calibration model. The link with mobile device
geolocation is useful, because it provides a system that incorporates image capture,
geolocation and either onboard processing or transmission to a processing server.
Accuracy requirements of the geolocation are difficult to define as soil varies, but
normal operating accuracies of a few tens of metres or less are considered sufficient
—the spatial data sets used are not usually of finer resolution than this in any case.
Speed of response is also a consideration for real-time soil monitoring in the field.
The SOCIT (Soil Organic Carbon Information Technology) app provides an esti-
mate of soil organic matter content within 10–30 s, most of which is taken up by
transmitting the image (in compressed form) to the processing server.

7.6.3 Spatial Data sets

Global data sets that allow covariates to be derived include topography (e.g. SRTM
(Shuttle Radar Topography Mission), Aster GDEM (global digital elevation map),
WorldDEM), climate (e.g. WorldClim, NOAA (National Oceanic and Atmospheric
Administration) data), soil (Food and Agriculture Organisation Harmonized World
Soil Database (FAO HWSD)—this also provides some information on parent
material) and land cover (e.g. Joint Research Centre (JRC) Global Land Cover).
Many other data sets exist at national and even local level, usually at smaller spatial
resolution/larger scale than these global ones. A number of high-quality spatial data
sets of relevant parameters exist for Scotland and were used in the work described
here (see Sect. 7.9.1). Preparation requirements for the data sets include the
reclassification of categorical maps, normalisation for bias in the range of values,
extraction of additional parameters (e.g. slope and aspect from elevation maps) and
spatial coregistration of the multiple data sets used.

The spatial data sets should not be on the device, because trying to put all of the
necessary data onto a smartphone or tablet would require a data storage capacity
beyond even modern devices. It would also mean that the developer was sharing
data acquired from other sources, generally under restricted licence agreements.
This would put these data sets onto devices from which they could be extracted,
violating intellectual property. A solution is to use server-side processing, with all
data and models stored at a single location and with the minimum of functionality
on the device itself.

The concept of server-side processing is one that reduces the device-based
processing requirements and gives the developer more options, but does introduce
the need for developing a framework for passing data between the field device and
the server. It also adds complexity to the processing chain while at the same time
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allowing the information derived to be recorded and stored for later use by the
developer. One requirement when working with spatial covariates is that the
specific site characteristics must be extracted and fed into any integrative model
rapidly. This means that sequential reading of large spatial files to find the correct
location is inappropriate, and the spatial data must be organised or split to allow
more rapid access.

Once the spatial covariates have been parameterised, they can be linked to the
image-derived data to generate input values for models developed to predict soil
characteristics. Sample number versus parameter count must be appropriate, with
large numbers of model parameters and low sample count resulting in what is
known as the ‘curse of dimensionality’. The distribution curves of all parameter
values must be as close to normal as possible, either through sample selection or
through parameter normalisation. It is useful to attempt to reduce the number of
model parameters by checking for high correlation values between input variables.
For real-world soil data sets, there are often missing values and outliers due to
analytical error that must be estimated using some imputation approach or removed
from the data set, respectively.

7.7 Modelling Frameworks

Strong linear correlations between SCORPAN/image data input parameters and soil
characteristics of interest are not common, so sophisticated methods of mapping
between inputs and outputs are required. These can include multivariate correlation,
decision trees, neural networks, Bayesian statistics, partial least squares or a number
of others. There is no single method for developing models with complicated, noisy
data sets, and so the approach used is generally decided based on preference,
software availability and experience with specific approaches or familiarity with
similar work. It is not that the methods themselves are not successful—merely that
there is rarely a clear winner in terms of capability. In the case of the James Hutton
Institute’s app development team, preference is to use neural networks as they are
easily implemented, relatively intuitive and sufficiently flexible to be used for
almost all soil-related data sets. We have also experimented with partial least
squares, multivariate regression and decision trees. These and other approaches may
provide an improvement of a few percentage points, but it is difficult to identify
when one approach will be better than another.

It is possible to produce good predictive results that turn out to be meaningless
due to inadequate model training. One of the most fundamental considerations is
the splitting of the available data into training and testing data sets. A simple split
into one subset for training and one for testing is valid if done robustly (i.e. the data
points in each subset are representative of the full data set while at the same time
avoiding the placing of replicates into different subsets). One of the commonly used
approaches is k-means cross-validation, in which the data set is split at random into
k approximately equal subsets, and k models are developed, each of which is tested
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on a separate subset. This has the advantage of using all of the data efficiently while
at the same time producing an ensemble of models that can be used together at a
later point. A further consideration for additional robustness is the testing of the
model using a verification subset that is independently developed and unrelated to
the training data set. We have used this approach to validate the model developed
for the SOCIT app described later.

7.8 Mobile Phone Apps

7.8.1 Server Processing

The principal coding languages and environments for mobile devices are Java and
Android Studio (for Android devices) and Objective-C and Xcode (for Apple
devices). Additional coding languages may be used for server-side support of
applications; there is a large number of these, and each coder will have their own
preference, but they include PHP, which is useful for providing a connection
between the app and a server-side database and languages such as Visual Basic or
Visual C++, which can be used for running software to generate outputs from
server-side data sets.

There are two security considerations: protection of the user and their device and
protection of the server. Apps should be designed to use the minimum set of
functions required to operate, in order to risk exposing the mobile device to elec-
tronic attack. For example, WebViews in Android apps support JavaScript and this
can be exploited in malicious attacks. On the server side, the type of security
implemented will reflect the application, e.g. databases must be protected against
Structured Query Language (SQL) injection attacks, white lists can be used to
permit allowed options, and secure passwords can be used and careful database
administration, including mirroring and views can all be effective.

Online processing is the obvious choice for rapid field assessment of soils using
the approach detailed here, but is not always possible, usually due to poor mobile
phone reception. It is possible to send the imagery at a later date, as the location of
the user is irrelevant—it is the location stored in the image that is used.

7.8.2 User and Design Requirements

User requirements include stability of the app, response speed and accuracy of the
soil parameter estimates given. The issue of ergonomics and usability of apps is
complex as the diversity of devices increases. An app must be designed to work on
both low- and high-resolution devices with screen sizes from 9 to 25 cm and work
with landscape and portrait screen orientations. It requires careful design to ensure
legibility and that software buttons are large enough to touch. Also, while tools
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exist to help designers cope with multiple devices, there remains considerable effort
required in producing graphics (logos, images and textures) for each of the required
resolutions.

Design team expertise requirements for developing this kind of system cover
four main areas: (1) soil science, particularly in the subfield of soil modelling;
(2) data management; (3) programming (in any one of a number of appropriate
languages—we have found Python works well, but there are other options); and
(4) app interface development.

The intellectual property of all components in an app must be duly acknowl-
edged and also communicated to the user through the End User License Agreement
(EULA). The EULA is intended to make explicit the rights which the owner of the
app confers on the user and what the user may and may not do with the app. It is
written to satisfy the requirements of any relevant legislation and any health and
safety implications.

Agreement to the EULA can be enforced from within the app. On current James
Hutton Institute apps, the user is presented with the EULA when the app is first run.
The user must click an acceptance, or the app will terminate. After acceptance, the
EULA is only displayed if the user clicks on a button to show it.

Keeping the app simple in design means that less effort is required in the
development and also avoids confusing the user with overambitious design.
A simple design is usually most easily reused for later work if other apps are to be
developed. Another important rule is to keep it free, as attempting to make profit
from an app that uses underlying spatial data sets can cause legal issues.

A number of criteria exist for measuring the success of any app, and information
on these can usually be obtained from analytics available through the app provider.
These include the number of downloads of the app itself, the number of times it has
been used and feedback that has been sent. Additionally, the availability of
user-provided data for later use can also be considered a criterion of success.

Licences associated with the data used in any model/app framework must be
considered, to ensure that all requirements are being met. Some form of licence
must be considered for the model and app itself, to protect the IP of the developers.
Server-side protection of the data is a sensitive issue, and the app design should
make it impossible for malicious users to use the app to access the data directly.
This is also true of the user-derived data, which should be made invisible unless a
deliberate decision is made to share this information.

7.9 Examples

7.9.1 SOCIT

The SOCIT app originated through the existing work for QMS (Quality Meat
Scotland), on estimating soil organic matter in grassland soils based on spatial
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covariates. A software package for desktop PCs was anticipated, before realisation
that a smartphone app would be a better option and would provide a link with
institutional priorities in relation to digital soil mapping and the use of legacy data
for improving our understanding of the soils of Scotland.

The Scottish Soils Database provided data on soil organic matter content and
colour from hundreds of sites sampled across Scotland. The majority of data used in
the database came from NSIS1, the first National Soil Inventory of Scotland.
Parameters used from the database included LOI (loss on ignition), spatial location
of the sample site and Munsell colour estimated under field conditions.

The decision to use organic matter content (in reality LOI) rather than soil
organic carbon content was made for two reasons: primarily, land managers were
found to be more familiar with the concept of ‘organic matter content’ than with
‘carbon content’ and stated a preference for using this parameter; secondly, Scottish
soils almost all contain very little carbonate (based on the evaluation of the Scottish
Soils Database), and so the LOI values could be reasonably assumed to equate to
organic matter content. Converting Munsell colour to RGB was carried out using an
online conversion table (Boronkay 2013).

Topographical data included elevation, slope, aspect and curvature derived from
the 50-m resolution DEM from the UK Ordnance Survey (OS). Land cover data
included Land Cover of Scotland 1988 (LCS88) and Land Cover Map 2007
(LCM2007) data sets, reclassified to produce a simple categorisation of ten land
cover classes. Soil map information was taken from the 1:250,000 Scottish Soil
Map generated by the Macaulay Land Use Research Institute (MLURI). Parent
material data were derived from the soil maps. Climate data used included mean
monthly temperature and rainfall, from gridded UK Meteorological Office obser-
vations between 1971 and 2000.

The app requires rapid access to specific information about sites of interest. To
facilitate this, the spatial data were used to produce a set of data strips as separate
files, each of which contained the relevant parameter values for a strip of data
100 m wide across the country. These smaller files could then be read quickly to
access data relevant for specific locations.

A neural network model was used to estimate soil organic matter content from
the various input parameters. This model was kept simple, using the backpropa-
gation error minimisation algorithm and using the k-means cross-validation
approach to create a robust consensus model. Validation accuracy measurements
for a model trained with all LOI values less than 20 % for agricultural, grassland
and forestry soils gave an R2 value of 0.79, a root mean square error (RMSE) of
1.58 % and a mean absolute error of 1.12 %.

The apps produced by the James Hutton Institute have been designed using the
client–server paradigm where the client device is the mobile device and the server is
at the James Hutton Institute. The app is designed to enable and guide the user to
structure an appropriate request for information and to send that to the server. The
server processes the query, runs the required software, generates an output and
returns it to the mobile device. The device receives the response for the query and
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interprets and processes it into a form suitable for display on the mobile device
(Fig. 7.4).

The main processing thread of the app that responds to inputs from the user must
continue while a second, and the so-called asynchronous thread must be created to
communicate with the server. There are time delays between the client sending the
request for information and receiving the result from the server, and if this process
were to remain on the main processing thread, the operating system or the user
could interpret the wait as a software error. In the time between sending a request
and receiving a response the device must still be usable (e.g. the user might wish to
take a phone call), the user must understand that the process is ongoing and the
device must be in a state whereby it can receive the response from the server and
process it appropriately.

Implementation of the neural network model, coordinate transformation and
image analysis scripts was made using Python, as was that of the controlling
‘master code’ that coordinated the activity of the various subroutines. The app was
tested in the field but was hampered occasionally by the lack of signal. It was found
that the model was much more accurate (in terms of RMSE and mean absolute
error) when developed for soils under agriculture, seminatural grassland and for-
estry only. Inclusion of organic soils and heathland areas resulted in a model with
poorer prediction ability.

Having selected a location, a small inspection hole is dug to a depth sufficient to
expose the subsoil, a supplied colour correction card is placed in the hole, and a
photograph is taken. The georeferenced photograph is sent to a server for pro-
cessing, where code uses the colour correction card to determine the colour of the
sample in red/green/blue colour space. The neural network model then uses this
colour value, along with attributes determined from the geographical location, to
estimate organic matter content which is returned to the user.

Getting the colour correction card is relatively easy—you can request it directly
using the app, by providing an email address and delivery address. This is useful
information for the developers, as it gives an indication of the geographical dis-
tribution of people interested in the app. When the address is not in Scotland, we
email back to inform the contact that the app does not work where they are.

Fig. 7.4 Framework for client–server information flow used in James Hutton Institute apps
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Interpreting the results is straightforward, as the app provides two numbers—es-
timates of organic matter and organic carbon in the topsoil. The ratio between these
two values is variable but normally lies within the range 1.5–2.0 in Scotland (based
on values in the Scottish Soils Database).

7.9.2 Visual Structural Assessment (VSA)

As soil structure affects the ability of roots to penetrate soil and access water and
nutrients, it is an important property of soils that is of direct relevance to many land
users. A simple, rapid, field-based assessment has been developed that allows users
to obtain a measure of structure (Guimaraes et al. 2011).

As the basic principle of the method is that soil is naturally found in some sort of
aggregate (although these can be difficult to see where soil compaction has
occurred) and that larger soil aggregates can be broken into smaller ones, image
analysis techniques can be used to detect and classify aggregates; where the scale
can be determined with reference to some standard of known size (see the colour
correction card example above) this information can be used to estimate aggregate
structure (size and structural strength). Soil textural and structural parameters might
be predictable using an app similar to SOCIT system described above, although
with different image analysis.

Field imagery was acquired using a number of different smartphones and tablets,
including Apple and Android devices. An example of the images acquired is given
below (note the different colour correction card, which gives better correction
accuracy over the full pixel intensity range). Soil analysis was carried out using wet
chemistry for a number of exchangeable cations, LOI for organic matter content,
laser diffraction analysis for particle distribution and visual structural assessment in
the field for the VSA scoring. Spatial data sets used for the VSA model were the
same as those used for the development of the SOCIT app model (Fig. 7.5).

Colour calibration is similar to the SOCIT app, followed by GLCM image
texture analysis and the scaling of image texture as explained earlier. Site descriptor
values are derived using the data strips developed for SOCIT, to provide model
input/output data. The number of input parameters for the model is greater than that
for the soil organic matter model, as image texture analysis provides a larger
number of parameters than colour. Image colour has been shown to have some
impact on the estimation of soil structure, possibly through the detection of organic
matter levels. Of the GLCM parameters derived from the imagery, it appears that
contrast provides the strongest link and that it is the variance in contrast (measured
in horizontal pixel lines across the profile) at different scales that provide an
indication of structure.
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7.9.3 From Scotland to Europe

The geographical expansion of the SOCIT model concept seemed a natural pro-
gression, and one of the data sets to use for this is LUCAS (Tóth et al. 2013). The
one disadvantage of this data set is that it does not contain information on soil
colour in situ and only has spectroscopy data from dried and milled samples.
A proportion of the work carried out so far has involved developing an approach
using spectroscopy data to estimate an ‘absolute’ soil colour that can also be
derived in the field.

Soil carbon data were the main target of this work, although the other parameters
measured for LUCAS have also been investigated. Early results confirmed that
splitting the data into mineral/organic subsets decreased the R2 values of predictive
models but also greatly improved the RMSE and mean error values.

The creation of data ‘strips’ for EUSOCIT has resulted in the generation of 10
rows of data, each 5° of longitude wide and extending from 37°N to 71°N. The first
of these rows begins at 15°W, and the last ends at 35°E. Within each row, repre-
sented by a folder, there are 35 subfolders for each degree of latitude, and within
each subfolder, there are 1200 files, each of which represents 5 degrees of longitude

Fig. 7.5 Example of image
acquired of topsoil profile for
visual soil assessment model
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and 3 arcseconds in latitude. Each file (of which there are 444,000) contains in
sequence 80 environmental parameter values for each of the 6000 3-arcsecond
points along the 5° strip.

Now, we can access the environmental descriptors (topography, climate, soil,
land cover and geology) for any location with 3 arcseconds (approximately 90 m or
less) precision, with a search time of no more than 3 s. This information can then be
formatted and used as input data for the EUSOCIT model to provide an estimate of
soil organic matter.

The other information that is needed for EUSOCIT to work is soil colour.
As LUCAS does not contain soil field colour, we have to rely on the spectroscopy
data. For this, the visible range values have been extracted for each sample point
and converted to RGB values by averaging over the relevant wavelength ranges.

First indications of predictive accuracy for the EUSOCIT model trained with
different partitioning give an R2 value of 0.82 and a mean absolute error
(MAE) value of 2.3 % when using all data, and lower R2 values of 0.57–0.65 and
MAE values of 0.9–1.2 % (6.3 % for organic soils) when the data are split between
different land cover types. This indicates that using several models rather than one,
with each model linked to a specific land cover, will produce more robust prediction
accuracy. The use of spatial covariates definitely improves model performance over
the use of colour alone.

7.9.4 Potential Applications

Soil colour has been shown to be related to a number of soil properties (e.g.
Aitkenhead et al. 2013; Moritsuka et al. 2014). It should be possible to devise a
series of apps which would give the user a quick ‘health check’ of their soil against
a common set of health or quality indicators (e.g. organic matter content, pH,
texture, structure, available water capacity). Additionally, while some of the
underlying data sets used by the neural network model for national-scale predic-
tions are of a coarse resolution (i.e. >5 km pixel size), where higher-resolution data
sets exist for a specific geographical area, there is potential to use this approach in
applications such as precision agriculture.

Extension from mobile devices to custom low-cost sensors is a possible area of
development. The type of information would be the same, but it would allow more
rugged and field-capable sensors to be used.

Free and rapid estimation of soil characteristics in the field fits well with citizen
science activities, as it provides the user with information while at the same time
automatically recording estimates on the process server. The SOCIT app provides a
template for future work in this area. Caution about estimation versus direct mea-
surement is an issue that must be made clear to the potential user of these data.

Upload of data from citizen scientists/field surveyors for Web mapping services
is an option. With appropriate consideration of data protection issues, it is possible
to include Web mapping services on standard app implementations. ESRI has
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produced a development kit for both platforms and this makes the coding of apps
with WMS and other mapping functions more straightforward. An existing online
presence giving an indication of what this could look like is MySoil, produced by
the British Geological Survey (BGS) under the UK Soil Observatory umbrella
(http://www.ukso.org/home.html).

7.10 Discussion

Points of advice to focus on during the development of a model/app system of the
kind described here include the following:

• Keep the team small and focused on the bare bones of the functionality in the
first instance.

• Multidisciplinary work is important for this kind of project—scientists, software
developers and data managers are required.

• Keep your communications and legal expert colleagues close—they can save a
lot of effort and prevent you from reinventing what already exists.

• Conversely, keep your communications and legal teams at arms’ length where
required—their instinct may be to ‘overbrand’ the outputs and make things more
legally complex than they really need to be.

• The apps that are produced must be at all times simple, clear to understand and
free to use.

• The End User License Agreement is vitally important but must not intrude on
the user’s experience of the app.

7.11 Conclusions

What can be achieved using this suite of approaches? Direct estimation of soil
characteristics in the field is possible for some soil properties such as organic matter
content, texture, structure, pH, nitrogen, base saturation and some elements (Ca,
Mg, Fe, Al). Our work has shown that these soil properties can be estimated with
accuracy levels suitable for soil monitoring requirements (ongoing). Potassium and
phosphorus remain difficult (for us, using the methods described here) to estimate
from colour and site descriptors, as do most of the heavier elements that have been
measured within soil samples listed in the Scottish Soils Database. This work is
ongoing, and the links between model inputs and outputs in these cases need to be
further investigated.
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Part II
Soil Profile Imaging



Chapter 8
Advances Towards Quantitative
Assessments of Soil Profile Properties

Pierre Roudier, Andrew Manderson and Carolyn Hedley

Abstract In this paper, we present some advances in digital soil morphometrics
techniques in New Zealand. A soil monolith extractor has been developed in house
and facilitates the application of digital soil morphometrics techniques. Three dis-
tinct soil profiles have been sampled using the monolith extractor to test new ways
to collect information from the soil profile. Digital images have been collected on
these soil monoliths and calibrated using a set of reference colour chips. The
spectral resolution of these images has been enhanced by combining the spatial
resolution of the CCD images (1 mm) with the spectral resolution and range of an
ASD FieldSpec 3 visible–NIR spectrometer (1 nm between 350 and 2500 nm).
A processing chain combining image processing methods such as principal com-
ponent (PC) analysis and image segmentation has been developed to support the
delineation of soil horizons and collect information about the soil structure.

Keywords Digital soil morphometrics �Quantitative pedology � Regression-kriging �
Sensor fusion � Image segmentation � Hierarchical classification

8.1 Introduction

The soil profile has been the key support for soil observation since the inception of
pedology. A soil profile is an exposed vertical section of a soil from the ground
surface down to the underlying parent material. For practical reasons, soil profiles
are usually examined in situ by excavating a large hole to accommodate the
pedologist making close visual inspection of the profile surface. The process can be
physically demanding and time-consuming. Traditionally, pedologists would look
at the soil profile and use their senses—sight, touch, hear—to infer properties about
the soil that is being observed. Some of the information collected during the soil
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profile may be subjective, and the emergence of a wide range of infield technologies
is opening opportunities to update the way soil profiles are observed and described.
Digital soil morphometrics, the framework leveraging these developments, aims for
a more quantitative and objective way to collect data, derive information, and assess
properties from the soil profile (Hartemink and Minasny 2014).

A diverse range of dedicated proximal soil sensing techniques has been tested on
soil profiles in the field and allows to estimate many of its properties beyond the
visible range of the spectrum (Hartemink and Minasny 2014). Examples include
X-ray fluorescence (XRF, Weindorf et al. 2012) and visible/near-infrared (Vis-NIR)
spectroscopy (Ben-Dor et al. 2008; Roudier et al. 2015) and imaging (Steffens and
Buddenbaum 2013). RGB data have been captured using simpler, cheaper devices,
such as a mid-range digital camera (Aitkenhead et al. 2015), or a chromameter
(Liles et al. 2013). Other authors have used digital photography (O’Donnell et al.
2010). The high spatial resolution of the images opens opportunity beyond the
pixel-wise classification tools and analyses the shape of elements sensed from the
soil profile (Anderson and Bouma 1973).

The in situ examination of the soil profile limits the choice of instrumentation
because of the lack of control over ambient conditions (such as lightning and soil
moisture conditions) and the amount of time available for controlled measurements.
Soil monoliths are extracted whole profiles for transport and subsequent preparation,
examination, and measurement under controlled conditions. Traditional box-fitting
techniques (Berger and Muckenhirn 1945; Brown 1963) are time-consuming to
implement, and modern hollow flight auguring techniques require heavy machinery
and capture a small profile width (Haddad et al. 2009).

The aim of this study was to develop a portable, low cost, and comparatively
quicker system of extracting and preparing soil profile monoliths for quantitative
morphometric analysis. The second aim of the study was to investigate ways to
derive quantitative information from the soil profile. Digital images were collected
on these soil monoliths and calibrated using a set of reference colour chips. The
spectral resolution of these images has been enhanced by combining the spatial
resolution of the images with the spectral resolution of Vis–NIR spectroscopy.
From these enhanced images, a series of spectral and morphological metrics were
derived and classified. The results were compared to a traditional, qualitative
analysis of the profile.

8.2 Material and Methods

8.2.1 Sampling Sites

Monolith samples were collected from three permanent pasture sites. The first site,
“Kairanga”, is located within a pastoral beef and horse farming property (WGS84:
−40.36242, 175.46558), on the edge of a large, low-lying, alluvial deposition basin
that is subject to occasional flooding and ponding. The soil sampled at this site was
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classified as a Fluvic Gleysol (New Zealand Soil Classification: Typic Recent Gley
Soil). Elevation is 10.9 m above sea level; annual rainfall is 860 mm/year, while air
temperature averages 13.2 °C. The second site, “Ohakea”, is located within an
extensive Aeolian sand country belt that runs along the lower and western side of
New Zealand’s North Island (WGS84: −40.28186, 175.30732). This soil profile is a
Gleyic Luvisol (New Zealand Soil Classification: Fragic Perch-gley Pallic Soil),
which was formed from quartzo-feldspathic loess overlying more than 2 m of tephric
material. Land use is predominantly sheep and beef grazing. Altitude is 27 m above
sea level, the average rainfall is 900 mm/year, and annual air temperature is 13.0 °C.
The third site, “Manawatu”, is located on a sheep-grazed pasture located within the
immediate levee forming area of the Manawatu River (WGS84: −40.38320,
175.60639). The soil is a well-drained Eutric Fluvisol (New Zealand Soil
Classification: Weathered Fluvial Recent Soil) formed from historical flood depo-
sition of sands and silts. The altitude is 27.7 m above sea level, with annual rainfall
and air temperatures averaging 930 mm and 13.4 °C, respectively.

8.3 Extraction of Soil Monoliths

8.3.1 Monolith Sampling Frame

A soil monolith sampling tool was developed to speed up access to the soil profile
and facilitate the application of soil morphometrics techniques. The monolith
sampling frame was constructed from high-tensile 2-mm stainless steel folded and
welded to produce a box with the size of 1200 × 300 × 50 mm (Fig. 8.1). The
cutting edge was bevelled inwards to minimise the risk of outwards splaying when
the extractor is put under load. A steel frame (20 mm × 20 mm high-tensile boxing
tube) was constructed and welded to the back to provide reinforcing. Shallow box
designs would be more suitable for dense soils, while deeper designs would be
more suitable for poorly cohesive soils.

8.3.2 Extraction

Preliminary, site examinations were undertaken with a Dutch auger to identify a
suitable and representative profile for extraction. Vegetation was trimmed to ground
level, and a 400 × 250 × 1300 mm hole was dug to provide sufficient clearance to
insert both the sampling frame and two 2-tonne capacity scissor jacks (positioned
near the top and base of the hole). The low bulk density soils required extra bracing
for the jacks. Each jack was opened in alternating stages, and the sampling frame
was gradually cut into the profile face under load. When full cutting depth was
achieved, the jacks were unwound to a state that provides support but without
compressive load. A second hole was excavated at the front of the sampling frame,
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the dimensions of which depend on soil characteristics. For easily dug soils
(e.g. low bulk density, low percentage or absence of gravels, absence of impeding
horizons), this may be a spade’s width, but soils with dense or compacted subsoils
required a larger soil pit. In both cases, the pit was carefully excavated to produce a
profile face that was 30–50 mm of the monolith sampling frame (Fig. 8.2). Starting

Fig. 8.1 Soil monolith
sampling tool

Fig. 8.2 Soil monolith
sampling tool in place and
ready to be extracted
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at the base, the sides of the profile were carefully trimmed and cut. Eventually, the
frame was then tilted and extracted from the hole.

8.3.3 Surface Preparation

Soil profile monoliths are often collected for display purposes, and the surface is
prepared and preserved in a manner that highlights aggregate structure and pattern.
Our purpose required a flat and clean surface suitable for image and spectral
analysis. This proved difficult as manual techniques (knives, cutting wire, and saws)
were labour-intensive and produced variable levels of quality. Mechanical
approaches were considered (freezing and sawing, diamond saws, horizontal band
saws, ultrasonic knives, water jet cutters, thickness planers), but these were dis-
carded as too expensive, unavailable, or having an unknown risk of failure relative
to the level of development required. Our solution was a modified high-speed router
fitted with a 30-mm tungsten carbide bit, implemented across the profile using a
fixed height jig. This produced a consistently flat surface without the imperfections
experienced using manual techniques (tearing and pocking associated with con-
cretions, roots, differences in density and consistence, and complete dislodgement
of entire peds especially in topsoils). Light smearing and small concentric ridges
resulted on horizons with a higher percentage of clay, but this was manually
removed with cutting spatulas. As a final step, each profile was tilted and lightly
washed with a mist spray. This removed any fine particles and remnant smearing
(especially in regard to high chroma mottles and soft <1 mm concretions),
improved colour prominence, and for two of the soils improved the definition of
horizons with contrasting textures (water soaked into coarse-textured horizons
making them wetter, darker, and more distinctive). Horizon boundaries were
identified and recorded and compared with the spectral and image analysis.

8.4 Data Collection

8.4.1 Photography

Each profile was photographed (RAW format) under natural daylight conditions
using a DSLR camera (Canon 1200D, 18 MP) with an 18–55 mm lens (Canon EF-S
18–55 mm f/3.5-5.6 III). An X-Rite ColorChecker Passport (X-Rite, 2015) was
positioned and captured as part of each image. Profiles were mounted on a bench
and tilted to receive full exposure from direct midday sunlight. RAW images were
converted to digital negative format (DNG), and colour correction profiles were
constructed using Adobe DNG Profile Editor (Adobe Systems, 2012). White bal-
ance correction and colour profile assignment were undertaken in Camera Raw
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(Adobe Systems, 2015), and the results were exported as 16-bit TIFF images in the
system RGB colour space (sRGB). Each image was then georeferenced in Cartesian
coordinate space (with the origin set as the bottom left corner of the profile) and
clipped to the extents of the sampling frame. The resolution of the image (usually
around 0.3 mm) was resampled to 1 mm using bilinear interpolation.

8.4.2 Spectroscopy

Spectra Collection

For each soil profile, 120 soil spectra were collected on a 50 × 50 mm grid by an
ASD FieldSpec 3 spectrometer (formerly ASD, Inc., now PANalytical Boulder,
Boulder, Colorado, USA) using the visible and near-infrared ranges. The spectral
reflectance of the surface of the washed soil monolith was measured between 350
and 2500 nm at a resolution of 1 nm. The spectra collection was done using the
ASD contact probe fitted with the soil light bulb, whose field of view is a
10-mm-radius disc. The sensor was optimised and calibrated with a Spectralon
white reference panel every 10 acquisitions. Each spectrum was an average of 30
acquisitions (50 for the white reference) calculated by the IndicoPro acquisition
software.

Preprocessing

The raw reflectance data were exported as text files using IndicoPro and further
processed using the R statistical environment (R Core Team 2015). First, the
reflectance values (R) have been converted into absorbance (A) using the A ¼
1= logðRÞ formula. Then, additive noise has been removed by the multiple scatter
correction (MSC). Finally, the spectra were downsampled by a factor of 10 for
further data reduction.

Principal Component Analysis

For each soil profile, a principal component analysis (PCA) of the preprocessed
spectra was used to analyse the data set. The PCA was computed in R (R Core
Team 2015) and by singular value decomposition. This operation reduced the high
dimensionality and collinearity of the spectral data and compressed its variance into
a limited number of orthogonal principal components (PCs). The variance captured
by the first principal component (PC1) was largest, and subsequent principal
components (PC2-PCn) account for decreasingly smaller part of the data set’s
overall variance. In this study, the first three PCs were retained.
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8.5 Fusion of Soil Profile Image and Observations

The data collected by spectroscopy and the digital image have different supports:
the Vis–NIR spectrometer was captured at a relatively coarse scale data, whereas
the sRGB image captures data at a fine spatial resolution. Sensor fusion is a
technique of quantitative image analysis that merges data collected by different
sensors to improve the data. In particular, downscaling (or sharpening) is an image
fusion process that combines the spatial resolution of a sensor with the spectral
resolution of another sensor. This is routinely used in remote sensing, where the
coarse resolution multi-spectral bands are resampled using a fine-resolution
panchromatic band. In this study, the soil profile image was used to improve the
spatial resolution of the Vis–NIR data. Regression-kriging was used as the fusion
method (Odeh et al. 1995). Using regression-kriging for image fusion offers
advantages such as avoiding spectral distortion (Meng et al. 2010). In order to
improve the performance of the regression step, the sRGB image was converted to
the CIE Lab colour space (Liles et al. 2013).

8.5.1 Regression

The principal components of the spectra were predicted from the image of the soil
monolith. To take into account the spatial footprint of the sensors, and the uncer-
tainty of positioning of the probe, CIE Lab values were averaged over a disc of
radius 6 mm centred on the sampling grid used for the vis–NIR spectra collection.
The random forest regression method was used in the first stage of the
regression-kriging as implemented in the randomForest package (Liaw and Wiener
2002). The model was calibrated using all the available observations and using a
repeated tenfold cross-validation with 30 repeats using the caret package (Kuhn
2015) to assess its performance. The number of trees in the forest was set to 500,
and the number of variables randomly sampled as candidates at each split of the
random forest was determined so to minimise the cross-validated root-mean-square
error (RMSE).

8.5.2 Kriging of the Residuals

The autocorrelation of the residuals from the regression step was analysed using
gstat (Pebesma 2004). Three variogram models were tested: spherical, exponential,
and linear. The model minimising the sum of squared errors was chosen and used to
interpolate the residuals onto the 1-mm grid of the soil profile image using ordinary
kriging. The interpolated residuals were then combined with the original predictions
from the regression model.
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8.6 Object-Oriented Analysis

8.6.1 Segmentation

The sharpened PC1, PC2, and PC3 images were collated in GRASS GIS (Neteler
et al. 2012) for image segmentation. Segmentation is the process that groups pixels
into unique and coherent objects (also called segments). Unlike classification, the
segmentation process produces contiguous objects and allows for analysis of the
morphology of the delineated segments (Roudier et al. 2008).

In this study, we used a region growing and merging segmentation method (Bins
et al. 1996), as implemented in the i.segment module of GRASS GIS. All pixels are
considered as initial segments. Then, the similarity between any given segment and
each of its neighbours is computed using the Euclidean distance. Two segments are
merged if the similarity distance is smaller than to any other neighbour, and if the
similarity distance is lower than the threshold given by the user (in this study, we
chose a threshold of 0.05). This process is run iteratively. Finally, segments smaller
than the minimum size are merged with their most similar neighbour (in this study,
we chose a minimum size of 100 mm2). For each segment delineated by the
segmentation routine, the average and the standard deviation of PC1, PC2, and PC3
were computed. Additionally, the morphology of the segments was assessed using a
range of indicators available in the v.to.db module in GRASS GIS: area (A),
perimeter (P), compactness, computed as C ¼ P=ð2� ffiffiffiffiffiffiffiffiffiffiffiffi

p� A
p Þ, and fractal

dimension, computed as FD ¼ 2� logðPÞ= logðAÞ.

8.6.2 Hierarchical Classification

The segments were classified using an agglomerative hierarchical classification of
their attributes (average of PC1, PC2, PC3 and standard deviation of PC1, PC2, PC3,
compactness of the segments). The method used was the flexible UPGMA (Belbin
et al. 1992) using a dissimilarity matrix computed using the Gower distance. These
steps were implemented using the cluster package for R (Maechler et al. 2015).

8.7 Results and Discussion

8.7.1 Profile Observations

Soil Profile Images

The three soil profile images collected on the monoliths are shown in Fig. 8.3. The
soil sampled at the Kairanga site (Gleysol) exhibits clear depositional layering of
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sands and silts from historical flood and deposition events. The Ohakea profile
(Luvisol) has fragic and humic characteristics and exhibits distinctive net reticulate
patterns in the subsoil. It is suspected the site represents a former surface that has
been exhumed from surrounding Aeolian sands as the result of dune mobilisation
activity approximately 500–1000 years ago. Finally, the soil profile sampled at the
Manawatu site (Fluvisol) presents layering patterns due to a succession of flood
depositions from the nearby river.

8.8 Principal Component Analysis of the Vis–NIR Spectra

The PCA of the spectra collected on each of the three soil monoliths allowed to
reduce the dimensionality of the Vis–NIR data sets significantly (Table 8.1). For
each profile, the first principal component (PC) accounted for more than 75 % of the
total variance. For the remaining part of the analysis, we restrained the spectral data
sets to the first three PCs. Cumulatively, these represented 97.4, 99.5, and 99.1 % of
the total variance of the Vis–NIR data sets. The summary statistics of PC1, PC2,
and PC3 are also reported in Table 8.2.
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Table 8.1 Proportion of
variance (%) captured by the
first 3 principal components
(PC) of the spectra collected
on each soil monolith

Profile PC1 PC2 PC3 Cumulative
Gleysol 77.80 14.63 4.98 97.41
Luvisol 96.55 2.25 0.74 99.54
Fluvisol 84.13 13.75 1.22 99.09
The cumulative proportion of the variance (%) is also reported
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The first PC of each soil profile is plotted (Fig. 8.4), and the PCA scores are
plotted in Fig. 8.5. On the Gleysol profile, PC1 shows a succession of layers, which
is linked with the deposition processes involved in the pedogenesis (Fig. 8.4), while
PC2 is discriminating the topsoil from the subsoil (Fig. 8.5). On the Luvisol profile,
PC1 is discriminating strongly between the topsoil and the subsoil (Figs. 8.4 and
8.5). For the Fluvisol profile, PC1 is discriminating the lowest part of the soil profile
(below 900 mm, Figs. 8.4 and 8.5), while PC2 is discriminating the topsoil from the
subsoil (Fig. 8.5).

Table 8.2 Summary statistics of PC1, PC2, and PC3

Profile Attribute Min. Mean Median Max. SD Skewness Kurtosis
Gleysol PC1 −1.84 0 −0.05 2.07 0.79 0.34 −0.11

PC2 −0.90 0 0.14 0.48 0.34 −0.94 −0.46
PC3 −0.42 0 −0.03 0.83 0.20 0.98 1.95

Luvisol PC1 −8.82 0 1.13 4.60 3.31 −1.15 0.06
PC2 −0.89 0 −0.12 1.66 0.50 0.71 0.39
PC3 −0.78 0 0.01 0.81 0.29 0.05 0.47

Fluvisol PC1 −2.49 0 −0.15 2.42 1.24 0.16 −0.97
PC2 −1.40 0 0.21 0.51 0.50 −1.40 0.51
PC3 −0.30 0 −0.01 0.48 0.15 0.63 0.90
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8.9 Sensor Fusion

8.9.1 Prediction of Vis–NIR Principal Components
from the Soil Profile Image

The results of the regression step of the sensor fusion procedure are shown in
Table 8.3. The R2 values of the regression of PC1, PC2, and PC3 from the CIE Lab
bands of the soil profile image range from 0.35 to 0.95 (average: 0.68, standard
deviation: 0.22). As the first PC of the spectra focuses on most of the variance, it is
important to note the performance of the regression of PC1 for each profile: 0.56 for
the Gleysol profile, 0.95 for the Luvisol profile, and 0.81 for the Fluvisol profile. In
contrast to PC1, the performance of the regression of PC3 was less successful: 0.43
for the Gleysol profile, 0.57 for the Luvisol profile, and 0.35 for the Fluvisol profile.
However, this variable contributed marginally to the overall variance expressed in
the initial Vis–NIR data set.

● ●

●
●
●

●
●
● ●

●
●●

●●

●
●●
●●

●●
●

●
● ●

●

●
●

●●

●

●
●

●

●●

●

● ●
●

● ● ●
●

●
● ●●

●

●
● ●

●

●●

●
●

●
●
●

●
●

●
●●●●●

●

●
●

●

●

●
●

●

● ●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●
●●
●

●

●●●●
●

●●
●●

●

●

●
●

●●●
●

●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●
●

●
●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●
●

●●

●

●●
●
●

●

●
●●

●●

●●
●●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●●

●
●

●
●
●
●
●

●●●

●
●

● ●●
●

●
●●●

●●●

●
●

●

●

●●●●●

●
●

●

●
●

●
●●●

●
●●

●●● ● ●●
●●

● ●
●●

●

●

●●
●
●

●●●●●
●

● ●
●●

● ●● ●●●● ●
●

●●

●●
●●

●
●

● ●●●
● ●

●
●

●●

●
●●
●●●●●●●●●●●●●●●
●●
●●●●

●●●●

Gleysol Luvisol Fluvisol

−0.5

0.0

0.5

−1

0

1

−1.5

−1.0

−0.5

0.0

0.5

−2 −1 0 1 2 −5 0 5 −2 −1 0 1 2

PC1

P
C

2

30

60

90

Depth (cm)

Fig. 8.5 Distribution of the scores of the PCA analysis for each soil profile in the space defined by
the first two principal components. Soil depth is indicated by the colour scale

Table 8.3 Repeated tenfold
cross-validation results of the
prediction of PC1, PC2, and
PC3 for the three soil
monoliths

Profile Attributes RMSE R2 CCC Bias
Gleysol PC1 0.54 0.56 0.66 0.00

PC2 0.15 0.82 0.88 0.00
PC3 0.15 0.43 0.54 0.00

Luvisol PC1 0.76 0.95 0.97 −0.04
PC2 0.29 0.69 0.78 0.00
PC3 0.19 0.57 0.66 0.00

Fluvisol PC1 0.54 0.81 0.88 −0.01
PC2 0.13 0.93 0.95 0.01
PC3 0.13 0.35 0.42 0.00
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8.9.2 Kriging of the Residuals

The variogram models used in the kriging of the residuals from the regression step
are given in Table 8.4. Most models showed some spatial structure in the residuals.
An exception is the residuals from the PC3 model on the Gleysol profile, which
shows mainly nugget effect.

8.9.3 False Colour Composite Visualisation

For each soil profile, the three principal components retained in the analysis are
conveying a different aspect of the variance. It is possible to visualise PC1, PC2,
and PC3 by using a false colour composite (FCC), i.e. affecting PC1, PC2, and PC3
to the red, green, and blue channel of a RGB image. The FCC for the Gleysol,
Luvisol, and Fluvisol profiles is presented in Fig. 8.6.

8.10 Image Segmentation

The output of the segmentation of the PC1, PC2, and PC3 images is presented in
Figs. 8.7 and 8.8. The segmentation created 718 segments for the Gleysol profile,
949 segments for the Luvisol profile, and 683 segments for the Fluvisol profile.
Figure 8.6 shows the shape of the objects delineated by the segmentation algorithm,
along with a FCC visualisation of the average PC1, PC2, and PC3 in each seg-
ments. The horizon boundaries assessed by the pedologist have been added to these
visualisations.

A visual inspection of the segments reveals that these are variable in shape and
in size (Fig. 8.7). This can be observed in all three profiles, but particularly in the
Fluvisol profile. On this alluvial soil, the layering effects seem to impact the area
and shape of the segments. Between 65 and 90 cm, the difference between the right
and the left side of the horizon seems to be detected as the area of the segments is

Table 8.4 Variogram models
fitted on the residuals of the
PC1, PC2, and PC3
regression results for the three
soil monoliths

Profile Attributes Model Nugget Sill Range
(mm)

Gleysol PC1 Sph 0.0398 0.0310 183.4041
PC2 Sph 0.0018 0.0026 101.9186
PC3 Exp 0.0050 0.0006 506.0284

Luvisol PC1 Sph 0.0939 0.0333 285.4767
PC2 Sph 0.0117 0.0066 202.6782
PC3 Sph 0.0033 0.0055 130.3721

Fluvisol PC1 Sph 0.0420 0.0335 285.0122
PC2 Sph 0.0015 0.0016 107.2548
PC3 Sph 0.0026 0.0019 470.4335
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smaller on the right-hand side. This corresponds to a difference in texture that was
also noted by the pedologist on the monolith inspection. We also found that
coarse-textured horizons (sand and loamy sand) appear to result in relatively larger
segments (especially horizons 3 and 5 for the Fluvisol profile).

Figure 8.8 combines the segmentation results with the sharpened data, by
populating each segment with the average PC1, PC2, and PC3 values. By doing so,
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the speckle effects of the sharpened image are reduced and highlight some mor-
phological effects detected by the image segmentation. The visualisation corre-
sponds with the horizons delineated by the pedologist. The PC segments appear to
provide a more objective and precise basis for assigning boundaries when horizon
transitions are diffuse or mixed. While some of the horizon boundaries are distinct
(A/B horizon boundary of the Gleysol profile), others are transitions and not so
sharp. There is also evidence that the data recorded by the PC offer further detail not
captured by the pedologist, especially in regard to additional differentiation of
topsoil horizons (Luvisol and Gleysol), transitional A/B horizons (Fluvisol), and
possibly new horizons (e.g. at the base of Fluvisol).

8.11 Variations of the Radiometric and Morphometric
Indices

Figure 8.8 shows that the FCC visualisations are helpful in the analysis of a soil
profile. They also indicate variation in the horizons. Figure 8.9 shows the variations
in radiometry and morphology of the segments with depth for each profile. The
mean, along with the spread distribution around that central tendency, is plotted for
PC1, PC2, PC3, compactness, and fractal dimension. The plots show variation of
the indices along the soil profiles, and the standard deviation of these indices is
variable with depth. In particular, the Luvisol profile is showing more variations at
depth than the two other profiles. This can be explained by the vertical veining
pattern that is present in the subsoil (Figs. 8.3 and 8.8).
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The relative variations in these metrics can indicate changes in the soil horizons
along with their associated uncertainties. In the lower part of the Gleysol profile
(below 100 cm depth), the values for PC1 and PC3 are changing significantly.
Higher up in the profile, the A/B transition is marked by variations in PC1, PC2,
and PC3. A change in the morphology of the segments can be observed between 5
and 15 cm and mark a change in texture. The A/B transition on the Luvisol profile
is marked on the PC1 plot, while horizon transitions in the subsoil are captured by
PC2, PC3, compactness, and fractal dimension. The spread of values around the
mean in the subsoil shows that those transitions are mixed. On the Fluvisol profile,
the gradual topsoil to subsoil transition is captured by PC2 and fractal dimension
and to some extent by the compactness. Other transitions in the subsoil can be
located using PC1, PC3, fractal dimension, and compactness. In particular, these
indices seem to indicate a horizon transition around 100 cm that was not observed
by the pedologist.

8.12 Hierachical Classification

The hierarchical classification process is attempting to automatically characterise
the main features of the soil profile by combining the radiometric and the mor-
phological data. The dissimilarity matrix was computed on the aggregate statistics
of PC1, PC2, and PC3 for each segment and on the morphology of those segments.
Figures 8.10 and 8.11 show the result of the hierarchical classification of the
Luvisol profile. Figure 8.10 is the hierarchical tree obtained by agglomerative
clustering, and the leaves of the tree have been merged until 6 classes were left.
Figure 8.11 mapped the location of each class (1–6) in the soil profile.

The hierarchical tree provides a multi-scale visualisation of the classification
process. At the coarsest scale of the tree, two groups are distinguished: classes 1 and
2 and classes 3–6. These groups correspond to the distinction between the topsoil
and the subsoil, and the hierarchical tree gives this distinction the most important
weight. Given the choice of classes retained, this figure focuses on the second scale
of the hierarchy. In the topsoil, class 1 represents the majority of the topsoil. This
corresponds to the Ah horizon. Class 2 is a transition layer between the topsoil and
the subsoil and corresponds to the A/B1 and A/B2 horizons of the soil profile. In the
subsoil, 4 different classes have been distinguished. Class 6 differs significantly
from the 3 other subsoil classes and corresponds to a deep crack in the fragipan that
fills with water during summer months, giving this feature high clay content. At the
bottom of the soil profile, another set of segments are classified as class 6 and
correspond to the parent material (C horizon). Classes 3 and 4 correspond to two
different horizons of the subsoil. Class 4 is the Bg horizon, while class 3 is a
fragipan. Class 5 corresponds to mottles that are common throughout the subsoil.
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Fig. 8.10 Hierarchical
classification of the
radiometric and
morphological metrics of the
segment delineated for the
Luvisol profile
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8.13 Conclusions

This study presented a new protocol to explore imaging techniques of the soil
profile. An extraction tool was developed and tested to sample field condition soil
profiles to facilitate and speed up the application of imaging techniques directly on
the profile. The prototype in this paper worked well on the three soil types for the
development and testing of new digital morphometrics approaches. In particular,
obtaining the soil profile out of the soil pit facilitated the normalisation of the
lightning conditions for digital photography, which is the most affordable tech-
nology for the quantitative pedologist. It became evident that this technique is not
successful for soils that would be too loose (very sandy soils, very stony soils) and
could be challenging in conditions where the soil is very hard (dry, heavy clays).

The use of regression-kriging allowed us to fuse high spatial resolution data
(RGB image converted to CIE Lab) with high spectral resolution data (recorded by
a hand-held spectrometer). These data were used as an input to a segmentation
algorithm, which finds objects within the soil profile. We found this object-oriented

0

10

20

30

40

50

60

70

80

90

100

110

120

0 10 20

D
ep

th
 (

cm
)

1

2

3

4

5

6

Fig. 8.11 Results of the
hierarchical classification
mapped on the soil profile

130 P. Roudier et al.



visualisation to be useful, as it provides a level of detail between the speckled raw
imagery and the generalised visual delineation of horizons. It provided an oppor-
tunity to capture quantitatively the veining and gamut structures observed on the
Luvisol profile. While these could be noted as a soil characteristic, they would not
be captured using traditional horizons. Additionally, the creation of segments
allowed deriving morphological metrics such as the area of the segments, their
compactness, and fractal dimensions. Future work will focus how well the
multi-scale analysis of these segments can relate to soil profile properties such as
texture and structure.

Overall, the application of these soil profile imaging techniques offers a more
objective and precise method to delineate soil horizons. It also offers a new method
of depicting soil profiles and horizons that provides a mid-point level of general-
isation with more detail but still retains the advantage of easy visual interpretation.
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Chapter 9
Computer Graphics Procedural Modeling
of Soil Structure

Hansoo Kim, Minerva J. Dorantes, Darrell G. Schulze
and Bedrich Benes

Abstract Soil scientists in the USA have created a large national database of
written soil profile descriptions that follow a well-defined set of rules for describing
soil morphological properties. Interpreting these soil descriptions is a skill that
requires considerable practice and experience. While writing a soil description is
straightforward, recreating a visual representation of a soil profile from a written
description is very difficult. So far, there is no generalized approach for translating
written or tabular soil descriptions into visual representations. We propose a novel
procedural modeling approach inspired by procedural models commonly used in
the field of computer graphics. Our framework takes tabular soil morphological data
(i.e., soil profile descriptions) as textual input and translates it into visual features
based on parametric models. These models can be used to generate
two-dimensional soil profiles or to generate three-dimensional interactive models
that allow rotation, scaling, and other forms of visual explorations. The procedural
modeling technique enables the user to generate the soil profile visual representa-
tion with only a small amount of data. The images do not need to be stored because
they are generated as needed.
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9.1 Introduction

Soil scientists have developed detailed terminology for describing the morpho-
logical properties of soil profiles. In the USA, there are large national databases of
soil profile descriptions that follow a well-defined set of rules (Schoeneberger et al.
2012). With training and practice, writing a soil profile description is a fairly
straightforward process, with the result that different trained soil scientists will write
similar, but not necessarily identical, descriptions of the same soil profile.
Interpreting written descriptions, however, is a skill that requires considerable
practice and experience. Experienced soil scientists can draw on their experience to
mentally visualize soil profiles based on written descriptions, but to students and the
vast majority of more casual users of soils information, soil profile descriptions,
whether in tabular or narrative form, can be inscrutable.

Soil profile descriptions, however, contain large amounts of information that can
be used to reconstruct an image of the soil originally described. Some soil prop-
erties, such as horizon depth and dominant color, are easy to represent in simple,
schematic profile diagrams. The Soil Web Apps produced by the California Soil
Resource Lab (http://casoilresource.lawr.ucdavis.edu) take this approach. The
resulting profiles, however, do not really look like soil profiles, although they do
provide information and context to trained soil scientists. There is currently no
generalized approach for translating written soil profile descriptions into visual
representations that one would recognize as soil profiles, primarily because soil
structure is so difficult to represent.

The field of computer graphics has developed very efficient and effective methods
for data visualization and representation. Procedural methods have recently found a
prominent place among traditional techniques that take existing data and display
them in different forms (Ebert et al. 2002). Procedural methods have been used in
areas ranging from modeling of cities (Parish and Müller 2001), plants
(Prusinkiewicz et al. 1990), to entire virtual worlds (Smelik et al. 2014). The basic
idea of procedural methods is to represent an image, which in soil science is the
image of a soil profile, as a computer program with specific input parameters. Then,
when the image is needed, the code is executed and the image is generated. An
obvious advantage of procedural representations is the huge data compression,
variability of the output since one code can generate various images, and versatility.
Very recently, the inverse problem has become important in various fields. The
inverse problem attempts to answer the question, ‘given existing data, for example, a
written soil profile description, what is the code that can generate it?’ This is a very
complex problem, and several solutions have been found so far for virtual plants
(Stava et al. 2014), models of cities (Vanegas et al. 2012), and procedural art (Stava
et al. 2010).
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Here, we apply the inverse procedural modeling approach to the field of soil
science. We propose a novel procedural modeling approach that takes tabular soil
morphological data (i.e., soil profile descriptions) as textual input and then trans-
lates that data into visual features based on parametric models. The output of these
models can then be displayed as 2-dimensional images of soil profiles, or as
three-dimensional (volumetric) interactive models that can be rotated, scaled, and
explored visually in other ways. The procedural modeling technique enables the
user to generate a visual representation of a soil profile with only a small amount of
data, and the images do not need to be stored because they are generated as needed.

9.2 System Overview

The overview of our system is depicted in Fig. 9.1. The system takes tabular soil
data as input. The visualizer selects the appropriate procedural model according to
the tabular soil data and applies the appropriate parameters. In this step, the pro-
cedural models produce a magnitude map, which is a three-dimensional array of
points (x, y, z) where x and y give the location of a point in a right Cartesian
coordinate system, and z is the height above the x-y plane. The magnitude map is
equivalent to the digital elevation model (DEM) used in geographic information
system (GIS) software. The renderer then generates the final image using
user-defined rendering methods equivalent to hill shading in GIS. The renderer
converts the cloud-like image produced by the procedural model into an image of
the highlights and shadows of a solid surface illuminated by a light source. Details
of each step are described below.

Fig. 9.1 System overview
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9.3 Procedural Modeling of Tabular Soil
Morphology Data

9.3.1 Data

Our goal is to use the Official Soil Series Descriptions (OSDs) available from the
USDA Natural Resource Conservation Service (http://www.nrcs.usda.gov/wps/
portal/nrcs/site/soils/home/) for input data. The OSDs consist of a national collec-
tion of more than 20,000 detailed soil series descriptions. Particularly, we focus on
the soil structural descriptions in the OSDs. While properties such as color, depths,
or boundary patterns are easily visualized by connecting them to quantitative
parameters and values (e.g., converting the Munsell color designations to the RGB
system), structural descriptions are difficult to quantify because they implicitly
include many qualitative visual aspects. For instance, when a horizon description
mentions ‘subangular blocky,’ we cannot clearly define its quantitative properties in
a straightforward way, which is a crucial part of reconstructing a visual represen-
tation. Standardized soil structural terminology is commonly used for soil profile
descriptions, so the task is to translate that terminology into images that look like
the feature being described. For our initial work, we are focusing on ‘granular,’
‘subangular blocky,’ ‘prismatic,’ and ‘platy’ soil structural keywords.

Soil structural keywords contain considerable qualitative information that is too
subtle or vague to model directly by simple geometric techniques. For example,
subangular blocky structure has properties of ‘cubic structural units’ and ‘rounded
edges,’ but a model that simply filled space with cubes having rounded edges would
not look like subangular blocky soil structure. ‘Rounded edges’ does not specify
curvature, length, or direction, for example, and neither are global aspects of the
‘cubic structural units’ specified in terms of position, size, and transitions among
units. In addition, these properties must have a degree of randomness in order to
appear natural. To address the problem, we employ procedural noise functions
(Fig. 9.2) and match their properties with structural keywords.

9.3.2 Procedural Modeling

As discussed above, there are several advantages in using procedural models. First,
they generate seamless images because they are functions that can be evaluated at
any point in a given domain (i.e., one-, two-, or three-dimensional space).
Therefore, there are no ‘empty’ points in the output, and the entire output domain is
controlled by the functions. This is especially beneficial when we map a recon-
structed appearance onto a three-dimensional model because there are no unde-
sirable discontinuities. Second, procedural noise functions can generate various
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types of patterns by changing just a few input parameters. For example, trigono-
metric jittering, also known as ‘Perlin Marble,’ mainly creates distinguishable, but
smoothly blended structures (Fig. 9.2d). On the other hand, fractal synthesis gen-
erates regularly distributed and smoother appearances (Fig. 9.2b). We are able to
adjust the size, smoothness, and width–height ratio by using less than four input
parameters. Third, procedural models are fast, and a 512 × 512 pixel,
two-dimensional image is generated in tens of microseconds on today’s computers.
This enables interactive visualization, which is a crucial aspect for images that will
be used for teaching and learning.

Fig. 9.2 The output from four different procedural models. a Gradient Noise has very high
contrast and distinct structures. b Fractal Synthesis has a cloud-like appearance, medium contrast,
and smooth but noticeable structures. c Turbulence has low contrast, smooth boundaries, and small
rounded sub-patterns. d Trigonometric Jittering has distinct structure and high contrast
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We currently use four procedural models (Fig. 9.2). They all are the simplest
types of procedural noise functions and are employed for several reasons. First,
while we are able to obtain more complex and sophisticated appearances using
more complicated procedural methods, they take a significantly longer time to
generate an output. Second, they require only a few input parameters (Table 9.1)
that can be correlated with soil structural terms that describe the size, grade, and
shape of soil structural aggregates. The output of a procedural model can be
adjusted using only a few parameters. For example, by changing the X seed and
Y seed, we are able to achieve many different appearances (Fig. 9.3). Finally, we
have good intuition about the structures in the generated output image, because they
consist of only a few interpolation equations. Since we must conduct numerous trial
and error tests to find input parameters that generate images that look like soil
structures, simple procedural functions accelerate the process. The result of our
user-assisted process is shown in Table 9.2.

9.3.3 Visualization

While procedural models generate desired structures with randomness, the resulting
outputs look different from the soil structure one sees in a soil profile. We apply
additional hill shading (Horn 1981) to the results generated by the procedural
models. Hill shading is a grayscale, image-space shading technique that takes into
account the light source’s position in order to model the pattern of highlights,
shadows, and gray scale gradients that result from light shining on an opaque
surface. Hill shading is frequently used for visualizing DEMs in GIS software.

The use of hill shading provides additional advantages. First, it converts
excessively smooth boundaries into sharp edges by emphasizing high frequency
details of procedural noise images that are hardly recognizable in the original output
from the procedural models (Fig. 9.4). Although octave values greater than four do

Table 9.1 Parameters of the four procedural models

Parameter Description
X seed Unit evaluation interval in the horizontal direction (0.0–1.0). Greater values

generate smoother horizontal appearances
Y seed Unit evaluation interval in the vertical direction (0.0–1.0). Greater values

generate smoother vertical appearances
Octave Applies to all models except gradient noise (1–16). The value determines the

amount of detail to be added. Octave value is actually the number of repetitions
for adding high frequency values

Frequency Only applies to trigonometric jittering (2.0–10.0). The value defines the ‘jitter’
value at each octave

138 H. Kim et al.



Fig. 9.3 Variations of fractal synthesis that result from different input parameters
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not add clearly noticeable details in the raw output of procedural noise images, hill
shading makes these details visible so that we are able to obtain better appearance
(Fig. 9.4).

9.4 Results and Discussion

Figure 9.5a, b shows an example of the recreation of a granular structure. We use
small values for both X and Y seeds in order to achieve fine unit structures.
Figure 9.5c, d shows recreation of platy soil structure using a greater X seed value
than Y seed value. Figure 9.6a is a photograph of subangular blocky structure. Since
subangular blocky structure has cube-like rounded shapes, we use trigonometric
jittering as the procedural model (Fig. 9.6b). A high octave value adds further
details. Figure 9.6c, d shows the regeneration of prismatic structure. Note that
Y seed value is greater than X seed value to generate vertical structure. All results
were generated at 1024 by 1024 pixel resolution and took <2 s to generate, but a
512 by 512 pixel image, which is sufficient for many purposes, can be generated
in <1 s.

Table 9.2 Relationships between structural keywords and procedural model parameters

Structure
keyword

Features Procedural model

Granular • Small and rounded aggregates • Model: any model is acceptable
• X and Y seed: smaller than 0.04

Subangular
blocky

• Cubic (or similar) structural units
• Rounded edges

• Model: fractal synthesis or
trigonometric jittering

• X seed: 0.25–0.75
• Y seed: 0.25–0.75
• Octave: 4–16
• Frequency: 2.0* (trigonometric
jittering only)

Prismatic • Cubic (or similar) structural units
• Structural units are taller than
they are wide

• Model: fractal synthesis
• X seed: 0.25–0.55
• Y seed: 0.3–0.6, but greater than the
X seed

• Octave: 4–16
Platy • Structural units are wider than

they are tall
• Model: fractal synthesis or
trigonometric jittering

• X seed: greater than 0.5
• Y seed: smaller than 0.5
• Octave: 4–16
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Fig. 9.4 Comparison between raw procedural noise (left image) and hill shading of the raw output
(right image) for different octave values. a Octave value 4. b Octave value 5. c Octave value 6
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The procedural models described above have some drawbacks, however. First,
due to the innate properties of the procedural approach, local feature control (i.e.,
controlling macrostructure) is very difficult. Adding specific macrostructure, for
example a large prism, will require a redesign of the entire model so that
pre-generated data will not be necessary. Second, the approach currently does not
take into account blending between two different structures. Structure transitions in
a soil profile are a subtle but important feature of soil profiles and we cannot yet
depict it by using interpolations.

Fig. 9.5 a Photograph of granular soil structure. b Procedural model of granular structure using
fractal synthesis (X seed = 0.037, Y seed = 0.037, octave = 6). c Photograph of platy soil structure.
d Procedural model of platy soil structure using trigonometric jittering (X seed = 0.82,
Y seed = 0.375, octave = 16, frequency = 2.17)
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Fig. 9.6 a Photograph of subangular blocky soil structure. b Procedural model of subangular
blocky soil structure using trigonometric jittering (X seed = 0.25, Y seed = 0.25, octave = 16,
frequency = 2.17). c Photograph of prismatic soil structure. d Procedural model of prismatic soil
structure using fractal synthesis (X seed = 0.25, Y seed = 0.375, octave = 10)
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9.5 Conclusions and Future Work

We introduce a procedural model reconstruction framework for soil morphology
data. Our framework takes tabular soil morphological data and converts it into visual
features utilizing procedural models. The models generate appropriate procedural
noise images that are then processed by a visualizer that applies hill shading to obtain
images that are close approximations to actual soil structures. This approach will
enable users to reconstruct soil structures with a minimum of data overhead.

There are several possible avenues for future work. As mentioned above, support
for macrostructure would be useful. Also, good blending options to produce
appropriate transitions from one type of soil structure to the next are still needed in
order to simulate transitions between soil horizons.

So far, we have used user intuition to find appropriate procedural models and
input parameters to generate images that look like different soil structures. In future
work, we would like to investigate automatic inverse procedural approaches that
would match an actual image of soil structure to an image generated by an
appropriate procedural model. This may open the way to automatically quantifying
soil structure without having to rely on the judgment of human observers.
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Chapter 10
Soil Profile Imaging for Estimating
the Depth Distributions of Clay, Iron,
and Hydrological Conditions of Soils
Under Rice in Northern Taiwan

Shih-Hao Jien, Zeng-Yei Hseu, Chen-Chi Tsai and Zueng-Sang Chen

Abstract Soil color variation, clay illuviation, and translocation of Fe and Mn are
influenced by hydrological conditions. Soil profile imaging has been considered to
predict the distribution of clay, Fe and Mn oxides, and hydrological conditions. Ten
Ultisol andAlfisol profiles were selected at elevations ranging from 15m to 40m a.s.l.
at Chungli Terrace, northern Taiwan. Sixty soil horizons were collected for redoxi-
morphic features (RMFs) identification and analysis of soil texture and selective
extraction of Fe and Mn oxides. All soil properties were correlated with the RMFs.
There was a significantly positive correlation between gray mottle (GM) (value ≥5,
chroma≤3) amounts and annual reduction duration (ARD) (r=0.80**, p<0.01) and a
negative correlation between red mottle (RM) (value ≥4, chroma ≥3) amounts and
ARD (r=0.75**, p< 0.01) at surface horizons (within 30 cm).A significantly positive
correlation was also found between RM and clay content (r = 0.32*, p < 0.05),
indicating clay might determine the formation of RM. Moreover, the ratios of iron
activity (Feo/Fed) and iron crystalline ((Fed-Feo)/Fet) could also be good indices for
ARD prediction. The Mnd/Fed seemed an index of frequent fluctuation of water table
in soil profiles. Using image analysis technique, replacing naked eye identification of
RMF could improve correlations between soil color and hydrological conditions.
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10.1 Introduction

Digital soil morphometrics is defined as the application of tools and techniques for
measuring and quantifying soil profile attributes (horizons, texture, color, structure,
moisture, mottles, consistence, carbonates, rock fragments, pores, and roots) and
deriving continuous depth functions (Hartemink and Minasny 2014). Technologies
that can rapidly characterize the entire soil profile are necessary (Ben-Dor et al.
2008; Demattê et al. 2004; Stockmann et al. 2014; Viscarra Rossel and Webster
(2011). Several digital techniques, including ground penetrating radar (GPR),
electrical resistivity (ER), cone penetrometer, hyperspectral core scanner, and X-ray
fluorescence (XRF), have been developed to supplement traditional ones to char-
acterize soil profiles (Hartemink and Minasny 2014).

Soil color is considered a common property to depict soil horizons and classify
soils. Soil color (matrix color/redoximorphic features, RMFs) could be used as an
indicator of soil organic carbon content, drainage, aeration, iron content, or min-
eralogy, particularly in soils with lowland rice and frequent fluctuation of
groundwater. The rice-growing soil is a hydric soil, which is defined as soils formed
under conditions of sufficient saturation or flooding during the growing season to
develop an anaerobic condition in the upper part of the soil. The rice-growing
hydric soils are characterized by hydrological conditions and various soil colors in
their matrix (Hseu and Chen 2001; Jien et al. 2010). The development of suitable
color indices or a good digital technique for color descriptions in situ could
effectively identify soil moisture regimes (SMR) and be helpful for the classifica-
tion of hydric soils.

Generally, gray mottles (GMs) or depleted matrix (chroma 2) has been con-
sidered as generally indicators for extensive duration of saturation and reduction
(Daniel et al. 1971; Simonson and Boersma 1972; Cox et al. 1996; Jien et al. 2010).
Franzmeier et al. (1983) found that GMs with chroma 2 indicated saturation for
30 % of the year for loamy soils in Indiana, USA. Cycles of reduction and oxidation
in soils over prolonged periods and the consequent mobility and accumulation or
depletion of Fe and Mn resulted in the formation of RMFs (Fanning and Fanning
1989; Vepraskas 1992; Hseu and Chen 1996; Jien et al. 2004, 2010). Studies have
tested the application of RMFs as SMR indicators in various environments. High
levels (7.5 %) of Fe and Mn concretions were found in the upper B horizons of soils
along hydrosequences in Bavaria, Germany (Schwertmann and Fanning 1976). In a
study of five fine-silty soils in Indiana, iron depletions with chroma 2 indicated
>30 % saturation at a depth of one meter (Franzmeier et al. 1983). In hardwood
forest areas in Louisiana, USA, soils with chroma <2 with redox concentrations
below the A horizon generally indicated hydric conditions constituting saturation
and reduction >25 % of the growing season (Faulkner and Patrick 1992).

The relationship between soil color and SMR might be failed because of wrong
judgment of soil colors by naked eyes. The digital techniques for soil morpho-
metrics might improve judgments. Recently, soil color has been measured indirectly
using Vis–NIR. Viscarra Rossel et al. (2009) used Vis–NIR to measure soil color
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in situ and in the laboratory. Measurements were compared to the Munsell color
chart readings. There was fair agreement between spectroscopic estimates of soil
color and Munsell readings although Vis–NIR tended to be slightly darker and
more yellow. Ben-Dor et al. (2008) used Vis–NIR field spectrometer and an
accessory to read subsoil reflectance to examine soil color in Alfisols, Inceptisols,
and Vertisols. The results were compared to traditional soil descriptions, and it was
possible to describe quantitatively and objectively the soil profile color in situ using
optical instruments.

Quantitative descriptions of RMFs associated with hydromorphology for the
rice-growing soils in Taiwan have been studied by Hseu and Chen (1996, 2001) and
Jien et al. (2004, 2010). Soils had high chroma matrix colors, Fe (chroma 6) and Mn
(chroma 1) concentrations, and chroma 1 depletions > horizons that were saturated
for considerable periods were reduced for a much shorter time. Some problems
exist regarding long-term assessment and interpretation of the criteria, particularly
in seasonally saturated rice-growing soils. This study attempts (1) to compare the
RMFs of rice-growing soils with different elevations, (2) to clarify the correlations
between soil colors and local hydrology condition of lowland rice-growing soils in
Taiwan, (3) to compare the digital data, including types and quantities of RMFs,
identified by naked eyes and image analysis.

10.2 Materials and Methods

10.2.1 Site Description

The study area is located inside the Chungli Terrace in northern Taiwan, about
40 km southwest of Taipei city (Fig. 10.1). The altitude ranges from 20 to 40 m
above sea level. The soil is developed on an alluvial terrace from Quaternary, with a
minimum thickness of 5 m (Ho 1988). The mean air temperature is 27 °C in
summer and 13 °C in winter. Average annual rainfall is 1560 mm, and the annual
rainfall exceeds the annual evapotranspiration.

Ten representative rice-growing soils were selected for this study. Plinthite was
found only in Pingchen soil, and other soils contained plinthitic feature (Fig. 10.2).
All pedons were close (*2 km) to the seashore. Slopes range from 2 to 6 % over
2 km. All soils are classified as Ultisols or Alfisols according to the Keys to Soil
Taxonomy (Soil Survey Staff 2010), and specifically, they are Oxyaquic Paleudult
(Pingchen), Plinthitic Paleudalf (Tachuwei), Plinthaquic Paleudult (Lungchung),
Typic Plinthaqualf (Chuwei-1), Typic Plinthaquult (Luchu, Hsinwu, and Houhu-1),
and Typic Paleaquult (Houko, Chuwei-2 and Houhu-2). The Pingchen, Lungchung,
and Tachuwei series are the farthest from the seashore (about 4 km) and are situated
at the highest elevation (around 40 m) in this study area. The Houhu-1, Houko,
Chuwei-2, and Houhu-2 series are the nearest to the seashore and have the lowest
elevation (15–20 m). The Chungli Terrace has been used for rice (Oryza sativa L.)
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cultivation since the 1950s. Each year, rice is harvested during the March to
October growing season, and the soils are fallowed in winter. The soils are sea-
sonally flooded by irrigation water and groundwater.

10.2.2 Soil Analyses

Soil pits were excavated in 1996 and in 2002 and 2003. The description included
morphological characteristics and RMFs based on the Soil Survey Manual (Soil
Survey Staff 1993). The soil properties are given in Hseu and Chen (2001) and Jien
et al. (2004, 2010). Fe oxides (Fed) and Mn oxides (Mnd) were extracted by the
dithionite–citrate–bicarbonate (DCB) method (Mehra and Jackson 1960).
Amorphous Fe (Feo) and Mn (Mno) were extracted by 0.2 M ammonium oxalate
(pH = 3.0) (AAO) (McKeague and Day 1966). All elements were determined using
an atomic adsorption spectrometer (Hitachi, 180-30 type). Total contents of Fe (Fet)
and Mn (Mnt) were measured after digestion with HF–HClO4–H2SO4–HCl on a hot
plate (200 °C) (Hossner 1996). The bulk density of each size fraction of the fer-
romanganiferous nodules was also determined by the paraffin clod method (Blake
and Hartge 1986). Bulk density was determined on six samples for 2- to 5-mm
nodules and three samples for other, larger size fractions. All soil analyses were
performed in triplicate.

Fig. 10.1 Locations of the studied pedons at Chungli Terrace in northern Taiwan
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10.2.3 Hydrological Monitoring

In six of the ten soils, a 7 × 7 m plot was established to monitor hydrological
conditions over two years, which Lungchung–Hsinwu–Houhu-1 monitored during
1996–1997, and Luchu–Chuwei-1—Houko monitored during 2004–2005. The
following data were recorded at biweekly intervals: (1) water table level, (2) soil
water tension at depths of 25, 75, 100 and 200 cm, and (3) soil redox potential at
depths of 25, 75, 100, and 200 cm. All data were recorded in triplicates.
Hydrological data at other pedons were used for the nearest pedons in which no
measurements were made.

Plowing in lowland rice forms compact subsurface layers, and perched water
appears during the growing seasons. These compact layers exhibit lower saturated
hydraulic conductivity than the overlying horizon and water tends to accumulate
above them, creating a perched zone of saturation. Wells were constructed to
measure the perched water table, and it piezometers were used to determine water
table depths. Tensiometers and platinum electrodes were installed at predetermined
depths and used to monitor saturation and redox potential (Eh). The voltage reading
was recorded after the drift decreased to equilibrium, characterized by less than

Fig. 10.2 The plinthitic
feature of rice-growing soils
in our study area. The
photograph is Chuwei-1
pedon
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5 mV of change during a 10-s period. The field reading was adjusted by adding
+200 mV in order to correct for reference electrode potential. The threshold Eh
value for the reduction of Fe (III) to Fe (II) was estimated from an Eh–pH diagram
and equation, 1235–177 pH (for pH < 7.5), which was provided by Ponnamperuma
(1972). Also, the range of pH (5.0–6.0) in the studied soils was measured to
establish pH-corrected redox threshold levels for Fe (II). Instruments were con-
structed in triplicate for each study site (including wells, piezometers, and ten-
siometers). All measurements were made at biweekly intervals and in triplicate at
each monitoring time.

10.2.4 Identification of Redoximorphic Features by Image
Analysis

Five aluminum boxes measuring 10 × 10 × 8 cm were used for collecting the soil
blocks from each soil horizon of the pedons of Luchu, Chuwei-1, and Houko. Fresh
soil blocks from two boxes were taken out for image analysis, and other three boxes
were oven-dried at 105 °C for 24 h to remove water before sieving the ferro-
manganiferous nodules. A stainless wire was used to cut the soil blocks with an
interval of 1 cm. Eight soil pieces were extracted from each soil block, and pictures
were taken for image analysis. ERDAS Imagine 8.4 (ERDAS, USA) was used for
image analysis.

10.3 Results and Discussion

10.3.1 Soil Morphology and Hydrological Conditions

The soils were divided into three groups based on their soil morphological charac-
teristics (Table 10.1). The first group (around 40 m a.s.l.) included Pingchen,
Tachuwei, and Lungchung soils, which had no plinthite or plinthite ranged from 2 to
50 % within 150 cm depth. The soils of Luchu, Hsinwu, Chuwei-1, and Houhu-1 are
located at the elevation around 20–40m.a.s.l. and characterized by plinthite, andmost
soil horizons (20–200 cm in depth) contained plinthite. The third group (15–20 m a.s.
l.) included Houko, Chuwei-2, and Houhu-2 soils, and the morphological features
were different as gleyzation was the dominant soil forming process due to long-term
high groundwater table. The Btg as the major soil horizon and the reduced matrix
(chroma ≤2) of the Ap and Btg horizons indicated strongly reduced conditions.

All pedons had a perched water table during the growing season from March to
November. Table 10.2 shows the annual duration of saturation and reducing con-
ditions at different depths. In the first soil group, the least annual reduction duration
(*5 %) was found in the lower soil horizons, which corresponded with the color
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morphormetrics. In the second soil group, the highest amounts of redox concen-
trations (≥30 %) were found in the Btv horizons with about 20–60 % annual
saturation duration and 10–80 % annual reduction duration. These depths were
probably the transitional zones between the fluctuating depths of perched irrigated
water and groundwater table (Tables 10.1 and 10.2). The presence of plinthite

Table 10.2 Annual saturation and reduction duration of the studied soils

Soils Elevations
(m)

Soil
depth
(cm)

Annul saturation
duration (%)

Annul reduction
duration (%)

Pinchen (Oxyaquic
Paleudult)

50 25 75 70
50 60 70

100 40 5
200 35 5

Tachuwei (Plinthitic
Paleudalf)

40 25 75 70
50 60 70

100 40 5
200 35 5

Lungchung
(Plinthaquic
Paleudult)

40 25 75 70
50 60 70

100 40 5
200 35 5

Luchu (Typic
Plinthaquult)

25–30 25 68 36
50 50 21

100 27 21
200 27 25

Hsinwu (Typic
Plinthaquult)

30 25 40 10
50 45 30

100 50 30
200 55 10

Chuwei-1 (Typic
Plinthaquult)

23 25 51 63
50 41 33

100 45 40
200 63 48

Houhu-1 (Typic
Plinthaquult)

20 25 53 75
50 33 55

100 21 80
200 38 75

Houko (Typic
Paleaquult)

20 25 57 69
50 34 53

100 21 76
200 38 65

Chuwei-2 (Typic
Paleaquult)

18 25 55 95
50 65 100

100 70 100
200 80 100

Houhu-2 (Typic
Paleaquult)

15 25 55 95
50 65 100

100 70 100
200 80 100
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implied that the saturated conditions from Btv horizons are the result of long-term
seasonal fluctuation of the groundwater (Daugherty and Arnold 1982). Red (2.5YR
3/6 or 4/6) and hard ferromanganiferous nodules were prevalent in these horizons.
In the third soil group, the prevailing redox depletions corresponded to high annual
duration of saturation (21–80 %) and reducing conditions (55–100 %) (Table 10.2).
The discrepancy between ASD and ARD could be probably attributed to the clayey
texture of the soils; the reduced conditions prevailed as the water table lowered. In
the Luchu soil, annual duration of saturation was higher than that of reduction at a
depth of 200 cm which can be attributed to the high dissolved oxygen content in
groundwater under oxyaquic conditions (Hseu and Chen 2001; Jien et al. 2010).

10.3.2 Relationship Between Soil Redoximorphic Features
and Hydrology

Several studies have found significant correlations between soil color and moisture
regimes (Hseu and Chen 1996, 2001; Jien et al. 2004, 2010). Jien et al. (2004)
found that the saturation duration of the horizon above 50 cm was not significantly
correlated to soil chroma index (CI) or soil reduction duration. These results
implied that the pedoturbation of the surface 50 cm resulted from human irregation
during the growing season occured. The Fe depletions in the A horizon was difficult
to identify and should be regarded as color affected by organic matter. The soil
color index within 50 cm from surface soil is difficult for predicting the soil wetness
condition in rice-growing soils. Significant correlations were found between the soil
color index and soil saturation duration (r = −0.43**, p < 0.01) and reduction
duration (r = −0.52**, p < 0.01) for 50–100 cm soil depth. The RMFs at this depth
were affected by groundwater table and by perched water. The reduction and sat-
urated time at this depth were >25 and >35 % of a year, and the contents of the Fe
depletion ranged from 5 to 40 %. This result confirms the results of Daniel et al.
(1971) and Evans and Franzmeier (1986), who found soil chroma to correlate with
soil saturation at a depth of 30–60 cm.

In this study, we also divided soil layers into <30 and 30–100 cm and divided
soil RMFs into GMs (value ≥5, chroma ≤3) and red mottles (RM) (value ≥4,
chroma ≥3) to assess the correlation between soil color and soil wetness conditions
including the annual saturation and reduction durations. For the surface soils
(≤30 cm), the results revealed that neither GM nor RM existed significant corre-
lation with annual saturation or reduction duration (Fig. 10.2). There was no
obvious correlation between GM or RM and annual saturation duration in horizons
below 30 cm. The significantly positive relationship existed between GM and
annual reduction duration, and negative relationship was found between RM and
annual reduction duration (Fig. 10.3) in horizons below 30 cm.

Soil color index provided a good morphology index for predicting soil wetness
conditions at depths below 30 cm for the rice-growing soils in Taiwan, particularly
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Fig. 10.3 Correlations between soil wetness conditions and redoximorphic features: a–d annual
saturation duration (%); e–h annual reduction duration (%)
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for annual reduction duration. The surface soil is pedoturbated resulting from
rice-growing cultivation and the accumulation of rice straw residual. These phe-
nomena create difficulties in identifying the RMFs and cause errors in correlation
establishment. New digital techniques should be developed to describe and quantify
RMFs to improve the correlations between soil color and soil wetness conditions.

10.3.3 Fe, Al, and Mn and Hydrology

Levels of iron and manganese were changing with SMR. We can use instruments,
e.g., portable XRF, to estimate distribution of Fe and/or Mn in situ to predict SMR
or variances of groundwater table within soil profiles.

In our studied sites, oxalate- and DCB-extractable fractions and total contents of
Fe and Mn were determined in bulk soils to assess the effects of different moisture
regimes for the three soil groups. Extractions of Fe and Mn were performed on
some of selected pedons. The Fe extraction data suggested that the soil matrix of all
analytical pedons are a source of Fe that can be reduced, translocated, and con-
centrated in RMFs (Table 10.3), particularly in soils of the second group. In the
pedon with the highest reducing conditions (>70 % of the year), the Houko soil (the
3rd group), the contents of Fed were lower than those of the other two soils. The Feo
in the Houko soil was however much higher than the other two sites, suggesting
that the crystallization of free Fe was retarded by the duration of reducing condi-
tions. This was also found by Khan and Fenton (1996). Consequently, iron activity
ratio (Feo/Fed) might be suggested as an index for prediction soil moisture regimes.
Table 10.4 shows a positive correlation between annual reduction duration
(ARD) and Feo (r = 0.31**, p < 0.01) and Feo/Fed (r = 0.47**, p < 0.01).
A significantly negative correlation (r = −0.54**, p < 0.01) was also found between
ARD and Fe crystalline ratio ((Fed-Feo)/Fet), indicating an estimation of soil
moisture regimes by Fe contents.

The ratio of Mnd/Fed in nodules is a good indicator for prediction of soil depths
where the water table fluctuated, because Mn accumulated and was well crystallized
at these depths. It was also found that the maximum Mnd/Fed ratios of soils are
found at depths of fluctuating water table. The results are corresponded with Khan
and Feton (1996), who found that the highest Mnd/Fed ratio was correlated with the
zones where frequent wetting and drying cycles occurred. In the Chuwei soil, the
highest ratio of Mnd/Fed (0.19–0.44) was in the Btv5 horizon (170–200 cm) where
the groundwater table fluctuated frequently (Tables 10.1 and 10.3). In the Luchu
soil, the Mnd/Fed ratio ranged from 0 to 0.03 (Table 10.5). The maximum ratio was
found in the Ap horizon (0–20 cm) where perched irrigated water fluctuated. The
next highest ratio was found in the Btv6 horizon (160–180 cm) and the Btv3
horizon (75–104 cm) where the water table frequently fluctuated.
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Table 10.3 Selected extraction of Fe and Mn of the studied pedons

Horizon Depth Oxalate DCB Total Feo/Fed (Fed-Feo)/Fet Mnd/Fed
Feo Mno Fed Mnd Fet Mnt

Lunchung
Ap 0–20 2.5 0.0 39 0.1 30 0.0 0.06 1.22 0.26
Bw 20–41 1.6 0.0 82 0.1 18 0.0 0.02 4.47 0.12
2A 41–56 2.3 0.0 42 0.1 24 0.1 0.05 1.65 0.24
2Bt 56–85 0.9 0.0 61 0.3 30 0.1 0.01 2.00 0.49
2Btv1 85–100 0.6 0.2 58 0.3 24 0.1 0.01 2.39 0.52
2Btv2 100–140 0.4 0.1 37 0.3 42 0.3 0.01 0.87 0.81
2Btv3 140–180 1.4 0.3 71 1.5 – – 0.02 – 2.11
2Btv4 >180 1.3 0.2 72 2.0 – – 0.02 – 2.78
Luchu
Ap 0–20 2.7 0.2 20 0.3 45 0.5 0.14 0.38 1.50
Btv1 20–50 1.1 0.2 24 0.2 50 0.5 0.05 0.46 0.83
Btv2 50–75 0.9 0.2 22 0.1 48 0.4 0.04 0.44 0.45
Btv3 75–104 1.5 0.2 25 0.2 40 0.3 0.06 0.59 0.80
Btv4 104–124 1.6 0.2 29 0.1 47 0.3 0.06 0.58 0.34
Btv5 124–160 1.5 0.2 27 0.1 40 0.3 0.06 0.64 0.37
Btv6 160–180 1.9 0.2 28 0.3 44 0.4 0.07 0.59 1.07
Hsinwu
Ap 0–15 2.2 0.2 36 0.1 39 0.3 0.06 0.87 0.28
AB 15–26 1.0 0.3 36 0.2 – – 0.03 – 0.56
Bt1 26–45 0.5 0.3 45 0.2 47 0.5 0.01 0.95 0.44
Bt2 45–75 0.5 0.3 58 0.2 60 0.5 0.01 0.96 0.34
Btv1 75–107 0.8 0.2 48 0.2 50 0.4 0.02 0.94 0.42
Btv2 107–133 1.2 0.3 52 0.3 54 0.6 0.02 0.94 0.58
Btv3 133–160 1.4 0.3 52 0.3 56 0.6 0.03 0.90 0.58
Chuwei-1
Ap 0–18 2.6 0.1 22 0.1 22 0.2 0.12 0.88 0.45
AB 18–36 2.5 0.1 26 0.1 26 0.2 0.10 0.90 0.38
Btv1 36–70 1.7 0.4 32 0.4 39 0.6 0.05 0.78 1.25
Btv2 70–110 1.5 0.2 37 0.2 34 0.3 0.04 1.04 0.54
Btv3 110–145 0.9 0.3 22 0.2 23 0.3 0.04 0.92 0.91
Btv4 145–170 0.5 0.0 27 0.0 29 0.1 0.02 0.91 0.00
Btv5 >170 2.6 7.2 60 6.9 66 9.2 0.04 0.87 11.5
Houhu-1
Ap 0–34 2.4 0.1 29 0.1 32 0.1 0.08 0.83 0.34
AB 34–47 0.7 0.1 32 0.1 31 0.3 0.02 1.01 0.31
Bt1 47–66 0.4 0.2 45 0.2 30 0.3 0.01 1.49 0.44
Btv1 66–82 0.5 0.4 53 0.3 44 0.1 0.01 1.19 0.57
Btv2 82–102 0.6 0.3 56 0.5 56 0.7 0.01 0.99 0.89
Btv3 102–122 1.0 0.3 61 0.3 63 0.7 0.02 0.95 0.49
Btv4 122–150 0.8 0.3 52 0.3 56 0.5 0.02 0.91 0.58
Houko
Ap 0–20 5.2 0.1 26 0.2 35 0.3 0.20 0.59 0.77
Bt1 20–50 2.4 0.3 23 0.1 74 0.5 0.10 0.28 0.43
Bt2 50–75 3.6 0.2 21 0.2 49 0.4 0.17 0.36 0.95
Bt3 75–110 8.3 0.2 24 0.2 76 0.4 0.35 0.21 0.83
Btg1 110–130 17 0.3 18 0.2 39 0.5 0.94 0.03 1.11
Btg2 130–170 3.1 0.1 36 0.2 74 0.3 0.09 0.44 0.56
–: Not available
Fed: DCB extraction (g/kg)
Feo: Oxalate extraction (g/kg)
Fet: Total amount of elements (g/kg)
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10.3.4 Digitize Redoximorphic Features

There was significant correlation between ARD and CI (Jien et al. 2004), as well as
ARD and GM/RM contents (Fig. 10.3). Jien et al. (2004) indicated that the presence
of organic carbon would lead to misjudgment and content misestimate of RMFs in
upper soil horizons (<50 cm depth) if we identified and quantified the features by
naked eyes in situ. A digital technique could be developed to precisely describe and
quantify soil morphologies like applying image analysis techniques or spectro-
scopic estimates though Vis–NIR (Viscarra Rossel et al. 2009).

This study collected soil blocks (10 × 10 × 10 cm) from each horizon and then
cut each block into 10 soil pieces (1 cm thick) for image analysis by IMAGIN 8.4.
From the image analysis, the detail information of types and amounts of RMF was
acquired. For Chuwei-1 soil, Table 10.5 compares with the identified types and
amounts of RMFs by methods of naked eye and image analysis. Large differences
of RMFs identification were found in Ap and AB horizons. The gray (10YR 6/1),
reddish yellow (5YR 6/8 or 7.5YR 7/8), and red (10YR 4/8) seem to be misjudged
by naked eye (Table 10.5), and the largest amounts of the misjudged RMFs ranged

Table 10.5 Types and quantities of redoximorphic features identified by naked eye and image
analysis

Chuwei
pedon

Matrix color Fe depletions Fe concretions

Gray (%) Light yellow
(%)

Yellow (%) Yellow (%) Red (%)

Naked eye
Ap 10YR 4/3

(95)
2.5Y 3/1 (1) – 10YR 6/8 (2) – 5YR 5/8 (2)

AB 10YR 4/1
(91)

2.5Y 3/1 (2) – 7.5YR 5/8 (2) – 5YR 5/8 (5)

Btv1 N 6/0 (35) – – 10YR 5/8
(20)

– 5YR 5/8 (45)

Btv2 N 6/0 (55) – 10YR 7/8 (20) 7.5YR 6/8
(25);

– –

Image analysis
Ap 10YR 4/3

(43)
10YR 6/1

(5)
7.5YR 6/3

(19)
5YR 6/8 (16) – 10R 4/8 (17)

AB 10YR 4/1
(45)

10YR 6/1
(10)

– 7.5YR 7/8
(23)

2.5YR 4/8
(10)

10R 4/8 (12)

Btv1 10YR 7/1
(54)

– 10YR 7/3 (13) 7.5YR 7/6
(15)

– 2.5YR 5/8
(18)

Btv2 10YR 6/1
(42)

– 10YR 7/3 (24) 7.5YR 6/8
(34)

– –

– : None
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from 46 to 52 % in this study. Such misjudgments might be the major reason why
soil colors fail to correlate to moisture regimes in surface soils (<30 cm). Our
hypothesis is demonstrated in Fig. 10.4, in which significant negative correlation
between ARD and CI was calculated from identified RMFs by image analysis.
The CI values from RMFs identified by naked eye method failed to correlate to
ARD in surface soils.

10.4 Conclusions

Digital soil morphometrics can help measuring and quantifying soil profile attri-
butes and deriving continuous depth functions for further soil understanding. This
study established correlations between soil color and wetness condition in
rice-growing soils in Taiwan to help us in clarifying the SMR and develop criteria
for classifying these soils. The study indicated that soil color could be used to assess
soil wetness within soil profile as well as selective extraction of Fe and Mn. Digital
soil morphometrics using image analysis significantly increased precision in
quantifying and qualifying soil morphology.

Acknowledgements The authors would like to thank the Ministry of Science and Technology of
the Republic of China (Taiwan) for financially supporting this research under Contract No. MOST
103-2313-B-020-007-MY2.
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Chapter 11
Variation of Soil Properties in a Mollisol
Profile Wall

Jenna R. Grauer-Gray and Alfred E. Hartemink

Abstract Soil variation was investigated in a Mollisol soil profile wall in south
central Wisconsin, USA. The soil was classified as a fine-loamy, mixed, superac-
tive, mesic Pachic Argiudolls. Data were collected from a 1 × 1 m soil profile wall
that was divided into a 10 × 10 cm raster. The following measurements were made:
volumetric moisture content, soil pH, soil organic carbon (SOC) concentration, and
elemental analysis of Al, Ca, Fe, Mn, P, Si, Ti, and Zr by portable X-ray
fluorescence (pXRF). Spatial variation of soil properties was analyzed and mapped.
All the soil properties demonstrated horizontal variation within the soil profile. The
extent of horizontal variation changed with depth. The magnitude and direction of
these changes showed no general pattern, differing between the soil properties.
The SOC concentration showed constant horizontal variation at all depths except
70–80 cm. The soil pH demonstrated the lowest horizontal variation in the top
30 cm of the profile. The horizontal variation of Fe concentration tended to increase
with depth. Soil property depth functions showed considerable variation between
vertical transects. Only the SOC concentration and the soil pH demonstrated fairly
consistent responses to changes in depth. The soil showed spatial variation within
soil horizons. The soil pH and the Fe concentration showed low within-horizon
variation in all soil horizons. SOC concentration showed moderate within-horizon
variation in the Ap1 horizon and high within-horizon variation in the Bt horizon.
Overall, the Bt horizon contained the greatest spatial variation. All soil horizons
contained high within-horizon variation of at least one soil property. These results
have some implications for sampling pedons.

Keywords Soil variation � Soil pit wall � Soil profile � Morphometrics � Soil
horizon

J.R. Grauer-Gray � A.E. Hartemink (&)
Department of Soil Science, F.D. Hole Laboratory, University of Wisconsin—
Madison, 1525 Observatory Drive, Madison, WI 53706, USA
e-mail: alfred.hartemink@wisc.edu

© Springer International Publishing Switzerland (outside the USA) 2016
A.E. Hartemink and B. Minasny (eds.), Digital Soil Morphometrics,
Progress in Soil Science, DOI 10.1007/978-3-319-28295-4_11

165



11.1 Introduction

Soil scientists characterize a soil profile by dividing the profile into horizons based
on soil properties observed in the field (Hartemink and Minasny 2014). These
properties generally include color, texture, structure, and redoximorphic features.
After soil horizon designation, one soil sample is taken from each horizon for
laboratory analysis. As a result, only vertical variation of a soil profile is measured.

We used a raster approach to characterize horizontal and vertical variation of a
Mollisol profile wall. A raster contains equally spaced data points (Goodchild
1992). Rasters are used to obtain, predict, and communicate spatial data in soil
science. Digital soil mapping uses raster data and prediction rasters to produce
rastered maps of soils and soil properties depicting the spatial variation of soils
across landscapes (McBratney et al. 2003). However, few studies have used rasters
to study spatial variation in a soil profile.

The objectives of our research were (i) to study horizontal and vertical variation
of soil properties within a soil profile wall, (ii) to investigate within-horizon and
between-horizon variation of soil properties in the soil profile, (iii) to utilize soil
profile maps of soil properties to investigate patterns in the spatial variation of soil
properties, (iv) to examine the homogeneity of soil horizons, and (v) to assess
whether a soil profile can be accurately characterized with a one-dimensional,
vertical sampling scheme.

11.2 Materials and Methods

11.2.1 Site Description

The soil was located at latitude 43° 4′ 2.88″ N and longitude 89° 32′ 8.10″ W at the
University of Wisconsin-Madison West Madison Research Station in Verona,
Wisconsin, USA (Fig. 11.1). The altitude of the site was 330 m.a.s.l. This area has a
mean annual temperature of 7.8 °C and a mean annual precipitation of 840 mm.

The soil was formed in loess over outwash covering dolomite bedrock of
Ordovician age at approximately 3.5 m depth. The vegetation was mainly grass and
alfalfa. Though not cultivated at the time of this study, the site had been under
agricultural use since the mid-1800s. The soil was located at the footslope land-
scape position and contained a buried A horizon at 59 cm depth due to the sedi-
mentation of soil eroded from upper parts of the soilscape. An argillic horizon at
77 cm depth contained redoximorphic features.

The soil was classified as a fine-loamy, mixed, superactive, mesic Pachic
Argiudolls (Troxel silt loam series). To 100 cm soil depth, the soil contained five
horizons, all formed in loess (Table 11.1).
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Fig. 11.1 Soil profile of a
fine-loamy, mixed,
superactive, mesic Pachic
Argiudolls in Wisconsin,
USA. a Soil profile with
horizon designations and
horizon depths indicated.
b Soil profile rastered for field
measurements and soil
sampling (10 × 10 cm)

Table 11.1 Profile description of the soil (characterized to 100 cm soil depth), a fine-loamy,
mixed, superactive, mesic Pachic Argiudolls located at the University of Wisconsin-Madison West
Madison Research Station in Verona, Wisconsin, USA

Horizon Depth
(cm)

Dry color Moist color Structure Texture SOC
(g/kg)

N
(g/kg)

Ap1 0–18 Very dark
brown (10YR
2/2)

Dark grayish
brown (10YR
4/2)

Granular Silt 22 2.3

Ap2 18–39 Very dark
brown (10YR
2/2)

Dark grayish
brown (10YR
4/2)

Platy Silt
loam

18 1.8

A2 39–59 Very dark
brown (10YR
2/2)

Dark grayish
brown (10YR
4/2)

Subangular
blocky

Silt
loam

22 2.1

Ab 59–77 Black (10YR
2/1)

Dark grayish
brown (10YR
4/2)

Subangular
blocky

Silt
loam

27 2.3

Bt 77+ Dark yellowish
brown (10YR
3/4)

Yellowish
brown (10YR
5/4)

Angular
blocky

Silty
clay
loam

8 1.6

11 Variation of Soil Properties in a Mollisol Profile Wall 167



11.2.2 Soil Sampling and Analysis

The soil profile wall was divided into a 1 × 1 m raster of 10 × 10 cm squares up to
1 m depth (Fig. 11.1). Volumetric moisture content was measured in the field in the
center of each square using a time-domain reflectometer (Spectrum FieldScout TDR
300). Soil samples of approximately 200 g were collected from the center of each
raster square.

Laboratory samples were air-dried. Dry and moist color measurements were
taken using Munsell soil color charts. Samples were finely ground. The concentra-
tions of Al, Ca, Fe, Mn, P, Si, Ti, and Zr were measured in the laboratory using
portable X-ray fluorescence (pXRF). A Delta Professional pXRF Analyzer
(Olympus Scientific Solutions Americas, Inc.) was used to scan the soil samples. The
pXRF analyzer was calibrated using a 316 stainless steel calibration check reference
coin. The soil organic carbon (SOC) and nitrogen concentrations were determined
by LECO dry combustion. The soil pH was measured in 1:1 soil to water.

11.2.3 Data Analysis

Boxplots for each soil property were made to examine property variation within and
between depth intervals and within and between soil horizons. Individual plots were
created for each property. The boxplots show the median, the quartiles (excluding
outliers), and the outliers at each depth or within each horizon. Property depth
function plots were created by combining the soil property depth functions of the
ten vertical transects of the soil profile on one plot. Depth function plots were
created for every studied soil property except Ti and Zr concentrations. The mid-
point of each depth interval was used as the depth value for the property mea-
surement in that depth interval.

Soil profile maps were created for every soil property except volumetric mois-
ture content and Ti and Zr concentrations by locating the soil property measure-
ments of each soil sample in the center of its raster square then spatially
interpolating the soil property values over the soil profile wall using block kriging
and global variograms in VESPER (Minasny et al. 2005).

Statistics by depth and by horizon were calculated using the “doBy” package
(Højsgaard and Halekoh 2014) within the R statistical package (R Core Team
2013). Coefficients of variation (CVs) by horizon were calculated by dividing the
standard deviation by the mean.
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11.3 Results

11.3.1 Variation of Soil Properties with Depth

SOC

The SOC concentration showed constant horizontal variation at all depths except at
70–80 cm soil depth (Fig. 11.2). The standard deviation was 7 g C/kg at 70–80 cm
soil depth, whereas at all other depths it was below 2 g C/kg. The SOC depth
functions all followed the same pattern. At 0–30 cm soil depth, the SOC concen-
tration tended to decrease slightly with depth. At 30–70 cm soil depth, the SOC
concentration tended to increase with depth. At 60–70 cm soil depth, the direction
of the depth functions changed, and below 70 cm, the depth functions showed a
tendency of decreasing SOC concentration with depth. The SOC depth functions all
tended to have similar rates of change with depth except at 60–80 cm soil depth. At
60–80 cm soil depth, the SOC depth functions demonstrated the most dissimilarity
due to varying rates of change in SOC concentration; the magnitude of the decrease
in SOC concentration from 60 cm soil depth to 80 cm soil depth ranged from 0.3 g
C/kg to 20 g C/kg.

pH

The lowest horizontal variation of soil pH occurred in the top 30 cm of the soil
profile with standard deviations below 0.1 (Fig. 11.2). The soil pH at depths with
high pH did not vary more than the soil pH at depths with low pH. The highest
horizontal variation of soil pH occurred at 90–100 cm soil depth with a standard
deviation exceeding 0.2. The soil pH depth functions generally followed the same
pattern. The soil pH increased with depth at 0–20 and 80–100 cm soil depth. At 40–
60 cm, the soil pH tended to decrease with depth. At 20–40 and 60–80 cm soil
depth, the soil pH depth functions fluctuated slightly with depth and the changes did
not follow a consistent pattern.

Volumetric Moisture Content

The horizontal variation of the volumetric moisture content increased with depth in
the top 30 cm of the soil profile, decreased with depth until 70 cm soil depth, then
stayed constant at 70–100 cm soil depth (Fig. 11.2). The highest horizontal vari-
ation of volumetric moisture content occurred at 10–40 cm soil depth with standard
deviations exceeding 5 %.
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Fig. 11.2 Boxplots and depth
function plots showing the
horizontal and vertical
variation of soil properties at
each depth interval studied in
a 1 × 1 m profile wall of a
fine-loamy, mixed,
superactive, mesic Pachic
Argiudolls in Wisconsin,
USA. The depth function
plots contain ten individual
depth functions, obtained
from the ten vertical transects
studied in the soil profile wall.
Ten soil samples from the
center of 10 × 10 cm raster
squares were taken at each
depth interval and from each
vertical transect. a SOC
concentration and b pH were
obtained in the laboratory.
c Volumetric soil moisture
content (θ) was measured in
the field
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Al

The Al concentration showed relatively constant horizontal variation at all depth
intervals except at 90–100 cm soil depth (Fig. 11.3). At 90–100 cm soil depth, the
standard deviation was 8000 mg Al/kg; at other depths, the standard deviations
were between 800 and 2000 mg Al/kg. The median Al concentrations ranged from
4000 mg Al/kg at 50–60 cm soil depth to 7000 mg Al/kg at 80–90 cm soil depth.

Fig. 11.3 Boxplots and depth functions showing the horizontal and vertical variation of soil
properties at each depth interval studied in a 1 × 1 m profile wall of a fine-loamy, mixed,
superactive, mesic Pachic Argiudolls in Wisconsin, USA. The depth function plots contain ten
individual depth functions, obtained from the ten vertical transects studied in the soil profile wall.
Ten soil samples from the center of 10 × 10 cm raster squares were taken at each depth interval and
from each vertical transect. Elemental concentrations of a Al, b Ca, c Fe, d Mn, e P, and f Si were
obtained on air-dried soil samples using pXRF
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Ca

The horizontal variation of the Ca concentration fluctuated with depth (Fig. 11.3).
The greatest horizontal variation occurred at 40–50 cm soil depth and 60–70 cm
soil depth with standard deviations exceeding 700 mg Ca/kg. The lowest horizontal
variation occurred at 20–30 cm soil depth with a standard deviation of 200 mg
Ca/kg. The median Ca concentration ranged from 5000 mg Ca/kg at 90–100 cm soil
depth to 7000 mg Ca/kg at 60–70 cm soil depth.

Fe and Mn

The horizontal variation of Fe and Mn concentrations tended to increase with depth
(Fig. 11.3). The lowest horizontal variation occurred in the top 40 cm of the soil
profile with standard deviations of 200–700 mg Fe/kg and of 20–50 mg Mn/kg. The
horizontal variation increased below 40 cm soil depth with standard deviations of
1000–3000 mg Fe/kg and 90–300 mg Mn/kg. The median Fe and Mn concentra-
tions stayed relatively constant with depth in the upper 60–80 cm of the soil profile
with median concentrations of around 25,000 mg Fe/kg at 0–80 cm soil depth and
median concentrations of around 800 mg Mn/kg at 0–60 cm soil depth. Below
80 cm soil depth, the median Fe concentration increased to 28,000 mg Fe/kg at 90–
100 cm. The highest median Mn concentration occurred at 60–70 cm soil depth
(1000 mg Mn/kg).

P

The horizontal variation of P concentration fluctuated with depth (Fig. 11.3). The
highest horizontal variation of P concentration occurred at 60–70 cm soil depth with
a standard deviation exceeding 100 mg P/kg. At other soil depths, the standard
deviations ranged from 40 to 90 mg P/kg. The median P concentration ranged from
260 mg P/kg at 40–60 cm to 370 mg P/kg at 10–20 cm soil depth and 60–80 cm soil
depth.

Si

The horizontal variation of Si concentration fluctuated with depth (Fig. 11.3). The
lowest horizontal variation of Si concentration occurred at 0–40 cm soil depth and
at 70–80 cm soil depth with standard deviations below 20,000 mg Si/kg. The
highest horizontal variation occurred at 90–100 cm soil depth with a standard
deviation exceeding 30,000 mg Si/kg. The median Si concentrations were relatively
constant at all depths except at 50–60 cm soil depth and 90–100 cm soil depth.
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Ti

The lowest horizontal variation of Ti concentration occurred in the top 40 cm of the
soil profile with standard deviations below 150 mg Ti/kg. At other depths, the
standard deviations ranged from 200 to 470 mg Ti/kg. The lowest median Ti
concentration occurred at 50–60 cm soil depth (2900 mg Ti/kg). At other depths,
the median Ti concentration remained fairly constant, ranging from 3200 to
3500 mg Ti/kg.

Zr

The highest horizontal variation of Zr concentration occurred at 70–80 cm soil
depth with a standard deviation of 30 mg Zr/kg (Fig. 11.4). At other soil depths,
standard deviations were below 20 mg Zr/kg. The lowest horizontal variation of Zr
concentration occurred at 0–40 cm soil depth. The median Zr concentration at 0–
40 cm soil depth ranged from 290 mg Zr/kg to 310 mg Zr/kg. The median Zr
concentration at 40–70 cm soil depth was below 280 mg Zr/kg. The median Zr
concentration at 70–100 cm soil depth exceeded 350 mg Zr/kg.

Fig. 11.4 Boxplots showing the horizontal and vertical variation of soil properties at each depth
interval studied in a 1 × 1 m profile wall of a fine-loamy, mixed, superactive, mesic Pachic
Argiudolls in Wisconsin, USA. Ten soil samples from the center of 10 × 10 cm raster squares were
taken at each depth interval. Elemental concentrations of a Ti and b Zr were obtained on air-dried
soil samples using pXRF
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11.3.2 Variation Within Soil Horizons

The samples from 0 to 20 cm soil depth are from the Ap1 horizon, from 20 to 40 cm
soil depth are from the Ap2 horizon, from 40 to 60 cm soil depth are from the A2
horizon, from 60 to 70 cm soil depth are from the Ab horizon, and from 80 to
100 cm soil depth are from the Bt horizon. The Bt horizon contained five soil
properties demonstrating high (CV > 20 %) within-horizon variation (Table 11.2).
The A2 and Ab horizons each contained three soil properties demonstrating high
within-horizon variation. The Ap1 and Ap2 horizons contained mainly low
(CV < 10 %) and moderate (CV 10–20 %) within-horizon soil property variation.

SOC

The within-horizon SOC concentrations consisted of three non-overlapping ranges
(Fig. 11.5). The lowest SOC concentrations occurred in the Bt horizon (5–
13 g C/kg). The Ap1, Ap2, and A2 horizons contained SOC concentrations between
16 and 26 g C/kg. The highest SOC concentrations occurred in the Ab horizon (31–
35 g C/kg). The lowest within-horizon variation of SOC occurred in the Ap2 and
Ab horizons (CV < 6 %). The Ap1 and A2 horizons had CVs of about 10 %. The
highest within-horizon variation of SOC concentration occurred in the Bt horizon
(CV 30 %).

pH

The highest soil pH occurred in the Ap1 and Ap2 horizons (Fig. 11.5). The pH
showed low within-horizon variation in all the horizons with CVs lower than 5 %.
The lowest within-horizon variation occurred in the Ap2 and Ab horizons.

Table 11.2 Amount of within-horizon variation of soil properties: soil organic carbon (SOC),
soil pH, volumetric moisture content (ϴ), elemental concentrations of Al, Ca, Fe, Mn, P, and Si

Horizons n SOC pH ϴ Al Ca Fe Mn P Si
Ap1 20 ± − ± + − − − ± ±
Ap2 20 − − + ± − − − ± −
A2 20 − − ± + ± − ± + +
Ab 10 − − ± + ± − − + +
Bt 20 + − ± + − − + + +
All properties except ϴ were measured on air-dried soil samples in the laboratory. Amount of
variation measured using coefficients of variation (CVs).
− = CV < 10 %, ± = CV 10–20 %, + = CV > 20 %
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Volumetric Moisture Content

Volumetric moisture content demonstrated moderate to high within-horizon vari-
ation with CVs ranging from 11 % to 31 % (Fig. 11.5).

Al

The lowest median Al concentrations occurred in the Ap1, Ap2, and A2 horizons
with median concentrations of 5000 mg Al/kg (Fig. 11.6). The Ab horizon had a
median concentration of 6000 mg Al/kg, and the Bt horizon had a median Al
concentration of 7000 mg Al/kg. The highest within-horizon variation of Al con-
centration occurred in the Bt horizon (CV > 70 %). The other soil horizons con-
tained moderate to high within-horizon variation of Al concentration with CVs
below 30 %.

Ca

The lowest median Ca concentrations occurred in the Ab and Bt horizons with
median concentrations below 6000 mg Ca/kg (Fig. 11.6). The Ap1, Ap2, and Ab
horizons had median Ca concentrations of 7000 mg Ca/kg. The Ap1 and Ap2
horizons had the lowest within-horizon variation of Ca with CVs lower than 7 %.
The A2, Ab, and Bt horizons had CVs around 10 %.

Fig. 11.5 Boxplots showing within- and between-horizon variation of soil properties in the five
horizons studied in a 1 × 1 m profile wall of a fine-loamy, mixed, superactive, mesic Pachic
Argiudolls in Wisconsin, USA. Soil samples were collected from the center of 10 × 10 cm raster
squares and a SOC concentration and b soil pH were measured in the laboratory. c Volumetric soil
moisture content (θ) was measured in the field in the center of 10 × 10 cm raster squares
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Fe

The highest Fe concentration occurred in the Bt horizon with a median concen-
tration of 28,000 mg Fe/kg (Fig. 11.6). The other horizons contained median
concentrations of about 25,000 mg Fe/kg. The lowest within-horizon variation of
Fe concentration occurred in the Ap1 and Ap2 horizons (CV < 3 %). The highest
within-horizon variation of Fe concentration occurred in the Bt horizon (CV 10 %).

Mn

The highest median Mn concentration occurred in the Ab horizon with a median
concentration exceeding 1000 mg Mn/kg (Fig. 11.6). The Ap1, Ap2, A2, and Bt
horizons contained median concentrations of 800–1000 mg Mn/kg. The Ap1 and
Ap2 horizons had the lowest within-horizon variation of Mn concentration

Fig. 11.6 Boxplots showing within- and between-horizon variation of soil properties in the five
horizons studied in a 1 × 1 m profile wall of a fine-loamy, mixed, superactive, mesic Pachic
Argiudolls in Wisconsin, USA. Soil samples were collected from the center of 10 × 10 cm raster
squares and the following elemental concentrations were measured in the laboratory: a Al, b Ca,
c Fe, d Mn, e P, f Si
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(CV < 6 %). The Bt horizon had the highest within-horizon variation of Mn
concentration with a CV exceeding 20 %.

P

The lowest P concentration occurred in the A2 horizon with a median concentration
of 260 mg P/kg (Fig. 11.6). The highest median P concentrations occurred in the
Ap1 and Ab horizons with median concentrations exceeding 350 mg P/kg. The
lowest within-horizon variation of P concentration occurred in the Ap1 and Ap2
horizons. The highest within-horizon variation of P concentration occurred in the
Ab horizon (CV 30 %).

Si

The lowest median Si concentration occurred in the A2 horizon with a median
concentration of 35,000 mg Si/kg (Fig. 11.6). The Bt horizon had a median con-
centration of 47,000 mg Si/kg. The highest median Si concentrations occurred in
the Ap1, Ap2, and Ab horizons with median concentrations between 55,000 and
60,000 mg Si/kg. The lowest within-horizon variation of Si concentration occurred
in the Ap2 horizon (CV 8 %). High within-horizon variation of Si concentration
occurred in the Ab horizon (CV 50 %) and the highest within-horizon variation of
Si concentration occurred in the A2 and Bt horizons with CVs exceeding 60 %.

11.3.3 Variation Between Soil Horizons

Between the Ap1 and the Ap2 horizons, three soil properties demonstrated little
(ΔCV 1–5 %) change in within-horizon variation and one soil property demon-
strated medium (ΔCV 5–10 %) change in within-horizon variation (Table 11.3).
One soil property demonstrated large (ΔCV 10–20 %) change in within-horizon
variation between the Ap1 and Ap2 horizons, between the Ap2 and the A2 horizons
and between the A2 and the Ab horizons. One soil property demonstrated very large
(ΔCV > 20 %) change in within-horizon variation between the Ap2 and the A2
horizons. Between the Ab and the Bt horizons, four soil properties demonstrated
large or very large changes of within-horizon variation.

Within-horizon variation of SOC concentration and Al concentration showed
little change between all adjacent horizons except the Ab and Bt horizons. Between
the Ab and the Bt horizons, the within-horizon variation of SOC and Al concen-
trations demonstrated very large changes. The within-horizon variation of Si con-
centration and Mn concentration demonstrated large changes between the Ab and
the Bt horizons.
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11.3.4 Soil Profile Maps of SOC Concentration and Soil pH

The soil profile map of SOC concentration divided the profile into four layers: a
layer of medium SOC concentration between 0 and about 57 cm soil depth, a layer
of high SOC concentration between about 57 and 72 cm soil depth, another layer of
medium SOC concentration between about 72 and 81 cm soil depth, and a layer of
low SOC concentration below 81 cm soil depth (Fig. 11.7). A nearly level hori-
zontal boundary occurred between the first and the second layers of the soil profile
map. Wavy boundaries occurred between the second and third layers, and the third
and fourth layers of the soil profile map.

Table 11.3 Change in within-horizon variation of soil properties between adjacent horizons

Horizons SOC pH ϴ Al Ca Fe Mn P Si
Ap1 → Ap2 ↓ ↓ ↑↑↑ ↓ ≈ ≈ ≈ ≈ ↓↓
Ap2 → A2 ↑ ↑ ↓↓↓ ↑↑ ↑ ↑ ↑↑ ↑↑ ↑↑↑↑
A2 → Ab ↓ ↓ ↓ ↓ ≈ ↓ ↓ ↑ ↓↓↓
Ab → Bt ↑↑↑↑ ↑ ↑↑ ↑↑↑↑ ↓ ↑ ↑↑↑ ↓↓ ↑↑↑
≈: change of <1 %, ↑/↓: increase/decrease of 1–5 %, ↑↑/↓↓: increase/decrease of 5–10 %, ↑↑↑/↓↓↓:
increase/decrease of 10–20 %, and ↑↑↑↑: increase of >20 %

Fig. 11.7 Soil profile maps showing spatial variation of a mixed, superactive, mesic Pachic
Argiudolls in Wisconsin, USA. Soil samples (n = 100) sampled from the center of 10 × 10 cm
raster squares. a SOC concentration and b soil pH were obtained in the laboratory. Soil profile
maps were created for each soil property by locating the measured values of each soil sample in the
center of its column and depth interval then spatially interpolating the soil property values over the
soil profile wall using block kriging and global variograms in Vesper 1.6 (Australian Center for
Precision Agriculture)
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The soil profile map of soil pH consisted mainly of two layers: a layer of high
soil pH at about 10–40 cm soil depth and a layer of low soil pH at 50–90 cm soil
depth (Fig. 11.7). Thin layers of medium soil pH occurred at about 0–10 cm, 40–
50 cm, and 90–100 cm soil depth. An area of medium-high soil pH occurred at
about 90–100 cm soil depth. All of the layers had wavy boundaries.

11.3.5 Soil Profile Maps of Elemental Concentrations

Al

The soil profile map of Al concentration showed a pattern of increasing Al con-
centration with depth in the horizontal range of 0–80 cm (Fig. 11.8). At 80–100 cm

Fig. 11.8 Soil profile maps showing spatial variation of a mixed, superactive, mesic Pachic
Argiudolls in Wisconsin, USA. Soil samples (n = 100) from the center of 10 × 10 cm raster
squares. Elemental concentrations of a Al, b Ca, c Fe, d Mn, e P, and f Si were obtained in the
laboratory using pXRF. Soil profile maps were created for each soil property by locating the
measured values of each soil sample in the center of its column and depth interval then spatially
interpolating the soil property values over the soil profile wall using block kriging and global
variograms in Vesper 1.6 (Australian Center for Precision Agriculture)
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horizontally, the Al concentration remained relatively constant with depth. The
increase in Al concentration with depth occurred irregularly. The greatest increase
in Al concentration with depth occurred at 20–40 cm horizontally.

Ca

The soil profile map of Ca concentration showed a pattern of decreasing Ca con-
centration with depth (Fig. 11.8). The soil profile map of Ca concentration had three
main layers: a top layer of high Ca concentration, a middle layer of medium Ca
concentration, and a bottom layer of low Ca concentration. The top layer had an
irregular lower boundary, beginning at 20–30 cm soil depth at 0–10 cm horizontally
then decreasing in depth and becoming more diffuse. The middle layer had a less
irregular but still wavy lower boundary. Also, a few areas of increasing Ca con-
centration with depth occurred: at 70–100 cm horizontally at 0–20 cm soil depth, at
0–40 cm horizontally at 40–60 cm soil depth, and at 50–60 cm horizontally at 50–
80 cm soil depth.

Fe

The soil profile map of Fe concentration had two large areas: an area of low Fe
concentration in the upper 30–50 cm of the soil profile and an area of medium
concentration located between 30 cm and 100 cm soil depth (Fig. 11.8). Small areas
of high Fe concentration occurred between 60 cm and 80 cm soil depth. An area of
low Fe concentration occurred below 70 cm soil depth at 50–100 cm horizontally.

Mn

The soil profile map of Mn concentration contained three main layers: a layer of
low Mn concentration at about 0–70 cm soil depth, a layer of medium Mn con-
centration at about 70–100 cm soil depth, and a layer of high Mn concentration at
about 90–100 cm soil depth (Fig. 11.8). The boundary between the top and the
middle layers occurred at 60–80 cm soil depth at 0–60 cm horizontally and at 90–
100 cm horizontally. At 60–90 cm horizontally, the layer of medium Mn con-
centration had a tongue-shaped extension, which stretched up to about 40 cm soil
depth. At 20–70 cm horizontally, the boundary between the middle and the bottom
layers occurred at 80–90 cm depth, but the boundary occurred at 90–100 cm depth
elsewhere in the profile.
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P

The soil profile map of P concentration showed an apparently random distribution
of P content in the profile (Fig. 11.8). The map had scattered areas of high, medium,
and low P concentration.

Si

The soil profile map of Si concentration showed a pattern of decreasing Si con-
centration with depth in the top 70 cm of the profile (Fig. 11.8). A region of high Si
concentration occurred in the top 0–50 cm of the soil profile. Small areas of
medium-high to high Si concentration occurred below 50 cm soil depth. Areas of
low Si concentration occurred between 30 and 70 cm soil depth and below 90 cm
soil depth.

11.4 Discussion

11.4.1 Application of Digital Soil Morphometrics

In this study, we applied digital soil morphometrics to quantitatively measure soil
profile properties, to create continuous depth functions, and to investigate spatial
variation of soil properties in a soil profile wall (Hartemink and Minasny 2014).
The technique of rastering allowed us to study horizontal and vertical variation at
fixed depth increments and to create soil property depth functions and soil profile
maps showing the variation of soil properties. We used the pXRF analyzer and the
TDR to obtain rapid measurements of elemental concentrations and volumetric soil
moisture content. A similar approach was used by Adhikari et al. (2016) who
applied soil profile wall rastering, TDR, pXRF, and spatial interpolation to study
soil profile properties. In a study of soil hydrology, Netto et al. (1999) used a grid
method to study horizontal and vertical variation, sampling every 10 cm horizon-
tally over a 1.2 m distance, and sampling nine depth ranges (5–6 cm deep) between
0 and 1.05 m soil depth. Schwen et al. (2014) used a three-dimensional raster
sampling scheme to study solute movement and soil physical properties in soil
pedons, sampling every 10 cm in each dimension.

Digital soil morphometrics enables investigation of variation within soil profiles,
variation that would be overlooked when using traditional methods. Buddenbaum
and Steffens (2012) imaged an undisturbed soil profile in the laboratory using
high-resolution vis-NIR (400–1000 nm) spectroscopy. They detected spatial vari-
ation within the profile using the resulting images. Steffens et al. (2014) used the
same technique to identify SOM fractions in a visually uniform organic soil profile.
Roudier et al. (2016) collected spectroscopic (350–2500 nm) images of three soil
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profiles in the laboratory. Using principal component analysis and segmentation,
they created false color images showing horizontal variation within the profile.
They also found vertical variation within horizons and the presence of a possible
horizon boundary not detected when horizonating the soil profile using traditional
characterization tools and techniques.

11.4.2 Horizontal Variation of Soil Properties

All studied soil properties demonstrated horizontal variation within the soil profile.
The extent of horizontal variation changed with depth. The magnitude and direction
of these changes showed no general pattern, differing between soil properties. In
their study of a Psamment soil profile, Adhikari et al. (2016) observed considerable
horizontal variation and soil property-dependent patterns of variation. Netto et al.
(1999) observed considerable horizontal variation of volumetric soil moisture
content in coarse-textured soil profiles.

Cultivation and Bioturbation

The lowest horizontal variation of soil pH occurred in the top 30 cm of the soil
profile, and the lowest horizontal variation of Al, Fe, Mn, Si, Ti, and Zr concen-
trations occurred in the top 40 cm of the soil profile. The Al, Fe, Mn, Si, Ti, and Zr
concentrations also demonstrated low vertical variation between 0 and 40 cm soil
depth. This 0–40 cm depth range corresponded to the location of the Ap1 and Ap2
horizons, the horizons that have undergone haploidization due to plowing and
sedimentation. Other studies have found low spatial variation in the top 30–40 cm
of soil profiles with a history of cultivation. Adhikari et al. (2016) noted that the
lowest spatial variability occurred in the top 40 cm of their soil profile. Franklin
et al. (2003) found no difference between the concentrations of Al, Fe, Mn, Zr, and
Ti and twenty other elements between the 0–15 cm and the 15–30 cm soil depth
ranges in 27 soil profiles with a history of cultivation.

Haploidization due to cultivation of the top 40 cm cannot completely explain the
spatial variation of soil pH at the 0–40 cm soil depth. The soil pH demonstrated
vertical variation at 0–40 cm soil depth and horizontal variation at 30–40 cm soil
depth. Soil haploidization due to bioturbation may have contributed to low hori-
zontal variation of pH. Bioturbation can reduce variation in soil and tends to occur
most intensely near the soil surface (Hole 1981; Wilkinson et al. 2009).

SOC

The SOC concentration increased with depth at 30–70 cm soil depth, possibly due
to a decreasing rate of decomposition of soil organic matter (SOM). With increasing
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soil depth, SOM decomposition rates tend to decrease (Gregorich et al. 1998;
Helgason et al. 2014). The horizontal variation of SOC concentration was more or
less constant at all depths except 70–80 cm soil depth. The higher horizontal
variation of SOC at 70–80 cm resulted from the presence of the boundary between
the Ab horizon and the subsoil (Bt horizon). This boundary effect seems to increase
spatial variation of SOC concentration. Mapping a soil profile using high-resolution
vis-NIR spectroscopy, Steffens and Buddenbaum (2013) found larger spatial vari-
ability in the transition zone between the topsoil (A) and the subsoil (E) horizons of
their profile than within the individual horizons.

Volumetric Moisture Content

The volumetric moisture content demonstrated horizontal variation with standard
deviations between 2 and 8 %. Netto et al. (1999) found moderate horizontal
variation (CV 5–20 %) in a coarse-textured soil profile and non-significant corre-
lation of the volumetric moisture content horizontally.

Al and Si

The Al and Si concentrations demonstrated increasing horizontal variation with
depth at 70–100 cm soil depth, the depth range containing the Bt horizon. The
increasing variation probably reflects increasingly irregular distribution of illuviated
aluminosilicate clays with depth. The low spatial variation of Al and Si concen-
trations in the top 40 cm of the soil profile may result from an even distribution of
aluminosilicate clay. At 40–70 cm soil depth, Al concentration showed low spatial
variation, but Si concentration showed high spatial variation. A factor other than
distribution of aluminosilicate clays is needed to explain the variation of Al and Si
concentrations at 40–70 cm soil depth.

11.4.3 Utility of Soil Depth Functions

Soil profile studies have used soil depth functions to help characterize soil profiles
and identify soil processes (e.g. Gaikawad and Hole 1965; Eswaran and Bin 1978).
Minasny et al. (2016) used soil depth functions to derive soil horizon boundaries.
However, the soil property depth functions in our soil profile changed between
vertical transects. Sampling the vertical transect at 0–10 cm horizontally resulted in
different depth functions for most soil properties than sampling the adjacent vertical
transect at 10–20 cm horizontally or sampling the vertical transect at 90–100 cm
horizontally. Only the depth functions of SOC concentration and soil pH main-
tained relatively constant shapes across the ten vertical transects.
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11.4.4 Ti and Zr

The Ti concentration remained relatively constant throughout the soil profile. The
Zr concentrations divided the soil profile into three zones: a region of medium Zr
concentration at 0–40 cm soil depth, a region of low Zr concentration at 40–70 cm
soil depth, and a region of high Zr concentration at 70–100 cm soil depth. Since Zr
is relatively immobile in the soil, changes in Zr concentrations may reflect differ-
ences in parent material (Schaetzl 1998). The top 100 cm of this soil profile formed
in loess, but loess from different depositional events may differ in chemical com-
position (Muhs and Bettis 2000). The decrease in Zr concentration at 40 cm soil
depth may result from the loess parent material having a different chemical com-
position as compared to the 40–70 cm soil depth. The 40–70 cm soil depth con-
tained the majority of the buried A horizon with approximately 20 cm of deposited
material above it. This 20 cm of deposited material may have been transported from
nearby areas with the same type of loess parent material as the buried A horizon.
The increase in Zr concentration at 70–80 cm soil depth may result from a different
loess parent material.

11.4.5 Variation Within and Between Soil Horizons

We found that soil properties show considerable horizontal and within-horizon
variation, variation that cannot be detected using one-dimensional vertical sampling
schemes. We found moderate to very high spatial variation of at least three soil
properties within all horizons studied. This high within-horizon variation implies
that horizon characterization using one sample per horizon does not always estimate
the average value of a soil property within the horizon.

Stolt et al. (1993) found considerable variation of soil properties within soil
horizons. They used four soil samples from the corners of 1 × 1 m lateral horizon
cross sections. They found an average CV of 10 % and a maximum CV of 40 % for
extractable Al and Fe within Bt horizons. They suggested taking multiple samples
from a soil horizon to increase the accuracy of soil profile characterization.

SOC, Al, and Si

In our soil profile, the SOC, Al, and Si concentrations demonstrated high
within-horizon variation in the Bt horizon. The high variation of Al and Si con-
centrations may result from the uneven distribution of illuviated aluminosilicate
clays. SOM may have been transported into the Bt horizon in conjunction with clay,
contributing to high variation of SOC in the Bt horizon. SOC can be transported
within a soil profile as clay-humus chelates (Miedema et al. 1999). Another factor
that could have contributed to the high variation of SOC may be spatially localized
sources of SOM, for example, plant roots and fungal hyphae.
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The high to very high increase in within-horizon variation of Al and Si con-
centrations between the Ab and the Bt horizons may occur because of the lower
concentration and possibly more even distribution of clay and of clay-associated
SOM in the Ab horizon. This may also partly explain the change in within-horizon
variation of SOC concentration. However, most of the SOC in the Ab horizon
resulted from the horizon being a former surface horizon. The low within-horizon
variation of SOC concentration in the Ab horizon may result from bioturbation that
occurred when the horizon was at the soil surface.

The increase in SOC concentration between the A2 and the Ab horizons prob-
ably results from the preservation of SOC in the Ab horizon. As the surface horizon
of a Mollisol, the Ab horizon would have contained high SOC concentration, and
the burial of the horizon probably resulted in very low SOM decomposition rates,
thus preserving SOC. SOM decomposition rates tend to decrease with increasing
depth from the soil surface (Gregorich et al. 1998; Helgason et al. 2014).

A decrease in the SOM decomposition rates with depth may have contributed to
the increase in SOC concentration between the Ap2 horizon and the A2 horizon.
Increased decomposition rates in the Ap2 horizon due to tillage may also have
contributed to the increase in SOC concentration between the Ap2 horizon and the
A2 horizon. Tillage generally increases the rate of SOM decomposition, thus
reducing SOC concentration (Martel and Paul 1974; Tisdall and Oades 1982; Puget
and Lal 2005).

Fe and Mn

The Fe and Mn concentrations demonstrated the highest within-horizon variation in
the Bt horizon. Much of this variation resulted from the occasional saturation of this
horizon, as evidenced by the presence of redoximorphic features. Mobility of Fe
and Mn tends to increase with soil saturation due to decreased oxygen concentra-
tion, reducing Fe and Mn concentrations in parts of the soil horizon (Christensen
et al. 1951; Callebaut et al. 1982; Patrick and Jugsujinda 1992). Conversely, Fe and
Mn precipitate when the horizon drains and reoxidizes, thus increasing Fe and Mn
concentrations in parts of the soil horizon (Gotoh and Patrick 1972, 1974; Atta et al.
1996). The low density of redoximorphic features in the Bt horizon implies that the
soil horizon primarily experienced short-term saturation. The predominant
short-term saturation explains the high within-horizon variation of Mn and the low
within-horizon variation of Fe in the Bt horizon. Mn becomes mobile in less
reducing conditions than Fe and thus is transported in periods of saturation too short
to produce the degree of reduction needed to transport Fe (Olomu et al. 1973;
Patrick and Jugsujinda 1992).
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11.4.6 Interpretations of Soil Profile Maps

SOC

The soil profile map of SOC concentration confirmed the presence of three main
horizons: an A horizon formed in material deposited by soil erosion, the buried A
horizon, and the Bt horizon. The third layer we designated as a transition zone
between the Ab and the Bt horizons because the Ab/Bt horizon boundary occurred
in this layer and because based on the high horizontal variation of SOC concen-
tration at 70–80 cm depth, the sampling occurred around the Ab/Bt boundary. The
wavy boundaries of this transition zone imply a wavy Ab/Bt boundary.

pH and Ca

The soil profile map of soil pH divided the soil profile differently than the soil profile
map of SOC concentration. The high soil pH of the second layer likely resulted from
liming and incorporation of lime by tillage, and the top layer probably had a similar
soil pH when the soil was regularly limed and plowed. The medium soil pH of the
top layer likely resulted from a decrease in soil pH due to acidification processes
such as additions of acids to the soil by rainfall and production of organic acids by
plant roots and microbes (Gerretsen 1948; Jones and Darrah 1994). Together these
top two layers corresponded to the A horizons that showed evidence of cultivation,
the Ap1 and Ap2 soil horizons. The bottom layers of the soil profile map did not
correspond with soil horizons. The thin third layer is a transition zone between the
second and the fourth layers, the two main layers of the soil profile map. The fourth
layer, a layer of low pH, probably resulted from this soil being below the region of
lime incorporation. The increase in pH at around 85 cm soil depth may have resulted
from the upward movement of water through underlying calcareous material,
although the lowest Ca concentrations in the soil profile also occurred in this region.

The soil profile map of Ca concentration divided soil profile differently than the
soil profile maps of SOC concentration and soil pH. The high Ca concentration in
the top layer probably resulted from the application and incorporation of lime. The
high horizontal variation of Ca concentration in the top layer may result from
spatially differing levels of Ca removal by plant uptake and leaching. The second
layer of the profile map may contain the Ca concentration of the soil with minimal
additions through liming. However, Ca leached from above may have raised the Ca
concentration in this layer. This could help explain the decrease in Ca concentration
below the second layer. The lower layer of the profile map occurred within the Bt
horizon, which had a finer texture than the horizons above. This change in texture
would slow downward movement of water, reducing the amount of Ca received
through leaching. However, part of the Bt horizon was located within the middle
layer. Preferential flow increasing the amount of Ca received through leaching or
reducing the amount of Ca removed by leaching may explain this discrepancy.
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11.5 Conclusions

A raster sampling scheme can be used to examine horizontal and vertical variation
within a soil profile, as well as within- and between-horizon variation of soil
properties. However, this sampling scheme can also result in sampling at horizon
boundaries, thus obtaining samples containing soil from two different horizons.

Profile maps of soil properties can be used to detect patterns in spatial distri-
bution of soil properties. Distribution of SOC concentration has potential for
establishing the location of horizon boundaries. Distribution of Ca concentration
has potential for establishing the location of boundaries between an A horizon and a
subsoil horizon of Mollisol.

The studied soil properties demonstrated horizontal variation within the distance
of 1 m. SOC concentration and pH demonstrated fairly consistent responses to
changes in depth within the distance of 1 m. The other soil properties demonstrated
different responses to changes in depth depending on the vertical raster column
studied. To accurately characterize soil property changes with depth, depth func-
tions may require several vertical sampling transects of the soil profile.

Within-horizon variation occurred in all the soil horizons. The magnitude of the
variation depended on the soil horizon and the soil property. Overall, the
within-horizonvariationof the soil properties studiedwas highest in theBt horizon and
lowest in the Ap2 horizon. The soil pH and the Fe concentration exhibited low
within-horizon variation. The Al concentration and the volumetric moisture content
were the only soil properties which did not demonstrate low within-horizon variation
in any horizon. The volumetric moisture content and the SOC, Al, Mn, P, and Si
concentrations each exhibited high within-horizon variation in at least one horizon.
The lowest within-horizon variation of Ca, Mn, and Si concentrations occurred in the
cultivatedhorizons (Ap1 andAp2) of this profile. The surfacehorizon (Ap1) contained
high within-horizon variation of Al concentration and moderate within-horizon vari-
ation of volumetric moisture content and SOC, P, and Si concentrations. Below the
surface horizon, the within-horizon variation tended to increase with depth.
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Chapter 12
Mapping a Profile Wall of a Typic
Udipsamments from the Central Sands
in Wisconsin, USA

Kabindra Adhikari, Alfred E. Hartemink and Budiman Minasny

Abstract We measured and mapped the spatial distribution of Al, Si, Fe, Mn, Ca,
pH, soil moisture content (θ), and color of a soil profile wall of a Typic
Udipsamments. A 10 × 10 cm grid was laid on the soil profile wall, and 70 soil
samples were collected from the grid centers. The spatial distribution of these
properties was mapped with block kriging. The kriged values of the elements and
red color were used in k-means clustering to identify soil horizons. Variation in the
profile was considerable, but we observed that Fe, Mn, Ca, pH, and θ decreased
with soil depth, while red color increased. The concentration of Al and Si increased
at depth between 30 and 60 cm from the soil surface. The k-means clustering was
able to locate three soil horizons in the profile, which was comparable to the
standard soil profile description. We found that pXRF and soil color index coupled
with clustering could be useful in digital soil morphometrics for the identification of
soil horizons.

Keywords Digital soil morphometrics � Soil horizons � pXRF � k-means
clustering

12.1 Introduction

Soil profiles comprise of a number of layers or horizons, which are often parallel to the
land surface and are less heterogeneous in terms of properties and processes by which
they are formed. The horizons are more or less continuous one to another in geo-
graphic, temporal, and character space (FitzPatrick 1988). Generally, soil horizons are
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formed by the addition or removal of materials and its translocation or transformation
within the profile. Inmost profiles, horizons are distinct in color with sharp boundaries
making it straightforward to differentiate, but in many soils, the color or other diag-
nostic property changes gradually so that the boundaries are difficult to establish
(Brady and Weil 1996). Delineation of horizons in a soil profile needs a careful
examination of soil properties, understanding of the physicochemical and biologic
processes involved, and information on soil–landscape relations of the area where the
profile is located. Bridges (1993) stated that it is impossible to ignore soil horizon
designations, as they have become an integral part in soil science communications
from local, national, and international levels.

In pedology, where describing soil profiles and horizons is important (Bockheim
et al. 2005; Butler 1980; Kellogg 1974), a number of tools and techniques have
been developed to observe and measure soil properties in situ or in the laboratory.
The application of such tools and techniques for measuring and mapping soil
properties, such as texture, structure, color, carbonates, moisture, mottles and
redoximorphic features, pores and roots, and horizon depth and boundaries, is
called digital soil morphometrics (Hartemink and Minasny 2014). Digital mor-
phometrics employs tools such as electrical resistivity, ground-penetrating radar,
portable X-ray florescence spectrometry (pXRF), Vis–NIR, digital cameras, and
profile cone penetrometer to measure soil properties and in the identification and
mapping of soil horizon depths and boundaries (e.g., Chaplot et al. 2001; Doolittle
and Collins 1995; Fajardo et al. 2015; Rooney and Lowery 2000; Steffens and
Buddenbaum 2013; Tabbagh et al. 2000; Weindorf et al. 2012). Among all, pXRF
offers a way of quantifying elemental concentration in the soils and has been used
for soil horizon identification (Weindorf et al. 2012). Similarly, usefulness of Vis–
NIR coupled with fuzzy clustering has been reported to recognize soil morpho-
logical horizons from Australia (Fajardo et al. 2015). As the soil varies continu-
ously with depth, modeling and mapping soil depth functions is important in digital
soil morphometrics. Minasny et al. (2016) provide some insights into the distri-
bution of soil properties as a function of depth, and Adhikari et al. (2013, 2014)
report some examples of modeling and mapping soil properties’ depth functions.

Soil profile data collected with different morphometric tools and its grouping or
clustering based on similarities could be used to identify soil horizon boundaries.
The use of k-means clustering has been used in soil horizon classification
(McBratney and Gruijter 1992; Triantafilis et al. 2001). Data clustering is mostly
done for grouping soil class on a lateral spatial extent. For example, Webster (1973)
determined soil boundaries along transects automatically by calculating the
Mahalanobis distance of the soil properties along a width “window.” We use this
principle for identifying horizon boundaries based on vertical measurements of a
profile wall. This study aims to map the soil profile wall of a Typic Udipsamments
using digital soil morphometrics. The objectives were (i) to map the spatial dis-
tribution of Al, Si, Fe, Mn, Ca, pH, θ, and soil color in the soil profile wall of
100 cm × 70 cm dimension and (ii) to use elemental concentration and soil color to
identify soil horizons.
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12.2 Materials and Methods

12.2.1 Study Site Description

The study site was located in Adams County in the central-south part of Wisconsin,
USA (latitude 43° 53′ 41.82″N; longitude 89° 41′ 30.66″W). The area is known as
Central Sands where soils are developed on glacial outwash and are relatively
young (<15,000–17,000-year-old). Soils of this area were Plainfield series and
classified as Mixed, mesic Typic Udipsamments (USDA 1999). A typical soil
profile of a Plainfield series consists of four to five soil horizons: Ap (*0–18 cm),
Bw1 (*18–41 cm), Bw2 (*41–71 cm), BC (*71–92 cm), and C (>92 cm). We
have found that these soils under intensive agriculture have a topsoil depth of
29 cm. Topography in the study area is flat (1 % slope) with an elevation of about
325 m asl. These soils are under agriculture with sweet corn, potatoes, and soybean
as main crops. The soils are irrigated with 200–300 mm of water annually.
Figure 12.1 displays the location of the study site in the Central Sands with the
distribution of entisols, including Udipsamments, in Wisconsin.

12.2.2 Soil Sampling

A soil profile of 1 m3 dimension was opened in July. A 10 × 10 cm grid net was laid
down on the profile wall covering 0.7 m2 area, and the grid corners were marked
with pegs (Fig. 12.1). Soils were sampled from each grid center and in total 70
samples were collected from the profile. Colors were determined with the Munsell
color chart, and volumetric soil moisture content (θ) was measured with a
time-domain reflectometry (TDR) (Spectrum FieldScout TDR 300). Each sample
was air-dried, ground, and scanned in the laboratory with a Delta Professional
pXRF Analyzer (Olympus Scientific Solutions Americas, Inc.) for 30 s in geo-
chemical mode, and the data on elemental concentration of aluminum (Al), silica
(Si), iron (Fe), manganese (Mn), and calcium (Ca) were collected. For the color,
hue, value, and chroma obtained from the Munsell color chart were converted to
red, green, and blue color coordinate using the algorithm for quantitative pedology
package (Beaudette et al. 2013). Samples were analyzed for soil pH measured in
water at a soil-to-water ratio of 1:1.

12.2.3 General Statistics and Mapping

The distribution of soil properties by depth was analyzed considering mean, stan-
dard deviation, median, CV, and interquartile range. Box plots of each soil property
at each 10-cm soil depth interval were generated (SAS Institute Inc. 2013).
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Autocorrelation and spatial distribution of the selected soil properties on the profile
wall were analyzed and mapped using isotropic variogram and block kriging using
Vesper (Minasny et al. 2005). We used block kriging of 10 cm × 10 cm size over
the point kriging because we assumed it represents the average value of the property
for that grid. Spatial dependency of the soil properties was evaluated with
nugget-to-sill ratio (NSR) with NSR < 0.25, strong; 0.25 < NSR > 0.75, moderate;
and NSR > 0.75, weak spatial dependence (Cambardella et al. 1994).

NSR ¼ C0

C0 þC1
ð12:1Þ

where C0 and C1 are the nugget and partial sill of the variogram model.

Fig. 12.1 Distribution of Udipsamments and the location of soil profile in Wisconsin. The profile
wall displays the 10 × 10 cm grid net established for soil sampling
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12.2.4 k-Means Clustering

We grouped the values of the measured soil properties based on similarities using
k-means clustering algorithm (MacQueen 1967). The k-means is a common unsu-
pervised learning algorithm to classify a given data set through a certain number of
clusters fixed a priori. The objective function of the k-means aims at minimizing the
squared error function (Eq. 12.2):

J ¼
Xk

j¼1

Xk

i¼1

xðjÞi � cj
���

���
2

ð12:2Þ

where xðjÞi � cj
���

���
2
is a chosen distance measured between data point xðjÞi and the

cluster center cj and indicates the distance of the n data points from their respective
cluster centers.

The clustering analysis was done in JMP software (SAS Institute Inc. 2013)
using the block-kriged values of Al, Si, Fe, Mn, Ca, and red color as inputs. The
procedure was as follows:

1. Define the number of clusters or seeds (k-cluster);
2. Assign each observation to the closest cluster;
3. Calculate the centroid of each cluster (k centroid);
4. Replace seeds with centroid and reassign the observations; and
5. Continue until the clusters are stable.

We clustered the soil properties’ values with the initial cluster set to two and then
repeated the process with subsequently increasing the cluster numbers to five
assuming two to five soil horizons within 70 cm depth.

12.2.5 Selecting the Cluster

Once the values were partitioned into four different cluster sets (k = 2, 3, 4, 5), they
were displayed as corresponding cluster maps. Among the four different cluster
maps, the best map that represents the observed soil horizon boundaries was selected
using the cubic clustering criterion (CCC). The CCC can be used to estimate the
optimum number of clusters in k-means clustering. It compares the R2 of clusters
with the R2 of a uniformly distributed set of points with the highest CCC value for
the most optimal cluster set. The CCC can be computed from the observed R2.

CCC ¼ ln
1� EðR2Þ
1� R2

� �
ffiffiffiffiffi
np�
2

q

ð0:001þEðR2ÞÞ1:2 ð12:3Þ
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where E(R2) the expected value of R2 derived from extensive simulations, n the
number of observations, and p* the between cluster variation.

12.3 Results

12.3.1 Soil Properties

Descriptive statistics of soil properties from the soil profile wall are given in
Table 12.1. Among the soil properties, Mn was most highly variable (CV = 48 %)
followed by Al and Si (CV = 33 and 32 %, respectively), whereas the pH was least
variable (CV = 5 %). Average Fe content of the profile was 5197 mg kg−1 with a CV
of 32 % which is comparable to Si (CV = 32 %) but was slightly higher than that of
Ca (CV = 26 %). With soil depth, the average value of Al and Si increased to
50/60 cm below the surface and decreased thereafter. The Fe levels decreased with
soil depth, but the decrease was gradual with the lowest Fe levels at 60–70 cm depth.
The levels of Mn and Ca were high in the surface layer and decreased with depth.
The maximum variation of Fe and Ca was observed at 0–10 cm depth. Similarly, pH
and soil moisture were higher and less variable in the surface layers, but variation
increased below 30 cm. The red color was at lowest and more variable in the surface
and increased sharply with depth, with maximum values at 60–70 cm soil depth. The
variation of Al and Si was maximum at 20–30 cm soil depth and minimum at 30–
40 cm. Figure 12.2 shows the box plots of the soil properties at 0–70 cm depth.

12.3.2 Maps of Soil Properties

The variogram parameters used for each soil property mapping are listed in
Table 12.2. The levels of Ca showed a short limited variation compared to other

Table 12.1 Descriptive statistics of measured soil properties from the profile wall (dimension
100 cm × 70 cm)

Soil
property

Aluminum
(mg/kg)

Silica
(mg/kg)

Iron
(mg/kg)

Manganese
(mg/kg)

Calcium
(mg/kg)

Red
color
index

pH Moisture
(cm3/
cm3)

Minimum 3000 15,018 1955 0 2522 111 5.3 6.2
Maximum 11,800 104,300 10,890 479 8480 201 6.5 18.1
Mean
(± SD)

7267
(±2451)

73,726
(±23,518)

5197
(±1608)

121
(±107)

3947
(±1033)

152
(±26)

5.9
(±0.3)

12.1
(±2.5)

CV, % 33.7 31.9 30.9 48.7 26.2 17.1 5.3 21.1
Median 7600 81,950 5715 98 3619 148 5.8 12.5
IQ range 4275 23,049 1893 213 1114 33 0.5 4.1
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Fig. 12.2 Box plots showing the depthwise distribution of aluminum (Al), silica (Si), iron (Fe),
manganese (Mn), calcium (Ca), red color index, pH, and soil moisture (θ) at each 10 cm depth
increment in the soil profile. The continuous line represents the average value of measured soil
properties and the values increases from yellow to dark red

Table 12.2 Variogram parameters of soil properties

Soil property Variogram model C0
a (mg/kg)2 C1

a (mg/kg)2 A, cm NSRa

Aluminum Exponential 851,364 6,002,548 37 0.12
Silica Spherical 209 × 105 377 × 105 39 0.26
Iron Gaussian 208,183 3,249,967 38 0.06
Manganese Gaussian 1689 15,787 42 0.10
Calcium Gaussian 2262 10,000 33 0.18
Red color index Gaussian 80 1006 45 0.07
pH Spherical 0.01 0.12 50 0.08
Soil moisture Gaussian 0.62 8.6 35 0.07
aC0 nugget; C1 partial sill; A range; and NSR nugget-to-sill ratio
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elements, all sharing a comparable range between 33 and 42 cm, but pH had the
highest range of 60 cm and was least variable (CV = 5.3 %). All soil properties had
strong spatial dependence (NSR < 0.25) except for Si which showed a moderate
spatial dependence (NSR = 0.36). The predicted maps (Fig. 12.3) of Ca, Mn, and Fe
showed that these elements were mostly confined to the surface horizons with Ca
mostly within the top 20 cm, Mn to 40 cm, and Fe to 50 cm depth. The red color
increased with depth where maximum values were recorded below 60 cm. The
concentration of Si, and Al, was higher at 25–60 cm, and a lower level of Al was also
recorded below 60 cm. Soil pH was higher at 0–20 cm and decreased below 30 cm.
The pH map was irregular and patchy. Soil moisture showed a similar pattern with
higher values at the surface. The soil moisture map also reflected the crop row
(soybean) influence with relatively lower moisture content between the crop rows.

12.3.3 Cluster Maps and Soil Horizons

Clustering of the kriged values of soil properties produced four maps (Fig. 12.4),
each for one set of a defined cluster (k = 2, 3, 4, and 5). For cluster two and three,
the first horizon boundary is at a depth of about 30 cm (Fig. 12.4a, b) and the
second horizon boundary at about 55 cm depth (Fig. 12.4b). Cluster four divides
each of the first and second horizons of cluster two (Fig. 12.4a) into two new
horizons (Fig. 12.4c). Cluster five defined a small portion of the first horizon as a
possible new horizon (Fig. 12.4d). For all cluster maps except cluster two, the last
horizon boundary is at a same depth of about 55–60 cm from the soil surface.

Among the four cluster maps, the highest CCC was found for cluster three
(CCC = 49.6) (Fig. 12.5a). Cluster two had the lowest CCC of about 15 and that for
cluster five was 46. Cluster three was selected to represent soil horizon boundaries
in the profile. Figure 12.5b plots the points and clusters in the first two principle
components of the input data (i.e., PC1 and PC2) that exceeded the eigenvalue of 1.
The eigenvalues for PC1 and PC2 were 4.2 and 1.4, respectively. Soil properties
falling along PC1 axis were Ca, Mn, and red color index, whereas those along PC2
were Al and Si with higher loadings of these elements. Fe content, however, was
between the two PCs with a moderate loading.

For the selected cluster, Table 12.3 lists the mean and standard deviation of the
soil properties in each cluster. For cluster one, Mn was the most variable element
(CV = 75 %) followed by Fe (CV = 25 %). Ca and red color index both shared a
similar variability (CV = 4.3 %). Cluster one had the maximum average for red
color index, whereas cluster two had the lowest Si but highest Fe, Mn, and Ca.
A maximum level of Si and Al was present in cluster three.

A positive correlation was found between the elements Al and Si, and Fe with
Mn and Ca. Red color index had a negative correlation with Mn, and Ca, and a
positive correlation with Si. Similarly, both Al and Si were negatively correlated
with Ca and Mn. The Al levels showed no relation with Fe, with the red color index
(Fig. 12.6).
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Fig. 12.4 Map of four different sets of k-clusters; a k = 2; b k = 3; c k = 4; and d k = 5, showing
possible horizon boundaries in the profile wall

Fig. 12.5 a Plot of cubic clustering criterion versus number of k-cluster sets and b the first two
principle components (PCs) of the points (dark color) and of the most appropriate cluster set
(k = 3) indicated as light color

Based on the observations, the soil profile had three horizons, namely Ap
(*0–18 cm), Bw1 (*18–41 cm), and Bw2 (*41–71 cm). The cluster map sug-
gested the three horizons, but the depth of these horizon boundaries was deeper than
that of the observed horizon depth. We found that the depth of Ap horizon ranged
between 0 and 27/30 cm, Bw1 between 27 and 30/54 cm, and Bw2 from 54 to
>70 cm (Fig. 12.4b).
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12.4 Discussion

12.4.1 Digital Soil Morphometrics

This study applied digital soil morphometric tools and techniques to collect soil
data and identify soil horizon boundaries of an Udipsamments profile wall.
A grid-based soil sampling design ensured capturing the variations of soil prop-
erties across the profile wall. Data collection using pXRF and TDR helped to
understand soil properties’ variations in a profile wall both in horizontal and in
vertical dimensions. The use of pXRF in soil properties’ data collection and
evaluation has been reported in other studies (e.g., Grauer-Gray and Hartemink
2016; Stockmann et al. 2016; Weindorf et al. 2012). A benefit of using morpho-
metrics is in the exploration of within-horizon soil variations, which is often

Fig. 12.6 Scatterplot matrix of soil attributes for the most appropriate cluster (k = 3). Light color
represents the cluster of the points in darker color
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overlooked in traditional soil pit descriptions. As an example, the first 27 or 30 cm
of our soil profile was identified as Ap horizon, but the distribution of Ca con-
centration within this horizon was heterogeneous; the mean value ranged between
5908 mg kg−1 at 0–10 cm and 3753 mg kg−1 at 20−30 cm. Similarly, the mean pH
also dropped from 6.3 at 0−10 cm to 5.9 at 20–30 cm. In case of Si, the upper
10 cm of Ap horizon was least variable (CV = 7 %) than the lower most 10 cm of it
where the maximum variation was found (CV = 62 %). Grauer-Gray and Hartemink
(2016) reported similar within-horizon variations in soil properties of a Mollisol
profile wall.

Use of geostatistics, which is common in soil science (Burgess and Webster
1980; Goovaerts 1999), allowed us to evaluate autocorrelation and spatial variations
of soil properties in the profile wall. Spatial prediction with block kriging repre-
sented our sample grid dimension. Grouping similar values of soil properties into
more homogeneous classes is a key to clustering and it has been used in soil
classification studies (e.g., Fajardo et al. 2015; McBratney and Gruijter 1992;
Powell et al. 1992; Webster 1973).

12.4.2 Variation in Soil Profile Wall

Soil properties were variable in the profile wall and displayed a well spatial
structure. Top 30 cm of the profile showed higher variation compared to lower
horizons. All elements and θ displayed short-range variations compared to pH and
red color which had a maximum range. All properties except Si had a strong spatial
dependence. The level of Al and Si was lower in the surface and higher at 20 to
60 cm, whereas the levels of Fe, Mn, Ca, pH, and θ gradually decreased.
Grauer-Gray and Hartemink (2016) found a lower Al in the surface soil horizons
where the levels of Ca and soil pH were higher. The nature of Al and Si, which are
related to clay minerals and their distribution in the profile, indicated that these soils
have lost some clay from the surface horizons, which is illuviated below 40 cm.
A second explanation is that the subsoils are enriched with aluminosilicate minerals
through mineral weathering. The higher levels of Mn, Fe, Ca, and pH in the surface
and their reduction with depth might be due to fertilizer application, irrigation,
liming or leaching. Similar effect of liming and leaching on the depth function of
pH and soil development has been reported from Denmark (Adhikari et al. 2014;
Madsen and Munk 1987). Likewise, higher moisture in the surface could be linked
to the irrigation. Although soil moisture is a dynamic property that is related to
texture, structure, soil carbon, irrigation, and precipitation, its content as measured
in the field is related to variation in soil texture and water-holding capacity (Mulla
1988; Reynolds 1970).
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12.4.3 Identifying Horizon Boundaries

The k-means clustering identified three soil horizons in the profile. The boundary
between cluster two (horizon Ap) and three (horizon Bw1) was determined by the
levels of Si, Al, and Ca. Horizon Ap had the lowest levels of Al, and Si, but the
highest level of Fe, Mn, and Ca. Horizon Bw1 was associated with the highest
concentration of Al and Si. Horizon Bw2 had minimum Fe, Mn, and Ca. These
findings suggest that aluminosilicate minerals, which are mostly related to clay
content, were leached from Ap and illuviated in lower horizons, mostly in Bw1 or
in situ formation of such minerals. The clustering technique was able to capture the
influence of agricultural activities such as fertilization, irrigation, and liming that
has increased the levels of Fe, Ca, and Mn on the surface soils for horizon boundary
designation.

12.5 Conclusions

This study demonstrated the usefulness of digital soil morphometrics for mapping a
profile wall with emphasis on the soil horizon boundary identification. The
methodology presented is a way of identifying and locating soil horizon boundaries
that would complement our pedological understanding. Based on the study, the
following can be concluded:

• Fe, Mn, Ca, pH, and soil moisture decreased with soil depth, while red color
value increased. Al and Si increased at a depth between 30 and 60 cm.

• Clusters of the kriged values of soil properties were able to locate three most
probable soil horizons in the soil profile.

• The pXRF and soil color can be useful tools for soil horizon delineation.
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Chapter 13
Comparative Analysis of Saturated
Hydraulic Conductivity (Ksat) Derived
from Image Analysis of Soil Thin Sections,
Pedotransfer Functions,
and Field-Measured Methods

Zamir Libohova, Philip Schoeneberger, Phillip R. Owens, Skye Wills,
Doug Wysocki, Candiss Williams and Cathy Seybold

Abstract Saturated hydraulic conductivity (Ksat) is an important soil parameter that
governs water movement through horizons, pedons, and soil landscapes. Ksat is
infamous for its spatial and temporal variability, which contributes to the difficulty
and considerable expense in measuring or otherwise quantifying it. Consequently,
predictive methods such as pedotransfer functions (PTFs) that use physical soil
properties, such as texture and bulk density, have been developed to derive Ksat

values. Soil texture and structure are key factors influencing Ksat because of their
direct relationship to pore size distribution. Quantitatively defining the combined
effects of texture and structure on pore size distribution in a PTF is a difficult task.
The objectives of this research were to: (i) estimate Ksat based on pore character-
istics derived from soil thin sections via image analysis; and (ii) compare the
resultant values with field-measured Ksat and with Ksat estimated by a PTF using
soil texture and bulk density parameters. We digitally scanned 39 thin sections from
11 pedons of soils derived from loess over till and/or over weathered sandstone.
Soil voids were classified based on their size and shape. Ksat was measured in the
field using a Compact Constant-head Permeameter (Amoozemeter) and estimated
using a Rosetta PTF. Simple and multiple linear regression (MLR) analyses were
used to relate pore indexes and soil physical properties with measured and esti-
mated Ksat. The mean measured Ksat was 0.74 cm h−1, whereas the PTF-estimated
Ksat from Rosetta and MLR were 0.36 cm h−1 and 0.49 cm h−1, respectively. The
addition of pore characteristics into the model improved Ksat predictions compared
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to predictions using Rosetta alone. The estimated Ksat based on the model with
added pore characteristics was better correlated with field-measured Ksat (r = 0.82)
than that based on Rosetta (r = 0.62). The addition of pore characteristics can
improve Ksat predictions. However, thin section void analysis from additional
parent materials is needed.

Keywords Saturated hydraulic conductivity (Ksat) � Thin sections � Image anal-
ysis � Pedotransfer functions � Soil porosity

13.1 Introduction

The success of hydrology modeling predictions depends on the accurate repre-
sentation of the spatial and temporal variability of major external drivers such as
weather, land use, land management, geomorphic surface, and soil hydrological
properties (Pachepsky et al. 2008). Saturated soil hydraulic conductivity (Ksat) is
one of the most important soil parameters in hydrological modeling because it
characterizes water movement through soils with direct and substantive impact on
streamflow timing and volume (Guber et al. 2006). Unfortunately, Ksat is also one
of the most difficult properties to accurately evaluate due to its variability over
short-range distances (Oosterbaan and Nijland 1994) and over time. The presence
of structural and/or root macropores has been identified as one of the major con-
tributors to Ksat variability (White 1985; Perret et al. 1999, 2003; Watson and
Luxmoore 1986). The terms “preferential flow” and “bypass flow” have been
applied by many researchers to acknowledge the presence and the mechanisms of
soil water movement through macropores (White 1985).

Although by definition Ksat is evaluated under saturated soil moisture conditions,
the presence of macropores combined with the effects of “boundary conditions”
between wet and dry soil matrices contributes to the variability in Ksat measure-
ments and results in overestimations of Ksat (Bouma et al. 1989). Many field
(in situ) and laboratory methods have been developed to overcome such limitations
(Reynolds and Elrick 1985). Some of the field measurement methods include
lysimeters (Barkle et al. 2010) and various constant or falling head permeameters
(Amoozegar and Warrick 1986; Amoozegar 1989). Whether Ksat is measured in situ
or in laboratory conditions, the methods have limitations related to the determi-
nation of an appropriate representative soil volume. A representative soil volume is
needed to reduce the measurement variability due to preferential flow and wet/dry
boundary conditions (Bouma et al. 1989; Mohanty and Mousli 2000). Techniques
such as X-ray computed tomography (CT) have been developed to better evaluate
the effects of macropores on Ksat by characterizing their size and distribution over a
larger volume of soil and in a nondestructive manner (Anderson et al. 1990; Peyton
et al. 1992, 1994). However, few studies exist on X-ray computed tomography
(CT) methodology that link their results with other soil physical properties for
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predictive Ksat (Peyton et al. 1994) and likewise other field methods are not very
practical for routine measurements.

Most Ksat field methods and techniques are expensive and time-consuming and
require many Ksat measurements over large areas and extended time periods to
capture spatial and temporal variability. Bouma et al. (1989) discuss some of the
morphological techniques for estimating the appropriate soil volume for represen-
tative measurements of Ksat in the field. They also recognized the challenges for
upscaling such soil hydrological parameters for modeling (Bouma 2006). Different
approaches to upscaling have been developed by researchers, but mostly rely on
pedotransfer functions (PTFs) (Guber et al. 2006). McKenzie and Jacquier (1997)
used successfully field soil morphological characteristics such as field texture, grade
of structure, areal porosity, bulk density, dispersion index, and horizon type for Ksat

predictions. Both visual and quantitative estimates of areal porosity provided sat-
isfactory results, with the quantitative method performing slightly better (McKenzie
and Jacquier 1997). The USDA-NRCS Kellogg Soil Survey Laboratory (KSSL) has
approximately 8000 soil thin sections that offer a unique opportunity to quantify the
role of porosity in improving Ksat predictions. Thin sections represent a small soil
area and like in situ field Ksat measurements are scale limited. However, the
incorporation of pore characteristics in modeling could potentially improve Ksat

predictions. This chapter aimed to: (i) assess the use of soil thin sections to char-
acterize the Ksat at the soil horizon level; and (ii) compare Ksat derived from thin
sections with measured values and with values derived from a published PTF.

13.2 Materials and Methods

13.2.1 Study Sites and Soils

The two study sites selected for this research are in Wabash and Dubois Counties,
Indiana. Soils in Wabash County are in the Northern Moraine and Central Till Plain
Physiographic Region which is characterized by low-relief landscapes (Franzmaier
et al. 2004). Soils in Dubois County are in the Southern Hills and Lowland
Physiographic Region (Franzmaier et al. 2004), which is characterized by
high-relief, bedrock-controlled hills (Franzmaier et al. 2004) (Fig. 13.1). Soils in
study area formed predominantly in loess over till (Wabash County) or in loess over
weathered materials from the underlying sandstone, siltstone, or shale (Dubois
County) (Wingard et al. 1980). The texture class for the study soils is silt loam, silty
clay loam, silty clay, or clay (Table 13.1).

The dominant soil series include Pewamo, Glynwood, and Blount in Wabash
County and Wellston and Gilpin in Dubois County. Soil characterization analyses
were conducted at the Kellogg Soil Survey Laboratory (KSSL) of USDA-NRCS,
Lincoln, Nebraska.
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Fig. 13.1 Study site locations and physiographic regions of Indiana
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13.2.2 Thin Section Image Processing and Analysis

We selected 39 horizons with prepared thin sections from 11 pedons. The horizons
were grouped as Ap (surface), Bt (subsurface), and C horizons (deepest). The thin
section dimensions were 2.0 × 3.5 cm, but we avoided the section edges during
scanning to minimize sample preparation artifacts. We analyzed pores via a
three-step process:

Step 1 Thin sections were scanned with an HP Officejet 6310 and edited with HP
Photosmart Software before image analysis. The scanned image resolution
was set at 7200 dpi and saved in “bmp” format, which is compatible with
ENVI (Environment for Visualizing Images, Version 3.2, Research
Systems Inc., Boulder, Colorado) image analysis software. We performed
an image enhancement before exporting the image to ENVI (Fig. 13.2a).
The enhancement process included brightness and contrast adjustments to
highlight pores by increasing contrast between the soil matrix and the
voids. This enhancement allowed a simple and efficient image
classification

Step 2 We imported the enhanced image into ENVI as RGB and transformed it to
hue, saturation, and value (HSV) formats (Fig. 13.2b). The density slicing

Fig. 13.2 A portion of a thin section illustrating the processing steps: a enhancement; b RGB to
HSV density slicing; c unsupervised classification; d filtering; and e) vectorization used to derive
pore characteristics
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function was used to define the wavelength ranges for major colors (red,
green, blue, yellow, cyan, magenta maroon, and sea green) of
HSV-converted thin sections. Color ranges for the voids were identified
and the image was segmented, which yielded an image of two contrasting
colors that represented either the soil matrix or voids

Step 3 We used an unsupervised classification to evaluate the image and then a
“sieve” function to remove isolated pixels (Fig. 13.2c). The binary image
(matrix and voids) was further processed using majority filter (kernel
size = 5), clumped (kernel size = 5), and majority filter (kernel size = 11)
(Fig. 13.2d). The resulting binary image was converted to a vector file
using ENVI and exported as a shape file (Fig. 13.2e). The polygon shape
file was further processed in ArcMap (ESRI 2009) for soil pore
classification

13.2.3 Soil Pore Classification

After image processing, small isolated polygons (outliers) were either combined
with adjacent polygons or eliminated. There is no agreement in pore size classifi-
cations used for distinguishing between micropores and macropores (Bouma et al.
1979). Moreover, the naming convention is inconsistent: Some authors use a
two-term “micro-” and “macro”-pores distinction (Jongerius 1957; Bouma et al.
1977), whereas others use a multi-term description such as “very fine,” “fine,”
“coarse,” etc. (Russell 1973; Soil Survey Division Staff 1993). The equivalent
cylindrical diameter (ECD) ranges associated with pore size categories are also
inconsistent across studies. In all of the studies we reviewed, pore size is based on
ECD rather than mean equivalent square (MEC), which is the shape of pixels and
the resulting polygons produced by thin section image analysis. To remove the
remaining small square polygons, we calculated the area of a single pixel based on
the 7200 dpi resolution and dimensions. The area of a pixel was calculated to be
12.0 µm2, which is approximately a 3.44 × 3.44 µm square. To use ECD for
distinguishing micropores and macropores, the square pixel dimension was
assumed to also represent a circular pore diameter. The ECD was calculated based
on the “area” column in the polygon attribute shape file and the pixel dimensions
derived from the image resolution. A threshold value of 200 pixels was used to
separate micropores from macropores. Polygons with an area greater than 200
pixels were further classified into three major shapes, as per Bouma et al. (1977),
using void area (A)/void perimeter (P2) ratio with A/P2 > 0.04 classified as
“rounded”; A/P2 < 0.04 and >0.015 as “intermediate”; and A/P2 < 0.015 as
“elongated” voids.
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13.2.4 Soil-Saturated Hydraulic Conductivity (Ksat)

Field-Measured Ksat

The Ksat values were determined from in situ measurements using a Compact
Constant-Head Permeameter (Amoozometer) (Amoozegar 1989; Amoozegar and
Warrick 1986). The in situ Ksat was determined for major soil horizons from which
the thin sections were extracted, each in five replicates. The major horizons were
(i) surface or near surface horizons (Ap, E, AB, BE); (ii) subsurface horizons (Bt1,
Bt3); and (iii) deeper restrictive horizons (Btx, 3Bt, Cr). The replicates were spaced
approximately 1 m apart and aligned along topographic contours.

Pedotransfer Function (PTF) Estimated Ksat

We used a pedotransfer function software Rosetta V1.0 to estimate Ksat based on
soil texture (sand, silt, clay), bulk density, and water content at 33 and 1500 kPa
water tension (Schaap et al. 1998). The soil input parameters for Rosetta were
measured values from the KSSL characterization data. In addition to Rosetta, we
also estimated Ksat using a step-wise multiple linear regression (MLR) model that
included porosity characteristics (total porosity and pore shape) as well as soil
texture (sand, silt, clay), bulk density, and water content at 33 and 1500 kPa water
tension.

13.2.5 Statistical Analysis

We used Pearson’s correlation coefficient to assess the relationship between mea-
sured Ksat and estimated Ksat from Rosetta and step-wise multiple linear regression
(MLR) analysis. We also employed forward step-wise regression analysis to
determine the best Ksat predictors. We evaluated R2, RMSE (root-mean-square
error), and Akaike Information Criterion (AIC) (Akaike 1974, 1976) criteria to
select the best Ksat predictive model. LSMeans Tukey’s HSD test was used to
compare mean Ksat between different soil horizons. The mean comparison test was
done on the log-transformed data due to non-normal distribution. The null
hypotheses were rejected at a significance level of 0.05. The statistical analysis was
conducted in JMP (SAS Institute Inc. 2003).
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13.3 Results and Discussions

13.3.1 Pore Size Distribution from Thin Sections

We grouped soil horizons into three major layers (L1, L2, L3) based on morpho-
logical, physical, and chemical characteristics (Table 13.2). There were no differ-
ences in mean pore radius between surface (L1), intermediate (L2), and deepest
horizons (L3). Similar results are reported by Bouma et al. (1977) who found no
specific, significant trends with depth for the three macropore types. Total porosity
for the surface layer was slightly higher than that for the intermediate layer;
however, both layers (L1, L2) had lower total porosity than the deepest layer (L3).

The proportions of different pore shapes relative to total porosity showed mixed
trends with soil depth, especially for the deepest layer. Differences were slight for
the upper and intermediate layers and greatest for the deepest layer. For example,
proportions of elongated pores in the deepest layer (L3) were higher than those of
the upper layers (L1, L2), whereas proportions of rounded pores and, especially,
intermediate pores in the deepest layer (L3) were less than half of those of the upper
layers (L1, L2). Bouma et al. (1977) observed similar tendencies of increasing
proportions of elongated pores with depth and determined that the water flow along
structural channels was the main mechanism for water movement.

13.3.2 Estimated Ksat from Step-Wise Multiple Regression
Analysis

In addition to the Rosetta parameters used for predicting Ksat (sand, silt, clay, bulk
density, and water content at 33 kPa and 1500 kPa), we added the following
parameters to the model: pore characteristics derived from thin section image
analysis (total porosity, pore radius, elongated/total porosity ratio, rounded/total
porosity ratio, and intermediate/total porosity) (Table 13.3).

Table 13.2 Pore characteristics from image analysis of thin sections

Grouped
soil
horizons

Genetic soil
horizons

Pore
radius
(μm)

Total
porosity
(%)

Elongated/total
porosity

Rounded/total
porosity

Intermediate/total
porosity

L1 Ap, Ap1, BA 5.5 (0.37) 12.4 (3.02) 68.2 (5.00) 3.8 (0.97) 28.1 (4.29)
L2 Bt1, Bt2, 2Bt1,

2Btx, 2Btx1,
BCdtk, Cdk2

5.4 (0.30) 10.7 (2.54) 67.9 (4.20) 3.9 (0.81) 28.0 (3.61)

L3 Bt3, Btg, Bt3,
2Bt4, 3Bt1,
BCdtk, Cdtk,
Cdtk (1, 2, 3)

5.9 (0.40) 18.8 (3.31) 82.4 (4.48) 3.1 (1.06) 14.5 (4.70)

Numbers in parentheses are standard error values
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This model yielded the highest R2 (0.82) (adjusted R2 = 0.70). The resultant
prediction equation is given as:

Ksat ¼ 238 þ �0:12 � TP þ 0:82 � R=T þ �0:28 � I=T þ �2:85 � Sand þ �94:88 � Bd33

þ �3:71 � WC10 þ 0:35 � WC1500 þ 12:12 � WC33

where TP is the total porosity; R/T is the ratio of rounded pores over total pores; I/T
is the ratio of intermediate pores over total pores; Sand is the total sand (%); Bd33 is
the bulk density (g cm−3) at 33 kPa water tension; WC10 is the water content (wt%)
at 10 kPa tension; WC1500 is the water content (wt%) at 1500 kPa tension; and
WC33 is the water content (wt%) at 33 kPa tension. Interestingly, both step-wise
multiple linear regression (MLR) and Rosetta showed similar performance when

Table 13.3 Parameter estimates and significance from step-wise multiple regression
(MLR) analysis and Rosetta PTF for predicting saturated soil hydraulic conductivity (Ksat)

Predictive
parameter

Step-wise MLR Rosetta

Full Texture Texture
Bd

Texture
Bd/WC

Porosity Texture Texture
Bd

Texture
Bd/WC

Pore_radius (µm) x x

Total porosity (%) x* x

Elongated/total (%) x x

Rounded/total (%) x* x

Intermediate/total
(%)

x* x

Clay (%) x x x x x x x

Silt (%) x x x x x x x

Sand (%) x* x x x x x x

Bd at 33 kPa
(g cm−3)

x* x x x x

Bd oven dry
(g cm−3)

x x x x x

WC at 10 kPa
(%wt)

x* x x

WC at 33 kPa
(%wt)

x x x

WC at 1500 at kPa
(%wt)

x* x x

R2 0.82 0.04 0.10 0.12 0.10 0.01 0.09 0.05

RMSE 1.64 2.36 2.30 2.28 2.43 2.41 2.32 2.36

Texture refers to clay, silt, and sand fractions; Bd is the soil bulk density; WC is the soil water content
*Parameters significant at p value = 0.05
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only soil texture, bulk density, and water content were used for Ksat predictions
(Table 13.3). Also, when the statistical parameters of the step-wise MLR model
included only pore characteristics, the resulting R2 was 0.10 and RMSE was 2.43. It
is possible that the use of a larger number of parameters in the step-wise MLR
model resulted in better predictions compared to Rosetta PTF. Unfortunately, for
this study we did not have a way to compare both models using all parameters
including porosity, as Rosetta PTF was developed based on soil texture, bulk
density, and water content only. Also, the comparisons between step-wise MLR and
Rosetta models were based on a small sample size (n = 39). We recognize the
unfairness with regard to the use of porosity for the step-wise MLR and a small
sample size for both models. These are especially critical for Rosetta that was
developed on much larger sample size and did not incorporate as many parameters
as step-wise MLR. However, the results indicate that a combination of both
physical soil properties and pore characteristics is needed to improve Ksat predic-
tions. More data are needed on thin sections and other described soil morphological
characteristics that relate to structure and pore size as shown by McKenzie and
Jacquier (1997).

13.3.3 Measured Versus Estimated Ksat from Rosetta
and Step-Wise Multiple Linear Regression Analysis

There were significant differences in mean Ksat values between grouped soil hori-
zons (L1, L2, L3), especially for the deepest layer (L3). With the exception of the
Rosetta PTF model, the Ksat values decreased exponentially with depth
(Table 13.4). The decrease in Ksat by an order of magnitude with soil depth,
especially between the surface and the subsurface layers, has been observed by
others (Lin 2006). The measured Ksat values were more variable compared to those
from the Rosetta PTF and Step-Wise MLR models, as shown by standard error
values in parentheses in Table 13.4. This is to be expected due to the fact that
measured Ksat values derived at field point scale are more prone to local variability
in actual measured soil volume surrounding the instrument, which depends upon
soil structure and, more specifically, pore size and distribution (Bouma et al. 1989).

Rosetta PTF and, to a lesser degree, the step-wise MLR model over-fit the data,
resulting in less variability in predicted Ksat values compared to measured values.
The role that soil structure, especially pore size, shape, and distribution, plays in
predicting Ksat is well documented (Bouma et al. 1989; White 1985; Perret et al.
1999, 2003). However, one of the major limitations of Rosetta PTF is the lack of
soil structure input parameters. The Rosetta PTF model uses soil texture, bulk
density, and soil water retention characteristics to predict Ksat (Schaap 1999; Schaap
et al. 1998), none of which is a direct representation of the soil structure. The
addition of pore characteristics to the model may improve the prediction of Ksat

values (Fig. 13.3).
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The results are promising. However, they are based on a small data set and
broader evaluation is needed. The Ksat method we developed from thin sections has
limitations like any other proxy method used to measure or estimate Ksat. Thin
sections represent a small soil area and do not show three-dimensional pore con-
tinuity patterns, particularly for macropores, which control Ksat at horizon and
pedon scales (Bouma et al. 1977). Whether measured Ksat is determined in situ or in
a laboratory setting, identifying the appropriate representative soil volume, which is
needed to reduce the variability due to preferential macropore flow, is challenging

Table 13.4 Mean comparisons between measured Ksat and those derived from Rosetzta PTF, and
step-wise multiple linear regression model

Grouped
soil
horizons

Genetic soil
horizons

Measured Rosetta Step-Wise MLR

Mean**
(cm h−1)

Sig*
(cm h−1)

Mean**
(cm h−1)

Sig*
(cm h−1)

Mean**
(cm h−1)

Sig*
(cm h−1)

L1 Ap, Ap1, BA 2.10
(0.98)

a 0.51
(0.08)

a 1.04
(0.23)

a

L2 Bt1, Bt2,
2Bt1, 2Btx,
2Btx1,
BCdtk, Cdk2

0.22
(0.81)

a 0.39
(0.06)

a 0.27
(0.09)

b

L3 Bt3, Btg,
2Bt3, 2Bt4,
3Bt1, BCdtk,
Cdtk, Cdtk
(1, 2, 3)

0.04
(1.40)

b 0.15
(0.03)

b 0.05
(0.02)

c

0.74
(0.38)

a 0.36
(0.04)

a 0.49
(0.12)

a

The reported values are in their “native” format but the mean comparisons are based on
log-transformed values. Numbers in parentheses are standard error values
*Significant at p value = 0.05
**Mean values within the same method followed by same letters are not significantly different.
Mean values between methods (bold) followed by same letters are not significantly different

Fig. 13.3 Estimated versus measured Ksat values based on Rosetta and step-wise multiple
regression model (MLR)
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(Bouma et al. 1989; Mohanty and Mousli 2000). Techniques such as X-ray com-
puted tomography (CT) have been developed to better evaluate the effects of
macropores on Ksat by characterizing their size, distribution, and, especially, con-
nectivity over a large volume of soil in a nondestructive manner (Anderson et al.
1990; Peyton et al. 1992, 1994). However, X-ray computed tomography
(CT) despite advantages is expensive. In addition, there is no extensive data
available to our knowledge with both X-ray computed tomography (CT) analysis
and soil physical properties for developing predictive Ksat models.

13.4 Conclusions

Soil-saturated hydraulic conductivity (Ksat) is one of the most important properties
used to describe soil water movement. However, Ksat is highly variable and mea-
suring it in the field is expensive. Pedotransfer functions (PTFs) such as Rosetta use
soil physical properties (texture and bulk density) to predict Ksat. Soil morpho-
logical properties, especially porosity, can be added to PTF models to improve Ksat

prediction. We used soil thin sections and image analysis to help quantify pore size
and shape from soils for which measured Ksat values were available.

Pore characteristics alone explained 10 % of the predicted Ksat variability.
Including them in PTF models with the other soil physical properties improved the
Ksat predictions for loess-derived soils in our study area. The pore numerical
quantification from thin sections is limited because of the lack of an appropriate
representative soil volume, which is needed to overcome the high variability of Ksat

due to preferential flow as related to the presence of soil macropores.
The results from this study show the potential of pore characteristics to improve

Ksat prediction, but additional studies are needed on soils derived from other parent
materials and with texture ranges wider than loess. The USDA-NRCS Kellogg Soil
Survey Laboratory (KSSL) has over 8000 soil thin sections that could be used to
assess the potential of using pore characteristics to improve Ksat predictions.
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Part III
Soil Depth Functions



Chapter 14
Measuring and Modelling Soil Depth
Functions

Budiman Minasny, Uta Stockmann, Alfred E. Hartemink
and Alex B. McBratney

Abstract Hans Jenny stated that the anisotropy of soil with depth means that the
soil has a unique profile. Therefore, naturally every soil property has its specific
depth function. The changes of soil particle size distribution in a soil profile can be
used as an indicator of soil formation and processes and has been used as a proxy
for soil age or degree of development. Uniform, gradational and rapidly changing
(duplex) soil textures are examples of soil profile forms used for soil classification
in Australia. Various parametric and nonparametric depth functions have been used
to describe the variation of soil properties with depth. We have identified 7
typologies of depth functions: uniform, gradational, exponential, wetting front,
abrupt, peak and minima–maxima. These depth functions are related to soil-forming
processes. To test these functions, a proximal soil sensor was used to perform in situ
digital morphometrics by which soil properties are measured along a soil profile
wall at small depth increments. We explore the possibility of horizon boundary
detection based on the changes in elemental concentrations. It was concluded that
digital morphometrics enables soil scientists to measure the soil’s depth functions
and weathering history quantitatively directly in the soil pit and assists in more
objective delineation of soil horizons.
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14.1 Introduction

Hans Jenny (1941) noted that naturally, every soil property has its own vertical
distribution pattern or specific “depth function”. Most soil scientists work on data
collected from soil horizons. Jenny (1941) and (Arkley 1976) stated that the
assignment of horizons and their names is difficult and can be subjective. Jenny
suggested the use of the soil indicatrix (a laterally isotropic 3-D depth function) for
clarification and refinement of soil profile descriptions.

Measurements of soil properties in a soil profile are usually made based on the
horizons, or defined depth intervals. Samples or measurements are usually bulked
based on the horizons, resulting in “stepped” data which may mask the continuity of
soil properties (Hartemink and Minasny 2014). Soil scientists also measure soil
properties at fixed depth intervals (e.g. every 10 cm) to reveal the depth functions of
certain soil physical and chemical properties [e.g. (Walker and Green 1976)]. For
example, soil organic carbon and total nitrogen, representing biotic components,
commonly decrease exponentially with depth, whereas clay and iron, representing
mineral components, can be low in the A horizon and highest in the B horizon.
Colwell (1970) noted that most chemical properties show continuous trends
throughout the soil profile. Depth function characterisation of soil properties is thus
needed to show profile trends in addition to particular horizons.

This paper first reviews soil depth functions found in the literature, from
pedological observations, to mechanistic models. We then suggest some common
soil depth function typologies and reason how they relate to soil-forming processes.
We will present examples of depth functions of soil elemental concentration
measured in the field using a pXRF instrument.

14.2 A Review of Soil Depth Functions

14.2.1 Pedological Models

Northcote (1971) introduced principal soil profile forms resulting from his obser-
vations of many soil profiles in Australia. His book Factual Key for the Recognition
of Australian Soils’ first division of soil profile is based on its primary profile forms:
organic, uniform, gradational and duplex. Mineral soils are distinguished by the
depth trend in texture. Uniform profiles have little or no change in texture; gra-
dational profiles show a steady increase of clay content with depth, and duplex
profiles have layers of contrasting texture within the solum (Fig. 14.1). The profile
forms also imply the degree of soil development from minimum development
(uniform), to moderate development with some illuviation process (gradational),
and pronounced development with heavy illuviation (duplex).

For young soils developed from till (Madsen and Munk 1987), as reported in
Adhikari et al. (2014), the degree of soil development can be estimated from the
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trend of pH with depth. A soil after the deposition of carbonate rich parent material
will have a uniform high pH and was considered young (Fig. 14.2a). With time,
leaching of carbonates created a gradational (b) and duplex (c) soil pH which
increased with depth. When these soils (b and c) are limed, the depth function
changed towards profile (d and e), respectively (Adhikari et al. 2014).

14.2.2 Analytical Models

Kirkby (1977) proposed several depth functions which relate to the distribution of
organic material, water, and evaporation and transpiration processes. The shapes of
the functions included the following: exponential decay, convex and minima–
maxima (Fig. 14.3). The exponential function assumes the distribution of organic

Uniform Gradational DuplexFig. 14.1 Principal soil
profile form as recognised by
Northcote (1971)

Fig. 14.2 Leaching and
liming effect on soils
developed in lime-rich till in
Denmark. Soil profile a newly
deposited till; b weakly
leached soil; c strongly
leached soil; d soil b limed;
and e soil b limed (adapted
from Madsen and Munk
1987)
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matter that was added to soil via plant litter or decaying of roots. The bell-shaped
function assumes the distribution of water and the movement of solutes, and their
extraction by plant roots. Mixing in the surface layer can create minimum–maxi-
mum peaks. We will discuss these functions in the next sections.

14.2.3 Exponential or Power Functions

The most widely used model for soil depth functions is the exponential or power
function, which is mainly used to describe the distribution of soil organic matter or

Fig. 14.3 Features of equilibrium soil profile predicted by an analytical soil profile development
model [from Kirkby (1977)]
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organic carbon content with depth. The function describes the decline of soil organic
matter or carbon with depth (highest in the A horizon, and low in the subsequent
horizons). Russell and Moore (1968) proposed a simple exponential function:

C zð Þ ¼ C0exp �kzð Þ

where C0 is the carbon concentration at the soil surface and k is the rate of decrease,
and z is depth. They mentioned that this function is similar to the profile depth of
biological properties, e.g. plant roots. This function can model a range of shapes,
from a highly exponential to a linear decrease of concentration with depth.
Variations of this exponential function have been proposed to describe the decrease
of soil carbon with depth (Bernoux et al. 1998). A power function can also display
such trend with depth (Fig. 14.4):

C zð Þ ¼ C0z
b

The soil organic carbon content in the plough layer of cultivated fields is often
relatively uniform, and a constant can be introduced for that zone as shown in
Fig. 14.4b (Mikhailova et al. 2000; Meersmans et al. 2009). In spodosols, a second
maxima of SOC often occurs in the spodic horizon (Webster 1978). A similar
pattern also occurs in the presence of buried horizons and in palaeosols (Fig. 14.4c)
(Grauer-Gray and Hartemink 2016).

Fig. 14.4 Depth function of soil organic carbon, a an exponential function in an alluvial soil in
New South Wales, Australia (Walker and Green 1976), b a grassland (circle) and a continuously
cropped field (triangle) of Chernozems from Russia (Mikhailova et al. 2000), and c a Mollisol with
a buried A horizon at 70 cm depth from South Central Wisconsin, USA (Grauer-Gray and
Hartemink 2016)
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The negative exponential depth function can also be used to describe soil
temperature as an analytical solution to heat transport. The incorporation of organic
matter through bioturbation in soil modelled as a diffusion process often results in
an exponentially shaped depth function. The depth-exponential relation is also
found in the soil production function, where the soil weathering rate decreases with
increasing soil thickness (Stockmann et al. 2014).

14.2.4 Wetting Front

The movement of water through a soil profile creates wetting front-type depth
functions. A mechanistic model by Kirkby (1985) with diffusion processes results
in the weathering profile that resembles a wetting front. Brantley et al. (2008)
observed that most chemical and mineralogical profiles display reaction fronts that
show depletion of leachable elements or minerals (Fig. 14.5). They modelled the
depth function in the form of a sigmoidal function:

C zð Þ ¼ Cm

1þ Cm�C0
C0

exp a zð Þ

where C is the concentration at depth z, with an empirical parameter a.
Beaudette et al. (2016) modelled the depth distribution of soil horizons using a

proportional odds logistic regression which has a form similar to the sigmoid

Fig. 14.5 Wetting front-type depth functions for: a Concentration of Na in Panola granite soil in
the Piedmont Province of Georgia, USA, exposed to weathering for approximately 250–500 ka
[data from Brantley et al. (2008)], b Soil pH from an intensely cultivated Udic Psamments from
the Central Sands of Wisconsin, USA (Adhikari et al. 2016)
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function. Leblanc et al. (2016) found a wetting front-type depth function for gleyed
horizons, but a peak function for spodic horizons.

14.2.5 Peak Functions

Some soil properties such as clay content show accumulation (maxima) with depth
as a result of eluviation and illuviation processes, in situ formation or discontinuity
in soil parent materials. This accumulation can depict a bell-shaped curve, which is
a characteristic of solute transport. Solute transport in soil can exhibit a normal
distribution for dispersion and diffusion processes (Wetselaar 1962) or a lognormal
distribution function for convective processes (Jury 1982) (Fig. 14.6). The ana-
lytical solution for a convective-diffusion transport during weathering by (Kirkby
1985) suggests a double exponential function. Myers et al. (2011) observed that
some soil profiles showed highly asymmetric peak-shaped depth distributions for
some soil properties. The asymmetry occurred mainly due to the gravitational
vector of profile weathering and development. They proposed the use of the
Pearson-type IV (PIV) asymmetric probability density function or logistic peak
function. The parameters of the model can be related to properties’ maximum,
depth to the maximum, abruptness, and profile anisotropy. Peak functions can also
indicate compaction, and anthropogenic influences can create variations such as
multiple peaks (Fig. 14.7a).

An extension of the peak model is observed in properties such as clay content or
electrical conductivity (Bishop et al. 1999), where its value reaches a minimum and
increases to a maximum (Fig. 14.7b). This minima–maxima (minimax) depth
function can be related to mixing processes in the surface and translocation to the

Fig. 14.6 a Theoretical depth
distribution of solute transport
in soil; solute initially follows
the wetting front and displays
a bell-shaped distribution
following convection–
dispersion processes. b An
example of peak distribution
function for clay content
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subsurface, through excessive bioturbation, or textural discontinuities resulting
from different parent materials within the soil profile.

14.2.6 Abrupt or Lithologic Discontinuity

Abrupt changes in the soil properties in the profile can be due to changes in the
lithology of soil parent materials (Schaetzl 1998). When they occur within or near
the solum, they can impact pedogenesis. Sudden increase in coarse sand or layers of
gravel are common indicators of lithologic discontinuity. In environments with
sharp discontinuities due to deposition or human influences, the depth functions of
soil properties change abruptly. Kempen et al. (2011) modelled the depth functions
for soil organic carbon of soils that have composite or stacking of discontinued
horizons, where each horizon has either a linear or an exponential function. This
resulted in discontinuous depth functions with abrupt boundaries.

14.2.7 Polynomials and Splines

Linear regression and orthogonal polynomials of 2nd-degree to 5th-degree have
been fitted to soil depth data (Colwell 1970). This allows a degree of variation
within the depth, but there are disadvantages as there is no theory from which to
determine a suitable degree of polynomial and local variation can affect the quality
of fit elsewhere in the soil profile (Webster 1978). Erh (1972) proposed the use of
splines as a flexible function that can fit a piece wise a series independent poly-
nomial functions over small intervals of a soil profile and also produces a

Fig. 14.7 a Penetration
resistance from a cone
penetrometer for a cultivated
field showing multiple peaks
[data from (Minasny 2012)],
and b electrical conductivity
from a red podzolic soil
(Alfisol) in New South Wales,
Australia, showing a minima–
maxima pattern [from Bishop
et al. (1999)]
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continuous derivative function. Webster (1978) demonstrated that the spline
interpolators are better for some organic matter profiles of soils in Britain, espe-
cially for Spodosols where the exponential decrease assumption is invalid.

Ponce-Hernandez et al. (1986) pointed out that many of the proposed methods fit
the depth functions or curves through the depth of horizon averages. This can
produce unreliable results as it smoothens out the variance of the data. The fitted
curves can be smoother than the true variation of the properties with depth. They
proposed equal-area splines to reconstruct profiles more accurately from stepped
data and the approach was used by Slater (1994) to reconstruct soil horizon data
into a more regular depth interval for a continuous classification. Bishop et al.
(1999) proposed the equal-area quadratic smoothing splines and tests of their model
indicated the superiority of equal-area splines in prediction of depth functions.

The development of proximal soil sensors allows measurements of soil prop-
erties at small depth increments with depth. Invasive, in situ technologies include
penetrometer with penetration resistance measurement (Arriaga et al. 2016) which
can be coupled with moisture content and bulk electrical conductivity sensors.

14.2.8 Typologies of Depth Functions

Based on the above review, we have identified common typologies of soil depth
functions. The shape of the functions imply physical processes as described above.
In essence, there are 7 typologies that describe soil property change with depth:
uniform, gradational, exponential, wetting front, abrupt, peak, and minima–maxima
(minimax) (Fig. 14.8). The curves have mirror images reflecting properties that

Fig. 14.8 General typologies of depth functions
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might be compositional or complementary. The patterns may or may not reflect soil
horizon boundaries.

14.3 Profile Development Indices

Pedologists study the depth functions to infer soil processes and development.
Profile development indices were developed based on the horizons’ morphological
and chemical data as quantitative measures of stages of soil profile development.
For example, Harden (1982) developed a soil profile development index that was
related to the age of the soil. The index was calculated as a sum of field and
laboratory data weighted by the horizon thickness.

Another index related to profile development is the Index of Profile Anisotropy
(IPA) was developed by Walker and Green (1976) which provides a single value to
describe the anisotropy of a profile with laboratory-measured soil data. When a soil
is very young, its properties are assumed to be isotropic in nature (such as a uniform
texture). When a soil matures and is more intensely weathered, the anisotropy value
is increased. IPA is defined as follows:

IPA = |Deviation|/mean

At time = 0 soil properties are isotropic; with time, soil properties change with
depth, the degree of anisotropy increases with time. The depth functions can now be
used to calculate these indices as a quantitative measure the degree of soil profile
development.

14.4 Soil Depth Function Examples

To demonstrate the idea of depth functions, we show the measurement of elemental
concentration of soils in the field. Measurements were made every 5 cm along the
profile wall of an Alfisol and an Entisol in Wisconsin, USA, using an Olympus
pXRF operated in GEOCHEM mode.

14.4.1 Mollic Hapludalfs

The Mollic Hapludalfs from West Madison has developed in loess over coarse and
calcareous outwash and the soil has 5 soil horizons. The plough layer is 24 cm deep
with a silt loam followed by a silty clay loam Bt horizon (24–55 cm). There is a
transitional BC horizon (55–91 cm) adjacent to the outwash (horizon 2 C) where
the texture is a loamy sand. Figure 14.8 shows depth functions of some major
elements measured in the soil pit. The Al and Fe concentrations show a similar
pattern with a peak in the Bt horizon, indicating that there is enrichment with
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alumino-silicates—an indication of clay illuviation. The Mn concentration varies
gradually down the profile with an increase in the Bt horizon. There is a colour and
morphology change from the Ap to the Bt horizon, but most elements measured by
pXRF varies smoothly down the profile.

Elemental concentration from pXRF allows calculation of soil chemical
weathering indices that were developed for pedological studies (Sauer et al. 2007).
The main assumption of these indices is that the concentration and movement of
chemical elements are controlled by the degree of weathering. It is assumed that
during the weathering process, major oxides such as TiO2 and Fe2O3 and Al2O3 are
considered immobile, and Si2O, K2O, Na2O, MgO and CaO are mobile. Most of
these weathering indices are expressed as a ratio of molecular or weight percentage
between different elements or groups of major oxides (Sauer et al. 2007). The
simplest weathering index is SiO2/Al2O3 (Ruxton 1968) which captures the loss of
silica during weathering. It is assumed that the amount of alumina in weathered soil
is immobile and constant and the amount of oxides (zirconia, titanium and total iron
oxides) is constant. The index ranges from a high value (around 10 for unweathered
material) to a low for weathered soil. It is mostly used for studying highly
weathered soils. Another index is the Ti/Zr ratio, and these immobile elements are
highly correlated and have been used to test the homogeneity of parent materials
(Maynard 1992). The Ti/Zr ratio is not much affected by primary alteration or
weathering and can be used as indicator of major igneous rock types.

We calculated these two weathering indices for the Alfisol (Fig. 14.9). Although
the 2C horizon is a parent material discontinuity (starting at 60 cm), most elements
did not reflect this abrupt change except for elemental Ca concentrations. The Zr
concentration shows a wetting front-type depth function with a constant value to a
depth of 50 cm and gradually decreasing at 80 cm depth where the Zr concentra-
tions are low. The Ti/Zr ratio shows a convex or peak function with a spike at the
horizon boundary at 90 cm depth. The SiO2/Al2O3 ratio is low and around 5 up to
80 cm soil depth and increases from 8 to 14 to a depth of 150 cm. The elemental
concentration that mostly shows a smooth variation across the 2 parent materials
indicates that there has been mixture through diffusion process.

14.4.2 Typic Udipsamments

The Typic Udipsamments from the Wisconsin central sand plain is characterised by
a blanket of sandy and gravelly outwash. The soil is the plainfield sand series
consists of very deep excessively drained soils formed in sandy drift on outwash
plain, glacial lake basins, stream terraces, and moraines.

The profile has an Ap horizon of 24 cm which is reflected in the variation of Fe
and Mn. The depth function of Fe shows a constant value for the Ap horizon
followed by a peak at 60 cm. The depth function of P follows an exponential form,
decreases with depth, with P sourced from inorganic fertiliser input. The Al and Si
concentrations show a bowl-shaped depth function indicating some mixture of
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materials in the Ap horizon, leaching of materials in the Bw1 and Bw2 horizons and
unweathered materials in Bw3. This pattern is reflected in the SiO2/Al2O3 ratio,
where the pattern is a reverse of a weathered soil profile (increasing weathering
down the profile). The index reflects leaching of Si, and the assumption of Al as
constant is invalidated. The Ruxton index may not be suitable for this soil as an
indication of weathering. The Ti/Zr ratio is uniform throughout the profile with an
increasing value in the Bw3 horizon indicating less weathered soil materials
(Fig. 14.10).

Fig. 14.9 Depth functions of a Mollic Hapludalfs from West Madison, Wisconsin, USA.
Concentration of Al, Fe, Ca, Zr, Ti/Zr and SiO2/Al2O3 was measured using a pXRF in the field at
5-cm-depth intervals along the soil profile wall. The lines are fitted smoothing splines
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14.4.3 Horizon Boundary Detection Using Soil Depth
Function Data

The depth functions of the elements are mostly continuous as opposed to the
discrete appearance and assumptions in soil horizons. We can use pedometric
techniques to segment these into layers and reconcile the layers with field observed
horizons (Weindorf et al. 2012). The depth functions can be treated as transect with
multivariate measurements of elemental concentration. The horizon boundaries can
be identified based on the Mahalanobis distance of a split moving window approach
of (Webster 1973) or the difference between subsequent pXRF readings as pro-
posed by (Weindorf et al. 2012). We can also apply a fuzzy k-means clustering of
the elemental concentration to create soil material classes (Fajardo et al. 2015). In
this example, fuzzy k-means clustering was applied to identify layers of similar
characteristics within each profile. In our example (Fig. 14.11), both profiles were

Fig. 14.10 Depth functions of a Typic Udipsamments from the Central Sands, Wisconsin, USA.
Concentration of Fe, P, Mn, Ti/Zr, Si, Al and SiO2/Al2O3 was measured using a pXRF at
5-cm-depth intervals along a soil profile wall. The lines are fitted smoothing splines
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grouped individually into 5 classes based on their elemental concentration. The
membership for each class occupied a unique layer within the profile, and some of
the numerical classes correspond to the horizons observed in the field. For example
in the Alfisol, the numerical class corresponds to the Ap, (Bt + BC), BC, 2C1 and 2
C2. Whereas in the Entisol, the Ap horizon is separated into 2 classes.

14.5 Conclusions

We identified 7 typologies of soil depth functions: uniform, gradational, expo-
nential, wetting front, abrupt, peak/convex and minima–maxima. These depth
functions represent major soil processes. Field measurements using tools such as
pXRF and NIR allow measurement of soil properties and elemental concentration at
small depth increments and thus enable estimation of depth functions readily and
rapidly without the need to collect bulk soil samples from horizons. The examples
presented here showed that most soil elemental concentration vary continuously
with depth. Although the data are few, the depth functions reflect the age of the soil,
some major soil processes, parent materials, and soil textural changes. Horizon

Fig. 14.11 Elemental concentration data (Fe, Mn, Al, Ca, Si) for each profile were grouped using
a fuzzy k-means clustering method. The data for each profile were clustered into 5 classes
individually, and the plot shows the membership for each of the class
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boundaries based on elemental concentration can be derived using, for example,
moving window Mahalanobis distance or fuzzy k-means clustering. Proximal soil
sensors allow measurement of soil development indices in the field, which has the
potential for a more objective delineation of soil horizons and description of the soil
profile. A more objective measurement of the soil properties can lead to a better
understanding of soil processes and within soil horizon variation.
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Chapter 15
Electrical Conductivity Depth Functions
for Delineating Paleosols

Glenn Borchardt

Abstract Soil weathering and leaching lead to increased salt concentrations at the
wetting front in soils of semiarid and Mediterranean climates. Burial of silty alluvial
fan deposits may preserve these salt signatures in paleosols, with the base of each
solum being delineated by high electrical conductivity. The buried layer must be
thick enough to prevent destruction of the initial signature via leaching. The
identification of alluvial strata as paleosol horizons helps to confirm age estimates
derived from standard soil descriptions. Several examples illustrate the use of
conductivity in delineating late Quaternary soils and paleosols. A soil profile along
the Hayward fault had a soil underlain by three paleosols instead of the four
paleosols as was first assumed by visual examination. Estimates of soil and paleosol
ages were sufficient to assure that no surface fault rupture had occurred during the
last 24,000 years. Background conductivity was about 200 μS/cm, while maxima
for the soil and three paleosols were 560, 580, 630, and 590 μS/cm, respectively.
It was concluded that field electrical conductivity measurements can be used to
delineate paleosols.

Keywords Pedochronology � Faulting � Tectonics � Electrical conductivity �
Depth functions

15.1 Introduction

Soil weathering and leaching lead to increased salt concentrations at the wetting
front in soils. In uniform, fine-textured soil measurements of electrical conductivity
(EC) within soil solutions may indicate the extent of this process (Frinkl 1979;
Pozdnyakova 1999; Golovko et al. 2007; Son et al. 2010). However, due to the
great solubility of salts released from minerals, concentrations typically are low and
ephemeral, particularly in soils of the humid regions.
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In California, EC measurements have been used to aid in pedochronology (soil
dating), which we use in assessing the age of fault movement. State law prohibits
most construction on earthquake faults that had surface fault rupture (SFR) during
the Holocene (Bryant and Hart 2007). To gauge the hazard, geologists excavate 3 to
6-m-deep trenches perpendicular to suspect fault traces across potential building
sites. As a pedochronologist, I estimate the ages of soils and any associated faulting
exposed in these trenches. Although the modern soil in many of the trenches may
have begun developing less than the required 11,000 years, we sometimes find
paleosols beneath them. EC measurements may help to confirm that such soils
indeed are paleosols. Soil development durations are estimated from peak heights in
combination with other age-related characteristics such as color, B horizon thick-
ness and structure, clay film development, and calcite stage.

15.2 Materials and Methods

We generally describe soil profiles that represent the oldest, most complete record
of soil development in the trench excavations that geologists use to evaluate the
presence of hazardous faults. If a fault is discovered, this may necessitate sampling,
measuring, and describing soils about a meter on either side of the suspect fault.
Vertical channel samples of each horizon are obtained as representative.

In the laboratory, EC and pH are measured after representative subsamples are
mixed with an equal amount of water by weight. EC measurements can be per-
formed in the field or laboratory with a handheld meter (Fig. 15.1). EC values could
be used to produce in situ analog depth functions that could help in delineating soil
horizons. However, EC and its inverse, electrical resistivity are influenced by the
amount of moisture present (Ozcep et al. 2010). The water to soil ratio must be
controlled. Dry soils do not yield EC measurements (Brevik et al. 2006), as
demonstrated by the Phoenix Mars Lander, which failed to get a response even
though there was ice within 5 cm of the probe (Zent et al. 2009). Coarse soils and
sediments generally do not trap salts. Although this low EC response may aid in the
identification of sand and gravel lenses (Fig. 15.2), it may also prevent the devel-
opment of an EC peak that would indicate the extent of the wetting front.

15.3 Results

15.3.1 Holocene Soil (10 ka)

Although soil weathering was minimal in California during the Holocene, we can
detect its occurrence by performing EC measurements. Depth functions for EC
indicate that a particular soil has received sufficient precipitation to induce soil
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formation. Leaching from the A horizon generally removes salts released from soil
minerals. These salts move to the wetting front. A typical soil has received rainfall
with carbonic acid formed from carbon dioxide in the atmosphere. This naturally
acidifies and decalcifies the soil, with surface horizons countering that trend as they
accumulate Ca-laden vegetative matter (Fig. 15.3). EC measurements follow a
similar pattern (Fig. 15.4). The soil pH was lowest at the 140 cm depth, which also
was the depth that the EC began to increase. The upper 33 cm of the soil was
imported artificial fill.

15.3.2 Pleistocene–Holocene Transition

The climate change from humid to subhumid that occurred as a result of the
Pleistocene–Holocene transition in northern California has provided valuable
information for pedochronology. Holocene soils tend to be about a meter thick,
while soils formed during the Pleistocene can be up to several meters thick. When
there is associated colluvial or alluvial deposition, EC depth functions sometimes
reflect both soil moisture regimes (Fig. 15.5).

Fig. 15.1 Simple, typical handheld electrical conductivity meter
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Micropedology sometimes can be used to confirm the transition from one cli-
mate to another or, alternatively, the effect of alluvial deposition or erosion. For
instance, peds that were coated with clay films during the Pleistocene can be
subsequently coated with soluble salts that demonstrate that the wetting front has
risen in the profile. Figure 15.6 shows gypsum coating a ped formed when the
landscape was subject to much greater water percolation.

Fig. 15.2 EC measurements showing the effect of particle size. Reddish areas have low EC in the
sand and gravel areas (Mundell and Associates, Inc. 2015)
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15.3.3 Sangamon Soil (122 ka)

Relict paleosols considered to be Sangamon age (the last time sea level was higher
than at present, Chen et al. 1991) sometimes exist on stable surfaces devoid of
significant degradation or aggradation during the Pleistocene/Holocene transition.
Salts are left behind as the wetting front gradually retreats toward the surface when
the climate becomes increasingly dry (Fig. 15.7). Such uniform behavior is
dependent on a relatively uniform fine soil texture. Salt concentrations in coarse
horizons tend to be low due to their low water holding capacity and high perme-
ability (Figs. 15.2 and 15.8). In the Sangamon paleosol, the upper two silt loam
horizons have been leached extensively during the Holocene (Fig. 15.7), while the
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Fig. 15.3 Depth function for
pH in Soil Profile No. 1 in
Trench EFT-1 on Toro Vista
Court (10 ka/70 ka;
MAP = 551 mm/year)
(Borchardt 2007, Fig. 2). Note
that the upper 33 cm of this
profile was artificial fill
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Fig. 15.4 Depth function for
EC in Soil Profile No. 1 in
Trench EFT-1 on Toro Vista
Court (10 ka/70 ka;
MAP 551 mm/year)
(Borchardt 2007, Fig. 3). Note
that the upper 33 cm of this
profile was artificial fill
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underlying 2-m-thick silty clay Bt horizon that formed during the Pleistocene
remains preserved beneath the E horizon (Fig. 15.9).

California state law prohibits construction on faults having had surface fault
rupture during the Holocene for residential housing developments. Even though this
soil was much older than that, it had experienced several fault offsets since 122 ka.
These totaled about 1 m and probably were the results of several earthquakes.
During that period, the subparallel San Andreas fault about 6 km to the east had
undergone 3000 m of lateral offset. The faults at this site had negligible activity. In
addition, there was no offset of the surface topography, as is generally the case with
hazardous faults. The analysis of the SFR hazard at the site indicated that up to
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Fig. 15.5 Depth function for EC in Soil Profile No. 3 at the Lakes at Fountain Grove, Santa Rosa,
CA. The two high EC peaks may represent two distinct phases of soil development, with paleosol
development during the Pleistocene being interrupted by the colluviation that contributed parent
material for the modern soil (10 ka/80 ka; MAP 1067 mm/year) (Borchardt 2003, Fig. 6)

Fig. 15.6 Close-up of clay-coated ped face surrounded by gypsum in the Etyb1 horizon of a
paleosol near the Calaveras fault. The clay films were deposited first and the gypsum second.
View SE (16 ka; MAP 578 mm/year) (Borchardt 2008, Fig. 5)
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24 cm of vertical and horizontal offset could occur in a single event (Dwyer et al.
2010). We selected 1.2 m as the maximum possible horizontal offset, which would
be 20 % of what occurred on the San Andreas in 1906 (Lawson 1908; Hoexter
1992).
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Fig. 15.7 Depth function for EC in a Pleistocene soil at Paradise Valley, Bolinas, California
(122 ka; MAP = 914 mm/year) (Borchardt 2005, Fig. 2)
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Fig. 15.8 Depth function for EC in Soil Profile Nos. 1 and 2 at Alamo, California. The high EC
beneath the 130 cm depth in Soil Profile No. 1 reflects the presence of high amounts of gypsum
beneath the present-day wetting front. The gravelly nature of Soil Profile No. 2 allows clays and
salts to penetrate to much greater depths than they do in the silt of Soil Profile No. 1 (22 ka;
MAP = 578 mm/year) (Borchardt 2008, Fig. 9)
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15.3.4 Multiple Paleosols in Young Alluvium (24 ka)

EC depth functions are useful in detecting and confirming the presence of paleosols
in young alluvial fans. A change in salt concentration may convey age-related
information. At a prospective building site on the southwest side of the Hayward
fault, EC measurements indicated that there was a Holocene soil underlain by three
short-lived paleosols (Fig. 15.10). During initial description of this soil profile, an
additional paleosol was assumed when viewing the faunal bone in the section
(Fig. 15.11). Bones, like most charcoal specimens, are often found at the surfaces of
paleosols, similar to lag deposits. In this soil, however, a bone was in the midst of a
weak, Bt horizon, which was one reason it had survived the relatively short period

Fig. 15.9 Pleistocene soil at Bolinas showing the E horizon overlying the yellowish brown Bt
horizon (122 ka; MAP = 914 mm) (Borchardt 2005, Fig. 3)
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Fig. 15.10 Depth function for EC showing maxima for the modern soil and three underlying
paleosols along the Hayward fault (24 ka; MAP = 640 mm/year) (Borchardt 2015, Fig. 7)

Fig. 15.11 View of the 5B2tb2 horizon from Soil Profile No. 3 showing a bone fragment at the
405 cm depth (Borchardt 2015, Fig. 4)
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(5 ky) of weathering. Background EC was about 200 μS/cm, while maxima for the
soil and three paleosols were 560, 580, 630, and 590 μS/cm, respectively
(Fig. 15.10). These results reflect the relatively high average deposition rate
(0.24 mm/year) necessary to safeguard EC maxima from dissolution by percolation
from overlying deposits.

There is a possibility that the actual quantity of soluble salt preserved in these
soils and paleosols is correlative with the amount of time each was exposed to
pedogenesis. For instance, in the above example, I calculated the areas of the four
EC peaks after performing the usual qualitative estimates of development durations
(Table 15.1). The two methods appear to be somewhat correlative, showing that
quantitative measurements of soluble salts, along with more detailed EC mea-
surements, may have promise in future pedochronological studies.

15.4 Conclusions

These results highlight the use of EC measurements in pedochronology and the
estimation of soil age. Salts dissolved from weathering minerals percolate in soil
solutions and are generally deposited at the wetting front. This mostly occurs in
Mediterranean and semiarid to arid climates where salts are not leached from
fine-textured soils. With sufficient aggradation, salt accumulations can be preserved,
providing evidence for previous soil formation in the form of paleosols. Unlike pH
measurements, changes in EC may appear minuscule, but they can be important
indicators of pedogenesis. EC measurements can help in descriptions of paleosols
that provide valuable information on previous landscapes and climates. Salt con-
centrations as indicators of soil weathering should receive more attention than they
are normally given, particularly in areas subject to semiarid and Mediterranean
climates, where salts tend to tarry on their way to the sea.

Table 15.1 Comparison of
pedochronological estimates
derived from the profile
description with estimates
derived from the relative areas
of EC peaks

Horizon Duration of soil development (td) (ky)

Borchardt (2015) EC peak area
2ABk 11.0a 10.0b

4Btb1 4.0 4.9
5BCtb2 5.0 3.5
6BCtb3 4.0 5.4
Profile to, ka 24.0 23.8
aPedochronological estimates based on available information. All
ages should be considered subject to +50 % variation unless
otherwise indicated (Borchardt 1992)
bPeak areas were calculated by multiplying half the height of the
EC peak (μS/cm) times the width of the base of the peak (cm)
to = date when soil formation or aggradation began, ka
tb = date when soil or strata were buried, ka
td = duration of soil development or aggradation, ky
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Chapter 16
Numerical Clustering of Soil Series
Using Profile Morphological
Attributes for Potato

Michaël A. Leblanc, Gilles Gagné and Léon E. Parent

Abstract Potato fertilization response models have been developed for 46 soil
series in the province of Québec, Canada. This study aimed to create a set of
representative soil classes based on morphological data so that they reflect suitable
soil properties for growing potato. Data of modal soil profiles of soil series contain
morphological attributes from master horizons (including bedrock) with diagnoses
indicating the absence (0), weak expression (0.5) or presence (1) of specific
properties (pedogenetic features), and particle-size distribution. A distance matrix
was calculated to represent the dissimilarity between the soil profiles. Using
multidimensional scaling technique, soil profiles distributed in a feature space were
clustered using the fuzzy k-means with extragrades algorithm to allow expressing
soil groups as continuous variables, hence facilitating modeling. The dissimilarity
measure between soil profiles computed using soil descriptions (e.g., color, pH, and
C content) at experimental sites showed that genetic horizon indices can be used as
a basis to compare and allocate soil profiles to existing classes. In conclusion,
numerical clustering provided a quantitative basis to integrate soil profile descrip-
tions into crop response models.
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16.1 Introduction

Soil classification systems have been traditionally oriented toward agricultural
applications. Crop productivity is influenced by the soil’s capacity to supply suf-
ficient amounts of water, nitrogen, and mineral nutrients in interaction with climatic
conditions and soil management. However, the morphological soil properties used
as taxonomic criteria at the soil series level such as texture, carbonates, and lithic
contact and the properties that influence the agronomic soil potential cannot be
generalized consistently at the highest hierarchical levels of the Canadian system of
soil classification such as orders and great groups (Soil Classification Working
Group 1998). An alternative numerical procedure must be developed to synthesize
a large number of input variables provided by soil surveys for use in agronomic
models.

Morphometrics techniques allow deriving depth functions from quantified soil
profile attributes to support numerical soil classification (Hartemink and Minasny
2014). Usually, a soil series is represented by one or more modal soil profiles,
described by a sequence of horizons with different morphological characteristics.
From deriving depth functions, soil profiles can be clustered into continuous soil
classes using the degree of similarity between soil profiles and the principles of
fuzzy classification (Carré and Jacobson 2009; Odgers et al. 2011). Such groups
with fuzzy memberships can be integrated as continuous variables into crop
response models allowing a more realistic expression of the gradual nature of soils
(McBratney and De Gruijter 1992).

The aim of this work was to aggregate soil series commonly used for potato
cropping in Québec, Canada, into a number of representative classes. New profile
observations can be allocated to those classes to run a potato fertilizer response
models.

16.2 Materials and Methods

16.2.1 Legacy Database of Profile Descriptions
of Soil Series

Soil surveys conducted in Québec between 1943 and 2005 described 649 series of
mineral soils as shown in the updated file of soil names (Lamontagne and Nolin
1997). The genetic horizon code and the clay (0–0.002 mm), silt (0.002–0.05 mm),
and sand (0.05–2 mm) contents determined by sedimentation techniques are some
of the properties recorded in the 1657 modal profiles from 547 soil series, repre-
senting 92 % of the mapped area. Horizon designations were harmonized to the
current Canadian system (Soil Classification Working Group 1998) by expert
knowledge and the clay and silt measurements separated at 0.005 mm in soil
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surveys before 1957 were transformed into the current system using regression
equations (unpublished).

The potato fertilizer trials (N, P, and K treatments) archived in Québec
(1958–2014) have been conducted on 46 soil series associated with 310 modal
profiles (Fig. 16.1). The profiles located in the Saguenay-Lac Saint-Jean and the
St. Lawrence Lowlands were mainly developed on fluviatile, lacustrine, and marine
deposits ranging from very rapidly to poorly drained and classified as Podzols,
Brunisols (Cambisols), and Gleysols.

16.2.2 Transformation of Morphological Data

Genetic Horizons

Pedometric approach that compares soil taxa quantitatively using the key attributes
of modal soil profiles as central entities has been applied to derive metric distances
between genetic soil horizons (Láng et al. 2013; Mazaheri et al. 1995; Minasny and
McBratney 2007). The diagnostic horizons were transformed into eight indices of 0,

Fig. 16.1 Number of modal
soil profiles (a) and fertilizer
trial sites (b) by soil series.
Soil series code refers to the
updated file of soil names of
Québec (Lamontagne and
Nolin 1997). For brevity, soil
series variants were
amalgamated into the
corresponding soil series
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0.5, and 1 indicating, respectively, the absence, weak expression, and the presence
of specific properties as pedogenetic features (Table 16.1). For example, we
characterized a podzolized, weakly gleyed, and cemented soil horizon showing the
secondary distinction of fcgj in the Canadian system by a vector [0, 0, 1, 0, 0, 0.5, 0,
1] in the order reported in Table 16.1.

Soil Textural Components

Sand, silt, and clay contents are compositional data (proportions constrained
between zero and 100 % or 1000 g kg−1). Their conventional statistical analysis can
create distortions caused by redundancy, scale dependency, and inherent
non-normal distribution (Filzmoser et al. 2009). The log ratio transformations avoid
such problems (Aitchison 1986; Egozcue et al. 2003; Filzmoser and Hron 2011).
Soil textural components were thus transformed into isometric log ratios (ilr) ac-
cording to a sequential binary partition (SBP) (Table 16.2) as follows (Egozcue and
Pawlowsky-Glahn 2006):

ilri ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
risi

ri þ si

r
ln
gðxþ Þ
gðx�Þ ; ð16:1Þ

Table 16.1 Indexing value of selected genetic horizons of the Canadian system of soil
classification

Horizon Morphologic features Suffix Index
Eluviated (Elu) Horizon characterized by the eluviation of clay,

Fe, Al, or organic matter alone or in combination.
e 1
ej 0.5
– 0

Illuviated (Ili) Illuvial horizon enriched with silicate clay. t 1
tj 0.5
– 0

Podzolized (Pod) Horizon enriched with amorphous material,
principally Al, and Fe combined with organic
matter.

f 1
fj 0.5
– 0

Podzolized (Hom) Horizon (B) enriched with organic matter. h 1
– 0

Altered (Alt) Horizon slightly altered by hydrolysis, oxidation,
or solution, or all three.

m 1
– 0

Gleyed (Gle) Horizon characterized by gray colors, or
prominent mottling, or both, indicating permanent
or periodic intense reduction.

g 1
gj 0.5
– 0

Carbonated (Car) Denotes the presence of carbonate as indicated by
HCl-effervescence reaction.

k 1
kj 0.5
– 0

Hardened (Har) Strongly cemented or high-density pedogenic
horizon.

c, x 1
cj, cc, xj 0.5
– 0
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where ilri is the ith balance of a D-part composition, i Є [1, D−1], ri, and si are the
numbers of components in the + (numerator) and − (denominator) groups,
respectively, and g(x+) and g(x−) are the geometric means across components in
the + and − groups, respectively. The SBP consists of dividing sequentially the
composition into two groups of parts which are indicated by +1 and −1 until all
groups are made of a single part. Label 0 indicates that this part is not involved in
the partition at this order (Egozcue and Pawlowsky-Glahn 2006). To support the
interpretation of principal coordinate analysis, textural components were trans-
formed into centered log ratio (clr) (Aitchison 1986) making their interpretation
possible in terms of the original compositional parts in the principal coordinate
analysis (Filzmoser and Hron 2011):

clri ¼ ln
xi

gðxÞ ; ð16:2Þ

where xi is the ith part of the composition and g(x) is the geometric mean. As
proposed by Martín-Fernández et al. (2011), the zeroes can be replaced by a
fraction of the detection limit (e.g., 0.65 · 10 g kg−1 = 6.5 g kg−1) to compute log
ratios while minimizing the impact of zeroes on the covariance structure of the
compositional dataset.

Data Scaling

A classification should be performed using variables of equal weights (Sneath and
Sokal 1973). To assign a common footing to the pedogenetic variables ranging
between 0 and 1, the ilr-transformed textural components were centered by sub-
tracting the mean and scaling to two times the standard deviation (Gelman 2008).
We preferred this option instead of the standardization of all variables, i.e., mean
centered and scaled to their standard deviation, because variables showing low
values of standard deviations (e.g., carbonated index) were upscaled, and that of
minimum–maximum transformation because textural variables scaled in the range
[0–1] were de-emphasized compared to genetic horizon variables.

Fertilizer Trials Experimental Sites

In addition to the soil series, soil profiles from 49 experimental sites were char-
acterized by moist colors of matrix and mottles using the Munsell soil color chart,
pH in CaCl2 (Hendershot et al. 1993), and C content (dry combustion in the

Table 16.2 Sequential
binary partitioning of soil
textural components

ilr Sand Silt Clay
ilr1 +1 −1 −1
ilr2 0 +1 −1
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Leco-CNS instrument). Munsell color code (hue, value, and chroma) was projected
into the L-a-b color space (Viscarra Rossel et al. 2006). Contrast of mottles was
defined as a Euclidean distance between the mottle and matrix L-a-b coordinates. In
the absence of mottles, the distance was reported as zero (Malone et al. 2014).

16.2.3 Dissimilarity Measure Between Soil Profiles

The soil horizon attributes of each soil profile were disaggregated (segmented) to a
common depth to allow pairwise comparisons of soil profiles by a 5-cm slice
(Beaudette et al. 2013). The dissimilarity measure (dxy) between soil profiles x and
y, where dxy is the element of the distance matrix D of size p × p and p is the
number of soil profiles, was calculated as the mean Euclidean distance between the
ith slice of each soil profile, with i Є [1, N], as follows:

dxy ¼ 1
N

XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

j¼1

ðvxj � vyjÞ2
vuut ; ð16:3Þ

where vj is the jth soil morphological property of the slice, with j Є [1, M]. Non-soil
material (e.g., bedrock) that has no soil morphological attribute was defined as the
maximum between-slice dissimilarity to reflect the fact that soil and non-soil
materials are very different (Beaudette et al. 2013). A distance of zero was imputed
between corresponding slices of non-soil material.

Usually, soil series are conceptualized using soil properties of the sub-surface
layers. The legacy dataset includes modal soil profile descriptions from cultivated
and undisturbed areas. To avoid the influence of land use on this classification,
dissimilarity measures were computed for soil layers at depths ranging from 30 to
100 cm. Disregarding the first 30 cm is justified by the fact that more detailed
information of surface layer (e.g., texture, Mehlich-III extracts) can be integrated
into the crop response models.

16.2.4 Continuous Classification of Soil Profiles

The distance matrix of the soil profiles was projected into a Cartesian framework
using the multidimensional scaling technique. Briefly, after transforming the
eigendecomposition of the dissimilarity matrix D by Gower’s centering, we com-
puted principal coordinates by scaling the eigenvectors to lengths equal to the
square roots of their eigenvalues (Legendre and Legendre 2012).
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The fuzzy k-means with extragrades (FKMe) clustering algorithm (McBratney
and De Gruijter 1992) was performed on the principal coordinates to partition the
soil profile distribution into clusters (defined by their centroids) that shared similar
morphological descriptions. The FKMe is an unsupervised clustering procedure that
accommodates, in an extragrade cluster, the soil profiles with atypical properties
located in the periphery of the soil distribution to decrease their effect on the normal
(intragrade) clusters. Briefly, the FKMe algorithm finds the position of cluster
centroids in the space of coordinates by minimizing its objective function using the
distance between individuals and centroids. The algorithm considers three param-
eters: the number of classes (k) and the fuzziness exponent (ɸ) which were deter-
mined from relationships with the fuzziness performance index, and the derivative
of the fuzzy k-mean objective function with respect to ɸ (Odeh et al. 1992), and the
parameter that defines the contribution of the extragrade class (α) which was set by
iteration to allocate 5 % of the total population in the extragrade cluster (95 % in the
intragrade clusters) creating a confidence region about the intragrade clusters.

After completing the classification, the closest modal profiles of each cluster
centroid were defined as exemplars (highest membership to a class). Using a real
profile rather than a centroid, a new profile can be classified without principal
coordinates calculation. The fuzzy memberships of soil profiles were computed by
the dissimilarity measure to the exemplars using allocation equations (McBratney
1994).

16.2.5 Statistics of the Aggregated Depth Functions

According to the principle of working on coordinates (ilr) (Mateu-Figueras et al.
2011) for each 1-cm slice, the average and standard deviation were calculated for
the ilr-transformed textural components and back-transformed to the original
domain (i.e., 0 to 100 %). Genetic horizon indices (index value of 0, 0.5, or 1) and
their counterparts (i.e., 1-index) were also transformed individually into isometric
log ratio before computing descriptive statistics. As explained above, the zeroes
were replaced by a fraction of the detection limit of 1 % (i.e., 0.65 · 0.01 = 0.0065).

The numerical clustering process summarized in Fig. 16.2 was conducted using
the FuzME software (Minasny and McBratney 2002) for the FKMe classification
and the R statistical environment (R Development Core Team 2011) using packages
“aqp” (Beaudette and Roudier 2015) for soil profile data manipulation, “compo-
sitions” (Van den Boogaart et al. 2014) for compositional data transformation,
“ggplot2” (Wickham and Chang 2015) for data visualization, and “plyr” (Wickham
2015) for summary statistics.
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16.3 Results and Discussion

16.3.1 Clustering of Modal Soil Profiles

FKMe clustering was carried out on modal soil profiles of soil series where fertilizer
trials have been conducted (Fig. 16.3). The algorithm was set with k = 3 and ɸ = 1.6
(Odeh et al. 1992) and with a α = 0.6 leaving 4.9 % of the modal profiles as
extragrades. A small k value restricted the number of variables in the potato fer-
tilization models.

The soil profile distribution along the first two principal coordinates that
explained 51 % of the variance was mainly correlated with the textural components
and the pedogenetic variables Pod and Gle (Fig. 16.3). The elliptical areas of classes
A, B, and C were thus consistent with the textural gradient and the gleying and
podzolization processes. Those morphological characteristics were aggregated into
depth functions by soil classes (Fig. 16.4). The depth functions of the podzolized
(Pod) horizons followed a peak function, while the gleyed horizon followed a
wetting front function (Minasny et al. 2016).

Class A is dominated by sandy soil profiles with podzolized (Pod) horizons
down to 60 cm. Those soils are well to very well-drained and classified as Podzols
or Brunisols. They are susceptible to nitrate leaching during intensive precipitation
events, and rain-fed crops are vulnerable to water stress during dry periods.

Soil profiles of class B are composed of sandy gleyed horizons. That group also
includes soil profiles with podzolized (Pod) horizons to a depth ranging from 20 to
40 cm, sometimes showing both Gle and Pod features (i.e., Bfg) or both Hom and
Pod (i.e., Bhf). Soil profiles in class B are imperfectly to poorly drained and

Fig. 16.2 Summary of the numerical clustering process of soil profiles
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classified as Gleysols and gleyed Podzols. Potato crops grown on such soils are less
affected by water stress compared to class A soils.

Soil profiles of class C are fine-textured ranging from loam to silty clay loam that
also include shallow sandy soil overlying clay materials. Textural variability is
slightly higher in class C compared to classes A and B. Although some profiles
show altered or weakly podzolized (Pod) horizons, gleying is the dominant pedo-
genic feature of class C soils. Some profiles also have carbonates in deeper hori-
zons. Soil profiles of class C are moderately well to poorly drained and classified as
Gleysols, gleyed Podzols, or Brunisols. In general, water storage and fertility are
higher in soils of class C compared to those of classes A and B, but crops could be
affected by prolonged wet periods.

Partitioning the data into three soil classes, the soil profiles characterized by
low-frequency morphological features (e.g., Har and Alt) that are weakly correlated
for the first two principal coordinates (Fig. 16.3) were not discriminated. Soil
profiles with hardened horizons (strongly cemented or high-density pedogenetic)
were allocated to classes A and B while profiles with altered horizons were clas-
sified in classes A and C. However, low-frequency features were kept rather than
excluded by cluster analysis in order to classify new specimens correctly. Hence,
soil profiles far from the cluster centers could be located in the periphery of the soil
distribution (extragrades). On the other hand, with additional fertilizer trials
increasing the degrees of freedom to run the crop response models, the classification
could be refined with a higher number of soil classes to account for a higher degree

Fig. 16.3 Distribution of the maximum fuzzy membership (max mc) to clusters A, B, and C of
modal soil profiles in fertilizer trials (a) and correlation circles of clr-transformed textural
components and pedogenetic features (see Table 16.1 for descriptions) of B and C horizons along
the first two principal coordinates. Filled white circles represent exemplar positions and elliptical
shaded areas cover 95 % of the theoretical distribution of clusters A, B, and C
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of soil heterogeneity. Uncertainty analysis of the models can also be used to
identify soil classes requiring more field trials.

16.3.2 Cluster Memberships of Individual Soil Series

Most fertilizer trial sites are often associated with a single soil series name without
profile description. To allocate a set of fuzzy memberships to each of the soil series,
the soil profile closest to the centroid of individual soil series was identified as the
exemplar. In our opinion, the exemplar profile is more appropriate to represent a
soil series than a combination of average depth functions of variables, because a

Fig. 16.4 Aggregated depth functions of morphological variables (see Table 16.1 for
descriptions) by soil classes (A, B, and C) of trial-associated modal profiles. Black lines represent
the mean and shaded area coverage ± standard deviation computed for each 1-cm layer. Dots
represent observed values at midpoint of genetic horizons
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given combination could represent a nonexistent profile. A soil profile can be
allocated to this numerical class without the need to designate the soil series.

On the other hand, the soil series concepts elaborated over a long period
(1943–2005) evolved differently across soil surveys. Although a soil series repre-
sented by many soil profiles from different soil surveys is more indicative of the soil
series concepts variability, their allocation to soil classes could be also performed
individually. Furthermore, as discussed by Láng et al. (2013), the taxonomic dis-
tance between modal soil profiles is an important quantitative tool to correlate and
harmonize soil series that arise from different soil surveys.

16.3.3 Domain Limit of the Clusters

All soil profiles (n = 1657) of soil series were classified into clusters A, B, C, and
extragrade. Therefore, potato fields with soil series not associated with fertilizer
trials can be supported by the crop response models. However, the prediction
models are not appropriate when extrapolating to cases far from the calibration
domain (Tranter et al. 2010). The domain limit of the clustering was defined by the
extragrade class that delineates a confidence region about intragrade clusters
(Fig. 16.5). Because soil profile distribution is not normally distributed in the

Fig. 16.5 Distribution of the fuzzy membership to the extragrade cluster (m*) for all modal
profiles of soil series along the first two principal coordinates. Filled white circles represent
exemplar positions for clusters A, B, and C
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principal coordinate space, the extragrade region is more appropriate as a domain
limit compared to an arbitrary distance cutoff from a centroid. Indeed, 15.4 % of the
soil profiles (22.5 % of soil series) were classified as extragrades. Most of them
presented unsuitable properties for potato cropping (clayed, carbonated, shallow
soil profiles).

16.3.4 Comparison of Genetic Horizons Indexed
with Basic Properties

Principal component analysis was conducted on the basic soil attributes of horizons
(n = 160) of soil profiles from the surveyed fertilization experimental sites
(Fig. 16.6). The distribution of podzolized to gleyed horizons was correlated with
color coordinates and contrast of mottles, which is consistent with the field iden-
tification of genetic horizons broadly based on color, arrangement of particles
(structure and consistence), and the HCl-effervescence reaction. However, their
genetic horizons overlapped. Basic properties, such as colors that are sensitive to
the intensity of pedological development and related to the nature of soil material
(geological origin), can be more informative compared to genetic horizon desig-
nations and can explain the overlapping distributions. A correlation coefficient of

Fig. 16.6 Principal component analysis of genetic horizons of soil profiles of experimental sites
using variables of b (a). Correlation circles of color and chemical variables (b) and pedogenetic
features (c) (see Table 16.1 for descriptions) along the first two principal components. Filled white
circles represent centroid and elliptical shaded areas cover 95 % of the theoretical distribution of
genetic horizon suffixes
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0.548 (p < 0.001) was obtained between profile distances computed either from
basic properties or from genetic horizons indices. Indexing conceptual horizons is
thus consistent with basic properties to compare soil profiles quantitatively.

16.4 Conclusions

Numerical clustering allowed aggregating of soil series based on the degree of
similarity between modal soil profiles. Using both quantitative and qualitative
information on soil horizons, the textural gradient and the two major pedogenic
processes of potato soil profiles were partitioned into three continuous soil classes.
With the upgrading of soil legacy databases, the grouping of soil series could be
refined using more exhaustive descriptions (e.g., sand fractions, coarse fragments,
and mineralogical composition). Using soil profile databases from soil surveys, this
study showed that tools of pedometrics can synthesize the soil profile information
into continuous indices to facilitate running site-specific crop response models.
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Chapter 17
Digital Summaries of Pedon Descriptions

Stephen Roecker, Jay Skovlin, Dylan Beaudette and Skye Wills

Abstract Soil scientists have been describing and analyzing pedons for over a
hundred years. In the USA, a small portion of this data has been captured in the
National Soil Information System (NASIS). While NASIS serves as a data repos-
itory, its analytical capabilities are limited, and the data are underutilized. In order
to facilitate the analysis of soil horizon data in NASIS, we have used R to develop
R Markdown (Rmd) reports. These Rmd reports are designed to provide numerical
and graphical summaries of soil horizon data used for soil survey activities, such as
the development of Official Series Descriptions and soil map unit components.

Keywords Soil series � Range in characteristics � NASIS � Pattern matching

17.1 Introduction

Pedon data consist of field estimates, observations, and laboratory measurements.
Unlike the soil map unit polygons and their associated attribute data (component
data), pedon data represent point data from individual soil observations. In support
of soil surveys during the last 100 years, the National Cooperative Soil Survey
(NCSS) has collected a substantial amount of pedon data. Since the introduction of
the National Soil Information System (NASIS) in 1994 (Fortner and Price 2012),
approximately 400,000 field pedons and approximately 63,000 laboratory pedons
have been digitized (Ferguson, 2015, personal communication). Although
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significant, this represents only a small portion of total field pedons ever described
(Fig. 17.1). For digital soil mapping and updates to soil surveys, these pedon data
are an invaluable resource.

In order to store soil data compactly and efficiently, NASIS has a hierarchical
data structure (Fig. 17.2). One branch of the data structure stores point data—
observations of site and pedon data, with soil horizons as the basic element.
Aggregated data about soil map units and their soil components are stored in
another part of the structure. Each aggregated soil component is made up of

Fig. 17.1 Number of pedons sampled per decade recorded in NASIS

Fig. 17.2 Screenshot of the NASIS database interface, and the component and laboratory tables
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generalized soil horizons based on a sample of pedon observations. Also linked to
each horizon record are additional child tables. Each of these nested child tables
may include several related child tables in order to capture heterogeneous soil
conditions within each soil horizon. The dominant condition is specified as the
representative value (RV). For numeric component data, it is also possible to
specify a range with low (L) and high (H) values. This makes it possible to char-
acterize the distribution or variation of a particular soil variable, such as clay
content. Using this database structure, it is possible to capture soil horizonation,
aggregate the data, and then generate spatial predictions by linking it to the soil
polygons.

Soil mapping involves aggregating horizon descriptions from field and labora-
tory pedons into component horizon data. While there are standards that guide the
process of describing individual sites and pedons in the Soil Survey Manual (Soil
Survey Division Staff 1993) and the Field Book for Describing and Sampling Soils
(Schoeneberger et al. 2012), there are no guidelines for the process of aggregating
point/pedon observations into their component database elements. The NCSS
guidelines either address developing Official Series Descriptions (OSDs) (USDA
2015), or how component ranges relate to the OSD (USDA 2013). Historically, the
process of determining the ranges (L, RV, H) for various soil properties has been
done with pencil and paper or spreadsheets and then selected by expert knowledge.
This is a practice that continues today for a variety of reasons:

1. Familiarity with existing protocol,
2. Inconsistency among the existing data,
3. Additional workload involved in digitizing data,
4. Perceived or real software limitations,
5. Lack of training in new software and statistical methods.

Prior to the advent of NASIS, there were many early attempts at estimating low,
RV, and high values for soil properties (Young et al. 1991; Jansen and Arnold
1976). These earlier attempts looked at estimates for portions of the soil profile,
such as surface texture or subsoil clay content, and utilized parametric estimates
(i.e., mean and confidence intervals). They also demonstrated the disconnect
between the limits set for taxonomic units and those observed within map unit
components. This issue is now addressed by Soil Survey Technical Note 4 (USDA
2003), which allows the range (i.e., low and high) of map unit components to
extend beyond those specified by the OSD.

It is possible to manipulate and summarize pedon data directly in NASIS with
reports and pivot tables, but the majority of summary functions within NASIS have
been designed to analyze and evaluate component-level aggregate data. Data can be
exported from NASIS to other software (Table 17.1), but these other software do
not provide the same concise summary of data as do the reports designed for
component data in NASIS. New reports can be added to NASIS, but complex
reports are difficult to write because NASIS supports a limited implementation of
the Structured Query Language (SQL) which has few functions for performing
statistical analysis. Here, we advocate exporting pedon data to R (R Core
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Development Team 2015). R now supports R Markdown (Rmd) reports that pro-
vide access to report-writing capabilities (Xie 2014; Allaire et al. 2015) and
user-contributed functions specifically designed for digital soil morphometrics, such
as the aqp (Beaudette et al. 2012), soilDB (Beaudette and Skovlin 2015), and soil
texture (Moeys 2015) packages.

17.2 Methods

To generate Markdown documents, RStudio was used. RStudio is an integrated
development environment (IDE) for R and provides a minimalist graphical user
interface (GUI) that organizes the R environment into four task-oriented windows.
The initial start-up process of using RStudio and R to run the reports requires the
user to install several R packages and their dependencies and setup an ODBC
connection to NASIS. These steps are documented online at the NRCS Soils job-aid
page, and readers are pointed to these reference documents for full details. R is an
extendable environment and is in constant development, so installing additional
packages is a common practice as packages are updated or new packages become
available.

In order to access NASIS data for use in R, a user must first load a selected set of
field or laboratory pedons in NASIS. A selected set is a view or virtual table that is
created via a query, and serves as a working subset of a user’s local NASIS
database. NASIS has numerous queries to accomplish this. Once the data is loaded
in NASIS, it can be imported into R via an ODBC connection using the
fetchNASIS() function in the soilDB package. The user only needs to modify the
report script by entering the name of the text file (e.g., “Miami”) containing the
GHL rules that correspond to the pedons loaded in the selected set. The report script
is then run, and an HTML document is generated by pressing the Knit button in

Table 17.1 Sample of tools
for analyzing soil data sorted
by user sophistication

Tabular analysis
1. Pencil and paper
2. Excel spreadsheets
3. PedonPC and AnalysisPC (microsoft access databases)
4. NASIS
5. R
Spatial analysis
1. SoilWeb
2. Web soil survey
3. Soil data viewer
4. SSURGO file geodatabases
5. R
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RStudio. The necessary analysis steps are programmed into the report script, and
the output is formatted to HTML using Rmd.

To develop a list of GHL, the user must specify which horizons are similar
enough to be aggregated (Fig. 17.3). This is accomplished by mapping the existing
horizon designations for each horizon and matching them to a generalized (i.e.,
simplified) horizonation sequence for each soil series or component. The assump-
tion is made that the existing horizon designations accurately reflect the soil mor-
phology and the corresponding soil properties of the horizons. For established soil
series, the Official Series Description (OSD) can be used as a starting point for
determining the appropriate GHL to assign to the horizons for the soil in question.
The OSD provides a sample of likely horizons within either the typical pedon
described or the range in characteristics (RIC) sections. For example, multiple Bt
horizons might be aggregated or grouped together if it is determined that they are
similar in clay content and other characteristics and that such an aggregation is not
going to affect the use or interpretation of that soil. Also, Bw and Btk horizons
might be aggregated if the development of the Btk horizons is incipient and does
not meet the definition of an argillic or calcic diagnostic horizon. Another approach
is to examine the frequency with which each horizon occurs (Fig. 17.4). Horizons
that occur frequently are likely to be the most representative.

Fig. 17.3 Hand drawn illustration of the decision making (e.g., question asking) process soil
scientists go through when determining the best selection of GHL for several similar soil
descriptions

Fig. 17.4 Example of the original horizon designations sorted by frequency of occurrence for the
Miami soil series
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Once appropriate GHL have been determined for the collection of pedons,
pattern matching is used to assign the new GHL to each horizon. The process uses
functions designed to parse the text from each horizon designation and match it to
the new GHL. The function searches for any combination of characters before or
after the specified pattern. Patterns that do not match any of the GHL are labeled
“not used.” Special meta-characters serve as anchors or anti-wildcards for the
beginning (i.e., caret “^”) and end (i.e., dollar sign “$”) of the given pattern. For
example, the GHL pattern “Bt” will match any permutation of Bt, such as 2Bt or
Bt1. To exclude 2Bt horizons, a more specific pattern of “^Bt” would be necessary.
Conversely, to exclude Bt1 horizons, a pattern of “Bt$” would be used. If a user
wishes to match special character like the caret “^” symbol, which is also used for
human-transported material, it is necessary to append it with two backslashes like
so, “\\^.” As the GHL rules are developed, they are stored in a text file and later
referenced by the Rmd report. If the user is satisfied with the resulting GHL
designations, they can upload it to the comp layer ID field in the horizon table in
NASIS where it is stored for future use.

Example of the GHL rules for the aqp loafercreek sample data set:

– A: ^A$|Ad|Ap
– Bt1: Bt1$
– Bt2: ^Bt2$
– Bt3: ^Bt3|^Bt4|CBt$|BCt$|2Bt|2CB$|^C$
– Cr: Cr
– R: R

Embedded in the reports are numerical and graphical summarizes of the data
elements typically collected and used to differentiate dissimilar soils. Numerical
variables are summarized by percentiles (i.e., quantiles), instead of the mean and
confidence intervals, because they provide nonparametric estimates of a distribution
and are less influenced by skewness which is common for most soil properties. Also
percentiles provide a neat and compact summary. The percentiles used can be
adjusted by the user, but the default is set to the five number summary (i.e., 0, 25,
50 % or median, 75, and 100 %) (Tables 17.3 and 17.4). Additionally, the per-
centiles are appended with the number of observations (n) (e.g., (0, 25, 50 % or
median, 75, and 100 %)(n)), to inform the user of the sample size. The standard
graphics used are box plots which provide a similar summary and interpretation
(outliers, *5, *25, 50 % or median, *75, *95 %, outliers) of the data
(Fig. 17.5). To summarize categorical variables, frequency tables (i.e., contingency
tables) are used which cross-tabulate the number of occurrences of matching pairs
(Tables 17.5 and 17.6).
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17.3 Results and Discussion

The full field and laboratory reports are not shown here due to space limitations.
The list below summarizes their content followed by sample excerpts and a dis-
cussion of the field and laboratory report content.

• Field pedon report content:

– General map of georeferenced pedon locations overlaid on county boundary
outlines;

– Table of identifying information: pedon id, soil series, etc.,
– Soil profile plots (Fig. 17.6),
– Surface rock fragments,

Fig. 17.5 Box plots of field (top) and laboratory (bottom) measurements for clay (%) and pH
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– Depths and thickness of diagnostic horizons,
– Comparison of GHL versus original horizon designations (Table 17.2),
– Depth and thickness distribution of GHL,
– Numeric variables: clay content, rock fragments, pH, etc., (Table 17.3)
– Soil texture and texture class modifier summarized by GHL (Table 17.5),
– Soil color hue summarized by GHL,
– Elevation, slope gradient, and slope aspect,
– Parent material versus landform,
– Slope shape (down slope vs. across slope shape),
– Drainage class versus hillslope position.

• Laboratory pedon report content:

– General map of georeferenced laboratory pedon locations overlaid on county
boundary outlines,

– Table of identifying information: pedon id, soil series, etc.,
– Soil profile plots (Fig. 17.6),

Fig. 17.6 Example of soil profile plots of the field (top) and laboratory (bottom) pedons for the
Miami soil series. Horizons are colored according to their GHL
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– Weighted averages for the particle size control section,
– Depths and horizon thickness for the particle size control section,
– Comparison of GHL versus original horizon designations (Table 17.2),
– Depth and horizon thickness of GHL,
– Numeric variables: particle size fractions, pH, base saturation, carbon con-

tent, etc. (Table 17.4),
– Laboratory soil texture summarized by GHL (Table 17.6).

Much of the information contained in the reports is used to summarize data for
developing OSD and aggregated map unit soil components. Evaluating the graphics
and tables within the reports quickly show where there are possible errors, narrow
or wide ranges in values, or where data gaps exist due to insufficient data. One of
the first outputs of the report that should be examined is the contingency table of the
GHL versus the original horizon designations (Table 17.2). This shows the results
of the pattern matching and should be examined to confirm whether the GHL
assignments aggregate the soil horizons appropriately. For example, GHL that are
labeled as “not used” did not match any of the given patterns and were not included
in the data summaries. The user may in some cases wish to further examine these
horizons and decide whether or not to refine the GHL rules to include/exclude them
from the summaries.

Table 17.3 Percentile summaries of field estimates of clay (%) and pH

genhz Clay phfield
Ap (14, 16, 18, 26, 34)(3) (4.7, 5.9. 6.4, 7, 8.2)(77)
A (NA, NA, NA, NA, NA)(0) (4.8, 5.8, 6.4, 6.8, 7.5)(54)
E (NA, NA, NA, NA, NA)(0) (4.7, 5.3, 5.8, 6.8, 7.5)(41)
Bt (14, 28, 32, 34, 37)(6) (4.4, 5.8, 6.4, 7, 8.1)(206)
2Bt (22, 22, 26, 31, 37)(5) (4.8, 5.8, 6.9, 7.6, 8.2)(30)
2BCt (30, 30, 30, 30, 30)(1) (5.5, 7, 7.4, 7.8, 8.7)(70)
2Cd (8, 12, 12, 23, 29)(6) (8, 8, 8.2, 8.2, 8.4)(17)
Not-used (10, 15, 20, 28, 35)(29) (4.9, 6.2, 7.8, 8.2, 8.7)(146)

Table 17.4 Percentile summaries of laboratory measurements of clay (%) and pH

genhz Claytot ph1to1h20
Ap (7, 16, 18, 20, 29)(83) (4.7, 5.7, 6.2, 6.9, 7.7)(83)
A (7.5, 13.5, 17, 19.9, 39.4)(53) (4.5, 5.4, 6, 6.5, 7.5)(54)
E (11, 21, 24, 29, 37)(45) (4.5, 5.1, 5.7, 6.6, 7.4)(45)
Bt (15.2, 27.4, 31.6, 36, 50.7)(155) (4.4, 5.3, 6, 6.8, 8.3)(155)
2Bt (22, 25.3, 30.7, 34.7, 43.6)(13) (4.6, 4.9, 5.4, 7.1, 8.3)(13)
2BCt (14.3, 23.4, 28.4, 33.2, 50.9)(86) (4.9, 6.4, 7.5, 7.8, 8.6)(86)
2Cd (14, 16, 16, 18, 27)(10) (7.7, 7.8, 7.9, 8.3, 8.5)(10)
Not-used (3, 18.1, 23.8, 35.5, 54.4)(298) (4.7, 6, 7.8, 8, 8.6)(299)
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As an example, the following tables and figures show excerpts from all the field
and laboratory data labeled as the Miami soil series within NASIS (Tables 17.3,
17.4, 17.5, and 17.6) (Figs. 17.2, 17.4, 17.5, and 17.6). The example shows that the
field estimates of clay content are missing for A horizons. Given the age of the data
set, which ranges from 1951 to 2014, this is not surprising, as it has not always
beencommon practiceto record field estimates for clay content. The laboratory data
by comparison have numerous measurements of clay content. By examining the
box plots, we can see a clay increase in the Bt and 2Bt horizons and a decrease in
the 2Cd horizon. The box plots for pH show a wide interquartile range and a slight
decrease in the median pH with depth. The subsoil (i.e., 2BCt and 2Cd) shows a
much narrow interquartile range and higher median pH. Examining the contingency
tables of GHL versus texture, we can see a greater frequency of silty textures in the
A and E horizons (Table 17.5 and 17.6). The Bt horizon has a higher frequency of
clay loam textures. If silty textures are indicative of the loess cap associated with
the Miami soil series, numerous Bt horizons should be relabeled as 2Bt horizons.
The report’s summaries allow soil scientists to examine their data quickly partic-
ularly when the data are viewed in aggregate.

Table 17.6 Number of GHL versus laboratory textures

cos si fsl l sil si scl cl sicl sc sic c Sum
Ap 0 1 1 13 63 0 1 3 1 0 0 0 83
A 0 0 2 5 42 0 0 2 2 0 0 0 53
E 0 0 0 6 24 0 0 7 8 0 0 0 45
Bt 0 0 1 24 6 0 7 85 14 0 2 16 155
2Bt 0 0 0 4 1 0 0 5 2 0 0 1 13
2BCt 0 0 3 30 0 0 4 36 5 0 1 7 86
2Cd 0 0 1 8 0 0 0 1 0 0 0 0 10
Not-used 1 2 14 147 13 1 2 60 15 1 6 37 299
Sum 1 3 22 237 149 1 14 199 47 1 9 61 744
The values represent the frequency of occurrence (counts) for combinations of GHL and texture

Table 17.5 Number of GHL versus field textures

cos s ls lfs si fsl l sil si scl cl sicl sc sic c Sum
Ap 0 0 0 0 0 1 13 74 1 1 7 1 0 0 0 98
A 0 0 0 0 0 2 10 50 0 0 1 3 0 0 0 66
E 0 0 0 0 0 0 7 25 0 0 1 16 0 0 0 49
Bt 0 0 0 0 0 1 25 9 0 5 141 30 0 3 9 223
2Bt 0 0 0 0 0 0 8 0 0 0 22 6 0 0 0 36
2BCt 0 0 0 0 1 3 35 1 0 4 34 11 0 0 5 94
2Cd 0 0 0 0 0 0 27 1 0 0 1 0 0 0 0 29
Not-used 1 1 1 1 6 11 172 24 0 2 40 35 1 4 32 331
Sum 1 1 1 1 7 18 297 184 1 12 247 102 1 7 46 926
The values represent the frequency of occurrence (counts) for combinations of GHL and texture
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17.4 Conclusion

Here, we have presented an effort to efficiently analyze the large volume of soil
horizon data present in the NASIS database. We have developed R Markdown
reports that provide univariate summarizes of the data elements typically used to
develop OSD and soil map unit components. Using the relational structure of the
NASIS database combined with the extensible data handling and statistical analysis
capabilities of R, it is possible to generate powerful graphical and tabular sum-
maries for collections of pedon data bundled into one report. Summarizing pedon
data by horizon is a critical and time-consuming step in the soil survey workflow.
Because we can typically only investigate soil variability by examining several soil
profiles and comparing multiple descriptions, viewing the data in aggregate
allows us to approximate the representative values and ranges for soil horizons
(i.e., polypedons), which are the building blocks of soil map unit components.
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Chapter 18
Probabilistic Representation of Genetic
Soil Horizons

D.E. Beaudette, P. Roudier and J. Skovlin

Abstract Published soil survey reports typically describe soil series concepts in the
form of aggregated information: ranges in soil properties, interpretations, and
limitations that are derived from a collection of field-described soil profiles. While
aggregated soil properties are readily estimated via standard statistical functions
(mean, median, etc.), an aggregated representation of horizonation (e.g., genetic or
functional horizon designation and depth) is typically difficult to construct.
Variation in horizon designation use among soil scientists and different soil
description systems, changes in horizon designation standards over time, variable
depths at which horizons occur, and the uncertainties associated with these are all
factors that complicate the process of delivering an aggregated representation of
horizonation. In this chapter, we propose alternatives to the typical “representative
profile,” e.g., the selection of a single soil profile to represent a collection. Two
possible methods for aggregating a collection of soil profiles into synthetic profiles
are presented, describing depth-wise probability functions for each horizon. Both
methods rely on an expert-guided description of generalized horizon designation
(e.g., a subset of horizon designation labels that convey a reasonable “morphologic
story”) along with associated rules (regular expression patterns) used to correlate
field-described to generalized horizon designation. The first method is based on
(1-cm interval) slice-wise evaluation of generalized horizon designation; the second
is based on a proportional-odds logistic regression model fit to depth-slices. These
methods are demonstrated using USDA-NRCS soil survey data (USA).
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18.1 Introduction

Published soil survey reports typically describe soils in terms of aggregated
information, i.e., soil properties, interpretations, and limitations that are based on a
collection of field-described soil profiles. While aggregated soil properties are
readily estimated via standard statistical functions (mean, median, etc.), an aggre-
gated representation of horizonation (e.g., genetic horizon designation and depth) is
typically difficult to construct (Beaudette et al. 2013). Variation in horizon desig-
nation “style” among different soil scientists, changes in horizon designation
standards over time, variable depths at which genetic horizons occur, and the
possible lack of a specific genetic horizon are all factors that complicate the process
of delivering an aggregated representation of horizonation. The process of desig-
nating horizons by soil scientists can be somewhat subjective; even a second
description of the same volume of soil can lead to a slightly different set of horizon
designations and depths (Holmgren 1988). In addition to human sources of vari-
ability, it is understood that most of the variation between profile descriptions is due
to real differences between soils observed at different locations (Wilding et al.
1964).

This complex combination of variability in morphologic horizon designation and
depths is rarely acknowledged from a numerical standpoint at the soil series or soil
component level. Boundaries between horizons, expressed as horizon depths, are
generally considered as “crisp” numbers, while in actuality they represent “fuzzy”
numbers due to varying distinctness of the horizon boundaries and how abruptly
characteristics change at horizon boundaries.

Soil profiles and their corresponding soil horizons represent a record of soil
formation and encapsulate significant information about soil morphology. Although
new tools and technologies may make continuous depth-measurements of soils
possible, horizon designation nomenclature has historically been the common
pedological language used to annotate observations of changes in soil properties
with depth (Hartemink and Minasny 2014; Myers et al. 2011; Kempen et al. 2011).
The use of horizon designation nomenclature has inherent interpretation and
meaning and allows useful comparisons to be made among soil profiles in a col-
lection (Soil Survey Manual 1951).

The soil survey programs of many countries have historically used the “modal
pedon” or “modal soil” concept to convey a reasonable example of morphologic
central tendency. Several authors have expressed concern with this approach (Jones
1959; Hudson 1990) due to the loss of information on a complex natural body that
exhibits continuous gradation in space. While the “modal pedon” concept fails as a
true aggregated representation of a collection, it does offer the soil survey user a
concrete example (of one possible realization) that can be visited and sampled as
needed.

We demonstrate two possible methods for aggregating a collection of soil pro-
files into “representative conceptual profiles”; describing depth-wise probability
functions for each genetic horizon. Both methods rely on an expert-guided
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description of generalized horizon designation (e.g., horizon designations that are
deemed representative) along with associated rules (regular expression patterns)
used to correlate field-described to generalized horizon designation. The first
method is based on (1-cm interval) slice-wise evaluation of generalized horizon
designation; the second is based on a proportional-odds logistic regression
(McCullagh 1980) model fit to depth-slices. Specialized classes for soil profile
collections and depth-slicing algorithms are implemented in the aqp package for R
(Beaudette et al. 2013).

18.2 Materials and Methods

18.2.1 Soil Profile Data

A collection of (63) soil profiles from the Sierra Foothill Region of California were
used to demonstrate two approaches for determining an aggregated representation
of genetic horizon boundaries. This collection of soil profile data represents the
work of 13 different soil scientists, and is included within the soilDB package for R
(Beaudette and Skovlin 2015). These soils are associated with the Loafercreek soil
series (fine-loamy, mixed, superactive, thermic Ultic Haploxeralfs); moderately
deep soils formed in colluvium and residuum from metavolcanic rocks (greenschist)
(Fig. 18.1). The climate is characterized by hot, dry summers and cool, wet winters.
Mean annual air temperature is approximately 16 °C and mean annual precipitation

Fig. 18.1 Eight photographs of the Loafercreek soil series, collected in Tuolumne and Calaveras
counties, CA, USA. How would you combine the wide range in morphology from these profiles
into an aggregated concept?
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is 760 mm. The native vegetation is blue oak and annual grass savannah. Land uses
for this soil series include range, vineyards, recreation, and wildlife habitat.

The methods described in this chapter are based on field descriptions: obser-
vations based on (experienced) visual and tactile investigation of the soil profile.
Given sufficient laboratory characterization data, these same methods could be
refined to use a combination of field and laboratory data.

18.2.2 Horizon Generalization

Generalized horizon labels (GHL) represent an expert-guided selection of horizon
designations that were consistently observed in the field, and meaningful in terms of
soil morphology and management. These designations were determined to convey
the “morphologic story” or conceptual framework of most-likely horizons typically
observed in a suite of soil profiles associated with a specific soil series or map unit
soil component. The Official Series Description (OSD) (Soil Survey Staff 2015) of
the Loafercreek series typical pedon and range in characteristics defines this soil
series concept. In this case, the OSD provided a useful GHL template, however,
older OSDs or those based on a very limited set of data may not adequately convey
an appropriate morphologic story.

Once a set of GHL have been determined (in the case of the sample data set: Oi,
A, BA, Bt1, Bt2, Bt3, Cr, R), it is necessary to create and apply a set of rules that
map the field-described designations to corresponding GHL. When working with a
set of pedons that have been described by a small number of individuals over a
short period of time (i.e., consistency in both designation application and stan-
dards), it is possible to use regular expression (REGEX) pattern matching to apply
GHL. This process typically requires review of: (1) regional patterns in horizona-
tion style, (2) morphologic property differences by groups of field-described des-
ignation, and (3) patterns of horizonation and properties with depth. We used a
combination of field-described clay content, rock fragment volume, moist Munsell
color value, and horizon midpoint to evaluate GHL assignments and determine the
final set of REGEX rules. Due to this iterative process, local experience with these
soils and their properties is (mostly) preserved within the REGEX rules and cor-
responding GHL. It should be noted that there are some cases where pattern
matching alone is not enough and manual adjustment of GHL on a
horizon-by-horizon basis is needed. For simplicity, only REGEX-based assignment
of GHL was used in this study.

At present, there are limited means for capturing this type of soil horizon
“micro-correlation” information developed in the application of GHL to soil hori-
zon data. The authors suggest that future studies maintain a record of original
horizon designations, GHL suitable for aggregation, and the rules used to apply
these labels. Such a record would be useful should more data on a soil be collected
or laboratory data be included in the horizon data set. A convenient, quantitative
evaluation of GHL assignments can be performed using the silhouette width metric
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(Rousseeuw 1987). This metric, commonly used to assess clustering labels, can be
used to address the basic question of GHL assignment: “given a set of data and
labels, how well do these labels split differences within the data?”

Aggregation of Generalized Horizon Labels

Aggregation of horizons as defined by GHL was performed using empirical
probabilities, estimated along regular depth-slices from 0 to 150 cm (Beaudette
et al. 2013). The “sliced” GHL data were then aggregated using proportional-odds
logistic regression (Fig. 18.2). All computation was performed with the R package
for statistical computing (R Core Team 2013).

A sequence of morphologic soil horizon designations can be modeled as an
ordinal-scale variable: categorical by definition and ordered along a common gra-
dient—depth. Within the set of GHL associated with our sample data, “Bt2”
horizons always occur after “Bt1” horizons and before “Bt3” horizons. The
proportional-odds logistic regression model (cumulative link model with logit link)
(McCullagh 1980) is a convenient framework for estimating the probability of
encountering a GHL, as conditioned by depth. The proportional-odds logistic
regression (PO-LR) model can be defined as follows:

P½Y � jjX� ¼ 1
1þ exp½�ðaj þXbÞ�

where P½Y � jjX� is the estimated probability of encountering GHL j, X is a set of
predictor variables, and b is a vector of fitted regression coefficients (Harrell 2001).
In this study, the PO-LR model was fit to “sliced” horizon data; 1-cm slices of GHL
and slice top depth (Fig. 18.2). Restricted cubic spline (RCS) basis functions
(Harrell 2001; Hastie et al. 2009) with 4 knots located at the 5th, 35th, 65th, and

50 cm

40 cm

30 cm

20 cm

10 cm

0 cm
Oi A BA Bt1 Bt2 Bt3

Fig. 18.2 Demonstration of a selection of Loafercreek soil profiles sliced into 1-cm chunks to a
depth of 50 cm, colored by GHL, and associated probability estimates from the fitted PO-LR
model

18 Probabilistic Representation of Genetic Soil Horizons 285



95th percentiles of slice top depth were used to accommodate nonlinearity. An
empirical index of model stability was calculated by repeatedly refitting the PO-LR
model to 25 randomly selected profiles (out of 63 total), 250 times.

18.2.3 Most-Likely Horizon Boundaries

Continuous estimates of GHL probability with depth are a convenient approach to
communicating variability; however, there are still cases where discrete horizon
depths are either required (e.g., database limitations) or sufficient for end-users. For
example, the USDA-NRCS Official Series Description pages are used by a wide
range of individuals that may not need continuous estimates of horizon probability.
We used a simple strategy for converting these depth-functions into a discrete set of
“most-likely” GHL boundary depths. At each depth-slice, the GHL with the highest
probability is selected. Most-likely boundary depths are determined by locating
upper and lower depths from contiguous sets of slices that share a common GHL.
Within a collection of highly similar pedons, the most-likely boundary depths
closely correspond to crossings of the GHL probability depth-functions.

18.2.4 Model Assessment

We used Shannon Entropy to quantify the relative amount of information present
within GHL predictions at any given depth. Shannon Entropy was calculated
according to (Kempen et al. 2009):

H ¼ �
Xn

i¼1

pilognðpiÞ

where H is an index of entropy associated with predicted probabilities, p, of
encountering GHL i through n at any given depth. Values range from 0 (maximum
information, minimum entropy) to 1 (minimum information, maximum entropy).
Entropy values were computed along each 1-cm depth-slice from predictions
generated by the PO-LR model.

We used Brier scores (Harrell 2001) to quantify agreement between observed
GHL and probabilities of predicted GHL:

B ¼ 1
n

Xn

i¼1

ðpi � yiÞ2
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where B is an index of agreement between predicted probabilities, p, and observed
horizons, y, over depth-slices i through n associated with a specific horizon. Larger
values suggest less agreement between probabilities and observed horizon labels.

18.3 Results

18.3.1 Generalized Horizon Labels

A graphical representation of the association between field-described horizon
designation and associated GHL is presented as a box and whisker plot in Fig. 18.3.
Assignment of GHL to the top- (A) and bottom-most (Cr and R) genetic horizons
by REGEX pattern matching resulted in the most internally consistent groups of
data. Transitional horizons near the surface (AB, BA, etc.) and lower Bt horizons
(2Bt3, Bt4, BCt, etc.) were generally the most variable and thus difficult to place
within a GHL by pattern matching. Further investigation of select soil properties
and associated ranges (Table 18.1) made it possible to refine REGEX rules.

The apparent gap (Fig. 18.3) in horizon midpoints between Cr and R GHL is
related to various depths to which Cr material was excavated and cases where an R
horizon was not described. By convention, R horizon bottom depths are commonly
extended to 150 or 200 cm. The degree of overlap in GHL concepts can be
expressed in terms of measured soil properties (in this case, a limited set of
field-described properties), summarized by GHL (Table 18.1).

18.3.2 Probabilistic Representation of GHL

A graphical comparison of empirical and PO-LR-predicted GHL probabilities is
presented in Fig. 18.4. The empirical probability curves are an exact representation
of the 63 pedons within our sample data set; however, these curves are not likely a
generalized representation of all possible soils correlated with the Loafercreek
series. At the expense of a small amount of accuracy (as evaluated using the sample
data set), the smoother and more generalized shape of the PO-LR-derived GHL
probabilities are better candidates for describing the central tendency of a soil series
concept (Fig. 18.4). When samples sizes are too small to support fitting a stable
PO-LR model, the empirical probabilities can provide a reasonable alternative.

The PO-LR probabilities were the least accurate within the very thin Oi (Brier
Score of 1.40) and infrequently occurring BA horizons (Brier Score of 1.22).
Accuracy was greatest in the most consistently defined horizons which were not
surprisingly found at the “top” (A horizons) and “bottom” (R horizons) of the
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profiles. The degree of overlap in GHL concepts was greatest (as defined by
Shannon Entropy) near the surface where Oi, A, and BA horizons spanned similar
depth ranges, and lower in the profile where Bt3 and Cr horizons spanned large
ranges in depth (Fig. 18.5).

Table 18.1 Evaluation of GHL via field-described soil properties

GHL Clay
(%)

Horizon midpoint
(cm)

Total RFa volume
(%)

Moist Munsell color
value

Oi – 0.7 (0.4) – –

A 16 (3.3) 4.2 (3.2) 7 (7.3) 3.3 (0.6)

BA 18 (3.7) 12.1 (6.2) 10 (6.5) 3.6 (0.7)

Bt1 21 (4.5) 19.9 (9.3) 13 (12.5) 3.7 (0.6)

Bt2 25 (5.0) 39.6 (11.3) 24 (21.8) 4.0 (0.7)

Bt3 29 (6.3) 60.9 (13.6) 35 (23.9) 4.4 (0.6)

Cr – 77.0 (16.4) – –

R – 137 (11.5) – –

Reported values are means with standard deviation in parenthesis. Values marked as “–” are the
result of missing or insufficient data
aRF: rock fragment percent by volume
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Fig. 18.4 Comparison of empirical GHL probabilities, evaluated over 1-cm depth-slices, and
predictions from the PO-LR model. Probabilities less than 0.01 have been removed for clarity
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18.3.3 Model Fit and Stability

The fitted PO-LR model had a reasonably high coefficient of determination
(R2 ¼ 0:83). Removal of RCS basis functions from the model resulted in an R2 of
0.79. Deviations between empirical and modeled probabilities were greatest in
horizons near the surface and smallest in the lower-most horizons (Fig. 18.6).
Discrepancies between the two sets of probabilities can be attributed to two main
factors: (1) lack of model fit, and (2) generalization (e.g., smoothing) of empirical
probabilities by the PO-LR model.

The stability of the PO-LR model was evaluated by iteratively refitting the model
(250 times) using a random subset of 25 pedons (out of 63 total) within each
iteration. The predictions from each iteration are presented in Fig. 18.7. Mean
model R2 was 0.89 and ranged from 0.81 to 0.91. Variation between iterations
appears to results in a range in predicted probabilities of about 0.2 probability units
near the peaks associated with each generalized horizon label. The combination of
predictions from the full model combined with many realizations of a reduced
model could be a useful way to convey uncertainty in predictions of GHL proba-
bilities at any given depth.

18.3.4 ML Horizon Depths

The “most-likely” (ML) horizon depths extracted from empirical probabilities were
quite similar to those extracted from PO-LR model predictions (Table 18.2). ML
horizon depths represent one possible way in which probabilistic estimates of GHL
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Fig. 18.5 PO-LR-predicted
GHL probabilities solid lines,
Shannon entropy dashed line,
and associated Brier scores
(values printed in legend)
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occurrence can be simplified into a format that is more familiar to users of existing soil
survey products. ML horizon depths could also serve as a template by which aggre-
gated soil properties (clay, pH, CEC, etc.) are organized within soil survey reports.
The Brier scores (Table 18.2) serve as an indication of how well each set of ML
horizon depths fits the original collection of pedons. For example, predictions asso-
ciated with the ML horizon depths for “A” horizons more consistently overlap with
field-observed “A” horizons (e.g., smaller Brier scores) as compared to “Bt3”
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horizons (e.g., larger Brier scores). In all cases except “Bt2” and “Bt3” horizons, Brier
scores associated with the PO-LRmodel were equal to or greater than those associated
with empirical probabilities; not surprising as predictions from the PO-LR model are
much smoother than the over-fit empirical probabilities. The similarity inML horizon
depths and small differences in Brier scores suggest that the PO-LR model is a
reasonable generalization of the GHL concepts defined for this collection of pedons.

18.4 Conclusions

Describing and sampling soil by genetic horizon represents an efficient approach
that has provided a common pedological language used among soil scientists and
classification systems for nearly 100 years. Yet, deriving an aggregate representa-
tion of soil morphology (e.g., to support a soil series concept or similar task) from a
suite of similar soil profile descriptions has been challenging. For this reason, soil
series concepts have historically been defined using the modal profile; a single,
field-observed pedon selected as a “representative” demonstration of central ten-
dency. Advances in soil morphometrics are poised to change our understanding of
what it means to describe soil profiles. Continuous depth-functions of soil prop-
erties will further our understanding of how soil properties vary with depth, adding
rich content to the existing genetic horizon framework.

In this chapter, we have outlined an approach for deriving continuous
depth-functions of groups of field-described genetic horizon probabilities.
Correlation of horizon designation to a subset of GHL is fundamental to this
approach and represents a series of “micro-correlation” decisions that could support
a wide range of soil data aggregation tasks. The two aggregation methods described
in this chapter yield similar results; selection of an appropriate method depends on

Table 18.2 Most-likely GHL boundary depths and associated Brier scores, computed from
empirical probabilities and PO-LR predictions

Empirical probabilities PO logistic regression

Horizon Top Bottom Brier Horizon Topa Bottoma Brierb

A 0 8 0.20 A 0-0-0 7-9-10 0.26

Bt1 8 28 0.23 Bt1 7-9-10 25-28-31 0.23

Bt2 28 51 0.25 Bt2 25-28-31 47-50-54 0.23

Bt3 51 68 0.44 Bt3 47-50-54 63-67-73 0.39

Cr 68 90 0.36 Cr 63-67-73 85-91-100 0.36

R 90 203 0.05 R 85-91-100 151-151-151 0.08

All depths are in cm
a5th, 50th, and 95th percentiles of ML horizon boundaries derived from 250 iterations of model
fitting, based on a reduced data set
bBrier scores calculated using full PO-LR model
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sample size; use of empirical probabilities is recommended for small collections of
pedons (less than 10 pedons), and PO-LR-derived probabilities are recommended
for large collections.

The methods presented in this chapter represent progress toward a quantitative
description of soil morphology. Future application of these methods will depend on
development of guidelines related to: minimum sample sizes, PO-LR model fitting
parameters, model diagnostics, and recommendations on pedogenic interpretation
of model coefficients. In addition, more work needs to be done on incorporating
depth-wise correlation into the PO-LR model to support more realistic estimates of
coefficient standard errors.
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Chapter 19
Using Soil Depth Functions to Distinguish
Dystric from Xanthic Ferralsols
in the Landscape

Helena Saraiva Koenow Pinheiro, Waldir de Carvalho Jr.,
Cesar da Silva Chagas, Lucia Helena Cunha dos Anjos
and Phillip Ray Owens

Abstract The soil texture is a key parameter and is widely used as input in pre-
dictive models to estimate other soil properties. The general goal was creating
numerical parameters to describe the variability of soil particle size (sand, silt, and
clay) components using continuous depth functions to characterize Ferralsols from
Guapi-Macacu watershed in Rio de Janeiro State (Brazil). The profile collection
comprises fifteen profiles, seven classified as Haplic Ferralsols (Dystric) and eight
as Haplic Ferralsols (Xanthic). The analysis was performed in the R software
through “aqp” package (Algorithms for Quantitative Pedology) and using
equal-area quadratic spline function. A numerical aggregation of soil texture
components was used to build a mean, a median, and spline depth functions, fitting
the dataset to six predefined depths (GlobalSoilMap project) and to most-likely
horizon depths. The analysis revealed sand and silt content with decreasing values
with soil depth and the opposite trend for clay. The topsoil layer (0–30 cm) had
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dominantly a clay loam texture (32–40 % clay; 49–53 % sand; and 15–20 % silt).
The most-likely diagnostic B-horizon (45–150 cm depth) presented clayey texture
(43–47 % of clay and 40–55 % of sand). Ferralsols usually have low silt contents;
and the silt range was from 10 to 20 % in the soil profile collection. The organized
data can be useful to many purposes, including profile database harmonization and
soil classification.

Keywords Soil depth functions � Soil texture components � Digital mapping of
soil properties � Spline � Algorithm for quantitative pedology

19.1 Introduction

Ferralsols have a large distribution in Brazil covering almost one-third of the ter-
ritory and are important for agriculture and pasture production (Dick et al. 2005).
The mineralogy of these soils is mainly composed of low activity clays (kaolinite)
and Fe and Al-oxides (hematite, goethite and gibbsite); thus, they have a low cation
exchange capacity (Sposito 1989; Santos et al. 2013). The soil profiles are in
general deep and they have a well-developed soil structure, showing yellowish and
reddish colors indicating good drainage conditions.

The soil texture, or composition of mineral particle size, is a highly variable soil
physical characteristic, which has an essential role for growing crops, engineering
projects, and land protection and conservation. The effects of the soil texture on
land capability, storage of water and nutrients, distribution and composition of
vegetation are well known globally (Klingebiel 1963; Jenny 1980; Silver et al.
2000; Fernandez-Illescas et al. 2001). The soil texture information is a key
parameter widely used as input in predictive models to estimate hydrologic
parameters (Thompson et al. 2012). Due to those facts, digital soil mapping
(DSM) efforts have been made to obtain information about soil particle size fraction
distribution (Moore et al. 1993; Arrouays et al. 1995; McBratney et al. 2000).

Field evaluation of a soil profile and the description of horizons/layers are
usually performed according to morphological characteristics related to pedogenetic
processes (alteration of parental material, eluviation/illuviation of clay, organic
matter and salts distribution, hydromorphic features, iron content, among others). In
the soil surveys, the information and data from soil evaluation are related to nar-
rative, tabulated, or presented in sketches drawings. However, the lack of data
standardization and quantitative parameters turns it difficult to transmit the infor-
mation to other users (Beaudette et al. 2013).

The organized data can be useful to many purposes; however, the analysis of
large soil profile collections is affected by changes in soil classification over time
and among taxonomic systems, regardless of standard soil data issues and differ-
ences of analytical procedures. Addressing the issue of variability of soil properties
along profile depths, the global consortium of soil survey (GlobalSoilMap project)
proposed standard intervals to compound the database of soil properties (Hartemink
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et al. 2010). The six predefined depths correspond to the following layers: 0–5,
5–15, 15–30, 30–60, 60–100, and 100–200 cm (Arrouays et al. 2014).

The general goal was creating numerical parameters to describe the variability of
soil particle size (sand, silt, and clay) components using continuous depth functions
to characterize Ferralsols from Guapi-Macacu watershed in Rio de Janeiro State
(Brazil). The analysis comprised soil depth functions (spline and slicewise aggre-
gation) and relations among soil texture components and diagnostic horizons. To
accomplish the proposed goal, a numerical approach, fitting the dataset to prede-
fined depths (GlobalSoilMap project) and according to most-likely inferred horizon
depths, was applied aiming to set the representative functions and characterize the
texture of soils studied in the watershed.

19.2 Materials and Methods

19.2.1 Study Area

The Guapi-Macacu watershed is located at southeast region of Brazil, in Rio de
Janeiro State (Fig. 19.1). The climate is classified as tropical rainy with dry winter
(Aw) according to Köppen classification (Köppen 1948). The mean temperature is
23 °C, with low temperatures in winter. The average annual rainfall exceeds

Fig. 19.1 Location of Ferralsols profiles in the Guapi-Macacu watershed, Rio de Janeiro (Brazil)
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1200 mm, and it can reach 2600 mm in the watershed divisors (Projeto Macacu
2010; Dantas et al. 2008). The region is part of the Atlantic rainforest biome, with
different types of natural vegetation, such as the altitude grasslands, dense forests,
mangroves, swamps, and estuaries (Pedreira et al. 2009).

The maximum altitudes are observed in the escarpments of the “Serra do Mar,”
with gneiss/granite rocks as the predominant lithology. The transition area between
the escarpment and the coastal plains, at sea level, comprises of a series of hills and
slopes with elevations below 1000 m. Geologically, the region is located in the
central portion of the Guanabara Graben, classified as Macacu Sedimentary Basin,
formed by several depositional sequences from tectonic events in the early Tertiary
(Ferrari 2001). The consequences of geological events that gave rise to the
Guanabara Graben induced geomorphological features related to depositional
events, such as alluvial fans and fluvial and lacustrine deposits.

The soils were surveyed in 2011 and 2012, and approximately one hundred soil
profiles were described and collect. For this study, fifteen profiles of Ferralsols were
selected from the collection. Figure 19.1 shows the location of Ferralsols profiles in
the Guapi-Macacu watershed in Rio de Janeiro State, Brazil.

Total sand, silt, and clay contents were measured according to Embrapa (1997)
procedures. The analytical results of particle size, corresponding to the depths
described in the soil survey (genetic horizons), were used to identify the diagnostic
horizons, and the soil classification was performed according to the Brazilian
System of Soil Classification—SiBCS (Santos et al. 2013) and correspondent cri-
teria in the World Reference Base for Soil Resources—WRB (IUSS Working
Group 2014).

19.2.2 Soil Profile Data and Depth Functions

The dataset selected to perform the analysis comprises fifteen Ferralsols: seven
profiles classified as Haplic Ferralsols (Dystric) and eight as Haplic Ferralsols
(Xanthic). The statistical procedures were implemented in the R software (R
Development Core Team 2013). The R program is an open source and free soft-
ware. Operating procedures in this program are conducted by command lines
(scripts) and require the prior installation of packages to read certain types of data
and run specific analysis.

The analysis of the soil profile data comprises aggregation of profiles by soil
texture properties by slicewise aggregation algorithm (Beaudette et al. 2013) and
harmonization of soil depth by equal-area spline function (Ponce-Hernandez et al.
1986). The analysis by slicewise aggregation was performed using Algorithm for
Quantitative Pedology (AQP) package, developed by Beaudette et al. (2013). The
“aqp” stable version of the package is available on CRAN (http://cran.r-project.org/
web/packages/aqp/). The aggregation algorithm allows the estimative of central
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tendency according to each depth slice (1 cm) and computing statistic for each
segment, reconstructing the profile data at predefined depths, as a single “repre-
sentative depth function” (Beaudette et al. 2013). Slicing the soil profiles in layers
with 1 cm thickness allows calculating the average and median values of each layer
as a vector of segment boundaries, allowing reassemble the average profile and the
median, through the syntax below:

slab data; � clay þ silt þ sand; slab:fun ¼ mean/median; na:rm ¼ TRUEð Þ

A function to summarize soil texture data according certain depths can be
extracted from the dataset created by slicing the soil profile in 1 cm layers. The
aggregation of continuous data was based on the distribution of soil particle size
fractions (sand, clay, and silt) at the predefined depths (0–5, 5–15, 15–30, 30–60,
60–100, 100–200 cm) and most-likely inferred horizon depths.

Soil depth functions were applied to fit the data to the proposed intervals, which
act as coefficients for a spline function. The spline function proposed by
Ponce-Hernandez et al. (1986) represents a nonparametric function, called an
equal-area spline, appropriated to model soil attributes (Bishop et al. 1999; Malone
et al. 2009). The function equal-area spline considers each horizon as the predefined
interval and the knots of each horizon lie between horizon boundaries, with one
inflexion in each interval. The knots should lie as near as possible to the inflexion
and as far of boundaries as possible, which in essence, preserve the mean value of
the soil property. In this sense, the area at left of the fitted curve above the horizon
mean value is the same than the area at the right of the spline curve, below the
horizon mean (Odgers et al. 2012). This mechanism provides continuous values to
soil properties varying according to the depth in a soil profile, which allows
compose a database where all points can have a value in a certain depth.

The slicewise aggregation algorithm was applied to create a new dataset from the
original profile collection to support soil depth functions analysis, allowing to
distribute the data by one-centimeter layers and posteriori aggregation by
horizons/layers. This algorithm is based on the premise: “a representative depth
function for some soil property (e.g., clay content) can be generated from a col-
lection of soil profiles by summarizing this property along depth slides” (Beaudette
et al. 2013). In this sense, depth-slice probabilities were generated based on data
frequency by major horizon (most-likely horizon depth), revealing quantitative
trends of the soil texture components according Ferralsols profiles horizons. The
probabilities for each slice (1 cm) are syntax:

Sk:i ¼ frequency Sk:ið Þ=j;

where “Sk.i” corresponds to the inferred value of the soil property to each 1 cm slice,
and “k” is the class of the categorical variable (sand, silt, and clay), “i” is the slice
counter and “j” is the number of profiles contributing to the calculation.
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19.2.3 Similarity Between Soil Profiles

The pairwise similarity between soil profiles was based on soil classification
diagnostic criteria, where a quantitative comparison between soil profiles must
account the variability of diagnostic horizons thickness associated with soil prop-
erties (Webster and Oliver 1990). The regular layer slices of the dataset allow
calculating the dissimilarity between profiles, comparing then through a dissimi-
larity matrix for each depth slice (Beaudette et al. 2013). A dissimilarity between
Ferralsols was computed using “profile compare ()” function considering sand,
clay, and content to a maximum depth and depth-weighting coefficient of 0.01. The
contributing fraction values returned for each depth slice describe the number of
soil profiles used in the computation and that value can be understood as an
aggregate measure of soil depth probability.

A function to rendering soil profiles in simple sketches was applied using
“profile plot ()” function, turning the visualization and comparison between taxo-
nomic relationships based on the soil profiles’ properties easier to observe and
analyze (Beaudette et al. 2013).

19.3 Results and Discussion

19.3.1 Characterization of Ferralsols and Soil Texture Data

The Guapi-Macacu watershed presented substantial variability of soils, predomi-
nantly Ferralsols (28 %), Acrisols (24 %), Cambisols (18 %), and Gleysols (15 %).
Haplic Ferralsols (Xanthic)—FRxa and Haplic Ferralsols (Dystric)—FRdy repre-
sent the Ferralsols, which showed a wide distribution with 58 and 41 % of the soil
observations in the watershed (Pinheiro et al. 2013). The main taxonomic difference
between these classes is expressed by the color criteria, which reflect differences in
the clay mineralogy and moisture regime, where Xanthic soils have greater content
of hydrated Fe-oxides (goethite), and Dystric soils have more hematite and better
soil drainage. These differences are generally related to landscape features,
hydrological conditions, and parental material.

Haplic Ferralsols (Dystric) are largely observed under pasture and Atlantic
rainforest, in varied slope conditions but predominantly in less hilly areas. In the
mountainous areas, these soils occur in association with regosols and cambisols.
Haplic Ferralsols (Xanthic) commonly occupy the footslopes of the watershed.
Such soil sequence is typical in the east and south of the watershed, along a band of
NE-SW-oriented gneiss rocks of Precambrian age. Besides their occurrence at the
lower part of hills with granite/gneiss parental material, Haplic Ferralsols (Xanthic)
were also observed related to sedimentary rocks, in the Southeast areas of the
watershed. The Haplic Ferralsols (Xanthic) land coverage is usually of grassland,
secondary forest vegetation, and urban areas.
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From the soil survey dataset, fifteen chosen Ferralsols had all horizons described,
sampled, and the particle size analyzed; thus, the dataset (70 horizons) presented no
missing data. Based on the selected dataset, soil depth functions were created and
further analysis was performed. The descriptive values to the soil texture, of the
seven profiles (30 horizons) of Haplic Ferralsols (Dystric) and eight profiles (40
horizons) of Haplic Ferralsols (Xanthic), are presented in Fig. 19.2. Observing the
trends of minimum and maximum values, all Ferralsols have the same patterns and
they show high clay content, followed by sand and silt (scale on the right side of
Fig. 19.2).

In general, the Dystric Ferralsols showed less amplitude of values to all particle
size components when compared with the Xanthic Ferralsols. Regarding the clay
content, Ferralsols Xanthic and Dystric showed no difference among them; how-
ever, both soil types had higher values to the mean when compared with median
parameter. Sand content had slightly smaller values compared to clay for all
Ferralsols, and the same pattern was observed for both classes (FRxa and FRdy),
with median higher than mean values. Silt was the fraction with less contribution in
the particle size of Ferralsols, and the values were also similar among soil classes.

Summarizing, Fig. 19.2 shows that both Ferralsols classes are similar regarding
the particle size components, although the mean and median values for sand and silt
contents were slightly higher in the Haplic Ferralsols (Dystric)—FRdy. Further
analysis, based on the vertical distribution of particle size in the soil profile through
the soil depth functions, is needed to separate these classes quantitatively.

The visualization by standard sketches allows detecting
similarities/dissimilarities among the soil profile collection, as observed in
Fig. 19.3a, b. The P72 and P89 revealed a similar trend of particle size along the
soil profiles in addition to the profiles P84 and P86, which also showed high content
of clay and low values of sand. This kind of approach can be useful to support the
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definition of lower taxonomic levels in soil classification (families and series), or
even to define typical soil sequences based on relief, time, and parental material
(toposequences, chronosequences, and lithosequences, respectively).

Sketches representing soil properties observed in the field are widely used and a
very useful tool to soils scientists, particularly to report soil stratigraphy (horizons
and transitions) and morphological features (Beaudette et al. 2013). However, those
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plots are not to scale and without standard legends and symbols; thus, they are
subjective and not easily transmitted to other researchers and users in general. The
distribution of sand, clay, and silt in the Ferralsols, according to horizon depth, is
illustrated in Fig. 19.3. The sketches of profiles highlight the particle size com-
ponents (sand, clay, and silt) in classes of 100 g kg−1 intervals (Fig. 19.3a–c). As
expected, the deeper soils show more homogeneous texture composition along the
profile (P24, P72, P74, P77, P80, P7, and P88), showing a sequence of overlaid
B-horizons with smooth transitions. On the other hand, the shallowest profiles show
remarkable differences between horizons, and when compared with the “modal”
profile referred in soil classification systems, this pattern is related to the
granite/gneiss parental material properties.

Looking at dissimilarities, an example is the profile P43, which is shallow
compared to the other soils and shows the lowest values of sand content in contrast
with the highest values of silt. Further investigation is needed, but a reasonable
explanation is the local influence of parental material, which is corroborated by the
thickness of soil profile. Regarding soil classification systems, this spline approach
could be useful to set regional series or family of soils; or to propose new criteria to
describe the soil series, which is a way improving the information associated with
soil mapping units and their design.

19.3.2 Soil Depth Functions and Data Aggregation

Analysis of Profile Data (Components of Texture and Relation
with Horizon Depth)

Corroborating the field observations and the characterization of the particle size in
the soil horizons, sand and silt content in the Ferralsols tends to decrease with depth
up to 100 cm (Fig. 19.4) which is within the control section used to define the
diagnostic horizons. However, the clay content shows a distinct increase around
20 cm, which is usually the transition from the A to B-horizon. This trend was
noticed particularly on the Haplic Ferralsols (Dystric), as observed in Fig. 19.4c.
The Haplic Ferralsols (Dystric) have also a small contribution of profiles deeper
than 150 cm depth to compound the estimative of a median profile at this depth, less
than 14 % of the dataset. This can be related to the conditions of occurrence of these
soils, particularly related to steep slopes in the mountainous areas of the watershed,
inhibiting the formation of typical deep weathered B-horizons. Some of the Haplic
Ferralsols (Dystric) showed a transitional BC horizon, in the sampled depth, similar
to the one in the Haplic Cambisols (Dystric), but differing mainly in smaller content
of easily weatherable minerals (biotite, montmorillonite, and feldspar).

Regarding soil depth and silt content relation, high silt values were observed in
the 0–25 cm depths (Fig. 19.4). Haplic Ferralsols (Xanthic) also presented subtle
increases in median silt values related to 70–100 cm depth, probably related to
transition between horizons in the soils developed from colluvium deposits
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originated from the granite/gneiss materials. The variability in silt content, partic-
ularly below 80 cm depth, can also be correlated to parental material. The presence
of BC horizons starting at this depth (80 cm) was observed in two soil profiles, both
classified as Haplic Ferralsols (Dystric). The analysis of the graphs reveals how
many profiles from the dataset were contributing to calculate the parameters, which
give important information about the original dataset.

At the bottom of the soil profile (below 150 cm), the data contributing to the
calculation were less than 27 % of the entire collection, which reduces the confi-
dence of the estimative for the Haplic Ferralsols (Dystric). However, the soil
information applied to orient land use and for taxonomic purposes is usually
obtained to a depth of 1.5 m, where the subsurface diagnostic horizons express
themselves in most soil classes (solum).

For comparative purposes, a harmonization of the dataset was performed based
on the six predefined depth intervals suggest by the GlobalSoilMap project
(Arrouays et al. 2014). According to Bishop et al. (1999), equal-area spline func-
tions showed superiority over other soil depth functions (exponential, polynomials)

Fig. 19.4 Median distribution of sand, silt, and clay content along profile depth; a Ferralsols
collection (15 Profiles); b Haplic Ferralsols (Xanthic); c Haplic Ferralsols (Dystric)
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to predict the soil properties pH, clay content, water content. Thus, the spline
function was applied to harmonize the data in six layers (Fig. 19.5).

The spline functions reveal the same trend for the components, in both soil
classes, with values of sand and silt decreasing with depth, while the clay content
increases (Fig. 19.5). Observing the Haplic Ferralsols (Dystric), there is a
remarkable difference in texture component (mainly, sand, and clay content) below
30 cm depth, when compared to Haplic Ferralsols (Xanthic) in which the changes in
soil properties are smoother along the soil profile.

Most-Likely Diagnostic Horizons Probability as a Function of Particle
Size Data

The most-likely horizons based of the frequency of particle size data from
Ferralsols profile collection are presented in Fig. 19.6. The six columns on the left
of Fig. 19.6 represent individual probability per horizon, identified with a black line
representing the most-likely (i.e., modal) horizon, and the red line corresponds to
the horizon probability fitted to the dataset, considering the contributing factor to
each depth. On the right side of Fig. 19.6, the horizons are represented by assorted
colors and plotted in a single column.

Fig. 19.5 Distribution of sand, silt, and clay content according spline depth function fitted to
predefined depth; a Ferralsols collection; b Haplic Ferralsols (Xanthic); c Haplic Ferralsols
(Dystric)
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The A and Ap horizons have similar thickness pattern, both up to 10 cm depth.
However, Ap horizons have a tendency of being shallowest, mostly due to erosion
favoured by the slope (degree and form) and land use observed in the area. Below
10 cm, the occurrence of transitional horizons (AB, BA) was observed, with peaks
of occurrence around 20 cm for AB and 40 cm for BA, not necessarily occurring
together in the profile. In the field, the transitional horizons were mostly separated
based on color, structure, and biological activity, related to the organic material
deposition in the topsoil layer. In general, the transitional horizons (AB, BA)
occurred at the 20–30 cm depth.

According to the slicewise aggregation (Fig. 19.6), the Ferralsols diagnostic
B-horizon was observed from 25 to 150 cm and below, in deep soil profiles with a
sequence of B-horizons, always with the main diagnostic B-horizon in the 50–
100 cm layer. Simultaneously, in this layer, transition BC horizons were found in
two profiles: their presence is not common in Ferralsols and may imply a different
response for soil management and hydrology, indicating a layer of impediment,
such as shallow altered bedrock.

The slicewise probabilities organized by major horizon types can enhance the
quantitative characterization of site patterns, such as topsoil thickness or presence of
compact layers, bedrock contact, among other important terrain characteristics
(Beaudette et al. 2013). For example, soil depth functions aggregated by horizon
may help in establishing limiting values and standard deviation of collected data,
assisting to create mean/median taxonomic sections; and allowing comparison with
modal profiles, as described in the soil taxonomic systems (Pereira et al. 1984).
Furthermore, this technique can be useful to compare soil data among profiles
classified in different taxonomic systems.

The estimated horizon midpoint depth from Ferralsols profiles, as well the
midpoint to clay, sand, and silt content related to the genetic horizons is presented
in Fig. 19.7.

Fig. 19.6 Probability of most-likely horizon depths by slicewise aggregation technique
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The boxplot graph for the horizons midpoint depth shows small differences for
A and Ap horizons, since they occupy the same position in the profile (Fig. 19.7a).
The transitional AB and BA horizons presented the midpoint depth closer to 25 and
30 cm, respectively, ranging between 15 and 45 cm. The generalized depth con-
sidering the consistence of data (frequency) is highlighted by the boxplot graph on
25–75th percentiles. The diagnostic B-horizons have the greatest range, mostly
because the Ferralsols show a sequence on sub B-horizons (B1, B2, B3). All the
estimative related to the BC horizon had contribution from two profiles of the entire
dataset (less than 14 %), which means that BC is not commonly observed before the
200 cm depth.

Regarding the clay, sand, and silt contents, the distribution of the midpoints
along the soil profile showed the same trends of median depth function (Fig. 19.4),
where clay content slightly increases with the depth, in contrast to sand and silt.
However, the boxplot graph (Fig. 19.7) better represents the range of values beyond
the frequency of data. According to Fig. 19.7c, d, sand and silt content decreased
with depth, although the variability of sand in the diagnostic horizons (A and B)
was greatest. Generally, the AB horizon showed greater particle size variability,
when compared with other horizons, even the BA, which by definition is similar to
the B-horizon regarding to morphological properties.

Based on the analysis and observations from field survey, the most-likely
horizon depth can be generalized as the following: A (0–15 cm), AB (15–30 cm),
BA (30–45 cm), B (45–150 cm), and BC (85–200 cm). The superposition of B and
BC horizons will be addressed by aggregation soil data with different depth
intervals. Nevertheless, the lower probability of BC horizon occurrence has to be
considerate based on the frequency of data from the collection.

Fig. 19.7 Midpoint: a depth of horizons; b clay content; c sand content; d silt content
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Representative Soil Profile (Similarity and Variability of Soil Texture
Parameters)

The comparison of the taxonomic classes can be based on similarity analysis
between soil profiles through divisive hierarchical clustering, assuming that a soil
order represents a large collection of profiles that can be split into smaller groups
(Kaufman and Rousseeuw 2005; Beaudette et al. 2013). In this sense, dendrograms
and sketches were created to compare the soil profiles supporting analysis of
similarities and differences between the two Ferralsols taxonomic classes
(Fig. 19.8). The horizontal axis (X) of Fig. 19.8 organizes the pairwise dissimi-
larities based on clay, sand, and silt contents, while the vertical (Y) represents the
depths of horizons according to field soil horizon description. The upper scale on
the left side corresponds to numerical dissimilarity based on sand, silt, and clay
content.

The Haplic Ferralsols (Xanthic)—FRxa usually show deeper profiles than the
Haplic Ferralsols (Dystric)—FRdy, in the data collection from the Guapi-Macacu
watershed. In addition, FRxa showed a sequence of B-horizons, extending beyond
150 cm depth, with small variability of the particle size parameters. In contrast,
FRdy presented shallowest profiles, in some cases, with BC horizon showing signs
of the altered granite/gneiss parental material.

Analysis of similarity among profiles can contribute to quantitative comparison
between soils and landscape conditions. In that way, it may be a useful tool to
individualize taxonomic subgroups and review the outline and composition of soil

Fig. 19.8 Similarity among the fifteen Ferralsols from Guapi-Macacu watershed, Rio de Janeiro
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mapping units; always supported by additional analyses due to the scale and
regional characteristics of landscape. Quantitative methods based on soil profile
characteristics (morphometrics), combined with terrain analysis could also improve
the designation of criteria for family and series in taxonomic systems, such as in the
Brazilian Soil Classification System, where these taxonomic levels are still unde-
veloped. Furthermore, this approach makes easier to include legacy data through
the taxonomic correspondence to representative profiles, even with data from dif-
ferent classification systems.

The particle size parameters of “modal” Ferralsols in the Guapi-Macacu
watershed, with values of mean, median, and harmonized (spline function) data,
aggregated at predefined depths and as most-likely inferred horizon depths are
presented in Table 19.1.

The Ferralsols topsoil layer can be generalized to the 30 cm depth, corre-
sponding to the first three layers of harmonized dataset with GlobalSoilMap project
(six predefined depths), and first two most-likely inferred horizon (corresponding to
A/Ap horizons plus the transitional AB). Consequently, the subsurface horizon is
placed from 30 to 150 cm depth, where the characteristics reflecting pedogenesis
are more intensively expressed. In this sense, texture components as described by
layers B1, B2, B3, and B4 (45–150 cm depth) are representing the modal B-horizon
used as a diagnostic criterion to soil classification.

The soil properties values from the deepest layer in both aggregation procedures
(150–200 cm) are representing less than half of dataset collection. Thus, the
occurrence of a transitional horizon BC is considered, as well as, the probability of
a sequence of B-horizons. Particular conditions of parental material exposure and
landscape forms observed on the field survey were the main factors defining soil
thickness.

The clay content in the topsoil layer (0–30 cm depth or A/Ap plus AB horizon)
varies between 32 and 40 %, while sand values range from 49 to 53 % (less than
50 g kg−1 variation). The combination of soil particle size components shows
dominance of clay loam texture in the Ferralsols topsoil layer. The transitional AB
and BA horizons (15–45 cm depth) showed, in general, a slight increase in clay
(around 3% more clay), with relative values ranging from 38 to 43 %. At the same
time, sand values ranged from 49 (AB) to 42 % (BA), showing more variability in
the transitional layers (around 7 %).

The diagnostic B-horizons had clay values clay from 43 to 47 % in the sub-
surface (45–150 cm). When a large sequence of B-horizons was observed, the clay
values reached up to 50 % in the deepest horizons (below 1.5 m depth). Sand
content, in general, showed slightly decreasing values with depth, varying from 40
to 55 % in the subsurface layers (Ferralsols diagnostic horizons).

The silt content varied from 15 to 20 % in the topsoil, and from 10 to 13 % in the
subsurface, showing a linear trend with depth. Below the sequence of B-horizons,
the probability of the occurrence of a transitional BC horizon (around 1 m depth),
related to a slight increase of silt content, has to be considered, but it is usually
restricted to a particular soil-landscape condition. However, the silt content had low
contribution to soil texture when compared with other particle sizes. The
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combination of sand, clay, and silt showed a trend of clay texture related to the
subsurface layer of Ferralsols in Guapi-Macacu watershed.

The type of horizon transition (contrast and thickness) is key information for
taxonomic purposes, highlighting gradients between morphological and physical
properties, contributing to characterize diagnostic horizons and modal profiles. As
observed on Table 19.1 and Fig. 19.7 (midpoints depth analysis), the Ferralsols
transitional horizons were omitted, or misinterpreted, when the aggregation pro-
cedure is based on the six predefined depths as suggested by the GlobalSoilMap
project, instead when the data are aggregated by most-likely horizon depth. The
results show that the slicewise method can be used to balance the variability of soil
horizons by depth considering the natural distribution of soil properties along the
profile.

The predefined depths as proposed by the global consortium are useful to sup-
port decisions regarding land use and management. However, for soil taxonomic
purposes, a different approach may be needed to represent the diagnostic horizons
criteria, considering variability of soil properties with depth. As example, the
transitional horizons of the Ferralsols showed no necessary correspondence with the
predefined depths (GlobalSoilMap project), justifying a different approach, such as
aggregation based on most-likely horizons probability.

The slicewise aggregation allowed to study different “representative depth
functions” to characterize sand, silt, and clay content of the Ferralsols profiles. This
approach contributed to transpose the concept of modal soil profile into an
assemblage of representative depth functions, as suggested by Beaudette et al.
(2013).

In this sense, soil depth models to represent the variability of properties with
depth is a promising tool to taxonomic purposes and to support land usage deci-
sions, improving the products obtained from soil surveys and reaching a greater
number of users.

19.4 Conclusions

The process of examining data using the slicewise aggregation method and
equal-area spline function was useful for comparing soil properties and taxonomic
classification. The mid-depth horizon and soil properties depth function analysis
showed the most-likely horizons of Ferralsols in the Guapi-Macacu watershed
corresponding to: A (0, 15 cm), AB (15–30 cm), BA (30–45 cm), B (45–150 cm),
and BC (85–200 cm). In general, the Haplic Ferralsols (Xanthic) showed deeper
soil profiles and with more clay in subsurface horizons, compared with the Haplic
Ferralsols (Dystric).

The Ferralsols topsoil layer presents commonly clay loam texture, and the
subsurface is clayey. The modal profile showed representative values varying
between 32 and 50 % of clay, 40 and 55 % of sand, and 10 and 20 % of silt.
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The application of depth functions to evaluate the particle size variability of
Ferralsols in Guapi-Macacu watershed showed that the slicewise aggregation
technique can elucidate the distribution of continuous properties and to support
definition of representative functions and their relationship with diagnostic
horizons.

Haplic Ferralsols (Xanthic) and Haplic Ferralsols (Dystric) have a wide occur-
rence in the watershed, and they diverge mostly by landscape and parental material
resulting in morphological and morphometric differences in color, texture, and
thickness. The visualization by sketches and pairwise dissimilarity of the fifteen soil
profiles showed a potential application of the procedure for soil taxonomy and
mapping.

The evaluation of particle size variation and content as criteria of Ferralsols
diagnostic horizons helps to build quantitative parameters to improve the Brazilian
Soil Classification System and other taxonomic systems as well.
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Chapter 20
Comparing Soil C Stocks from Soil Profile
Data Using Four Different Methods

Benito R. Bonfatti, Alfred E. Hartemink and Elvio Giasson

Abstract Soil organic carbon (SOC) concentration differs by depth, soils, and
distinct land uses. Different methods have been used to calculate SOC stocks, and
here, we used data from 10 pedons from Southern Brazil to compare four methods:
horizon values with discrete data, exponential function, equal-area exponential
function, and equal-area quadratic spline function. SOC stocks were calculated up
to 30 cm and 100 cm depth from (i) the original data, (ii) the standardized data
based on equal mass, (iii) the standardized data based on equal mass minus coarse
fragments (gravels). Results were compared calculating SOC stocks up to 30 and
100 cm depth. Discrete values by horizon produced mean SOC stocks for 30 and
100 cm depth of 6.9 and 14.6 kg/m2 for original values, 6.5 and 14.1 kg/m2 for
standardized values by mass, and 6.3 and 13.5 kg/m2 for standardized values by
mass minus gravels. Negative exponential functions produced mean values of 6.1
and 14.1 kg/m2 for original values, 5.6 and 13.3 kg/m2 for standardized values by
equal mass, and 5.4 and 12.9 kg/m2 for standardized values by equal mass minus
gravels. Equal-area exponential function had mean values of 7.1 and 14.5 kg/m2 for
original values, 6.6 and 13.9 kg/m2 for standardized values by equal mass, and 6.4
and 13.5 kg/m2 for standardized values by equal mass minus gravels. Equal-area
spline produced SOC averages of 6.8 and 14.7 kg/m2 for original values, 6.3 and
14.2 kg/m2 for standardized values by equal mass, and 6.1 and 13.7 kg/m2 for
standardized values by equal mass minus gravels. From the comparison, we found
that negative exponential functions produced lower SOC stocks than horizons in the

B.R. Bonfatti � E. Giasson
Universidade Federal do Rio Grande do Sul, UFRGS—Faculdade de Agronomia,
Av. Bento Gonçalves, 7712, Porto Alegre, RS 91540-000, Brazil
e-mail: brbonfatti@yahoo.com.br

B.R. Bonfatti � A.E. Hartemink (&)
Department of Soil Science, FD Hole Soils Lab, University of Wisconsin—Madison,
1525 Observatory Drive, Madison, WI 53706, USA
e-mail: hartemink@wisc.edu

B.R. Bonfatti
CAPES Grand Holder—Process BEX 3095/14-2, CAPES Foundation,
Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil

© Springer International Publishing Switzerland 2016
A.E. Hartemink and B. Minasny (eds.), Digital Soil Morphometrics,
Progress in Soil Science, DOI 10.1007/978-3-319-28295-4_20

315



upper layers and higher stocks than horizons in the lower layers; equal-area
exponential produced SOC stocks that are statistically similar to horizon values;
equal-area spline function produced values up to 30 cm depth statistically similar to
horizon values and statistically different up to 100 cm depth. We can conclude that
different methods for calculating SOC stocks by depth produce significantly dif-
ferent results and values derived from equal-area exponential and equal-area splines
are more similar to those of the horizons.

Keywords SOC � Spline � Exponential function � Soil equal mass

20.1 Introduction

The levels of soil organic carbon (SOC) and its distribution by depth are related to
the climate, vegetation cover, soil type, geomorphology, and agricultural activities.
High-precipitation areas commonly with dense vegetation result in the accumula-
tion of soil carbon. The opposite occur in soils of dry areas which, in addition to not
having enough moisture, the carbon is bound to calcium and immobile (Schaetzl
and Anderson 2005). There is considerable variation in SOC levels across the
landscape. Valleys’ bottoms may receive erosional sediments from upper areas,
forming deep soil profiles with buried A horizons. Agricultural activities largely
affect carbon stocks. Tillage and no-tillage practices result in different SOC dis-
tribution (Angers and Eriksen-Hamel 2008; Sisti et al. 2004).

There are only few studies that consider carbon up to 100 cm depth (Minasny
et al. 2013). Most studies have data up to 30 cm soil depth, which is the standard
IPCC depth and relevant to agriculture crops. To assess the amount of carbon below
30 cm it is needed to comprehend the SOC dynamics under different tillage systems
(Angers and Eriksen-Hamel 2008; Sisti et al. 2004) or its distribution by depth
under different land uses (Guo and Gifford 2002; Jobbágy and Jackson 2000).

Comparison of SOC under different environmental conditions is complicated as
the data are often from discrete horizons. Knowledge and interpretation about
carbon accumulation is facilitated when data are continuous across the soil. The
continuous distribution of properties can give a new insight into diagnostic horizons
and may even result in the formation of new classes (Hartemink and Minasny
2014).

Representing SOC by mathematical functions provides continuous values by
depth and gives SOC for fixed or ranges of depths. Recent studies have used the
equal-area spline function (Adhikari et al. 2014; Malone et al. 2009; Odgers et al.
2012), which models local quadratic polynomials functions (Bishop et al. 1999;
Ponce-Hernandez et al. 1986). Other methods have used exponential decay func-
tions (Minasny et al. 2006; Mishra et al. 2009; Zinn et al. 2005), and they assume
that carbon concentration decreases exponentially with depth. Studies have also
used exponential functions based on horizon data, considering area equivalence
similar to equal-area splines (Kempen et al. 2011).
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The quantification of SOC stocks includes the variation of bulk density and the
content of coarse fragments (e.g., gravel). Miscalculation of SOC stocks occurs
when bulk density is altered by compaction or when a reduction in bulk density
following tillage is not considered. The SOC stocks under different bulk densities
must be corrected by thickness variance (Ellert and Bettany 1995) or standardized
by cumulative mass coordinates (Gifford and Roderick 2003). Moreover, when
calculating SOC stocks, the amount of coarse fragments should be considered.

This study analyzed four methods for calculating soil carbon stocks up to 30 and
100 cm depth: (a) distribution by horizon, (b) distribution by exponential function,
(c) distribution by equal-area exponential function, and (d) distribution by
equal-area spline function. The discrete values by horizon use data directly from the
database, and the functions use midpoint data from each horizon. The methods were
separated into 3 groups: (I) original values, (II) values standardized by equal mass,
and (III) values standardized by equal mass minus gravels.

20.2 Materials and Methods

20.2.1 The Soils

We have used the SOC and bulk density data from 10 soil profiles collected in Vale
dos Vinhedos (Vineyard Valley) in northeastern Rio Grande do Sul State, Brazil.
This area has a mean annual precipitation of 1736 mm and mean annual temper-
ature of 17.2 °C. The climate is classified as Cfb (EMBRAPA 2008). Some of the
soils are gravelly (Flores et al. 2012) and dominant soils are Inceptisols, and smaller
areas with Ultisols, Mollisols, Entisols, Alfisols, and Oxisols. Most soils are cov-
ered by forest or used as vineyards.

The data of 10 profiles (Table 20.1) were extracted from the soil survey report by
Flores et al. (2012) and complemented with soil bulk density measurements made
in 2014. The bulk density was measured in different soils and land uses (vineyard,
forest/planted forest, pasture, arable crops, and fallow). The soils were sampled by
soil horizon and SOC was analyzed by Walkley-Black (Flores et al. 2012; Santos
et al. 2006).

20.2.2 Methods

In this study, we used four methods for calculating carbon stocks up to 30 and
100 cm depth. The punctual bulk density values were interpolated by smooth
splines and the results were calculated using each centimeter. The values were
average and assigned to each respective horizon. The horizons’ midpoints were
used to interpolate the functions. Details of each method are presented below.
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Discrete Values by Horizon

In this method, we used the discrete horizon values from the database, without
interpolations. Bulk density, carbon content (g/kg), and thickness (up to 30 and
100 cm) from each horizon were multiplied for getting the SOC stocks.

Table 20.1 Description of the 10 pedons from the study area in Vale dos Vinhedos in Rio Grande
do Sul, Brazil

Pedon Reference
Pedon
(Flores
et al. 2012)

Horizon Depth (cm) SOC
(g/kg)

Bulk densitya

(Mg/m3)
Coarse
fragments
(%)

Soil
class

Land use

1 4 Ap 0–15 19.8 1.15 16 Orthents Vineyard
CR 15–35 15.1 1.17 6

2 5 Ap 0–16 16.7 1.17 0 Udepts Vineyard
Bi 16–36 7.4 1.21 0
BC 36–50 5.5 1.22 0

3 27 Ap 0–23 13.8 1.14 1 Udults Vineyard
AB 23–55 5.7 1.21 19
Bt1 55–74 3.9 1.23 0
Bt2 74–120 2.9 1.25 0

4 28 Ap 0–30 14.7 1.20 0 Humults Vineyard
Bt1 30–72 13.8 1.24 1
Bt2 72–120/140 8.6 1.17 0
C 120/140–200 2.8 1.17 0

5 53 Ap1 0–30 37.3 0.97 0 Udoxs Forest
A2 30–55 26.7 1.06 0
Bt1 55–90 14.4 1.18 0
Bt2 90–200 6 1.23 0

6 78 Ap 0–35 25.5 1.03 0 Udepts Forest
Bi 35–90 22.6 1.19 0
CR 90–150 15 1.28 75

7 99 Ap 0–28 12.3 1.15 28 Udalfs Pasture
Bt 28–61 5.9 1.21 0
BC 61–100 4.3 1.25 0

8 118 Ap 0–39 17.2 1.33 0 Humults Arable
cropsAB 39–73 12.5 1.37 0

Bt1 73–120 10.4 1.28 0
Bt2 120–200 6.7 1.28 0

9 119 Ap 0–24 43.3 1.20 0 Udepts Fallow
Bi 24–55 5.2 1.29 23
C1 55–85 2.5 1.30 0
C2 85–150 2 1.17 0

10 141 Ap 0–30 21.2 1.09 0 Humults Planted
forestBA 30–60 11.8 1.25 0

Bt1 60–110 11.1 1.38 0
Bt2 110–200 6.2 1.30 0

aBulk density samples were taken at different depths; values in the table correspond to derivate values for each
horizon, from smooth spline functions
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Exponential Function

The exponential function has been used in mapping carbon by depth because of its
mathematical ease and apparent similarity to soil profile changes with depth found
for most soil properties (Minasny et al. 2006). The negative exponential function
can summarize the profile data in three parameters allowing the use of more easy
measured or widely available data (Minasny et al. 2006).

The negative exponential function is given as follows:

C ¼ Ca exp �kzð ÞþCb ð20:1Þ

With conditions Ca, Cb, k > 0, where C is the organic carbon content in volume
basis (kg/m3), z is the absolute value of depth from the soil surface, Ca is the
difference in carbon content between the surface and the lowest depth, ðCa þCbÞ is
the carbon content at the soil surface, Cb is the carbon content at the bottom of the
profile, and k is the rate of carbon decrease with depth.

To apply the equation, the bulk density values (kg/m3) were multiplied by SOC
concentration (kg C/kg). The calculated SOC (kg/m3) were used as input values to
the function, which parameter k was fitted by nonlinear least squares.

Equal-Area Exponential Function

The equal-area exponential functions have similarities with the equal-area
smoothing spline where for each horizon the area fitted to the left of the fitted
curve is equal to the area to the right, so the function represents the average value
for a horizon. It does not always guarantee mass conservation as in equal-area
splines, but it has better mass-conserving properties than a decay exponential
function fitted to the midpoints of the soil horizons (Kempen et al. 2011).

For this approach, first the components Ca and k were fitted, minimizing the sum
of squared differences between the observed and the predicted SOC stocks for each
horizon, by the model:

0 ¼
Xn

i¼1

Ca

k

� �
exp �kz�Li

� �� exp �kz�Ui
� �� �� Cli

� 	2
ð20:2Þ

where z�Li is the depth of the lower boundary of soil horizon i in a soil profile, n is
the number of soil horizon, z�Ui is the depth of the upper boundary soil horizon i, and
Cli is the observed SOC stock of horizon i.

The exponential function was defined with the fitted Ca and k values, by the
equation:

C ¼ Ca exp �kzð Þ ð20:3Þ
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The equation needs at least three points to be solved. For soil profile 1 that has only
two horizons, the deepest horizon was divided into two parts and the midpoint of
each part was taken.

Equal-Area Spline Function

The equal-area spline function produces a continuous function showing the SOC
distribution by depth and attempts to negate the damping effects of using discrete
data from horizons (Bishop et al. 1999; Ponce-Hernandez et al. 1986). The key
characteristics described by Bishop et al. (1999) are as follows:

1. It consists of a series of local quadratic polynomials with the “knots” or posi-
tions of joins being located at horizon boundaries.

2. For each horizon, the area to the left of the fitted spline curve above the horizon
average (X) is equal to the area to the right of the fitted spline curve below the
horizon average (Y), thus ensuring the mean value of the horizon is maintained.

Malone et al. (2009) used the equal-area smoothing spline, which is a gener-
alization of the quadratic spline model of Bishop et al. (1999). First, the spline
functions produce continuous data, then the values are again combined in different
depth intervals, by averages.

In the spline method, summarily, f ðxÞ represents a spline depth function and can
be solved by minimizing the following:

1
n

Xn

i¼1

yi � fi
� �2 þ k

Zxn

x0

f 0 xð Þ½ �2dx; ð20:4Þ

where yi ¼ fi þ ei ð20:5Þ

The first term of Eq. (20.4) represents the fit to the data, and the second, the
roughness of spline function. The parameter k controls the trade-off between the fit
and the roughness penalty; n is the number of layers in a soil profile; depth is denoted
by x. The yi represents the measurement of bulk sample from layer i, and fi is the
mean value of f ðxÞ over each layer. The errors ei in Eq. (20.5) are assumed inde-
pendent, with mean 0 and common variance r2 (Bishop et al. 1999). The function
f ðxÞ and its first derivative f 0 xð Þ are both continuous and f 0 xð Þ is square integrable.

In our study, the spline functions were solved similarly to the method described
in Malone et al. (2009) and using k ¼ 1. Spline functions were calculated for SOC
content (g/kg), bulk density (g/cm3), and coarse fragments (%), for each of the 10
soil profiles.
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20.2.3 Correcting for Mass and Coarse Fragments

SOC stocks were calculated for each method until 30 and 100 cm depth. Then, the
values were combined in three different groups. The first groups had the original
calculated values. The second group had the values standardized by equalmass, and in
the third group the valueswere standardized bymassminus coarse fragments (gravel).

Standardization by mass was used to make comparisons possible among soils
with different bulk densities. We used the method described by Gifford and
Roderick (2003) with a cumulative mass coordinates approach. Cumulative soil
mass (kg/m2) was calculated by multiplying the soil bulk density and thickness of
each horizon (or 1 cm when using continuous functions). Similarly, it was used to
determine cumulative SOC stocks. The soil mass under forest was chosen as a
reference. Hence, cumulative mass of the two profiles under forest (profiles 5 and 6)
was averaged and the value was used in the following equation for correcting SOC
stocks applied to each horizon or 1 cm:

cs tð Þ ¼ cs zað Þþ cs zbð Þ � cs zað Þ
ms zbð Þ � ms zað Þ ms tð Þ � ms zað Þð Þ ð20:6Þ

where cs tð Þ is the value of cumulative SOC stocks corrected by mass; cs zað Þ and
ms zað Þ are the values of cumulative SOC stocks andmass, respectively, from the lower
boundary of the horizon above it; cs zbð Þ andms zbð Þ are the cumulative SOC stocks and
mass of the lower boundary of the current horizon (or centimeter); ms tð Þ is the
cumulative soil mass from the lower depth of the reference horizon. For the contin-
uous functions, the values were determined by each centimeter, instead of horizons.

The third group of SOC calculations used the cumulative SOC stocks corrected
by coarse fragments (gravels and stones) to standardize by mass using the proce-
dure described above.

20.2.4 Statistical Analysis

Two statistical ways were used to compare the total SOC stocks up to 30 and
100 cm depth, considering the four different methods: (a) assigned by horizon,
(b) negative exponential function, (c) equal-area exponential function, and
(d) equal-area spline function, and divided into 3 groups: (1) original values,
(2) values standardized by mass, and (3) values standardized by mass minus gravels
(coarse fragments).

The first analysis compared different methods within the same group using
repeated measure ANOVA as the samples are dependent. For paired comparisons,
the post hoc Bonferroni test and multiple dependent t-test for paired samples were
used. The second analysis compared the same method in different groups using the
post hoc Bonferroni test for paired comparisons.
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20.3 Results and Discussion

The different methods used to interpolate carbon with depth showed distinct curve
(Fig. 20.1). Results differ significantly depending on how the function fits to the
SOC variation.

Profile 1 Profile 2

Profile 3 Profile 4

Profile 5 Profile 6

Fig. 20.1 SOC concentration (kg/m3) by four different methods
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20.3.1 The 4 Methods

Discrete Values by Horizon

This method used information directly from SOC analysis by horizon. The graphs
assume the aspect of “stairs” (Fig. 20.1) which make it difficult to view the
smoothness of carbon variation by depth.

The averages of SOC stocks up to 30 and 100 cm depth were, respectively, 6.9
and 14.6 kg/m2 for original values, 6.5 and 14.1 kg/m2 for standardized values by
mass, and 6.3 and 13.5 kg/m2 for standardized values by mass minus coarse
fragments.

Exponential Function

The exponential function shows a continuous exponential decrease of carbon with
depth. The equation is less complex than equal-area exponential or spline method
but the curve adjusting is more limited. It initializes at 0 cm depth interpolating with
values of mid-horizon. The curves show lower values than horizons for upper

Profile 7 Profile 8

Profile 9 Profile 10

Fig. 20.1 (continued)
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depths and higher for lower depths (Fig. 20.1) producing a lower average of total
SOC stocks (Fig. 20.3).

This approach produced the lowest SOC stocks up to 30 cm depth or 100 cm
depth. The averages of SOC stocks up to 30 and 100 cm depth were, respectively,
6.1 and 14.1 kg/m2 for original values, 5.6 and 13.3 kg/m2 for standardized values
by mass, and 5.4 and 12.9 kg/m2 for standardized values by mass minus coarse
fragments.

Equal-Area Exponential Function

The equal-area exponential function showed SOC stocks very similar to stocks
calculated by horizons up to 30 cm and up to 100 cm. Starting points of the curves
have values higher than SOC values of top horizons. In some soils, as in profile 9,
the initial values look exaggerated. For other profiles considering continuous SOC
variation with depth, the initial values seem more reasonable.

This approach produced the highest SOC stocks up to 30 cm. The averages of
SOC stocks up to 30 and 100 cm depth were, respectively, 7.1 and 14.5 kg/m2 for
original values, 6.6 and 13.9 kg/m2 for standardized values by mass, and 6.4 and
13.5 kg/m2 for standardized values by mass minus coarse fragments.

Equal-Area Spline Function

The equal quadratic splines show that curves fit well to discrete distribution
(Fig. 20.1). The curves start at or very close to surface with the SOC value from the
top horizon. This approach produced the highest SOC stocks up to 100 cm depth.
The averages of SOC stocks up to 30 cm and 100 cm depth were, respectively, 6.8
and 14.7 kg/m2 for original values, 6.3 and 14.2 kg/m2 for standardized values by
mass, and 6.1 and 13.7 kg/m2 for standardized values by mass minus coarse
fragments.

20.3.2 Correction by Mass and Coarse Fragments

The values of SOC stocks were corrected by mass (Fig. 20.2) and for coarse
fragments. The 30 and 100 cm depths were marked to facilitate comparisons.
Horizontal lines show total SOC stocks up to 30 and 100 cm depth for the reference
soil mass. There is a difference between original values and standardized values by
mass. Observing the points stressing the values up to 30 and 100 cm depth, the SOC
stocks have lower values when using standardized mass.
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Fig. 20.2 SOC stocks standardized by cumulative mass for 10 soil profiles. The reference line
(Ref) is the average of profiles 5 and 6 (under forest) used for SOC stocks comparisons by same
accumulate mass. Horizontal dashed lines show the cumulative soil mass for 100 and 30 cm of the
reference depth. The points indicate the SOC stocks on the 30, 100 cm and depth of each profile
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20.3.3 Statistical Analysis

The average total SOC stock is different for each method and group. The highest
average total SOC stock up to 30 cm depth, 7.1 kg/m2, was found using original
values interpolated by equal-area exponential function. The lowest average SOC
stock up to 30 cm depth, 5.4 kg/m2, was calculated using standardized values by
mass minus gravels and the exponential function. The highest average total SOC
stock up to 100 cm depth, 14.7 kg/m2, was found using original values interpolated
by equal-area spline function. The lowest average SOC stock up to 100 cm depth,
12.9 kg/m2, was calculated using standardized values by mass minus gravels and
the exponential function. This considerable difference between different methods
and standardization results in significantly different quantification of SOC stocks.

The first analysis compared the four different methods within the same group. In
the group with original values, the repeated measured ANOVA with multiple t-test
showed similarity between the horizon values and the equal-area exponential and
spline functions, until 30 cm (Fig. 20.3). When considering the depth up to 100 cm,

Up to 30 cm depth Up to 100 cm depth

Fig. 20.3 Average SOC stocks (kg/m2) of 10 soil profiles and statistical comparison between four
different methods combined in three groups. Multiple dependent t-test for paired samples was used
for statistical analysis
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equal-area exponential function and discrete values by horizon yield similar results.
However, the equal-area spline function is not similar to horizon values as in depth
up to 30 cm. The equal-area spline curve, for some profiles, was cut on 100 cm
depth, sectioning the interpolation next to half horizon. This considers only the
initial part of the fitted curve at respective horizon and the values were not balanced
by the final part. As the initial part has higher values than the final, a higher average
was found. This difference was reduced when the values were standardized by mass
and corrected by gravels.

Up to 30 cm depth Up to 100 cm depth

Fig. 20.4 Average SOC stocks (kg/m2) of 10 soil profiles for each method by different groups.
Repeated measure ANOVA with post hoc Bonferroni correction was used for statistical analysis
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The results found in values standardized by mass and standardized by mass
minus gravels were similar.

The second analysis comparing the same methods in different groups showed
that the values standardized by mass and mass minus gravels are statistically similar
(Fig. 20.4). When both are compared to the original values, the results differ.

The analysis is complementary and confirms that original data produced sig-
nificantly different results than standardized data. Different functions can produce
different results, independently of the standardization.

The characteristic of each function needs to be considered during the choice of
the function and interpretation of the results. When using discrete values, the
continuous carbon variation on the profiles is not considered. Negative exponential
function tends to produce lower values than horizons in upper layers and higher
values at greater depths and lower SOC stocks of the profile. Equal-area exponential
and equal-area splines produce SOC stocks similar to horizon values. Differences
may appear when the function is not considering the initial and the final balance
part of the curve and this generally increases the values.

20.4 Conclusions

From this analysis, the following can be concluded:

• Different functions for calculating SOC by depth produce significantly different
results.

• The highest average total SOC stock up to 30 cm depth, 7.1 kg/m2, was found in
the original values interpolated by equal-area exponential function. The lowest
average SOC stock up to 30 cm depth, 5.4 kg/m2, was calculated using stan-
dardized values by mass minus gravels and the exponential function.

• The highest average total SOC stock up to 100 cm depth, 14.7 kg/m2, was found
in original values interpolated by equal-area spline function. The lowest average
SOC stock up to 100 cm depth, 12.9 kg/m2, was calculated using standardized
values by mass minus gravels and the exponential function.

• Equal-area exponential and equal-area splines produce SOC stocks similar to
horizon values, primarily when considering the initial and final parts of the fitted
curve by each horizon.

• Values standardized by mass and mass minus gravels yield significantly dif-
ferent results compared to original values.
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Chapter 21
Evaluation of Pedotransfer Equations
to Predict Deep Soil Carbon Stock
in Tropical Podzols Compared to Other
Soils of the Brazilian Amazon Forest

O.J.R. Pereira, C.R. Montes, Y. Lucas and A.J. Melfi

Abstract According to the soil measurement procedures proposed by the
Intergovernmental Panel on Climate Change (IPCC), the sampling depth for SOC
stock estimation is centred on the upper soil horizons where root biomass and organic
matter inputs are concentrated, depending on soil type and ecosystem, typically
between 0 and 0.3 m. However, recent research in areas of Amazonian Podzols has
shown that these soils store a great amount of carbon in thick spodic horizons (Bh).
The amount of carbon stored in deep Bh horizons of Podzols (down to 3 m) may
exceed 80 kg C m−2 in some regions of the Amazon. Thus, a better understanding of
the vertical distribution of the SOC inAmazonian soils is an urgentmatter considering
the volume of carbon stored in Podzols, in a context of global climate change. Given
this, the main goal of this research was to test and to propose pedotransfer functions
based on several Amazonian soil profiles in order to estimate SOC stock and evaluate
different soil attributes that could be used to infer indirectly, soil bulk density. For this
propose, we selected around 320 pedons that were collected in the region of the Rio
Negro Basin, tomodel the vertical distribution of SOC stock using a series of negative
exponential profile depth functions and parametric/nonparametric functions for
Podzols. The derived function parameters were used to predict carbon stock in deep
horizons for all studied profiles and to explain the vertical behaviour of the SOC stock
in Podzol profiles. The soil bulk density ofAmazonian soils was properlymodelled by
symbolic regression, considering pH, clay content and SOC as the most relevant
variables likely to affect soil bulk density values. We observed that the SOC stored in
deep horizons of non-podzolic soils can be modelled by exponential decay equations.
However, in Podzol, the vertical distribution of carbon stock is highly complex with a
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significant increase in deep horizons, which cannot be explained by negative expo-
nential functions. Our findings have shown that the SOC stock of Amazonian soils,
excluding Podzols, can be predicted by fitted exponential functions (RMSE:
0.9 kg Cm−2). However, the vertical variation of SOC stored in Podzol profiles can be
modelled just by complex equations (equal-area spline RMSE: 13.6 kg C m−2;
Fourier RMSE 15.9 kg C m−2 and Sum of Sines RMSE: 15.0 kg C m−2) with a large
number of parameters. According to the results achieved in this research, we con-
cluded that the SOC stock of Podzols can be indirectly estimated for the whole soil
profile by integrating the Sum of Sines and Fourier equations, which is not possible
when applying an equal-area spline fitting due to the absence of model parameters.
Moreover, spodic horizons store most of the carbon pool of podzolic regions and the
Podzols have more than twice of the capability of storing carbon when compared to
other Amazonian soils.

Keywords Soil organic carbon stock � Podzols � Amazon forest � Pedotransfer
equations

21.1 Introduction

The Brazilian tropical Podzols cover 1.36 105 km2 of the Amazon forest, which
represents 2.7 % of the total area of the Amazon biome and around 20 % of the soils
of the Rio Negro Basin. The other important soil group in this region comprises
ferralitic soils (Acrisols and Ferralsols) that cover 55 % of the Rio Negro Basin. The
remaining soil groups are related to alluvial and litholic soils as well as scattered
hydromorphic Plinthosols. Such diversity of soil types reflects on the capacity of
the Amazon biome on storing soil organic carbon (SOC), especially in regions of
Podzols. According to recent research, the Amazonian Podzols (Montes et al. 2011)
store about 13.6 ± 1.1 PgC, which is at least 12.3 PgC higher than previous
estimations (Bernoux et al. 2002; Batjes and Dijkshoorn 1999) that have considered
soil depths down to 0.3 m.

Several surveys have investigated the capability of soils to store and retain SOC
(Post et al. 1982; Buringh 1994; Kimble 1990; Eswaran et al. 1993; Batjes 1996),
but present research usually considers a fixed soil depth, typically based on the
topsoil 0.2 or 0.3 m, where the highest SOC concentrations usually occur (Burke
et al. 1989). Batjes (1996) reported a 60 % increase in the global SOC pool when
the second metre of soil was included, taking into account the FAO (2012) soil
classification system. A few studies of the Amazon forest (Montes et al. 2011;
Pereira et al. 2015) have described the capability of Podzols in storing high amounts
of C in deep spodic (Bh) horizons. These soils have an average stock of
70 kg C m−2 and around 80.9 % of its C is stored in thick deep Bh horizons in
depths ranging from 2 m to more than 5 m (Montes et al. 2011; Pereira et al. 2015).
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The vertical pattern of SOC content in Podzols is highly complex when com-
pared to other Amazonian soils, with a significant increase in thick Bh horizons
(Montes et al. 2011). Negative depth exponential function has been successfully
applied in several mineral soils to model and predict C stock. However, any local
variation affects the quality of the exponential fit everywhere else in the soil profile,
as observed by Webster (1978). In this context, the modelling of Podzol SOC stock
can be carried out by nonparametric depth function (e.g. equal-area spline) that can
result in satisfactory adjustment, but with the disadvantage of not providing any
parameters that would allow model generalizations (Bishop et al. 1999). The
summarization of the model by parameters is essential to allow an indirect esti-
mation of the SOC in Podzols and to explain the behaviour of C along the soil
profile, by means of a general approach.

Traditionally, the amount of C stored in soil is obtained as C mass per unit area
according to a specific profile depth (Tp). The calculation is carried out by summing
the C stock (kg C m−2) of the measured soil layers (1, 2,…, N). Thus, the content of
C to a given soil profile can be obtained by the following equation:

Cs ¼
XN
p¼1

C � qp
� � � Tp ð21:1Þ

where Cs is the carbon stock (kg C m−2) to a given profile; C is the carbon content
in mass basis (kg C kg−1); qp is the soil bulk density (g cm−3); and Tp is the layer
thickness. Another option to obtain the Cs value is through the application of a
profile depth function fitted to the soil C data in a volumetric basis (kg C m−3)
according to specific measured soil layers (Tp). The integration of the function is
applied in order to obtain the SOC stock (kg C m−2) for the whole profile. The
expression of C content as depth function is useful to estimate the C stock down to
certain depths and to standardize databases where soil depths are sampled to layers
randomly distributed (Arrouays and P’elissier 1994; Minasny et al. 2006).

Parametric Pedotransfer functions (PTF) are widely used in soil science to
predict several soil attributes based on the empirical equations that result in function
parameters that can be easily applied to measure soil attributes (Mcbratney et al.
2003). Given this, the main goal of this research was to test and to propose PTF in
several Amazonian soil profiles (IBGE 2008; EMBRAPA 2014) in order to esti-
mate SOC stock (Cs) and evaluate different soil attributes that could be used to infer
indirectly, soil bulk density (qp).

21.2 Methodology

The methods adopted in this research are divided into two general steps. The
indirect estimation of soil bulk density by the evaluation of traditional PTF
(Bernoux et al. 1998; Tomasella and Hodnett 1998; Benites et al. 2007) was
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compared to the ones developed in the frame of this research. The second step was
focused on the estimation of SOC stock by the application of curve-fitting models
based on different approaches, taking into account the behaviour of SOC along the
soil profiles of Podzols and other Amazonian soils.

21.2.1 Field Sample Data

The studied area is located in the Amazonia State, Brazil (Fig. 21.1). The soil
database used in this study was provided by IBGE (2008) and EMBRAPA (2014)
as well as collected in the field surveys developed by this research (Fig. 21.1).

The soil profiles in Fig. 21.1 are divided into three groups. The “Podzol Sample
Areas” represent the profiles collected by this study in the regions of equatorial
Podzols of the Rio Negro Basin (393 sampled layers in 18 profiles). The “soil bulk
density PTF” profiles (Fig. 21.1) refer to the soil profiles provided by EMBRAPA
(2014), which were used to develop the soil bulk density PTF (668 sampled layers
in 129 profiles). Due to the scarcity of samples in Rio Negro Basin, we decided to
use soil profiles in the entire Amazon state to validate the bulk density PTF.
The SOC stock was estimated in profiles limited to the region of the Rio Negro
Basin based on database provided by IBGE (2008), illustrated in Fig. 21.1 by the
“SOC PTF” group (1442 sampled layers in 324 profiles).

Fig. 21.1 Situation of the studied area highlighting the location of the soil sample profiles used in
this study
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EMBRAPA Soil Database

All samples provided by EMBRAPA contain values of soil pH (water and KCl);
organic carbon by dichromate method (SOC); total nitrogen by Kjeldahl digestion;
iron oxide (Fe2O3); titanium oxide (TiO2); aluminium oxide (Al2O3) and silicon
oxide (SiO2) by strong acid digestion; exchangeable cations (Ca2+, Mg2+, and Al3+)
by 1 N KCl; soluble potassium and phosphorus by Mehlich 1 method (0.05 N HCl
in 0.025 N H2SO4). Soil physical data consisted of particle size measurements,
comprising sand (2.00–0.05 mm), silt (0.05–0.002 mm) and clay (<0.002 mm)
measured by the hydrometer method using Na-hexametaphosphate as chemical
dispersant; soil bulk density by the core method and water dispersible clay (WDC).
A complete description of the EMBRAPA soil database can be found in
EMBRAPA (2011).

IBGE Soil Database

The IBGE (2008) soil database was developed in the frame of the “Systematization
of Natural Resources Information” project coordinated by the Natural Resources
and Environmental Studies division/IBGE (CREN). The information of each soil
sample was standardized in a harmonized soil geodatabase, which allows interface
with GIS (Geographic Information Systems). The samples are divided by horizons
according to the Brazilian Soil Classification System (EMRAPA 2011). The
database contains the same information presented in the EMBRAPA soil database
(EMBRAPA 2011). However, there are no soil bulk density values available for
any of the sampled profiles. A full description of the IBGE soil database can be
found in IBGE (2008).

21.2.2 Estimation of Soil Bulk Density

In Podzol region (Fig. 21.1), the soil bulk density was directly determined by the
Kopeck ring method described by Blake et al. (1986). The remaining soil orders
have their bulk density values estimated and validated based on the EMBRAPA
(2014) database. Two aspects were considered to select the most reliable PTF: the
versatility of the proposed equation and the soil information available in the two
databases used in this study (IBGE 2008; EMBRAPA 2014). The PTF equations
were developed and evaluated using the artificial programming tool Eureqa
(Schmidt and Lipson 2009). The database was divided into two datasets (training
Dataset 1 and validation Dataset 2).
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The independent soil dataset 2 was used in order to compare the proposed model
(Dataset 1) with the ones presented in the previous research (Bernoux et al. 1998;
Tomasella and Hodnett 1998; Benites et al. 2007). Therefore, there is no redun-
dancy between Datasets 1 and 2. The Dataset 2 contains 230 soil samples of profiles
collected in different regions of Brazilian Amazon forest (EMBRAPA 2014)
excluding the samples collected in the region of the Amazonia state. The descriptive
statistics of the soil attributes used to generate the PTF are summarized in
Table 21.1.

Unlike previous studies regarding the development of PTF in the Amazon region
(Bernoux et al. 1998; Tomasella and Hodnett 1998; Benites et al. 2007), we applied
symbolic regression (SR) analysis (Koza 1992) in order to generate PTF equations.
SR is a powerful machine-learning modelling technique introduced by Koza
(1991). Different from linear and nonlinear regression methods, symbolic regres-
sion searches both the parameters and the form of equations, which allows the
automatic generation of symbolic regression functions (Schmidt and Lipson 2009).

We used the coefficient of determination (r2), the mean squared error (MSE), the
root mean square error (RMSE) and Akaike’s Information Criterion (AIC) in order
to access the accuracy of the proposed PTF against the ones presented in previous

Table 21.1 Descriptive statistics of the soil attributes of the training and validation datasets
(Datasets 1 and 2)

Dataset 1 Dataset 2

Soil attribute Valid
cases

Min Max Mean S.D.a Valid
cases

Min Max Mean S.D.a

Corse sand
(g kg−1)

654 1.0 704.0 162.6 160.1 230 10.0 620.0 201.7 134.6

Fine sand
(g kg−1)

654 1.0 883.0 219.3 206.0 230 10.0 620.0 243.1 174.8

Total sand
(g kg−1)

654 2.0 988.0 381.8 284.9 230 20.0 950.0 444.9 266.4

Silt (g kg−1) 654 2.0 806.0 214.6 168.1 230 20.0 482.0 116.1 91.1
Clay (g kg−1) 654 10.0 880.0 403.6 228.7 230 20.0 960.0 439.1 246.8
pH 654 3.3 7.4 4.9 0.7 230 3.6 7.3 5.3 0.9
K+

(cmolc kg
−1)

654 0.0 1.0 0.1 0.1 230 0.0 1.0 0.1 0.2

SiO2 (g kg−1) 654 0.0 325.0 109.5 65.2 230 8.7 379.0 147.7 93.2
Al2O3

(g kg−1)
654 0.0 426.0 129.3 72.6 230 6.9 345.1 150.9 101.3

Fe2O3

(g kg−1)
654 0.0 467.0 55.5 50.6 230 1.4 259.0 60.9 59.1

SOC
(g kg−1)b

654 0.2 115.5 8.5 10.7 230 0.2 46.7 8.0 7.8

N (g kg−1) 654 0.1 4.7 0.9 0.8 230 0.1 10.0 0.9 1.2
C/N (%) 654 0.0 96.0 8.3 7.4 230 0.1 27.0 10.0 4.7
ρp (g cm−3)c 654 0.8 1.9 1.3 0.2 230 0.9 1.8 1.3 0.2
aStandard deviation
bTotal organic carbon
cMeasured soil bulk density
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research, considering the independent Dataset 2 (Table 21.1). MSE, RMSE and
AIC are defined as follows:

MSE ¼ 1
n

Xn
i¼1

q̂i � qið Þ ð21:2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

qi � q̂ið Þ2
s

ð21:3Þ

AIC ¼ Nln
1
n

Xn
i¼1

qiq̂ið Þ2
" #

þ 2P ð21:4Þ

where q̂i and qi are the observed and predicted soil bulk density values, respec-
tively, i is the soil sample, P is the number of parameters used, n is the total number
of observations and Nln is the natural logarithm. The better model is with MSE and
RMSE values closer to 0 and the smaller AIC value.

21.2.3 Modelling the Vertical Distribution of SOC

The prediction of soil bulk density values based on PTF was critical to allow the
estimation of SOC stock in the region of Rio Negro Basin due to the absence of qp
values in IBGE soil database (IBGE 2008). The qp values were applied to convert
SOC content from a mass basis (kg C kg−1) to a volume basis (kg C m−3). The
resulting values were used to predict SOC stock (kg C m−2) in selected profiles
(Fig. 21.1). We divided the database into two datasets according to the fitting
functions applied to model the vertical distribution of SOC stock: (i) Dataset A
which comprises soil profiles that can have their SOC stock modelled by exponential
decay equations; (ii) Dataset B, referent to samples collected in field (Podzols),
where the vertical distribution of SOC stock cannot be explained by exponential
decay equations. The methods concerning each dataset are described below.

Exponential Depth Function: Dataset A

The following negative exponential function was fitted for each sample point in the
calibration dataset from the surface to variable soil depth according to each soil
profile:

C ¼ Ci � exp �z
bð Þ þ y0 ð21:5aÞ
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where Ci is the SOC content in volume basis (kg C m−3); z is the soil depth (m) for
a given horizon; b is the SOC decay constant and y0 is the absolute value of depth
(m). The integral of Eq. 21.5a (Eq. 21.5b) represents C stock to depth z (dz):

Ct ¼
Zdz
0

Ci � exp �z
bð Þ þ y0

� �
ð21:5bÞ

where Ct is the amount of organic C stored per unit area (kg C m−2). Integrating
Eq. 21.5b, the C stock from the soil surface to depth z(dz) is given by the Eq. 21.5c:

Ct ¼ �Cib exp
�z
bð Þ þ y0dz þCib ð21:5cÞ

Equation 21.5c was applied to estimate C stock in all profiles excluding regions
of Podzols. The equation parameters (Ci, z, b and y0) were predicted individually for
each profile with variable dz values according to the soil depth of each observed
profile. We used 25 soil profiles provided by IBGE (2008) to validate the negative
exponential function (Eq. 21.5c). Thus, the parameters for the 25 validation profiles
were generated to 1 m soil depth in order to predict SOC stock to a 3 m soil depth.
The validation was based on measured values (IBGE 2008) down to 3 m soil depth.

Podzol Depth Functions: Dataset B

The soil samples provided by the two systematic databases available in the Amazon
(IBGE 2008; EMBRAPA 2014) have an insignificant number of profiles collected
in Podzol areas. Moreover, the sampling soil depth is always up to 2 m, which is
limited to the topsoil (O/A horizons), elluvial (E) horizon and the first centimetres
of the spodic horizon (Bh). Given this, we collected samples in different regions of
Podzols, totalizing 18 soil profiles (Fig. 21.1). For each profile, we have collected
from 12 to 36 samples (layers), taking into account deep/thick spodic horizons
(from 4.5 to 6 m soil depth).

The vertical distribution of SOC stock was modelled according to three fitting
models: (i) Nonparametric equal-area splines (Bishop et al. 1999); parametric;
(ii) Sum of Sines; and (iii) Fourier periodic fitting models (Renshaw and Ford
1984). It is important to highlight that periodic fitting models were not applied in
previous researches related to vertical distribution of SOC stock. Usually, soil
attributes have a vertical behaviour that cannot be explained by periodic models.
However, we observed that Podzols can have their vertical SOC content distribu-
tion fitted in these models due to a specific pattern along the soil horizons. A brief
description of the Podzol fitting models is presented below.

Equal-area splines: The spline model assumes that soil attributes vary smoothly
with depth, which is translated into mathematical terms by denoting depth by z, and
the depth function describing the true attribute values by f(z). Given this, f(z) and its
first derivative f0(z) are both continuous, and f0(z) is square integrable. The depths
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of the boundaries of the n layers or soil horizons are given by z0 (<z1; …; < zn).
Thus, the measurements of Ci (i = 1;…; n) are mathematically modelled as follows:

Ci ¼ �fi þ ei; ð21:6Þ

where �fi ¼
R zi
zi�1

f ðzÞdz= xixi�1ð Þ is the mean value of f(z) considering the interval
xixi�1ð Þ. The errors are assumed independent, with mean 0 and common variance
r2. f(z) denotes a spline function that can be determined by minimizing:

1
n

Xn
i¼1

Ci � fið Þ2 þ k
Zzn
z0

f
0
z2
� �

dz ð21:7Þ

The first term describes the model fit to data and the second one measures the
roughness of function f(z), expressed by its first derivative f0(z). Parameter λ con-
trols the trade-off between the fit and the roughness penalty. The solution is a
linear–quadratic smoothing spline (Bishop et al. 1999). The values of SOC were
included on the model as volumetric basis (kg C m−3). The total SOC stock of each
profile (kg C m−2) was calculated summing the resulting values of the fitted model.
Bishop et al. (1999) has already discussed the methods to establish a proper λ value.
Given this, we considered a standardized λ value of 0.1.

Fourier series fitting: Specific Fourier models were developed for each Podzol
profile, considering the sums of sine and cosine functions (Eq. 21.8) assuming the
behaviour of SOC along the profile as a periodic signal to a limited soil depth. The
Fourier series to n terms is given by:

C ¼ a0 þ
Xn
i¼1

aiCOSðiwzÞþ biSENðiwzÞ
 !

ð21:8Þ

where a0 models an intercept term in the data and is associated with the i = 0 cosine
term, w is the fundamental frequency of the signal, n is the number of terms in the
series and limited to 1 ≤ n ≤ 8, z is the soil depth interval. We applied four terms in
order to achieve the best model adjustment. The resulting parameters were used to
estimate the SOC stock in the whole profile, after applying the integration of the
Fourier series (Eq. 21.9).

Ct ¼
Zdz
0

a0 þ
Xn
i¼1

aiCOSðiwzÞþ biSENðiwzÞ
 !

ð21:9Þ

where Ct is the amount of organic C stored per unit area (kg C m−2) and dz refers to
the profile depth. After integrating the 4 terms of the Fourier series function to dz
depth, we obtained the following equation:
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Ct ¼ 0:25a4 sin 4wdzð Þ
w

� 0:25b4 cos 4wdzð Þ
w

þ 0:333a3 sin 3wdzð Þ
w

� 0:333b3 cos 3wdzð Þ
w

þ 0:5a2 sin 2wdzð Þ
w

� 0:5b2 cos 2wdzð Þ
w

þ 1a1 sin wdzð Þ
w

� 1b1 cos wdzð Þ
w

þ 1a0dz þ 0:25b4
w

þ 0:333b3
w

þ 0:5b2
w

þ 1b1
w

ð21:10Þ

where the parameters a0, a and b are given for each Fourier term, with 95 %
confidence bounds.

Sum of Sines fitting: The Sum of Sines is similar to the Fourier fitting. However,
it includes the phase constant and does not include a constant term. The Sum of
Sines function is represented by the following equation:

C ¼
Xn
i¼1

ai sinðbizþ ciÞ ð21:11Þ

where a is the amplitude, b is the frequency, and c is the phase constant for each
sine wave term. n is the number of terms in the series. We also included four terms
to fit the SOC stock in Podzol profiles. The integration to dz soil depth is shown in
Eq. 21.12.

Ct ¼
Zdz
0

Xn
i¼1

ai sinðbixþ ciÞ
 !

ð21:12Þ

After integrating the four terms of the Sum of Sines fitting to dz, we obtained the
Eq. 21.13 as follows:

Ct ¼ � a4 cos b4dz þ c4ð Þð Þ
b4

� a3 cos b3dz þ c3ð Þ
b3

� a2 cos b2dz þ c2ð Þ
b2

� a1 cos b1dz þ c1ð Þ
b1

þ a4 cos c4ð Þ
b4

þ a3 cos c3ð Þ
b3

þ a2 cos c2ð Þ
b2

þ a1 cos c1ð Þ
b1

ð21:13Þ

The parameters a, b and c are given for each Sum of Sines term with 95 %
confidence bounds. The evaluation of results was carried out by comparing
observed and predicted SOC stock values, considering the coefficient of determi-
nation (r2), MSE, RMSE and AIC.

340 O.J.R. Pereira et al.



21.3 Results

21.3.1 Predicting Soil Bulk Density in Amazonian Soils

In the first attempt to generate a PTF (Dataset 1), we considered all soil attributes
presented in Table 21.1. The best model was achieved (Model 1: Eq. 21.14) with
the following input data: fine sand, silt, clay, total N and C/N. The symbolic
regression analysis considering all input data returned a generalized equation
(21.14) that explained 70 % of the soil bulk density variance (Fig. 21.2a). The MSE
and RMSE between predicted and observed values were 0.011 and 0.108 g cm−3,
respectively.

qp ¼ 1:463þ 0:1998 tan 1:044� 0:002 clayð Þð Þ cos 0:125þ 0:135 C=Nð Þð þ 3:543 10�5� �
silt2
� �

�0:013 siltð ÞÞ cos 0:004 fine sandð Þ cos 0:315þ tan 0:005 clayð Þ � 2:317ð Þð Þð
�1:065 cos 0:315þ tan 0:005 clayð Þ � 2:317ð Þð ÞÞ � 0:144 total Nð Þ

ð21:14Þ

Arithmetic and trigonometric operators were selected by the user and automat-
ically added to the final equation. As pointed out by Benites et al. (2007), a better
correlation between N and ρp, when compared to SOC content is observed in
EMBRAPA (2014) database. That might be related to the total SOC measurement
procedure (acid-dichromate FeSO4 titration procedure) adopted by EMBRAPA.
The use of C/N and N values on the resulting symbolic regression equation (21.14)
might poses a problem towards the proposition of a general PTF equation for
Amazonian soils due to the lack of such data in most of soil databases currently
available. Thus, we used the following input data to train the symbolic regression
model (Model 2: Eq. 21.15; Fig. 21.2b): total sand, silt, clay, pH and SOC.
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Fig. 21.2 Plot of the predicted data against the observed data. aModel 1; bModel 2. Dashed lines
are the 1:1 lines
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qp ¼ 1:326þ 0:315 sin 1:045� 0:001ðclayÞ � 0:052ðSOCÞð Þþ 0:0003ðclayÞ sin sin 2:561ðð
þ 1:287ðpHÞ�0:006 clayð ÞÞÞ � 0:134 sin sin 2:561þ 1:287ðpHÞ � 0:006ðclayÞð Þð Þ

ð21:15Þ

The Model 2 (Eq. 21.15) had a lower correlation with the observed dataset
(Fig. 21.2); however, It takes into account three soil attributes that are widely
available in most of systematic soil databases (EMBRAPA and IBGE legacy data).
Therefore, Model 2 was applied in order to predict values of soil bulk density.
The Model 2 had an MSE and RMSE of 0.015 and 0.123 g cm−3, respectively. The
validation was based on the independent Dataset 2, as described below.

Symbolic Regression Model Validation

The proposed Model 2 (Fig. 21.3) has shown the best performance, among the
evaluated PTF, with MSE and RMSE closest to 0 and the lower AIC value.
However, the model proposed by Benites et al. (2007) has a similar behaviour with
close MSE, RMSE and AIC indices. Thus, we observed that Benites’ et al. (2007)
model could be applied to estimate soil bulk density in Amazonian soils, but with
the disadvantage of demanding Fe2O3 values, which are not available in most of the
soil profiles provided by IBGE (2008).

Clay content and SOC content have been reported in previous studies as the most
relevant attributes to explain soil bulk density variability (Bernoux et al. 1998;
Benites et al. 2007). Given the availability of soil textural fraction, pH and SOC data
in the applied soil databases (IBGE 2008; EMBRAPA 2014), we decided to use the
Model 2 in order to estimate soil bulk density values. It is important to highlight that
this model was developed based on soil samples limited to the region of the Amazon
Basin, which might detail its application in areas outside Amazon biome.

21.3.2 Modelling the Vertical Distribution of SOC
Stock in Amazonian Soils

The main soil orders in Rio Negro Basin are Ferralsols (34 % of the region);
Acrisols (22 % of the region) and Podzols (19 % of the region). The remaining
orders comprise Gleysols (6 %) and Plinthosols (5 %). Arenosols, Nitisols and
Planosols account to less than 10 % of the soils of Rio Negro Basin. In the first
0.3 m soil depth, we observed that Ferralsols and Acrisols have a mean SOC
content of 1.8 ± 1.4 % and 1.5 ± 1.1 %, respectively. Below 0.3 m (0.3–0.8 m), the
SOC content in these soils decays to 0.57 ± 0.5 % in Ferralsols and 0.44 ± 0.6 % in
Acrisols. The superficial horizons of Podzols have a higher carbon concentration
(0–0.3 m: 2.7 ± 1.5 %). The same pattern was observed in deep thick Bh horizons
(1–3 m soil depth) where the mean carbon content is 2.31 ± 2.1 %.
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All soils that had their SOC stock modelled by exponential depth functions were
grouped together (Dataset A). After integration (Eq. 21.5c), the exponential func-
tions showed a mean r2 value of 0.99 and a RMSE of 0.85 kg m−2 between the
observed and the fitted SOC stock (Fig. 21.4a). These results indicate that the
exponential depth functions fitted the data very well, with an r2 closer to 1 and an
RMSE below 1 kg C m−2. It is important to highlight that 5 % of the soil profiles
originally provided by IBGE (2008) were not fitted to exponential equations due to
the low number of observed soil layers (2.4 % of profiles) or because of the
occurrence of high amounts of SOC content in horizons below 0.3 m (2.6 % of
profiles).

As shown in Fig. 21.4b, the predicted SOC values fitted well to the observed
data with an RMSE of 2.5 kg C m−2 considering a 3 m soil depth, which allows the
prediction of SOC stock in Amazonian soils in deeper horizons (below 1 m). The
validation dataset comprises soil profiles of Acrisols and Ferralsols, which are
dominant in Amazon Basin. Therefore, exponential depth functions offer a feasible
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Fig. 21.3 Scatterplots and goodness-of-fit indexes of proposed and previous soil bulk density
PTF. a Proposed Model 2; b Benites et al. (2007); c Bernoux et al. (1998) and d Tomasella and
Hodnett (1998). Dashed lines are the 1:1 lines
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way to estimate SOC stock in Amazon biome. However, this assumption is not
valid for Podzols due to the peculiar distribution of SOC along the profile
(Fig. 21.5).

The pedogenitic processes involving the formation of Podzols have already been
investigated by several studies in Amazon (Lucas et al. 1984, 1988, 1996; Chauvel
et al. 1987; Bravard and Righi 1989; Dubroeucq and Volkoff 1998; Nascimento
et al. 2004; Montes et al. 2007; Patel-Sorrentino et al. 2007; Fritsch et al. 2009;
Montes et al. 2011). All researches developed in this region have described the
occurrence of sandy soil materials (E horizon) that lead to the leaching of Al and Fe
organic matter complexes, resulting in the dissolution of clay minerals,
Al-hydroxides and Fe-oxides or Fe-oxyhydroxides, causing the formation of illuvial
deep Bh-rich-SOC horizons. These characteristics allowed us to segment Podzol
profiles in four systematic horizons according to their SOC content: (1) SOC-rich
topsoil horizon (A/O); (2) Elluvial sandy horizon with insignificant amount of SOC;
(3) Deep thick SOC-rich Bh horizon; and (4) C horizon with a gradual decrease in
SOC content (Fig. 21.5).

We observed a clear periodical pattern that fit very well in Sum of Sines and
Fourier models (Table 21.2). Nevertheless, spline models have generated the best
predicted values when compared to measured data (Table 21.2). It is important to
emphasize that the establishment of λ (lambda) values is laborious and depends on
the availability of several soil samples for each soil profile, which allows an
appropriate representation of the soil attribute to be measured. Given this, we
decided to apply the λ value of 0.1 as suggest by Bishop et al. (1999). The peri-
odical models were fitted to the observed data with 2, 3 and 4 terms. The best fitting
was achieved with 4 terms in both Fourier and Sum of Sines models.

The curve fitting of Dataset B was created considering all measured layers of
each Podzol profile as shown in the example of Fig. 21.6. We observed a complex
distribution of SOC along a typical Podzol profile. As shown in Fig. 21.5, the SOC
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Fig. 21.4 a Observed and fitted exponential depth function SOC; b Observed and predicted
exponential depth function, based on the validation dataset. Dashed line is the 1:1 line
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content in Bh horizon is highly variable with abrupt changes in depth intervals
lower than 0.05 m (Fig. 21.5). The variation in C content within Bh horizon is
explained by pedogenitic processes of this horizon. What is observed here is a
process of reduction and reoxidation of organometallic complexes leading to the
selective accumulation of different amounts of C in Bh horizon.

Considering the parametric equations, we observed a better performance of the
Sum of Sines fitting, confirmed by the quality evaluation indices (Table 21.2).
Thus, the integration of the Sum of Sines model to the observed soil depth
(Eq. 21.13) was capable of representing the complex distribution of SOC stock
within Bh horizons (Fig. 21.5), which justifies the application of a 4-term Sum of
Sines model. It is interesting to highlight that Sum of Sines, as well as Fourier
models, deals with trigonometric and circular functions, usually applied to describe
attributes with clear periodical behaviour. In this context, we assumed that SOC
stock in Podzols has a periodical pattern, which implies in modelling the profile to a
limited range according to the observed data, where the assumption of periodicity is
attested. Therefore, the prediction of values is limited to the measured soil depth,

Fig. 21.5 Measured SOC stock. a Dataset A (Ferralsols and Acrisols); b: Dataset B (Podzols).
aTypical Ferralsol horizons. bTypical Podzol horizons with average thickness for evaluated Podzol
profiles

Table 21.2 Evaluation indices for the three fitting models considering Dataset B (Podzols)

Fitting model Observations R2 MSE (kg C m−2) RMSE (kg C m−2) AIC
Equal-area spline 18 0.85 187.21 13.68 96.06
Sum of sines 18 0.82 225.38 15.00 99.40
Fourier 18 0.79 255.12 15.97 101.63
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which means that we cannot predict SOC stock values beyond the measured layers
considering the three fitting models: Spline, Sum of Sines and Fourier.

21.3.3 The SOC Stock in Datasets A and B

In Dataset A, we observed that a significant portion of the SOC stock is located in
the first 0.3 m soil depth with an average stock of 8.2 ± 5.0 kg C m−2. Such value
represents 41 % of the total SOC stock to a 3 m soil depth. In the first soil metre, we
observed that the profiles evaluated in Dataset A store about 15.2 ± 6.2 kg C m−2,
which is 76 % of the total SOC stored in profiles up to 3 m soil depth. Finally, if we
take into account the entire soil profile (3 m soil depth), the SOC stock increases to
a value of 19.2 ± 10.7 kg C m−2. Thus, the carbon stored in deep soil horizons, from
2 to 3 m soil depth, represents about 19.2 % of the total SOC stored in the first 3 m
soil depth of Dataset A. We observed high standard deviation values due to the
grouping of different soil orders into the same dataset in order to compare the
vertical behaviour of SOC stock distribution in Dataset A against Dataset B
(Podzols). Different from other Amazonian soils, Podzols have shown a high
capacity of storing huge amounts of SOC in deep thick horizons (Bh), with a
complex vertical distribution that was not evaluated in previous studies.

In Podzols, the organic (O/A) horizon stores higher amounts of C when compared
to other Amazonian soils due to the prevalence of hydromorphic conditions that
leads to the accumulation of fresh MOS in surface. In O/A horizon, the average SOC
stock is 17.9 ± 11 kg C m−2 to a 0.3 m soil depth. In elluvial sandy horizons (E), the
SOC stock abruptly decays to an average value of 4.8 ± 2.7 kg C m−2. The thickness
of E horizon is variable ranging from 0.5 to 1.5 m, depending on the observed
profile. The Bh horizon stores a mean SOC value significantly high with an average
stock of about 83.2 ± 15.5 kg C m−2 to a 2-m horizon thickness. It is important to
highlight that the upper and bottom limits of Bh horizon are variable which implies
in different Bh thickness according to the observed profiles; however, the values

Fig. 21.6 Example of fitting models to a typical Podzol profile. a Equal-area spline; b sum of
sines; c fourier
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presented above were taken to a 3 m soil depth. Nevertheless, Bh horizons might
extend to a 5 m soil depth, which would increase the average SOC stock of Podzols.

21.4 Conclusions

The good performance of the exponential depth function was attested to a 3 m soil
depth based on the validation dataset. Thus, the application of exponential models
to predicted SOC stock in Amazonian soils has proven to be efficient, considering
the availability of measured values to the first soil metre. Nevertheless, information
of soil bulk density was essential to allow the systematic estimation and prediction
of SOC stock. The prediction of soil bulk density data was possible by the appli-
cation of PTF equations developed according to symbolic regression analysis,
which generated a dynamic model suited to predicting soil bulk density specifically
in soils in the Amazon region. Soil bulk density PTF models and exponential depth
functions have allowed the estimation of SOC stock in Amazon soils where the
assumption of SOC content exponential decay was attested. The prediction of SOC
stock by exponential decay equations is simple and can be carried out indirectly by
integrating the exponential model to a desired soil depth, which is helpful to esti-
mate deep SOC stock in Amazon soils.

In Podzols, the SOC stock is significantly higher than that in other Amazonian
soils, especially below 1 m soil depth. The vertical variation of SOC was suc-
cessfully modelled by parametric and nonparametric fitting models. The nonpara-
metric equal-area spline model returned the best predicted values. Moreover, the
fitted spline curves are not affected by local variations, due to the possibility of
fitting piece-wise a series of local independent functions over small intervals
(soil depths). However, the application of parametric models might be helpful to
allow the indirect prediction of SOC stock in Podzols and to describe the general
behaviour of SOC along the soil profile. In this matter, we observed that Sum of
Sines models, yet poorly explored in predicting soil attributes, can be properly
applied to describe and estimate the SOC stock distribution in Amazonian Podzols
with deep thick Bh horizons.
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Part IV
Digital Soil Morphometrics—

Use and Applications



Chapter 22
The Next Generation of Soil Survey
Digital Products

Jon Hempel, David Hoover, Robert Long, Erika Micheli,
Vincent Lang and Alex McBratney

Abstract Advances in computer technology (within the past two decades) and
access to geographically accurate digital environmental data (i.e., elevation and its
derivatives, geology, land use, climate, parent material, and remotely sensed
spectral data) have created enormous advancements in our ability to produce soil
information at fine spatial resolutions (10–90 m). The data contained in each of
these grid cells are data rich in nature and include probability and uncertainty
information that allow the modeling of the soil continuum. The same advances in
computer technology and digital information are now being applied to data capture
for pedon descriptions. Coined “digital morphometrics,” this set of methodologies
provide the potential to collect pedon soil property information that defines the
continuum of the soil column, no longer restricting pedon information to aggre-
gated “blocks” of data. Potentials and application of this new data model for pedon
descriptions will be examined, studied, and presented in this paper.
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22.1 Introduction

The US Soil Survey Program has used the same data presentation for its infor-
mation for over 100 years. This information is based on the concept of an aggre-
gated data model. For both spatial soil survey information (soil maps) and pedon
(soil profile data or horizons), the data are based on one value for each polygon (soil
survey maps) representing the dominant component and one value for all analyzed
soil properties within each horizon (soil profiles). Soil survey map units are
designed to be multicomponent in nature (typically three to seven components
defining a map unit), but due to scale restrictions, it has been impossible to display
the locations of each distinct component, thereby restricting data presentation to the
dominant component or components in the case of complexes. With this data
presentation, it is not possible to show the natural continuum or gradation between
soil map units as these concepts and the soil properties represented within the soil
map units are “hard breaks” at each polygon boundary.

Much like polygon soil maps, soil profiles, and the individual horizons within
the profile are described and sampled in an aggregated fashion, the layers are “bulk
sampled” without taking into account variability in the horizons. The presentation
for this data model is one aggregated sample per horizon (typically there are four to
eight horizons that make up a pedon).

The present technology for documenting soil survey profile descriptions dates
back to the early 1900s. Kellogg (1936) documented the importance of describing
soil color, texture, structure, and colloidal movement within the soil profile as well as
subhorizons within the A, B, C sequence. Figure 22.1 documents the state of soil
structure in 1935. Note that our propensity for recognizing for soil structure types
has not changed in 80 years, and in fact, we recognize fewer types now than in 1935.

In the early 1990s, the concept of presenting soils’ information on the continuum
became a reality through the technology of digital soil mapping. This technology
has revolutionized how soils are mapped and presented.

22.2 Evolution of Spatial Data Presentation

For the last 60 years, the data model, in the US Soil Survey Program, has been
based on data aggregation. One set of data represents the entire polygon, even
though soil surveys have good documentation that the number of components that
make up map units is typically 3–8. Figure 22.2 documents the analogue presen-
tation of the soil vector model (one set of data representing the entire polygon).
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As the soil survey program has continued moving toward data presentation for
documenting the soil landscape on the continuum, the “first generation” of digital
soil data was developed. The gridded SSURGO or gSSURGO contains a set of
10-m grids that have the same map unit identifier as the vector polygons they were
derived from. In other words, each grid cell has the same data within a polygon.
Figure 22.3 documents the gSSURGO data model.

The “second generation” of documenting the soil landscape continuum with
raster-based products will portray the location of documented soil components (or
inclusions) within the original soil vector polygon. Figure 22.4 documents the
disaggregation and presentation of soil components within a soil polygon. This adds
to the definition of soil survey information and is relevant for soil management
decisions.

The “third generation” of documenting the soil landscape continuum with
raster-based products will assign soil values to cells regardless of existing vector
soil line placement. It will represent the true continuum of soil properties and
components as they occur naturally and will be based on rule sets developed for

Fig. 22.2 Soil vector model, one set of data representing the entire soil polygon

Fig. 22.1 Soil structure types recognized in 1935
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individual soil polygons as well as landscape, landform, and geomorphic concepts.
Figure 22.5 documents the soil continuum regardless of existing vector soil line
placement, a true portrayal of the soil landscape continuum.

22.3 Map Presentation Examples

An example of map presentation is given in Fig. 22.6 showing the state of soil
mapping in 1970 in Custer County, Nebraska (courtesy of Custer County Soil
Conservation District). This map represents the analogue presentation of soil survey

Fig. 22.4 Disaggregated components within the soil polygon

Fig. 22.5 Generation 3 documents the soil continuum regardless of existing vector soil line
placement, a true portrayal of the soil landscape continuum

Fig. 22.3 gSSURGO data model documenting the set of 10-m grids each with the same data as
the soil vector model they were derived from
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information, whereby one set of data represents the entire polygon. Note the
highlighted areas of the map where more than one component is evident within the
polygons.

Data from the Web Soil Survey (May, 2015a) were downloaded for the Ozaukee
County Soil Survey in Wisconsin (September, 1970) (Fig. 22.7). Forty-five years
after the Broken Bow, Nebraska map was produced the soil survey continues to
utilize the same analogue data model; of one set of soil data representing the entire
polygon. Note the highlighted areas of the map where more than one component
occurs within the polygons.

Digital soil mapping technology is available to move soil survey information
into the next generation of digital products (generation two and three). Figure 22.8,
from the Essex County, Vermont soil survey (July, 2015b), represents the next
generation of soil survey products: disaggregated and continuous categorical
information superimposed on a polygon-based map for the USA.

Fig. 22.6 Analogue presentation of soil survey information in Broken Bow County, Nebraska,
circa 1970
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22.4 Digital Presentation of Soil Profiles

In the manner that soil survey maps are produced using an aggregated data model,
information regarding soil profile descriptions are also generated using an aggregated
model. An example of this is given in Fig. 22.9a. Soil horizons for the state soil of
Wisconsin, the Antigo silt loam, are portrayed as they are described in the Official

Fig. 22.7 Analogue presentation of soil survey information in Ozaukee County, Wisconsin,
generated from the Web Soil Survey
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Fig. 22.8 Disaggregated and continuous categorical digital information from Essex County,
Vermont

Fig. 22.9 a Horizons of the Antigo Silt Loam as portrayed from the Official Series Description.
b Additional subhorizons portrayed that are lost due to bulk sampling of the major horizons
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Series Description for the Antigo Silt Loam. Figure 22.9b portrays the Antigo silt
loam with the subhorizons defined that would be part of the bulk sampling of the
major horizon. This type of definition is lost in soil profile descriptions due to bulk
soil sampling.

Bulk sampling of horizons creates hard limits of soil property information at the
soil horizon boundaries. The continuous nature of soil properties in the soil profile
are disrupted. Figure 22.10a depicts clay distribution of bulk-sampled horizons for a
profile of Antigo silt loam. Each layer has a “hard boundary” at the top and the
bottom.

Figure 22.10b is the Antigo silt loam soil profile with a continuous depth
function for clay percentage. This is a more natural representation of clay distri-
bution in a soil profile. Through the science and tools in “digital soil morpho-
metrics,” we now have the technology to provide information for continuous depth
functions of soil properties within a soil profile by actual measurements as well as
by modeling. Hartemink and Minasny (2014) document a variety of technologies
such as X-ray fluorescence (XRF), visible and near infrared (Vis-NIR), digital
cameras, X-ray computed tomography (X-ray CT), hyperspectral scanning,
ground-penetrating radar (GPR), and scanning electron microscope (SEM) that can
be used effectively and efficiently to provide more detailed information about the
soil profile. This is a significant step forward in providing accurate and functional
information for a more natural description and interpretation of the properties of a
soil profile.

Utilizing the tools of digital morphometrics, there is now the distinct potential to
provide new insights into the soil property continuum, which can provide new
information on how soils form, how they can be classified, interpreted and used.

Fig. 22.10 a Horizon designations and depths and the bulk sample percentages for clay Antigo
silt loam, clay percentage. b Bulk-sampled horizons with a continuous depth function that portrays
more natural distribution of clay in the soil profile
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22.5 Horizontal and Vertical/Lateral Soil Profile
Descriptions

There is a vertical continuum of soil properties in the soil profile, but there is also a
continuum in the horizontal sense. In a typical soil description, an area of the “soil
pit,” usually 25–40 cm wide, is chosen as the representative area where the soil is
described and sampled. This representative area is selected using expert knowledge.
With such a small area chosen for the soil description, much of the variation in the
overall soil pit is not captured. Figure 22.11 portrays a soil pit with the horizons
delineated that illustrates how horizon dimensions and proportions can vary along a
soil pit face. (Note the difference in the horizons in the two defined areas along the
pit face).

With the advent of the tools within the digital morphometrics concept, it
becomes feasible to investigate the entire pit face and develop data for the lateral
extent for the full range of characteristics for depths and properties within each
horizon.

22.6 Digital Soil Morphometrics and Universal Soil
Classification

The International Union of Soil Sciences Working Group for Universal Soil
Classification has spent the last three years developing an overarching conceptual
Universal Soil Classification system that is based on numerical classification
concepts.

Fig. 22.11 Soil pit face illustrating variation in range of characteristics of horizons (and their
associated properties) dependent on where in the pit face the soil is described
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The concept of this Universal Soil Classification system is based on a soil
property data centroid approach. This concept involves analyzing databases from
across the world, using a set of accepted soil properties, to make allocations into
logical clouds or clusters of points that recognize “Great Soil Groups” or
“Mesotaxa.” This level will be equivalent to the great group level from US Soil
Taxonomy, along with similar levels in the World Reference Base, Australian Soil
Classification, and other soil classification systems.

Point data have been assembled from available databases across the world
including 42,000 profiles from the US National Cooperative Soil Survey database,
3000 profiles from the ISRIC-WISE 3.1 dataset, 11,000 profiles from the AFSIS
legacy database, an additional 1200 profiles assembled from the Hungarian data-
base, and 680 profiles from the Russian database.

As a starting point for developing the “centroid” concept, only pedons from the
US National Cooperative Soil Survey were analyzed. Figure 22.12 documents the
set of soil properties that were used to define the data centroids. A data “centroid”
was calculated for each great group within the soil taxonomy system and a central
concept for the 22 properties was produced.

Since the universal system is based solely on properties, there is a need to
document important diagnostic and morphological information that is important to
soil classification that is not captured in physical soil properties. Morphological
information such as clay films, slickensides, and redoximorphic features are
important soil classification diagnostic criteria that can be captured through digital
morphometrics and incorporated into the classification system.

Fig. 22.12 Twenty-two soil properties were analyzed to create Universal Soil Classification Data
Centroids
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22.7 Conclusion

It is clear that the future for soil survey inventories, both spatial and point (pedon),
is through digital means. The technology in digital soil mapping and digital mor-
phometrics has advanced to the point where the techniques are common in the
research and academic circles, but also in agencies, NGOs and private sector
entities engaged in the collection and dissemination of soil survey information.
Providing quantifiable data and measurements at small depth increments that will
assist with deriving continuous depth functions of soil properties will increase use
and application of soil information. It will help to better understand the soil
heterogeneity and provide more detailed information to the user community for
application and interpretation.
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Chapter 23
Digital Soil Morphometrics Brings
Revolution to Soil Classification

Judit Nagy, Adam Csorba, Vince Lang, Marta Fuchs
and Erika Micheli

Abstract Soil classification systems are grouping soils with similar properties. The
distinguishing properties are the ones that we are able to observe or measure. As the
state of knowledge and the need of users are changing, the definitions should be
tested and changes should be accommodated. The recent boom of observation
technologies, data storage, and data processing achievements provided new
opportunities to predict similarities and differences in soils. The tools of digital soil
morphometrics are resulting in new parameters and properties and in deriving
continuous depth functions. This chapter reviews the criteria of soil parameters and
their novel methods for field observation and definition (horizon depth, texture,
color, structure, organic matter, mottling, and carbonates). The internationally
endorsed soil classification systems could potentially be supported with these new
approaches. The review is based on the WRB and is supplemented with an example
of predicting soil diagnostic horizons using digital soil morphometrics. The
application of faster, efficient, and more objective measurements can bring revo-
lution to the classification of soils.

Keywords Soil classification � Digital soil morphometrics � Diagnostics � World
reference base

23.1 Introduction

One of the main aims of soil science is to understand the relationships between soil
properties, processes, and functions, and recognize and predict soil changes in
space and time. To be able to define differences and changes, accessible and reliable
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soil information is essential. Most soil classification systems have definitions and
criteria that are based on field observations supplemented by laboratory analyses.
Field observations are often subjective, while laboratory analyses are often time and
resource demanding and are performed on samples taken from certain portions of
the profile. Digital soil morphometrics is defined as the application of tools and
techniques for measuring, mapping, and quantifying soil profile attributes and
deriving continuous depth functions (Hartemink and Minasny 2014).

In this chapter, we discuss the potential applications of digital soil morpho-
metrics to predict the building blocks of the major differentiation criteria in soil
classification systems. The review is based on selected soil attributes that are part of
the definitions of diagnostic units of internationally endorsed soil classification
systems. The selected properties are the major differentiation criteria in the defi-
nitions of the diagnostic units, hence the taxa of the World Reference Base for Soil
Resources (IUSS WG WRB 2014). This chapter will review the potential appli-
cation of digital morphometrics based on available literature. Some of the reviews
will be discussed in the Results section.

23.2 Materials and Methods

The selected attributes as the major differentiation criteria in the definitions of the
diagnostic units of internationally used soil classification systems are based on the
World Reference Base for Soil Resources (IUSS WG WRB 2014). The review of
the potential application of digital morphometrics is based on the available litera-
ture. Hence, some of the materials will be discussed in the Results section.

An example is based on reflectance spectroscopic measurements to predict
diagnostic horizons. Thirteen soil profiles from different locations in Hungary were
investigated by traditional and Vis–NIR laboratory spectroscopic methods. Using
the field descriptions and the auxiliary laboratory data, the soils were classified to
the reference soil group (RSG) level according to the WRB classification system.
Samples collected from fixed depth intervals were investigated by laboratory Vis–
NIR spectroscopic methods to infer the main soil horizons and derive parameters
whose distribution along the soil profile can be related to certain key soil properties
(organic carbon, CaCO3, and clay content). For the spectral measurements, samples
were collected at 5 cm depth intervals to 1.0 m depth and by 10 cm intervals
between 1.0 and 1.5 m. The Vis–NIR reflectance spectra of the 325 air-dried,
grounded, and sieved samples were acquired using the Analytical Spectral Devices
(ASD) FieldSpec 3 MAX portable spectroradiometer with a contact probe attach-
ment. The spectra were transformed to units of absorbance (log(1/reflectance)) and
first derivatives were calculated using Savitzky–Golay method (Savitzky and Golay
1964). Principal component (PC) analysis was performed on the spectral dataset to
reduce the high dimensionality. The PC scores were used as variables describing
the spectral properties of the soils along the profile. To test the “profile description
ability” of the spectral dataset, Fuzzy C-means clustering was performed on the
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matrix of the PC factor scores using KNIME software (Berthold et al. 2007). The
number of clusters determined prior the analysis was determined by Silhouette
analysis using the R statistical software package (R Development Core Team 2008).

For reference laboratory analysis (organic carbon, CaCO3, and clay content),
samples from genetic horizons were collected from each soil profile. To estimate
the reference soil parameters in the fixed depth intervals, mass-preserving spline
functions were fitted on the reference soil properties using the SplineTool v2.0
software (ASRIS 2011). The spline estimated reference values and the Fuzzy-C
membership values were plotted against the depth.

23.3 Results

23.3.1 Review of Some Key Soil Properties, Important
for Diagnostic Soil Classification

Table 23.1 summarizes the diagnostic horizons, properties, and materials which
play a key role in the differentiation of the RSGs in the WRB 2014. The table lists
the soil parameters whose determination is necessary to define the reviewed diag-
nostic units. Based on the study of Hartemink and Minasny (2014), only the soil
parameters which can be effectively determined by digital soil morphometric
methods are indicated. The parameter list includes soil texture, soil texture varia-
tions along the profile, and clay content (combined indication of the three is ST);
soil matrix color (MC); soil structure (SS); soil organic carbon content (OC);
redoximorphic features and mottles (RF); and calcium carbonate content (CB).

ST plays key role in defining 15 horizons, 9 properties, and 1 material. MC plays
key role in defining 15 horizons, 9 properties, and 3 materials. SS defines 15
horizons, 4 properties, and 1 material. OC defines 15 horizons, 1 property, and 3
materials. RF defines 8 horizons and 2 properties. Based on soil carbonate (CB), 6
horizons, 4 properties, and 2 materials are defined.

Hartemink and Minasny (2014) gave an overview of soil properties that have
been successfully measured or predicted by the tools of digital soil morphometrics.
The following chapter is summarizing how the new tools are supporting the
establishment of criteria of the major elements of the WRB soil classification
system.

Horizon Depth

Ever since Dokuchaev (1883) introduced the horizons as a basic feature in differ-
entiation of soils, the concepts have been accepted by the soil science community
(Bockheim et al. 2005). Horizon boundaries provide data about the conditions and
processes that have formed the soil. There are great varieties in shape and depth of
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Table 23.1 Summary of diagnostic horizons, properties, and materials whose presence or absence
defines the reference soil groups (RSGs)

Diagnosticsa RSGb STc MCd SSe OCf RFg CBh

Anthraquic hor. AT CM X X X
Argic hor. TC AN FR GY CA RT AC LX

AL LV
X X

Calcic hor. LP CH KS CA X
Cambic hor. CM X X X X X X
Chernic hor. TC LP CH X X X X X
Cryic hor. CR
Duric hor. TC DU
Ferralic hor. TC AN FR X
Ferric hor. TC X
Folic hor. X
Fragic hor. TC CM X X X X X
Fulvic hor. X X
Gypsic hor. LP GY X
Histic hor. X
Hortic hor. AT X X
Hydragric hor. AT TC CM X X X
Irragric hor. AT CM X X X
Melanic hor. X X
Mollic hor. GL KS PH UM X X X X X
Natric hor. TC SN X X
Nitic hor. TC NT X X
Petrocalcic hor. TC LP CA X
Petroduric hor. TC LP DU
Petrogypsic hor. TC LP GY
Petroplinthic hor. TC LP AN PT NT CM X
Pisoplinthic hor. TC AN PT NT CM X
Plaggic hor. AT CM X X X
Plinthic hor. TC AN PT NT CM X
Pretic hor. AT CM X X
Protovertic hor. X X
Salic hor. SC CM
Sombric hor. X X X X
Spodic hor. TC LP AN PZ X X X X
Terric hor. AT CM X
Thionic hor. SC CM X
Umbric hor. GL UM X X X
Vertic hor. TC VR NT CM X X
Abrupt text. diff. PL X
Albeluvic
glossae

X X X

Andic prop. AN CM
Anthric prop. X X X X X
Aridic prop. X X
Continuous rock HS TC LP AN ST AC AL X
Geric prop.
Gleyic prop. GL X X
Lithic
discontinuity

X

Protocalcic prop. X X
(continued)

368 J. Nagy et al.



Table 23.1 (continued)

Diagnosticsa RSGb STc MCd SSe OCf RFg CBh

Reducing cond. GL PT PL ST
Retic prop. RT X X X
Shrink-swell cracks VR
Sideralic prop. X
Stagnic prop. PT PL ST X X X
Takyric prop. X X
Vitric prop. AN CM
Yermic prop. X X
Albic mat. X
Artifacts TC
Calcaric mat. X
Colluvic mat.
Dolomitic mat. X
Fluvic mat. FL X X X X
Gypsiric mat.
Hypersulfidic
mat.
Hyposulfidic
mat.
Limnic mat.
Mineral mat. X
Organic mat. HS X
Ornithogenic
mat.
Soil organic
carbon
Sulfidic mat.
Technic hard
mat.

HS TC LP AN ST AC AL

Tephric mat.
Soil attributes whose determination is necessary to define the diagnostic unit are marked by X.
Based on Hartemink and Minasny (2014); the soil attributes that can be efficiently determined by
digital soil morphometric tools are indicated
HS Histosols, AT Anthrosols, TC Technosols, CR Cryosols, LP Leptosols, SN Solonetz, VR
Vertisols, SC Solonchaks, GL Gleysols, AN Andosols, PZ Podzols, PT Plinthosols, NT Nitisols,
FR Ferralsols, PL Planosols, ST Stagnosols, CH Chernozems, KS Kastanozems, PH Phaeozems,
UM Umbrisols, DU Durisols, GY Gypsisols, CL Calcisols, RT Retisols, AC Acrisols, LX Lixisols,
AL Alisols, LV Luvisols, CM Cambisols, AR Arenosols, FL Fluvisols, RG Regosols
aDiagnostic horizons, properties, and materials
bReference soil group—Bold codes represent RSGs where the presence of the diagnostic unit is a
criterion
Normal codes represent RSGs where the absence of the diagnostic unit is a criterion
Italic codes represent RSGs where the absence of the diagnostic unit is a criterion unless it fulfills
further requirements
cSoil texture, texture differences, clay content
dMatrix color
eSoil structure
fOrganic matter, organic carbon
gRedoximorphic features, mottles
hCarbonates
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horizon boundaries ranging from abrupt to diffuse and from smooth to broken. The
depth and width of horizons are the criteria for almost all diagnostic units in many
soil description or classification systems. Soil scientists spend significant time and
often argue during the establishment of depth and width of the horizon depth based
on key soil properties, it is expected that digital soil morphometrics may enhance
soil horizon determination. Encouraging research results have been published by
Doolittle and Collins (1995), Rooney and Lowery (2000), Legros (2006), Weindorf
et al. (2012), Steffens and Buddenbaum (2013), and others on the application of the
ground-penetrating radar (GPR), electrical resistivity (ER), hyperspectral imaging
spectroscopy, and X-ray fluorescence (XRF) (all cited from Hartemink and
Minasny 2014) (Table 23.2).

Soil Texture

Soil texture refers to the relative proportions of sand, silt, and clay within the fine
earth fraction. Flowcharts are available presenting the way soil texture can be
estimated (Rowell 1994; Thien 1979). A frequently used way to describe soil
texture in the field is the “finger test” or determining by feel. Texture can be
estimated by gently pushing the soil out between the thumb and the forefinger. The
success greatly depends on the senses and the experience of the expert, performing
the estimation, hence is subjective and final results can be concluded only after
laboratory determination. The initial field decision on several diagnostic units and
taxa has to be followed after the laboratory results are available. This often does not
happen and causes inconsistences in data bases.

Texture plays a major role in the differentiation of albeluvic glossae, retic, vertic
properties, fluvic material, lithic discontinuity, abrupt textural difference, further in
the case of argic, cambic, fragic, irragric, natric, nitic, vertic horizons, and for the
Vertisols reference soil group. Texture differences have significant importance as a
criterion for argic horizon in the case of Acrisols, Alisols, Lixisols, and Luvisols,
natric horizon in the case of Solonetz; further texture differences are a diagnostic
criterion for fluvic material, abrupt textural difference, and retic properties.

Digital morphometrics provides tools to improve objectivity with regard to the
determination of the soil texture in the field, making the establishment of many
classification units.

Weindorf et al. (2012) tested portable XRF for the determination of soil texture
in situ and on cores ex situ in the laboratory. Zhu et al. (2011) measured samples
which covered a wide range of soils, and concluded that in situ determination of soil
texture with pXRF yielded promising results for relatively dry soils as well as wet
soils supplemented with portable moisture sensors. Ge et al. (2005) stated that soil
moisture can affect the XRF signal but also offered an algorithm to mitigate similar
problems. This issue is discussed further in Stockmann et al. (2015).

Diffuse reflectance spectroscopy was tested by Waiser et al. (2007) for in situ
quantification of clay content of soils from a wide range of parent material types.
A method based on in situ spectroscopic measurements coupled with chemometric
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methods was successfully applied by Viscarra Rossel et al. (2009) to estimate soil
color, mineral composition, and clay content of samples from multiple depths.
Lagacherie et al. (2008) showed how reflectance spectrometry can be used in the
laboratory to estimate clay and calcium carbonate content (Table 23.3).

Table 23.2 Diagnostic horizons of the world reference base (WRB) with strong criteria related to
horizon depth

WRB diagnostics Criteria (simplified)
Anthraquic horizon Thickness ≥15 cm
Argic horizon Thickness of ≥7.5 or 15 cm
Calcic horizon Thickness of ≥15 cm
Cambic horizon Thickness of ≥15 cm
Chernic horizon Thickness ≥25 cm
Cryic horizon Thickness of ≥5 cm
Duric horizon Thickness of ≥10 cm
Ferralic horizon Thickness of ≥30 cm
Ferric horizon Thickness of ≥15 cm
Folic horizon Thickness of ≥10 cm
Fragic horizon Thickness of ≥15 cm
Fulvic horizon Combined thickness of ≥30 cm with ≤10 cm non-fulvic material in

between
Gypsic horizon Thickness of ≥15 cm
Histic horizon Thickness of ≥10 cm
Hortic horizon Thickness of ≥20 cm
Hydragric horizon Thickness of ≥10 cm
Irragric horizon Thickness of ≥20 cm
Melanic horizon Combined thickness of ≥30 cm with ≤10 cm non-melanic material in

between
Mollic horizon Thickness of ≥10 cm or ≥20 cm
Natric horizon Thickness of ≥7.5 or 15 cm
Nitic horizon Thickness of ≥30 cm
Petrocalcic horizon Thickness of ≥10 or 10 cm or ≥1 cm
Petrogypsic horizon Thickness of ≥10 cm
Petroplinthic horizon Thickness of ≥10 cm
Pisoplinthic horizon Thickness of ≥15 cm
Plaggic horizon Thickness of ≥20 cm
Plinthic horizon Thickness of ≥15 cm
Pretic horizon Combined thickness of ≥20 cm
Protovertic horizon Thickness of ≥15 cm
Salic horizon Thickness of ≥15 cm
Spodic horizon Thickness of ≥25 cm
Terric horizon Thickness of ≥20 cm
Thionic horizon Thickness of ≥15 cm
Umbric horizon Thickness of ≥10 cm if directly overlying continuous rock, technic hard

material or a cryic, petroplinthic, or petroduric horizon, or ≥20 cm
Vertic horizon Thickness of ≥25 cm
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Soil Color

The result of soil color assessment in the field is affected by personal experience.
The Munsell Color Theory has brought standardization to color communication as
within the system each color has a logical and visual connection to the other colors.
Color readings in the field depend on the moisture status of the current soil profile
and the quality of light (Pendleton and Nickerson 1951; Post et al. 1993; Simonson
1993). The determination of color is difficult even for experts due to several factors
affecting the readings including the quality and age of Munsell charts. Soil color is a
diagnostic criterion in WRB for anthraquic horizon, cambic, chernic, fragic, fulvic,
hortic, melanic, plaggic, pretic, sombric, umbric horizons, albeluvic glossae, gleyic,
retic, sideralic, stagnic properties, and albic material (IUSS WG WRB 2006).

Table 23.3 Diagnostic units (horizons, properties, materials) of the WRB with criteria related to
soil texture

WRB diagnostics Criteria (simplified)
Argic horizon Defined texture classes (texture class of loamy sand or finer and ≥8 %

clay)
Cambic horizon Defined texture classes
Ferralic horizon Defined texture class of sandy loam or finer
Fragic horizon Defined texture classes (same as in Cambic horizon)
Chernic horizon Defined texture classes if first color criterion is not fulfilled
Mollic horizon Defined texture classes if first color criterion is not fulfilled
Natric horizon Defined texture classes texture class of loamy sand or finer and ≥8 % clay
Nitic horizon Defined clay content (≥30 %), and silt to clay ratio (<0.4)
Plaggic horizon Defined texture classes
Protovertic horizon ≥30 % clay throughout
Vertic horizon ≥30 % clay throughout
Takyric properties Texture class of clay loam, silty clay loam, or clay
Argic horizon Defined textural differentiation to the overlying horizon
Cambic horizon Defined clay increase compared to the directly underlying layer
Fragic horizon Defined clay increase compared to the directly underlying layer
Irragric horizon Higher clay content, particularly fine clay, than the underlying original

soil; and defined differences in sand, silt, and clay contents between parts
of the horizon

Natric Defined textural differentiation to the overlying horizon
Nitic <20 % difference (relative) in clay content over 15 cm to layers directly

above and below
Abrupt textural
difference

(within ≤5 cm) Doubling of the clay content or ≥20 % (absolute) increase
in clay content (based on the clay content of the overlying layer)

Lithic discontinuity Defined differences in particle-sized distribution between layers directly
superimposed on the other

Albeluvic glossae Clay content of the stronger colored parts is higher compared with the
lighter colored parts, a specified for the argic horizon

Retic properties Clay content of the stronger colored parts is higher compared with the
lighter colored parts, as specified for the argic or natric horizon

Fluvic material Stratification (may be) reflected in variation in texture
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Soil color is the major differentiation criterion for the mollic and umbric horizons
which defines Chernozems, Kastanozems, Phaeozems, and Umbrisols reference soil
groups.

In the case of cambic and fragic horizons, MC has a basic significance.
Fulfillment of the criteria depends on the defined color change compared to the
directly underlying layer (WRB). The stagnic properties’ criteria fulfillment also
depends on the defined differences in Munsell colors to the surrounding material.

Viscarra Rossel (2009) used Vis–NIR to define soil color in the field and in the
laboratory and their results were compared to Munsell color. They have found
compatibility between spectroscopic measurements and Munsell readings
(Table 23.4).

Soil Structure

Soil structure refers to the arrangement of the soil particles into soil units (ped,
aggregates) resulting from several pedogenic processes (FAO 2006). Alternation of
the dry and wet conditions, root activity, and fauna is important in the formation of
SS (Materechera et al. 1992).

Structure is a differentiation criterion in the WRB in the case of mollic and
umbric horizons; anthraquic, cambic, chernic, nitic, vertic, irragric, petrocalcic,
calcic, further, in the case of Solonetz columnar or prismatic (or blocky) structure
should present to fulfill the criteria.

Table 23.4 Diagnostic units (horizons, properties, materials) of the WRB with criteria related to
soil color

WRB diagnostics Criteria (simplified)
Anthraquic horizon A puddled layer with defined Munsell colors
Cambic horizon Defined color change compared to the directly underlying layer
Chernic horizon Defined Munsell colors
Fragic horizon Defined color change compared to the directly underlying layer (same as

in Cambic horizon)
Fulvic horizon Defined Munsell colors
Hortic horizon Defined Munsell color
Melanic horizon Defined Munsell color
Mollic horizon Defined Munsell color
Plaggic horizon Defined Munsell color
Pretic horizon Defined Munsell color
Sombric horizon Lower Munsell color value or chroma than the overlying horizon
Spodic horizon Defined Munsell color
Umbric horizon Defined Munsell color
Albeluvic glossae Defined Munsell color
Gleyic properties Defined Munsell color
Retic properties Defined Munsell color
Sideralic properties Defined Munsell color chroma
Stagnic properties Defined differences in Munsell colors to the surrounding materials
Albic materials Defined Munsell colors
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The correct determination of SS is critical especially in the case of natric—
columnar, prismatic (or blocky) structure required—because it determines the
Solonetz reference soil group.

The notion of “strong structure” for mollic and umbric surface horizons is
required because they are diagnostic for Umbrisols, Chernozems, Kastanozems, and
Phaeozems reference soil groups. The definition of “strong” is too broad and the
determination can be subjective even with expert knowledge. Either the clarification
of phrasing of the definition “sufficiently strong structure” or the reformation of
tools used for the structure determination is needed.

NIR and MIR spectroscopy have been applied to estimate soil organic carbon
and clay content (Gomez et al. 2013) but no device is available that can measure the
distinct aspects of the SS in the field (Hartemink and Minasny 2014). Hirmas and
Hasiotis (2010) used laser imaging for measurement of structure (Table 23.5).

Organic Matter

Organic matter plays a crucial role in each existing classification system.
Organic matter content of surface horizons can determine Histosols,

Chernozems, Kastanozems, and Phaeozems through mollic, chernic, and umbric
surface horizons.

There are several measurement methods for determining organic matter and
organic carbon in the laboratory but two results of two different measurement
methods cannot be compared with each other.

Table 23.5 Diagnostic units (horizons, properties, materials) of the WRB with criteria related to
soil structure

WRB diagnostics (horizons,
properties, materials)

Criteria (simplified)

Anthraquic horizon Platy or massive structure in ≥25 % of its volume
Cambic horizon Soil aggregate structure in ≥50 % of the volume of the fine

earth fraction
Chernic horizon Granular or fine subangular blocky soil structure
Fragic horizon Soil aggregate structure in ≥50 % of the volume of the fine

earth fraction (same as in Cambic horizon)
Mollic horizon Sufficiently strong structure
Natric horizon Columnar or prismatic (or blocky) structure
Nitic horizon Strong blocky structure breaking into polyhedral or

flat-edged or nut-shaped elements
Protovertic horizon Wedge-shaped soil aggregates or slickensides
Umbric horizon Sufficiently strong structure
Vertic horizon Wedge-shaped soil aggregates or slickensides
Takyric properties Platy or massive structure
Anthraquic horizon Platy or massive structure in ≥25 % of its volume
Cambic horizon Soil aggregate structure in ≥50 % of the volume of the fine

earth fraction
Chernic horizon Granular or fine subangular blocky soil structure
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As the present definitions are hard to handle, clarification or simplification of
limits are recommended (Michéli et al. 2014). Steffens et al. (2014) studied the soil
organic matter content and composition applying imaging spectroscopy. They
concluded that Vis–NIR imaging spectroscopy is an effective tool for mapping soil
organic matter quality even if the layers are not distinguishable visually.

Viscarra Rossel and Hicks (2015) concluded that Vis–NIR spectroscopy is a
useful, cheap technique to observe and monitor organic carbon composition. Other
studies used Vis–NIR spectroscopy to estimate organic layers in forests (Chodak
et al. 2002). Viscarra Rossel et al. (2008) applied a simple digital camera and found
correlations for OC and Fe contents (Table 23.6).

Table 23.6 Diagnostic units (horizons, materials) of the world reference base (WRB) with criteria
related to organic carbon (OC) content

WRB diagnostics Criteria (simplified)
Cambic horizon Does not form part of other horizons with OC criteria
Chernic horizon Minimum organic carbon content (1 %) and thickness of the horizon (high

base)
Folic horizon Presence and minimum thickness of organic soil material (dry/aerated?)

conditions)
Fragic horizon <0.5 % soil organic carbon
Fulvic horizon Specific organic matter naturea minimum organic carbon content (6 %

weight average), and thickness of the horizon
Histic horizon Presence and minimum thickness of organic soil material (wet conditions)
Hortic horizon Minimum organic carbon content (1 %) and thickness of the horizon

(anthropogenic influence, high phosphate content)
Irragric horizon Minimum organic carbon content (0.5 % weight average) and thickness of

the horizon (with anthropogenic influence)
Melanic horizon Specific organic matter nature (highera minimum organic carbon content

(6 % weight average), and thickness of the horizon
Mollic horizon Minimum organic carbon content (0.6 %) and thickness of the horizon

(high base)
Plaggic horizon Minimum organic carbon content (0.6 %) and thickness of the horizon

(mollic like with anthropogenic influence and artifacts)
Pretic horizon ≥1 % organic carbon
Sombric horizon Higher content of soil organic carbon respect to the directly overlying

horizon or illuvial humus in some parts
Spodic horizon Minimum organic carbon content (0.6 %) (subsurface accumulation)
Umbric horizon Minimum organic carbon content (0.6 %) and thickness of the horizon (low

base)
Anthric
properties

Minimum organic carbon content (0.6 %) and thickness of the horizon
(mollic like with anthropogenic influence)

Fluvic material Irregular change in organic carbon content not relate to pedogenesis
Mineral material Maximum organic carbon content (20 %)
Organic material Minimum organic carbon content (20 %)
aHigher humic acid ratio compered to fulvic acids in the melanic horizon than in the fulvic horizon,
determined by the melanic index (IUSS WG WRB 2006)
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Mottling

Mottles are differently colored spots in a soil matrix and are mostly the result of
reduction and oxidation of Fe. Concreted mottles of oxides are diagnostic for the
hydragric, ferric, plinthic, petroplinthic, and pisoplinthic horizons and for the
stagnic color pattern. Fe or Mn coatings or concentrations or redox depletions are
diagnostic criteria for hydragric horizon according to WRB. Mottles and redoxi-
morphic features are key differentiation criteria for Stagnosols and Gleysols.

The presence of FeII ions can be determined in the field with a 0.2 % α, α
dipyridyl solution in 10 % acetic acid solution, but these chemicals are slightly
toxic. Steffens and Buddenbaum (2013) concluded that laboratory imaging spec-
troscopy facilitate the spatially correct soil classification including the quantification
of soil mottling (Table 23.7).

Carbonates

Determination of calcium carbonate content in the field is established by adding a
few drops of 10 HCl to the soil. The degree of effervescence refers to the presence
and amount of calcium carbonate. The rate of reaction depends on soil texture and
other materials such as plant tissues. Determination of the 15 % calcium carbonate
content—which is the required amount for calcic horizon—has a decisive role in
differentiation for Calcisols, Chernozems, Kastanozems, and Leptosols.
Furthermore, determination of the origin of the carbonate in the field also requires
field experience and could provide information about the processes under the
current soil has been formed (FAO 2006).

In WRB, evidence of the leaching of carbonates from the cambic horizon is a
diagnostic criterion for Cambisols. Differences in calcium carbonate content
between parts of a horizon are part of the definition of the irragric horizon. Calcic

Table 23.7 Diagnostic units (horizons, properties, materials) of the WRB with criteria related to
redoximorphic features and mottles

WRB diagnostics Criteria (simplified)
Anthraquic horizon Iron manganese mottles or coatings
Ferric horizon Defined presence of coarse mottles, concentrations, or nodules
Hydragric horizon Fe or Mn coatings or concentrations, or redox depletions
Petroplinthic
horizon

Yellowish, reddish, and/or blackish concentrations or nodules or
concentrations

Pisoplinthic
horizon

Yellowish, reddish, and/or blackish concentrations and/or nodules
(strongly cemented to indurated)

Plinthic horizon Discrete concentrations or nodules, or concentrations
Thionic horizon Mottles or coatings (with accumulations of iron or aluminum sulfate or

hydroxysulfate minerals)
Gleyic properties >5 % (exposed area) mottles
Stagnic properties Mottles and/or concentrations and/or nodules
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horizon or a layer with protocalcic properties is also a requirement for Calcisols,
Chernozems, and Kastanozems (WRB) (Table 23.8).

23.3.2 Vis–NIR Spectroscopy for Distinguishing Soil
Horizons

A previous study (Csorba et al. 2014) showed that Vis–NIR reflectance spec-
troscopy coupled with principal component variables (PC factor scores) can be
effectively used as variables describing the spectral properties along the soil profile.
This study focuses on the definition of diagnostic horizons.

The Silhouette analysis performed prior to the Fuzzy C-means clustering showed
that the PC factor score values can be classified into three clusters (Clusters A, B,
and C). Figure 23.1 shows the distribution of the samples along the first three
principal components that explained 92 % of the total variance. The color coding
and the symbols in Fig. 23.1a refer to the field-determined WRB diagnostic hori-
zons, while Fig. 23.1b shows the classes obtained from the Fuzzy C-means clus-
tering. Based on the visual inspection of the scatterplots, the clustering of samples is
in good accordance with the determined diagnostic horizons. Major part of
Cluster A samples were taken from a calcic, Cluster B from a mollic, and Cluster C
from an argic horizon.

Three examples of the comparison of the Fuzzy-C membership values and the
spline-resampled organic carbon, CaCO3, and clay content values versus the depth
are shown in Fig. 23.2. The cluster membership values of the Cluster A show
similar pattern as the spline estimated CaCO3 values. The membership values of the
Cluster B show similar pattern as the spline estimated organic carbon values. The
explanation of the distribution of the membership values of the Cluster C along the

Table 23.8 Diagnostic units (horizons, properties, materials) of the WRB with criteria related to
CaCO3

WRB diagnostics Criteria (simplified)
Calcic horizon ≥15 % CaCO3, and ≥5 % (by volume) secondary carbonates, or ≥5 %

CaCO3 higher than an underlying layer and no lithic discontinuity, and
does not form part of a petrocalcic horizon

Cambic horizon ≥5 % less carbonates
Chernic horizon ≥40 % (by mass) CaCO3

Fragic horizon Does not show effervescence after adding a 1 M HCL solution
Mollic horizon If color is lighter than value of 3 moist and 5 dry and the chroma of 3

than ≥40 % CaCO3 content
Petrocalcic horizon Very strong effervescence after adding 1 M HCl solution, and shows

induration or cementation at least partially by secondary carbonates
Continuous rock Not part of a petrocalcic horizon
Protocalcic properties Soft calcium carbonate accumulations in different forms
Dolomitic material Strong effervescence with heated 1 M HCl solution
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Fig. 23.1 The 3D scatterplots showing the distribution of samples along first three principal
components. a The coloring and symbology refer to the WRB diagnostic horizon the samples
belong to. Calcic filled blue circle; Argic filled red square; Mollic filled green triangle; Mollic—
Calcic open circle Non-diagnostic horizon black circle. b The coloring and symbology refer the
Fuzzy C-means clusters the samples belong to Cluster A filled ash circle; Cluster B filled red
square; and Cluster C filled green triangle

LEGEND
Membership values of Reference data 
values of

Cluster A OC (%) × 10
Cluster B CaCO3 (%)
Cluster C Clay content (%)

The depth intervals of

Cluster A
Cluster B
Cluster C

Fig. 23.2 Three examples of the distribution of the cluster membership values and the reference
spline-resampled OC, CaCO3, and clay content values (with circles). On the plot showing the
membership values versus the depth, the depth intervals of the clusters are also indicated (with the
rectangles of different shades of gray)
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profile needs a different approach. Their distributions show similarity with the clay
content only in the case of soil profiles where considerable clay illuviation has
occurred.

23.4 Summary and Conclusions

During this study, the digital soil morphometric tools proved to be efficient in the
determination of soil parameters playing key role in the definition of diagnostic
units of the WRB were reviewed. Six soil parameters were investigated based on
their role of defining the diagnostic criteria. The reviewed digital soil morpho-
metrics tools and methods are supporting the prediction of properties that are part of
the criteria of diagnostic units of WRB. Some of these attributes are determined or
estimated in the field with subjective element and supported by laboratory analysis.
The new tools can bring a revolution to soil classification and to soil science in
general, as they provide cost effective and quick measurements and results to assist
in the field decisions and the process of soil classification.

Effectiveness is not the only benefit of these methods; compared to the standard
methods, these tools can provide a cleaner technology with minimizing or cease the
environmental impacts of measurements.

The example study demonstrated the significance of Vis–NIR reflectance mea-
surements in predicting diagnostic horizons. Because the technology supplies
integrative measurements of soil, it can facilitate the collection of large amount of
soil data and provide more information than the conventional—accurate but
expensive—survey methods.

In summary, digital morphometrics provides the potential of less subjective,
more time and cost efficient and environment friendly support or replacement of
field and laboratory methods applied in soil classification.
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Chapter 24
From Profile Morphometrics to Digital
Soil Mapping

José A.M. Demattê

Abstract Soil observation ranges from point observations to spatial evaluation.
We can study the clay content at a point or evaluate its distribution across space.
Digital morphometrics starts with a vision on the soil profile, to extract information
from ‘inside soils body’ and make a diagnostic of its formation history and char-
acters. On the other hand, soil develops as part of the landscape, which presents a
continuous vision. Thus, the task is to extrapolate the pedon observation to space,
taking us to a soil map, which is the basis for many applications in environmental
and agricultural science. This chapter first demonstrates several practical informa-
tion capture of soil profiles from its visible, near-, and mid-infrared reflectance. This
instance tries to answer questions: How can spectroscopy differentiate soil profiles?
How can it assist in soil classification? From this, we explore digital soil mapping
with several examples. Strategies on soil mapping using pedotechnologies are
discussed and exemplified with studies from a simple to complex geology. Finally,
we discuss the perspectives of these techniques for getting a full description of soil
distribution in the landscape.

Keywords Remote sensing � Pedotechnologies � Digital soil mapping �
Spectroscopy

24.1 Introduction

Soil mapping is an important task which can provide beneficial information to
address food, water, and soil security. Most parts of the world have a low-resolution
(or large-scale) national soil maps and have limited high-resolution (fine-scale)
maps in certain areas. Indeed, high-resolution maps, with a minimum of 1:20,000
cartographic scale, are of great importance because they have practical applications,

J.A.M. Demattê (&)
Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo,
Pádua Dias Avenue 11, Piracicaba, SP 13418-900, Brazil
e-mail: jamdemat@usp.br

© Springer International Publishing Switzerland 2016
A.E. Hartemink and B. Minasny (eds.), Digital Soil Morphometrics,
Progress in Soil Science, DOI 10.1007/978-3-319-28295-4_24

383



such as soil and water conservation, soil productivity potential, soil monitoring, soil
physical and chemical management, crop management, land use planning, price of
land, government policies, and roads and urban planning. Thus, soil scientists have
a great task on solving this problem: How to produce high-resolution soil maps
more efficiently than the traditional method?

Conventional mapping is too costly and time-consuming; in addition, there is a
lot of subjective information and requires highly skilled pedologists to obtain
high-quality maps. Classical methods are still being used for profile observations,
e.g., hammers, knifes, field pH kits, and color charts. New technologies for earth
observations (i.e., remote sensing and digital soil mapping) have not been fully
embraced by soil scientists. The point is as follows: Are these classical equipments
sufficient to determine accurately information of the profile? Can we obtain new
information more efficiently and accurately using technologies such as sensing
tools? How accurate are the current maps? Can they be modernized to include
estimates of uncertainty? Digital soil morphometrics has been proposed to acquire
the most desirable and accurate information of the pedon that represent a soil unit.

The main purpose of this paper is to explore how soils can be observed with new
pedotechnologies in order to reach the main goal, digital soil maps. We will go
from the point information (the pedon) to the spatial domain (the map) using
technologies showing advances, limitations, and issues.

24.2 Visualization of Soils

Soil can be visualized in several ways. A pedologist can go in a pit and observe the
profile, or he/she can go outside and see the soil relative to its relief. The pedol-
ogists have a multiple vision of soils, and it can be suggested from 5 different
perspectives:

Perspective 1: micro-perspective, the intrinsic soil characteristics, such as miner-
alogy, granulometry, porosity, and soil solution chemistry;
Perspective 2: longitudinal vision, related to the surface observation, but with a
mental visualization of the undersurface, trying to understand what happens on
surface that is related to the underground;
Perspective 3: soil profile or site perspective;
Perspective 4: related to the soil surface composed of the landscape elements, such
as landforms, slopes, and drainage patterns;
Perspective 5: bird’s eye vision and the distribution of the soil as observed remotely
(i.e., from space).

All of these points of view will assist users to understand and visualize soils as a
complete body. Indeed, the only way to understand what happens on spatial vari-
ation is to merge all these ‘visions/perspectives’ in one unique mental information
and delineate them into soil classes. The importance of this concept is related to the
new technologies for soil (pedotechnologies) such as digital soil mapping (DSM) or
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digital soil morphometrics (DSMorph). DSM uses inferences to make soil maps
(spatial vision), and the DSMoprh to study the soil unit or pedon (point vision).

24.3 Issues in Conventional Soil Mapping
and Classification

In conventional soil mapping, surveyors created soil maps based on cartographic
information of relief, boreholes, pit observations, and laboratory analysis. This
method has been put in test since we now have technologies such as remote
sensing. Campos and Demattê (2004) highlighted the importance of using a col-
orimeter to quantify soil color as a substitute to visual comparison using the
Munsell soil color charts. They compared data from five pedologists that performed
soil color assessment for the same samples using the Munsell color chart. They
observed only 17.5 and 8.7 % agreement among pedologists for dried and moist
samples, respectively. All pedologists overestimated the hue, which have conse-
quences in soil classification. Given that field light conditions are highly variable,
and the eye sensitivity which changes from individuals and with age, among other
factors, we argue that automatic systems should be used for color determination.
Bazaglia Filho et al. (2013) compared soil maps of the same area produced by four
experienced pedologists and observed important differences and inconsistencies
between the maps (Fig. 24.1). These findings prove the necessity to incorporate new
technologies in soil mapping activity, not only to improve the accuracy of the
information but also to minimize the subjectivity of pedologists’ interpretation.

24.4 Advances in Soil Evaluation

McBratney et al. (2003) proposed the ‘scorpan’ model for digital soil mapping,
where two factors were added to Jenny’s equation, namely the s factor corre-
sponding to soil data available at the beginning of the mapping process, including
soil maps, data acquired by means of remote or proximal sensing, and expert
pedological knowledge, and the n factor representing the geographic position of the
soil. The collection of scorpan factors represent the underlying landscape charac-
teristics that allowed the probable occurrence of a particular soil class to be mapped.

With the advances in earth observation technologies, new equipments have been
developed such as spectral sensing. Spectral sensing applied to soils can be defined
as follows: ‘The science that studies the relationship between energy and matter
(soils) without any contact between sensors and soil.’ In this sense, the equipment
can be positioned in any situation such as, in laboratory, in field, in a drone
(unmanned aerial vehicle), in an airplane, or in a satellite.
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Much research has been done on laboratory sensing. Soil properties assessment
using spectroscopic approaches in UV–Vis–NIR–SWIR–MIR ranges (from 100 to
25,000 nm) has gained importance in the last 20 years (Ben-Dor 2011).

Legend

Legend

Fig. 24.1 Soil maps made by 2 different pedologists (Source Bazaglia Filho et al. 2013)
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Bellon-Maurel and McBratney (2011) reviewed the spectroscopic prediction of soil
organic carbon and its use in carbon stock evaluation; they concluded that MIR had
better results than Vis–NIR. This is also confirmed by Araújo et al. (2014). On the
other hand, we should emphasize that MIR is most effective in laboratory condi-
tions, while Vis–NIR is more useful in the field (Reeves III 2010). Particle size
distribution was successfully predicted by Araújo et al. (2014) using Vis–NIR
spectroscopy using a large calibration dataset from Brazil with an R2 = 0.88 on clay
content (Fig. 24.2).

When we go to aerial sensing, there will be limitations due to atmospheric
conditions, spatial and spectral resolution, orthogonalization of images, and field
conditions. Despite these, some good results with hyperspectral images have been

Fig. 24.2 a Scores of the three first principal components of PCA of the Vis–NIR spectra on the
validation set; b validation scatter plot of predicted clay and organic matter (Source Araújo et al.
2014)
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reported. Using Hyperion images, Lu et al. (2013) reported a cross-validation
RMSE of 1.55 cmolc kg

−1 for CEC quantification. Galvão et al. (2001) evaluated
AVIRIS data to quantify TiO2, Fe2O3, and Al2O3 contents and reported R

2 values of
0.74, 0.83, and 0.68, respectively. Franceschini et al. (2015) reached R2 of 0.77 for
clay quantification with an aerial hyperspectral sensor. Bartholomeus et al. (2007)
observed correlation between spectral bands of ROSIS hyperspectral sensor and
iron content determined by the dithionate–citrate method with R2 value as high as
0.5 for reflectance measurements near 650 nm.

When we go to multispectral information, the accuracy is lower due to low
spectral resolution. Using Landsat, Demattê et al. (2009) predicted clay, Al2O3,
Fe2O3, and weathering indices, K, SiO2, and TiO2, with similar R2 values of 0.61,
0.68, 0.67, 0.54, 0.65, and 0.72, respectively. Despite the reflectance information
comes only from the surface soil, it can be a first reference of variations of the area.

Each of these techniques and levels of observation of soils have advantages and
limitations which are shown in Table 24.1.

Recently, the importance and future of pedotechnologies have appeared such as
several soil sensors that can assist in soil classification, including Vis–NIR–SWIR–
MIR radiometers, ground penetrating radar, electrical resistivity meters, cone

Table 24.1 Advantages and limitations of each level of platform used for soil mapping and
quantification

Level of
platform

Advantages Limitation

Laboratory Controlled conditions, fast
information acquisition; results can
assist on soil classification and
quantification; can optimize soil
analysis with faster, nondestructive
method; and can get data from various
wavelengths ranges

Have to go to field to collect samples;
it is not a direct in situ information;
reading in laboratory can mask in situ
condition; time-consuming in relation
to field work

Field Quick in situ information of soils; can
assist in soil classification; gives the
pedologist a quick mental view of
what is happening on the relief; and
can be done directly in a pit

Interference of moisture and other
field conditions cannot be done all the
time and depends on the weather;
computers and instruments (i.e.,
specially sensors) are very sensitive to
run in field, due to temperature and
dust

Aerial Provides aerial bird’s eye view of the
field, soils and relief; can ‘see’ greater
area; and gives the spatial information
which can be further integrated to the
point information

Sees only the surface condition and
cannot be used to classify soils,
necessity of orthogonalization of
images; corrections, and processing

Satellite Provides a great overview of large
areas; can indicate the first view of
soil differentiation; and can indicate
best areas to make boreholes and pits
and soil surface colors, and soil
attributes can be linked with relief

Need to have a very good atmospheric
correction; depends on spatial and
spectral resolution; gives information
of the surface of soils and vegetation
influence; and can only detect soils
under bare condition
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penetrometer, hyperspectral core scanner, portable X-ray fluorescence meter,
gamma radiometer, and others.

On the other hand, to reach soil classification, we also need to understand the
behavior and predictability of different soil attributes in different soils, such as soil
texture class (Franceschini et al. 2013), clay activity (Demattê et al. 2007),
weathering indices (Galvão et al. 2008), mineralogy suite (Madeira Netto 2001),
and electrical conductivity (Ucha et al. 2002). Schuler et al. (2011) indicated that
the gamma spectrometry is a promising tool to distinguish Reference Group WRB
soil profile in the field and at the landscape scale, but it needs to be verified in other
regions of the world. Radu et al. (2013) demonstrated the importance of portable
XRF on soil monitoring. Ground penetrating radar (GPR) also can be used to
indicate soil porosity (Causse and Sénéchal 2006) or compaction.

24.5 Applications

Soil classification is an interactive procedure which requires knowledge on soil and
landscape relationships. Data derived from soil profile (control section) are the most
important information for soil classification of a pedon (smallest, three-dimensional
unit at the surface of the earth that is considered as an individual soil). Many
classification systems require soil characterization from the laboratory as well as a
complete morphological description of the soil horizons. The morphological eval-
uation of soil structure in the field, for example, requires determination of the type,
shapes, and size of peds, while soil structure is determined by the activity of soil
biota (macro- and microorganisms), clay content, mineralogy, organic matter, and
aggregation. This requires opening soil pits of where the soil is described and
classified based on a 2 m depth profile and 1.5-m lateral dimension, which is very
time-consuming. Thus, the advantage of using spectral sensing on soil classification
is to infer soil properties from sensors.

The method to classify soils using spectroscopy can be descriptive and/or in
combination with quantitative analysis. The descriptive analysis was started by
Stoner and Baumgardner (1981) and has recently been updated by Demattê et al.
(2014)—Fig. 24.3a. The importance of descriptive analysis is that the users can
mentally understand the role of spectra (intensities, absorptions, shapes) and
compare it with their knowledge and the literature so they can be used in classi-
fication. Indeed, Bellinaso et al. (2010) reached an 80 % agreement between soils
classified by their spectra and soils classified in the field following traditional soil
survey protocols, as corroborated by Viscarra Rossel and Webster (2011).

Quantitative methods have been used to directly predict soil classes from soil
spectra. For example, Vasques et al. (2014) introduced a system where the spectra
of different soil layers (depth intervals) are evaluated and reached 90 % accuracy for
some classes (Fig. 24.3c, d).
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From a pedon, we can go to the longitudinal information. This type of vision is
important to understand the dynamics of water and its relationship with the soil
formed due to relief and transport processes. Beside this, in a toposequence,
pedologists can detect the boundaries between soil classes and map them. This
basic concept was evaluated by Demattê and Terra (2014) and shown in Fig. 24.4.
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Fig. 24.3 Profile example of a Ferralsol. a Soil spectral analysis by descriptive method using
MIRS, morphological interpretation of reflectance spectrum (Demattê et al. 2014); b spectra from
each horizon inserted in the same dataset; c multidepth quantitative analysis, where we insert
several profiles at the same time for discrimination and soil classification (Vasquez et al. 2014)
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We can observe the variation from the soils on the top to the bottom of the hill. The
differences are due to the changes in parent material and soil processes which were
detected by spectra of the soil profile.

We can go from point information toward the hillslope as indicated in Fig. 24.5.
It is observed that the soils were derived from two parent materials, sandstone and
igneous rocks (basalt), resulting in Arenosols and Ferralsols. As shown in Fig. 24.5,
the Vis–NIR spectra from horizons from a pit on the higher altitude have specific
spectral features from horizon A to B. The spectrum has high reflectance with
ascending tendency and higher reflectance in the SWIR. At another location with
the same altitude, the spectrum was the same, thus indicating the same soil. These
spectra are typical of the tropical Arenosols with less than 150 g kg−1 of clay
throughout the profile. On the other hand, at the lower positions on landscape,
where the soils derived from basalt, the spectra of the soils indicated low reflectance
intensity with few spectral features. Despite this, the spectra also indicated no
differences between horizons, and we classified it as Ferralsols, in agreement with
literature.

Finally, we can go from the point information to the spatial domain of soil
mapping. In this aspect, Vasquez et al. (2015) used spectral information of soil
profiles associated with relief parameters to construct a soil map. Although this was
done in a complex area, the results are promising reaching an accuracy up to 75 %
in validation data (Fig. 24.6).
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Crystalline 
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1 2 
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4 

Fig. 24.4 Geomorphologic distribution of profiles along a toposequence and its respective
spectral data from three horizons: A, B, C and horizons, A, B1, and B2, respectively. Source
Adapted from Demattê and Terra (2014)
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Geological Map
Yellow: sandstone; blue, igneous rocks

5R, 4G, 3B, Landsat image

Low altitude area with 
ferralsols

High altitude area with 
arenosols

Altitude mapArenosol in 
high altitud 

Arenosol in 
high altitud

Ferralsol in low altitud Ferralsol in low altitud 

Fig. 24.5 The relationship between geological map, Landsat image, altitude, and Vis–NIR spectra
from profiles. Spectra obtained from 400 to 2500 nm, from different depths in pits. X axis and
Y axis are wavelengths in nm and reflectance factor, respectively

392 J.A.M. Demattê



(a) 

(b) 

(c) 

(d) 

Fig. 24.6 a Study area with point information was obtained from profiles and boreholes; at each
point, spectral reflectance from 400 to 2500 nm was collected; b maximum probability of predicted
soil suborders determined from a multinomial logistic model, using geomorphic information and
spectral variables; c stream density; d predicted soil map (Source Adapted from Vasquez et al.
2015)
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24.6 Challenges

One of the main issues observed by researchers is the necessity to open a pit
(Fig. 24.7a). It can be dug by manpower (usually two men can dig two pits per day
depending on soil type and conditions). It can also be dug by a tractor, which can be
expensive and requires transport of the tractor to the field. We can also make several

1.5 meters

2.0 meters

(a) (b) (c) 

(e)(d) 

(f) (g)

Fig. 24.7 a Classical methods to open profiles—manpower (Osmar Basagia and Gustavo Arruda;
b machines; c auger for boreholes; d analyzing profiles by classical method (knife and hammer, J.
A.M. Demattê); e inside a pit with sensors (Photograph by Budiman Minasny); f method to
evaluate soil with depth by fiber optics (Source Ben Dor and Chudnovsky 2008); g method to
evaluate soils by extracting cores (Photograph by Cristine L.S. Morgan)
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boreholes with auger, but this does not give the structure information (Fig. 24.7c).
With this challenge, we can try new strategies. The use of proximal sensors can also
be a challenge as sensors, and computers can be sensitive for use in the field with
dust, rough weather, and other issues. We can measure directly in the field using
proximal sensors, or bring the soil samples to the laboratory. This will depend on
the user’s objectives. Traditional method requires collecting soil samples using a
hammer or knife (Fig. 24.7d). Some new methods can circumvent this ancient
procedure, for example, collecting spectral data in a pit with a spectrometer

Nitosol

Nitosol

(a)

(b)

Fig. 24.8 a Issues on determining soil structure by descriptive classical method (Photograph by
J.A.M. Demattê); b the multistripe laser triangulation scanning (Source Plat et al. 2010; Eck et al.
2012; Photograph due to Daniel R. Hirmas)
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(Fig. 24.7e), inserting an optic fiber in a borehole and evaluating the spectra at
different depths or horizons (Ben-Dor et al. 2008), or collecting samples with an
auger or hydraulic corer and analyzing them using spectrometer in the laboratory, as
shown in Fig. 24.7g (Demattê et al. 2004; Morgan et al. 2009).

There are other issues looking toward soil evaluation and classification. The
most important are moisture interference and quantitative determination of struc-
ture. Both are key properties in morphometrics. Structure is one of the most difficult
to determine. Classical method requires careful interpretation of the shapes of the
blocks in a pit. This is subject to pedologists’ interpretation of sizes and shapes.

Moist and dry spectra very
different in space

After EPO
Moist and dry spectra very

Close

(a) (b)

(c) (d)

Fig. 24.9 a, b Spectra from each dataset (field and air-dried conditions) before and after EPO
transform plotted in principal component space. Lines represent convex hulls plus signs represent
centroids of each dataset. c PLS predicted clay content versus measured clay content before and
d after EPO (Source Ackerson et al. 2015)
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One interesting new idea is the use of the multistripe laser triangulation scanning
(Plat et al. 2010; Eck et al. 2012), Fig. 24.8. This method can scan and obtain the
shape and area parameters which can be correlated with patterns found in typical
soils; thus, structure can be quantified objectively.

Moisture is another very important issue when using spectroscopy in field
conditions. Moisture alters spectra by absorbing energy and decreasing reflectance
intensity. With these interferences, we will have a nonlinear correlation between
spectral sensing and soil properties. That is why in laboratory, we usually dry all
samples, to take out this influence. A numerical technique called external parameter
orthogonalization (EPO) has been developed to solve this issue as proposed by
Minasny et al. (2011), validated in the field by Ge et al. (2014), and recently
corroborated for tropical soils by Ackerson et al. (2015). Figure 24.9 illustrates the
importance of this method.

24.7 Conclusions

In conclusion,

• Soils must be observed as a complete body, performed at the pedon and the
landscape, and related to the dynamics of soil and transport processes. Thus,
soils can be ‘seen’ from a point, longitudinal or spatial domain.

• The integration of the point observation on a profile by morphometrics
(Hartemink and Minasny 2014) is an important component in the dynamics of
pedological mapping using spectra strategies (Demattê et al. 2004) to achieve
the scorpan mapping model. With these components (profile, landscape, and
scorpan), we can reach the best soil map output.

• Sensing tools can rapidly quantify soil information in situ in real time. These
are, for example, color, soil structure, clay content, iron content, organic matter
content, mineralogy, and other attributes.

• It is imperative to integrate all types of sensors into single information for soil
understanding. Since there are overlaps of quantitative information from one
sensor to another, it is necessary to study the fundamentals of each instrument
and its interaction with soil components.
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Chapter 25
Cone Penetrometers as a Tool
for Distinguishing Soil Profiles
and Mapping Soil Erosion

Francisco J. Arriaga, Birl Lowery, Dalvan J. Reinert
and Kevin McSweeney

Abstract Erosion of the productive surface soil from a landscape reduces crop
production and alters chemical and physical properties of the soil, especially the
thickness of the effective rooting depth and surface horizon thickness. Fast and
reliable tools are needed to detect and map the thickness of soil horizons of eroded
landscapes to allow for proper management of eroded soil for optimum agricultural
production and environmental protection. A truck-mounted, constant-rate profile
cone penetrometer was used to determine the horizon thickness and thus map the
distribution of various erosion levels of an eroded Dubuque silt loam soil, in
southwest Wisconsin, USA. The penetrometer was pushed into the ground with the
hydraulic cylinder of a soil probe mounted on a 0.7 ton truck, to a depth of
approximately 1.3 m. Data were collected continuously with a datalogger connected
to a load cell and a string potentiometer depth gage. The 30° tip of the penetrometer
was constructed following the American Society of Agricultural Engineers (ASAE)
guidelines. Data collected with the penetrometer correlate well with previously
constructed maps of soil erosion distribution for the study site constructed by soil
borings using morphological observations, where depth to clay residuum (2Bt2
horizon) was used to determine erosion severity. Depth to clay residuum averaged
0.95, 0.74, and 0.45 m for the slight, moderate, and severe erosion levels,
respectively. Of the total study area, approximately 44, 31, and 25 % consisted of
slight, moderate, and severe erosion levels, respectively. Three-dimensional (3D)
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maps of the site were developed using data from the penetrometer. Development of
limited invasive tools and methods for mapping eroded soil can aid in land
management.

Keywords Erosion � Cone penetrometer � Three-dimensional soil map

25.1 Introduction

Our ability to understand the spatial distribution of soil properties is limited by the
ability to accurately map soil at a sufficient scale to display spatial variability. There
are many cases where detailed soil maps would be very valuable. For example,
there is a need to understand how soil erosion changes soil properties with depth.
Reclassification from one soil series to another can be triggered by erosion because
of loss of topsoil depth. In general, soil erosion by water does not impact soil at the
same level throughout the landscape, but erosion can occur with varying degrees of
severity at the landscape scale. As such there is a need to understand soil spatial
variability caused by erosion. Here, we propose the use of a static cone pen-
etrometer (CP) to produce detailed maps of soil depth across eroded landscapes by
using differences in cone index (CI) values.

Past use of cone penetrometers has mainly focused on soil compaction charac-
terization in mechanized agriculture (Mirreh and Ketcheson 1972; Raper and
Sharma 2004; Taylor and Gardner 1963). However, penetrometers have been
extensively used by geotechnical and geophysical engineers as a less invasive and
simpler tool to survey subsoil conditions such as relative density, shear strength,
bearing capacity, and settlement. Improvements and integration with new tech-
nologies have been implemented into penetrometer designs such as incorporating
global position systems (GPS) and improved data acquisition (Clark 1999; Raper
et al. 1999). Raper et al. (1999) developed a tractor-mounted multiple-probe soil
cone penetrometer, which allows for rapid data collection using five probes capable
of obtaining a dense array of CI values. Figueirdo et al. (2013) noted that cone
penetrometers have been used for the prediction of resilience modulus of subgrade
pavement layers, as well as bearing capacity values from foundations of light
structures. They also noted the use of the piezocone penetrometer to assess pore
water pressure in an effort to obtain a detailed description of soil stratigraphy.
Farooq et al. (2015) proposed the use of a dynamic CP to obtain strength of
subgrade soil over the length of roads, including the strength of pavement base,
subbase and subgrade materials, which amounts to developing a strength profile.
Massarsch (2014) noted that CP has become a popular tool for investigation in
geotechnical engineering in the past four decades, since they can provide a con-
tinuous and relatively fast measurement of the soil profile and that different sensors
can be integrated in the same probe.

Soil scientists can take advantage of CP as a tool beyond soil compaction
measurements for soil characterization applications. Such approach of using CP to
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map soil horizons was proposed and demonstrated by Rooney and Lowery (2000).
Grunwald et al. (2000) and Grunwald et al. (2001a, b) developed this concept by
creating 3D soil maps. Nevertheless, this technique and resulting data have not been
used to map eroded soils. Thus, the objective of this investigation was to develop a
limited invasively tool and methods for mapping soil to assess erosion spatial
patterns.

25.2 Materials and Methods

This study was conducted in southwestern Wisconsin, USA (Fig. 25.1), at the
Lancaster Agricultural Research Station, University of Wisconsin-Madison (42° 52′
N, 90° 42′W). The area was not affected by glacial activity during the Quaternary
period and is characterized by a rolling topography. Soil at the research site is
classified as a Dubuque silt loam (fine-silty, mixed, mesic Typic Hapludalfs),
consisting of loess underlain by a red clayey residuum (2Bt2 horizon) with a
subangular blocky structure. The site was 90 by 45 m with a southwest aspect and a

Fig. 25.1 Study site was located in the unglaciated region in southwestern Wisconsin, which is
characterized by sloping terrain. Relief map created by Ray Sterner, John Hopkins University
Applied Physics Laboratory (http://fermi.jhuapl.edu/states/states.html, copyright 1995)

25 Cone Penetrometers as a Tool … 403

http://fermi.jhuapl.edu/states/states.html


slope of 12 %. Previous soil mapping conducted in 1985 at this site (McSweeney,
personal communication; Andraski and Lowery 1992) established three levels of
historical erosion based on depth of soil above the clayey residuum. This mapping
effort involved the use of a manual bucket auger (6.4 cm diam.) and a soil push
probe (2.5 cm diam.) on a 15 × 15 m grid spacing to a depth of 1.2 m. Depth to the
different horizons was recorded for each sampling location. Surface elevation
information was acquired with a transit relative to a reference point in the field for
all sampling locations. Three levels of past erosion (slight, moderate, and severe)
were identified (Table 25.1; Andraski and Lowery 1992).

A CP (Arriaga and Lowery 2005; Rooney and Lowery 2000) was used to collect
penetration resistance data of the soil profile on a 10 by 10 m grid in May 2000 for a
total of 72 points. The CP followed specifications from the American Society of
Agricultural Engineers standards (ASAE 1999) and consisted of a 30° cone with a
2.0-cm basal diameter threaded to a 1.25 cm in diameter by 1.5-m-long stainless
steel rod. The CP rod was connected to a 1360-kg load cell (Omega Engineering,
model LC-101-3K, Stamford CT) to measure penetration force, and a string
potentiometer (UniMeasure Inc., model HX-PA-150, Corvallis OR) was used to
measure depth. Output from the load cell and string potentiometer was measured
every 0.05 s with an electronic data logger (Campbell Scientific, model CR21X,
Logan UT). The CP was mounted to a hydraulic cylinder of a truck-mounted soil
sampling probe (Giddings Machine Inc., model HDGSRPS, Windsor CO) to drive
the CP into the ground at a rate of 5 cm s−1. Surface elevation data were collected
using the roving mode of a differentially corrected geographic positioning system
(GPS) unit (Trimble Navigation Limited, model 4600LS, Sunnyvale CA) attached
to an all-terrain vehicle. A GPS unit with beacon differential correction was utilized
to georeference the CP measurement locations.

Table 25.1 Horizon depth and textural classification for three erosion levels of a Dubuque silt
loam in 1985 (adapted from Andraski and Lowery 1992)

Erosion
level

Soil
horizon

Average depth
(cm)

Textural
class

Sand content
(%)

Clay content
(%)

Slight Ap 0–36 Silt loam 5 13
Bt1 36–95 Silty clay

loam
2 32

2Bt2 95 to >113 Silty clay 5 54
Moderate Ap 0–20 Silt loam 6 16

Bt1 20–74 Silty clay
loam

2 29

2Bt2 74 to >99 Silty clay 3 45
Severe Ap 0–17 Silt loam 5 17

Bt1 17–45 Silty clay
loam

3 33

2Bt2 45–79 Silty clay 4 40
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Penetration force data for a specific depth were transformed into CI (in kPa)
using the following equation:

CI ¼ Fp=Ac

where Fp is the penetration force (in kN) and Ac is the basal area of the cone (in m
2).

Each recorded depth had an associated CI value, thus creating a continuous mea-
surement for the profile depth sampled for each CP location. Data were analyzed
using a cluster analysis procedure (Minitab 13, State College PA) to identify three
clusters, with the standardized variables option, and the Squared Pearson and Ward
method for distance measure and linkage method, respectively. Clustering creates
clusters, or groups, of observations that are similar within group and dissimilar
between groups.

A contour map of the erosion levels within the field was created using Surfer©

(Golden Software Inc., Golden CO) with the clustering classification information
for each field CP sampling location. A 3D representation of the soil horizons’
thickness was generated using the Environmental Visualization System software
(C-Tech Development Corporation, Henderson NV).

Results from the 1985 study were compared to maps developed with the CP in
this study. The manual mapping using soil augers and probes took about six days,
and data were plotted on a surface chart. This compares to collecting CP data in less
than a day with the described CP system.

25.3 Results and Discussion

Frequent erosion or severe erosion events had decreased the overall soil profile
depth by approximately 20 cm. The depth of the Ap horizon decreased as erosion
progresses to a severe phase, bringing root-restricting layers such as clayey or
high-density layers and/or bedrock closer to the soil surface. Three levels of past
erosion were observed in the field during the soil survey conducted in 1985. The
main indicator of erosion level, or severity, was depth to the clay residuum (2Bt2
horizon) which ranged between 45 and 95 cm (Table 25.1). A surface plot of the
2Bt2 horizon was developed from the data obtained during the manual survey, and
areas within the field were classified as slightly, moderately, or severely eroded
(Fig. 25.2). Although this type of survey is time- and labor-consuming, the infor-
mation obtained is valuable to land managers. A manager can target soil conser-
vation, and other practices (e.g., application of manure to improve soil properties
and crop productivity) to make better use of resources by having knowledge of how
areas in a field are affected by erosion. The study area is characterized by a deposit
of loess draped on steep long slopes, with high rainfall from spring to fall. There is
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a root restrictive layer in most of the soil series mapped on this landscape, which
can restrict vertical water movement (Andraski and Lowery 1992). This combi-
nation of climate, landscape, and soil characteristics can accelerate soil erosion.
There has been considerable erosion causing extensive topographic changes.
Existing soil maps do not provide sufficient detail on depth to restrictive soil layers.
The manual process of mapping erosion at this scale is not feasible for large areas
given the time and labor investment required. Therefore, the work presented here
focused on using a CP to speed the mapping and make this information more
readily available to land managers.

Collection of CP data took two persons’ one day of field work (10 h) to collect,
georeference the measurement location points, and survey the field with a GPS to
develop a digital elevation map. In contrast, the manual survey was conducted over
six days with the same number of people.

Since achieving consistent measurement depth for every single CP point was not
possible due to restrictive features within the soil profile, the collected CP data were
truncated to a constant depth of 0.90 m to minimize the introduction of unwanted
artifacts during the clustering, that is minimize the chances that readings were
placed in clusters based on depth. After clustering the CI data, the three erosion
levels could be identified in the three CP clusters (Fig. 25.3). Two features on the
CP data can be observed that help establishing clusters. The first is the maximum CI
value, and the second is the variability in CI values. Maximum CI values and
variability increased with increasing erosion severity; thus, clusters 1, 2 and 3 are
identified with slight, moderate, and severe erosion levels, respectively. The clus-
tering approach seems feasible since differences in soil texture and structure

Fig. 25.2 Grid surface
representation of the depth to
the 2Bt2 soil horizon created
with soil survey techniques on
a 15 × 15 m grid with a hand
auger. Areas depicted in
different colors approximate
the three different erosion
levels present in this field
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between soil horizons is marked, which affect CI values. Additionally, the presence
of rocks, mainly chert, in deeper soil horizons created a characteristic CI profile. It
should be noted that soil morphological information of the site was important in
explaining the differences between clusters and assigning an erosion level to them.

Once the individual CP sampling points were allocated into a cluster, this
information was integrated with the GPS data to determine the location of the
different erosion levels on the landscape. These data were combined to create an
elevation map including the erosion level classification for each CP sampling point
(Fig. 25.4). This map appears to have good agreement to the map originally created
(Fig. 25.2). Once these data were aggregated, a soil erosion severity contour map
was developed by kriging the CP sampling point erosion classification (Fig. 25.5).
This type of map can be more useful to a manager and could be imported into
precision agriculture systems to assist with land management. The slight, moderate,
and severe erosion levels occupied 25, 31, and 44 %, respectively, of the total field
area. Further, combining the CP data with profile depth information and a 3D
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Fig. 25.3 Cone index as a function of depth for the three cluster groups associated with the
different erosion levels. The dashed blue lines represent the standard deviation. Clusters 1, 2, and 3
are representative of the slight, moderate, and severe erosion levels, respectively
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kriging procedure, a 3D soil horizon representation was generated (Fig. 25.6).
Using the volume information generated with the 3D soil horizon representation, it
was estimated that the moderate and severe erosion levels have lost 484 and 900 m3

more soil than the slight erosion level.

Fig. 25.4 Digital elevation map of the study site near Lancaster, Wisconsin, USA. Symbols in
different colors show the location of penetrometer measurements, and the cluster group each
measurement point was classified

Fig. 25.5 Erosion contour map of a field near Lancaster, Wisconsin, USA. Percentage values in
the legend near the erosion levels indicate the amount of the field in the respective erosion level.
Adapted with permission from Arriaga and Lowery (2005)
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25.4 Conclusions

Cone index data were collected with a CP on an eroded landscape and correlated to
erosion severity in the unglaciated region of southwest Wisconsin, USA. The CP
technique presented here for mapping eroded soil is suitable for displaying spatial
variation of larger areas at considerable detail. Data were collected in only a fraction
of the time and labor necessary compared to hand-augering methods. However, the
CP technique requires some knowledge of the landscape been surveyed; therefore,
some type of soil sampling remains needed for ground truthing. Soil maps devel-
oped with this procedure can be of benefit for land managers and can help target
restorative efforts or conservation practices. Future enhancements to the CP tech-
nique should include the simultaneous measurement of other soil properties, such as
water content and electrical conductivity, to improve the classification and profile
description of individual sampling points (e.g., Sun et al. 2004). The advent of
electronics miniaturization and reduction in costs will bring interesting possibilities
to the future of soil morphometrics.

References

American Society of Agricultural Engineers (ASAE) Standards (1999) Soil cone penetrometer. In:
Agricultural engineering yearbook. ASAE Standard: ASAE 313.3, American Society
Agricultural Engineering, St. Joseph, MI, Feb 99, pp 832–833

Andraski BJ, Lowery B (1992) Erosion effects on soil water storage, plant water uptake and corn
growth. Soil Sci Soc Am J 56:1911–1919

Arriaga FJ, Lowery B (2005) Spatial distribution of carbon over an eroded landscape in southwest
Wisconsin. Soil Tillage Res 81(2):155–162

Clark RL (1999) Evaluation of the potential to develop soil strength maps using a cone
penetrometer. In: ASAE Annual International Meeting, Paper, no. 99-3109, ASAE St. Joseph,
MI, pp 49085–49659

Fig. 25.6 Three-dimensional representation of the soil horizon thicknesses and surface elevation
shows the areas where erosion has occurred. The scale on the vertical axis is exaggerated 10 times
to accentuate depth differences. Adapted with permission from Arriaga and Lowery (2005)

25 Cone Penetrometers as a Tool … 409



Figueiredo F, Cunha RP, Conciani W (2013) An overview on existing dynamic cone penetration
test research related to the Central Area of Brazil. In: Coutinho RQ, Mayne PW
(eds) Geotechnical and geophysical site characterization. Taylor and Francis Group, London,
pp 1669–1675. ISBN 978-0-415-62136-6

Farooq YE, Duggal AK, Farooq A (2015) Case study on correlation between California bearing
ration (CBR) and dynamic cone penetration test (DCPT). Int J Civil Struct Eng Res 3:39–41

Grunwald S, Barak P, McSweeney K, Lowery B (2000) Soil landscape models at different scales
portrayed in virtual reality modeling language (VRML). Soil Sci 165:598–615

Grunwald S, Rooney DJ, McSweeney K, Lowery B (2001a) Development of pedotransfer
functions for a profile cone penetrometer. Geoderma 100:25–47

Grunwald S, Lowery B, Rooney DJ, McSweeney K (2001b) Profile cone penetrometer data used
to distinguish between soil materials. Soil Tillage Res 62:27–40

Massarsch KR (2014) Cone penetration testing—a historic perspective. In: Robertson PK,
Cabal KL (eds) Proceedings 3rd international symposium on cone penetration testing. Las
Vegas, Nevada, USA, 13–14 May 2014, pp. 97–134

Mirreh HF, Ketcheson JW (1972) Influence of bulk density and matric pressure to soil resistance to
penetration. Can J Soil Sci 52:477–483

Raper RL, Sharma AK (2004) Soil moisture effects on energy requirements and soil disruption of
subsoiling a coastal plain soil. Trans ASAE 47(6):1899–1905

Raper RL, Washington BH, Jarrell JD (1999) A tractor-mounted multiple-probe soil cone
penetrometer. Appl Eng Agric 15(4):287–290

Rooney D, Lowery B (2000) A profile cone penetrometer for mapping soil horizons. Soil Sci Soc
Am J 64:2136–2139

Sun Y, Schulze Lammers P, Ma D (2004) Evaluation of a combined penetrometer for
simultaneous measurement of penetration resistance and soil water content. J Plant Nutr Soil
Sci 167(6):745–751

Taylor HM, Gardner HR (1963) Penetration of cotton seedling taproots as influenced by bulk
density, moisture content, and strength of soil. Soil Sci 96:153–156

410 F.J. Arriaga et al.



Chapter 26
Use of Ground-Penetrating Radar
to Determine Depth to Compacted Layer
in Soils Under Pasture

Edwin Muñiz, Richard K. Shaw, Daniel Gimenez, Carey A. Williams
and Laura Kenny

Abstract New Jersey, like many states in the northeastern USA, has a high
demand for grazing land for horses. Grazing lands are often intensively used
because of the limited possibilities for crop rotation. A ground-penetrating radar
(GPR) study was conducted in an area under different management with soils
formed in old alluvium and fluviomarine sediments (Ultisols). In the grazing field,
no significant signs of compaction were detected with GPR. In the feeding fields,
compaction was significant within 24 cm soil from the soil surface. The GPR data
were used to generate a contour map representing the depth to the compacted layer.
It is concluded that soil compaction can be adequately mapped using GPR.

Keywords GPR � Soil compaction � Grazing land

26.1 Introduction

Ground-penetrating radar (GPR) is a noninvasive technology for the study of the
subsurface soil features (De Benedetto et al. 2013). GPR has been effectively used
in a range of investigations, including locating burials (Miller 1996), underground
utilities (Cheng et al. 2013), and assessing soil properties (Doolittle and Butnor
2008). This technology complements traditional and more labor-intensive method
of collecting field data and can provide a continuous image of the soil subsurface
(Doolittle and Butnor 2008; Paterson and Laker 1996). Freeland et al. (1998)
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utilized the continuous profiling capabilities of GPR to determine soil horizons,
depth to bedrock, preferential flow paths, and differentiate soil parent materials.
Petersen et al. (2006) used GPR to identify variations in soil compaction and soil
texture. They demonstrated the use of GPR to identify areas of loamy soils with
high risk for soil compaction compared to areas of sandy soils where the risks for
soil compaction are lower.

Soil compaction exerts a negative impact on soil productivity as it reduces pore
spaces and decreases gas exchange, reduces water and root movement, and
increases soil bulk density. New Jersey, like many states in the northeastern USA,
has a high demand for grazing land. The equine industry ranks number 8 in sales
value by agricultural commodity statewide and 26th in the USA (USDA NASS
2014). The equine industry generates substantial revenues, and the land is often
intensively used, and in many instances, soils are compacted. Soil compaction
poses a serious threat to pasture quality and nutritional value and a potential threat
to surface water quality by runoff. GPR could be a quick and effective technology to
assess soil compaction.

The objectives of this study were to (1) compare the effectiveness of a 400 MHz
and 900 MHz GPR antenna to identify compacted soil layers and (2) generate a
map showing depth to compacted layer that can be used for planning and imple-
mentation of best management practices.

26.2 Materials and Methods

26.2.1 The Study Site

The study was conducted at the Equine Research Farm located in the Rutgers
Agricultural Research Farm (40°28′16″N, 74°25′42″W) in New Brunswick, New
Jersey, USA. The study area is approximately 6.6 ha and consists mostly of grazing
land, with a mix of good standing pasture, and areas used for feeding where the
horses concentrate. The study area is located in a transition zone between two soils.
The area is mapped as Nixon and Fallsington soil series with a Soil Taxonomic
Classification of fine-loamy, mixed, semiactive, mesic Typic Hapludults and
fine-loamy, mixed, active, mesic Typic Endoaquults, respectively (Soil Survey Staff
1999), or Haplic Acrisols and Stagnic Acrisols according to the World Reference
Base (IUSS Working Group WRB 2014). Nixon is formed in old alluvium with a
moderate permeability in the solum, very deep to bedrock (>150 cm), seasonal high
water table exceeding 102 cm, and an extremely acid to strongly acid soil reaction.
Fallsington is formed in fluviomarine sediments with a moderately high perme-
ability in the solum, very deep to bedrock, seasonal high water table from the soil
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surface to 30 cm, and an extremely acid to strongly acid soil reaction. The geology
in the area is dominated by Lower Paleozoic to Precambrian sediments and igneous
rocks that have been metamorphosed in the eastern part and crustal trough or basin
in the central part from the Triassic period (USDA-NRCS 2006). The average
annual precipitation in the area is 746–1645 mm (ONJSC 2014) with a maximum
precipitation as high-intensity and convective thunderstorms in spring and early in
summer.

26.2.2 GPR Readings

The effectiveness of a 400 and 900 MHz antennas to detect compacted layers were
compared on two plots of 2.8 m2 with different pasture quality (Fig. 26.1). Plot 1
was mostly grazing land with a mix of good standing pasture on Fallsington soil,
and Plot 2 was an area used for feeding where the horses concentrate with pasture in

Plot 1

Plot 2

Fig. 26.1 Location of Plots 1
and 2 showing the grassland
quality and position in the
landscape
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poor condition on the Nixon soil. Field data were collected in two small soil pits
(30 cm soil depth) to compare with the GPR scans by matching the high dielectric
signals from the GPR to the zones with root-restrictive layers identified by visual
inspection.

The study was expanded across a 6.6 ha area that was divided into 16 plots of
different shapes and sizes for prescribe grazing management. Data were collected
with the GPR in a zigzag pattern with a north–south alignment and an average
spacing of 8 m. In addition, field data were collected randomly throughout the area
by digging small soil pits and describing depth to compacted layer. The data were
used to validate the information obtained from GPR.

The GPR system used was the TerraSIRch Subsurface Interface Radar
(SIR) System-3000 and the 400 and 900 MHz antennas manufactured by
Geophysical Survey Systems, Inc. This GPR system was mounted on a standard
survey cart with an integrated survey wheel encoder and georeferenced with the
Garmin Global Positioning System Map 76 receiver. The 400 and 900 MHz
antennas are shielded with a maximum depth in optimum soil conditions (dry,
sandy, low electrical conductivity) from 4 to 1 m, respectively. The instrument was
calibrated over a known buried metal object as recommended by Zobeck et al.
(1985). Equations (26.1) and (26.2) were used to estimate the velocity of propa-
gation in the soil (v) and the dielectric permittivity (Er) of the soil. These parameters
were used to convert the two-way travel time of the propagated radar energy into a
depth scale.

v ¼ 2� D
t

ð26:1Þ

where v is the velocity of propagation in the soil (m/ns), D is the depth of pene-
tration of the radar wave to a known object (m), t is the travel time (ns), and

Er ¼ c
v

� �2
ð26:2Þ

where c is the speed of light or 0.2998 m/ns. Velocity of propagation and dielectric
permittivity were used to convert the two-way travel time of the propagated radar
energy into a depth scale.

The data were processed in RADAN 7 (GSSI 2012) by editing the initial
positioning time zero, horizontal high, and low pass filtration, with background
noise removal for the purpose of improving the resolution and interpretations of the
compacted layers. The interpreted radar data (presence and depth to compacted
layer) were used to generate a contour map in ArcMap (ESRI 2013).
A polygon-type map was created by linear kriging and using the mean for dupli-
cated positions in a simple type without data transformation and creating a contour
map with depth to the compacted layer.
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26.3 Results and Discussion

The 400 MHz antenna provided greater signal penetration than the 900 MHz
antenna. However, signal scattering was severe with the 400 MHz antennas due to
the presence of both a relatively high moisture content associated with the seasonal
high water table (Fig. 26.2) and an argillic horizon with clay content ranging
between 18 and 25 % (Fig. 26.3). Even though the signal penetration extended to a
depth between 125 and 200 cm, soil features were not well defined and were
masked by the signal noise.

The 900 MHz antenna provided slightly improved imagery of the subsurface
(Figs. 26.4 and 26.5), even with a more noticeable amount of coarse fragments
found in the Nixon soil (Fig. 26.6). In plot 1, with good standing pasture, no soil

Fig. 26.2 Plot 1 400 MHz showing high reflectance as a result of a seasonal high water table.
Horizontal and vertical scales are in cm
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compaction was detected with the exception of a very thin layer with platy soil
structure that showed a higher dielectric near the surface. In addition, this soil had a
higher moisture content compared to plot 2. Plot 1 was located in a lower position
in the landscape and was likely less accessed by the horses due to its wetness. In
plot 2, soil compaction was detected ranging in depth from 0 to 24 cm; this area
included watering and feeding facilities in addition to the animal shelter. The
compaction could also be associated with mechanical activities following reseeding
of the pasture. Field observations detected a decrease in root abundance, distribu-
tion, and size between the Ap2 and Bt horizons (Fig. 26.6), thus supporting the
interpretations from the GPR scan.

Fig. 26.3 Plot 2 400 MHz GPR readings showing high reflectance as a result of clay increase in
the soil profile. Horizontal and vertical scales are in cm
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For the second part of the project, the data for the entire field showed an average
depth of 8.7 cm to the top of a compacted layer (Table 26.1). A map was generated
with the distribution of the depth to the compacted layer in 8-cm increments in
relation to the topography (Fig. 26.7), which shows the general relationship
between a higher dielectric and topography. With flat to slightly rolling topography,
a discontinuous compacted layer at the soil surface was found over the argillic
horizon, which began at about 24 cm in depth (Fig. 26.8). This topography is
typical for an area that is wet for a prolonged time, with limited traffic, and also
corresponds to the narrow corridor used to move the horses during the field rotation.

Argillic horizon

Compacted layer

Fig. 26.4 Plot 1 900 MHz GPR reading showing a thin compacted layer and an argillic horizon.
Horizontal and vertical scales are in cm
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Compacted layer & top Argillic horizon 

Fig. 26.5 Plot 2 900 MHz GPR reading showing compacted layer between 5 and 24 cm from the
soil surface. Horizontal and vertical scales are in cm

Ap1

Ap2

Bt

Fig. 26.6 Nixon soil profile
for Plot 2 showing an increase
in coarse fragments starting
around 10 cm, an argillic
horizon around 20 cm, and a
decrease in root abundance,
distribution, and size starting
around 10 cm
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Table 26.1 Descriptive
statistics for the depth to
compaction over the entire
field detected with GPR

Depth (cm)
Mean 8.7
Standard error 0.0128
Median 4.6
Mode 0
Standard deviation 10.6708
Sample variance 113.8666
Kurtosis 1.1645
Skewness 1.2933

Fig. 26.7 Compacted zone distribution map generated using kriging. Showing depth to soil
compaction in cm interpreted from the GPR
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26.4 Conclusions

In combination with field verification, ground-penetrating radar (GPR) is a valuable
and diverse tool in the soil scientist’s toolbox with the potential to be used in
locating problematic areas and identifying the extent of soil compaction. In this
investigation, results of the GPR correlated with the observations made in soil pits.
Since GPR data do not provide information on the degree of soil compaction,
calibration would be needed to use as a survey tool.
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Part V
Summary and Conclusions



Chapter 27
Developments in Digital Soil
Morphometrics

Alfred E. Hartemink and Budiman Minasny

Abstract Digital soil morphometrics is defined as the application of instruments
and techniques for measuring and mapping soil profile properties and deriving
continuous depth functions. Here, we discuss some of the main results that were
presented at the “Inaugural Global Workshop on Digital Soil Morphometrics” that
was held in June 2015. We focus on instruments and techniques that have been used
to measure soil properties in the field as well as in the laboratory, on modelling of
soil depth functions, on the mapping of the soil profile (soil profile imaging) and on
the use and applications of digital soil morphometrics. There have been consider-
able advancements in sampling and analysing soil profile properties in the field.
Some instruments are restricted to dry soil, whereas others are affected by ambient
light conditions. The mapping of the soil profile has yielded several methods to
derive soil horizons and can deal with the variation within soil horizons. There are a
certain number of soil depth functions that can be used for most soil properties and
soil types. The use and application of digital soil morphometrics is mostly confined
to enhanced pedological insight including soil classification, but with time, we
envision that it can transform the way we observe, analyse and understand soils.

Keywords Pedology � Soil mapping � Morphology � Proximal soil sensing
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27.1 Introduction

The soil pit is at the core of many soil investigations. Although there are
non-intrusive and less destructive ways of observing soils, the soil pit reveals a level
of detail that is very hard to obtain by other methods. Soil profile descriptions have
largely relied on morphometrics by which the soil properties are measured and
visually observed and then combined with analytical data from samples taken to the
laboratory into a full pedon description. Pedon descriptions were originally inten-
ded for soil mapping and soil classification purposes but now they are also being
used in different soil studies including soil-landscape studies, site characterization
and wider biophysical investigations (geomorphology, hydrology, etc.). Pedon
descriptions are also an important input into the digital mapping of soils.

The horizon integrates many of the soil properties and processes. Delineation of
soil horizons in the field is based on differences in soil texture, colour, coarse
fragments, clay bridges, structural change, organic matter, mineralogy, concretions
and accumulations, HCl effervescence or the effect of frosts. Some of these can be
quantified with reasonable accuracy in the field and have been done so since the
1930s (Fig. 27.1). When samples have been taken of horizons and laboratory results
obtained, the delineation becomes final. An accurate and objective description of
the soil profile depends on the identification and exact delineation of soil horizons
and an assessment of the within soil horizon variation. Pedon descriptions mostly
occur at one side of the pit in a relatively narrow area (<20 cm). Commonly, one
sample is taken of each horizon. All this has reduced our abilities to capture the
horizontal (e.g. within horizons) as well the vertical variation in soil properties.

In 2014, we published a paper that brought together a range of new instruments
and techniques by which the properties of soil profiles can be observed, measured
and modelled. We coined the term “Digital soil morphometrics” which we defined
as: the application of instruments and techniques for measuring and mapping soil
profile properties and deriving continuous depth functions (Hartemink and Minasny
2014). Digital soil morphometrics is not restricted to in situ or in the soil pit
measurements. It combines field observations and measurements with samples
taken to the laboratory and also includes measurements on soil cores or soil
monoliths (Fig. 27.2). Examples of such studies include Steffens and Buddenbaum
(2013) and Roudier et al. (2016) who used NIR measurements and digital images to
establish soil horizons and within profile variation. With a rapidly growing tech-
nology kit, in situ measurements of soil properties are on the increase but explo-
rative and detailed data analysis remains a desk study.

In 2014, a working group was established of the International Union of Soil
Sciences (IUSS) that held its inaugural global workshop in Madison, USA, in June
2015. In this chapter, we review the progress and developments in digital soil
morphometrics largely based on what was presented at the workshop in 2015. We
review the developments in the measurement of soil properties, mapping of the soil
profile, the modelling of depth functions and the use and application of digital soil
morphometrics.
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27.2 Measuring Soil Properties

The measurement of soil properties in the field has expanded largely through
developments in proximal soil sensing. McBratney et al. (2011) defined proximal
soil sensing through a variety of modalities: proximal or remote, in situ and ex situ
(field and laboratory), non-invasive or intrusive and mobile or stationary. In digital
soil morphometrics, proximal soil sensing is confined to in situ and ex situ stationary
measurements of soil morphology and properties with depth. The portable
XRF (pXRF) and vis-NIR have widely used in the measurement of elements and
properties of soil profiles. Examples include Hseu et al. (2016) who used the pXRF
to distinguish soils high in chromium and nickel, and Jones and McBratney (2016)
who combined pXRF and vis-NIR to predict mineral composition and soil horizons.
Stockmann et al. (2016) showed that Fe measured by pXRF depends on the moisture
content of the soil and affected by the soil texture and mineralogy. A good corre-
lation was found between field and laboratory measurements that potentially can be
used for calibration of field measurements in different soils. Other instruments that
have been used to measure field properties include a three-dimensional surface
scanner that yields information on soil architecture, soil structure and porosity

Fig. 27.1 Instruments used for assessing soil properties in the field: soil texture and SOM
equipment, in situ soil micromorphology (Kubiëna 1938), portable N and pH metre. All
instruments from before 1940
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(Hirmas et al. 2016) and image analysis of topsoil properties by mobile phones that
provides information on several soil fertility properties (Aitkenhead et al. 2016).

The range of soil properties that can be measured in the field is increasing and
is affected by the technology as well as by the ambient conditions (light, soil
moisture in particular) and the heterogeneity of the soil studied. The advantages of
in situ soil property measurements are rapid assessment and interpretation of
observations and no sampling and laboratory costs. Most digital soil morphometrics
studies combine field measurements with data obtained in the laboratory and

Fig. 27.2 Some current instruments for assessing soil properties used in the field including digital
photography, pXRF, 3D surface scanner (Hirmas et al. 2016) and vis-NIR
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detailed data analysis. The operational dimension of a pedon characterization needs
to be developed; that includes the width and depth of the profile as well as mea-
surements in the side wall.

27.3 Modelling Depth Functions

Every soil property has its own vertical distribution pattern and depth function that
approximate the anisotropic character of soil properties (Jenny 1941). The traditional
way of depicting depth function is by horizon; such data can then be used to fit a
function and various functions have been used for different soil properties. These
functions reflect a range of soil processes and the soil conditions that have resulted
from these processes. Obvious examples include the accumulation of soil organic
carbon in the topsoil yielding an exponential function or the accumulation of clay in
the B horizon resulting in a peak function. Minasny et al. (2016) proposed six depth
function typologies: uniform, gradational, duplex, exponential, wetting front, abrupt,
peak and minima–maxima (Fig. 27.3). These depth functions can be related to most
of the soil-forming processes (Bockheim and Gennadiyev 2000). Recent studies
have used depth functions of electrical conductivity to delineate paleosols
(Borchardt 2016) or to distinguish different groups of Ferralsols (Pinheiro et al.
2016). Soil profile data have also been used for probabilistic representation of soil
horizons (Beaudette et al. 2016), and software has been developed to numerically
and graphically summarize large pedon databases (Roecker et al. 2016). Given the
importance of soil carbon research, several studies have compared different func-
tions for the predicting of soil carbon (Bonfatti et al. 2016; Pereira et al. 2016).

Fig. 27.3 General typologies of soil depth functions (Minasny et al. 2016)
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Given the current trend, we envision that soil depth functions will continue to
receive considerable research attention. Research will focus on rapid ways to
determine a particular function for a particular soil property in a soil, and this will
be greatly enhanced by new measurement instruments and techniques. Many of the
new instruments and techniques allow for much finer sampling intervals by which
the functions more realistically depict changes with depth, as well as assisting in the
delineation of soil horizons and determination of major soil processes. The
development of soil depth functions also plays an important role in the Universal
Soil Classification System (Michéli et al. 2016).

27.4 Mapping the Soil Profile

The mapping of the soil profile, or soil profile imaging, has advanced through
digital photogrammetry, fine scale sampling of the soil profile and laboratory
analysis, and detailed analysis of monoliths take to the laboratory. The soil depth
function can be considered a transect across the soil profile wall, whereas soil
profile imaging is a map of the wall showing changes with depth as well variation
across a specific depth. The mapping of the soil profile wall has been done for soil
horizons as well as a range of soil properties. Roudier et al. (2016) combined digital
images and NIR on three soil monoliths from New Zealand. The digital images
were used to enhance the NIR readings and subsequent principal component
analysis and image segmentation provided information about the soil horizons as
well as the structure. Adhikari et al. (2016) and Grauer-Gray and Hartemink (2016)
used 10 × 10 cm raster sampling of an Entisol and a Mollisol soil profile wall. The
samples were scanned by pXRF, and the properties were kriged and clustered. The
maps revealed horizon boundaries and showed considerable variation within each
horizon for different properties. At a finer scale, Libohova et al. (2016) used image
analysis of thin sections to estimate saturated hydraulic conductivity. Kim et al.
(2016) used tabular pedon data to visualize soil structure and eventually soil
profiles.

The mapping of the soil profile wall using hyperspectral images as well as fine
scale sampled data from the profile wall provides insight in the changes with
depth and variation within the soil horizon and treats the soil as a continuum in all
directions. These studies showed that properties varied throughout the profile, and
some questions were raised as to whether soil horizons are analogues to polygons in
soil maps. Some of the theory and practice developed in digital soil mapping
(spatial variation, clustering and regression kriging) is directly applicable. Direct
image analysis is a rapidly evolving field that has not been fully explored in digital
soil morphometrics.
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27.5 Use and Applications

Digital soil morphometrics has been used to quantify soil properties and soil depth
functions and to map variation across a soil profile wall. It brings insights into
pedological processes and properties. The application and use is also emerging in
several other fields including mapping (Dematte 2016). Examples include the
mapping of eroded topsoils using a cone penetrometer (Arriaga et al. 2016), and the
mapping of a compacted subsoil in pasture using GPR (Muniz et al. 2016). Digital
soil morphometrics also has potential to be used in soil classification, and aspects
are being used in the newly developing Universal Soil Classification System
(Hempel et al. 2013; Michéli et al. 2016).

27.6 Conclusions

Many studies end with conclusions that essentially read as follows: (i) it depends,
and (ii) we need more research. We are tempted to say something similar as the use
of digital soil morphometrics is indeed site and soil dependent, and we do need
more research to investigate its limitations and benefits. Some properties can be
easily measured in the field and in certain soils, others are more cumbersome to
measure but can be measured in any soil and under any condition (moisture,
ambient light). A combination of instruments generally provides the most infor-
mation, which may slow down the speed of the investigation but may yield the best
results. With time, guidelines will be developed for measuring and sampling dif-
ferent properties and soils and under different conditions. Likewise, a suite of
approaches for depth curves as well as decision trees for the mapping of soil
properties over the entire soil wall will become available—just like we have in
digital soil mapping. The within soil horizon variation and rapid ways to assess
such variation may require substantial research and some of this can be conducted
by using the existing pedon databases. Various studies have tackled this issue using
soil monoliths or core samples. Other research questions include the sampling
dimension of the soil profile wall, horizon assessment using NIR or XRF that aligns
with the Universal Soil Classification System and improved methods for assessing
soil structure. The use and application of digital soil morphometrics will exceed the
pedology and soil classification purpose that it currently serves—it will be used in
rapid soil assessment that is needed in a range of biophysical studies. In conclusion,
we think that digital soil morphometrics has the potential to greatly enhance our
understanding of soils and how we view them.
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wetting front, 230–231
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Soil profile imaging in Northern Taiwan,

145–161
aluminium, 157–160
clay, depth distributions, 145–161
digitize redoximorphic features, 160–161
gray mottles (GMs), 146

440 Index



hydrological conditions, 145–161
iron, 157–160
iron, depth distributions, 145–161
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Spectroscopy, 389, 397
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parameters of, 138
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Thin section image processing and analysis,
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soil shrinkage and volume determination,
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Time-domain reflectometry (TDR), 193
Typic udipsamments in Wisconsin, soil wall

profile mapping, 191–204
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cluster selection, 195–196
digital soil morphometrics, 202–203
general statistics and mapping, 193–194
horizon boundaries, identifying, 204
k-means clustering, 195
sampling, 193
site description, 193
variation in soil profile wall, 203
variogram parameters, 197
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Universal Soil Classification system, 361–362
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Visible/NIR spectrum, soil texture estimation
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Vis-NIR principal components, prediction of,
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horizontal variation of soil properties, 183
variation within soil horizons, 175
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Wetting front, 230–231
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