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    Chapter 2   
 Recent Progress in Strategies for Adenovirus 
Mediated Therapeutic Cell Targeting                     
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    Abstract     Increasing numbers of therapeutic genes and cellular targets are available 
for gene therapy. Many clinical trials using virus-derived delivery systems are 
devoted to combat cancer, to correct single-gene malfunctions or to regenerate tissues. 
To develop gene delivery vectors with high effi ciency through target cell selectivity, 
in particular under in situ conditions, remains a major challenge. The most widely 
used vector systems to transduce cells are based on adenoviruses. Recent approaches 
to develop selective adenoviral vectors (Ad) that exclusively target cells or tissues 
of interest without interfering with all others have focused on the modifi cation of 
the broad natural tropism of adenoviruses. A popular way of Ad targeting is attained 
by directing vector particles towards distinct cellular receptors. Retargeting can be 
accomplished by linking custom-made peptides with unique specifi city and reason-
able affi nity to cellular surface protein moieties via genetic alteration, chemical 
coupling or bridging with dual-specifi c adaptor molecules. Ideally, target-specifi c 
vectors are incapable of entering cells via their native receptors. Such altered 
vectors offer new opportunities to delineate functional genomics in the native envi-
ronment and should enable effi cient systemic therapeutic approaches. This review 
provides a summary of current state-of-the-art techniques to target specifi cally 
adenovirus-derived gene delivery vector systems.  
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2.1       Introduction 

2.1.1     The Concept of Gene Therapy 

  Somatic gene therapy   is defi ned as the transfer of nucleic acids into a patient’s cells 
to achieve a lasting therapeutic effect without infl uencing the germline. A myriad of 
conditions has been tackled where a cure is envisaged by intervening at the genetic 
level rather than via conventional application of drugs. Thereby, infl uence on or cor-
rection of inherited or acquired malfunctioning genes should be lasting. The best 
known tools to affect a cell’s genetic makeup are virus-based vectors as the vehicles 
of choice to intervene on the gene expression profi le of cells and ideally, to correct 
a malfunction, to suppress the expression of an undesired cellular gene or to aim at 
quantitative elimination of a population of cells out of control. Still, therapeutic 
approaches to alter inherited or acquired genetic disorders as well as those to 
eliminate neoplastic cells once disseminated in the patient are still far from regular 
clinical application. 

 Effective  in vivo transfer   of a gene using an adenoviral vector was shown in 1991 
by Ronald Crystal’s group (Rosenfeld et al.  1991 ), and the fi rst clinical application 
of a vector delivering an intact cystic fi brosis transmembrane conductance regulator 
gene was done in 1993 as reviewed by Crystal ( 2014 ). In his review, the author 
reiterates in retrospect the success and feasible future applications for adenovirus- 
based vectors in human gene therapy. Due to the strong immune response against 
vector proteins, Crystal concludes that Ads may serve best in temporary applica-
tions to build new structures, to selectively destroy cells or as vehicles to induce 
immunity against a transgene. The authors of this chapter put the focus on the con-
cepts of targeted adenoviral gene transfer by ablating the native tropism and reroute 
Ad vectors by altering their physical composititon or by covering the native particle 
with moieties directed against selected cell plasma surface structures. At the time of 
assembling this article, cumulatively over 2200 gene therapy trials in different clini-
cal phases were completed or are ongoing with more than half of these clinical trials 
being dedicated to combat cancer. Amongst those, Ads are the most widely used 
gene transfer vehicles (Wirth et al.  2013 ; Das et al.  2015 ).  

2.1.2     The Tools for Gene Therapy 

 The  isolation   of adenoviruses dates back to 1953 (Rowe et al.  1953 ). The family of 
Adenoviridae consists of four accepted genera (Davison et al.  2003 ; Cupelli and 
Stehle  2011 ) with some species awaiting assignment. Adenoviruses infect numer-
ous vertebrates including man. Nowadays, about 57 human adenoviruses have been 
identifi ed and were subclassifi ed on the basis of parameters regarding classical 
standard methods, and more recently, by comparison of the adenoviral genomes 
(Seto et al.  2011 ). In the genus Mastadenovirus, the human pathogenic species are 
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further divided into the subgroups A to G (Russel  2000 ; Berk  2013 ). The virions are 
built up of an icosahedral capsid that carries a single molecule of double-stranded 
DNA as the viral genome. The particles are studded with 12 fi bers consisting of 
trimeric rigid structural elements linked to the icosahedron’s vertices. The capsid 
components forming the vertices are called penton bases and the fi bers are non-
covalently linked to these structures. Most virus serotypes bind to their target cells 
via the interaction of the fi ber knob, the most distal part of the fi ber with their coun-
terpart, a protein structure on the cell plasma membrane. This moiety, the  coxsackie 
adenovirus receptor (CAR)   represents the main high-affi nity receptor for many 
adenoviruses. CAR is a 46-kDa transmembrane protein in the superfamily of immu-
noglobulins (Bergelson et al.  1997 ; Roelvink et al.  1998 ; Bewley et al.  1999 ). 
Internalization of the virus depends on the subsequent secondary interaction of an 
Arginine-Glycine-Aspartate (RGD) protein structure on the penton base with αVβ3 
or αVβ5 integrins also present on the cell plasma surface (Wickham et al.  1993 ). 
 CAR   is highly abundant in many tissues and therefore, adenoviruses display a wide 
tropism and infect a broad spectrum of cells (Wickham  2000 ; Arnberg  2009 ; 
Chailertvanitkul and Pouton  2010 ). 

 All of these characteristics drew an early focus on this virus family as master-
pieces for gene therapy approaches. Unlike other viral vector systems, Ad virions 
have a high packaging capacity and easily replicate to high titers. Moreover, 
Ad-derived vectors maintain high stability in vivo and transduce both, dividing and 
non-dividing cells (Douglas  2004 ). Once internalized into the cell, the genome pre-
dominantly persists as episomal DNA with an extremely low frequency of integra-
tion into the host genome (Rauschhuber et al.  2012 ), and thereby, insertional 
mutagenesis does not occur. Considering this safety aspect, adenovirus based vec-
tors are particularly attractive for gene therapy applications, where temporary gene 
expression is desired or preferred over permanent genetic modifi cations. Due to 
their apathogenicity and non-oncogenic properties, the most commonly utilized Ad 
vectors for gene therapy are derivatives from  adenovirus Serotype 5   (Ad5) in the 
subgroup C of human adenoviruses (Arnberg  2009 ; Armendariz-Borunda et al.  2011 ). 
What ultimately converts the replicating agent into a one way delivery system is the 
purposeful removal of a part of the viral genome (Haj-Ahmad and Graham  1986 ). 

  Tissue tropism   of adenoviral vectors is greatly infl uenced by the viral serotype 
and receptor presence and density, depending on a cell type’s provenance (Wickham 
et al.  1993 ; Hashimoto et al.  1997 ; Takayama et al.  1998 ; Havenga et al.  2002 ; 
Arnberg  2009 ). Ad5 are best explored and most widely used in preclinical studies 
as well as clinical trials. Ad5 particles bind exclusively to CAR. However, in the 
case of Ads made from Serotype 41, a subgroup F member, only one of its two 
distinct types of fi bers can recognize CAR (Russel  2000 ; Zhang and Bergelson 
 2005 ). Some serotypes enter host cells via other receptors such as CD46, desmo-
glein 2, CD80 or CD86 or the sialic acid moiety (reviewed by Sharma et al.  2009 ). 
Altogether, Ad5 vectors are effi cient vehicles for delivering foreign genes into 
target cells in vitro and in vivo (Haj-Ahmad and Graham  1986 ; Pützer et al.  1997 ). 
Based on the favourable attributes, Ad5 remains the vector of choice in human gene 
therapy trials due to their proven safety profi le (Hedley et al.  2006 ; Das et al.  2015 ). 
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  Whenever the  utilization   of adenoviral vectors as targeted gene delivery systems 
is desired, the Ad5 vector’s broad tropism for a wide range of cells and tissues is a 
challenging obstacle (Coughlan et al.  2010 ). If a gene transfer system is required 
that exclusively alters a single cellular compartment or a particular kind of tissue 
that spares all other cells and tissues from transduction, alteration of vector particles 
becomes essential. Another major obstacle after systemic adenoviral vector admin-
istration is that 80 % of circulating particles are sequestered in the liver after an 
interaction with coagulation factors (Shayakhmetov et al.  2005 ; Stone et al.  2007 ), 
and thereby, most particles may not reach the tissue to be addressed. A number of 
researchers demonstrated that after the virus is recognized by the coagulation 
system, the immune system is activated, and in turn, an acute infl ammatory response 
is initiated (Reynolds et al.  2001 ; Shayakhmetov et al.  2004 ; Khare et al.  2011 ; 
Doronin et al.  2012 ; Xu et al.  2013 ). In addition, regarding Ad transport in the 
bloodstream, Duffy and colleagues ( 2013 ) identifi ed a number of small molecules 
capable of effi ciently blocking the intracellular virus transport independently of 
factor X-associated inactivation. Considering these hurdles, a selective gene trans-
fer by wild-type adenoviral vectors imposes an increased risk of toxicity due to 
vector dissemination to non-targeted cells, even if the particles are administered 
close to or directly into the tissue of interest. Other undesired side effects of 
systemic virus administration are virus-associated immunogenic toxicity, thrombo-
cytopenia, intense periportal polymorphonuclear lymphocyte infi ltration and 
elevated liver enzyme secretion (Morral et al.  2002 ; Thacker et al.  2009a ; 
Coughlan et al.  2012 ).  

 The reverse obstacle is the question of how to reach cell types refractory to 
adenoviral infection, due to their lack of or insuffi cient CAR expression. Such cells 
include, for instance, many cancer cells, as well as  hematopoietic and neural stem 
cells   (McConnell and Imperiale  2004 ; Schmidt et al.  2005 ). To achieve gene trans-
fer into those cell types and to ensure effi cient integrin receptor-mediated virus 
uptake, extremely high vector doses are required. High vector doses in turn increase 
inadvertent side effects, like viral sequestering in Kupffer cells in the liver (Haisma 
et al.  2009 ), and once vectors surpass the latter’s binding capacity, hepatocytes will 
absorb the remaining vector particles. 

 The restrictions outlined above can be overcome by strategies to modify the vec-
tor’s  cellular tropism  , as reviewed by Beatty and Curiel ( 2012 ). Redirecting vectors 
towards cells of interest can also enhance the therapeutic potential with increased 
safety by reduction of immune responses, since simultaneous re- and de-targeting 
allows lower vector doses to be administered systemically (Schmidt et al.  2007 ; 
Dorer und Nettelbeck  2009 ; Haisma et al.  2010 ; Schmidt et al.  2011 ). In this review, 
we present and discuss three different methods to alter the natural Ad vector 
tropism. We describe genetic integration of peptide sequences into the fi ber, peptide 
conjugation via chemical modifi cation using polyethylene glycol (PEG) and bridg-
ing the vector and cell of choice with bispecifi c adaptor molecules. The advantages 
and benefi ts, as well as restrictions and limitations of these technological approaches 
are reported and debated. The initial considerations towards targeting, however, 
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relate to the identifi cation of suitable moieties on the plasma membrane of the cells 
or the tissue to be addressed that fulfi l the following characteristics: singularity, 
abundance, and affi nity.   

2.2     Screening Methods for Cell-Specifi c Ligands 

 The ultimate gene “taxi” for systemic gene therapy purposes should exclusively 
recognize the cells to be treated and leave all others unaffected. Directed gene deliv-
ery can be achieved by addressing selective moieties on the cells of interest. 
Specifi cally selected peptides possess appropriate properties to serve as targeting 
agents and are valid alternatives to antibody-based targeting approaches, since 
unique cellular receptors are often unknown. 

 The simplest way to design a specifi c binding peptide for a receptor is to analyse 
structural data and the expression profi le of cells to identify candidate peptides. 
Often however, structural data are not available or incomplete. To solve this, the 
phage display method is a frequently used technique to determine specifi c binding 
peptides. We and others have used the  phage display   technology to screen for and to 
identify tissue- or cell-specifi c ligands in cell culture systems and animal models 
(Böckmann et al.  2005a ,  b ; Vives et al.  2008 , Reetz et al.  2013 ). Already in 1990, 
researchers constructed an epitope library that yielded a mixture of fi lamentous 
phage clones with each one displaying a single peptide sequence on the virion’s 
surface (Scott and Smith  1990 ). After the interaction of the phage with the specifi c 
binding partner, the expansion of the phage comprehends several rounds of infec-
tion followed by selection. The display of polypeptide repertoires on the surface of 
phages, together with the effi cient enrichment and amplifi cation of the desired 
binding specifi cities was shown to be a valuable route towards isolation of unique 
peptides suitable to serve as vehicles for targeting applications (Arap et al.  1998 ; 
Nicklin et al.  2000 ; Essler and Ruoslahti  2002 ; Dias-Neto et al.  2009 ; Chen et al. 
 2010 ; Kügler et al.  2013 ). Taken together, the phage display technique identifi es 
peptides in a range from 7 to 12 amino acids (Vives et al.  2008 ). 

  Phage display   was successfully employed to acquire peptides that specifi cally 
recognize human embryonic progenitor cells (Bignone et al.  2013 ) and bind normal 
or aberrant tissues, like vascular endothelium (Pasqualini and Ruoslahti  1996 ,  2000 ; 
White et al.  2001 ), lymphatic vessels (Laakkonen et al.  2002 ), kidney tubules 
(Odermatt et al.  2001 ), hepatocytes (Piccolo et al.  2014 ), and several others (Barry 
et al.  1996 ; Ravera et al.  1998 ; Ivanenkov et al.  1999 ; Mazzucchelli et al.  1999 ; 
Cheung et al.  2013 ; Sclavons et al.  2013 ). Furthermore, the lack of gene transfer 
systems that are potent in selectively targeting tumor tissue prompted the search for 
cancer-specifi c peptide molecules for yet unknown tumor-associated receptors 
(Araki et al.  2010 ; Deutscher et al.  2010 ; Ahmadvand et al.  2011 ; Nishimoto et al. 
 2012 ). Many novel peptides homing to angiogenic vessels showed cross-affi nity with 
several tumor types (Liu and Wu  2008 ). In this regard, we conducted biopanning on 
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human medullary thyroid carcinoma (MTC) cells in vitro and transplanted tumor 
xenografts in vivo (Böckmann et al.  2005a ).  MTC  , which is caused by dominant 
activating mutations in the RET proto-oncogene encoding a transmembrane tyro-
sine kinase receptor, is characterized by aggressive growth and early metastasis and 
therefore, provides a perfect model for targeting disseminated cancer cells (Drosten 
and Pützer  2006 ). The selected phages bound with highest specifi city to and were 
internalized by these tumor cells in culture as well as after systemic injection into 
nude mice (Böckmann et al.  2005a ). The same 7-mer cyclic phage peptide library 
was injected into the tail vein of RET oncogene transgenic mice carrying bilateral 
orthotopic tumors in their thyroid glands (Böckmann et al.  2005b ). This ligand that 
also binds effi ciently to human MTC cells was covalently linked to adenoviral cap-
sids carrying a RET oncogene inhibitor as therapeutic gene. Systemic delivery of 
this peptide-tagged adenovirus led to a substantial growth reduction of orthotopic 
and disseminated xenograft tumors, while the interaction with other organs, such as 
the liver, was abolished (Schmidt et al.  2011 ). This precedent opens a promising 
new road towards using peptide-mediated adenoviral gene transfer to achieve an 
effi cient and selective therapeutic response also against circulating and metastasis 
initiating tumor cells detected in an advanced stage of metastatic disease that pos-
sess features of cancer stem cells. Beyond that, other researchers took the fi rst step 
in developing a molecular map of the human vasculature by screening a peptide 
library in patients (Arap et al.  2002 ; Chang et al.  2009 ; Seung-Min et al.  2009 ). 
Rangel and co-workers developed a novel technique that enables receptor- 
independent phage particle entry into mammalian cells. Phage particles provide a 
unique discovery platform for combinatorial intracellular targeting of organelle 
ligands along with their corresponding receptors and for fi ngerprinting functional 
protein domains in living cells (Rangel et al.  2012 ,  2013 ). 

 An alternative approach that aims at detecting molecules with high affi nity, ade-
quate specifi city and suitable pharmacokinetic properties for in vivo applications is 
represented by single-stranded nucleic acid ligands, termed aptamers. Aptamers are 
isolated by the Systematic Evolution of Ligands by Exponential Enrichment 
( SELEX  )  technology  . Applying this technology against whole-living cells in cul-
ture or in vivo allows direct selection of aptamers even against rare antigens without 
prior purifi cation of membrane-bound targets, access to membrane proteins in their 
native conformation and identifi cation of targets related to a specifi c phenotype. 
Their thermal stability, low cost, unlimited applications and high binding affi nity to 
disease-associated proteins or non-protein targets (Song et al.  2012 ; Wang et al. 
 2014 ; Mahlknecht et al.  2015 ) make them attractive, even in clinical trials for 
the treatment of distinct medical conditions, as reviewed extensively elsewhere 
(Sundaram et al.  2013 ; Tan et al.  2013 ; Zimbres et al.  2013 ). The potential of aptamers 
as tools for tumor targeting gene delivery systems with high transduction effi ciency 
was summarized by others (Zhu et al.  2012 ; Hu and Zhang  2013 ). In this perspec-
tive, an innovative step towards targeted therapies would certainly be a combination 
of both technologies, cell-specifi c aptamers and adenoviral vectors.  
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2.3     Methods to Specifi cally Target Adenovirus-Derived 
Vectors 

2.3.1     Genetic Fiber Engineering 

 To increase the selectivity of adenovirus for target tissues, novel approaches in Ad 
vector design exploit the concept of tissue-specifi c expression of therapeutic trans-
genes or virus replication. With the fi ber being the major determinant of adenovirus 
tropism, the development of genetically targeted vectors has, consequently, focused 
on this distant protruding entity of the particle. The fi ber is a  rigid homotrimeric 
protein   structure characterized by a domain organization with an N-terminal tail 
domain anchoring it in the Ad capsid. A C-terminal globular domain, termed the 
knob, mediates binding to CAR and a central shaft domain extends the knob away 
from the particle. Any manipulations of the fi ber knob per se signifi cantly reduce 
the transduction effi ciency of CAR-positive cells by Ad vectors (Wickham et al. 
 1997 ; Krasnykh et al.  1998 ; Einfeld et al.  2001 ). Different strategies of adenovirus 
fi ber modifi cation have been employed, like genetic replacement of the fi ber or 
ligand incorporation into the fi ber knob. In this regard, the development of a fi ber 
phage display system (Nishimoto et al.  2012 ) or a fi ber-shuttle library for the adeno-
viral knobs (Wu et al.  2010 ) provide tools to alter Ad vector binding specifi city. 

 Several studies narrowed down the insertion positions for  targeting peptides   
within the fi ber knob to two locations where the vector system as such tolerates the 
genetic alterations without structural impairment. The sites of choice for targeting 
ligand incorporation are the fi ber knob’s HI loop, which connects the ß-strands H 
and I, and the C-terminus of the protein (Dmitriev et al.  1998 ; Krasnykh et al.  1998 ; 
Mizuguchi et al.  2001 ; Koizumi et al.  2003 ; Glasgow et al.  2004 ; Nettelbeck et al. 
 2004 ; Coughlan  2009 ; Wang et al.  2011 ). These fi ndings indicated that ligands 
whose sizes exceed 25 to 30 amino acid residues cannot be confi gured into the 
carboxy-terminus of the fi ber, as they destabilize the fi ber structure (Wickham et al. 
 1997 ) and thus, limit the range of potential ligand candidates to short peptides. The 
structural properties of the HI loop of the Ad fi ber, however, favor the insertion of 
larger ligands and expand the size of potential targeting moieties. Meanwhile Behr 
and colleagues ( 2014 ) elaborated on insertion of a peptide ligand to target the recep-
tor tyrosine kinase EphA2 by introducing a previously selected peptide into differ-
ent positions of a chimeric fi ber derived from Ad5 and Ad 41 with striking 
permissiveness concerning the insertion site into several loops of the fi bers. 

 When testing the resilience of fi ber modifi cation, Belousova and co-workers 
( 2002 ) incrementally increased the size of the peptides integrated in the HI loop and 
generated Ad vectors with fi ber inserts ranging from 13 to 83 amino acid residues. 
The authors concluded that the incorporation of heterologous sequences in the 
examined size ranges was essentially tolerated without a negative impact or com-
promising the production yield or transductional properties of the vectors.  HI-loop 
incorporation   of rather short 7- and 9-mer peptides was performed to transduce 
CAR-defi cient primary tumor cells, such as ovarian cancer cells, vascular  endothelia, 
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vascular smooth muscle cells, and brain microcapillary endothelia in culture 
(Dmitriev et al.  1998 ; Nicklin et al.  2000 ,  2003 ; Xia et al.  2000 ; Work et al.  2004 ). 
The last step of Ad entry into target cells depends on the interaction between RGD 
motif at the penton base protein and the host cell integrins (Cao et al.  2012 ). Ad 
vectors containing this RGD peptide in the HI loop of the fi ber showed higher yields 
of gene transfer than vectors containing the identical peptide attached at the fi ber’s 
C-terminus, due to the easy access to the receptor (Kurachi et al.  2007 ; Tanaka et al. 
 2007 ; Schmidt et al.  2011 ). Several researchers effi ciently transduced different 
types of tumor cells by inserting this RGD motif into the HI loop of the Ad fi ber 
in vitro (Terao et al.  2009 ) and in vivo (Bayo-Puxan et al.  2009 ; Katayama et al. 
 2011 ). Rojas et al. ( 2012 ) improved systemic antitumor therapy with oncolytic ade-
noviruses by replacing the fi ber shaft heparin sulfate glycosaminoglycan-binding 
domain with RGD in order to achieve simultaneously liver de- and tumor 
re-targeting. 

 Each fi ber knob monomer forms an eight-stranded antiparallel ß-sandwich struc-
ture. The ß-strands are connected with turns and loops (Bewley et al.  1999 ). To 
further reduce the transduction effi ciency of Ad vectors to CAR-positive cells, elab-
orate mutation studies on the AB, DE or FG loop of the fi ber knob have been 
reported (Roelvink et al.  1999 ; Jakubczak et al.  2001 ; Leissner et al.  2001 ). In order 
to completely ablating a vector particle’s tropism from CAR binding and eventually 
entering the cell, genetic fi ber modifi cation is not suffi cient. Rather, the secondary 
minor interaction of the  RGD motif   at the penton base with the αv-integrin receptor 
should be depleted as well (Mizuguchi et al.  2002 ), to fully ablate Ad vectors from 
the native binding moieties. Whereas the dual mutation markedly reduces the reten-
tion of the vector in the liver (Einfeld et al.  2001 ; Koizumi et al.  2003 ), single muta-
tions in the fi ber knob or penton base did not alter the biodistribution of adenoviral 
vectors injected into mice (Alemany and Curiel  2001 ; Leissner et al.  2001 ; 
Nakamaura  2003 ; Smith et al.  2003a ,  b ). In order to use Ads in cancer gene therapy, 
gene transduction to tumor cells is limited by the weak expression of CAR on these 
cells, as reviewed by (Tanaka et al.  2007 ). Magnusson and co-workers ( 2007 ) effi -
ciently transduced human ovarian and breast cancer cell lines with a vector that 
carried a tandem repeat of the human epidermal growth factor receptor 2 (HER2/
neu) reactive affi body molecule in the HI loop of a CAR ablated fi ber knob. Later, 
the group generated a vector with dual specifi city by incorporating the HER2/neu- 
binding (ZH) and Taq polymerase-binding (ZT) sequences at different positions 
within the HI-loop. Receptor-binding studies revealed that ZT in the fi rst position 
and ZH in the second position bound to both receptors, whereas the reverse order of 
both motifs was devoid of binding to  HER2/neu   (Myhre et al.  2009 ). Subsequently, 
these researchers designed a vector to transduce effi ciently HER2/neu-presenting 
cell lines, by altering the RGD motif to EGD (Glu-Gly-Asp) and substituting the 
KKTK motif in the third shaft repeat to RKSK (Arg-Lys-Ser-Lys). This new vector 
at last gained the ability to effi ciently infect prostate cancer cells in vitro (Magnusson 
et al.  2012 ). 

 Genetic modifi cation also covers the replacement of the entire fi ber or just the 
knob domain with that derived from other adenovirus serotypes (Wu et al.  2002 ). 
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Belousova et al. ( 2003 ) targeted an Ad vector with bacteriophage T4 fi britin to the 
CD40 receptor. The tropism was modifi ed by incorporating into the virion capsid a 
recombinant protein comprising structural domains of the Ad Serotype 5 fi ber, 
phage T4 fi britin, and the human CD40 ligand. The authors achieved specifi c gene 
delivery in monocyte-derived dendritic cells in vivo. In a pilot vaccination study, 
Thacker and colleagues ( 2009b ) successfully targeted these cells in a canine model 
by integrating the  CD40 ligand   into the fi ber knob. The same group reported later 
that Ad vectors bound to the CD40 ligand failed to infect integrin-defi cient canine 
lymphoma cells. This study demonstrates that the lack of virus internalization sig-
nals can impair targeting approaches (O’Neill et al.  2011 ). 

 Yu and co-workers ( 2011 ) modifi ed the  Ad5 hexon protein   by inserting the protein 
transduction domain from the HIV-1 Tat protein. The resulting viral vector showed 
signifi cantly higher transduction effi ciency on many tumor cells compared to the 
parental vector. In the next step, this group increased the infection effi ciency of 
human primary cell types even further after swapping wild-type Ad5 fi ber against a 
Serotype 35 fi ber specifi c for the CD46 receptor, a surface marker often upregulated 
in malignant tumors. This surface modifi ed Ad vector was developed to transduce cells 
that are otherwise diffi cult to transduce in basic, pre-clinical, and clinical research 
(Yu et al.  2013 ). Another strategy to reroute adenoviral vectors from healthy towards 
cancer tissue is the utilization of recombinant adenovirus. The Lieber group 
constructed a capsid-modifi ed adenovirus that expresses the TNF- related apoptosis-
inducing ligand (TRAIL) and specifi cally replicates in tumor cells (Sova et al. 
 2004 ). Their Ad capsid contains the Serotype 35-derived short-shafted fi bers, which 
recognize the CD46 receptor. In combination with  TRAIL  , expression of this onco-
lytic vector induces apoptosis in tumor cell lines derived from human colorectal, 
prostate, lung, and liver cancer. Both, the cell culture and xenograft tumor models 
tested in these experiments showed effi cient intratumoral spread of the virus. 

 Yet others designed Ad vectors presenting the short fi bers of Ad41 as a ligand 
insertion tool, achieving higher infection effi ciency when compared to viruses pre-
senting the same ligand cloned into another part of the fi ber (Hesse et al.  2007 ). 
Even an enhanced transduction effi ciency of recombinant adenovirus Serotype 5 
vectors with Serotype 35 fi bers was observed by Matsui and co-workers ( 2011 ). 
Using a feasible in vitro ligation, the group incorporated two copies of the RGD 
peptide in two different loops of the fi ber 35 knob and observed high infection effi -
ciencies in CD46-positive cells. 

 Overall and despite these positive results, genetic modifi cations on the native 
Ad5 fi ber knob remain a laborious technical challenge and its benefi t is hard to cal-
culate. The repertoire of incorporable ligands to yield functional retargeted vectors 
for gene therapy is restricted to a small number of peptides that do not impair cor-
rect folding and assembly of the fi ber trimer (Magnusson et al.  2002 ). A general 
limitation of this approach is the necessity to tediously re-engineer a given Ad vec-
tor for every further target cell. On the other hand, if common motifs were found for 
instance on the surface of cancer cells, corresponding metastases, and/or circulating 
cancer stem cells, the workload and more fi ne-tuning on fi ber manipulations may 
pay off. With oncolytic viruses, the agents engineered from wild-type replicating 
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pathogens and designed to specifi cally deplete neoplastic cells, both, in solid tumors 
and straying through the body, chimeric fi bers gain further attention.  Oncolytic 
viruses   are by defi nition restricted to replicate only in neoplastic cells and supposed 
to deliver a payload that attracts the immune system or restores apoptotic pathways 
(Dias et al.  2012 ; Schipper et al.  2014 ) and many ongoing clinical trials rely on the 
power of this concept (Pol et al.  2014 ; Jiang et al.  2015 ). To target pancreatic cancer, 
Nishimoto and co-workers ( 2009 ) screened a peptide-display adenovirus library. 
They came up with a selected peptide incorporated in the fi ber of a virus ablated for 
CAR interaction. The technique based on a previous paper of the same group show-
ing the validity of incorporating random sections of genomic DNA and screening of 
the resulting viruses for specifi ty for a desired cell type (Miura et al.  2007 ). The 
virus yielded potent cancer cell killing than the parental virus only defi cient for 
CAR binding. 

 More recent setups towards fi ber modifi cation came for instance from the Curiel 
group. In a think out of the box approach, the researchers utilized antibodies from a 
member or the camelid family, the alpaca.  Immunoglobulin   of these animals con-
sists of heavy chains only. The group immunized the animals with the human carci-
noembryonic antigen and, in brief, replaced the adenovirus knob and part of the 
shaft with protein fragments directed against the antigen which transduced target 
cells that carried the original epitope (Kaliberov et al.  2014b ). Jose and colleagues 
( 2014 ) made a tumor selective adenovirus altering the fi ber in a way that it gets 
activated by cancer-specifi c proteases. This approach can be fruitful for both, vector 
design and the development of virotherapeutic agents.  

2.3.2     Alteration of Vector Tropism by  PEGylation   

  Targeting an adenoviral vector can be achieved without altering the fi ber by genetic 
modifi cation. One option to ablate and redirect an adenoviral vector’s tropism is to 
coat the otherwise native particle via covalently attached small molecules. This can 
be achieved by means of bispecifi c non-toxic spacer molecules.  Polyethylene glycol 
(PEG)   is a linear hydrophilic polymer and often used in pharmaceutic formulations 
involving proteins and peptides to prolong their blood persistence (Mizuguchi and 
Hayakawa  2004 ). In addition, PEG is, therefore, considered as a bridging entity 
between the capsid and peptide of choice for a given cell plasma membrane target. 
Optimized transduction by targeted Ad vectors can be accomplished by linking cell- 
specifi c peptides, antibodies or antigens to the particle’s surface by a chemical pro-
cess called PEGylation (Kreppel and Kochanek  2008 ). PEG forms a covalent bridge 
between the proteins of the virion’s surface and the targeting molecule of choice, 
resulting in a vector coated all over with the desired ligand. This approach of redi-
recting viral vectors does not require genetic modifi cation, including the efforts to 
ablate the native tropism. Additional benefi ts of PEGylated vectors are reduced 
immunogenicity (Elkon et al.  1997 ; Zaiss et al.  2002 ; Croyle et al.  2004 ; Mok et al. 
 2005 ), fewer hepatotoxic side effects (Gao et al.  2007 ), less cytokine secretion and 
prolongation of the vector plasma half-life (Alemany et al.  2000 ). 

O. Herchenröder et al.



23

 Such PEG-driven Ad vector modifi cations have been adapted in a number of 
targeting approaches (O’Riordan et al.  1999 ; Alemany et al.  2000 ; Croyle et al. 
 2002 ; Lee et al.  2005 ; Hofherr et al.  2008 ; Eto et al.  2010 ; Wonagan and Croyle 
 2010 ). The success of such approaches might depend on the ligand size. Romanczuk 
and co-workers ( 1999 ) were the fi rst to link biologically selected peptides to Ads 
surface via PEGylation. For instance, coupling of a short RGD motif to the tip of 
PEG has shown both, high in vitro transduction effi ciency (Lanciotti et al.  2003 ; Eto 
et al.  2004 ,  2005 ̧ Ogawara et al.  2004 ) and overall improvement of systemic gene 
delivery (Xiong et al.  2006 ; Gao et al.  2007 ). To target ovary cancer cells, the full- 
length fi broblast growth factor 2 (FGF2) was linked to an Ad vector by PEGylation. 
This vector mediated increased transgene expression in tumor tissue and reduced 
localization of adenovirus to non-target cells when compared to the native vector 
(Lanciotti et al.  2003 ). To silence the proinfl ammatory activation status of endothe-
lial cells, Kuldo and colleagues ( 2013 ) demonstrated the potential of an E-selectin 
targeted adenoviral vector to deliver a therapeutic transgene into microvascular 
endothelial cells in infl ammation and downregulate the endothelial adhesion mole-
cule. Besides ablating the native tropism and to redirect a vector to another cellular 
receptor, the PEGylation treatment prolongs the circulation time and decreases the 
formation of neutralizing antibodies as shown by Kim and colleagues ( 2011 ). A 
PEGylated Ad that recognizes Her2/neu receptor-positive cancer cells showed lon-
ger circulation times than the unmodifi ed control and decreased the level of neutral-
izing antibodies. These observations raise positive expectations for future therapeutic 
applications of PEGylated vectors against late-stage cancer diseases. Exploring the 
suitability of PEGylated Ad vectors to address metastatic tumors, a dual cancer- 
specifi c strategy was described using this technology for transductional targeting 
with transgene expression under control of the telomere reverse transcriptase pro-
moter for transcriptional targeting (Yao et al.  2009 ). 

 With regard to the conclusion that the molecular weight of PEG and the PEG 
modifi cation ratio signifi cantly affects the characteristics of conjugates (Kaneda 
et al.  2004 ), Eto and colleagues ( 2010 ) optimized adenovirus PEGylation in a way 
that after systemic administration of PEGylated adenoviral vector expressing tumor 
necrosis factor-alpha, an antibody reduction against Ad and an increased therapeu-
tic response was observed against metastatic cancer. In a rather elegant experimen-
tal setup, Yao and co-workers demonstrated that the CGKRK (Cys-Gly-Lys-Arg-Lys) 
peptide conjugated to Ad with PEG was highly selective and yielded good gene 
expression in tumors and tumor vasculatures after systemic administration (Yao 
et al.  2011 ,  2012 ). Their results indicate an important aspect to consider if working 
with Ads coated with PEG. The appropriate ratio between PEG and targeting ligand 
concentration is crucial to achieve specifi c tissue transduction. As described above, 
the latest success in the treatment of disseminated tumors in mice was made by 
injecting a low dose with 10 8  plaque forming units per animal of Ad vector encod-
ing RET oncogene inhibitor coated with MTC-specifi c 7-mer peptide via PEG into 
the tail vein, which led to the regression of multiple orthotopic and xenograft tumors 
in mouse models (Schmidt et al.  2011 ). The same Ad-PEGylation approach using a 
short artifi cial peptide selected by phage display, which in this case, specifi cally 
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binds neural stem cells isolated from the hippocampus of adult mice, was highly 
effective after injecting the vector into the brain (Schmidt et al.  2007 ). Such tools 
could eventually serve to exclusively manipulate neural stem cells either by direct 
injection in the brain or systemic vector application with the potential as a delivery 
system for therapeutic genes to treat various disorders of the central nervous 
system. 

 Another chemical Ad modifi cation using diblock copolypeptides as an alterna-
tive for PEG was fi rst described by Jiang and co-workers ( 2013 ). Copolypeptides 
are well-defi ned polypeptide sequences (Deming  1997 ) which provide non-covalent 
Ad vector modifi cation resulting in effi ciently altering Ad tropism with an obvious 
potential to target cancer metastases. PEGylation has also been used to link cell- 
penetrating peptides to adenoviral particles to overcome obstacles with the CAR 
ablation (Nigatu et al.  2015 ). Whether this treatment will have advantages when 
targeting the particles to specifi c cells remains to be seen.   

2.3.3     Bifunctional Non-Covalently Linked Adaptor Molecules 

 Another way for re-directing and widening Ad vector tropism is the application of 
bifunctional adaptor molecules or other bispecifi c protein fragments often derived 
from  antibodies  . Such adaptors recognize with one binding site the vector and the 
other the desired structure on the cell membrane. Bispecifi c antibodies are usually 
composed of an anti-fi ber binding portion and a component specifi c for a cell- 
specifi c receptor or secondary antibody conjugated with a peptide moiety against a 
selected cell surface antigen. Since CAR does not play any role in virus internaliza-
tion, the Ad fi ber knob’s CAR binding domain accessibility is dispensable and 
therefore, the candidate of choice to link heterologous binding sites, for instance a 
bispecifi c adaptor molecule. A fully studded Ad vector particle with a bridging 
molecule prevents any interaction with CAR and thus, ablates Ad’s native tropism 
(Curiel  1999 ; Everts and Curiel  2004 ; Glasgow et al.  2006 ). 

 In an initial demonstration of CAR-independent targeting, a conjugate consisting 
of folate and a fragment derived from an antibody directed against the fi ber was 
used as a recombinant protein to bind the Ad fi ber as well as the target, the folate 
receptor, which is widely expressed on the surface of numerous malignant cells 
(Douglas et al.  1999 ). In a similar strategy, a conjugated  FGF   was used to target 
ovarian carcinoma cells (Rancourt et al.  1998 ). The approach reached a clinical 
trial, where FGF2-conjugated Ad vector expressing human herpes simplex virus 
thymidine kinase was applied in patients (Bauerschmitz et al.  2002 ). Reynolds and 
colleagues ( 2000 ) succeeded in targeting pulmonary endothelial cells in vivo by i.v. 
injection of Ad vectors bearing fi bers studded with a bispecifi c antibody directed 
against the Ad fi ber knob and the angiotensin-converting enzyme. 

 In light of the development of new therapeutic strategies for diseases in which 
angiogenesis plays an important role and considering that physiological barriers for 
 high molecular weight components   prevent the transduction of the majority of 
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tumor cells, vascular targeting became a worthwhile approach in cancer gene ther-
apy (Griffi oen and Molema  2000 ). Targeting of adenovirus to endothelial cells by a 
bispecifi c fusion protein directed against the human endoglin CD105 receptor for 
antivascular cancer gene therapy was published by Nettelbeck and coworkers 
( 2001 ). In 2004, the same group designed a single-chain adaptor molecule that 
binds the fi ber protein and the high molecular weight melanoma-associated antigen. 
This antigen is widely and specifi cally expressed on the surface of  melanoma cells   
and its expression is associated with tumor development and progression (Nettelbeck 
et al.  2004 ). Other bispecifi c constructs directing Ad fi bers to cells were developed 
for endothelial receptors (Haisma et al.  2010 ), the epidermal growth factor receptor 
(Haisma et al.  2000 ; van Beusechem et al.  2000 ), and the lymphocyte antigen 6 
complex (van Zeeburg et al.  2010 ). An elegant approach uses a truncated soluble 
form of  CAR   as the virus attachment site fused to human epidermal growth factor 
(EGF) to direct a vector against cancer cells that express the EGF receptor (Dmitiriev 
et al.  2000 ; Kashentseva et al.  2002 ; Hemminki et al.  2002 ). In addition, a number 
of authors described the adaptor-based strategy to target CAR-defi cient dendritic 
cells as a therapeutic vaccination against cancer or infectious diseases (Tillmann 
et al.  2000 ; Pereboev et al.  2004 ; Kim et al.  2010 ; Echeverria et al.  2011 ; Hangalapura 
et al.  2012 ; Williams et al.  2012 ). Figure  2.1  provides a  schematic   representation of 
all three strategies used to alter virus tropism described above.

   Watkins and colleagues ( 1997 ) utilized a construct that encodes a fusion protein 
derived from a single-chain neutralizing anti-adenovirus fi ber antibody, designated 
S11, fused to a specifi c peptide ligand directed against cellular receptors, termed the 

  Fig. 2.1    Methods to alter adenovirus tropism. Wild-type adenovirus enters target cells after bind-
ing the coxsackie-adenovirus receptor (CAR), an entity present on a wide number of cell types ( a ). 
Ablation of CAR binding and re-directing adenovirus-derived vectors towards the cells of choice 
by means of specifi c peptides can be achieved by genetically integrating the peptide into the fi ber 
knob ( b ), chemically coating the vector particle with bi-specifi c polyethylene glycol ( c ) or through 
bridging by means of a bifunctional adapter molecule ( d )       

 

2 Recent Progress in Strategies for Adenovirus Mediated Therapeutic Cell Targeting



26

bispecifi c adaptor molecule. Coating virus with this adaptor molecule ablates CAR 
binding and directs the viral particle to the desired cellular receptor. S11 can be 
produced in eukaryotic, as well as  prokaryotic cells  . By means of its 6-His-tag, 
purifi cation and concentration of the fusion protein can be easily performed by 
nickel-affi nity chromatography. This procedure ensures the high yield of pure pro-
tein without the loss of activity. 

 Based on the  S11 strategy  , we intended to specifi cally transduce in vitro and 
in vivo activated hepatic stellate cells (HSCs), whose number is increased in fi brotic 
livers (Reetz et al.  2013 ). Therefore, we picked a peptide derived from nerve growth 
factor (NGFp) with specifi c affi nity for the p75 neurotrophin receptor (p75NTR) 
present on activated HSCs. Coating the GFP-expressing Ad vector with NGFp was 
done either via chemical conjugation using bifunctional PEG or, alternatively, by 
molecular bridging with an S11-based fusion protein specifi c for viral fi ber knob 
and p75NTR (S11-NGFp; Fig.  2.2 ). After systemic administration of the targeted 
viral particles, we observed that Ad.GFP-S11-NGFp transduced activated HSCs 
better than Ad.GFP-PEG-NGFp. The latter’s low transduction potential could be 
explained either by an improper ratio between PEG and targeting ligand concentra-
tion that prevented successful and specifi c tissue transduction or due to the ablation 
of the viral internalization signals such as the RGD motif by the chemical proce-
dure. These experiments contributed to the development of a targeted gene transfer 
system to specifi cally deliver antifi brotic compounds into activated HSCs by sys-
temically applied adenoviral vectors modifi ed by the NGFp ligand. In our study, we 
demonstrate that adenoviral-mediated targeting of HSCs via p75NTR, concurrently 
avoiding its binding to hepatocytes, provides a potentially feasible and effective 
strategy for therapeutic gene delivery to activated HSCs in the liver in vivo and the 
technique may be useful to support approaches to regenerate liver tissue (Best et al. 
 2015 ; Salazar-Montez et al.  2015 ). Beyond, Haisma and co-workers ( 2010 ) observed 
a selective targeting of Ad5 to the endothelial receptors in vitro and obtained viral 
transgene expression only in tumors infected with adenobody retargeted adenovirus 
from mice bearing subcutaneously colon carcinoma cell derived tumors.

   Most recently, we utilized  the   S11-based Ad targeting method to transduce 
exclusively neural stem cells in the subventricular zone of adult mice (Reetz et al. 
 2015 ). Like in our previous in vivo study on HSC transduction, a relevant peptide to 
be fused to S11 was beforehand detected with the phage-display and biopanning 
technique (Schmidt et al.  2007 ). For easy production of the fusion protein, we estab-
lished by means of lentiviral transduction, a eukaryotic cell line that permanently 
secretes the bivalent adaptor. Thinking further, bivalent vector targeting approaches 
may also allow the creation of so-called mosaic modifi ed vectors for instance for 
patients suffering from metastatic cancer in analogy to work by Pereboeva and col-
leagues ( 2004 ,  2007 ). The researchers targeted EGFR with a metabolically biotinyl-
ated fi ber-mosaic adenovirus and demonstrated enhanced binding of vectors with 
heterologous fi ber trimming. Utilizing heterologous fi bers, a recent pancreatic 
 cancer therapy approach improved the effect of conditionally replicating adenovirus- 
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  Fig. 2.2    Specifi c targeting of hepatic stellate cells (HSC). Shown are two different HSC-specifi c 
retargeting strategies for adenoviral vectors by linking NGFp. This peptide has specifi city for 
p75NTR, an entity expressed by HSC but not hepatocytes. NGFp was attached to the vector’s 
surface via chemical coupling by PEGylation or as part of the bispecifi c single-chain 
immunoglobulin- derived adapter molecule S11.  Top : Wild-type vectors enters target cells after 
binding the coxsackie-adenovirus receptor (CAR), the receptor present on a wide range of cell 
types including hepatocytes and HSC.  Center ,  left : the edging formed by PEGylation shields the 
entire vector surface including RGD-binding motifs and exposes NGFp.  Center, right : the S11 
adapter molecule is stoichiometrically attached to the fi ber knobs.  Bottom, left : p75NTR-binding 
via PEG-NGFp.  Bottom, center : S11-NGFp-mediated binding of the HSC-specifi c moiety.  Bottom, 
right : both coupling methods ablate the interaction of the vector particle with CAR (Reetz 
et al.  2013 )       
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based oncolytic virus (Kaliberov et al.  2014a ). This approach opens applications 
adenoviral vectors to target cells where single targeting molecules are sparce. 
Different bivalent adaptors on the same particle may enhance transduction of such 
cells. 

 A potential alternative to targeting approaches by single-chain antibodies are Ad 
vectors coated with adaptor molecules based on  designed ankyrin repeat proteins 
(DARPins)  .  DARPins   differ from antibodies in size, structure, binding pattern, and 
stability. These properties paired with high-yield, easy production in E. coli makes 
them promising candidates for targeting purposes. Dreier and colleagues ( 2011 , 
 2013 ) designed an adaptor molecule consisting of two DARPin modules fused to 
each other. One binding site anchors the molecule to the Ad fi ber knob and the other 
enables the particle to attach to tumor cell markers, like the human epidermal growth 
factor receptor or the epithelial cell adhesion molecule. In their work, the authors 
convincingly demonstrate  that   DARPins are high-affi nity adaptor molecules that 
allow effi cient gene transfer and are a promising tool to rapidly target Ad vectors to 
any desired receptor. 

 To alter the tropism of adenoviral vectors, the  recombinant fusion protein   tech-
nology offers a number of technical advantages compared to the methods of chemi-
cal conjugation. The conveniences of rerouting adenoviral tropism using recombinant 
proteins include simplifi ed production in prokaryotic or, preferably, in eukaryotic 
expression systems, as well as vector purifi cation. In addition, this approach may 
allow the application of different fusion proteins suitable for retargeting Ad to other 
receptors, simply by the substitution of the peptide ligand. This procedure offers, 
according to our experience, the method of choice to retarget Ad vectors.   

2.4     Conclusions 

 In conclusion, adenoviral vectors have been proven to serve as effi cient tools for 
gene delivery when temporary gene expression is benefi cial. The major challenge 
towards applying the technology remains the development of a target system for 
specifi c gene delivery that reaches a high level of effi ciency. Genetic approaches to 
modify the fi ber require tediously re-engineering of a given Ad vector, and 
PEGylation causes decreased transduction effi ciencies due to improper PEG to 
ligand ratios as well as RGD ablation, bifunctional adaptor molecules seem to be 
the most favorable targeting approach. An expeditious and simple production fol-
lowed by a broad portfolio of different fusion proteins suitable to retarget Ad by 
substitution peptide ligands offers a standardized method to retarget vectors for both 
in vitro and/or in vivo applications. Moreover, engineering of bifunctional adaptors 
may be customized more easily than fi ber modifi cations and chemical treatment 
of vector preparations. Increased knowledge of adenovirus biology and powerful 
techniques such as the phage display method to identify new cell or tissue specifi c 
targets as well as unique receptors on neoplastic cells provide the opportunity to 
develop innovative strategies for gene therapy. Custom-made gene shuttles that 
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exclusively deliver into cells to be addressed a therapeutic nucleic acid or a potent 
inhibitor of pathogenic genes may, in future, allow success in the treatment of 
patients with systemic disease fi rst and foremost with metastasized cancer.     
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