
Tapabrata Ray
Ruhul Sarker
Xiaodong Li (Eds.)

 123

LN
AI

 9
59

2

Second Australasian Conference, ACALCI 2016
Canberra, ACT, Australia, February 2–5, 2016
Proceedings

Artificial Life
and Computational
Intelligence



Lecture Notes in Artificial Intelligence 9592

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244


Tapabrata Ray • Ruhul Sarker
Xiaodong Li (Eds.)

Artificial Life
and Computational
Intelligence
Second Australasian Conference, ACALCI 2016
Canberra, ACT, Australia, February 2–5, 2016
Proceedings

123



Editors
Tapabrata Ray
University of New South Wales
Canberra, ACT
Australia

Ruhul Sarker
University of New South Wales
Canberra, ACT
Australia

Xiaodong Li
RMIT University
Melbourne, VIC
Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-28269-5 ISBN 978-3-319-28270-1 (eBook)
DOI 10.1007/978-3-319-28270-1

Library of Congress Control Number: 2015958838

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland



Preface

This volume contains the papers presented at the Australasian Conference on Artificial
Life and Computational Intelligence (ACALCI 2016) held during February 2–5, 2016,
in Canberra.

The research areas of artificial life and computational intelligence have grown
significantly over recent years. The breadth is reflected in the papers addressing diverse
aspects in the domain, from theoretical developments to learning, optimization, and
applications of such methods for real-world problems.

This volume presents 30 papers, many of them authored by leading researchers in
the field. After a rigorous evaluation of all 41 submissions by the international Program
Committee, 30 manuscripts were selected for single-track oral presentation at ACALCI
2016. All papers underwent a full peer-review with at least three reviewers per paper.

The ACALCI 2016 international Program Committee consisted of over 75 members
from 15 countries. We would like to thank the members of the international Program
Committee, ACALCI Steering Committee, local Organizing Committee, and other
members of the organization team for their commendable efforts and contributions to
the conference.

We would like to acknowledge the support from the University of New South
Wales, Canberra, and the organizers of the Australian Computer Science Week
(ACSW), who kindly allowed ACALCI 2016 to be co-located with ACSW 2016 at the
Australian National University (ANU), Canberra.

The support and assistance from Springer and EasyChair are gratefully
acknowledged.

November 2015 Tapabrata Ray
Ruhul Sarker
Xiaodong Li
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Fractal Dimension - A Spatial and Visual
Design Technique for the Creation of Lifelike

Artificial Forms

Dale Patterson(&) and Daniel Della-Bosca

Griffith University, Nathan, Australia
d.patterson@griffith.edu.au

Abstract. Creating artificial entities that are lifelike and comfortable for human
users to interact with is a critical challenge in a number of fields from robotics to
human-computer interface design. Fractal systems are a mathematical model
that can be observed in many natural systems from microscopic cellular biology
through to satellite imagery. The recursive, self-similar nature of fractal systems
makes them well suited to the automated creation of natural 3D forms. This
research looked at the fractal dimension of artificially created forms, in partic-
ular looking at whether differing levels of fractal dimension made a difference to
how natural, appealing or lifelike an item was to the user. A randomized trial
(n = 25) identified that differing levels of fractal dimension did generate differing
levels of response from users. This finding identifies the potential to use fractal
dimension as a design principal when creating the physical forms that represent
artificial life.

Keywords: Fractal � Design principals � Artificial life-forms � Human
computer interaction � Experimental testing

1 Introduction

Artificial life and computational intelligence have given us many wonderful creations.
From the highly successful game playing artificial intelligence systems, through virtual
computer game characters, to lifelike robots with whom users can interact in near
human like communications [1–3]. Yet one of the key challenges for artificial life, and
digital virtual entities, is how they are perceived by the human user and how com-
fortably those users interact with the digital entity. In this vein the human computer
interface plays a critical role in how lifelike and engaging the virtual entity can be.
Whether that interface involves physically facing a mechanical robotic system, or
interacting on screen with a virtual non-player game character, the visual and physical
form of those items plays a key role in how believable they are as natural or life-like
entities [4, 5].

In the pursuit of more natural artificial life forms, several approaches have been
pursued by existing research. One of those is to take biological systems and, through
complex bio-chemistry create what are essentially biological computer systems, using
biological cells and systems to produce computational systems [6, 7]. This approach

© Springer International Publishing Switzerland 2016
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definitely creates a “living” entity but although the current systems offer potential for
the future, they are extremely simple and lack the computational power to undertake
any complex artificial intelligence or other practical functions that would produce an
artificial life-form capable of interacting with humans in an effective manner [6, 7].

The second approach to creating artificial life involves taking digital systems and
through combinations of physical, mechanical, computational, human-computer
interaction, and ideally artificially intelligent capabilities, producing life like digital
entities that can interact with real humans in meaningful ways. At the heart of these
digital systems are often complex devices, both physical/mechanical and software
based, that produce the intelligent life-like system. Yet at the surface of these digital
systems exists the human computer interface. In the case of robots the physical
appearance in both three-dimensional form and also interactive movement creates the
initial contact with the human user. In the case of software based tools the user interface
(or on screen visual presence and movement) and its appearance is the first interactive
element the human senses deal with. Studies of robot use by human participants, such
as those by Wu et al. in 2012, highlight the fact that the design of the robots appearance
plays an important role in its acceptance and use [5]. This is supported by other studies,
including those by DiSalvo et al. and Fong et al. that indicate that most of the studies
on robot-human interaction have not focused on physical design, instead focusing on
verbal interactions and movement [5, 8, 9].

In the field of computer game design similar circumstances are found where the
focus of research has been on the verbal/textual interactions with non-player characters
and the artificial intelligence related to this verbal field. The physical 3D design of
spaces and characters, particularly procedural creation of 3D models, has been actively
pursued, yet the design of “artificial living” characters and spaces, such that they appear
natural and life-like has been less actively pursued [10–13]. In essence the key chal-
lenge is to create artificial forms, in either the real 3D world (e.g. robots) or in virtual
3D (e.g. game item) that are natural in spatial form and assist the user in understanding
the “living” nature of the object and thus breaking down that initial barrier, to then
allow the user to take better advantage of the other “lifelike” features of the system.

2 Fractals, Life and Nature

Fractal systems are essentially mathematical methods that use simple geometric shapes
or mathematical functions, either in 2D or 3D, and repeat those shapes many times with
subtle variations to create images or objects. Generally implemented using recursive
programming methods, this repetitive process, using simple elements repeatedly,
generates engaging and often uncannily natural patterns, images and even objects (see
Fig. 1 for an example of a fractal form created from a simple geometric shape recur-
sively repeated at differing transformations). These objects are often described as being
self-similar in nature, featuring detail at differing scales and transformations.

Self-similarity plays a key role in the life-like or natural nature of fractal shapes.
The fact that features are repeated at differing scales, positions and orientations creates
a sense of uneven roughness, something that is less common in digital systems, and
that plays a key role in the natural appearance of the outcome [14, 15]. Benoit
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Mandelbrot, a key pioneer of fractal research, summarized his career as the ‘ardent
pursuit of the concept of roughness.’ [14]. It is this “roughness” that creates the link to
natural surfaces, spaces and objects, where fractal forms are comparatively common.
Examples of inherently fractal real world phenomenon include clouds, coastlines,
rivers, trees, ferns, shells and many more. Aside from recognizing fractal patterns in
nature, these inherently fractal forms have also been successfully built by digital
programs that automatically generate fractal systems and objects (see Fig. 2 for
examples) [17].

Mathematically speaking, a fractal system meets a specific set of conditions, but in
aesthetic terms, ‘An object is said to be self-similar if it looks “roughly” the same at any
scale’ [14, 15], and images are called fractal if they display self-similarity, that is, they
can be broken into parts, each of which is (approximately) a reduced size copy of the
whole.

Significant research exists into the natural appearance of fractal images and objects
and their relationship to real world living entities. In fact many research studies, such as
those by Weibel et al. and West et al., highlight the fractal nature of life itself [18, 19].

As West et al. describe in their work, Fractal Geometry: a design principal for
living organisms, ‘It is concluded that to consider fractal geometry as a biological
design principle is heuristically most productive and provides insights into possibilities
of efficient genetic programming of biological form’ [19]. The very nature of cell

Fig. 1. Fractal Shell [16]

Fig. 2. Fractals in nature (upper left) & digital equivalents (lower right) [17]
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division, branching circulatory systems, genetic replication and many other funda-
mental biological systems can be effectively described through fractal systems where
other mathematical models are ineffective.

Morphogenesis is a term used to describe development of structural features and
patterns in living organisms. The study of morphogenesis when linked with fractal
mathematics has led to a number of fractal techniques, used to create and describe
natural forms, that have proven highly successful. In particular when looking at the
creation of natural, and lifelike forms, Lindenmayer systems (L-systems), initially
designed to describe simple algal growth, have been widely adapted and used to create
realistic plant life and other branching systems (such as the pulmonary circulatory
systems described by West et al.) [21, 22] (Fig. 3).

Other growth related systems, based on fractals, shape grammars and evolutionary
models have had similar success in creating lifelike visual forms [12, 17]. These
examples in conjunction with the widespread use of fractals to add natural roughness to
clouds, fog, water and surfaces, amongst others, clearly demonstrate the potential of
fractal systems to add a natural element to digitally created objects and images [16].

Yet this raises the question of whether simply being fractal in nature makes an item
more natural, or whether there are specific types and levels of fractal content that more
powerfully provide a sense of nature, and life, to the user.

2.1 Fractal Dimension

The concept of a fractal item, either a 2D pattern or 3D object, being self-similar does
not directly indicate its complexity or structural nature. Such self-similar items can be
either complex or simple. There exists a range of possible levels of fractal dimension
(or complexity) within this fractal mathematical space. From a designers point of view
this creates the possibility to consider the fractal dimension as a changeable variable to
alter the visual and aesthetic nature of the fractal item being created. In terms of the
quantification of fractal dimension, the numbers used refer to floating point value

Fig. 3. Měch & Prusinkiewicz example L-Systems – Trees & Roots [23]
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within a range of 1.0 unit representing fractal dimension. Mathematically it is the
geometric space between the numbers 1 and 2 for the two dimensional plane, and
between 2 and 3 for the 3 dimensional object. This space between integers or the
fractional space is referred to as the parameter of fractal dimension or D value. The rule
of self-similarity is that a pattern that fills the plane in very simplistic terms (a low order
of roughness and irregularity) has a D value close to 1, and a pattern that fills the plane
with detailed and intricate structure will have a D value close to 2. For objects with
volume (real and virtual 3D structures), the D value lies between the 2 and 3 [24].

With this fractal dimension in mind, for designers of artificial life to effectively
create the most life-like fractal items those designers need to understand the broader
human preferences with regard to fractal dimension. There have been a number of
research studies, including studies by Aks & Sprott as well as those by Spehar et al.,
that have measured the preferences of participants when viewing images containing
varying levels of fractal dimension [25, 26]. By taking images from nature, art and
digitally generated imagery, all with known fractal dimensional values, and presenting
them to participants, the studies identified an average preference for a fractal dimension
level in the range of 1.3 to 1.5 [25, 26]. As a result the findings of the studies found that
most participants preferred images that were not too complex (below 1.5) but also not
too simple (above 1.3).

For the designer of an artificial life form these dimension levels are valuable,
providing insight into the level of visual fractal complexity (dimension) that users will
find more natural. However for the designer of the physical form of a robot the visuals
are not the only factor. From a sensory perspective the robot will be both a visual and
tactile (and potentially audio as well) interactive entity. As outlined in the work of
Prendinger et al. and Wu et al., the physical and tactile nature of such a device plays a
crucial role in how well it is accepted [4, 5].

With increasing demands for both more natural robotic systems and also for the
automated creation of digital 3D content (in User Interfaces, Games, AR and VR
applications) there is a need to gain a greater understanding of fractal dimension [16,
26–29]. Understanding applied fractal dimension across the range of human senses,
with the objective of enabling designers of artificial life, to enhance their creations
through more targeted lifelike design [28].

3 Testing the Nature of Tactile and Visual Fractal Dimension

To test the nature of human interactions, in both visual and tactile sensory form, with
items of differing levels of fractal dimension, an experimental trial was carried out. The
goal of the trial was to measure the user response to physical surfaces and images with
a range of varied levels of fractal dimension. The trial involved 50 participants who
ranged in age from 18 to 52 years. The items used to represent differing fractal
dimensions in the visual realm were simple grey scale images (see Fig. 4).

Colour was removed to simplify the task and remove the colour as a possible
variable, thus allowing the only changing variable to be the fractal dimension itself. To
maintain consistency throughout the trials the touch trial involved user interacting with
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the same set of fractal dimensional items only that these objects were 3D printed into
physical objects as shown in Fig. 5.

The study involved each participant being presented with a range of surface
options. These surface options included a range of digitally created fractal surfaces and
objects, each with differing levels of fractal dimension and complexity. To avoid any
bias or influence from experiencing one before the other, the trial group was split into
two sub groups of 25 participants. Each sub group then completed one trial, either
tactile (interacting with the physical 3D printed fractal forms) or visual (interacting with
the image based fractal forms).

The trial items were designed and intended to be very simple in nature with surfaces
that were generated for their aesthetic neutrality (lack of association to natural or
synthetic commonly recognised form). Each surface was presented in consistent simple
neutral color and the base shape/function used to create the fractal pattern was con-
sistent through both the tactile and visual groups. The only variable that was different
through the trials was the amount of fractal dimension in the surface patterns.

For the participants of both trial groups, they were initially asked a series of
questions to establish basic information on age, sex and previous experience or possible
biasing factors. For those participants who were in the visual trial group they were then
shown the fractal items on screen (as arranged in Fig. 4). The participants were then
observed interacting with the visual fractal surfaces before being questioned regarding
their preferences. As the surfaces featured 3D relief elements in the tactile and bump
maps in the visual, the D values presented here are in the 2 to 3 range for both groups to

Fig. 4. Example Fractal images used in experimental trial.

Fig. 5. Example Fractal 3D Printed Objects used in experimental trial.
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enable simpler comparative reporting of results. At the conclusion of the questions
regarding the visual surface preferences the participants were asked several broad
questions regarding their experience and overall feeling about the study before
concluding.

For the tactile group, following the initial questions they were asked to place their
hands on the 3D printed fractal objects, placed underneath a covered black sheet. This
blinding process insured that the participants response was not effected by the visual
appearance of the items and was purely based on the tactile experience (see Fig. 6).

They were then observed interacting with the tactile fractal surfaces before being
questioned regarding their preferences and then their overall experience before con-
cluding the trial.

4 Results

Results from the study are reported using fractal dimension (D) and the resulting
absolute effect sizes in conjunction with 95 % confidence intervals (CI). The results
from participants in the visual trial group showed 18 of the 25 (72 %) participants
indicated surfaces with a visual fractal dimension of D = 2.38 (±0.106 (CI)) was their
preference. This result closely matches the findings from other studies including those
by Aks & Sprott as well as those by Spehar et al., who found that the range of 2.3–2.5
was preferred [25, 26]. Of note was the fact that preference rates dropped off quickly
the further away from the 2.3–2.5 range the dimensional value was (with values in the
high 2.8–3.0 range being the furthest away and also the lowest in user preference (1 of
28 (3.5 %)).

The other interesting finding from the visual trial related to the time taken to make a
judgement. For the visual trial, participants averaged more than 10 s (10.6 (±3.61(CI))
to make up their mind regarding their preference.

Results from the tactile trial group showed a similar pattern of favouring one level
of fractal dimension, but notably the dimension that was favoured was lower D values
(D = 2.25 (±0.142 (CI)), in the 2.1 to 2.4 range. Of significant interest from the tactile

Fig. 6. Example Tactile experimental trial (Note without black cover here to show hand
interaction with 3D printed objects)
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trials was the user observation study. In this study one of the most notable findings was
that users in the tactile trial had significantly stronger emotional reactions to the sur-
faces than their counterparts in the visual group. The tactile groups response times were
significantly faster at 3 s compared to 10.6 for the visual group. The response mag-
nitude was also significantly higher, particularly with negative responses being strongly
expressed. This was in contrast to the visual group for whom the responses were more
measured and only given after careful comparison and categorization.

5 Analysis and Discussion

The visual fractal preferred dimensional results from this study closely match the
results found for fractal dimension in images by other studies [25, 26]. With the
average values in the 1.3–1.5 2D range and 2.3–2.5 3D range indicating that users
found items that were neither too complex (>1.5 or 2.5) nor too simple (<1.3 or 2.3)
ideal and most natural.

The tactile fractal dimensional results were notably different, and at a lower level of
fractal dimension, to those of the visual trials. Users in the tactile trial also responded
significantly more quickly and with stronger emotion. This finding that the ideal
“natural” fractal dimension is different for touch and visual senses is a critical outcome
from this research. The relative difference indicates that touch or tactile surfaces need to
be measurably simpler, in terms of fractal dimension to be most natural and life-like. It
also indicates that physical tactile or touchable surfaces are capable of generating
stronger and faster responses. These findings carry significant impact for the design of
surfaces for artificial life forms such as robots, touch screen interfaces as well as for the
surfacing characteristics of other virtual or on-screen artificial life. In the robot example
it may be that using a surface that has some surface complexity, but not a lot (2.1–2.3
fractal dimension) may be able to make a difference and remove some of that initial
negative response that is commonly associated with robotic systems. In simple terms
perhaps flat plastic (which has a fractal dimension of 2.0) could be replaced with a
slightly more complex surface to make it more acceptable for users. This surface
complexity could be applied in both 3D form and also in 2D textures and patterns for
use in physical robotics as well as 3D user interfaces, games and VR systems [29–31].

6 Conclusions

The experimental study identified that differing fractal dimension plays a significant
role in determining how natural an item feels to the user. The finding that there was a
preferred fractal dimension, but that the dimension level was different for the two
differing senses, applied in both the visual experiments and also the touch experiments.
Interestingly for both visuals and surfaces the desirability, and natural feel, of the item
reduced as the dimension moved away from the ideal dimensional value (both more
complex dimension and less complex dimension were less desirable).

It is also important to note that there was not a single “ideal fractal dimension”. The
experimental findings showed that in both visual and tactile sensory systems the
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desired “natural” dimension was different and there is a need to design with these
sensory differences in mind.

The results from the study indicate that fractal dimension can be applied as a design
principal to automatically create items that are more (closer to desired natural fractal
dimension) or less (further from desired natural fractal dimension) natural in form. The
ability to use a mathematical technique of this kind allows for automated content
creation tools, such as those involved in creation of artificial life forms to use fractal
dimension as a guiding principal for making those forms more lifelike and natural.
Understanding that the human response was different in differing senses, with touch
using a lower fractal dimension for desired natural form than visuals allows for
application of fractal dimension in differing sensory domains. For example when
designing the physical “touchable” surface of an artificial life-form like a robot the
lower fractal dimension could be applied to make the robots surface (or full physical
shape/form) more natural and lifelike to the human tactile senses. Equally when
designing the visual form of an on screen artificial life-form (for example a virtual
game characters appearance) the higher visual fractal dimension could be applied to
make that character more natural, and as a result more lifelike to the viewer.
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Abstract. We introduce closed sets, which we will call knowledge units,
to represent tight collections of experience, facts, or skills, etc. Associ-
ated with each knowledge unit is the notion of its generators consisting
of those attributes which characterize it.

Using these closure concepts, we then provide a rigorous mathema-
tical model of learning in terms of continuous transformations. We illus-
trate the behavior of transformations by means of closure lattices, and
provide necessary and sufficient criteria for simple transformations to
be continuous. By using a rigorous definition, one can derive necessary
alternative properties of cognition which may be more easily observed in
experimental situations.

1 Introduction

We are concerned with modeling intelligence and learning, but not artificial intel-
ligence or machine learning. Rather we want to model these phenomena as they
might occur in a human mind. It is generally accepted that mental cognition
occurs in the brain, which is itself comprised of a network of neurons, axons,
and synapses. Neuroscientists have a rather clear understanding of the physi-
cal layout of the brain, including which portions are responsible for individual
mental functions [6]. But, how mental processes actually occur is still elusive.
Nevertheless, it is clear that the response to external stimuli occurs in a reactive
network. Thus if we want to model cognitive behavior we must, at some level,
come to grips with network behavior.

In Sect. 2, we will introduce the idea of an experiential operator, ρ, which
expresses a relationship between the elements of a network. The elements can
be raw visual stimuli, at a lower level, or concepts and ideas, at a higher level.

In Sect. 3 we introduce the concept of closure, which identifies closely related
elements. Closure is central to our mathematics. Then, for want of a better term
we call closed sets, knowledge units. Properties of these knowledge units are
developed in Sect. 4.

It is not until Sect. 5 that we actually encounter network transformations that
correspond to learning situations, and define the concept of continuity. We will
examine several continuous network transformations and provide necessary and
sufficient conditions for a simple transformation to be continuous. This section
is the meat of the paper.

c© Springer International Publishing Switzerland 2016
T. Ray et al. (Eds.): ACALCI 2016, LNAI 9592, pp. 13–26, 2016.
DOI: 10.1007/978-3-319-28270-1 2
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2 The Experiential Operator

Let U denote a finite universe of awarenesses, sensations, etc. that an individual
might experience, U = {. . . , w, x, y, z}.1 We denote sets by {. . .} and by upper
case letters. Thus Y = {x, z} is a set of two possible experiences in U . Y is said
to be a subset of (or contained in) U , denoted Y ⊆ U .

Experiences are related to one another. If z is related to x, say for example
that z can be experienced having once experienced x, we denote the relationship
by x ρ z. Relationships may, or may not, be symmetric; we need not have z ρ x.
Based on known neural morphology [6], most neural cells have many inputs and
relatively few outputs, so we can assume many relationships will be asymmet-
ric. Relationships come in a great many varieties. Experiential events can be
simultaneous or sequenced in time; can be adjacent or distant in space; can be
synonyms or antonyms in a lexical space; or can be friendly or threatening in an
emotional space. But for this paper we assume only one generic relationship. By
ρ we mean that some relationship exists. Throughout this paper we are going
to let the term “experience” be generic. We might have related visual stimuli
comprising a visual object, or related skills comprising a skill set, or related facts
comprising an area of knowledge. All will be regarded as experiential.

Relationships are frequently visualized by means of graphs, or networks, such
as Fig. 1. Here an edge between q and s denotes q ρ s. If no arrow head is present,
it is assumed that the relation is symmetric.

Fig. 1. A very small network depicting the relationships, ρ, between 6 experiential
elements.

While network graphs can provide a valuable intuition, we actually prefer to
regard relationships as operators that map subsets of U onto other subsets in U .
Thus we will denote q ρ s by the expression {q}.ρ = {s}, that is, ρ operating on
q yields s, or because we tacitly assume q is related to itself, and because q ρ t,
{q}.ρ = {q, s, t}. In Fig. 1, {s}.ρ = {s, t, v} and {t}.ρ = {s, t, w}. Using this kind
of suffix notation is a bit unusual, but it has value. One reason for preferring an
operator notation is that in order to experience y it may be necessary to first
experience both v and w, that is, y ∈ {v, w}.ρ, but y �∈ {v}.ρ. For example,
for a neuron y to respond, it may need signals from both v and w. So properly,
1 This finiteness constraint can be relaxed somewhat, but there is relatively little yield

for the resulting complexity.
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ρ is a function on sets, not individual elements of U . A second reason is that in
later sections we will compose the functional operators, and suffix notation lets
us read the composition in a natural left to right manner.

To formalize this, we let 2U denote all possible combinations of “experiences”
in the universe U . Mathematically, it is called the power set of U . The rela-
tionship operator, ρ, maps subsets Y ⊆ U into other subsets, Z = Y.ρ ⊆ U . By
convention we assume that every experience is related to itself, so that, for all
Y , Y ⊆ Y.ρ. Consequently, ρ is an expansive operator. This is precisely what
we want; ρ denotes the possibility of expanding one’s realm of experiences. For
example, having the experiences x and y, it may be possible to also experience
z, or {x, y}.ρ = {x, y, z}.

We will also assume that a greater collection of experience will permit a
greater awareness of possible new experience. That is, X ⊆ Y implies X.ρ ⊆ Y.ρ.
Then ρ is said to be a monotone operator.

3 Closure Operators and Knowledge Units

Certain collections of experiences, of facts, of abilities, appear to be more robust
than others. They go by many names in the literature. A cluster of perceived
visual stimuli may be called an external entity, or object. If the granularity of
the base experiential elements, U , is coarser, say that of skills or facts, we might
call a cluster of abilities an area of expertise, such as horseshoeing ; or a cluster
of facts might be regarded as a discipline, such as medieval history or high school
algebra. With so many possible terms and interpretations, we choose to use a
more neutral term. We will call such clusters knowledge units without trying to
specify precisely what such a unit is. In this section we will postulate that this
organizing process can be approximately modeled by a mathematical closure
operator.

An operator ϕ is said to be a closure operator if for all X,Y ⊆ U ,
Y ⊆ Y.ϕ ϕ is expansive,
X ⊆ Y implies X.ϕ ⊆ Y.ϕ ϕ is monotone, and
Y.ϕ.ϕ = Y.ϕ ϕ is idempotent.

There is an extensive literature on closure and closure operators of which [2,5,
9,12,14] are only representative.

Since ρ is both expansive and monotone, it is almost a closure operator itself.
But, ρ need not be idempotent. In Fig. 1, we have {q}.ρ = {qst} ⊂ {qstuv} =
{q}.ρ.ρ. However, we can define a closure operator ϕρ with respect to ρ. Let,

Y.ϕρ =
⋃

z∈Y.ρ

{{z}.ρ ⊆ Y.ρ}. (1)

Readily, if z ∈ Y then z.ρ ⊆ Y.ρ, so Y ⊆ Y.ϕ. We call ϕρ the experiential
closure because it is determined by the experiential operator ρ. Note that any
relationship, ρ, of any type can give rise to a closure operator, ϕρ.
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Proposition 1. ϕρ is a closure operator.

Proof. Readily, Y ⊆ Y.ϕρ by definition. Let X ⊆ Y and let z ∈ X.ϕρ. By (1)
z.ρ ⊆ X.ρ ⊆ Y.ρ hence z ∈ Y.ϕρ. Now let z ∈ Y.ϕρ.ϕρ. Then z.ρ ⊆ Y.ϕρ.ρ =⋃

z∈Y.ϕρ
{z.ρ ⊆ Y.ρ}, hence z ∈ Y.ϕρ. ��

In the network of Fig. 1, observe that {y} is closed, but {v} is not, because
{y}.ρ = {y} ⊆ {vwy} = {v}.ρ, so {v}.ϕρ = {vwy}. Neither is {w} closed,
because {w}.ϕρ = {vwy} = {v}.ϕρ. So, singleton elements need not be closed.

A set Y is said to be closed if Y = Y.ϕ. Because ϕ is expansive, U itself
must be closed. The empty set, Ø, is most often closed, but need not be. (Here,
Ø denotes an “empty set” that contains no elements.)

Normally, we omit the subscript ρ from the closure symbol ϕ because most
results are valid for all closure operators. Only if some property of the relational
closure is required will we use the symbol ϕρ.

By a knowledge unit, Ki, we mean a set closed with respect to ϕρ in U .
That is, the elements of Ki are a tightly bound collection of related experiences
that will be regarded as a unit of knowledge awareness. In Fig. 1, because {st}
is closed, it is a knowledge set, K1. The set {qst} is also closed, and thus also a
knowledge unit, K2. Here, K1 = {st} ⊂ {qst} = K2. We can think of increasing
knowledge awareness with increasing experience or capability.

3.1 An Example of Experiential Closure

The formal definition of experiential closure, ϕρ, as well as the more general
definition with respect to expansive, monotonicity, and idempotency, conveys
little intuitive sense of its being. Here we will examine an example which could
occur in human cognition.

Consider the retina of the eye, where the close packing of cells (frequently
called “pixels”, and here shown as hexagonal, even though the retina is never
quite so regular) endows each receptive cell with 6 neighbors. Figure 2 illustrates
a simulated portion of the retinal structure with a mottled pattern of 43 excited
cells (black dots) which we will denote by Y . We seek an experiential closure of
Y based on an adjacency relation, ρ. The pixels, or neural cells, containing an
× in Fig. 3(a) denote the extent of Y.ρ. If all the neighbors of an ×-cell are also
×-cells, then it is in Y.ϕρ which is shown as Fig. 3(b). Surely, a process that can
extract more “solid” objects in a natural kind of mottled camouflage will convey
survival benefit, and might be “built-in”.

It was shown in [16] that this spatial closure operator can be implemented
in parallel by “expanding” each stimulated element in Y then expanding its
complement thus contracting Y .

Since it is assumed that virtually all processing of information passing back
from the retina to the visual cortex occurs in parallel; that spatial retinal rela-
tionships are preserved in some of this visual pathway; and that this pathway
consists of alternating odd/even cell layers [18], it is plausible to regard this
example as an actual, but vastly oversimplified, cognitive process.
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Fig. 2. A mottled pattern on a simulated retina.

Fig. 3. Closure within the mottled pattern of Fig. 2

This example of a closure operator has been set within the context of visual
cognition. It does not necessarily imply that this black and white “cartoon”
example mimics an actual visual process. Real visual cognition is far more com-
plex, for example, we see in multiple frequencies (color). But, it does establish
that closure concepts are compatible with known aspects of visual physiology,
and illustrates how a closure operator can extract “identifiable” objects from a
pattern.

A well-known property of closure systems is that if X and Y are closed then
their intersection X ∩Y must be closed; or equivalently, X.ϕ∩Y.ϕ = (X ∩Y ).ϕ.
Readily, we encounter many different kinds of experiential relationships in the
real world, say ρ1, ρ2, . . . , ρn. We can show by counter example that X.ϕρ1&ρ2

�=
X.ϕρ1

∩ X.ϕρ2
. But, for all X, X.ϕρ1

∩ X.ϕρ2
= X.ϕρ1·ρ2

. That is, the inter-
section of closed sets corresponds to closure based on concatenated, rather than
concurrent, relationships, which seems to be what occurs in the visual pathway.

4 Generators and Knowledge Lattices

If K is a closed knowledge unit there exists at least one set Y ⊆ K such that
Y.ϕ = K. (It may be K itself.) Y is said to be a generator of K. A reasonable
interpretation of generating sets is that these are a set of features of K that
serve to characterize K.
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Readily, the set Y is a generator of Y.ϕ, as is any set Z, Y ⊂ Z ⊆ Y.ϕ. If for
all X ⊂ Y , X.ϕ ⊂ Y.ϕ = K then Y is said to be a minimal generator of K.2

In general, a closed set K may have several minimal generating sets, denoted
K.Γ = {Y1, . . . Ym} where Yi.ϕ = K, 1 ≤ i ≤ m. For example, in Fig. 1, {qv, qw}
are both minimal generators of {qstvwy}.

4.1 Knowledge Lattices

It is assumed that our knowledge is structured. One way of doing this is to
partially order the knowledge units by containment to form a lattice. Because
U itself must be closed (ϕ is expansive) and because X ∩ Y must be closed,
any collection of discrete closed sets can be partially ordered by containment
to form a complete lattice. We call them knowledge lattices, denoted Lϕ.
Figure 4 illustrates the knowledge lattice, Lϕ, associated with the experiential
operator, ρ, of Fig. 1. Doignon and Falmange called such lattices “knowledge
spaces” [4]. This idea of knowledge spaces has generated a considerable amount
of psychological literature.3 Ganter and Wille [5] regard a lattice of closed sets
as a “concept lattice”. In both theories the lattice structure is central; for us, it
will be important, but ancillary.

Fig. 4. Closed set lattice, Lϕ, of Fig. 1. Four set differences have been labeled.

A closed set Km in Lϕ is said to cover Ki if Ki ⊂ Km and there exists no
set Kj such that Ki ⊂ Kj ⊂ Km. That is, Km is the next set above Ki in the
lattice.4 We can think of the difference, Km−Ki, as being the skill/experience
set differentiating an individual with knowledge unit Ki from one with Km.
2 If for all closed sets K, there is a unique minimal generating set, the closure operator

is said to be antimatroid. While antimatroid knowledge systems, such as [4,5], are
mathematically most interesting, they seem, in practice, to be most rare.

3 Over 400 references can be found at the web site <cord.hockemeyer@uni-graz.at>.
4 Because U is discrete, there always is a “next” set above Ki in L, unless Ki = U ,

the maximal element.
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In Fig. 4, {gstvwy}−{qst} = {vwy} and {qstvwy}−{stvwy} = {q}. Explicitly
showing the set differences as we have done in 4 instances in Fig. 4 can be an
aid to understanding Proposition 2 which follows.

Proposition 2. If a closed set K covers the closed sets K1, . . . ,Km in Lρ, then
X is a generator of K if and only if X ∩ (K − Ki) �= Ø for all 1 ≤ i ≤ m.

Proof. A rigorous proof can be found in [8], here we present a more intuitive
argument.

A knowledge unit is the smallest closed set containing some set, X, of expe-
riences. Suppose X is a generator of K. Now, if X does not embrace at least one
element from K−Ki then X.ϕ = Ki, not K.

Conversely, Lρ contains a number of knowledge units, Ki, and if X includes
at least one experience that differentiates each one from K, then X must char-
acterize K; it must be a generator. ��

That is, the generators of a knowledge unit are precisely those features which
differentiate it from other knowledge units in the lattice. By Proposition 2, if one
knows the generators of a closed knowledge unit, one knows the closed sets it
covers, and conversely given the lattice of closed sets one can determine all the
generators. It is worthwhile convincing oneself of this unusual result by actual
trial. In Fig. 4, {qstvwy} covers {qst}, {qsy}, {qty}, and {stvwy} with respective
differences being {vwy}, {tvw}, {svw}, and {q}. Using Fig. 1, convince yourself
that both of the sets {qv} and {qw}, each of which intersect all four set differences
are actually generators of {qstvwy}.

Suppose U consists of visual stimuli. If X generates K, a closed set of related
stimuli, constituting a visual object, then X consists of those visual attributes
that characterize the object; and differentiate it from other similar objects, Ki.
On the other hand, if K represents an ability level in high-school algebra, as in [4],
then X represents those skills necessary to advance from lesser sets of algebraic
abilities, Ki to K. Finally, if K represents knowledge of the Napoleonic wars,
then questions embodying the facts found in a generator, X, would comprise an
excellent test of the student’s knowledge. The concept of generators resonates
with many educational themes depending on the network granularity.

Experiential networks are real. The neural networks of the mind are real; our
social networks are real; the related collections of facts we call knowledge are
real. Our rendition of these real networks by ρ may be an over simplification;
but it is an abstract depiction of real phenomena. In contrast, these knowledge
lattices are not real. They have no existential counterpart that we know of.
They are purely a mathematical construct designed to help us understand the
organization and structure of real networks; and in the next section, to help us
understand how their structure can change under dynamic transformation. This
is an important distinction. While in this section, and the next, we may seem to
be fixated on these knowledge lattices. We are really most concerned about the
underlying network of experiential relationships.

Do the concepts of closure and generators correspond to real phenomena?
Even though we have no compelling proof, we believe they do. It seems clear that
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our minds are capable of identifying and labeling, in some fashion, related collec-
tions of experiential input. Several cognitive psychologists have emphasized this
fact. Objects that are linguistic nouns appear to invariably behave as closed con-
cepts, with adjectives often fulfilling the role of generating features. Replacing a
cluster of primitive experiential elements with a single label can optimize neuron
use because it facilitates the internal representation at a coarser granularity. It
seems necessary for “abstract” thought.

Similarly, it seems apparent that the mind, on many levels, apprehends
objects and abstractions of the real world by abbreviated collections of salient
features. This, too, represents an economical use of neurons — which must be
important to all organisms. Whether generators exactly model this phenomenon
is unclear; but surely they represent an abstraction of this capability.

Our imposition of a formal lattice structure as a mathematical device to com-
prehend the organization of experiential networks may be a major contribution
of this paper. In the following sections we will see where this leads us.

5 Transformation as Learning

The notion of transformation is a familiar one in educational psychology; for
example, the process of internalization has been described by the Russian psy-
chologist, Lev Vygotsky, as a “series of transformations” [3]. In this section we
will develop the idea of transformation as a mathematical function. Most of us
are familiar with polynomial functions, which describe numerical change — the
speed of a falling object is a quadratic function of it’s time of flight. But now, we
let a transformation be a function that describes a change of structure. It requires
a different mathematical mind set. It is one reason we use suffix notation.

By a transformation, U
f−→ U ′, we mean a function f which for every set

Y ⊆ U , assigns a set Y.f = Y ′ ⊆ U ′. (We use Y ′ to denote the image of Y in U ′).
Of most interest will be the effect, K.f of transforming closed knowledge units,
and how the transformation will affect their relationship with other knowledge
units, Ki.f . The importance of using a power set as the domain and codomain of
a transformation is that elements can be functionally inserted or removed from
the system. For example, consider the transformation f depicted by Fig. 5 which
adds a completely new element, r, to the network of Fig. 1. That is, Ø.f = {r},
so {y}.f = {ry}, and all closed sets containing q now contain {qr}.

In the mathematics of the real line, the behavior of functions is typically
visualized by the familiar graph plotting the value y = f(x) for all x along
the x-axis. When the function is defined on sets of discrete elements a different
approach must be taken. We prefer to illustrate its behavior by what happens
to the closed set/knowledge lattice. Although f must be defined for all sets,
Y ⊆ U , we use only these closed sets to visualize the process. In Fig. 5 the lower
transformation Lϕ

f∗−→ L′
ϕ′ illustrates its behavior with respect to the knowledge

lattice. This transformation, f , is a classic example of a smooth, well-behaved
lattice morphism.
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Fig. 5. A transformation U
f−→ U ′ that adds a completely new element r′ to the

network of Fig. 1.

A transformation U
f−→ U ′ is said to be monotone if for all sets X,Y in

U , X ⊆ Y implies X.f ⊆ Y.f . Monotonicity is essential throughout the fol-
lowing mathematical approach.5 Observe that the transformation f of Fig. 5 is
monotone, in that Ki ⊆ Km in Lϕ implies Ki.f ⊆ Km.f in L′

ϕ′ .

5.1 Continuous Transformations

In high school we are told that a “continuous” function, f(x), is one whose graph
can be drawn without lifting one’s pencil from the paper. The more precise
definition encountered in real analysis is quite analogous to the definition that
follows.6 A discrete transformation, U

f−→ U ′, is said to be continuous if for
all Y ⊆ U ,

Y.ϕ.f ⊆ Y.f.ϕ′ (2)

This is the traditional definition of continuity for functions on discrete spaces
[9–11,20,21]. Yet this short equation conveys little intuitive sense of its import.
The transformation f of Fig. 5 is continuous; it is “smooth”. Continuity takes
on additional importance when viewed as a function on knowledge lattices.
5 In artificial intelligence (A.I.), learning is said to be “monotonic” if no new piece

of information can invalidate any existing “knowledge” as represented by a set of
rules. That concept of knowledge involves a notion of logical contradiction, not just
the simple inclusion or deletion of experiential input. There is an abundance of
literature about A.I. architectures which support both monotonic and non-monotonic
reasoning [13,17]. Our use of the term is rather different.

6 A real function y = f(x) is said to be continuous if for any open set Oy containing
y, there exists an open set Ox containing x such that f(Ox) ⊆ Oy = Of(x), or using
suffix notation x.O.f ⊆ y.f.O′.
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It effectively asserts that if a learning transformation is continuous, it only
expands the knowledge units of an individuals experiential awareness. That is,
if K = Y.ϕ then K.f ⊆ Y.f.ϕρ′ = K ′.

Before considering more fully what comprises continuous transformations in a
cognitive context it can be valuable to examine the purely formal characteristics
of continuity.

Proposition 3. Let (U,ϕ)
f−→ (U ′, ϕ′), (U ′, ϕ′)

g−→ (U ′′, ϕ′′) be monotone

transformations. If both f and g are continuous, then so is U
f · g−→ U ′′.

Proof. We have X.ϕ.f ⊆ X.f.ϕ′ for any X ∈ U and Y.ϕ′.g ⊆ Y.g.ϕ′′ for any
Y ∈ U ′. Consequently, as g is monotone, X.ϕ.f.g ⊆ X.f.ϕ′.g ⊆ X.f.g.ϕ′′. Thus
f · g is continuous. ��
Proposition 4. Let (U,ϕ)

f−→ (U ′, ϕ′) be monotone, continuous and let Y.f =
Y ′ be closed. Then Y.ϕ.f = Y ′.

Proof. Let Y.f be closed in U ′. Because f is continuous Y.ϕ.f ⊆ Y.f.ϕ′ = Y.f ,
since Y.f is closed. By monotonicity, Y.f ⊆ Y.ϕ.f , so Y.ϕ.f = Y.f . ��
Proposition 5. Let (U,ϕ)

f−→ (U ′, ϕ′) be monotone. Then f is continuous if
and only if X.ϕ = Y.ϕ implies X.f.ϕ′ = Y.f.ϕ′.

Proof. Let f be continuous, and let X.ϕ = Y.ϕ. By monotonicity and conti-
nuity, X.f ⊆ X.ϕ.f = Y.ϕ.f ⊆ Y.f.ϕ′. Similarly, Y.f ⊆ X.f.ϕ′. Since Y.f.ϕ′

is the smallest closed set containing X.f and X.f.ϕ′ is the smallest closed set
containing Y.f , X.f.ϕ′ = Y.f.ϕ′.

Conversely, assume f is not continuous. So there exists Y with Y.ϕ.f �⊆ Y.f.ϕ′

There exists X ∈ Y.ϕ−1. X.f ⊆ X.ϕ.f = Y.ϕ.f �⊆ Y.f.ϕ′, so X.f.ϕ′ �= Y.f.ϕ′,
contradicting the condition. ��
Corollary 1. If (U,ϕ)

f−→ (U ′, ϕ′) is a monotone, continuous transformation
and X generates K (X.ϕ = K) then X.f generates K.f.ϕ′.

Note that even though f is monotone and continuous, and K is closed with
respect to ϕ, K.f need not be closed with respect to ϕ′. However, by Corollary 1,
K.f must be a generating set of K.f.ϕ′.

Continuous transformations are very well-behaved with other demonstrable
properties, c.f. [11]. It is our conjecture that continuous transformations of a
human’s experiential network (as exemplified by ρ) corresponds to our “natural”
reaction to new experience and stimuli. It is an, almost automatic, response to
novel experiences.

5.2 Small Incremental Change

The key to continuous learning is not just exposure to new experience, but how
that new experience is integrated with other related experience. It has been sug-
gested that new experience, new stimuli, is integrated into our memory, or knowl-
edge structure, as we sleep. Apparently this occurs through the creation of new
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axons and synaptic connections [1]. Some researchers believe that the elimination
of connections may be as equally important as creating new ones [19].

It was shown in [14], that if a discontinuity exists, it will manifest itself at a
single experiential event.

Proposition 6. If there exists Y such that Y.ϕ.f �⊆ Y.f.ϕ′ then there exists a
singleton set {y} ⊆ Y.ρ such that {y}.ϕ.f �⊆ {y}.f.ϕ′.

This makes testing for continuity viable.
The following two propositions characterize continuous transformations that

add, or delete, edges/relationships within a network. In both Propositions 7 and
8, we assume that U ′ = U , and that f is the identity function on Lϕ, and that
y′ = {y}.f denotes the same node, but within the new structure of L′

ϕ′ . In the
statement of these propositions we use the term x.η. By Y.η, which we call the
neighborhood of Y , we mean the set Y.η = Y.ρ − Y , that is, the immediate
neighbors of Y with respect to ρ.7

In Proposition 7 we show that new links can be continuously created between
two experiential events x and z if there already exists a reasonably close rela-
tionship. Granovetter [7], and many other sociologists have observed this phe-
nomenon.

Proposition 7. Let U
f−→ U ′ be the identity transformation. If f adds an edge

(x′, z′) to create a network ρ′, it will be continuous at x if and only if for all
y ∈ x.η, if x ∈ y.ϕ then z ∈ y.ρ.

Proof. Assume that ∃y ∈ x.η, x ∈ y.ϕ but z �∈ y.η. Since x ∈ y.ϕ, x.η ⊆ y.ρ.
But, because z �∈ y.η, x′.η′ �⊆ y′.ρ′ and y.ϕ.f �⊆ y.f.ϕ′.

Conversely, assume f is discontinuous. First, we observe that x.ϕ.f ⊆ x.f.ϕ′,
since the addition of an edge (x′, z′) cannot reduce the closure x′.ϕ′. So, f must
be discontinuous at y ∈ x.η; that is, ∃w ∈ y.ϕ such that w′ �∈ y′.ϕ′, because
w′.η �⊆ y′.ρ′. Readily w′ = x′ (or z′). After adding the edge (x′, z′), x′.η′ �⊆ y′.ρ′

only if z′ �∈ y′.η, that is z �∈ y.η. ��
We say f is “discontinuous at x” even though the actual discontinuity may occur
at y ∈ {x}.η ⊆ {x}.ρ as noted in Proposition 6. This slight abuse of terminology
allows us to focus on the structure surrounding the node x before (x′, z′) is
created.

Observe that the creation of the link (t′, v′) in Fig. 6 is continuous because for
{s, w} ⊆ t.ρ, we have t �∈ s.ϕ and t �∈ w.ϕ, so Proposition 7 is satisfied vacuously.

Next we show that a link between two experiential events x and z can be
continuously deleted if they are not too closely connected.

Proposition 8. Let U
f−→ U ′ be the identity transformation. If f deletes an

edge (x, z) from ρ′, it will be discontinuous at x if and only if either
(a) z ∈ x.ϕ and z.ϕ �= x.ϕ or
(b) there exists y ∈ x.ϕ, with z ∈ y.η.

7 Note that the η operator is normally neither expansive nor monotone.
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Proof. Suppose (a), z ∈ x.ϕ. Since (x, z) is being deleted z′ �∈ x′.η′. Conse-
quently, {x}.ϕ.f �⊆ {x′}.f.ϕ′. The last conjunct x.ϕ �= z.ϕ of condition (a)
covers the special case described in [15].

Suppose (b) that ∃y ∈ x.ϕ and z ∈ y.η. {y′} ⊆ x.ϕ.f , but z′ �∈ x′.η′ implies
that y′.η′ �⊆ x′.η′, hence y′ �∈ x′.ϕ′ = x.f.ϕ′. Now, {x}.ϕ.f �⊆ {x}.f.ϕ′, and f is
discontinuous.

Conversely, suppose f is not continuous at x. Then by Proposition 6, either
(1) {x}.ϕ.f �⊆ {x}.f.ϕ′ or (2) for some y ∈ {x}.η, {y}.ϕ.f �⊆ {y}.f.ϕ′.

Assume the former, then ∃ some w ∈ {x}.ϕ such that w′ = w.f �∈ {x}.f.ϕ′.
Since (x, z) is the only edge being deleted, w must be z.

Now assume the latter. If y ∈ {x}.ϕ then y.η ⊆ x.ρ. If z �∈ y.η then {y}.ϕ.f ⊆
{y}.f.ϕ′; but f is assumed to be discontinuous, so z ∈ y.η. ��

Fig. 6. A transformation g that adds a new connection (t′, v′) to the network of Fig. 1.

In Fig. 6, consider the inverse function, g−1 which removes the edge (t′, v′).
By Proposition 8, it is not continuous because s′ ∈ t′.ϕ′ and v′ ∈ s′.η′ satisfying
condition (b) for discontinuity. We can verify the discontinuity, because t′ϕ′ =
{s′t′} in L′, so t′.ϕ′.g−1 = {st} �⊆ {t} = {t′}.g−1.ϕ.

If f and g are both continuous single edge additions or deletions, then by
Proposition 3, their composition f · g is as well. It would be mathematically
satisfying, if conversely every continuous restructuring of ρ could be decomposed
into primitive single edge transformations; but in [14], it is shown that this need
not be true.

6 Summary

Our goal has been to explore whether properties of closure operators and closed
set systems can be relevant to modeling cognitive processes. We have presented ρ
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as an experiential operator. We have considered closed sets as units of knowledge
that can be characterized by their generators and partially ordered to form a
knowledge lattice We have couched learning in terms of transformations.

Proposition 8 provides necessary and sufficient conditions for a specific kind
of transformation which removes a link in a relationship to be continuous. It
seems to be a widely held contention that learning involves the acquisition of
more experiences and more data. In early childhood when our neural capabilities
are growing this would seem so. But, even at an early age, children appear to
be condensing raw stimuli into abstract identifiable concepts. In the process of
learning, deletion seems to be as valuable as addition. In many forms of autism,
it is the inability to delete and control an overload of raw sensory images that
is problematic.

We believe we have demonstrated that an approach to network comprehen-
sion based on closed sets and continuous transformation can be a potentially
valuable tool for modeling cognitive behavior. It will certainly take further refine-
ment, including consideration of multiple experiential relationships, and consid-
erable experimental testing to validate that claim.
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Abstract. Dynamic optimisation problems (DOPs) have become a challenging
research topic over the last two decades. In DOPs, at least one part of the
problem changes as time passes. These changes may take place in the objective
function(s) and/or constraint(s). In this paper, we propose a new type of DOP in
which the boundaries of variables change as time passes. This is called a single
objective unconstrained dynamic optimisation problem with known changeable
boundaries (DOPKCBs). To solve DOPKCBs, we propose three repair strate-
gies. These algorithms have been compared with other repairing techniques
from the literature that have been previously used in static problems. In this
paper, the results of the conducted experiments and the statistical analysis
generally demonstrated that one of the proposed strategies, which uses the
overall elite individual (OEI) as a repair strategy, obtained much better results
than the other strategies.

Keywords: Changeable boundaries � Dynamic optimisation � Genetic
algorithm � Overall elite individual � Repair strategy

1 Introduction

Optimisation is one of the important research areas that directly relates to our everyday
decision making, such as in transportation and management. There are different cate-
gories of optimisation problems. These problems can be either discrete or continuous
[1, 2], single objective or multi-objective [3, 4], unconstrained or constrained [2], and
they may either be stationary (static) [5], or dynamic, where they have at least one part
that changes over time [6].

Several real-world problems change over time, e.g., transportation, production and
economic systems, hence the ability to optimise dynamic problems is important. These
problems are called Dynamic Optimisation Problems (DOPs). In DOPs, at least one
part of the problem changes as time passes. Therefore, addressing and solving DOPs is
challenging, since they need an optimisation algorithm to not only locate optimal
solutions, but also must track the changes in optimal solutions over time [7, 8].

In the literature, most of the conducted research in DOPs dealt with changes in the
objective function and/or constraints [7, 8]. However, changes in the boundaries of
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variables as time passes have not yet been considered. Furthermore, because of the
dynamicity of DOPs, solutions might not be normally distributed, so we need to
consider non-parametric tests, e.g., Friedman tests [8].

Motivated by the literature, in this paper we propose single objective unconstrained
dynamic optimisation problems with known changeable boundaries (DOPKCB).
DOPCD is a DOP in which the boundaries of variables change as time passes. In this
paper, we will consider GA-based approaches for solving DOPKCBs. In solving
DOPKCBs, when we move from one time slot/window to the next, some solutions may
become infeasible by violating the boundary condition of one or more variables. In this
case, it is appropriate to apply repairing mechanisms before we continue the optimi-
sation process using GA. Such a repair process may also be needed when the opti-
misation process takes place, as we are interested in feasible solutions as well as
optimal values. A good number of repair techniques have been applied to static opti-
misation problems. For example, repair mechanisms are used for static optimisation
problems with particle swarm (PS) [9, 10] and Evolutionary Algorithms (EAs) [11]
whereby the variables that exceed boundaries are brought back inside the search space
while solving optimisation problems. These repair mechanisms include stochastic
procedures such as random [9] and the stochastic strategy with respect to the new
boundaries [10]. They may be deterministic, such as periodic, set on the nearest
boundary [9] and deterministic “Midpoint” [10]. In this paper, we have investigated the
performance of these approaches with GA in solving DOPKCBs. We have also pro-
posed three new repair methods: stochastic strategy with respect to old boundaries,
scaling and overall elite individual. The experiments were conducted by solving a set of
test problems that were developed in this paper. They are based on well-known
problems from the literature. Note that in this paper, the words “dimensions” and
“variables” can be used interchangeably.

The rest of this paper is organised as follows. In Sect. 2, DOPs are briefly inves-
tigated. In Sect. 3, DOPKCB is described and a framework is provided for generating
its test problems. This section also describes the repair strategies investigated in this
paper, as well as our three proposed strategies. Section 4 includes the experimental
results, and a comparison of all the repair techniques for solving DOPKCBs. Finally,
conclusions and directions for future work are presented in Sect. 5.

2 Dynamic Optimisation Problems

In dynamic optimisation problems (DOPs), at least one part of each problem changes as
time passes. DOPs are usually solved using population based approaches, such as
Genetic Algorithms (GAs) [12] and Evolutionary Algorithms (EAs) [13]. Researchers
have considered many different issues and mechanisms while solving DOPs. In this
section, we briefly investigate three such issues, namely change detection, optimisation
and test problem generators.
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2.1 Change Detection

The simplest approach to solve DOPs is to ignore changes in the problem; however,
this could be an impractical strategy for many problems [6]. In DOPs, the goal of the
solution technique is to track the changes in a problem, and locate the optimal solution
[7]. Additionally, the correlation between the problem-after-change and the
problem-before-change must be considered. In this paper, we assume that the system
can detect the variables that violate the boundary condition, by directly comparing the
value of the variables with their current boundaries.

2.2 Optimisation Approaches

In this section we briefly introduce some of the most typical approaches that have been
proposed to solve DOPs. The first approach is introducing diversity when changes
occur, in which diversity is introduced into the population when any change is detected
[14, 15]. The second approach is maintaining diversity during the search process, in
which solution techniques maintain the diversity in the population during the search
process [16, 17]. The third approach is a memory approach. This can be useful in reusing
previously found solution(s), if the changes in a problem are periodical or recurrent. To
solve these problems, using memory could save computational time [7, 18]. This cat-
egory might be particularly effective in solving DOPs with periodically changing
environments [12]. We refer the reader to the surveys [7, 8] for more details and more
critical reviews of DOP solution approaches.

The memory approach might be the closest to one of the proposed approaches in
this paper, which is overall elite individual (OEI). In this approach, we use the pre-
viously found best solution to reset any violated variables.

2.3 Test Problem Generators

In the literature, there are various benchmark problems to test the performance of
algorithms for solving DOPs. Some test problems in the continuous search space are
mentioned below:

• Moving Peaks Benchmark (MPB): this was proposed by Branke [19], and has been
widely used in the literature [20].

• Dynamic Composition Benchmark Generator (GDBG): the dynamic composition
functions [21] are actually generated from the static functions that were devised by
Liang et al. [22].

• Dynamic test problems of CEC 2009 Competition: the GDBG was used to construct
these test problems [23]. These dynamic test problems consist of Sphere, Rastrigin,
Weierstrass, Griewank and Ackley’s functions.
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3 Dynamic Optimisation Problems with Known Changeable
Boundaries (DOPKCB)

A dynamic optimisation problem with changeable boundaries (DOPKCB) is a DOP in
which the boundaries of the variables change as time passes. In real-life situations, such
problems may arise due to the fact that the range or limit of decision variables may
change over time, because of both internal and external factors. For example:

• in a production process: when we produce multiple products based on the range of
the available resources, this range may be change over time;

• in stock exchange: when we want to optimise a group of illiquid stocks, and their
range of availability may change as time passes.

3.1 DOPKCB Benchmark Problems

To construct a framework for designing DOPKCB, benchmark function(s) containing
multiple dimensions are used. In this paper, Sphere, Rastrigin, Weierstrass, Griewank
and Ackley are used. Generally, this paper only considers minimisation problems.

Here, we have considered three main parameters to construct a problem. The first
parameter is ProbOfChange that determines the probability of a problem change as
time passes. The second parameter is MaxDim that represents the maximum number of
dimensions that a problem contains. Finally, PercOfChangedDim is the percentage of
dimensions in the time slot that have their boundaries change. DOPKCBs are generated
as follows:

• For each generation, generate a random value (g_random 2 [0, 1])

– If (g_random < ProbOfChange)

Change the boundaries of some variables of the problem
– Else

Do not change

To determine which dimensions are ineffective, while all others are effective, a
problem mask is randomly generated. If we have a problem with ten dimensions
(MaxDim = 10), where three are changed (PercOfChangedDim = 30 %). Then three
unique indices 2 [1, 10] are randomly generated, and those dimensions are chosen to
change their boundaries as follows: generate a random value, r, 2 {1, 2, 3} for each
variable of those variables that are change its boundaries:

• If (r == 1): change the lower boundary of the variable
• Else if (r == 2): change the upper boundary of the variable
• Else: change both the lower and upper boundaries of the variable

The change in the lower and upper boundaries is made by choosing random and
different values from a predefined set of values. Hence the efficiency of an algorithm
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for solving DOPKCB depends on how to repair the infeasible and out-of-boundary
value(s). Therefore, their efficiency depends on the used repair method.

3.2 DOPKCB Repair Techniques

The DOPKCB repair technique basically repairs the variables of an individual (solu-
tion) that are outside the current given boundaries. In other words, the solutions are
moved from an infeasible region, to the feasible region, by changing the values of the
violated variables. Repair techniques can be classified into two main categories. The
first category is stochastic techniques that randomly determine a value of the infeasible
variable in a specific range inside its current boundaries. The second category is
deterministic techniques that deterministically determine a value of each infeasible
variable in a specific location inside its current boundary. In this section, we discuss the
previously used repair techniques, as well as our proposed techniques.

Firstly, we discuss stochastic approaches as follows:

Random. Random strategy is one of the simplest stochastic methods. This strategy
randomly generates a valid value for the infeasible variable inside the new boundaries
[9, 11]. This strategy does not use any information, either from previous boundaries, or
the infeasible value.

Stochastic Strategy with Respect to New Boundaries. The stochastic strategy with
respect to new boundaries method is a stochastic repair method [10]. This strategy
places a new valid value of the infeasible variable randomly in the nearest half of the
new boundaries. It works as follows:

Xnew ¼ Unew � ð0:50 � randðÞ � Unew þ Lnewð Þ if Xinfeasible [Unew

Lnew � ð0:50 � randðÞ � Unew þ Lnewð Þ if Xinfeasible\ Lnew

�
ð1Þ

where Lnew and Unew are the new lower and upper boundary of the variable respec-
tively, and rand() is a random value 2 [0, 1].

Now, we will introduce our proposed stochastic repair approach.

Stochastic Strategy with respect to Old Boundaries. A stochastic Strategy with
respect to Old Boundaries method is our first proposed repair technique in this paper.
This method uses information of the position of the infeasible value with respect to the
old boundaries. This strategy places the new valid value of the variable in the same half
of the new search space, but with respect to the old boundaries. It works as follows:

Xnew ¼ Unew � ð0:50 � randðÞ � Unew þ Lnewð Þ if Xinfeasible [Uold

Lnew � ð0:50 � randðÞ � Unew þ Lnewð Þ if Xinfeasible\Lold

�
ð2Þ

where Lnew and Unew are the new lower and upper boundary of the variable respec-
tively, rand() is a random value 2 [0, 1], and Lold and Uold are the old lower and upper
boundary of the variable respectively. This strategy supposes that it would be better for
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the optimisation algorithm to continue its investigation in the same half of the search
space as its previous infeasible value was located.

Now we discuss the deterministic approaches as follows:

Periodic. A periodic repair method is a deterministic strategy that assumes that the
search space of the variable has a periodic shape [9, 11]. This strategy brings the
infeasible value into the current search space from an end which is opposite to where it
is located out of the current feasible boundaries [11] as follows:

Xnew ¼ Unew � Lnew � Xinfeasibleð Þ%Snew if Xinfeasible\Lnew

Lnew þ Xinfeasible � Unewð Þ%Snew if Xinfeasible [Unew

�
ð3Þ

where Lnew and Unew are the new lower and upper boundary of the variable respec-
tively, ‘%’ is the modulus operator, and Snew = |Unew − Lnew|, that is the boundary
width of the variable.

Set on the Nearest Boundary. Set on the nearest boundary repair method is a
deterministic strategy that resets the infeasible value of the variable, on the boundary
which it exceeded, based on the position of the infeasible location [9, 11]. It works as
follows:

Xnew ¼ Lnew; if Xinfeasible\Lnew
Unew; if Xinfeasible [Unew

�
ð4Þ

where Lnew and Unew are the new lower and upper boundary of the variable respec-
tively. This would work well when optimum values of the current problem are located
on the boundaries.

Midpoint. The midpoint method is a deterministic strategy that resets the infeasible
value of the variable to the middle position between the infeasible value and the most
distant current lower or upper boundaries [10]. It works as follows:

Xnew ¼ 0:50 � Xinfeasible þ Lnew
� �

if Xinfeasible [Unew

0:50 � Xinfeasible þUnew
� �

if Xinfeasible\Lnew

�
ð5Þ

where Lnew and Unew are the new lower and upper boundary of the variable respec-
tively. Note that the equation of midpoint method is repeated until it finds a feasible
value in the current boundaries.

Now, we will introduce our novel proposed deterministic repair approaches.

Scaling. The scaling method is our second proposed repair techniques. It is a deter-
ministic method that uses information of the previous boundaries and the infeasible
value. This strategy places the old infeasible value in the same scaled value in a new
search space. It works as follows:
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Xnew ¼ Unew � ðUold � XinfeasibleÞ � Sold
Snew

ð6Þ

where Lnew and Unew are the new lower and upper boundary of the variable respec-
tively, Uold is the old upper boundary of the variable, and Sold and Snew are the width of
the old and the new boundary of the variable respectively. This strategy supposes that it
would be better for the optimisation algorithm to continue its investigation in the same
scaled value as its previous infeasible value.

Overall Elite Individual. Overall Elite Individual method (OEI) is our last proposed
repair technique. It is a deterministic repair method that uses information from the
search space during the optimisation process to guide the repair process. We propose
this approach, as all the previous repair techniques do not take into consideration any
information from the best found area during the optimisation process. This strategy
keeps track of the best found solution during the search process. Then it uses this
solution to repair the violated variables as follows:

Xnew ¼
XbestIndividual if XbestIndividual 2 ½Unew; Lnew�

Lnew if XbestIndividual\Lnew
Unew if XbestIndividual [Unew

8<
: ð7Þ

where XbestIndividual is the value of the best found individual for the infeasible variable
X, and Lnew and Unew are the current lower and upper boundaries of the variable
respectively. This assumes that when the boundaries change it would be better to reset
the location of the violated values near to the best found search space, guided by the
previously best found solution. Note that the overall elite individual is updated if and
only if the current elite individual is better than it.

4 Experimental Results, Analyses and Discussion

To test the performance of our proposed and previously used repair methods, all the
repair methods were paired with genetic algorithms (GAs) to solve DOPKCBs.
Therefore, eight variants of real-coded GAs were implemented for experimentation on
a set of unconstrained separable benchmark functions, namely Sphere, Rastrigin,
Weierstrass, Griewank and Ackley [23]. The eight GAs variants are represented as
follows:

• GA with random repair (RaGA).
• GA with stochastic strategy with respect to new boundaries repair (SNBGA).
• GA with stochastic strategy with respect old boundaries repair (SOBGA).
• GA with periodic repair (PerGA).
• GA with set on the nearest boundary repair (SONBGA).
• GA with midpoint repair (MpGA).
• GA with scaling repair (ScGA).
• GA with Overall Elite Individual repair (OEIGA).
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Note that the change in the lower and/or upper boundaries of the variable occurred
by randomly choosing a value from a predefined set. The sets of lower and upper
boundaries are 2 {−20, −15, −5, 5, 10, 15} and {−10, −5, 5, 10, 20, 25} respectively.
Consequently, the boundaries change by choosing from those predefined values. Note
that in this paper, all the algorithms were coded in Microsoft C++, on a 3.4 GHz/16 GB
Intel Core i7 machine, Windows 7 operating system.

For a fair evaluation, every algorithm ran for one million fitness evaluations. To
compare these algorithms, a group of points was determined for calculations over the
fitness evaluations. In this paper, 20 calculation points were determined, so the value
for every 1000000

20 = 50000 fitness evaluations solutions were recorded. A variation of the
Best-of-Generation measure was used, where the best-of-generation values were
averaged over all generations at each calculation point [24]. It is calculated as follows:

�FBOG ¼ 1
G

Xi¼G

i¼1

1
N

Xj¼N

j¼1
FBOGij

� �
ð8Þ

where �FBOG is the mean best-of-generation fitness, G is the number of generations, N is
the total number of runs and FBOGij is the best-of-generation fitness of generation i of
run j of an algorithm on a problem [25].

Table 1 shows the used parameters of the implemented GAs and settings of
DOPKCBs. Note that every run of an instance of a problem has initially the search
space of all variables, i.e. [−5, 5] [23]. Also, for a fair comparison, all GAs had the
same initial population at the beginning of each run.

Table 1. Parameters of experiments

Parameter Value

Population size 100
Max. number of fitness evaluations /run 1000000
Probabilities of problem change
(ProbOfChange)

0.01, 0.50

Selection procedure Tournament
Tournament size 2
Selection pressure 0.90
Elitism percentage 2
Crossover Single-point
Crossover rate 0.90
Mutation Uniform
Mutation rate 0.15
Number of dimensions (MaxDim) 20
Changed dimensions (PercOfChangedDim)/
change

Randomly 2{[0 %, 25 %], [75 %,
100 %]}
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In order to compare the algorithms accurately, we performed statistical significance
tests. Therefore, the non-parametric Friedman test, that is similar to the parametric
repeated measure ANOVA, was used [8, 26]. As mentioned before, when each algo-
rithm solved a problem, it had overall 20 FBOG s. We performed the Friedman test with a
confidence level of 95 % (α = 0.05) on all the values with regard to particular variations
of the parameters of DOPKCBs, with the null hypothesis that there is no significant
differences among the performances of the compared algorithms. The computational
value of the p-value was less than 0.05. Consequently, there are significant differences
among the performances of the compared algorithms, therefore, we reject the null
hypothesis.

Tables 2, 3, 4, and 5 show Friedman ranks of the comparisons among the algo-
rithms with different settings of DOPKCBs. In these tables, lower values indicate better
results and the best results are marked in bold.

Table 2. ProbOfChange = 0.01, PercOfChangedDim = [0 %, 25 %]

Function RaGA SNBGA SOBGA PerGA SONBGA MpGA ScGA OEIGA

Ackley 4.5 3.1 5 7.4 1.95 6.35 6.65 1.05
Griewank 3.85 3 5.05 4.5 7.1 2.45 3.9 6.15
Rastrigin 4.3 3.1 5.2 7.6 1.85 6.15 6.65 1.15
Sphere 4.35 3.05 4.95 7.8 1.72 6.05 6.8 1.28
Weierstrass 5.15 5.65 6.45 3 1.65 7.35 5.4 1.35
Average 4.43 3.58 5.33 6.06 2.854 5.67 5.88 2.196

Table 3. ProbOfChange = 0.50, PercOfChangedDim = [0 %, 25 %]

Function RaGA SNBGA SOBGA PerGA SONBGA MpGA ScGA OEIGA

Ackley 4 3 5.25 5.8 2 6.95 8 1
Griewank 4 3 5.8 8 2 5.2 7 1
Rastrigin 4 3 5.75 8 2 5.25 7 1
Sphere 4 3 5.8 8 2 5.2 7 1
Weierstrass 5.35 4 5.65 3 1.8 8 7 1.2
Average 4.27 3.2 5.65 6.56 1.96 6.12 7.2 1.04

Table 4. ProbOfChange = 0.01, PercOfChangedDim = [75 %, 100 %]

Function RaGA SNBGA SOBGA PerGA SONBGA MpGA ScGA OEIGA

Ackley 4.1 3 5.15 6.9 2 6.25 7.6 1
Griewank 3.85 3.15 4.7 7.4 3.2 4.4 6.9 2.4
Rastrigin 4.05 3 5.6 7.65 1.95 5.45 7.25 1.05
Sphere 4.05 3 5.65 7.8 1.95 5.3 7.2 1.05
Weierstrass 6.85 5.35 7.25 3 1.5 6.45 4.1 1.5
Average 4.58 3.5 5.67 6.55 2.12 5.57 6.61 1.4
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The following observations can be drawn from the previous tables:

• For the previous techniques, SONBGA performed better when the optimal solutions
were located near to the boundaries, especially Weierstrass function where the
optimal solutions are located exactly on the changed boundaries. Also, SNBGA is
the best stochastic strategy. This is because it would be better for the optimisation
algorithm to continue its investigation near to its previous infeasible value.

• The proposed SOBGA and ScGA did not present any competitive results.
Regarding SOBGA, searching in the same half of the current search space as the
previous infeasible value that had been located was not effective, because it placed
the new feasible value in un-guided areas, unlike SNBGA. Whereas, ScGA was not
effective because boundaries were moving, but were not scaled. However, ScGA
strategy could perform better if the new boundaries were scaled.

• Our last proposed method, OEIGA, which used overall elite individual as a repair
strategy was the best strategy, especially when the ProbOfChange increased. This is
because it lets the GA explore more search space when the boundaries moved more
and explored more search spaces. Consequently, OEIGA found better elite indi-
vidual(s) to effectively guide the optimisation process. However, OEIGA perfor-
mance degraded in Table 2 when the ProbOfChange = 0.01 for the Griewank
function. This is because OEIGA could not explore the search space enough to find
a better overall elite individual that could be used effectively to repair violated
values.

• In general, OEIGA outperformed all the other GAs. This is because the OEI repair
method guided GAs towards good search areas when boundaries were moved.

5 Conclusions and Future Work

Motivated by the literature [7, 8], in this paper we propose a new type of dynamic
optimisation problem: single objective unconstrained DOPs with known changeable
boundaries (DOPKCBs). This is a class of DOPs in which the boundaries of the
dimensions change as time passes.

Moreover, we have proposed three repair procedures to solve DOPKCBs. Based on
the experimental results and statistical tests, one of the proposed approaches, the one
that uses the overall elite individual as a repair strategy (OEI), outperformed the other
repair strategies. This procedure guided the algorithm to repair to near the previously

Table 5. ProbOfChange = 0.50, PercOfChangedDim = [75 %, 100 %]

Function RaGA SNBGA SOBGA PerGA SONBGA MpGA ScGA OEIGA

Ackley 5.55 4 7 3 2 5.45 8 1
Griewank 4.95 3 6 7.5 2 4.05 7.5 1
Rastrigin 5 3 6 7.15 2 4 7.85 1
Sphere 4.95 3 6 7.5 2 4.05 7.5 1
Weierstrass 6 4 5 3 1.95 7.95 7.05 1.05
Average 5.29 3.4 6 5.63 1.99 5.1 7.58 1.01
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best found solution, therefore it guided GAs towards good search areas when bound-
aries were moved.

There are several possible directions for future work. The first direction is solving
problems with more dimensions, e.g. forty and eighty dimensions. This direction also
includes solving non-separable functions. The second direction is to use hybrid repair
procedures, e.g. pairing two or more repair strategies, especially a deterministic with a
stochastic strategy.
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Abstract. Learning Classifier Systems (LCSs) originated from artificial
cognitive systems research, but migrated such that LCS became power-
ful classification techniques in single domains. Modern LCSs can extract
building blocks of knowledge utilizing Code Fragments in order to scale
to more difficult problems in the same or a related domain. Code Frag-
ments (CF) are GP-like sub-trees where past learning can be reused in
future CF sub-trees. However, the rich alphabet produced by the code
fragments requires additional computational resources as the knowledge
and functional rulesets grow. Eventually this leads to impractically long
chains of CFs. The novel work here introduces methods to produce Dis-
tilled Rules to remedy this problem by compacting learned functions.
The system has been tested on Boolean problems, up to the 70 bit mul-
tiplexer and 3x11 bit hidden multiplexer, which are known to be difficult
problems for conventional algorithms to solve due to large and complex
search spaces. The new methods have been shown to create a new layer
of rules that reduce the tree length, making it easier for the system to
scale to more difficult problems in the same or a related domain.

Keywords: LCS · Learning · Classifier · Code Fragments · Compaction

1 Introduction

Learning Classifier Systems (LCSs) fall under the umbrella of a set of techniques
known as Evolutionary Computation (EC) [4], which are inspired by Darwinian
principles. LCSs were originally cognitive systems. A cognitive system is one
that is inspired by the principles of stimulus-response in cognitive psychology.
This type of system was first introduced by Holland and it was designed to
evolve a set of rules that would convert a given input into useful output for a
multitude of problem domains [7]. However, they became powerful classifiers in
single domains. To progress as cognitive systems, they need the capability of
scaling to similar and related domains. Although EC techniques are applicable
to many problems and have enabled advances in the field of machine learning,
they have an inherent weakness. Each time a problem is solved, conventional
EC techniques tend to throw away any learned knowledge and must start anew
c© Springer International Publishing Switzerland 2016
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when tasked with a new challenge. This is a problem because by removing any
learned information, the technique loses the potentially useful information that
previously learned blocks of knowledge represent.

Recently, reusing learned knowledge has been shown to increase scalability
and can provide shortcuts that decrease the search space of the problem at
hand [14,15]. The past work showed that the reuse of knowledge through the
adoption of code fragments (CFs), GP-like sub-trees, into the most common
LCS framework, XCS, can provide dividends in scaling. CFs are initially limited
to a depth of two. This depth was chosen, based on empirical evidence, to limit
bloating, a common occurrence in Genetic Programming (GP). Analysis suggests
that there is an implicit pressure for parsimony within CFs [14]. However, at each
new problem, including at each new scale, a CF can contain previously learned
CFs. Thus the depth of the sub-tree can increase by a factor of two at each
successive problem.

CFs are a practical extension to XCS and have enabled the solution to pre-
viously intractable problems. Initially this was only to scale to more complex
problems in the same domain [15], as CFs were only used in the leaf nodes of
the sub-trees. In addition to this, the functions used by the system were hard
coded, e.g. OR, NOT, MULTIPLICATION. This creates bias in the choice of
hard coded functions and does not contain building blocks related to functions
(only the terminal leaf nodes). Subsequently, it has been demonstrated that it
is possible to reuse learned rulesets as functions.

These learned rulesets map inputs to outputs, therefore they act as learned
functions. The following illustration may serve to clarify this point:

′If < Conditions > Then < Actions >′ (1)

′If < Input > Then < Output >′ (2)

Function(Arguments < Input > Return < Output >) (3)

Equation 1 is the standard way that a classifier would process its conditions
to achieve an action, which is analogous to 2. Equation 3 is the analogy with a
function where a complete rule-set acts as a single function. These functions will
take a number of arguments as their input and will return an output [2].

It was determined that reusing learned functionality at the root and leaf
nodes of CF sub-trees can increase scalability by reducing the search space, as
relevant CFs are attached to the learned functions reducing the search for the
appropriate input to functions. Furthermore, it was shown that by progressively
accumulating learned functionality in the form of ‘rule-sets’, it is possible to
further reduce the search space [1,2].

Compaction (Reduction) techniques, have the goal of reducing the number
of classifiers based on given criteria [20]. The most common method for achiev-
ing this is a form of Subsumption as implemented in [18]. It extended an XCS
that had been implemented with CFs, giving it the functionality to subsume
unnecessary classifiers. Subsumption occurs in XCS in the action set, after the
discovery step, and consists of identifying classifiers that are both accurate and



Compaction for Code Fragment Based Learning Classifier Systems 43

sufficiently experienced. Less general classifiers are deleted (subsumed) and the
subsumer has its numerosity counter increased. This has the benefit of reducing
the computing cost while producing simpler and more condensed final popula-
tions [3].

An alternative compaction method is a post-processing step that condenses
the population of classifiers and is additional to the different mechanisms that
exert parsimony pressure on the population, such as subsumption and niche
mutation [19]. Wilson’s technique consists of three main steps [5,20]. First, a
subset of classifiers that achieve 100 % performance is identified. Then any clas-
sifiers that do not advance performance are eliminated from this subset. Last,
the classifiers are ordered by the number of inputs matched, until all the inputs
are matched. This process was designed to happen after the normal processing
of XCS and in this respect is similar to the proposed work. With one major
difference, whereas Wilson’s technique produces a compact set of optimal classi-
fiers, the proposed work aims to translate the final set of optimal CF classifiers
produced by XCS into a more compact alphabet to facilitate a faster evaluation
of learned knowledge.

CRA2 is a similar compaction method to [20], but is executed during the
normal training processing of XCS [5]. Classifiers are marked as ‘useful’ if they
have the highest payoff prediction, numerosity product. At the end of the run all
the classifiers not marked ‘useful’ are removed. In some respects this is equivalent
to restarting XCS with a constantly revised and potentially improved initial
classifier set [5]. Although this algorithm does tend to produce a correct result,
it is dependent on having at least one dominant classifier in each matchset. Also,
according to Dixon, this algorithm only works correctly if all the classifiers have
zero errors with payoffs equal to the environmental reward value.

Compaction methods are needed with CF rules as they contain long chains
of rules that are slow to process. At the end of each run, a method is needed to
produce a new layer of rules that can be processed efficiently. There still needs
to be a tight linking between the CFs and the final, efficient, rule-set functions,
termed Distilled Rules (DR). The link is required as the CFs are reused by the
system and they include feature construction while the DRs are utilized instead
of the evaluation of the long chains of CFs.

The aim of this work is to improve the efficiency, without reducing the effec-
tiveness of the CF approach. The research objective is: Create a method(s)
to reduce the length of CF chains as the problem scales and functionality is
transferred to related domains.

The benefits of the new work, known as XCSCF3, will be tested by running
experiments against XCS and XCS with standard CFs (XCSCFC in this case).
XCS is an acceptable benchmark as it is widely used and has been studied pro-
fusely. The methods will be illustrated using the basic Boolean operators, while
being tested on the multiplexer problems and finally the hidden multiplexer.



44 I.M. Alvarez et al.

2 Background

Learning Classifier Systems were first proposed by John H. Holland almost
40 years ago [7]. The original description of the LCS was of a cognitive system.
The implication was that this type of system could learn about its environment,
about its state, and could also execute actions on its environment.

The first cognitive system or (CS-1) was proposed by Holland and Rietman
and featured a Genetic Algorithm (GA) component that made it possible to
learn. The Learning System One (LS-1) of Smith exhibited an advantage over
CS-1 in that it could learn from two different problem domains [8,16].

LCSs can select features using generality in the don’t care operator. Origi-
nally, they utilized a ternary alphabet composed of: { 0, 1, # }; the ‘#’ hash-
mark stands for a don’t care (or an OR operator). Since the original inception
of LCSs, they have been expanded to include richer alphabets in their represen-
tation, such as S-Expressions [11]. These new alphabets have equivalent don’t
care identifiers. XCS is the standard LCS used for research, but it cannot solve
certain problems. In order to achieve better results, Code Fragments have been
added to XCS (see [3] for further details on XCS).

Code Fragments (CFs) were introduced to XCS in the form of GP-like sub-
trees. They have a maximum depth of two, as this number was deemed important
to limit bloating. CFs have enhanced XCS in terms of increased scalability and
a much richer alphabet. CFs have been instrumental in arriving at a solution
for the 135 Bit Multiplexer, a problem that until then, had been considered
intractable for standard XCS [15].

LCSs can reuse learned knowledge to scale to problems beyond the capabil-
ities of non-scaling techniques. One such technique is XCSCFC. This approach
uses CFs to represent each of the condition bits such that it allows feature
construction in the condition of rules. Another advantage of LCSs is that they
can select and construct features to find reusable patterns in the antecedents
of feature space to map conditions to actions. Although XCSCFC exhibits bet-
ter scalability than XCS, eventually, a computational limit in scalability will be
reached [13]. The reason for this is because multiple code fragments can be used
at the terminals, each one potentially containing CFs from previous lower scale
problems. As the problem increases in size, it is possible to create trees having
a depth of twice the number of scaled problems.

Another type of CF system is XCSCFA, where the condition part retains its
original ternary alphabet representation but the action part of the classifier is
replaced by a code fragment. The terminals in the code fragment sub-tree can
be replaced with either the corresponding bits from the environment message
or with bits from the classifier condition [15]. This method produced optimal
populations in discrete domain problems as well as in continuous domain prob-
lems [15]. This however lacked scaling to very large problems, even if they had
repeated patterns in the data.

A slightly different approach to increase scalability was sought in XCSCF2

[1]. Since LCSs can reuse sets of condition:action rules as functions as in
the input:output of the function corresponds to the condition:action of rules,
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XCSCF2 [1] captures building blocks of knowledge together with associated func-
tionality. By linking the rulesets to the learned function the system was able to
reduce the search space. This provided certain benefits in scaling in the simpler
boolean problems such as the 11 and 20 bit multiplexers. The drawback of the
CF approach is that chains of CFs (and rules in CFs) are created, which slows
the performance [2].

Sensor Tagging [17], was introduced based on the notion of messy coding as
described in [6,10], in order to quicken the learning in XCS-based systems. The
classifiers utilize a hash table to keep track of the binary values paired with a
particular condition bit. The approach was successful in solving up to the 135
bit multiplexer. However, it is heavily memory intensive, therefore it reduces
the scalability, which is required to solve any of the more complex multiplexer
problems. The main difference between the two approaches is that while CFs
can be referred to as an alphabet, because they can represent the condition,
when paired with a system that is scalable, they become a method by which to
learn new building blocks of knowledge. They identify the relationships between
different features that are useful in solving more complex problems in the same
or a related domain. Although Sensor Tagging [17], subsumption for XCS with
CFs [18] and the precursor compaction techniques are useful approaches, the
proposed work here considers the task of compaction from a slightly different
direction. The compaction takes place at the end of the run and produces the
set of DRs from classifiers with a rich alphabet to a simple alphabet to increase
efficiency in future reuse of knowledge.

3 The Method

Although CFs produce maximally general and correct rules, as well as being
readily interpretable by the human eye, they represent a solution through many
logical layers that require computing resources. The aim is that by compacting
CF rules into a new layer using a ternary alphabet, it will be possible to lessen
the computing needs for solving a particular problem. Moreover, the new rules
are anticipated to be simpler to interpret than long chains of CFs. Furthermore,
this will enable learning without the need for hard coded functions.

3.1 Proposed System

The objective is to reduce the CF chain length, i.e., depth. There are existing
methods for creating compacted ternary rulesets, but this work aims to use
CFs to generate the final compact rules by directly translating each CF rule to
multiple compact ternary rules. The compact rules will also be associated with
the uncompacted CFs, which can be reused in future problems as they encode
the knowledge of relationships between the features.

The boot-strap function of NAND needs to be created from a standard XCS
system. The rules-set produced is then fed into the proposed system to serve as
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a seed function. From this initial function, other Boolean operators are learned,
such as NOT, OR, AND, and so forth [2].

The proposed system will follow the normal XCS steps, i.e., create a matchset,
choose a valid action, create an action set, execute said action and update the
action set based on what reward the environment returns. In conjunction with
the aforementioned steps, the system will construct features composed of code
fragments, following the method of XCSCFC [15]. It will create new CFs for
each of the condition bits but will retain the binary alphabet, {0, 1}, for the
action part of the classifiers.

Once the final population of each problem has been determined, the system
will begin to translate each CF rule into a set of rules based on the ternary
alphabet i.e., {0, 1, #}. These new rules are called Distilled Rules (DRs). As the
rules are being translated, (please see Algorithm 1), care will be taken to omit
duplicate rules or rules that can be subsumed by existing rules. The compaction
method will loop through the growing set of DRs to optimize the final population.
The first step in learning the DRs is to determine which of the final classifiers
have enough experience and are always correct and accurate. Since XCS produces
a complete map solution, i.e., both completely correct and completely incorrect
rules that the system categorizes as accurate (consistently incorrect), one must
ensure to only process the classifiers that are always correct, as these will provide
the correct DRs. Next, a series of states is presented to the classifiers and the CFs
are evaluated to determine if they evaluate to a 1. Any don’t care CFs are ignored
and this reduces the number of potential states that must be processed. If all the
CFs return a 1 then the ternary rule becomes a potential candidate for further
processing and is inserted into the temporary list of rules. If the new candidate
is a duplicate then the numerosity of the existing DR is increased by one and the
candidate is ignored. Likewise if the new candidate can be subsumed or can be
a subsumer, meaning that the subsumer rule is accurate and more general than
the classifier to be subsumed, the numerosity of the appropriate rule is updated
and the subsumed rule is deleted. The final list of DRs is the translation of the
original CFs into a ternary alphabet.

Usage of Distilled Rules. The distilled rules produced by the system at the
end of each run will be reused by the system when solving any of the following,
more complex tasks. Since the proposed system does not avail itself of hard coded
functions, the DRs will serve as the functions that will be used instead. Each
time a CF forming part of a classifier condition has to be compared with the
message string, e.g. when forming a matchset, the CF sub-tree will be traversed
and the appropriate functions at the root nodes will receive their inputs from
the terminals at the leaf nodes. These inputs would be compared with the list of
DRs linked to the aforementioned function. Where all inputs match a particular
rule, the linked action becomes the output and potential input for any higher
levels in the chain of CFs.
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Algorithm 1. Rules Compaction Method
1: for all valid classifiers do � Classifiers with enough experience and always correct
2: for all condition bits do
3: if currentBit not don’t care then
4: TempList[currentBit] ← 0 � Array element will be permuted
5: else if currentBit is don’t care then
6: TempList[currentBit] ← NOOPERATION
7: � Array element set to constant - will not be permuted
8: end if
9: end for
10: while unprocessed bits do � While there are unprocessed condition bits
11: TempList[currentBit] ← NextPermutation
12: Evaluate current classifier using TempList
13: if All Code Fragments = 1 then
14: Add TempList to currentRule
15: � Current State is a valid candidate DR
16: end if
17: end while
18: end for
19: N ← 0 � DRs Counter
20: while numSubsumed > 0 AND N < MAX LOOPS do
21: � Continue until the number of DRs subsumed is 0
22: � or the maximum number of loops is reached
23: if currentRule is duplicate then
24: ignore currentRule
25: else if currentRule is subsumable then
26: subsume currentRule
27: else if currentRule is subsumer then
28: subsume existingRule
29: end if
30: update currentRule numerosity
31: N ← N + 1
32: end while

4 Results

The Boolean operators, multiplexer and hidden multiplexer problems are notable
in their complexity and difficulty, and therefore provide a good testing scheme
for the proposed LCS [4].

4.1 Multiplexer Problem

The multiplexer problem is highly non-linear and exhibits epistasis; the address
bits are fundamental in determining the importance of the corresponding data
bits [12]. The number of address bits is a function of the length of the message
string and grows along with the length of the input string as the problem scales.
The search space of the problem is also adequate to show the benefits of the
proposed work. For example, for the 70-bit multiplexer the search space consists
of 270 combinations [9]. One of the underlying reasons for choosing this problem
domain for the proposed work is because it can be solved by continually building
functionality from the basic Boolean Operators such as NAND, which leads to
OR, NOR, and so forth. The reason for providing the system with a learned
‘NAND rules’ seed file is because with the NAND function any of the other
Boolean operators can be derived.
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4.2 Hidden Multiplexer Problem

The hidden multiplexer is considered a hierarchical problem, as it is designed in
a two-level hierarchy. The lower level is evaluated by one set of Boolean operators
and the output of the lower-level is then fed to the higher level. In the proposed
system the lower level is a parity problem while the higher level is a multiplexer
problem [4].

This problem is an interesting challenge for the proposed work because it
combines the complexity of two different types of problems, resulting in a chal-
lenging search space. The reason is that the hierarchical dependency of the prob-
lems require effective building block processing; the classifiers must identify the
parity blocks and then recombine them effectively [4].

4.3 Experimental Setup

The experiments were run 30 times with each having an independent random
seed. The stopping criteria was when the agent completed the allotted number
of training instances, which were chosen based on preliminary empirical tests on
the convergence of systems. The proposed system was compared with XCSCFC
and with XCS. The settings for the single step experiments were as follows:
Payoff 1,000; the learning rate β = 0.2; the Probability of applying crossover to
an offspring χ = 0.8; the probability of using a don’t care symbol when covering
Pdon′tCare = 0.33; the experience required for a classifier to be a subsumer
Θsub = 20; the initial fitness value when generating a new classifier FI = 0.01;
the fraction of classifiers participating in a tournament from an action set 0.4.

4.4 Boolean Problems

The number of rules produced by the proposed system increased with the com-
plexity of the problem, as was anticipated. For instance, after having learned the
OR operator the system had learned three distilled rules, see Fig. 1 which shows
a listing of the final Code Fragments along with their Id. After having learned
the 6 bit multiplexer, there were 12 DRs associated with the resulting solution,
see Table 1. It is apparent that the learning algorithm did not subsume some of
the DRs such as rules 3 and 5 and then again rules 7 and 12, (this was prob-
ably due to not having used an enumeration method due to time constraints).
The emphasis of the compaction algorithm is to produce a ternary alphabet to
diminish the number of comparisons made by the system, but it is not expected
to produce an optimal compaction of rules because it would be time consuming.
In essence, there is a tradeoff between shorter CF trees for a less optimal DRs
set. The method processes just enough potential rules to derive an optimized set,
this in turn will help in reducing the CF chains to be evaluated by using the DRs
instead. With a problem like the 6 bit multiplexer this would not present much
of a difficulty but a much more difficult problem, such as the 70 bit multiplexer,
could produce an exorbitant number of duplicate rules, slowing the technique.
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OR Problem

Fig. 1. OR - Final CFs and their corresponding DRs - D0 and D1 are features from
the environment while N and d represent learned functions - o is a stop symbol and
identifies the end of the CF.

Table 1. 6-Mux - Distilled rules

1 1 # # # 0 : 0

0 0 0 # # # : 0

1 0 0 # 0 0 : 0

1 0 1 # 0 1 : 0

1 0 # # 0 # : 0

0 1 # 1 # # : 1

1 1 # # # 1 : 1

0 1 # 0 # # : 0

1 0 # # 1 # : 1

0 0 1 # # # : 1

1 1 0 # 1 1 : 1

1 1 1 # 0 1 : 1

Table 2. 6-Mux - Code fragments

CF ID CF Terms

CF 27 D1 D1 m D0 d o

CF 31 D0 D1 d o

CF 43 D0 D0 D1 c m o

CF 47 D1 D1 d D0 N c o

CF 86 D1 D0 M N o

Table 2 shows one example rule of the CF terms pertaining to the 6 Bit
Multiplexer. CF 43 makes use of the AND Boolean operator (c) and it has D0
and D1 as its inputs. Likewise (m) is the tag given by the system to the OR
operator and its inputs are state bit 0 and the output of the AND operator. The
output from the OR node is the final result for the sub-tree. Please see Fig. 2 for
a graphical description.

Table 3 shows the average time in seconds that was spent evaluating the
CFs. XCS was evaluated at the matchset step and took the least amount of
time. XCSCFC performed better than the other two CF systems, followed by
the proposed system, XCSCF3. XCSCF2 was not able to complete the 20 bit
Multiplexer due to its acute memory requirements, however during the 6 and 11
bit Multiplexers it is apparent that XCSCF2 requires much longer time spans to
process its CFs. The timing experiments were repeated 30 times on a Windows
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Fig. 2. CF 43 Sub-Tree - graphical depiction of leaf and root nodes.

Table 3. CF evaluation time results for the multiplexer problems - average time
(Seconds) over 30 experiments - XCSCF2 was not able to complete the 20 bit mul-
tiplexer due to memory requirements

System 6 Bit 11 Bit 20 Bit

XCS 0.29 ± 0.04 1.41 7.94

XCSCFC 1.62 ± 0.23 13.49 73.89

XCSCF2 91.23 ± 11.99 449.29 NA

XCSCF3 23.23 ± 2.14 54.93 172.38

machine with an i5-3470 CPU and 8.0 GB of RAM. The code profiler was used to
measure the elapsed times in the particular functions.1 This table is important
because it provides evidence supporting the theory that by compacting the CF
rulesets it is possible to garner dividends in execution time, making it possible
to solve the more difficult problems.

5 Discussion

5.1 Importance of the Distilled Rules

Although it may seem as if the proposed system is only producing rules akin to
what XCS normally learns, it is important to keep in mind the following:

i. The Distilled Rules are a direct result of the final rules composed of Code
Fragments. These same rules are the building blocks that the system would
have identified as an optimal solution to the problem at hand.

ii. The CFs remain linked to the DRs produced, therefore they can be reused
in future problems.

iii. The system is not using hard-coded functions but learned functions accrued
throughout its learning history, which can help avoid human bias in function
choice.

1 CodeBlocks - code profiler.
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Fig. 3. Mux and Hidden Mux

In spite of its potential, the new compaction algorithm still lacks the ability
to produce more complex DRs in a scalable fashion. Meaning that once the
system begins to tackle the 70 bit multiplexer and beyond, the execution times
increase to an impractical level. Either a parallel or off-line training can be used.
DRs could also not be used for large scale problems that are unlikely to form
the base of chains of rules in any case.

The results show a positive impact in the number of instances needed to
fully converge for some of the problems. As can be observed, during the 70-Mux
problem, the proposed system needs more training instances than XCSCFC to
solve the problem and less than XCS, see Fig. 3a. Initially, XCS was not able to
solve the 70-Mux problem with comparable settings and therefore it was given
a P# setting of 1.0 and Population of 20k individuals, which relies on mutation,
rather than covering, to discover useful features. During the 3 bit Parity, 11
bit Hidden Multiplexer, the proposed system utilizes more training instances
than XCSCFC to converge and XCS was incapable of learning the problem, see
Fig. 3b.

The proposed system has performed better than anticipated with respect to
XCS in terms of instances needed to fully learn the problem. However, it has not
performed as well as XCSCFC during the Multiplexer experiments described in
this work. It is to be determined if the increased complexity of the CF sub-trees
in the proposed system has any bearing in this disparity.

6 Conclusions

The proposed system has been shown to reuse information learned from the
tasks given to it. It accomplished this with both, simple problems i.e. Boolean
operators, and with complex problems such as the 70 bit multiplexer. It can also
produce an additional layer of rules based on a simple alphabet. These new rules
are key in reducing the time requirements for the system when it evaluates the
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CFs it uses. This was demonstrated by the time results produced by the proposed
system, XCSCF3 compared with XCSCF2. The proposed system averaged a
shorter time requirement to evaluate its CFs. There is room for improvement
as the proposed system demonstrated larger time requirements than XCSCFC,
which does not reuse rulesets as functions.
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Abstract. Multifactorial optimization (MFO) is a recently proposed
paradigm for evolutionary multitasking that is inspired by the possi-
bility of harnessing underlying synergies between outwardly unrelated
optimization problems through the process of implicit genetic transfer.
In contrast to traditional single-objective and multi-objective optimiza-
tion, which consider only a single problem in one optimization run, MFO
aims at solving multiple optimization problems simultaneously. Through
comprehensive empirical study, MFO has demonstrated notable perfor-
mance on a variety of complex optimization problems. In this paper,
we take a step towards better understanding the means by which MFO
leads to the observed performance improvement. In particular, since (a)
genetic and (b) cultural transmission across generations form the crux
of the proposed evolutionary multitasking engine, we focus on how their
interaction (i.e., gene-culture interaction) affects the overall efficacy of
this novel paradigm.

1 Introduction

Evolutionary algorithms (EAs) are generic population-based metaheuristics for
optimization that employ mechanisms inspired by biological evolution, namely,
Darwinian principles of Natural Selection or Survival of the Fittest [1]. Through
computational analogues of sexual reproduction and mutation, EAs are capa-
ble of exploring and exploiting promising regions of the search space, with the
survival pressure encouraging evolution of the entire population towards fitter
regions of the objective function landscape [2]. In the literature, EAs have demon-
strated powerful search capability and have been successfully applied on a wide
variety of real-world problems [3].

Over the past few decades, EAs have attracted much research attention, with
several variants proposed for single-objective optimization [4], multi-objective
optimization [5], and many-objective optimization [6]. It is worth noting that
the majority of these works focus on efficiently dealing with only a single prob-
lem at a time. Seldom has an attempt been made to multitask, i.e., to solve
c© Springer International Publishing Switzerland 2016
T. Ray et al. (Eds.): ACALCI 2016, LNAI 9592, pp. 54–65, 2016.
DOI: 10.1007/978-3-319-28270-1 5



The Boon of Gene-Culture Interaction 55

multiple optimization problems (or multiple tasks) simultaneously using a single
population of evolving individuals. It is only very recently that A. Gupta et al.
have proposed a new paradigm, labeled multifactorial optimization (MFO) [7],
that attempts to harness the intrinsic potential for evolutionary multitasking
possessed by population-based search strategies (here the ‘multifactorial’ is used
to imply that every task contributes a different factor influencing the evolu-
tion of the population). For example, consider a scenario where two popular
benchmarks from continuous optimization, such as the Rastrigin function and
the Ackley function, are to be solved simultaneously. In such cases, evolutionary
multitasking provides the scope for autonomously exploiting underlying syn-
ergies (or what we term as the latent genetic complementarities [7]) between
otherwise independent tasks, through the process of implicit genetic transfer.

To realize the MFO paradigm, a novel algorithm, namely, the multifactorial
evolutionary algorithm (MFEA), has also been proposed in [7]. The MFEA is
inspired by bio-cultural models of multifactorial inheritance [8], which contend
that the complex developmental traits among offspring are influenced by gene-
culture interactions. The computational equivalent of multifactorial inheritance,
for the purpose of efficient evolutionary multitasking, is established by consid-
ering each optimization task to create a distinct environment in which offspring
can be reared. In other words, from the standpoint of the MFEA, multitasking
leads to the coexistence of multiple blocks of cultural bias (or memes [9]), one
corresponding to each task. The subsequent evolution of encoded individuals in
the composite landscape is simulated through an interplay of genetic and cultural
transmission, where cultural aspects are manifested by two major components
of the MFEA acting in concert, namely, (a) non-random or assortative mating :
which states that individuals prefer to mate with those sharing a similar cultural
background, and (b) vertical cultural transmission: which states that the pheno-
type of an offspring is strongly influenced by that of its parents. While the basic
structure of the proposed algorithm is similar to a classical EA, it is augmented
by the aforementioned features that are borrowed from the models of multifac-
torial inheritance. Using the proposed algorithm, the MFO paradigm has been
thoroughly studied in [7] via several computational experiments. These included
multitasking across continuous optimization tasks, or combinatorial optimization
tasks, or even a mixture of combinatorial and continuous tasks (cross-domain
multitasking). In the majority of cases, MFEA demonstrated noteworthy perfor-
mance by accelerating convergence for complex optimization tasks.

Bearing in mind the need for future algorithmic developments in the field of
MFO, we find it essential, at this juncture, to investigate and fully acknowledge
the key contribution of gene-culture interaction while designing effective evolu-
tionary multitasking engines. To this end, in this paper, we present a variant of
the MFEA, labeled as polygenic evolutionary algorithm (PGEA), which curtails
the cultural aspects of the evolutionary process as are manifested in the mod-
els of multifactorial inheritance. On comparing the performance of the MFEA
and the PGEA on the same set of benchmark instances, it becomes possible
to decipher the benefits to the multitasking procedure provided by gene-culture
interaction.
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The remainder of the paper is organized as follows. Section 2 covers the pre-
liminaries. It introduces the basic concepts of MFO, describes the MFEA, and
presents an overview of cultural transmission in multifactorial inheritance. In
Sect. 3, we describe the PGEA and discuss our strategy for investigating and
verifying the efficacy of the cultural aspects of the MFEA. In Sect. 4, compu-
tational experiments are carried out on a variety of benchmark functions from
continuous optimization. These serve the purpose of highlighting the key contri-
bution of gene-culture interaction towards effective evolutionary multitasking.
Finally, Sect. 5 concludes the paper by summarizing the presented work.

2 Preliminaries

In this Section, we present an overview of the basic concepts in evolutionary
multitasking, as have been proposed in [7].

2.1 Multifactorial Optimization (MFO)

Consider a scenario where K distinct optimization tasks are presented simul-
taneously to a single evolutionary solver. Let the jth task be denoted as Tj ,
and the dimensionality of its search space Xj be Dj . Without loss of gener-
ality, all tasks are assumed to be minimization problems, with the objective
function of task Tj being given by fj : Xj → R. In such a setting, MFO is
defined as an evolutionary multitasking paradigm that builds on the implicit
parallelism of population-based search with the aim of concurrently finding
{x1,x2, · · · ,xK} = argmin{f1(x), f2(x), · · · , fK(x)}. Here, xj denotes a fea-
sible solution in Xj . Note that each fj is treated as an additional factor influ-
encing the whole evolutionary process. For this reason, the composite problem
is referred to as a K-factorial problem.

The fundamentals of designing an EA are based on the Darwinian principle of
natural selection. Hence, in order to develop a suitable algorithm for MFO, it is
necessary to first conceive a valid measurement to evaluate the fitness of individ-
uals in a multitasking environment. To this end, the following set of properties
are defined for every individual pi, where i ∈ 1, 2, ..., |P |, in a population P :

– Factorial Rank : The factorial rank rij of pi on task Tj is simply the index of
pi in the list of population members sorted in ascending order with respect
to fj .

– Scalar Fitness: The list of factorial ranks {ri1, ri2, · · · , riK} of an individual
pi is reduced to a scalar fitness ϕi based on its best rank over all tasks; i.e.
ϕi = 1/min{ri1, ri2, · · · , riK}.

– Skill Factor : The skill factor τi of pi is the one task, amongst all other tasks
in MFO, on which the individual is the most effective, i.e. τi = argminj{rij},
where j ∈ {1, 2, · · · ,K}.

Based on the definition of scalar fitness, the comparison between individuals
can be achieved in a straightforward manner. For instance, an individual pa is
considered to dominate individual pb in multifactorial sense simply if ϕa > ϕb.
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Also, it is clear that the aforementioned fitness assignment and comparison
procedure guarantees that if an individual p∗ maps to the global optimal of
any task, then, ϕ∗ ≥ ϕi for all i ∈ {1, 2, · · · , |P |}. Therefore, the evolutionary
environment built under the above definitions is indeed compatible with the
ensuing definition of multifactorial optimality.

– Multifactorial Optimality : An individual p∗ is considered optimum in multi-
factorial sense iff ∃j ∈ {1, 2, · · · ,K} such that f∗

j ≤ fj(xj), for all feasible
xj ∈ Xj .

2.2 An Overview of the Multifactorial Evolutionary Algorithm

The MFEA is inspired by the bio-cultural models of multifactorial inheritance.
The algorithm is in fact classified under the broad umbrella of memetic com-
putation [9,10] as it considers the transmission of biological as well as cultural
building blocks (genes and memes) [11,12] from parents to their offspring. In
particular, cultural effects are incorporated via two aspects of multifactorial
inheritance acting in concert, namely (a) assortative mating and (b) vertical
cultural transmission.

The basic structure of the MFEA is presented in Algorithm 1. Details of its
various distinctive features are discussed next.

Algorithm 1. Multifactorial evolutionary algorithm.
1: Generate an initial population of solutions and store it in current-pop.
2: Evaluate every solution with respect to every optimization task in the multitasking

environment.
3: Compute the skill factor of each individual.
4: while (stopping conditions are not satisfied) do
5: Apply genetic operators on current-pop to generate an offspring-pop (see

Algorithm 2).
6: Evaluate the individuals in offspring-pop for certain optimization tasks only (see

Algorithm 3).
7: Concatenate offspring-pop and current-pop to form an intermediate-pop.
8: Re-compute the scalar fitness and skill factor of all individuals.
9: Select the fittest individuals from intermediate-pop to survive into the next gen-

eration and form the new current-pop.
10: end while

2.3 Chromosome Description and Decoding Procedure

Assuming there to be K optimization tasks, we define a unified search space Y
with dimensionality (Dmultitask) equal to maxj{Dj}. Thus, during population
initialization, every individual is assigned a vector of Dmultitask random-keys
[13,14] which lie in the fixed range [0, 1]. This vector constitutes the chromosome
of that individual. While addressing task Tj , only the first Dj random-keys of
the chromosome are considered.
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There is a strong theoretical motivation behind using the aforementioned
encoding scheme. In particular, it is considered to be an effective means of access-
ing the power of population-based search. As the schemata (or genetic building
blocks) [15] corresponding to different optimization tasks are contained within a
unified pool of genetic material, they get processed by the EA in parallel. Most
importantly, this encourages the discovery and implicit transfer of useful genetic
material from one task to another in an efficient manner. Moreover, as a single
individual in the population may inherit genetic building blocks corresponding to
multiple optimization task, the analogy with multifactorial inheritance becomes
more meaningful.

Given a chromosome y ∈ Y , a decoding scheme must first be employed to
transform y into a meaningful task-specific solution representation. In the case of
continuous optimization, this can be achieved by linearly mapping each random-
key from the unified space to the original search space of the optimization task.
For instance, consider a task Tj in which the ith variable (xi) is bounded in the
range [Li, Ui]. If the ith random-key of a chromosome y takes value yi ∈ [0, 1],
then the decoding procedure is given by xi = Li + (Ui − Li) · yi

2.4 Cultural Aspects of the MFEA

In the MFEA, we interpret the skill factor (τ) of an individual as a computa-
tional representation of its cultural background. Accordingly, while simulating
genetic operations (via crossover and mutation), the phenomenon of assorta-
tive mating (which states that individuals prefer to mate with those sharing
a similar cultural background) is enforced by prescribing a set of conditions
that must be satisfied for two randomly selected parent candidates to undergo
crossover. A summary is provided in Algorithm 2. The occurrence of assortative
mating in the natural world is used in the models of multifactorial inheritance to
explain pedigreed traits that extend over several generations [8]. In the case of the
MFEA, we introduce a tunable parameter called the random mating probability
(rmp) which follows the principle of assortative mating and is used to balance
exploration and exploitation during evolution of individuals in the search space.

Algorithm 2. Assortative mating
1: for i = 1 : |P |/2 do
2: Randomly select two parents P1 and P2 from current-pop.
3: Generate a random number rand between 0 and 1.
4: if (τ1 == τ2) or (rand < rmp) then
5: Parents P1 and P2 crossover to give two offspring individuals C1 and C2.
6: else
7: P1 is mutated slightly to give an offspring C1.
8: P2 is mutated slightly to give an offspring C2.
9: end if

10: Append C1 and C2 to offspring-pop.
11: end for
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Setting rmp ≈ 0 implies that only culturally alike individuals are allowed to
crossover, while setting rmp ≈ 1 permits completely random cross-cultural mat-
ing. In the former case, the predominantly intra-cultural mating and the small
genetic variations produced by mutation (see Algorithm2) facilitate the scan-
ning of confined regions of the search space. As a result however, there is always
the tendency for solutions to get trapped in local optima. On the other hand,
when rmp is sufficiently greater than 0, the increased cross-cultural mating leads
to the creation of offspring with diverse genetic properties, thereby facilitating
the escape from local optima. In addition, it is contended that exclusive mat-
ing between individuals belonging to the same cultural background could lead
to the loss of good and diverse genetic material available from other cultural
backgrounds. In Algorithm 1, notice that the MFEA is bootstrapped by eval-
uating every individual in the initial population with respect to every task in
the multitasking environment. However, it is evident that carrying out exhaus-
tive evaluations in all subsequent generations is likely to be computationally too
expensive. For that reason, it is considered practical for an offspring to only be
evaluated for a particular task on which it is most likely to be effective. The
algorithmic realization of the aforementioned notion is achieved via a selective
imitation strategy [7] as a form of vertical cultural transmission (see Algorithm
3). Accordingly, an offspring in the MFEA is only evaluated with respect to the
task at which at least one of its parents is highly skilled. In other words, the
offspring randomly imitates the skill factor (or cultural background) of any one
of its parents. Furthermore, every offspring undergoes local improvements with
respect to the skill factor that it chooses to imitate (details of the local search
algorithm shall be provided in Sect. 4). Notice that since the genetic composi-
tion of an offspring is a combination of the genetic material of its parents, it is
reasonable to expect its skill factor to liken that of its parents.

Algorithm 3. Vertical cultural transmission
1: Consider an offspring C which either has 2 parents P1 and P2, or a single parent

P1 (or P2) (see Algorithm 2).
2: if (C has 2 parents) then
3: Generate a random number rand between 0 and 1.
4: if (rand < 0.5) then
5: C imitates P1 → Evaluate and locally improve C with respect to task τ1 (skill

factor P1).
6: else
7: C imitates P2 → Evaluate and locally improve C with respect to task τ2 (skill

factor P2).
8: end if
9: else

10: C is evaluated and locally improved with respect to task τ1 (or τ2).
11: end if
12: Objective function values of C with respect to all unevaluated tasks are artificially

set to ∞.
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A crucial outcome emerges from the combined effect of assortative mating
and vertical cultural transmission. On occasions when parents with different skill
factors happen to crossover, a multicultural environment is created for offspring
to be reared in. In such situations, it is possible for an offspring that is genetically
closer to one parent to imitate or be culturally influenced by the other. It is
this feature of the MFEA that leads to implicit genetic transfer across tasks.
Refined genetic material created within individuals of a particular skill factor,
if also useful for a different task, can be effectively transferred via the proposed
mechanism.

3 The Polygenic Evolutionary Algorithm

As described above, assortative mating and vertical cultural transmission repre-
sent the core forms of cultural interaction in the MFEA. In order to understand
their importance towards effective evolutionary multitasking, we herein propose
an alternate polygenic evolutionary algorithm (PGEA) which curtails the cul-
tural aspects of the evolutionary process as prevalent in the MFEA. Thus, in
comparison to the PGEA, the credit of any improvement in performance achieved
by the MFEA can be entirely assigned to gene-culture interactions.

In the PGEA, the first step to removing cultural bias is taken by ignoring
the phenomenon of assortative mating. Thus, any two members of the PGEA
population, regardless of whether they possess the same skill factor or not, are
allowed to mate freely. In other words, the value of rmp is essentially fixed at
1, implying that uninhibited cross-cultural mating is allowed to occur; which is
accompanied by probabilistic mutation of the generated offspring. Secondly, the
effect of vertical cultural transmission is minimized by permitting the generated
offspring to randomly select any task for evaluation regardless of the skill fac-
tor(s) of their parents (i.e., the strategy of selective imitation is also ignored).
For a complete overview of the incorporated modifications, see Algorithm4. The
ramifications of these modifications towards the overall performance of the mul-
titasking engine shall be investigated in the next section.

4 Empirical Study

The main aim behind the computational experiments is to better understand the
effects of gene-culture interactions towards the overall efficacy of evolutionary
multitasking. The simplest way of acquiring a qualitative understanding of the
effects is to compare the performance of the MFEA (which incorporates a variety
of cultural biases through assortative mating and vertical cultural transmission)
and the PGEA (which removes all cultural bias). The aforementioned approach
is therefore adopted herein.
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Algorithm 4. Genetic mechanisms of the polygenic evolutionary algorithm
1: Consider two parents P1 and P2 randomly selected from current-pop.
2: P1 and P2 crossover to give two offspring solutions C1 and C2.
3: Offspring C1 and C2 may be slightly mutated with a predefined probability.
4: Each offspring is evaluated for any one randomly selected task (individual learning

will be applied here). The objective values of the offspring with respect to all
unevaluated tasks are artificially set to ∞.

4.1 Experimental Setup and Algorithmic Specifications

In this section, we carry out several computational experiments on popular
benchmark problems in continuous optimization. We consider a unimodal func-
tion: (a) sphere (search region [100, 100]), and four complex multimodal func-
tions [16]: (b) shifted and rotated Rastrigin (search region [−5, 5]) (search region
denotes the box constraint on every dimension), (c) shifted and rotated Ack-
ley (search region [−32, 32]), (d) shifted and rotated Griewank (search region
[−600, 600]) and (e) rotated Weierstrass (search region [−0.5, 0.5]). The dimen-
sionality of each of the benchmark functions is fixed at 30, and the rotation
matrix corresponding to each function is randomly generated. During compu-
tational experiments, we combine any two of the benchmark functions together
to form a single 2-factorial problem. Moreover, the instances are setup such
that the global optima of the two constitutive tasks in a single MFO problem
are largely separated (demonstrated in Fig. 1a). This ensures that there is no
apparent source of synergy (or genetic complementarity) between the tasks.

In Table 1, we list the descriptions of four pairs of 2-factorial problems that
have been considered in this paper. The second column of the table states the
combined functions. For example, (Task1, Task2) ≡ (Sphere, Rastrigin) implies
that the sphere function and the Rastrigin function have been combined into a
single MFO run. The third column of Table 1 represents the location of the global
optimum of Task1, while the fourth column represents the location of the global
optimum of Task2. With regard to the MFEA and the PGEA, we set the pop-
ulation size to 100 individuals which are evolved over 500 generations. The rmp
(which only occurs in the MFEA) is configured to 0.3 in all experiments so as
to allow sufficient cross-cultural mating. With regard to the variation operators
[17], we employ the Simulated Binary Crossover (SBX) with no variable swap
[18] and Gaussian mutation operators throughout. Particularly, in the PGEA,
the probability of mutation was kept fixed at 10 %. Further, in order to facilitate
the discovery of high quality solutions, we include a BFGS quasi-Newton indi-
vidual learning step into each task evaluation call (note that learning proceeds in
the spirit of Lamarckism [3,19]). We realize that hybridizing EAs with individual
learning (via local search) is traditionally perceived as a form of cultural evolu-
tion or as a first generation memetic algorithm [19,20]. However, judging from
the standpoint of multifactorial inheritance, in the present work, local search is
not viewed as a separate source of cultural influence that acts over and above
assortative mating and vertical cultural transmission.
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Table 1. Description of MFO test instances. (Task1, Task2) implies that Task1 and
Task2 are combined in a single MFO run.

No. MFO problems Global optimum of Task1 Global optimum of Task2

1 (Sphere, Rastrigin) xi = 50, ∀i xi = 0, ∀i

2 (Ackley, Weierstrass) xi = 20, ∀i xi = 0, ∀i

3 (Griewank, Weierstrass) xi = 300, ∀i xi = 0, ∀i

4 (Sphere, Ackley) xi = 50, ∀i xi = 0, ∀i

4.2 Discussions

Figure 1a depicts a 1-D illustration of the separated sphere and Rastrigin func-
tions. The convergence trends of the multimodal Rastrigin function in this sce-
nario (given a 30-D search space), as obtained by the MFEA and the PGEA, is
provided in Fig. 1b. In addition, the figure also contains a third curve, labeled as
SOEA, which represents a traditional single-objective optimization-based app-
roach to solving the Rastrigin function (note that the SOEA employs identical
variation operators and local search process as the MFEA and the PGEA, with
a mutation probability of 10 %). For fairness of comparison, the SOEA is also
enhanced with the same Lamarckian local search algorithm as the MFEA and
the PGEA. It is clear from the convergence trends that the performance of
the MFEA and the PGEA far exceed that of the SOEA on this instance. The
observation underpins our broader claim that provisions for enhanced popula-
tion diversity and implicit genetic transfer, as facilitated by the evolutionary
multitasking paradigm, are potentially invaluable tools for accelerating the con-
vergence process of complex optimization tasks.

On further inspecting Fig. 1b, it is observed that the performance achieved
by the MFEA is even superior to that of the PGEA. This result provides strong
evidence of the fact that gene-cultural interactions play an important role in
improving convergence characteristics. As has been discussed in Sect. 2.4, the
cultural aspects of the MFEA (manifested by assortative mating and vertical
cultural transmission, acting in concert) lead to a favorable balance between
exploration (via population diversification and genetic transfer during controlled
cross-cultural mating) and exploitation (via assortative mating) of the search
space. In contrast, in the PGEA, the removal of cultural bias disrupts the afore-
mentioned balance. The uninhibited cross-cultural mating leads to excessive mix-
ing of genes, eventually causing the loss of pedigreed high quality genetic material
[7]. Moreover, by ignoring vertical cultural transmission, the systematic search of
fitter regions of the objective function landscape is impeded. Therefore, it comes
as little surprise that the performance of the resultant multitasking engine (i.e.,
the PGEA) is inferior to that of the MFEA. The convergence trends depicted in
Figs. 2, 3 and 4 (corresponding to problem numbers 2–4 in Table 1) have similar
qualitative characteristics as those presented in Fig. 1. This empirical observa-
tion goes a long way towards further reinforcing our inferences as drawn previ-
ously. In Fig. 2, the convergence trends of Ackley function (in Fig. 2a) and the
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Fig. 1. (a) 1-D illustration of separated Rastrigin and sphere functions in the unified
search space, and (b) convergence trends of Rastrigin function in (Sphere, Rastrigin).

Fig. 2. The convergence trends of (a) Ackley function and (b) Weierstrass function in
(Ackley, Weierstrass).

Fig. 3. The convergence trends of Weierstrass function in (Weierstrass, Griewank).

Weierstrass function (in Fig. 2b) are presented, when solved in conjunction as
(Ackley, Weierstrass). Note that both functions in this 2-factorial problem are
complex and multimodal. Nevertheless, the convergence rate achieved by the
MFEA is found to be accelerated in both cases, in comparison to the PGEA as
well as the SOEA. Thus, it is contended that the provision for implicit genetic
transfer, appropriately supervised by gene-culture interactions as prescribed by
the models of multifactorial inheritance, allows the population to successfully
exploit the landscape of multiple complex functions simultaneously, thereby effi-
ciently bypassing obstacles to converge faster.
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Fig. 4. The convergence trends of Ackley function in (Sphere, Ackley).

An important observation we also make here is that the performance of
the PGEA may be even inferior to the SOEA in some of the examples. This
shows that eliminating cultural bias altogether from an evolutionary multitask-
ing engine can often be detrimental to its overall performance. In other words,
the benefits of gene-culture interaction are strongly highlighted in these exam-
ples.

5 Conclusion

The main aim of this paper was to show the importance of gene-culture inter-
action, as manifested in the bio-cultural models of multifactorial inheritance,
towards the design of an effective multitasking engine. To this end, we have pre-
sented a pair of algorithms, namely, (a) the original multifactorial evolutionary
algorithm (MFEA) which includes cultural biases, and (b) a new polygenic evolu-
tionary algorithm (PGEA) which curtails all cultural aspects of the evolutionary
process. The consistently superior performance of the MFEA, as compared to
the PGEA (and also a traditional single-objective optimization approach), on
a variety of benchmark problems in continuous optimization, has demonstrated
that the incorporation of gene-culture interaction is indeed a pivotal aspect of
effective evolutionary multitasking.
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Abstract. Optimization algorithms typically deliver a set of trade-off
solutions for problems involving multi/many-objectives in conflict.The
number of such solutions could be in hundreds, thousands or even more.
A decision maker typically identifies a handful of preferred trade-off solu-
tions (solutions of interest (SOI)) from the above set based on secondary
indicators e.g. expected marginal utility, convex bulge, hypervolume con-
tribution, bend angle, reflex angle etc. In this paper, we first highlight that
members of SOI could be significantly different depending on the choice of
the secondary indicator. This leads to an important question “what met-
rics should a decision maker use to choose a solution over another ?” and
more importantly “how to identify a handful of solutions ?” from a poten-
tially large set of solutions. In this paper we introduce an approach based
on local curvature to select such solutions of interest. The performance
of the approach is illustrated using a bi-objective test problem, and two
many-objective engineering optimization problems.

Keywords: Solutions of interest ·Decisionmaking ·Performancemetrics

1 Introduction

Real life optimization problems often require optimizing two or more conflict-
ing objectives simultaneously. The optimum is thus a set of trade-off solutions,
which in the objective space represents the Pareto Optimal Front (POF). By
definition, all solutions on the POF are equally preferable in absence of any
preference information. Typically, the choice of a solution from the above POF
for implementation is left to the decision maker (DM). It is well known in deci-
sion making literature that the ability of a DM to select a solution diminishes
significantly with increasing number of solutions and/or objectives. This decision
making problem becomes even more acute when one attempts to select solutions
arising out of many objective optimization problems.

To support decision makers in such scenarios, it is theorized that certain inter-
esting solutions on the Pareto front may be preferred over others. To this end, the
concept of knee solutions of a POF has been suggested in the literature [3,5,7,13].
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Conceptually, a solution is referred to as a knee if in order to gain a small ben-
efit in one objective, a large compromise is necessary in at (at least) one other
objective. This notion of knee, however has been interpreted differently by vari-
ous researchers and we broadly refer them as solutions of interest since many do
not confirm to the above definition of knee. In this paper, we first review the exist-
ing metrics used to search for the knee solutions. Subsequently, we construct a bi-
objective test problem to illustrate the behavior of each of these metrics in terms
of ranking these solutions. Thereafter we discuss certain drawbacks of these tech-
niques, and propose an alternative scheme to overcome them.

Rest of the paper is organized as follows. A study using existing knee mea-
sures is given in Sect. 2. An alternative proposal for identification of SOI is
described in Sect. 3. Numerical experiments are presented in Sect. 4, and finally
the conclusions of the study are given in Sect. 5.

2 Different Metrics to Identify SOI

For a multi/many objective problem, the optimum consists of a set of solutions
not dominated by any other in the objective space. This best trade-off set is
termed as POF, which contains several solutions, out of which one (or at most a
few) solutions of interest have to be chosen for implementation. A brief descrip-
tion of different indicators to aid in decision making are given below. In order
to search for solutions that rank high in terms of these indicators, they are
often incorporated in an evolutionary search as a secondary metric (apart from
non-dominance).

• Expected marginal utility: Branke et al. [3] proposed an alternative method to
focus on knees during the course of optimization. It calculates the utility of a
solution corresponding to a function λf1+(1−λ)f2, with a number of uniform
values of λ. A solution in the POF with the largest marginal utility is identified
as the knee solution. This measure will ignore points in a local convex bulge
region as knee candidates. However, it can identify multiple global knees if
they exist.

• Maximum convex bulge/distance from hyperplane: Das [5] noted that often
in practice, the solutions are chosen from the middle section of the POF,
thereby avoiding the extreme sections of the Pareto front. This central section
is referred as maximum bulge, wherein solutions that are away from the hyper-
plane are identified as solutions of interest. This concept was subsequently used
in a number of works for ranking during the course of optimization [2,8,10].
More recently, Zhang et al. [13] illustrated that such solutions have a large
hypervolume contribution and thus promoting them during the course of
search could inherently offer a solution set with a larger hypervolume.

• Reflex/bend angle: These two methods essentially measure a kink (abrupt
change in slope) in a two-objective POF. In the reflex angle approach intro-
duced by Branke et al. [3], it is quantified as the external angle formed by
the two lines joining the point in consideration with its neighboring points.
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The solution in the POF having the largest reflex angle is considered as a knee.
This was used as a secondary ranking measure in NSGA-II [6] to find solutions
concentrated around the knee. Noting that the reflex angle is a local phenom-
enon, a slightly modified quantification based on bend angle was proposed
by Deb and Gupta [7]. The method can be used to identify knee solutions
between two given solutions in the POF.

• Trade-off approach: For two-objective case, this particular approach was pro-
posed by Deb and Gupta [7]. The approach relies on a user-prescribed trade-off
information provided as a pair of values (α > 1, β > 1). In order to qualify as
a knee, a unit gain in f1 should incur at least α sacrifice in f2, and similarly
a unit gain in f2 should incur at least β sacrifice in f1, where all objective
values are considered in a normalized space.

• eps-Dominance: In the context of multi/many-objective optimization, a solu-
tion a is said to ε-dominate a solution b [14] if and only if fi(a)+ε ≥ fi(b) ∀i =
1, . . . ,m where m is the number of objectives and fi(x) is the ith objective
value corresponding to a solution x. Thus, for every point in the Pareto front,
the ε value can be computed. A higher eps-dominance value for a solution
indicates that the solution is having higher trade-offs and one would have to
add a larger quantity to each objective of that solution to make it dominated
with respect to other solutions in the Pareto set. Therefore, a point in the
Pareto front corresponding to a solution having higher eps-dominance value
is preferred to a decision maker.

2.1 Illustration on a Bi-objective Example

To illustrate the differences, consider the bi-objective optimization problem pre-
sented in Eq. 1.

Min. f1 = x1, f2 = (y − 3.5) × g/20.5

where y =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

24 −√20 − (14x1 − 5)2, if 0 ≤ x1 ≤ 5/14,

18 +
√

(1 − (14x1 − 5)2) if 5/14 ≤ x1 ≤ 6/14

18 −√(1 − (14x1 − 7)2) if 6/14 ≤ x1 ≤ 7/14
59 − 84x1 if 7/14 ≤ x1 ≤ 8/14

−3.5x1 + 13 if 8/14 ≤ x1 ≤ 10/14
50.5 − 56x1 if 10/14 ≤ x1 ≤ 11/14
17.5 − 14x1 otherwise

g =1 +

n∑

2

(xi − 0.5)
2
, 0 ≤ xi ≤ 1, i = 1, 2, . . . , n

(1)

The POF of the function sampled using 14001 points is presented in Fig. 1(a).
All the points on the POF correspond to g = 1. Specific points on the POF are
listed below:

• A: Left extremity of the POF (minimum f2)
• B: Solution with the maximum hypervolume contribution. An important thing

to note is that the solution with the maximum hypervolume contribution
may not always lie near the knee region, as it is highly dependent on the
neighbouring solutions on POF. In this case B is almost coincident with A.

• C: Solution at the maximum bulge in convex region
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Table 1. Solutions of interest on the POF

Solution f1 f2 Rank based on

EMU Conv. bulge Ref. angle Bend angle Hypervolume eps-Dominance

A 0 1 2 8072 9 9 14000 1680

B 7.1429e-05 0.99512 4 7624 6 6 1 1681

C 0.062214 0.86245 194 1 1874 1874 3219 2256

D 0.40764 0.74182 5710 13617 13707 13707 7053 7055

E 0.4495 0.67282 6296 12181 410 410 4048 4049

F 0.5 0.65854 7003 14001 14001 14001 13997 13998

G 0.57143 0.36585 8003 1626 1 1 1096 741

H 0.71429 0.34146 10003 10681 14000 14000 12300 10986

I 0.78571 0.14634 3 1039 2 2 2209 1384

J 1 0 1 8073 3 3 14001 4410
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Fig. 1. Top 10 solutions (out of 14001 uniformly sampled points on the POF) using
different decision making metrics.

• D: Solution at the maximum concave bulge from extreme line
• E: Solution at “local” convex bulge closest to extreme line
• F : Solution at intersection between quadratic and linear portions of POF
• G: A strong knee (convex) formed by intersection of two linear portions of

POF.
• H: A strong knee (concave) formed by intersection of two linear portions of

POF.
• I: A strong knee (convex) formed by intersection of two linear portions of POF.

It is possible to draw a line from I to a different part of the curve (say C), such
that G lies to the left of the line. Thus optimization of a linear aggregated
function such as λf1 + (1 − λ)f2 will not identify G. I is thus a “global strong
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knee” in this sense. However, its distance from the extreme line is less than
that of point C.

• J : Right extremity of the POF (minimum f1)

We now compute the metrics (convex bulge, bend/reflex angle, EMU and
hypervolume contribution) for all these solutions and list solutions A to I in
Table 1.

The top 10 SOI derived using the above metrics are represented in Fig. 1,
followed by the discussion.

• EMU: As seen in Fig. 1(b) EMU identifies the “global strong knee” (I) as
well as two extremities of the Pareto front (A, J). These three solutions are
followed by a range of solutions close to the extreme point A.

• Convex bulge: Based on convex bulge, point C and some others in its neighbor-
hood are identified as top 10 solutions as seen in Fig. 1(c). All other solutions
among A − J have very low rank, as shown in Table 1. The point F gets the
lowest rank, since its distance is counted as negative being in the concave
region. Extremities have zero distance and hence appear just after all solu-
tions in the convex region. However, within the course of optimization, the
extremities are usually explicitly preserved for promoting diversity [2,6].

• Reflex/bend angles: Next, in Fig. 1(e), top 10 solutions obtained using reflex
and bend angles are shown. In this case, for bend angle approach, for any given
f , the fL and fR points are taken as the immediate neighbors, and hence the
results using the two are exactly the same. It is seen that the convex bulge (C)
is ranked very low in this case, whereas all the solutions with significant dif-
ference in right and left slopes get the top ranks, effectively demonstrating
the preference for “strong knees”, irrespective of distance from the extreme
line. One can also note that the strong concave knees F and H are ranked the
lowest. In addition, a solution (K ≡ 0.4286, 0.7073) is also identified, which
is the transition from one circular part of the curve to another, resulting in
almost vertical section (reflex angle ≈ 180) at that point. Lastly, although
these two approaches could identify a number of solutions of interest, it not
easy to extend the concept to ≥3 objectives.

• Hypervolume contribution: Fig. 1(d) shows the top 10 solutions obtained using
hypervolume contribution. Unlike the studies in [13], it can be seen that the
hypervolume contribution can be highly dependent on the neighboring points
on the Pareto front. If knee solution is in a region surrounded with a number
closely accumulated solutions, its overall contribution may be small and it
could be ranked low. In this particular case, the points lying on the vertical
sections (B and K) of the POF are ranked the highest, as for the same increase
in f1 they have the highest increase in f2, thereby increasing their hypervolume
contribution. Also to be noted is that the extreme solutions once again get
lowest ranks as the lie on the same level as the Nadir solution, resulting in a
zero hypervolume contribution.

• eps-Dominance: Fig. 1(f) shows the top 10 solutions obtained based on the
ε-dominance value for each point in the Pareto front. This metric is also
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dependent on neighboring points in the objective space. The point G gets the
highest rank and point F gets the lowest rank among all the points (A−J) in
the Pareto front. If a decision maker were supposed to choose based on eps-
dominance as a metric, point G would be the most desired location among
points A − J and point F would be the least desired location.

2.2 Limitations of Existing Methods

It is clear from the above example that the metrics have quite different values
and the choice of one over another could lead to completely different set of
solutions being selected. The main limitations of the existing methods could be
interpreted as follows. The angle-based approaches (reflex or bend angle) have
the limitation of being applicable in two-objectives only in the current form.
Although the extension to higher number of objectives is possible conceptually,
the calculations will be significantly more involved due to spatial arrangements of
the points in the higher dimensions. The trade-off based approach also faces the
same limitation, since several trade-off parameters need to be defined in higher
dimensions as the number of objective combinations increase. The hypervolume
measure although can be calculated in higher dimensions, is computationally
expensive. Moreover, the hypervolume contribution is also largely dependent
on the neighboring non-dominated solutions. The maximum bulge is relatively
faster to compute, even for higher dimensions, but may not capture any trade-
off information between the points corresponding to the solutions. Expected
marginal utility as defined in [3] takes into account the trade-off information,
and can be extended to problems with higher number of objectives. Given these
properties, it seems most suitable to identify SOI on the Pareto-front. However,
on closer look, two of its properties may reduce its effectiveness as a good SOI
measure:

• Dependence on neighboring points: The expected marginal utility effectively
measures the loss in performance if the best solution along a preferred direction
is replaced by the second best solution along that particular direction. This
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means that if two points are very close to each other (or a copy), or have
same utility in a particular direction i.e. located symmetric about the solution
having best utility along any preferred direction, they are likely to get a very
low rank in the absence of one. Consider, for example the following case of
the problem above, when the solutions are not uniformly distributed. It can
be seen that due to a high density of points around the knee, the solutions get
lower rank than the one away.

• Secondly, it is observed that for many-objective problems, only a small per-
centage of the population gets assigned a non-zero value of EMU. This is
not an issue when identifying a few knee solution(s) from a given set, but it
reduces the effectiveness of the EMU as a secondary ranking measure for evo-
lutionary search. This is because if large number of solutions have the same
(zero) value, those solutions effectively remain unranked. As a result, a small
number of solutions (with non-zero EMU) are left to drive the population,
which results in a very slow migration of the population towards the POF.
To demonstrate this, consider populations of randomly generated solutions for
different number of objectives, and the corresponding proportion of zero EMU
solutions in the non-dominated population. In Fig. 2(b), it is clear that as num-
ber of objectives increases the number of non-zero EMU solutions decreases
and very few solutions with unique EMU values are left.

It can be clearly observed that none of the method could focus on all possible
regions of interest or regions having higher trade-offs. To overcome this limita-
tion, we introduce a new metric, which is based on local curvature discussed
in [12]. We show in the next section how this metric can be used to identify
potential solutions of interest with high trade-offs.

3 Proposed Metric

Pareto front geometry estimation is important in the context of multi/many-
objective optimization problem in terms of decision making. Wang [12] described
about choosing adaptive Lp scalarising function which shows significant search
improvement over standard MOEA/D. In terms of decision making, the geom-
etry of the Pareto front gives the decision maker an idea about the regions of
interest for a multi/many-objective problem. Consider the following property of
a family of reference curves:

{y1
α + y2

α + · · · + ym
α = 1 ; yj ∈ (0, 1], α ∈ (0,∞)} (2)

It can be inferred from Fig. 3(a) that for α > 1, the curve is non-convex; for
α = 1 it is linear and for α < 1 it is convex. In terms of maximum trade offs
for a minimization problem, the solutions at the convex portions of the Pareto
front are most important. This is because if a solution lies in the convex portion,
improvement in one objective causes significant loss in the other(s). Therefore,
convex region appeals more to a decision maker to find solutions of interest. In
the context of a multi/many-objective problem the geometry of the Pareto front
can be obtained by solving Eq. 3 for α which results in the smallest h(α,Q):
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Fig. 3. Curvature and top 7 solutions (out of 14001 uniformly sampled points on the
POF) using different decision making metrics

h(α,Q) =
∑

∀xk∈Q

⎛

⎝
∑

i=1,...,m

(
fi(xk)

)α − 1

⎞

⎠
2

, α ∈ P (3)

The value of α is determined locally for each point in the Pareto front taking
certain number of nearest neighbors along each objective direction for each point
in the objective space. For a convex Pareto front, all the regions having an α
less than 1 can be considered as potential knee solutions. For a non-convex
Pareto front, solutions having minimum curvature get preference over others.
This phenomenon can be well explained using the test example from the previous
section. Figure 3 shows the curvature values of the solutions with respect to the
solution ids. It can be seen that the solutions having larger trade-off correspond
to lower values of α.

Based on our algorithm using 8 neighbors in each objective direction (total
8×2 = 16 neighbors), local curvature values for most of the region were less
than 1 which would indicate the convex nature of the Pareto front in most of
the regions (Fig. 3(b)). However some portion of the Pareto front is non-convex
in nature (Fig. 3(c)) which results in high value (> 1) of curvature in those
regions. The pseudocode of our approach is given in Algorithm 1, followed by
an outline of the key steps.

• Generate: A structured set of |W | reference points is generated spanning a
hyperplane with unit intercepts in each objective axis using normal boundary
intersection method (NBI) [4]. The approach generates |W | points on the
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Algorithm 1. Proposed approach for identification of SOI
Input: f (objective values of all solutions (P ) for m objective problem), K (number
of SOI required), α (local curvature values of all solutions)
Output: SOI, Metric (Curvature values of Knee solutions)

1: Generate |W | (|W | ≤ K) reference points using Normal Boundary Intersec-
tion (NBI)

2: Construct |W | reference directions; Straight lines joining origin and |W | reference
points

3: For individuals in P compute the ideal point zI and Nadir point zN

4: Scale the individuals of P i using zI and zN

5: Compute d1 and d2 for all individuals in P i

6: Assign individuals of P i to the reference directions based on minimum d2

7: for j = 1 : |W | do
8: Find solutions PWi attached to Wi reference direction with αWi

9: Set Metricj =
αWi

Min αWi and the corresponding solution is SOIj

10: end for

hyperplane with a uniform spacing of δ = 1/s for any number of objectives
m with s unique sampling locations along each objective axis. The reference
directions are formed by constructing a straight line from the origin to each
of these reference points.

• Scale: The process of scaling converts the objective values between 0 and 1.
In the event any coordinate of the ideal point matches with the corresponding
coordinate of the Nadir point, the scaled value of the corresponding objective
is set to 0.

• Compute: Two measures d1 and d2 are computed for all solutions as done
in [1]. The first measure d1 is the Euclidean distance between origin and the
foot of the normal drawn from the solution to the reference direction, while
the second measure d2 is the length of the normal.

• Assign: For each solution, d2 with each reference direction is calculated and
solutions are attached to the reference directions based on minimum d2. There-
fore some reference direction will have a cloud of solutions attached to it and
some reference directions might not have solutions at all.

• Set: For the reference directions having at least one solution attached to it,
this process identifies Solutions of interest (SOI) along those. Among the cloud
of solutions attached to a reference direction, the solution with the minimum
α is identified and considered to be the SOI along that particular reference
direction. Hence, the metric corresponding to the SOI is the minimum α value
within that cloud attached to the reference direction.

4 Numerical Experiments

Following the bi-objective illustration in previous section, we now discuss two
practical many-objective problems. Both of these problems show interesting dif-
ferences among the regions of interest obtained using our method and others.
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Fig. 4. Top 10 solutions (out of 10626 uniformly distributed points on the POF) using
different metrics

4.1 Water Resource Problem

First, we consider the five-objective Water Resource problem [9]. Decomposi-
tion based evolutionary algorithm (DBEA) [1] was used with a population size
of 10626, run for 100 generation. All 10626 individuals in the final generation
are non-dominated. It is interesting to note that all the local curvature values
obtained were more than 1 (Fig. 4(a)), which indicates the non-convex nature of
the overall Pareto front. For non-convex Pareto fronts, the theoretical concept
of knee does not apply. Therefore, in this case, the solutions having lower val-
ues of local curvature (Fig. 4(a)) can be considered important to decision maker
because those are the only solutions having relatively higher trade-off values
compared to the rest of the points. Similarly top 10 solutions in terms of lower
curvature values, higher EMU values and higher distance from the hyperplane
values are presented in Fig. 4. It can be also observed that solutions with higher
trade-off are likely to be closer to the Ideal point of the Pareto front. Our method
in Fig. 4(b) shows that the SOIs are closer to the Ideal point of the scaled plot
compared to all other methods.
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Fig. 5. Top 10 solutions (out of 11440 uniformly distributed points on the POF) using
different decision making metrics

4.2 General Aviation Aircraft Problem

Next, we consider a 10-objective General aviation aircraft problem introduced
in [11]. For this problem, DBEA [1] was run for 100 generation with a popu-
lation size of 11440. All solutions in the final generation were non-dominated.
Figure 5 represents the top 10 solutions out of 11440 non-dominated solutions
based on different metrics. For this problem, once again it is observed that all
curvature values more than 1 (Fig. 5(a)), indicating a non-convex Pareto front.
SOI’s delivered by different metrics are shown in Fig. 5. It can be seen that the
proposed method was able to deliver the SOIs closer to the ideal point (having
higher trade-offs) of the Pareto front for the problem.

5 Conclusions

Multi-objective optimization algorithms typically deliver a set of trade-off solu-
tions known as POF. Choosing one or a few solutions for final implementation
from the POF is not trivial as it may contain huge number of solutions in high
dimensions. In absence of any additional preferences, certain metrics need to be



A Study on Performance Metrics to Identify Solutions of Interest 77

used to identify solutions of interest (SOI). This paper reviews existing mea-
sures in this regard and illustrates the different solutions that will be obtained
using them. It also highlights some of their shortcomings, followed by a proposal
based on local curvature. Lastly, numerical experiments are presented on many-
objective problems do illustrate the potential benefits of the proposed approach.
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Abstract. Differential evolution has shown success in solving different
optimization problems. However, its performance depends on the control
parameters and search operators. Different from existing approaches, in
this paper, a new framework which dynamically configures the appro-
priate choices of operators and parameters is introduced, in which the
success of a search operator is linked to the proper combination of con-
trol parameters (scaling factor and crossover rate). Also, an adaptation
of the population size is adopted. The performance of the proposed algo-
rithm is assessed using a well-known set of constrained problems with the
experimental results demonstrating that it is superior to state-of-the-art
algorithms.

1 Introduction

Over decades, evolutionary algorithms (EAs) have been used to solve opti-
mization problems. Such problems may have different mathematical properties.
Among EAs, genetic algorithms (GA) [1], differential evolution (DE) [2] and
evolution strategy (ES) [3] are very popular. Like any other EAs, the choice of
DE’s search operators and control parameters (scaling factor (F ), crossover rate
(Cr) and population size (PS)) plays a pivotal role in its success [4]. A trial-
and-error approach is a possible way to define them. However, such an approach
is known tedious. As a matter of fact, one combination of control parameters
and/or search operators may work well for a set of problems, but may not per-
form the same for another. As a consequence, different research studies have
been introduced for adapting DE’s control parameters and/or search operators.
Some of them are discussed below.

Elsayed et al. [5] proposed a general framework that divided the popula-
tion into four sub-populations, each of which used one combination of search
operators. During the evolutionary process, the sub-population sizes were adap-
tively varied based on the success of each operator, which was calculated based
on changes in the fitness values, constraint violations and feasibility ratios. The
algorithm performed well on a set of constrained problems. Elsayed et al. [6] also
proposed two novel DE variants, each of which utilized the strengths of multiple
mutation and crossover operators, to solve 60 constrained problems, with their
results superior performance to those from state-of-the-art algorithms.
c© Springer International Publishing Switzerland 2016
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Zamuda and Brest [7] introduced an algorithm that employed two DE muta-
tion strategies and a population was adaptively reduced during the evolutionary
process. The algorithm was tested on 22 real-world applications and showed bet-
ter performance than two other algorithms. The authors then extended the algo-
rithm by embedding a self-adaptation mechanism for parameter control [8], in
which the population was divided into sub-populations to apply more DE strate-
gies and a population diversity mechanism introduced. The mutation strategies
used depended on the population size, which was reduced as the number of
function evaluations increased. In [9], with a probability (q), one, out of 12,
set of control parameters was selected and during the evolutionary process, q
was updated based on the success rate in the previous steps. Sarker et al. [10]
proposed a DE algorithm that used a mechanism to dynamically select the best
performing combinations of Cr and F for a problem during the course of a single
run. The results demonstrated that the proposed algorithm was superior to other
state-of-the-art algorithms. Mallipeddi et al. [11] proposed using a mix of four
constraint handling techniques (CHTs) based on a DE algorithm (ECHT-DE) to
solve constrained problems, in which four populations were initialized and each
on which used a different CHT. Additionally, a mix of mutation strategies and
a pool of F and Cr values were employed.

To deal with DE’s control parameters, Liu and Lampinen [12] proposed a
self-adaptive mechanism to determine the right values of F and Cr using the
fuzzy logic concept. Brest et al. [13] introduced a self-adaptation method for F
and Cr, in which each individual in the population assigned with a different
combination of F and Cr values. Zhang et al. [14] proposed an adaptive DE
(JADE). In it, at each generation, Crz, ∀z = 1, 2, ..., PS, was independently
generated

(
N(Cr,Crσ = 0.1)

)
. Cr was initially set to a value of 0.5 and then

dynamically updated. Similarly, Fz was generated according to a Cauchy dis-
tribution with a location parameter (F ), its initial value was 0.5, and a scaling
parameter of 0. At the end of each generation, F was updated.

From the literature, it was found that the current approaches did not assume
that one operator might work well due to the assigned combination of Cr and F
or vice versa and might perform badly, if it used another combination of control
parameters. Motivated by this fact, in this paper, a new framework, which bears
in mind the above-mentioned issue is introduced. In it, three sets (Fset, Crset

and SOset) are considered, which represent the scaling factor, crossover rate
and search operators, respectively. Then, each individual in the population is
assigned a random combination of (F , Cr and SO). The success rate of each
combination is accumulated over generations. Then, the number of combinations
is linearly reduced along with PS. The performance of the proposed algorithm
is tested on a well-known set of constrained problems [15]. The algorithm shows
consistently better performance in comparison with state-of-the-art algorithms.

The rest of this paper is organized as follows. A brief overview of DE is dis-
cussed in Sect. 2. The proposed algorithm is then described in Sect. 3. The exper-
imental results and conclusions are then discussed in Sects. 4 and 5, respectively.
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2 Differential Evolution

DE is a population-based algorithm that uses three operators (mutation,
crossover and selection) to guide the individuals to find the (near) optimal solu-
tions [16], such that

– Mutation: In its simplest form (DE/rand/1 [2]), a mutant vector is generated
by multiplying the difference between two random vectors by F and the result
is added to a third random vector as

−→v z = −→x r1 + F.(−→x r2 − −→x r3) (1)

where r1, r2, r3 are different random integer numbers ∈ [1, PS] and none of
them is similar to z. The type of mutation operator has a great effect on
the performance of DE. There are many variants of this operator, such as
DE/best/1 [2], DE/rand-to-best/1 [17] and DE/current-to-best [14].

– Crossover: There are two well-known crossover schemes, exponential and
binomial. In the former, a trial vector −→u is generated as follows:

uz,j =
{

vz,j ∀j = 〈l〉D, 〈l + 1〉D, ..., 〈l + L − 1〉D

xz,j ∀j ∈ [1,D] (2)

where l is randomly selected from a range [1,D], j = 1, 2...,D, 〈l〉D denotes a
modulo function with a modulus of D and L ∈ [1,D].
On the other hand, the binomial crossover is conducted on every j ∈ [1,D]
with a predefined crossover probability, that is

uz,j =
{

vz,j if(rand ≤ cr|j = jrand)
xz,j otherwise (3)

jrand ∈ 1, 2, ...,D is a randomly selected index, which ensures −→uz gets at least
one component from −→vz .

– Selection: The selection process is simple, in which a tournament between−→u z and −→x z, ∀z = 1, ..., PS, takes place and the winner survives to the next
generation.

3 Dynamic Configuration of DE’s Control Parameters
and Operators

Here, the proposed dynamic configuration of DE parameters and operators algo-
rithm (DCDE) is described.

3.1 DCDE

It has been proven that the performance of a DE operator and a set of para-
meters may work well on a specific problem and may perform badly on another
[5]. This motivated researchers to introduce DE variants that incorporated an
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Algorithm 1. General framework of DCDE
1: PS ← PSmax; define PSmin; Fset ← F1, F2, ..., Fnf ; Crset ←

Cr1, Cr2, ..., Crncr; SOset ← SO1, SO2, ..., SOnso; cfe ← 0;
2: Generate an initial random population. The variables of each individual (−→xz) must

be within its boundaries;
3: Calculate the fitness value and constraint violation of (−→xz);
4: cfe ← 2 × PS as evaluating the constraints is counted;
5: Sort the whole population.
6: while cfe < cfemax do
7: Each individual is assigned a random combination of parameter segments F , Cr

and SO;
8: Convert discrete segments of F and Cr to continuous values.
9: for z = 1 : PS do

10: Generate a new individual (−→uz) using its assigned combination;
11: Calculate the constraints violation Θ(−→uz);
12: if Θ(−→uz) > 0 // the individual is infeasible then
13: cfe ← cfe + 1;
14: Fitness value (fit(−→uz)) ← fit(−→xz);
15: else if Θ(−→uz) = 0 // the individual is feasible then
16: Calculate the fitness value (fit(−→uz));
17: cfe ← cfe + 2 ;
18: end if
19: if −→uz is better than −→xz then
20: −→uz is survived to the next generation; comy,suc ← comy,suc + 1; SOp,suc ←

SOp,suc + 1;
21: end if
22: Update and sort the new population.
23: end for
24: Calculate the rank of each combination based on Eq. 4.
25: Reduce PS and number of combinations if required.
26: Go to step 9;
27: end while

ensemble of DE operators and parameters. However, such studies used to cal-
culate the success of search operators separately from control parameters; and
then used some adaptive mechanisms to place emphasis on the best-performing
operators. However, after selecting the best operators, they may not perform
well as expected. One reason for this is the change in the control parameters.
Therefore, in this section, a new framework is proposed which keeps track of the
best combinations of operators and control parameters. The proposed algorithm
is presented in Algorithm 1.

To begin with, three sets are defined as: Fset, Crset and SOset, where
Fset and Crset contain nf and ncr discrete values, respectively, and each dis-
crete value represents a range of continuous values. For example, if F = 8,
and Cr = 9, it means that 0.8 ≤ F < 0.9 and 0.9 ≤ Cr < 1, while
SOset = {SO1, SO2, ..., SOnso} is a set of different DE variants. This means
that the total number of combinations (NoC) is equal to (nf ×ncr × nso).
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First, PS random individuals are generated within the variables bounds, i.e.,
xi,j = xj + rand(x̄j − xj), where xj and x̄j are the lower and upper bounds of
the jthvariable, respectively. Each individual in the population (−→xz) is assigned
a combination that has three values (Fz, Crz and SOz). To make it clear, each
combination is assigned to at least one individual. In case of NoC is less than
PS, the rest PS − NoC individuals are assigned with random combinations.
Then, for each −→xz, a new offspring (−→uz) is generated by using its assigned com-
bination of operators and parameters. If −→uz is better than −→xz, it survives to the
next generation and the success of the corresponding combination (comy,suc) is
increased by 1, where y = 1, 2, ..., NoC. It is worth mentioning that to reduce
the number of fitness evaluations, if −→uz is infeasible, its objective value is not
calculated. Instead, it takes the fitness value of its parent. Hence, the number of
fitness evaluations (cfe) is only increased by 1. On the other hand, if −→uz individ-
ual is feasible, its fitness value is calculated and hence cfe is increased by 2. At
the end of each generation, the ranking of any combination (Ry) is calculated
using Eq. (4), where Ny is the number of individuals updated by a combination
y. Note that the initial value of Ry was set at a value of 0.

Ry =
comy,suc

Ny
(4)

At the same time, a linear reduction of PS takes place, i.e., PS is set to a
large value at the start of the evolutionary process and then linearly reduced (by
removing one or more individual from the worst 5% solutions), such that

PSiter = round
(((

PSmin − PSmax

FFEmax

)
× cfe

)
+ PSmax

)
, (5)

where, PSmax and PSmin are the maximum and minimum values of PS, respec-
tively, and FFEmax the maximum number of fitness evaluations. The main moti-
vation behind adapting PS is to maintain diversity during the early stages of
the evolutionary process, while placing emphasis on the intensification process
at later stages [18].

At the same time, all combinations are sorted based on their ranks and the
worst (PSiter−1−PSiter) combinations are then removed. The process continues
until a stopping criterion is met.

3.2 Selection Process

The selection process between any offspring and its parent is based on the supe-
riority of feasible solutions technique [19], as it does not require user-defined
parameters. In it, three conditions exist: (1) between two feasible candidates,
the fittest one (according to the fitness value) is selected; (2) a feasible point is
always better than an infeasible one; and (3) between two infeasible solutions,
the one with a smaller sum of constraint violations (Θ) is chosen, where Θ of an
individual (−→xz) is calculated such that:
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Θz =
K∑

k=1

max(0, gk(−→xz) − δk) +
E∑

e=1

max(0, |he(−→xz)| − εe) (6)

where gk(−→xz) is the kth inequality constraints, he(−→xz) the eth equality constraint.
As some inequality constraints may be difficult, a new parameter δ is consid-
ered in Eq. (6) which is set to a large value at the beginning of optimization
process and then reduced to be zero. This also applies to the equality con-
straints, whereby εe is initialized with a large value and then reduced to 0.0001
[15]. Setting the initial value of ε is a problem dependent, as discussed in [20].

4 Experimental Results

In this section, the computational results of DCDE are presented and analyzed
on the CEC2010 constrained problems set [15]. All algorithms were run 25 times
for each test problem, where the stopping criterion was to run for up to 200, 000
and 600, 000 FEs for the 10D and 30D problems, respectively.

To begin with, in regards to the possible parameter values used in this study,

– SOset = {DE1,DE2}, in which
1. DE1: DE/ϕ-best/1/bin [10]

uz,j =

{
xφ,j + Fz.(xr1,j − xr2,j) if(rand ≤ crz|j = jrand)
xz,j otherwise

(7)

2. DE2: DE/current-to-φbest with archive/1/bin [14]

uz,j =

{
xz,j + Fz.(xφ,j − xz,j + xr1,j − x̃r3,j) if(rand ≤ crz|j = jrand)

xz,j otherwise

(8)
where ϕ = 0.5 as suggested in [10], φ = 0.1 [14], r1 �= r2 �= r3 �= z are random
integer numbers, x̃r2,j randomly chosen from PS ∪ AR, i.e., the union of PS
and archive AR. Initially, the archive was empty, then the unsuccessful parent
vectors were added to the it and once its size (archsize) exceeds a threshold,
randomly selected elements were deleted to make space for the newly inserted
ones [14]. The reason for using DE1 was to obtain a balance between diversity
and intensification, as described in [10], while DE2 had a high convergence rate.

– Fset ={F3 ∈ [0.3 − 0.4[,F4 ∈ [0.4 − 0.5[,F5 ∈ [0.5 − 0.6[, F6 ∈ [0.6 − 0.7[,
F7 ∈ [0.7 − 0.8[, F8 ∈ [0.8 − 0.9[, F9 ∈ [0.9, 1[}.

– Crset ={Cr2 ∈ [0.2−0.3[ , Cr3 ∈ [0.3−0.4[, Cr4 ∈ [0.4−0.5[, Cr5 ∈ [0.5−0.6[,
Cr6 ∈ [0.6 − 0.7[, Cr7 ∈ [0.7 − 0.8[, Cr8 ∈ [0.8 − 0.9[, Cr9 ∈ [0.9, 1[}, hence
NoCtotal = 7 × 8 × 2 = 112 combinations.

– PSmax = 125 and PSmin = 30.
– archsize was set to a value of 1.4PS and 2.6PS for the 10D and 30D problems,

respectively. The reason for its value when solving the 30D problems was to
maintain diversity.
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The results obtained are presented in Table 1. For the 10D problems, it was
found that the algorithm was able to obtain the optimal solution for every prob-
lem. Its performance was robust (the average results achieved were the optimal)
for all test problems, except C02, C07 and C11. For the 30D test problems, the
algorithms was able to obtain very good results, in comparison with those in the
literature. Although its performance was robust for most of the test problems, it
faced difficulties to achieve similar performance for some multi-modal problems,
i.e., C13.

Also, Fig. 1 presents the best 10 combinations of Cr, F and SO, for all
problems with 10D, recorded the end of the evolutionary process, of a single
run. From this figure, it can be concluded that one set of control parameters can
be suitable for one search operator, but it may not suit another search operator.
To add to this, no single combination of operators and parameters is the best
for all test problems.

4.1 Comparison with the State-of-the-Art Algorithms

The DCDE’s results were also compared to those of (1) dynamic selection of DE
parameters (DE-DPS) [10], (2) adaptive ranking mutation operator based DE
(ECHT-ARMOR-DE) [21], which used an ensemble of CHTs, parameters and
operators; and (3) εDEag [22] (the winner of the CEC2010 competition). The
detailed results are shown in Table 1.
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Fig. 1. Best 10 combinations of Cr, F and SO for all problems with 10D recorded at
the end of the evolutionary process
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Table 1. Function values achieved by DCDE, εdeag, ECHT-ARMOR-DE and DE-DPS
for the CEC2010 constrained problems. “*” and “-” refer to infeasible solutions
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In comparison with the above mentioned algorithms, DCDE and DE-DPS
were able to reach a 100% feasibility rate (FR), but εDEag attained a 12% FR
for C12 and the FR of ECHT-ARMOR-DE was less than 100% (no exact FR
was reported in the corresponding paper).

Considering the quality of the solutions obtained, a summary is reported in
Table 2. The results for the 10D problems clearly showed the ability of DCDE to
obtain better results for more test problems than the other algorithms. DCDE
had superior performance in solving the 30D problems.

Statistically, based on the Wilcoxon signed rank test, the algorithm was found
superior to all the other algorithms, especially for the 30D problems. Also, the
Friedman test was undertaken to rank all algorithms based on the average fitness
values achieved. The results are shown in Table 3. Generally, DCDE was ranked
1st followed by DE-DPS, ECHT-ARMOR-DE and εDEag, respectively.

Table 2. A Comparison Summary of DCDE against DE-DPS, ECHT-ARMOR-DE
and εDEag

Algorithms Results 10D 30D

Better Similar Worse Better Similar Worse

DCDE vs. DE-DPS Best 1 17 0 11 7 0

Mean 6 10 2 13 2 3

DCDE vs. ECHT-ARMOR-DE Best 4 14 0 12 4 2

Mean 7 7 4 15 1 2

DCDE vs. εDEag Best 1 17 0 17 1 0

Mean 9 7 2 16 0 2

Table 3. Ranks of DCDE, DE-DPS, ECHT-ARMOR-DE and εDEag based on the
Friedman Test

Rank Algorithms

DCDE DE-DPS ECHT-ARMOR-DE εDEag

10D 2.11 2.25 2.75 2.89

30D 1.47 2.03 3.22 3.28

5 Conclusions and Future Work

To cover a research gap found in the literature, that was the current DE algo-
rithms measure the success or failure of a DE operator without considering the
set of parameters that was assigned to it during the optimization process. There-
fore, in this paper, a new framework, was introduced. In it, three sets (Fset, Crset

and SOset) were initiated. Then, each individual in the population was assigned
a random combination of F , Cr and SO. The success rate of each combina-
tion was accumulated over generations. Then, the number of combinations was
linearly reduced along with the population size.
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The performance of the proposed algorithm was tested on a well-known set of
constrained problems. From the results obtained, the proposed algorithm showed
consistently better performance in comparison with three state-of-the-art algo-
rithms, in terms of its ability to obtain a 100% feasibility rate and better quality
solutions. Statistical tests were also undertaken which showed the superiority of
the proposed methodology.

For future work, we intend to analyze the algorithm’s components and solve
real-world problems.
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Abstract. Over the last few years, constraint consensus methods have been
used for the movement of infeasible solutions towards feasible space, when
solving constrained optimization problem. In this paper, a novel approach is
proposed that is based on the concept of constraint consensus to improve fea-
sible individuals, rather than infeasible ones, in which a feasible individual is
considered as an infeasible one, if its fitness value is worse than a dynamic
reference point. The obtained new solutions are then passed to differential
evolution to be evolved. The proposed algorithm has been tested on the
CEC2010 benchmark constrained problems. The results demonstrate better
performance of the proposed algorithm, in terms of quality of solutions and
computational time, in comparison with a standard differential evolution algo-
rithm, as well as a set of state-of-the-art algorithms.

Keywords: Constrained optimization � Constraint consensus � Differential
evolution

1 Introduction

There exist a considerable number of real-world decision processes that require the
solution of constrained optimization problems (COPs). These COPs may contain linear
and non-linear functions with equality and in-equality constraints. Some of these
functions may not satisfy certain properties, such as differentiability, continuity and
convexity [1, 2], that are required by conventional optimization methods [3]. Thus the
existence of any non-standard functions in COPs makes them challenging to solve [4].

Evolutionary algorithms (EAs), such as genetic algorithm (GA) [5] and differential
evolution (DE) [6], are population based algorithms that mimic some sort of selection,
crossover and mutation to find an optimal solution. EAs do not require the satisfaction
of specific mathematical properties [2], are robust to dynamic changes and have
broader applicability in practice [7]. Although EAs have a successful history of solving
COPs, there is no guarantee that they will reach an optimal solution [8], and they are
often slow in reaching the feasible region in many cases.

Recently, the constraint consensus (CC) methods have been incorporated with EAs
to help infeasible solutions to move toward feasible space. Such techniques are based
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on projection algorithms, which employ some form of a projection for each violated
constraint, most commonly a projection in the gradient or anti gradient direction [9].
The performance of such algorithms has shown the benefit of incorporating CC with
EAs. In a few recent research studies, an additional operation has been applied to
selected infeasible individuals in each generation to help to move them closer to
feasible space [10–13]. Such an operation used a modified version of the traditional CC
method. In fact, CC assists infeasible solution vectors to quickly move towards feasible
region, by making a consensus among the currently violated constraints. It determines
the direction and step size that are required to move towards feasibility in each step
[14]. However, the CC methods deal only with constraints, but not with the fitness
function. The approach introduced by [10–13] is a two-step sequential approach, where
the CC methods assist in reducing the constraint violations of a few infeasible indi-
viduals in each generation and then the usual evolutionary search operators are applied
to the population. In those research studies, the CC methods were applied to the
infeasible individuals for making possible improvements in feasibility, where a pro-
jection mechanism was used for each violated constraint. Note that the constraint
violation of any feasible individual is zero.

In this paper, our interest is to deal with feasible individuals, rather than infeasible
ones. To develop the new approach based on feasible individuals, we define a new term
“fitness deviation”, which means the deviation of the fitness value of a feasible indi-
vidual, from the fitness value of a reference point. Also, the CC method works with DE,
with an objective of minimizing this deviation. In the proposed algorithm, the popu-
lation is divided into two groups; feasible and infeasible, if any exist. Some of the
feasible individuals are then evolved using the CC method. Then the generated new
points replace the old ones, and the entire population is updated. After that, the DE
mutation is applied to the whole population. The process continues until a stopping
criterion is met.

The performance of the proposed algorithm was tested by solving a set of con-
strained benchmark problems with 30 dimensions [15]. The results show that the
proposed algorithm is able to obtain better solutions than standard DE with lower
computational time and it also shows superiority to state-of-the-art algorithms.

This paper is organized as follows. After the introduction, Sect. 2 describes the DE
algorithm. Section 3 discusses an overview of the constraint consensus method.
Section 4 demonstrates the design of the proposed algorithm, while the experimental
results and analysis are presented in Sect. 5. Finally, the conclusions are given in
Sect. 6.

2 Differential Evolution

Differential Evolution (DE) is a population based stochastic direct search method, in
which for each parent (target vector), ~xi;t, in the population, a new mutated vector
(mutant vector),~vi;t, is generated using a mutation strategy [6]. A final vector, ~ui;t, is
then created by combining the mutant vector with the target vector while using a
pre-specified crossover rate. A comparison is then made between each parent and its
offspring, and the better one is copied to the next generation.
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DE has been successfully applied in solving different optimization problems,
including non-linear and non-differentiable ones. However DE prematurely converges
when solving problems with multiple local optima, because it loses diversity [16].

2.1 Mutation Strategy

For DE, a considerable number of mutation operators have been introduced. These
mutation operators often possess different search capabilities in various stages of the
evolution process [17]. The variants are classified using the notation DE/base/num/cross;
“base” indicates the method of selecting a parent that will form the base vector, “num”
indicates the number of difference vectors that are used to perturb the parent and “cross”
indicates the crossover operator. For example, in the simplest mutation, “DE/rand/1/bin”,
a mutant vector is generated by multiplying the amplification factor (F) by the difference
of two random vectors, and the result is added to a third random vector [18], as follows:

~vi;t ¼~xr1;t þF � ~xr2;t �~xr3;t
� � ð1Þ

where r1; r2; r3 are random numbers ð1; 2; . . .;NPÞ, r1 6¼ r2 6¼ r3 6¼ z, ~x is a decision
vector, which represents the individuals at the current population, NP is the population
size, the scaling factor F is a positive control parameter for scaling the difference
vector, F 2 ½0; 1�, and t is the current generation.

2.2 Crossover

Two crossover operators, known as exponential and binomial crossover, are widely
used in DE [16].

The binomial crossover is performed as follows:

ui;j;t ¼ vi;j;t; if ðrand � Cr or j ¼ jrandÞ
xi;j;t; otherwise:

�
ð2Þ

where rand 2 ½0; 1�, jrand 2 ½1; 2; . . .;D� is a randomly chosen index, which ensures~ui;t
gets at least one component from ~vi;t, and the crossover rate, Cr 2 ½0; 1�, is a user
defined parameter, which control the contribution of the mutant vector while producing
the trial one.

3 Constraint Consensus (CC) Method

The projection algorithms employ some form of a projection for each violated con-
straint, most commonly a projection in the gradient or anti gradient direction to solve
feasibility problems with a set of convex constraints. However, the Constraint Con-
sensus (CC) method [19] uses different types of projection algorithms that provide
approximate solutions to feasibility problems, which can include nonlinear and
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non-convex constraints. The main idea is to assist a currently infeasible point to quickly
move towards a feasible region, by making a consensus among the currently violated
constraints to define the direction and distance that are required to achieve feasibility.
The movements are updated repeatedly until a stopping condition is met [14].

In the process, CC starts from an initial infeasible solution and then constructs a
feasibility vector for each violated constraint of some existing solution. The feasibility
vector approximates the move from the current infeasible point, to the closest feasible
solution, for each violated constraint. The calculation of the feasibility vectors in CC is
exact for linear constraints; however a linear approximation can be generated (known
as linear feasibility vectors) for nonlinear constraints. The linear feasibility vector
moves the infeasible solution in a parallel direction to the gradient of the violated
constraint and the step size of the movement is calculated by using a first order Taylor
series expansion of the constraint function around the current solution [12, 14, 20],
such that:

~xkþ 1;c �~xk
� � ¼ �vioc

jjrgcð~xkÞT jj2
rgcð~xkÞT ð3Þ

where

• rgcð~xkÞ is the gradient of the cth violated constraint, c 2 C ¼ ð1; 2; . . .;mÞ,
rgcð~xkÞT is the transposition of its gradient, and rgcðxkÞT

�� �� is its length.
• vioc: is the constraint violation jgc ~xkð Þ � bcj, vioc ¼ 0 for satisfied constraints.
• k is the number of CC generations, k ¼ 0; 1; . . .; l, where l is the maximum

number of CC generations.
• ~xk is the current infeasible point at kth generation “current iteration”, and~xkþ 1;c is

the estimated feasible point for each c violated constraint at k + 1th generation.

To deal with non-differentiable and discontinuous functions, an approximate gra-
dient rgc ~xkð Þð Þ is calculated numerically in our algorithm. rgc ~xkð Þ is equal to

(gc ~xþDð Þ�gc ~xð Þ
D ), where D represents a small change in~x (here it is equal to 0.0001).

The feasibility vectors for all violated constraints are joined into a consensus vector
which is then used to update the current point. The CC steps are repeated until a
predefined stopping condition is satisfied [9, 14], such that (1) the length of every
feasibility vector is less than a predefined feasibility distance threshold (α) (e.g. 10�6),
(2) the length of the consensus vector is less than a movement tolerance (b) which is
caused when the consensus vector becomes too short, or (3) more than l generations
have been completed.

4 Exploring Feasible Space Using Constraint Consensus

In this section, the proposed algorithm (EFS-CC-DE) is introduced, and then the
constraint handling technique is discussed.
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4.1 Proposed Algorithm

As mentioned earlier, the CC method helps infeasible points to quickly move towards
the feasible region by making a consensus among the currently violated constraints.
However, can we use a similar concept for feasible individuals (those with their sum
the constraints violations being zero) for improving their fitness values?

The proposed approach has two stages. In the first, CC is applied for a selected
number of feasible solutions, if any exist. Then, those individuals, along with any
remaining individuals, are evolved by DE. To clarify, the proposed approach starts with
setting a reference point (z�) in each generation, which represents the best solution
found so far, either feasible or infeasible. The CC method is then used to help feasible
solutions to move towards the reference point. In other words, any feasible solution,
which is evaluated as greater than z�, in the case of a minimization problem, may be
handled by the concept of CC method to minimize its objective function deviation
(fi � z�), where fi is the objective function of individual i.

The main steps of the proposed algorithm are shown in Algorithm 1. Firstly,
EFS-CC-DE randomly generates a set of NP individuals. Each xi;j is generated within a
boundary based on the following equation:

xi;j ¼ Lj þ rand � ðUpperj � LowerjÞ ð4Þ

where Lowerj and Upperj are the lower and upper bounds for decision variable xi;j,
while rand is a random number within ½0; 1�. The fitness function value f ðxi;jÞ of each
individual xi;j is then evaluated, and the individual which has the best fitness function
value, either feasible or infeasible, serves as a reference point (z�) [21].

z� ¼ minðf xi;j
� �jx 2 XÞ ð5Þ

If there are feasible individuals, then some of them are selected. For the selected
individuals (Pfes); the objective violation of the ith individual (objvioi ) is calculated as
follows:

objvioi ¼ z� � f xi;j
� ��� ��; where 1� i�Pfes ð6Þ

For each individual objvioi [ 0, the linear feasibility vector is calculated to
approximate the move from the current feasible point ðxiÞ to z�, say~xfv;i, to z�, such that

~xfv;i �~xi ¼ �objvioi
jjrf ~xið Þjj2 rf ~xið ÞT ð7Þ

where rf ~xið Þ is the gradient of the objective function of ~xi, and ~xfv;i �~xi is the fea-
sibility vector in the CC method.

Then the population is updated, in which the new (Pfes) individuals are merged with
the remaining NP-Pfes individuals. Then for each individual in NP, new offspring are
generated according to:
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ui;j ¼ xi;j þFi: xri1;j � xri2;j
� �þFi: xu;j � xi;j

� �
if rand�Cri or j ¼ jrandð Þ

xi;j otherwise

�
ð8Þ

where u is an integer number between 1�0:1NP½ �.
For each newly generated individual, if it is better than its parent, it survives for the

next generation, and the entire population is sorted based on the fitness function and/or
constraint violation.

4.2 Constraint Handling

In this paper, the superiority of feasible solution technique is used to select individuals
[22], in which: (i) between two feasible solutions, the fittest one (according to fitness
value) is better, i.e. f ð~x1Þ \ f ð~x2Þ, (ii) a feasible solution is always better than an
infeasible one, (iii) between two infeasible solutions, the one having the smaller sum of
its constraint violation is preferred, i.e. vioð~x1Þ \ vioð~x2Þ. Equality constraints are
transformed into inequalities of the following form, where ε is a small tolerance, i.e.
0.0001, and E is the number of equality constraints:

jhe ~xð Þj � e� 0; for e ¼ 1; . . .;E ð9Þ

5 Experimental Results

In this section, we present and analyze the experimental results of the proposed
algorithm by solving set of benchmark problems introduced in the CEC2010 special
session and competition on constrained optimization problems (30D) [15] (we assume
30D problems are much difficult than 10D ones). These problems possess different
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mathematical properties, such as the objective function and/or the constraints are either
linear or non-linear, the constraints are of either equality or inequality type, the
objective function is either unimodal or multi-modal, and the feasible space may be
very tiny compared to the search space.

The algorithm has been coded using Matlab, and has been run on a PC with a
3.40 GHz Core (TM) i7 processor, 8G RAM and Windows 7. Based on the analysis
presented in [23], the values of the parameters, are set such that NP is 100 individuals
and Pfes = 10 % of the feasible solutions. Fi is a random number 2 0:4� 0:9½ �. In
regard to Cri, for each individual in the population at generation t, Cri;t is randomly
selected from {0.95, 0.75 or 0.4} [24], the total number of Fitness Evaluations
(FEs) was set to 20000D, and the number of independent runs for each problem was set
to 25. CC’s parameters were chosen as follows: α = 10−6 and μ = 1.0 CC generation,
we use linear feasibility vectors as shown in (7).

5.1 Effect of Proposed Algorithm

The comparison summary of DE and the proposed algorithm, for the 30D test prob-
lems, is presented in Table 1. From this table, it is clear that the number of problems in
which better average fitness values were obtained by the proposed algorithm, is higher
than those obtained by DE. In regards to the best fitness values obtained, EFS-CC-DE
is slightly better in terms of the number of best values obtained in comparison to DE by
8. Based on the average results, EFS-CC-DE is better than the DE by 14 test problems.

A non-parametric statistical significance test, namely the Wilcoxon Signed Rank
Test [4, 25], has also been performed. The Wilcoxon test results, regarding the best and
average fitness values are presented in Table 1. As a null hypothesis, it is assumed that
there is no significant difference between the best and/or mean values of two samples,
while the alternative hypothesis is that there is a significant difference in the best and/or
average fitness values of the two samples, using a 5 % significance level. Based on the
test results/rankings, we have assigned one of three signs (+, -, and ≈) for the com-
parison of any two algorithms (shown in the ‘Decision’ column), where the “+” sign
means that the first algorithm is significantly better than the second, the “−” sign means
that the first algorithm is significantly worse, and the “≈” sign means there is no
significant difference between the two algorithms. From Table 1, it is clear that
EFS-CC-DE is significantly better than DE, based on the average results obtained for
all test problems. However, there is no statistically significant difference among
EFS-CC-DE and DE in regard to the best results obtained.

Table 1. Comparison among EFS-CC-DE and DE based on the 30D test problems

D Comparison Results Better Equal Worse Decision

30D EFS-CC-DE - to - DE Best 8 7 3 �
Average 14 3 1 þ
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In addition to judging the quality of solutions, we have compared the average
computational time and the number of fitness evaluations required to obtain the optimal
solution with an error margin of 0.0001, i.e. the stopping criteria is

½f ~xð Þ � f ðx�!Þ� 0:0001�, where f x�
!� �

was the best known solution. The comparisons

are shown in Table 2. From this table, it is clear that EFS-CC-DE is the best, as it
consumes 16.19 % less computational time than DE. The number of average fitness
evaluations taken by EFS-CC-DE is less than those of DE. EFS-CC-DE saves 22.35 %
in comparison to DE.

To further illustrate this, an example convergence plot, is depicted in Fig. 1, which
shows that EFS-CC-DE converges at a faster rate than DE. In the plot, the x-axis
represents the fitness evaluations, while the y-axis represents the average fitness value.

5.2 Comparison to State-of-the-Art Algorithms

Here the computational results of EFS-CC-DE are compared with a number of
state-of-the-art algorithms εDEag [26], which won the CEC2010 constrained opti-
mization competition, Adaptive Ranking Mutation Operator Based Differential Evo-
lution for Constrained Optimization, ECHT-ARMOR-DE [27], and Co-evolutionary

Table 2. Comparison among EFS-CC-DE and DE, based on the average computational time
and FEs

D Algorithm Total average Time Total average FEs

30D EFS-CC-DE 58.06 318063.58
DE 67.45 389135.27

Fig. 1. Convergence plot for both EFS-CC-DE and DE for C09 (30D)
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Comprehensive Learning Particle Swarm Optimizer (Co-CLPSO) [28]. The detailed
results are shown in Appendix A.

Considering the quality of the solutions obtained, a summary is reported in Table 3.
From this table, EFS-CC-DE was clearly better than εDEag and Co-CLPSO for the
majority of the test problems. EFS-CC-DE was found superior when compared with
ECHT-ARMOR-DE for 10 and 14 test problems, based on the best and average results,
respectively. Finally, based on the Wilcoxon test, EFS-CC-DE was significantly better
than εDEag, Co-CLPSO and ECHT-ARMOR-DE.

6 Conclusions and Future Work

In this research, the concept of the CC method has been utilized to improve feasible
individuals, rather than infeasible ones, to solve constrained optimization problems.
This approach was inspired by the usefulness of the concept of the constraint consensus
method that is used in the traditional optimization domain. However, it required the
modification of the CC method for its appropriate use with feasible individuals. This
approach was applied to only some of the feasible individuals in each generation, to
minimize computational time while maintaining good diversity within the population.

The proposed algorithm (EFS-CC-DE) was tested on a well-known set of con-
strained problems and the results were compared with the same DE without applying
the CC method. The results showed the effectiveness of using the CC method in terms
of obtaining quality solutions at relatively lower computational time.

The results of the proposed algorithm were also compared with three
state-of-the-art algorithms, and based on the quality of the solutions obtained, as well as
a non-parametric statistical test, it showed that the proposed algorithm was superior to
those algorithms.

For the future work, we intend to apply the proposed method for both feasible and
infeasible individuals within a single framework.

Table 3. Comparison between of EFS-CC-DE, εDEag and ECHT-ARMOR-DE

D Comparison Results Better Equal Worse Decision

30D EFS-CC-DE – to – εDEag Best 17 1 0 þ
Average 13 0 5 þ

EFS-CC-DE – to – ECHT-ARMOR-DE Best 10 6 2 þ
Average 14 1 3 þ

EFS-CC-DE – to – Co-CLIPSO Best 16 2 0 þ
Average 17 0 1 þ
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Appendix A

See Appendix Table 4.

Table 4. Function values obtained by DE, EFS-CC-DE, εDEag, ECHT-ARMOR-DE and
CO-CLIPSO for the CEC2010 (30D) test problems

Prob. Algorithm DE EFS-CC-DE εDEag ECHT-ARMOR-DE CO-CLIPSO

C01 Best −8.218843E-01 −8.218825E-01 −8.218255E-01 −8.1806E-01 −8.0688E-01

Average −8.147209E-01 −7.980977E-01 −8.208687E-01 −7.8992E-01 −7.1598E-01

St. d 7.387809E-03 2.901320E-02 7.103893E-04 2.51E-02 5.0252E-02

C02 Best −2.280973E + 00 −2.280973E + 00 −2.169248E + 00 −2.2607E + 00 −2.2809

Average −2.273549E + 00 −2.275677E + 00 −2.151424E + 00 −2.1706E + 00 −2.2029

St. d 4.195948E-03 4.046198E-03 1.197582E-02 7.36E-02 1.9267E-01

C03 Best 0.000000E + 00 0.000000E + 00 2.867347E + 01 2.5801E-24 –

Average 4.436202E-21 3.538459E-25 2.883785E + 01 2.6380E + 01 –

St. d 1.403361E-20 4.619381E-25 8.047159E-01 7.94E + 00 –

C04 Best −3.332553E-06 −3.332864E-06 4.698111E-03 −3.3326E-06 −2.9300E-06

Average −3.309584E-06 −3.329799E-06 8.162973E-03 8.3713E-02 1.1269E-01

St. d 2.629157E-08 3.926758E-09 3.067785E-03 2.89E-01 5.6335E-01

C05 Best −4.836106E + 02 −4.836106E + 02 −4.531307E + 02 −4.8122E + 02 −4.8360E + 02

Average −4.836106E + 02 −4.836106E + 02 −4.495460E + 02 −4.3335E + 02 −3.1249E + 02

St. d 3.147886E-08 2.533516E-06 2.899105E + 00 1.46E + 02 8.8332E + 01

C06 Best −5.306378E + 02 −5.306379E + 02 −5.285750E + 02 −5.2465E + 02 −2.8601E + 02

Average −4.054263E + 02* −5.306348E + 02 −5.279068E + 02 −4.8931E + 02 −2.4470E + 02

St. d 2.580869E + 02 7.556911E-03 4.748378E-01 1.32E + 02 3.9481E + 01

C07 Best 0.000000E + 00 0.000000E + 00 1.147112E-15 0.000000E + 00 3.7861E-11

Average 6.378598E-01 6.378598E-01 2.603632E-15 1.0789E-25 1.1163

St. d 1.491658E + 00 1.491658E + 00 1.233430E-15 2.20E-25 1.8269

C08 Best 6.175302E-30 0.000000E + 00 2.518693E-14 0.000000E + 00 4.3114E-14

Average 1.594650E-01 4.133150E-27 7.831464E-14 2.0101E + 01 4.7517E + 01

St. d 7.973248E-01 6.367448E-27 4.855177E-14 4.70E + 01 1.1259E + 02

C09 Best 2.189841E-27 0.000000E + 00 2.770665E-16 0.000000E + 00 1.9695E + 02

Average 2.102604E-01 2.329347E-26 1.072140E + 01 4.6110E + 00 1.4822E + 08

St. d 7.425869E-01 2.364385E-26 2.821923E + 01 2.31E + 01 2.4509E + 08

C10 Best 3.215946E-25 0.000000E + 00 3.252002E + 01 6.0209E-13 3.1967E + 01

Average 2.672508E-19 2.051003E-26 3.326175E + 01 6.5536E + 01 1.3951E + 09

St. d 5.804783E-19 1.793996E-26 4.545577E-01 1.07E + 02 5.8438E + 09

C11 Best −3.923439E-04 −3.923439E-04 −3.268462E-04 −3.9234E-04 –

Average 1.132727E-03* 3.701916E-04 −2.863882E-04 – –

St. d 5.278412E-03 3.812677E-03 2.707605E-05 5.28E-03 –

C12 Best −1.992635E-01 −1.992635E-01 −1.991453E-01 −1.9926E-01 −1.9926E-01

Average −1.992634E-01 −1.992635E-01 – −1.6076E-01 −1.9911E-01

St. d 4.325678E-09 2.675864E-09 2.889253E + 02 1.93E-01 1.1840E-04

C13 Best −6.770243E + 01 −6.680096E + 01 −6.642473E + 01 −6.7416E + 01 −6.2752E + 01

Average −5.929649E + 01 −6.262695E + 01 −6.535310E + 01 −6.4646E + 01 −6.0774E + 01

St. d 5.864591E + 00 3.312371E + 00 5.733005E-01 1.97E + 00 1.1176

C14 Best 2.111503E-22 0.000000E + 00 5.015863E-14 1.5809E-27 3.28834e-09

Average 1.594650E-01 3.189299E-01 3.089407E-13 6.6135E + 02 0.0615242

St. d 7.973248E-01 1.103846E + 00 5.608409E-13 2.47E + 03 0.307356

C15 Best 5.191573E-26 0.000000E + 00 2.160345E + 01 1.1716E-04 5.7499E-12

(Continued)
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Abstract. Bilevel optimization is a challenging class of problems, with
applicability in several domains such as transportation, economics and
engineering. In a bilevel problem, the aim is to identify the optimum
solution(s) of an upper level (“leader”) problem, subject to optimality
of a corresponding lower level (“follower”) problem. Most of the studies
reported in the literature have focussed on single-objective bilevel prob-
lems, wherein both the levels contain only one objective. Several nested
algorithms have been proposed in the literature to solve single objective
problems, which have been subsequently enhanced through hybridiza-
tion with local search in order to improve computational efficiency. The
handful of algorithms used for multi-objective algorithms so far have used
additional enhancements such as use of scalarization, sub-populations or
hybridization. However, interestingly, unlike single-objective problems,
the performance of a simple nested evolutionary algorithm has not been
reported for multi-objective bilevel problems. In this paper, we attempt
to address this gap by designing an algorithm which uses differential
evolution at both levels. Numerical experiments show that on popular
benchmarks, the proposed algorithm exhibits competitive performance
with respect to existing state-of-the-art methods.

Keywords: Bilevel optimization · Multi objective · Evolutionary algo-
rithms

1 Introduction

Bilevel optimization is a specific class of problems where optimization needs to
be performed at two levels, upper (“leader”) and lower (“follower”). The ear-
liest appearance of bilevel optimization dates back to 1950 s in the context of
Stackelberg game theory [26]. In recent years, research in the field of bilevel opti-
mization has gathered pace and it is increasingly being used to solve problems in
several domains including engineering [12], logistics [27], transportation [17] and
many more. Rapid increase in the size and complexity of the problems emerging
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from these domains has prompted active interest in design of efficient algorithms
for bilevel optimization in the recent years. The increase in complexity could be
attributed to having a larger number of system variables, multiple objectives,
many constraints and highly non-linear and/or discontinuous functions. Addi-
tionally, the problems often need to be solved in real time, which necessitates
that the solution be obtained in minimum computational time possible.

Bilevel problems can be further segregated into single-objective (both upper
and lower levels contain one objective each) or multi-objective (upper/lower
level contain more than one objective). Majority of the works reported to date
deal with single objective bilevel optimization problems. A number of classi-
cal and population based methods have been developed to solve them. The
classical methods include simplex method [6,19], feasible interior point method
with Karush-Kuhn-Tucker (KKT) conditions [10], branch and bound [1], descent
methods [29] and penalty based approach [31]. Population based approaches
include variants of genetic algorithms [9,15,16,30], particle swarm optimiza-
tion [14] and evolutionary algorithm [24]. As with single-level optimization prob-
lems, classical approaches tend to be vulnerable to getting stuck in local optima,
whereas population based approaches take relatively longer time to converge. For
bilevel problems, obtaining the optimum of the lower level problem is critical to
generate valid solutions (an evaluation at upper level is valid only if the corre-
sponding lower level variables used for the evaluation are optimum for lower level
problem). Considering this as well as the aim to solve the problems within rea-
sonable computational effort, hybrid techniques have also been proposed, where
a local/classical search approach is used in conjunction with evolutionary app-
roach (typically local for one of the level and global for other) [11,13,34]. Approx-
imation of lower level optimum variable values has also been suggested [22,23].

As for multi-objective bilevel problems, very few studies have been reported
so far. In [7], an adaptive scalarization approach was used for problems with
one variable at the upper level. For the case of interactive decision making
between leader and follower, the problem was transformed into two separate
multi-objective decision making problems in [20]. This work was further extended
to include multiple interconnected decision makers at lower level in [21]. For lin-
ear bilevel multiobjective problems, mathematical programming was used in [18]
for three different situations based on anticipation of upper level decision maker -
optimistic anticipation, pessimistic anticipation and anticipation based on past
behavior of lower level decision maker. In [32], a genetic algorithm is used to
solve a transportation management and planning problems with two objectives
at upper level and one at the lower level.

Among the evolutionary algorithms to solve generic multi-objective bilevel
problems, some notable works include [2,4]. Both of these algorithms divide
the population at upper level into a number of sub-populations to solve lower
level problems independently. While the former uses a non-dominated sorting
algorithm as the base method, the latter uses a particle swarm optimizer. To
reduce the computational complexity further, use of hybrid search has also been
proposed. The work presented in [5] combines evolutionary algorithm with a
local search, whereas that in [33] incorporates a crossover operator within a
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particle swarm optimization. A few different applications have been reported
in these papers, including decision making in a company’s scenario [5,33] and
mining [25].

Interestingly, unlike single-objective bilevel domain, there seem to be no stud-
ies using a simple nested evolutionary algorithm for multi-objective bilevel prob-
lems. Most studies discussed above use certain specific enhancements, such as
special population structure and/or hybridization. The intent of this paper is to
investigate the performance of a simple nested evolutionary algorithm for multi-
objective optimization, and how it compares to some of these existing techniques.
Towards this goal, we propose a nested algorithm which uses differential evolu-
tion to solve the problem at both levels. We use three different problems from
the literature to test the algorithm, of which two are mathematical benchmarks
and third is based on a real-life application.

The rest of the paper is organized as follows. In Sect. 2, the basics of a bilevel
optimization problem formulation are discussed. Section 3 provides overview of
the proposed algorithm, followed by numerical experiments in Sect. 4. A sum-
mary of observations is given in Sect. 5.

2 Bilevel Multi Objective Optimization

A generic bilevel optimization problem is an extended version of a standard (sin-
gle level) optimization problem, in which the optimization has to be performed
at two levels, upper and lower. Each level has its variables, objectives and con-
straints. The subscript u will be henceforth used to denote attributes of the
upper level problem, whereas subscript l will be used for those corresponding
to the lower level problem. The critical link between the two levels is that for a
given upper level vector xu, the evaluation of upper level function is valid only if
the xl for the corresponding lower level problem (with xu held constant) is the
optimum of the lower level problem. This relation gives rise to the nested nature
of the bilevel problem. Formally, the mathematical representation of a generic
bilevel problem is shown in Eq. 1.

Minimize
xu

F1(xu,xl), F2(xu,xl), . . . , FMu
(xu,xl),

S.t. Gk(xu,xl) ≤ 0, k = 1, . . . , qu,
Hk(xu,xl) = 0, k = 1, . . . , ru,

Minimize
xl

f1(xu,xl), f2(xu,xl), . . . , fMl
(xu,xl),

S.t. gk(xu,xl) ≤ 0, k = 1, . . . , ql,
hk(xu,xl) = 0, k = 1, . . . , rl,

where xu ∈ Xu, xl ∈ Xl

(1)

In Eq. 1, the upper objective (real-valued) functions are Fi(xu,xl), i =
1, 2, . . . ,Mu and the lower level objective (real-valued) functions are
fi(xu,xl), i = 1, 2, . . . ,Ml. xu is the vector of the nu upper level variables in the
domain Xu, and xl is the vector of the nl lower level variables in the domain Xl.
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G represents the set of qu inequality constraints and H is the set of ru equal-
ity constraint for the upper level problem. Similarly, g and h have ql and rl
inequality and equality constraints respectively for the lower level. The upper
level objective function is optimized with respect to xu where xl acts as a fixed
parameter. The lower level is optimized with respect to xl, considering xu as
a fixed parameter. For all the problems studied in this paper, both levels are
bi-objective, i.e., Mu=2 and Ml=2.

3 Proposed Algorithm

As mentioned before, the proposed algorithm is a nested differential evolution
based bilevel multi-objective algorithm, which is referred to here as DBMA. In
synopsis, the algorithm is as follows. A population of size Nu is initialized ran-
domly for upper level problem. For each upper level individual (xu), the lower
level problem is optimized using a differential evolution based algorithm (dis-
cussed below), with population Nl. The search at lower level yields a Pareto-
front for the given (xu). The upper level functions are then evaluated using each
of the lower level solutions in the Pareto-front. Thereafter, new child solutions
are generated using DE crossover and mutation and evaluated in the same way.
All solutions thus obtained (parent+child) are collated at upper level, sorted
and the top Nu solutions are then chosen for the next generation at the upper
level. The process repeats until a prescribed number of generations to give the
final solutions. The sorting used at both levels is non-dominated sorting and
crowding distance [3], whereas the constraint handling is done based on ε level
comparisons [28], as opposed to explicit feasibility-first schemes.

The DE operators used in the proposed algorithm are the same as in
ε-constrained differential evolution (εDE) algorithm proposed in [28]. The ini-
tialization of the population is done using a uniform random distribution in the
search space, by creating each design vector as:

xi,j = xj,min + rand([0,1]).(xj,max − xj,min) (2)
i = 1, 2, . . . N ; j = i = 1, 2, . . . n (3)

Here, N is the population size and n is the number of variables. xj,max and
xj,min are the upper and lower bounds of jth variable respectively.

For evolution, mutation and crossover operators are used. For each population
member xi, mutation is used to generate a trial vector by choosing three unique
vectors xr1,xr2,xr3 from the population and generating a trial vector as:

xt = xr1 + F.(xr2 − xr3), (4)

where F is a parameter known as the scaling factor. This trial vector then under-
goes crossover with the parent vector xi. In this study, a binomial crossover with
DE/1/rand/bin strategy is used for exploration, which is known to consistently
perform well [8]. A child solution xt is created using binomial crossover of parent
vector xi and trial vector xt, by using the following operation for each variable:
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jrand = randint(1, n)

xc,j =
{

xt,j if rand[0, 1] ≤ CR or j = jrand,
xi,j otherwise

(5)

Here CR is a user defined parameter known as crossover probability and n is
the number of variables. This global search using the DE is run for a prescribed
number of generations.

Algorithm 1. Differential Evolution based Bilevel Multi-objective Algo-
rithm (DBMA)
Require: Nu: Population size for upper level DE

Genmaxu : Maximum number of upper level DE generations
Fu=[Fu1 , Fu2 ]: Upper level Objective Functions
fl=[fl1 , fl2 ]: Lower Level Objective functions

1: Set genu = 0
2: Initialize Nu number of individuals for upper level.
3: For each upper level individual xu perform the lower level optimization (Algorithm

2) to identify set of solutions x∗
l and corresponding upper and lower objective

functions.
4: while genu ≤ Genmaxu do
5: for i=1:Nu do
6: Generate a child individual xi

u using DE operators.
7: Evaluate the upper level objective function by using new xi

u and corresponding
x∗
l (obtained through lower level optimization).

8: end for
9: Collate parent and child populations.

10: Sort the (parent+child) population at upper level and select Nu best solutions
for next generation.

11: Update best solutions Fu and corresponding upper level individuals xu.
12: genu = genu+1.
13: end while
14: Return upper level Pareto front F∗

u, corresponding lower level Pareto fronts f∗
l and

optimum variables x∗
u, x∗

l .

This concludes the overview of the proposed DBMA. In the next section,
we present results on some of the existing multiobjective bilevel optimization
problems using the algorithm.

4 Numerical Experiments

In this section, we discuss the numerical experiments using the proposed DBMA
on three different problems. Out of these, two are benchmark problems, while
the third is an application. The parameter settings for the first two (bench-
mark) problems are Nu = 50, Genmaxu

= 5, Nl = 50, Genmaxl
= 25. For the

third problem (application), same population sizes are used with Genmaxu
= 25,
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Algorithm 2. Lower level optimization
Require: Genmaxl : Maximum number of lower level generations

Nl: Population size for lower level DE
fl=[fl1 , fl2 ]: Lower Level Objective functions
xu: Upper level variables (act as parameters for lower level)

1: Set genl = 0
2: Initialize Nl number of individuals for lower level problem.
3: while genl ≤ Genmaxl do
4: for i=1:Nl do
5: Generate a child individual xi

l using DE operators.
6: Evaluate the lower level objective function using xi

l and xu

7: end for
8: Collate parent and child populations resulting in 2Nl individuals.
9: Sort the (parent+child) population based on lower level objectives and select Nl

best solutions for next generation.
10: Update best fl and corresponding xl.
11: genl = genl + 1.
12: end while
13: Return best Pareto front f∗

l and corresponding x∗
l .

Genmaxl
= 30. The scaling factor(F ) of 0.7 and the crossover probability (CR)

of 0.5 is used at both levels. For each problem, the statistics correspond to
21 independent runs. For comparison with other algorithms, hypervolume met-
ric [35] is used, which calculates dominated volume (area in case of 2-objectives)
with respect to a reference point. Nadir point is used as the reference point
for calculating hypervolume in this study. For the first two problems, the true
optima (and hence true nadir point) is known, whereas for the third problem
the nadir point is computed based on the final non-dominated solutions obtained
across all runs. Higher value of the metric indicates a better approximation.

4.1 Problem 1

The first problem [5] contains three decision variables, one at the upper level and
two at the lower level. There is one constraint at each level. The mathematical
formulation of the problem is given in Eq. 6.

Minimize F1(xu,xl) = xl1 − xu,
F2(xu,xl) = xl2 ,
G1(xu,xl) = 1 + xl1 + xl2 ≥ 0;

Minimize f1(xu,xl) = xl1 ,
f2(xu,xl) = xl2 ,
g1(xu,xl) = x2

u − x2
l1

− x2
l2

,
0 ≤ xu ≤ 1,−1 ≤ xl1 , xl2 ≤ 1

(6)

The Pareto front approximation for the median run of DBMA (based on
hypervolume) is shown in Fig. 1. It is seen that the population converges close



A Nested Differential Evolution Based Algorithm 107

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Upper Level 1st Obj:F1

U
pp

er
 L

ev
el

 2
nd

 O
bj

:F
2

DBMA median run
True Pareto front

Fig. 1. Pareto front approximation (median) obtained for Problem 1

to the true optimum. The statistics on hypervolume and function evaluations
are given in Tables 1 and 2 respectively (after description of all problems). It
is seen that the median hypervolume value obtained using DBMA is 0.3076,
which is higher than that obtained by BLEMO [4] and OMOPSO-BL [2] which
achieve 0.3024 and 0.3068 respectively. It is to be noted, however, that due to
the unavailability of their data, the results shown for their algorithms have been
taken from [2]. This means that the reference point (nadir) used in their study
for this calculation might be different from the one obtained using DBMA. The
figures show, however, that all the algorithms have converged very close to the
true front [2], which means that the error induced is likely to be minor as nadir
points obtained using each algorithm are very close to each other. The mean
function evaluations for the previous studies are not reported, but the population
sizes and generations used by them are significantly higher than those used
in DBMA.

4.2 Problem 2

The problem is an unconstrained problem at both upper and lower levels, taken
from [4]. The mathematical formulation of the problem is given in Eq. 7.

Minimize F1(xu,xl) = (xl1 − 1)2−∑k
i=2 x2

li
+ x2

u,

F2(xu,xl) = (xl1 − 1)2−∑k
i=2 x2

li
+ (xu − 1)2,

Minimize f1(xu,xl) = x2
l1

−∑k
i=2 x2

li

f2(xu,xl) = (xl1 − xu)2−∑k
i=2 x2

li
,

−1 ≤ (xu, xl1 , xl2 , ..., xlk) ≤ 2,

(7)

Here, the upper level problem has one variable, whereas the lower level is
scalable with k variables, which is set to one in this study. The statistics on
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Fig. 2. Pareto front approximation (median) obtained for Problem 2(k=1)

hypervolume and function evaluations are given in Tables 1 and 2 respectively.
The median hypervolume obtained by DBMA (0.2068) is slightly less than the by
OMOPSO-BL (0.2074) but marginally better than BLEMO (0.2067) for k = 1
at the lower level. Similar to Problem 1, the reference (nadir) points for these
calculations are very close to that of the true optimum. At the same time, the
median function evaluations using DBMA are likely to be much lower than the
other two approaches, given the lower population sizes and generations, although
this could not be established due to unavailability of the function evaluations
in [2]. The Pareto front approximation for the problem (median run) is shown
in Fig. 2.

4.3 Problem 3

The last problem discussed here is a real-world application obtained from [5,33].
The problem represents a company scenario where the upper level represents the
CEO whose main objectives are to maximize company profit and the product
quality. On the other hand, the departmental head is represented as a lower level
decision maker whose main objectives are to maximize organizational profit and
worker satisfaction. The mathematical formulation of the problem is given in
Eq. 8. The problem has two inequality constraints at upper level and three at
lower level. The median Pareto front approximation obtained using DBMA is
shown in Fig. 3, which looks very similar to that obtained using H-BLEMO [5].
A marginal difference in hypervolume is seen (0.4809 using DBMA vs 0.52 in
[5]). However, once again, the exact reference point used in [5] is not available.
The median function evaluations using H-BLEMO are 1, 966, 982 [5], whereas
that using DBMA are 1, 876, 309.
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Fig. 3. Pareto front approximation (median) obtained for Problem 3

Maximize F1(xu,xl) = (1, 9)(xu1 , xu2)
T + (10, 1, 3)(xl1 , xl2 , xl3)

T

F2(xu,xl) = (9, 2)(xu1 , xu2)
T + (2, 7, 4)(xl1 , xl2 , xl3)

T

G1(xu,xl) = (3, 9)(xu1 , xu2)
T + (9, 5, 3)(xl1 , xl2 , xl3)

T ≤ 1039
G2(xu,xl) = (−4, −1)(xu1 , xu2)

T + (3, −3, 2)(xl1 , xl2 , xl3)
T ≤ 94

Maximize f1(xu,xl) = (4, 6)(xu1 , xu2)
T + (7, 4, 8)(xl1 , xl2 , xl3)

T

f2(xu,xl) = (6, 4)(xu1 , xu2)
T + (8, 7, 4)(xl1 , xl2 , xl3)

T

g1(xu,xl) = (3, −9)(xu1 , xu2)
T + (−9, −4, 0)(xl1 , xl2 , xl3)

T ≤ 61
g2(xu,xl) = (5, 9)(xu1 , xu2)

T + (10, −1, −2)(xl1 , xl2 , xl3)
T ≤ 924

g3(xu,xl) = (3, −3)(xu1 , xu2)
T + (0, 1, 5)(xl1 , xl2 , xl3)

T ≤ 420
xu1 , xu2 , xl1 , xl2 , xl3 ≥ 0

(8)

Overall, it is seen that the performance of the proposed DBMA is competi-
tive with the existing state of the art approaches for the problems studied. The
algorithm is intuitive and simple to implement, and to the authors’ knowledge
provides a first study of extending a differential evolution based algorithm for
bilevel multi-objective problems. The algorithm is also free of any additional
parameters, other than those of a standard DE. The performance on two bench-
mark and one application problem indicate its potential to be used for solving
generic bilevel multi-objective problems.

5 Summary

Bilevel optimization has gained significant attention in recent years, owing to
their applicability in various domains such as such as transportation, economics
and engineering. Most studies reported to date deal with single objective prob-
lems at both levels, but the interest in multi-objective versions has been steadily
growing. In this paper, we reviewed some of the existing algorithms for solving
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Table 1. Statistics on hypervolume obtained using DBMA across 21 independent runs
(* means True optima)

Prb No. Hyper Volume Reference point

Min Max Mean Median Std. Dev F1 F2

1 0.30309957 0.31075173 0.30745333 0.30758072 0.001881988 -1∗ 0∗

2 0.20639863 0.20698947 0.20677626 0.20683586 0.00017195 1∗ 0.5∗

3 0.43609273 0.48509894 0.47866625 0.48087895 0.010154085 -473.6935 -1595.4000

Table 2. Statistics on function evaluations used by DBMA across 21 independent runs

Prb No Min Median Max

UL FE LL FE UL FE LL FE UL FE LL FE

1 11410 312500 11837 312500 12028 312500

2 22079 312500 22169 312500 22229 312500

3 1180 1875000 1309 1875000 1398 1875000

bilevel multi-objective problems. Thereafter, we proposed a simple nested dif-
ferential evolution based algorithm to deal with generic bilevel multi-objective
problems. Numerical experiments show that on often studied benchmarks, the
proposed algorithm exhibits comparable performance with the state-of-the-art
methods. The study also prompts a deeper look into other schemes such as
hybridization, and in particular more studies on what kind of problems may
they be more advantageous for compared to simple nested strategies.

Acknowledgment. The third author acknowledges support from Australian Research
Council Future Fellowship.
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Abstract. Parkinson’s Disease is the second most common neurological
condition in Australia. This paper develops and compares a new type of
Wavelet Neural Network that is evolved via Cartesian Genetic Program-
ming for classifying Parkinson’s Disease data based on speech signals.
The classifier is trained using 10-fold and leave-one-subject-out cross
validation testing strategies. The results indicate that the proposed algo-
rithm can find high quality solutions and the associated features without
requiring a separate feature pruning pre-processing step. The technique
aims to become part of a future support tool for specialists in the early
diagnosis of the disease reducing misdiagnosis and cost of treatment.

Keywords: Parkinson’s Disease · Neuroevolution · Wavelet neural
network · Cartesian genetic programming · Artificial neural network

1 Introduction

Parkinson’s Disease (PD) is a central nervous system disorder that is chronic,
progressive and incurable. The main symptoms of PD are rigidity, bradykinesia,
tremor and postural instability. In addition to those, other symptoms include
impaired speech; difficulty in chewing and swallowing; and urinary and consti-
pation problems. The treatment of the disease is very costly, with the average
lifetime financial cost for a patient living with PD for 12 years being $144,000.
For comparison purposes, that is similar to the lifetime cost of treatment for a
cancer patient ($165,000) [1].

Decision support systems play an important role in the field of health care.
Given the huge volume of information present in medical data repositories,
data mining solutions are frequently employed to extract relevant information.
The field of Artificial and Computational Intelligence (artificial neural networks,
expert systems, fuzzy logic, evolutionary algorithms, genetic programming, etc.)
can provide support tools to the medical experts thus reducing the time required
to diagnose the disease. There are several studies in the scientific literature specif-
ically on PD diagnosis. It has been estimated that about 90 % of individuals [2]
with Parkinson’s Disease have some kind of vocal disorder, known as dysphonia.
c© Springer International Publishing Switzerland 2016
T. Ray et al. (Eds.): ACALCI 2016, LNAI 9592, pp. 113–124, 2016.
DOI: 10.1007/978-3-319-28270-1 10
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That high incidence is the main reason why this research focuses on biomedical
voice measurements, or speech signals.

In this study we aim to improve our understanding of how the Wavelet Neural
Network functions thus making it effective for data classification tasks. The neu-
roevolutionary algorithm has already been applied on classifying digital mammo-
grams as benign or malignant [3]. The current research complements the authors’
previous research by providing an extended study on the PD dataset. As a result
we have more comprehensive performance results, a better understanding of how
the method can be utilised in critical applications and how robust it is when the
application domain changes. For this particular case study, the long term aim
is to obtain a non-invasive test that is highly sensitive to early signs of PD in
speech signals. In the next section, we describe the features present in the PD
dataset, and review some of the previous studies that have used this relatively
challenging data. Then, a novel neuroevolutionary algorithm – a Wavelet Neural
Network evolved via Cartesian Genetic Programming (CGPWNN) – is discussed
and explained with examples. Section 3 presents the methodology, followed by
an analysis of the results in Sect. 4. Section 5 concludes with the main findings
and future research.

2 Background

2.1 Parkinson’s Disease: Dataset and Features

The dataset used in this case study was obtained from an online machine learn-
ing database repository in the University of California at Irvine (UCI) [4–6]
and has been studied previously [7–9]. The dataset is composed of 195 rows
(samples), each with 22 different biomedical voice measurements. These voice
measurements were taken from 31 individuals, where 23 had Parkinson’s Dis-
ease (PD). Each patient had between 6 and 7 records in the dataset, totalling
195 samples as mentioned before. The main objective is to classify healthy from
diseased subjects. The features and their descriptions are listed in Table 1.

2.2 Literature Survey

The PD dataset used in this research was originally published by Little et al. [10]
in 2009. Their study was divided into three main sections: (1) Feature acquisi-
tion and calculation; (2) Feature pruning, where 10 non-correlated features were
identified; and (3) Use of the pruned feature set and its different combinations
(via exhaustive search) on a Support Vector Machine with a Gaussian radial
kernel under bootstrap re-sampling. The maximum average classification accu-
racy attained was 91.4 % when using four features, namely HNR, RDPE, DFA
and PPE.

Okan et al. [7] first pruned the dataset features by applying a mutual infor-
mation measure, and ranked them based on the maximum relevance, minimum
redundancy criterion ‘mRMR’. They selected four key features, namely Spread1,
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Table 1. Parkinson’s dataset features and their descriptions [10]

Features Description

MDVP: F0(Hz) Average vocal fundamental frequency

MDVP: Fhi(Hz) Maximum vocal fundamental frequency

MDVP: Flo(Hz) Minimum vocal fundamental frequency

MDVP: Jitter (%) Several measures of variation in fundamental frequency

MDVP: Jitter (Abs)

MDVP: RAP

MDVP: PPQ

Jitter: DDP

MDVP: Shimmer Several measures of variation in amplitude

MDVP: Shimmer (dB)

Shimmer: APQ3

Shimmer: APQ5

MDVP: APQ

Shimmer: DDA

RPDE Two nonlinear dynamical complexity measures

D2

DFA Signal fractal scaling exponent

Spread1 Three nonlinear measures of fundamental frequency
variation

Spread2

PPE

NHR Two measures of ratio of noise to tonal components in the
voice

HNR

Status Healthy / Diseased

MDV P : F0, Shimmer : APQ3 and D2, which were then used in a classification
model based on SVM. Using a leave-one-subject-out cross validation strategy
they achieved an accuracy of 81.53 %. The same strategy, when applied to the
original data of Little et al. [10], reduced the classification accuracy to 65.13 %,
while using 10-fold cross-validation with their features increased the accuracy to
92.75 %.

Akin [8] also pruned the features first, via a linear SVM feature selection
strategy where 10 features (spread1, MDV P : F0, D2, spread2, MDV P : Fhi,
MDV P : APQ, DFA, HNR, PPE and RPDE) were selected. These features
were then used to train six rotation forest (RF) ensemble classifiers created using
two ANN architectures (MLP, RBF), two lazy learners (KSTAR, IBk (WEKA1

1 http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/
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implementation of KNN)) and two decision trees (LADTree, J48). A 10-fold
cross-validation strategy was adopted. Among the six RF ensemble classifiers,
the classification accuracy of IBk was the highest – 96.93 %.

Caglar et al. [9] used an Adaptive Neuro Fuzzy Classifier with Linguistic
Hedges (ANFC-LH) to first select the strong features from the dataset. The
technique identified four features of interest: Spread1, MDV P : Fhi, RPDE
and D2. Based on these features the dataset was split into equal parts: 50 %
for training and 50 % for testing. As the dataset contained individuals with 6–7
records each, if the number of ‘true checks’ associated with an individual was
high, then it was classified as healthy. Multilayer perceptrons (MLP), radial
basis function neural networks (RBFNN) and ANFC-LH were used as classifiers
for training. The author found ANFC-LH to yield the best result with 95.38 %
training and 94.72 % testing accuracies.

Pei et al. [11] used a minimum distance classifier to assess genetic program-
ming combined with expectation maximization algorithm. They used a 10-fold
cross validation strategy for training and testing the classifiers using all features.
The method resulted in a training accuracy of 95.06 % and a testing accuracy
of 93.12 %.

Chen et al. [12] used a fuzzy k-nearest neighbour (FKNN) approach on a
feature reduced dataset based on PCA. They trained the FKNN using the
10-fold cross validation strategy and obtained an accuracy of 96.07 %. While
Polat [13] used a feature weighting method on the basis of fuzzy C-means clus-
tering. Weighting the features based on the C-means approach improved the
performance of classification and the method achieved 97.03 % accuracy using a
KNN classifier with a 50-50 % training-testing partition.

Hariharan et al. [14] evaluated the dataset based on a three-step process.
First, a Gaussian mixture model is used to weight the features, which are then
ranked and reduced using different feature selection strategies (PCA, LDA) and
feature subset selection methods (SFS and SBS). The reduced feature space
is then classified using 10-fold cross validation with three different classifiers:
LS-SVM, Probabilistic Neural Networks (PNN) and General Regression Neural
Networks (GRNN). The authors found that LDA and SBS provided a feature
space which was perfectly separable by the LS-SVM, PNN and GRNN classifiers.
Their approach obtained an accuracy of 100 %.

Spadoto et al. [15] used three evolutionary mechanisms, namely Particle
Swarm Optimization (PSO), Harmony Search (HS) and Gravitational Search
Algorithm (GSA). The reduced dataset was then classified via an Optimum-Path
Forest (OPF) classifier. They obtained an average of 84.01 % with an execution
time of 0.16 s on a hold-out dataset.

Most of the techniques applied on the Parkinson’s dataset surround feature
selection or weighting prior to classification, as shown in Table 3. Choosing a
pre-processing method comes with its advantages and disadvantages; disadvan-
tages being complicating a classification process and thus increasing computa-
tional time. Our intent is to keep the process simple i.e. to implement an algorithm
that does not require pre-processing of the features. The neuroevolution itself will
select features that are significant and evolve to produce good quality solutions,
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i.e. feature selection and classification all in one. So far, there has been no technique
that used neuroevolution to classify the dataset, and thus our technique would be
the first of its kind to be tested. Even though neuroevolution has greater prospects
in the reinforcement learning domain, e.g. for the design of efficient, intelligent con-
trollers, our current research focus is to apply it on the supervised learning domain
and check its applicability.

2.3 Wavelet Neural Network Evolved via CGP

Wavelet Neural Networks (WNN) represent a class of neural networks that use
wavelets; i.e. they combine the theory of wavelets and neural networks. It has
been found that WNN provide better function approximation ability than stan-
dard multilayer perceptrons (MLP) and radial basis function (RBF) neural
networks [16]. Wavelet Neural networks have a feed-forward topology, with one
hidden layer, whose activation functions are drawn from an orthonormal wavelet
family. The common wavelet activation functions are Gaussian, Mexican hat,
Morelet and Haar [16].

In this paper, a novel algorithm based on the concept of Cartesian Genetic
Programming is used to evolve the wavelet neural network parameters. Cartesian
Genetic Programming (CGP) is an evolutionary programming technique devel-
oped by Miller et al. [17] and has been particularly used for digital circuit opti-
mization. The concept of CGP has also been used to train artificial neural
networks; named Cartesian Genetic Programming Artificial Neural Network
(CGPANN) and was proposed by Khan et al. [18]. The motivation behind using
CGP for evolving parameters is that CGP doesn’t bloat [19] i.e. it does not
rapidly grow in size with time as the nodes and layers are fixed, the networks
are dominated by redundant genes that have a neutral effect [20–22] on the per-
formance. Also applications [18] using CGP representation are found to produce
solutions that are robust and with good accuracy [23–26].

The main entity of WNN are the wavelons ‘ψ’. Wavelons represent a wavelet
function with predefined scaling ‘α’ and dilation ‘β’ values. Given an input xij

and wavelet function ψj with scaling α and dilation β, the input is transformed
into ψj((xij −β)/α), where xij ∈ [1, Total Inputs], α ∈ [−1, 1] and β ∈ [0, 1], ψj

∈ [1, Total wavelet functions]. Input, switch, scale and dilate genes occur in pairs,
so if there are 2 or more inputs, then there should be 2 or more sets of input,

Fig. 1. Structure of a CGPWNN genome.
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Fig. 2. (a) A 2 × 1 CGPWNN genome with 2 inputs and 1 output. (b) Generalized
representation of a wavelon ψ structure with random values assigned. (c) Phenotype
of the example genome in (a). Since it is a one output genome, it requires the use of a
single wavelon.

switch, scale and dilate genes, respectively. Each of the inputs in the wavelons
is connected via a cij gene known as the switch gene, where cij ∈ {0,1}. Each
of the wavelons within a network has an associated weight represented by wij ∈
[−1, 1]. All these genes are combined together to form a wavelon structure ‘ω’.

The CGP genotype consists of nodes and output genes, whereas the CGP-
WNN genotype contains wavelons, output and bias ‘θ’ genes. There are two
basic types of evolution strategies (μ, λ)-ES and (μ + λ)-ES [27]. μ represents
the number of individuals in the parent population and λ refers to the offspring
produced in a generation. In (μ, λ)-ES the offspring replaces the parents as the
fittest is selected from λ, while in (μ + λ)-ES the fittest is selected from both
parents and offspring for the next generation. Cartesian Genetic Programming
uses the (1+λ)-ES strategy, i.e. a single parent is mutated based on a mutation
rate ‘τ ’ to produce λ offsprings. The fittest of the genotypes becomes the parent
and moves to the next generation. α, β and wij are perturbed within the range
[0.8v, 1.2v] where ‘v’ is the parameter value. This captures the continuous aspect
of the wavelet networks.

Figure 1 shows a CGPWNN genome structure. The genome consists of three
main sections: (1) m-Wavelons ωm, (2) a bias θ and (3) n-outputs On. Figure 2(a)
is an example of 2×1 architecture CGPWNN genotype, where 2×1 corresponds
to the number of rows and columns, respectively. As WNNs have one hidden
layer, the number of columns is fixed at 1, while there are 2 wavelons ωm along
the row. The number of inputs to the network is 2, i.e. x0 and x1, and the
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number of outputs is 1. The number of inputs to each wavelon structure is also
fixed at 2. Figure 2(b) shows the random assignment of values to each gene of
the wavelons ωm. Figure 2(c) is the phenotypic representation of the genome in
Fig. 2(a), along with its mathematical expression.

3 Experimental Setup

3.1 Training and Testing Sets

Two different training and testing sets were generated in order to investigate the
performance of the algorithm.

– Leave-one-subject-out strategy: The dataset consists of 31 individuals,
or subjects, where each individual can have 6 or 7 associated records. In the
leave-one-subject-out cross-validation approach, it is not one record that is
left out for testing, but one individual (i.e. all associated 6 or 7 records). The
remaining 30 individuals (each with 6 or 7 records) are used for training. This
approach is similar to [7] with the exception that no feature pruning was used
as a pre-processing step.

– 10-fold cross-validation strategy: The training set was composed of the
records of 28 individuals while the testing set consisted of the records of 3
individuals.

Due to the fact that each individual has between 6 and 7 records in the
dataset, if more than half of an individual’s records are classified as PD, then
the individual itself is classified as diseased (PD), otherwise not. This approach
was adopted from [9]. The purpose of this approach is to avoid overfitting as
records from the same patient are potentially very similar.

3.2 Performance Measures

The classifiers are evaluated based on the following performance metrics:

1. Training accuracy (TrAcc): fraction of correctly classified training samples.
2. Testing accuracy (TeAcc): fraction of correctly classified testing samples,

also known as the classification accuracy. The higher the percentage, the
better is the classifier performance.

3.3 CGPWNN Parameters

Random structure of CGPWNN with a hidden layer size (HLS) of [10, 15] were
evolved with different parameter settings and a mutation rate of 0.01 % and
a (1+25)-ES as shown in Table 2. The wavelet functions used were Gaussian,
Morelet, Mexican hat and Haar. Each network was evolved for 100,000 genera-
tions. The number of outputs Op from the genotype was set at 5, 8, 10 and 15, and
the number of inputs to each neuron IE was set to 6, 11 and 22. The genotypes
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were evolved with the two strategies mentioned before, i.e. leave-one-subject-out
and 10-fold cross-validation. Table 2 shows the results for CGPWNN, averaged
for 50 independent evolutionary runs in each configuration. Results are divided
into training accuracy ‘TrAcc’, testing accuracy ‘TeAcc’, the percentage of active
neurons in the search space ‘ANeu’ and the percentage of features selected ‘Fsel’.

Table 2. Performance of CGPWNN with leave-one-subject-out and 10-fold cross val-
idation strategies. The best configurations are indicated in boldface.

Structure Leave-one-subject-out 10-fold cross validation

HLS IE Op TrAcc TeAcc(σ) ANeu Fsel TrAcc TeAcc(σ) ANeu Fsel

(%) (%) (%) (%) (%) (%) (%) (%)

10 6 5 99.39 82.84(21.33) 30.93 26.27 99.32 88.73(15.26) 30.80 26.33

11 98.48 82.00(18.84) 21.02 27.87 98.51 89.27(12.84) 21.44 28.35

22 96.17 83.10(14.51) 7.72 30.33 95.94 89.53(11.01) 8.04 30.58

6 10 99.98 83.03(19.68) 30.36 48.42 99.99 92.60(11.98) 30.64 47.68

11 99.67 83.94(16.69) 26.97 56.03 99.61 92.73(11.04) 26.54 55.71

22 96.87 82.90(15.14) 15.65 63.12 96.61 91.60(11.00) 15.74 63.93

15 6 8 99.94 85.29(17.86) 37.85 43.12 99.91 91.93(12.65) 38.38 43.63

11 99.60 82.39(18.88) 32.11 52.10 99.51 90.13(13.28) 31.83 51.85

22 96.85 82.00(15.65) 19.50 59.55 96.54 90.00(11.95) 19.85 60.40

6 15 100.00 84.39(20.50) 35.90 65.31 99.99 91.80(14.10) 36.55 65.78

11 99.91 84.65(18.14) 31.29 74.75 99.91 92.93(11.77) 32.33 75.46

22 97.34 83.74(14.97) 24.95 87.72 96.97 91.27(11.49) 24.85 87.68

4 Results and Discussion

Table 2 shows the performance of CGPWNN on the PD dataset classification.
The method obtained a maximum classification accuracy of 85.29 % with the
leave-one-subject-out strategy and 92.93 % with the 10-fold cross-validation. The
results show that increasing the number of inputs to each wavelon ωi causes a
reduction in training accuracy; and no clear trend was observed for the testing
accuracy. On the other hand, increasing the number of outputs Op causes an
increase in training accuracy; and again no trend was observed for the testing
accuracy. In the former case, the reduction in the training accuracy is associated
with a property of wavelet neural networks, i.e. WNN performs better in appli-
cations with small input dimensions [16]. In the latter case, the output gene has
a predominant role in improving the accuracy. Output is represented by either a
wavelon(s), an input multiplied by a weight value, or the sum of both. Therefore,
increasing the number of links that the output layer can have with the previous
layers (input/hidden) improves the accuracy.

The percentage of active neurons/wavelons indicates the complexity of the
problem investigated. In Table 2, the active percentage of neurons/wavelons is
similar for each structure in both training and testing datasets. This indicates
that any training/testing split of a dataset would not affect the active percentage
of neurons/wavelons in the cartesian space. The percentage of active neurons
was dependent on the number of inputs to each wavelon; where structures with
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less inputs IE had higher percentages of active neurons and lower percentages
of features selected. This indicates that the neuroevolutionary algorithm was
able to find solutions with less features that are transformed by the wavelons in
the structure. We can also observe a clear ascending trend in the percentage of
features selected when the number of inputs to a wavelon IE and the number of
outputs Op are increased.

Figure 3 shows the histogram of the number of wavelet activation functions
utilized by the best solutions for all the evolved structures. Both training strate-
gies resulted in similar selections. Gaussian activation functions were utilized
more often, and Haar the least. Future research should examine the behaviour
of the genotypes when using a single type of activation function.

Fig. 3. Histogram of the average active wavelons for all the genotypes in the 12 con-
figurations for both leave-one-individual-out & 10-fold cross-validation strategies.

Figure 4 shows the frequency of selection of the 22 features in the CGPWNN
genotypes with both training strategies. The histogram represents the average
number of features used in all the genotypes within each configuration; thus
providing an average over 50 × 12 evolutionary runs; where 50 is the number of
genotypes and 12 is the number of configurations. We can clearly see that out of
22 features, 4 of them were predominantly used in both the training strategies.
They were PPE, Spread1, Spread2 and D2. The selected features are found
to be a subset of features in most of the feature selection algorithms used by
researchers in literature [8,10]. This indicates that the feature selection process
is an independent process and the presence of any features in the feature set
doesn’t affect the performance of the classifier.

Table 3 shows the comparison of the neuroevolutionary algorithm with other
techniques using 10-fold cross validation and leave-one-subject-out strategy as
training sets. We can clearly see that CGPWNN performed competitively even
though no feature pre-processing step was adopted. This indicates its potential
to classify vocal features for PD diagnosis.
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Fig. 4. Histogram of the average selected features for all the genotypes in the 12 config-
urations evolved for both leave-one-individual-out & 10-fold cross validation strategies.

Table 3. Comparison of techniques using leave-one-subject-out and 10-fold cross-
validation strategies in Parkinson’s Disease classification. Notice no pre-processing is
required in the CGPWNN method.

Algorithm Training acc. (%) Testing acc. (%) Reference

Leave-one-subject-out

mRMR+SVM – 81.53 ± 2.17 [7]

CGPWNN 99.94 85.29

10-fold cross validation

Preselection filter+exhaustive
search+SVM

– 91.4 ± 4.4 [10]

mRMR+SVM – 92.75 ± 1.21 [7]

SVM+MLP-ensemble – 90.8 [8]

SVM+RBF-ensemble – 88.71 [8]

SVM+LADTree-ensemble – 92.82 [8]

SVM+J48-ensemble – 92.3 [8]

SVM+KSTAR-ensemble – 96.41 [8]

SVM+IBk-ensemble – 96.93 [8]

GP-EM 95.06 93.12 [11]

PCA+FKNN – 96.07 [12]

GMM+LDA+LS-SVM or
PNN or GRNN

– 100 [14]

CGPWNN 99.90 92.93

5 Conclusion

In this research, a novel neuroevolutionary algorithm - WNN evolved via CGP
(CGPWNN) was tested to verify its effectiveness towards an accurate classifica-
tion system for PD diagnosis. The dataset was composed of features based on
biomedical voice measurements of both PD patients and healthy individuals.
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It was found that CGPWNNs are successful in locating high-quality solutions;
and are not dependent on a ‘feature selection process’ as a pre-processing step
before training occurs. CGPWNN obtained an accuracy of 92.93 % with a 10-
fold cross-validation strategy, performing competitively with other techniques
present in the literature.

CGPWNN selected four dominant features more frequently than the others,
which illustrates their importance in the classification process. The four features
identified were Spread1, Spread2, D2 and PPE, which are found to be subsets
of features selected in other feature selective algorithms reported in literature.
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Abstract. In this paper, we propose a scalable yet accurate grid-based
outlier detection method called GO-PEAS (stands for Grid-based Outlier
detection with Pruning Searching techniques). Innovative techniques are
incorporated into GO-PEAS to greatly improve its speed performance,
making it more scalable for large data sources. These techniques offer
efficient pruning of unnecessary data space to substantially enhance the
detection speed performance of GO-PEAS. Furthermore, the detection
accuracy of GO-PEAS is guaranteed to be consistent with its baseline
version that does not use the enhancement techniques. Experimental
evaluation results have demonstrated the improved scalability and good
effectiveness of GO-PEAS.

1 Introduction

Outlier detection is an important data analytic/mining problem that aims to find
objects and/or patterns that are considerably dissimilar, exceptional and incon-
sistent with respect to the majority data in an input database. Outlier detection
has become one of the key enabling technologies for a wide range of applications in
industry, business, security and engineering, etc., where outliers represent abnor-
mal patterns that are critical for domain-specific decision-making and actions.

Due to its inherent importance in various areas, considerable research efforts
in outlier detection have been taken in the field and a number of outlier detection
techniques have been proposed that leverage different detection mechanisms and
algorithms. The majority of them deal with the traditional relational datasets
which can be generally classified into the distribution-based methods [2], the
distance-based methods [4,10], the density-based methods [8,11,13,16–18] and
the clustering-based methods [6,9], which feature different levels of performance
in terms of detection accuracy and efficiency. The research on outlier detection
has also been carried out for other types of datasets such as temporal data
c© Springer International Publishing Switzerland 2016
T. Ray et al. (Eds.): ACALCI 2016, LNAI 9592, pp. 125–133, 2016.
DOI: 10.1007/978-3-319-28270-1 11
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[7] and semistructured data (e.g., XML) [5] and in the distributed computing
environment [12,14,15,19].

Detecting outliers from increasingly large datasets is a very computationally
expensive process. To improve the efficiency performance of outlier detection
when dealing with large datasets, a grid structure can be created through a space
partitioning that discretizes each continuous attribute to a few intervals. Using
the grid structure can considerably reduce the computational overhead as the
major operation of detection is now performed on the grid cells, a typically much
smaller set compared to the total number of data instances in the dataset. This
makes them much more scalable to datasets with a large number of instances. In
addition, the grid structure greatly facilitates the calculation of data synopsis to
capture data distribution and characteristics for the purpose of outlier detection.

Despite being generally more efficient than other categories of outlier detec-
tion methods, the existing grid-based outlier detection methods still suffer from
some major limitations. First, using data synopsis of grid cells alone through a
single round of data scan will compromise the detection effectiveness and may
not be able to meet the requirement for high detection accuracy. Therefore,
detailed evaluation needs to be carried out in the level of data points, which
requires the second round of data scan. Yet, two full data scans may be not
satisfactorily efficient to deal with large datasets. Some existing methods are
designed to prune away dense cells. But it is possible that some outliers are
embedded in those pruned cells and therefore cannot be detected. Finally, those
methods using clustering analysis will have to perform clustering before outliers
can be detected. Yet, the clustering analysis itself may be complicated, expensive
and sensitive to various clustering parameters, posing challenges for efficient and
effective detection of outliers.

To solve the aforementioned limitations, we propose in this paper an inno-
vative grid-based outlier detection method, called GO-PEAS (stands for
Grid-based Outlier detection with Pruning Searching technique), to enhance
the detection efficiency without compromising detection accuracy. The techni-
cal contributions of this paper are summarized as follows. First, GO-PEAS is
equipped with innovative pruning searching mechanism to noticeably improve
its efficiency. The correctness of these techniques are also proven theoretically to
offer a performance guarantee that loss of detection accuracy will be impossible.
Second, irrespective of how the data space is partitioned, GO-PEAS is guar-
anteed to detect outliers even when they are embedded in dense cells, thereby
effectively reducing the sensitivity of GO-PEAS to partitioning granularity. Fur-
thermore, the outlier-ness metric used in GO-PEAS, called k-WODF, is able
to produce accurate modeling of data abnormality that leads to a good detec-
tion accuracy. No clustering analysis needs to be performed before outliers can
be detected. Finally, the experimental evaluation demonstrates enhanced speed
performance and good detection accuracy of GO-PEAS.

2 Outlier-ness Measurement and Method Framework

The outlier-ness metric, called k-Weighted Outlying Degree Factor (k-WODF),
is devised and used in GO-PEAS. k-WODF measures the strength of outlierness
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of data in the dataset. k-WODF of a data object p is defined as the averaged
distance between p and its k nearest representative data which are the centroids
of dense cells in the grid, weighted by the portion of data in the cells. The dense
cells are those whose density is above the average density level of the populate
cells in the grid. k-WODF is mathematically defined as

k − WODF (p) =

∑k
i=1

Dist(p,ri)
wi

k

where ri is the centroid of dense cell ci and wi = density(ci)
N .

The basic detection framework of Go-PEAS, also referred to as the baseline
method, takes the following three major steps:

Step 1: Assigning data into the grid structure. The data space is parti-
tioned and a grid of cells is superimposed. Data in the dataset D are read in
sequentially and assigned into the cells in the grid. Instead of physically creating
the grid structure whose number of cells will explode for high-dimensional data,
only the list of populated cells is maintained. The major purpose for assigning
data into the grid structure is to obtain the density information (i.e., the number
of data points) for the populated cells in the grid;

Step 2: Generating the representative data. Based on the density infor-
mation of the grid cells, dense cells are selected and the centroids of the dense
cells are extracted as the representative data. The set of representative data is
the representation of the dense regions formed by the whole dataset;

Step 3: Generating the top n outliers. After the representative data are
extracted, another full scan of the dataset D is performed and the k-WODF
of each data is calculated. The top n outliers will be picked up which have the
highest k-WODF values and returned to users.

3 Speed Enhancements Techniques of GO-PEAS

For large datasets, it would be a computationally expensive task to perform two
full data scans, as in the baseline method, to achieve accurate detection result.
Outliers are normally located in low-density data regions. It is therefore reason-
able to prune away the data located in dense regions and only evaluate the data
scattered in sparse areas to reduce the computational cost. Nevertheless, more
complicated situations may exist that there may be a (very) small amount of
outliers that are embedded in some relatively dense cells which cannot be suc-
cessfully detected. This is because those outliers are masked by other data in the
cell. These cells need be evaluated closely for detecting the outliers within them.

We first present the following lemma which establishes the upper bound of
k-WODF of data points in a cell.

Lemma 1. Let p denote a given data point in a cell c and center(c) is the
geometric center (called center for short) of c. The k-WODF of p satisfies the
following inequation
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kWODF (p) ≤
∑k

i=1 Dist(center(c), ri)
k

+
ldiagonal

2

where ri is one of the k nearest representative data of p and ldiagonal represents
the length of the diagonal line of c.

Proof. For any nearest representative data of p, ri(1 ≤ i ≤ k), we have
Dist(p, ri) < Dist(center(c), ri)+Dist(center(c), p) based on triangular inequal-
ity. Since Dist(center(c), p) ≤ ldiagonal

2 , thus Dist(p, ri) < Dist(centerc), ri) +
ldiagonal

2 . This leads to k-WODF (p) =
∑k

i=1 Dist(p,ri)

k <
∑k

i=1 Dist(center(c),ri)

k +
ldiagonal

2 , as required. ��
Lemma 1 can be utilized to prune away those cells in the grid structure which

definitively do not contain any data points that can possibly become the top n
outlier. Specifically, all the data points in a cell can be safely pruned away if the
following inequation is satisfied:

∑k
i=1 Dist(center(c), ri)

k
+

ldiagonal
2

< MinkWODF (1)

The pruned cells are mostly densely populated ones (containing a large number
of data points) because they are generally close to their nearby representative
data. Therefore, this pruning strategy contributes to a significant saving of com-
putational cost for our method.

Please note that in Lemma 1, r1, r2, . . . , rk are the k nearest representative
data of p, but are not necessarily those of the cell center. The technical difficulty
here is that, without individual evaluation, it is impossible to know in advance
which representative data are the k nearest ones for a given data point in the cell.
This will impede the direct use of the pruning strategy. In order to solve this
problem, we develop a method to effectively find a set of representative data
for a given cell such that this set contains the k nearest representative data
for any data points in the cell. The concept of dominance is employed to help
achieve this.

Definition 1. (Dominance): A representative data r1 is defined as dominating
another representative data r2, with regard to a given cell c, denoted as r1 �

c
r2,

iff the distance between r1 and any data point in c is less than or equal to that
of r2, i.e.,

r1 �
c
r2 iff ∀p ∈ c,Dist(r1, p) ≤ Dist(r2, p)

Lemma 2. Let r1 and r2 be two representative data, if Dist(r1, center(c)) +
ldiagonal < Dist(r2, center(c)), then it is guaranteed that the distance between r1
and any data points in c is no greater than that of r2, i.e. r1 � r2.

Proof. Based on triangular inequality again, for any data point p ∈ c, we have
the following inequations:

Dist(r1, p) < Dist(r1, center(c)) +
ldiagonal

2
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Dist(r2, p) > |Dist(r2, center(c)) − ldiagonal
2

|

So if we have Dist(r1, center(c)) + ldiagonal

2 < |Dist(r2, center(c)) − ldiagonal

2 |,
which can be simplified as Dis(r1, center(c)) + ldiagonal < Dist(r2, center(c)),
then it is guaranteed that Dist(r1, p) < Dist(r2, p), as required. ��

For any particular cell, we can always find a subset of the representative data
such that its members are not mutually dominated but any other representative
data not in this subset is dominated by at least one member in this subset. This
subset is called non-dominant set of the representative data for this cell, a.k.a
Pareto optimal set in multi-objective optimization. By using the non-dominant
set, we can calculate the upper bound of k-WODF of data points in a cell without
the need to know their respective k nearest representative data, as required in
Lemma 1. This makes it possible to directly employ the pruning strategy. Based
on the non-dominant set of representative data of a given cell, we can establish
a new upper bound of the value of k-WODF for data points inside the cell.

Lemma 3. Let p denote a given data point in the cell c. The k-WODF of p
satisfies the following new upper bound:

kWODF (p) ≤
∑k

i=1 Dist(center(c), r∗
i )

k
+

ldiagonal
2

where r∗
i ∈ R∗ and R∗ is the top k non-dominant representative data of c that

have the largest distance from the center of c.

Proof. Since it is evident
∑k

i=1 Dist(center(c),ri)

k + ldiagonal

2 ≤
∑k

i=1 Dist(center(c),r∗
i )

k +
ldiagonal

2 because r∗
i is the top k representative data of c that has the largest dis-

tance from c. This leads to k-WODF (p) <
∑k

i=1 Dist(center(c),r∗
i )

k + ldiagonal

2 , as
required. ��

The advantage of Lemma 3 is that we can easily find the upper bound of
the k-WODF values of any data point in a given cell without the need to know
exactly its k nearest representative data. Based on Lemma 3, Inequation (1) can
be amended slightly to lead to the following updated pruning strategy that can
be used directly: all the data points in a cell c can be safely pruned away if the
following inequation is satisfied:

∑k
i=1 Dist(center(c), r∗

i )
k

+
ldiagonal

2
< MinkWODF (2)

4 Experimental Evaluation

Experimental evaluation is conducted to evaluate the speed and accuracy per-
formance of GO-PEAS and the recent grid-based outlier detection and clus-
tering methods (which can assist outlier detection) including DISTROD [10],
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Fig. 1. Scalability with regard to N for different methods

the sparse cube search method [1], SPOT [11], Grid-k-Means [6] and Grid-DB
[3]. Synthetic datasets are generated using a dataset generator which can pro-
duce datasets with desired number of instances and dimensions. They feature
various dense and sparse regions in the data space, which offers an ideal test-
bed for our experiments. Five real-life datasets from the UCI machine learning
repository are also used, i.e., Machine, Breast cancer, Segmentation, Ionosphere
and Musk.

We start with the scalability study that investigates how efficient GO-PEAS
is when the number of instances N in the dataset increases. The result is shown in
Fig. 1 where N is increased from 1,000k to 10,000k. The result reveals that GO-
PEAS, the sparse cube search method, SPOT and DISTROD are more scalable
with respect to N than Grid-k-Means and Grid-DB. The sparse cube search
method and SPOT boast the best efficiency performance. This is because that
they use very simple outlier detection mechanism, that is, outliers are those data
in located in low-density cells. As the result, they sacrifice detection accuracy
for efficiency. GO-PEAS is ranked in the 3rd position in the comparison and
is noticeably faster than DISTROD thanks to the use of the pruning searching
technique we devised. GO-PEAS is also significantly faster than Grid-k-Means
and Grid-DB because no expensive clustering or local outlier evaluation using
DB(pct; dmin) metric is needed.

We also evaluate the scalability of different methods under varying number of
dimensions d and the result is presented in Fig. 2. Since our method and all the
competitive methods leverage a grid structure and deal with the same number
of populated cells in the grid for the same dataset, thus dimensional scalability
of all the methods is very similar. The difference in their exact execution time
under different d mainly comes from the different detection mechanisms they
use. All their execution time grows in a super-linear manner but it is much lower
than the exponential order of d, showing the efficacy of using only populated cells
in boosting the detection efficiency for grid-based outlier detection methods.
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Fig. 2. Scalability with regard to d

Table 1. Outlier quality of different methods (The lower the better)

GO-PEAS SPOT Sparse
cube

DISTROD Grid-k-Means Grid-DB

Synthetic 0.63 1 0.96 0.65 0.67 0.86

Machine 0.75 0.95 1 0.75 0.71 0.94

Breast cancer 0.52 1 0.94 0.54 0.58 0.94

Segmentation 0.62 0.89 0.92 0.62 0.60 1

Innosphere 0.70 0.88 1 0.71 0.67 0.89

Musk 0.57 0.77 0.98 0.59 0.62 1

In the effectiveness study, Table 1 shows the quality of outliers detected by
GO-PEAS and the competitive methods when dealing with different datasets
including the synthetic datasets and the five real-life datasets from UCI. We do
not need to compare GO-PEAS with its baseline version as their detection results
are identical. The quality of outliers are measured by the Standard Deviation of
Clusters (SDC) after outliers are removed. The result of the synthetic datasets
are the averaged SDC value obtained by running GO-PEAS on 10 different
synthetic datasets to minimize bias. To better present the results, the SDC values
of different methods are normalized and converted to a value in the range from 0
to 1. GO-PEAS, DISTROD and Grid-k-Means enjoy the best SDC performance
because all of them evaluate the outlier-ness of data points relative to the nearby
dense regions (either dense cells or clusters). The sparse cube search method,
SPOT and Grid-DB feature inferior SDC performance because they evaluate the
outlier-ness of data points from a more local perspective.
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5 Conclusion and the Future Research Directions

In this paper, we propose GO-PEAS, a scalable yet accurate grid-based out-
lier detection method. Innovative pruning techniques are incorporated to sig-
nificantly improve the efficiency of GO-PEAS while maintaining a very good
detection accuracy. The detection result of GO-PEAS is also less sensitive to the
granularity of space partitioning. Experimental results demonstrate that GO-
PEAS enjoys a good and balanced speed and accuracy performance.

In GO-PEAS, we need to maintain the mapping information between data
points and their corresponding grid cells, i.e., which data belong to which cell.
This requires extra storing space and I/O cost for dealing with large datasets.
In our future work, we are interested in reducing the space requirement of our
method to minimize the storage of the mapping information between data and
grid cells, whereby effectively reducing space complexity and I/O cost.

Also, we will further extend the experimental evaluation in the future by
evaluating the effectiveness of different outlier detection methods using other
measurements for outlier quality such as precision-at-n and AUC. We will also
investigate the impact of the granularity of partitioning on the performance of
our and other grid-based detection methods.
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Abstract. Figure-ground segmentation is a crucial preprocessing step in
areas of computer vision and image processing. As an evolutionary com-
putation technique, genetic programming (GP) can evolve algorithms
automatically for complex problems and has been introduced for image
segmentation. However, GP-based methods face a challenge to control
the complexity of evolved solutions. In this paper, we develop a novel
exponential function to measure the solution complexity. This complex-
ity measure is utilized as a fitness evaluation measure in GP in two ways:
one method is to combine it with the classification accuracy linearly to
form a weighted sum fitness function; the other is to treat them sepa-
rately as two objectives. Based on this, we propose a weighted sum GP
method and a multi-objective GP (MOGP) method for segmentation
tasks. We select four types of test images from bitmap, Brodatz texture,
Weizmann and PASCAL databases. The proposed methods are compared
with a reference GP method, which is single-objective (the classification
accuracy) without considering the solution complexity. The results show
that the new approaches, especially MOGP, can significantly reduce the
solution complexity and the training time without decreasing the seg-
mentation performance.

Keywords: Figure-ground segmentation · Genetic programming ·
Solution complexity · Multi-objective optimisation

1 Introduction

Figure-ground image segmentation is the process of separating foreground objects
or regions of interest from their background. It is considered a crucial preprocess-
ing step, as the results can be input to many higher-level computer vision and
image processing tasks, such as object recognition, object tracking and image
editing [26]. There are several problems in the existing approaches that include
bottom-up [10] and top-down methods [8,9]. Bottom-up methods rely on conti-
nuity principles, which are sensitive to factors, such as illumination variations,
noise and image contrast [10]. In contrast, top-down methods can learn from prior
knowledge, so they can adapt to different image domains. As the figure-ground
segmentation often needs certain rules for specific images to achieve accurate
c© Springer International Publishing Switzerland 2016
T. Ray et al. (Eds.): ACALCI 2016, LNAI 9592, pp. 134–146, 2016.
DOI: 10.1007/978-3-319-28270-1 12
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performance, top-down methods are more preferable. However, top-down meth-
ods often require heavy human guidance/work [8,9], making them difficult to
be applied in diverse image domains. Moreover, the more human work required,
the higher probability of introducing human bias.

Genetic programming (GP) is an evolutionary computation technique inspired
by biological evolution [12]. It can handle user-defined tasks automatically by
evolving computer programs, and does not require users to specify the form or
structure of solutions [19]. Therefore, GP has the potential to evolve good perform-
ing segmentors without requiring much human work. Actually, GP has been intro-
duced in the area of image segmentation by several works [15,20,23,24], which
show that GP-evolved segmentors can deal with a wide range of images and achieve
accurate segmentation results in certain domains [15,20,23,24]. For evolution-
ary algorithms [14], particularly GP, it is difficult to control the complexity of
evolved solutions [22]. Program sizes can grow without (significant) corresponding
increases in fitness, which is known as bloat [19].

Parsimony pressure is a simple and widely-used way to control bloat [5].
One kind of parsimony pressure methods is to penalize the fitness of programs
based on the program size, and combine multiple objectives to form a single
fitness function (known as weighted sum methods). For example, f =

∑
i wi ∗fi,

where wi represent the weight of the ith fitness function fi. Zhang et al. [25]
propose a fitness function in GP for object detection problems. This fitness func-
tion is a linear combination of detection rate, false alarm rate and false alarm
area. The false alarm area is defined as the number of false alarm pixels which
are incorrectly detected as object centres without clustering. Results show that
this fitness function can reflect the smoothness of evolved programs, and this GP
based method performs well on small and regular objects with uncluttered back-
grounds. Alternative parsimony pressure methods modify the selection process
to lean towards individuals with smaller sizes among individuals with equal fit-
nesses or rank (known as lexicographic parsimony pressure methods) [16]. In this
paper, we propose a weighted sum method with a new fitness function.

The solution complexity can also be treated as a separate objective to tackle
the bloat problem. They are multi-objective optimisation algorithms, which aim
to evolve a Pareto front of tradeoff solutions based on all the objectives. Shao et
al. [22] utilize multi-objective GP (MOGP) to develop global feature descriptors
for image classification tasks. There are two objectives in this paper, which are
the classification error and the tree complexity. The proposed method achieves
better classification accuracies than many state-of-the-art feature extraction
techniques, including local binary patterns (LBP) and Gabor filters. One prob-
lem is that the MOGP method requires a long time for evolution (e.g. 7.6 h on
Caltech-101 dataset). Sarro et al. [21] formulate the effort estimation problem as
an optimisation problem. They compare single-objective GP with five different
fitness functions (e.g. mean magnitude of relative error) and the multi-objective
GP considering the five functions simultaneously. It is concluded that single-
objective GP with certain fitness functions can achieve comparable results with
those produced by MOGP.
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This paper aims to develop two new figure-ground image segmentation meth-
ods based on weighted sum GP and MOGP respectively. Both of them take
the classfication accuracy and the solution complexity into account. One con-
ducts a weighted sum of them to form a single fitness function, while the other
keeps them separately and optimises the two objectives simultaneously using the
Pareto front approach. To investigate whether the new approaches can perfrom
well, we will test them on a sequence of figure-ground segmentation problems
with increasing difficulties, and compare them with a reference GP-based app-
roach, which takes the classfication accuracy as the single objective. Specifically,
we investigate the following objectives:

1. whether the new complexity control weighted sum and multi-objective meth-
ods can outperform the reference GP method that does not control the com-
plexity, and

2. which of the two new approaches can better perform the image segmentation
tasks.

The rest of this paper is organized as follows. Section 2 introduces the reference
GP-based method, which includes the algorithm framework, GP settings and the
fitness function. Section 3 introduces the two new approaches: the weighted sum
and multi-objective GP methods. Section 4 describes experiment preparations,
including image datasets and three evaluation measures. In Sect. 5, results on
four datasets produced by two new methods are analyzed and compared with
that of the reference GP. Conclusions are drawn in Sect. 6.

2 Reference GP Method

As shown in Fig. 1, the segmentation system of the reference method has three
major phases. Firstly, a binary classifier is evolved by GP. In this step, an equal
number of sub-images, labeled as class A (objects) or B (background), are cap-
tured from objects and background in the training images. Features are extracted
from these sub-images, which are raw pixel values in this paper. Based on the
training samples, GP evolves binary classifiers that can classify sub-images as
objects or background. Secondly, a shifting window is utilized to sweep across
test images, capturing sub-images that have the same size as those in the first
step. Next, the feature extraction is conducted to form the test samples, which
can be categorized as class A or B by the evolved classifier. Finally, since the
shifting window has overlaps, pixels in test images may have more than one
assigned label. We apply a majority voting scheme to determine the estimated
label of each pixel and produce the segmentation results.

2.1 GP Settings

In this paper, raw pixel values are directly used as input to the system, which
makes the feature extraction phase simpler and time-saving. Table 1 displays the
function set. It consists of four standard arithmetic operators and five conditional
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Fig. 1. The framework of GP based figure-ground segmentation method.

Table 1. Function set.

Function Name Definition

Add(a1, a2) a1 + a2

Sub(a1, a2) a1 − a2

Mul(a1, a2) a1 ∗ a2

Div(a1, a2)

{
a1/a2 if a2! = 0

0 if a2 == 0

IF(a1, a2, a3)

{
a2 if a1 is true

a3 if a1 is false

<= (a1, a2)

{
true if a1 <= a2

false if otherwise

>= (a1, a2)

{
true if a1 >= a2

false if otherwise

== (a1, a2)

{
true if a1 == a2

false if otherwise

Between(a1, a2, a3)

{
true if a2 <= a1 <= a3

false if otherwise

operators, all of which are simple and easy to be calculated. We set the pop-
ulation size to 500, and use crossover and mutation as reproduction operators,
whose rates are 90% and 10% respectively. The other GP set-up parameters
follow the settings used by Koza [12].
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2.2 Fitness Function

As a simple and effective evaluation measure, the classification accuracy (shown
in Eq. 1) is commonly used as the fitness function for evolutionary algorithms
based classification problems [4]. It is employed in our reference method as the
single objective.

f1 =
Number.of.correctly.classified.samples

Number.of.total.training.samples
∗ 100%. (1)

3 New Methods with Solution Complexity Control

Based on the reference GP method, two new approaches are introduced to con-
trol the solution complexity. The solution complexity is measured by a novel
exponential function. The difference between these two approaches is how to use
this complexity measure.

3.1 Weighted Sum Method

To control the complexity/size of evolved solutions, this problem is considered
along with the classification accuracy (f1). The function selected to measure the
solution size can be added to f1, which means both of them should be monotonic
and have the same value range. In this paper, we apply an expontional function
p(x) = exp(−β ∗ x), where β is a scaling factor. For GP, the solution size (size)
can be calculated by adding the number of terminals and functions in a program.
p(size) belongs to the range (0, 1] and is monotonically decreasing, the same as
f1. Therefore, they meet the above requirements.

For the weighted sum GP method, p(size) is combined with the accuracy
linearly as a size penalty part to adjust the original individual’s fitness evaluation
(shown in Eq. 2). Based on our observation, the size of solutions evolved by the
reference GP method can be dozens or hundreds. Due to the fact that exp(−x)
is close to 0 with the increase of x, which makes complexity control meaningless.
Therefore, we introduce a weighting factor (β) and set it to 0.01.

f2 = α ∗ Accuracy + (1 − α) ∗ exp(−β ∗ size). (2)

where α is a weight factor between the classification accuracy and the size penalty
part (αε(0, 1]). size represents the size of a program or solution.

3.2 Multi-objective Method

For the multi-objective method, p(size) = exp(−β ∗ size) is utilized as an inde-
pendent objective from the classification accuracy. It aims to find a set of the
best trade-off solutions, called Pareto front, between the two objectives. Nondom-
inated sorting genetic algorithm II (NSGA-II) [11] is a well-known technique for
multi-objective optimisation. It employs a genetic algorithm (GA) as the search
algorithm to evolve Pareto fronts using multiple objectives. Based on NSGA-II,
we develop nondominated sorting genetic programming (NSGP), in which GP
replaces GA as the evolutionary algorithm to search for Pareto fronts.
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4 Experiment Preparation

4.1 Datasets

Four types of images are selected to test the evolved segmentors in this paper.
These images have different difficulty levels for the segmentation task. As
described in Table 2, they include bitmap, texture and object images. Specifi-
cally, the bitmap image, named as “Rectangular”, is sythesized from two bitmap
patterns (P14 and P24) [3], and is a binary image. The texture image, D24vs34,
is a grayscale image that is synthesized from two Brodatz textures (D24 and
D34) [1]. In addition, the horse images from the Weizmann dataset [7] and the
passenger air-plane images from the PASCAL dataset [2] are images contain-
ing certain objects and complex backgrounds. The Weizmann images contain
one horse object per image and the objects vary in the position (standing, run-
ning and eating). The passenger air-plane images have the largest sizes and vary
in object shapes and sizes. Moreover, some air-plane images contain multiple
objects. Empirically, object images with larger sizes and complex variations are
more difficult to be segmented accurately than binary or texture images [18].
Therefore, PASCAL images are considered as the most difficult images for seg-
mentation tasks; while bitmap images are the simplest ones.

Table 2. Four types of images used in this paper.
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4.2 Evaluation Measures

The segmentation accuracy (Eq. 3) is applied as an evaluation measure in this
paper, as it is simple and commonly-used. However, it may not be sufficient to
reflect the real segmentation performance in all cases. For example, when the
background takes up a large proportion of an image, even though all the objects
are incorrectly segmented as background, the segmentation accuracy would still
be quite high. Therefore, another two evaluation methods, F1 measure (Eq. 4)
and NRM (negative rate metric, Eq. 5), are considered here to compensate it. F1

combines precision and recall together; while NRM takes mismatches between a
prediction and the ground truth into account [6].

The segmentation accuracy and F1 reach its worst at 0 and best at 1; while
NRM is worst at 1 and best at 0. To make it easy to analyze the result values
obtained from the evaluation measures, we derive CNRM (complementary neg-
ative rate metric, shown in Eq. 5) from the NRM. In this way, all the values are
the higher the better.

SegmentationAccuracy =
TP + TN

Total.P ixel.Number.In.An.Image
(3)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

NRM = (FNR + FPR)/2; CNRM = 1 − NRM (5)

where FNR = FN
TP+FN , FPR = FP

FP+TN , Precision = TP
TP+FP , Recall =

TP
TP+FN . TP , TN , FP and FN stand for true positives, true negatives, false
positives and false negatives respectively. In the context of segmentation, TP
represents the pixel number of desired objects that are correctly segmented as
objects; TN means the pixel number of non-objects are correctly segmented as
background; FP and FN represent the number of non-objects and objects that
are incorrectly segmented respectively. FPR and FNR mean false positive rate
and false negative rate respectively.

5 Results

In this section, we analyse the results of segmentors evolved by the proposed
two approaches. In addition, results are also compared with the reference GP
method. We set the size of sliding window to 4 for bitmap images and 16 for
other test images; therefore, the feature dimensions are 16 for bitmap images and
256 for other images. Both the shifting step in horizontal and vertical direction
are set to 2.

For bitmap and texture images, the training set has 1000 samples, in which
there are 500 samples for each bitmap (or texture) patterns. The test images
are shown in Table 2, named as Rectangular (the bitmap image) and D23vs34
(the texture image). Due to the limited number of the Weizmann and PASCAL
images, the leave-one-out (LOO) cross-validation [13] is employed. Two hundred
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samples are extracted from each Weizmann image (1800 in total). Considering
PASCAL images are much larger, 500 sampels are extracted from each PASCAL
image (3500 in total). Each experiment has 30 independent runs, and final results
are the average of those from 30 runs.

5.1 The Weighted Sum GP Method

As shown in Fig. 2, evaluation measures reach the highest when the weights are
between 0.95 to 1.0 on all the datasets, except the CNRM measure on texture
images. Since we attach more importance to the segmentation performance than
the solution size, even though weights less than 0.95 may lead to lower solution
sizes, we will focus on the weight range [0.95,1.0] in the following experiments.

Fig. 2. Performance with different weights in The Fitness Function. (a) on a bitmap
image; (b) on a texture image; (c) on Weizmann images; (d) on PASCAL images.

Results on different datasets are displayed in Table 3. In the tables,
TrainT ime(s) means the average training time (second) for one GP run, which
is determined by the number of training samples, the dimension of features and
specific learning algorithms; TestT ime(s) represents the average time cost to
segment one test image determined by the size of test images and specific algo-
rithms used.

When testing on the bitmap image, the proposed weighted sum methods
reduce the program size from 76 to around 12, which costs less than one-third
training time per run of that of the reference method. For texture images, the fit-
ness function with weight 0.95 performs best among the weighted sum functions.
Compared with the reference method, both the size of solutions and training
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Table 3. Statistical results of weighted sum method (Acc. represents accuracy).

Dataset Fitness Measure Segmentation F1 CNRM Size Train Test

Acc. (%) Time (s) Time (s)

Bitmap Reference: f1 98.12± 0.22 0.98 0.82 76 15.24 0.012

α = 0.99 98.07± 0.28 0.98 0.83 13 4.46 0.009

Weighted α = 0.98 98.05± 0.24 0.98 0.81 12 4.14 0.009

Sum: α = 0.97 97.94± 0.20 0.98 0.81 12 4.18 0.009

f2 α = 0.96 97.96± 0.18 0.98 0.81 12 4.04 0.009

α = 0.95 98.06± 0.22 0.98 0.83 12 3.93 0.009

Texture Reference: f1 94.98± 2.75 0.95 0.81 343 23.86 0.042

α = 0.99 95.44± 0.93 0.95 0.79 260 21.40 0.036

Weighted α = 0.98 95.55± 0.95 0.96 0.78 202 18.48 0.033

Sum: α = 0.97 95.39± 1.70 0.95 0.78 163 15.85 0.030

f2 α = 0.96 95.54± 1.19 0.95 0.78 132 14.48 0.029

α = 0.95 95.61± 0.87 0.96 0.79 127 13.38 0.030

Weizmann Reference: f1 75.76± 8.37 0.67 0.54 303 49.74 0.036

α = 0.99 75.75± 7.48 0.68 0.53 225 37.80 0.032

Weighted α = 0.98 76.46± 7.10 0.69 0.54 175 30.29 0.029

Sum: α = 0.97 75.89± 6.94 0.68 0.53 133 25.51 0.026

f2 α = 0.96 75.87± 7.11 0.67 0.54 103 21.18 0.025

α = 0.95 76.01± 6.91 0.66 0.54 80 18.07 0.022

PASCAL Reference: f1 71.84± 10.63 0.51 0.49 321 129.82 0.129

α = 0.99 72.10± 8.26 0.52 0.49 176 93.45 0.103

Weighted α = 0.98 72.14± 8.59 0.51 0.49 100 80.29 0.090

Sum: α = 0.97 72.24± 8.35 0.51 0.49 77 55.19 0.072

f2 α = 0.96 72.10± 9.16 0.50 0.49 59 50.32 0.073

α = 0.95 72.01± 8.68 0.51 0.49 43 44.24 0.063

time almost halved. On Weizmann images, the weighted sum methods with the
weight factor of 0.98 and 0.96 perform better than the reference function in all
the three measures, especially the one with 0.98. They also spend less training
and test time. On PASCAL images, they achieve generally better performance
under all the three evaluation measures than the reference method. For example,
the function with the weight of 0.95 achieves a little higer accuracy and the same
F1 and CNRM values. However, the training time per GP run only takes up one
third of that for the reference method.

Compared with the reference GP method, the proposed weighted sum app-
roach, which adds penalty to the program complexity in the fitness function,
produces similar or even better results. More importantly, as the sizes of evolved
programs dereases significantly, both the training time and the test time are
reduced. Since the test time is quite low already, the changes of the training
time are much more obvious.
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5.2 The NSGP Method

In this section, we conduct segmentation experiments using the proposed multi-
objective approach – NSGP. Considering if the size of an evolved program is
too small (e.g. 5), this solution is normally too simple and not effective to solve
the complex segmentation task, so we set an restriction to the objective of the
complexity measure (p(size)). Specifically, if an individual’s size is less than
10, this objective will be given the lowest value 0. Fig. 3a shows the Pareto
front produced in one GP run using texture samples. The Pareto front provides
insights into the tradeoff of the two objectives (the classfication accuracy and
the solution complexity) for the segmentation problem. As there is normally a
large number of solutions on the Pareto front generated in the training process,
solutions need to be selected based on our preference to segment the test images.

Fig. 3. (a) NSGP Pareto front evolved using texture training samples; (b) Performance
of solutions from this pareto front on texture image.

Table 4. Result examples of NSGP method (G.T. means ground truth; Bitmap, Tex-
ture, W. and P. represent result examples of Bitmap, Texture, Weizmann and PASCAL
images respectively).

Between the classification accuracy and the solution complexity, we lean
towards the former one. We assume that front solutions, generated on the training
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set, with higher classfication accuracies produce better results on the test dataset.
This assumption can be testified by Fig. 3b, which shows that the values of three
evaluation measures on the test dataset grow as the increase of front solutions’
accuracies. Therefore, we select 20 solutions with the highest accuracies along the
front in each GP run of the training process, and use them to segment test images.
The best one of the 20 results is used to represent the algorithm’s performance of
this GP run. After 30 runs, we calculate the average performance.

Table 4 displays one example result of each test image using the NSGP
approach. It can be seen that for bitmap and texture images, different pat-
terns/textures have been accurately separated. For Weizmann and PASCAL
images, even though some examples do not have clear object boundaries, objects
are located accurately and the results are promising. Table 5 compares NSGP
with the weighted sum method and the reference method. The weighted sum
methods with certain weighting factors are selected due to their better perfor-
mance. Based on the Mann-Whitney U-Test [17] with the significance level 5 %,
NSGP achieves similar results to those of the reference method and the weighted
sum method. However, compared with the weighted sum mentod, the solution
sizes are further reduced for segmentation tasks. It leads to a further decrease in
the training time. For example, the training time cost per GP run reduces two
thirds on the texture image and around half on the Weizmann images.

Table 5. Statistical results of NSGP method (Seg. Acc. represents segmentation
accuracy).

Dataset Fitness Measure Seg. Acc. (%) F1 CNRM Size Train

Time (s)

Test

Time (s)

Bitmap Reference: f1 98.12± 0.22 0.98 0.82 76 15.24 0.012

WeightedSum:α = 0.95 98.06± 0.22 0.98 0.83 12 3.93 0.009

NSGP 98.12± 0.23 0.98 0.82 12 2.47 0.029

Texture Reference: f1 94.98± 2.75 0.95 0.81 343 23.86 0.042

WeightedSum:α = 0.95 95.61± 0.87 0.96 0.79 127 13.38 0.030

NSGP 94.57± 2.67 0.94 0.82 38 4.72 0.033

Weizmann Reference: f1 75.76± 8.37 0.67 0.54 303 49.74 0.036

WeightedSum:α = 0.98 76.46± 7.10 0.69 0.54 175 30.29 0.029

NSGP 76.83± 5.92 0.65 0.56 39 16.36 0.039

PASCAL Reference: f1 71.84± 10.63 0.51 0.49 321 129.82 0.129

WeightedSum:α = 0.97 72.24± 8.35 0.51 0.49 77 55.19 0.072

NSGP 73.31± 8.09 0.51 0.49 49 28.78 0.140

6 Conclusions and Future Work

This paper developed a weighted sum GP method and a multi-objective GP
method (NSGP) for the figure-ground image segmentation. To control solution
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complexity, an exponential function was designed as an additional objective to
the function of the classification accuracy. The two functions were combined
linearly in the weighted sum method, and treated separately as two objectives
in NSGP.

A GP method, which took the classfication accuracy as the single objec-
tive, was employed as a reference method. Compared with it, the two proposed
approaches with the complexity control achieved similar results in terms of three
evaluation measures (the segmentation accuracy, F1 and CNRM). However, both
of them reduced the size of evolved solutions, leading to a significant decrease in
the training time. In particular, the NSGP produced even smaller solutions than
that of weighted sum method with similar segmentation performance. This indi-
cates that considering the solution complexity the two new approaches outper-
formed the reference GP. Moreover, NSGP is more powerful in reducing solution
complexity than the weighted sum method without reducing the segmentation
performance.

In this paper, we used raw pixel values as input of GP directly. Since certain
image features, such as Gabor filters, are powerful image descriptors, we will
consider more powerful image features in the future, from which GP may evolve
segmentors with better performance.
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Abstract. This paper presents a new clustering-based algorithm for
noisy image segmentation. Fuzzy C-Means (FCM), empowered with
a new similarity metric, acts as the clustering method. The common
Euclidean distance metric in FCM has been modified with informa-
tion extracted from a local neighboring window surrounding each pixel.
Having different local features extracted for each pixel, Particle Swarm
Optimization (PSO) is utilized to combine them in a weighting scheme
while forming the proposed similarity metric. This allows each feature
to contribute to the clustering performance, resulting in more accurate
segmentation results in noisy images compared to other state-of-the-art
methods.

Keywords: Particle swarm optimization · Fuzzy C-means · Noisy image
segmentation · Clustering-based segmentation · Similarity metrics

1 Introduction

Image segmentation, a mid-level ill-posed image processing technique, is a manda-
tory preprocessing step for many high-level vision applications like object detec-
tion [1,2], image recognition [3,4], image retrieval [5], image compression [6], and
video control/surveillance [7,8]. It is a procedure in which an image is partitioned
into meaningful homogeneous regions. Based on the utilized technique and fea-
tures these regions could be different. The technique has been widely studied since
1950s in the literature, and emerges with different definitions and interpretations
in different applications. As the technology evolves, so are the demands for more
accurate segmentation. Image segmentation algorithms could roughly be cate-
gorized into five groups [9,10]: clustering-based methods, graph-based methods,
histogram thresholding-based methods, edge detection-based methods, and
spatial-based methods. Noisy image segmentation is another inevitable related
domain in computer vision due to environmental noise and noise caused by captur-
ing devices. Utilization of fuzzy clustering-based approaches for noisy image seg-
mentation has become an interesting field in recent years. Fuzzy C-means (FCM),
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as one of the most interesting clustering methods, has received a lot of atten-
tion over the years. It is known to have reasonable performance in case of over-
lapped regions, poor contrast, noise, and inhomogeneities in intensity [11]. The
fuzzy membership property of FCM which allows each datapoint to belong to each
cluster with different degrees of membership, is an interesting element when deal-
ing with noisy data.

Particle swarm optimization (PSO) also as an effective evolutionary algo-
rithm has become popular recently for image processing problems [12]. It is fast,
easy to implement, and effective when solving NP-hard problems. The proposed
algorithm in this paper introduces a new similarity metric as a substitution to
the common Euclidean similarity metric utilizing PSO. The most interesting
property of the algorithm is that it is parameter-free, and has considerable per-
formance when dealing with severe noise corruption. The new similarity metric
uses feature information from a local neighboring window around each pixel to
adaptively use them for noise suppression according to image properties and
volume of noise. There are coefficients involved with the new similarity criterion
that need to be determined, and PSO does this task by searching within the
specified space in an iterative manner.

This paper has been organized as follows. Section 2 gives a brief illustration
on the existing literature, and related work. Section 3 describes the new proposed
method. Section 4 is devoted to experiments and discussions, and Sect. 5 provides
conclusions and future work.

2 Background

This section starts with the introduction of the primary FCM and its variants.
We then introduce PSO as the evolutionary algorithm which we have utilized in
this paper, and then related work will be presented.

2.1 FCM and Its Modifications

The FCM was first introduced by Dunn [13], and then extended by Bezdek [14].
As a clustering method it looks for c partitions by minimizing the following
objective function:

J =
N∑

i=1

c∑

j=1

um
jid

2(xi, vj) (1)

where considering an image as the input data which has to be clustered, and
pixels as datapoints, X = x1, x2, ..., xN represents a p-dimensional vector associ-
ated with each pixel, N and c are the number of pixels and clusters respectively,
uij is a value specifying the degree of membership pixel i to cluster j which

needs to satisfy: uij ∈ [0, 1] and
C∑
i=1

uij = 1, and m is the weighting exponent.

d2(xi, vj) is the distance metric between pixel xi and cluster centre vj which is
set to Euclidean metric in classic FCM. Using the Lagrange multipliers the two
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following equations are obtained which are necessary but not enough to have (1)
at its minimum:

vkj =

N∑
i=1

(
uk
ji

)m
xi

N∑
i=1

(
uk
ji

)m (2)
uk+1
ji =

1
c∑

l=1

(
dji
dli

)2/m−1
(3)

v and u are updating iteratively using (2) and (3) respectively where k is the
iteration index. These equations repeat till the algorithm converges, meaning a
certain degree of accuracy is obtained.

FCM does not provide satisfactory results for noisy image segmentation
mainly because it does not include any spatial information. This has led to
a number of research works for noisy image segmentation using the core concept
of FCM [11,15–19]. They all introduce a modification to the objective function
of FCM to include some spatial information. The first notable try in this way is
FCM S proposed in [15]. The method is designed to deal with the segmentation
of magnetic images posing intensity inhomogeneities. The new objective func-
tion allows clustering of a pixel being affected by neighboring pixels. Based on
FCM S two modifications were introduced in [16] mainly trying to reduce the
computation of FCM S. The two algorithms named as FCM S1 and FCM S2 use
a pre-formed mean and median-filter of the noisy image respectively to substi-
tute the procedure that collects information from neighboring pixels to increase
the efficiency. Then EnFCM [17] is proposed in which a linearly weighted filter is
applied to the noisy image, and then the image is clustered using the gray-level
histogram of the filtered image. Since the number of gray levels is much smaller
than the number of pixels in an average-sized image, EnFCM performs quite
fast.

One disadvantage of FCM S, FCM S1, FCM S2, and EnFCM is that they all
have a tunning parameter named α. α makes a trade-off between preserving the
details of an image, and the ability to remove the noise. More clearly, α needs to
be large enough to suppress the noise, and should be small enough to preserve
the details. Being α-dependent, makes these algorithms effective only when a
prior knowledge from the volume of noise is available. FGFCM was proposed in
[11] to fix the problem with the trade-off tuning parameter, α. A new non-linear
filtering factor was proposed in this algorithm incorporating spatial and gray
information. As in EnFCM, the new filter, does preprocessing on the image, and
then the clustering is performed using the histogram information. FGFCM also
has two parameters named as λs and λg. These parameters function similar to
the α [18], despite that FGFCM is less parameter-dependent. The same authors
also proposed two modifications of FGFCM in [11] named as FGFCM S1 and
FGFCM S2. Two specific generalizations of the non-linear filter lead to mean
and median filtering of the neighboring window for FGFCM S1 and FGFCM S2
respectively. Motivated by strengths of the previous methods, FLICM was
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proposed in [18] to introduce a powerful parameter-free method for noisy
image segmentation. A new fuzzy factor has been embedded into the objec-
tive function to replace the α, λs, and λg parameters in previous methods. The
new fuzzy factor incorporates both spatial and gray level information at the
same time in a fuzzy way. One problem with FLICM is that it tends to act
very local, and in the case of multi-intensity noisy images it comes up with no
accurate results [20]. It also has a problem identifying the class of boundary
pixels, and in case of severe noise the performance degrades [19]. To cover the
boundary pixels clustering, and also better performance in heavy noise distrib-
ution, ESFLICM was proposed [19] using a kernel induced distance instead of
the common Euclidean metric.

2.2 Particle Swarm Optimization (PSO)

Particle Swarm optimization was first introduced in [21,22] motivated by social
behaviors of animals like fish and bird. It is efficient, robust, and simple to
implement [23]. Since its emergence it has been revolutionized a lot to cope
with technical engineering problems, and many new modified versions have been
proposed for a better performance. As an evolutionary computational search
algorithm, it finds the solution of a problem which is hard to solve. Assuming
that the problem is modeled with an objective function, PSO bombards the
objective function with many solutions (the number of solutions is called the
population size), evaluate the goodness of each solution, and then selects the
best solution. This keeps going till the number of iterations are finished or the
required accuracy is achieved. Each solution is represented with particles which
have the ability to move in an specified n-dimensional space. Therefore, they need
position, x, and velocity, v, which will be represented with Xi = (xi1, xi2...xin)
and Vi = (vi1, vi2, ..., vin) for particle i in the n-dimensional space respectively.
The best solution in each iteration is called pbest, and the best solution so far is
gbest. The evaluation step is done with an inevitable part of each evolutionary
algorithm, the fitness function. Fitness function will be defined with respect to
the application, and conducts the searching direction. x and v will be updated
in each iteration using the following equations:

vk+1
id = wvk

id + c1r1(xpbest,id − xid) + c2r2(xgbest,id − xid) (4)

xk+1
id = xk

id + vk+1
id (5)

where d = 1, 2, ..., n is the space dimension cardinality, i = 1, 2, ..., N is the
population size, c1 and c2 are positive constants, r1 and r2 are random numbers,
uniformly distributed in the interval [0,1], and k = 1, 2, ..., denotes the number
of iteration. xpbest is the position of pbest and xgbest is the position of gbest.
w is the inertia weight which controls v, and reduces as the iteration increases
according to:

w = (winitial − wfinal) × (kmax − k)
kmax

+ wfinal (6)
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where winitial, is the preliminary value of w, wfinal is the final value of w, k is
the iteration number, and kmax is the maximum number of iterations.

2.3 Related Work

Not many research works exist in the literature incorporating PSO and FCM for
noisy image segmentation. Among them, the main trend is that PSO searches
for the optimum cluster centres when using an FCM-based method [24–26].
That is, each solution represents potential cluster centres, and the objective
function of the FCM derivatives is taken as the fitness function. This approach,
uses the objective function directly, and omits the updating formula for cluster
centres from the clustering procedure. Since the FCM is already an optimization
procedure itself, most often, only optimizing it with PSO does not yield to a
significantly better performance. Contributions of other techniques are required
to boost the performance like in [24] where the post-segmentation step refines
the final results greatly, or in [25] where the authors have borrowed ideas from
other FCM-based segmentation methods to modify the membership values when
minimizing the objective function introduced in FGFCM.

Unlike the common approach, this paper proposes a noisy image segmenta-
tion in which the effort is put to optimize FCM while optimizing the similarity
metric using different neighboring features. For this mean, PSO has been utilized
to obtain the optimal weights for the contribution of each feature, according to
the image properties. This algorithm not only produces good results by itself as
demonstrated in Sect. 4, but also puts forward an algorithm that has the poten-
tial ability to fuse a variety of texture/spatial features for a better performance.

3 The Proposed Method

The presented algorithm in this paper introduces a new PSO-based similarity
measure for the FCM clustering method which is parameter-free, gets adap-
tively tuned for noise removal according to the volume of the noise, and has
promising performance in noisy image segmentation. The algorithm, unlike the
existing trend, uses different features extracted from a local neighboring window
to create an optimum weighted Euclidean distance for FCM clustering. This
algorithm composes of three main stages as depicted in Fig. 1. The first stage
is a preprocessing composed of two steps: a feature matrix construction and an
initial FCM clustering. The second stage is a PSO search procedure in which
the optimum similarity criterion is formed to replace the traditional Euclidean
distance metric in FCM. The last stage, uses the best produced similarity mea-
sure from the second stage to do a final clustering followed by a segmentation
procedure.

3.1 Preprocessing

To make the algorithm fast and efficient, a feature matrix is constructed in
advance which will be used throughout the PSO search. This 3-D matrix is made
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of four simple statistical-based features which are extracted from a neighboring
window centred at pixel i. The features which are mean (im), median (iM ),
variance (iv), and standard deviation (isd), make the feature vector, fi, for each
pixel, i, as fi = [im, iM , iv, isd]. When referred to a pixel for clustering, fi is
easily accessible from the feature matrix. The size of this neighboring window
along with all other parameters for the proposed algorithm are determined in
Sect. 4. For an image of m × n, the feature matrix size is m × n × 4.

Fig. 1. Block diagram of the proposed method

After allocating a feature vector to each pixel with features extracted from the
intensity information of its neighboring pixels, an FCM clustering is performed
to obtain initial values for cluster centers to be used in the next stage, the PSO
search. This primary FCM clustering has two advantages. First, it initializes PSO
for a more meaningful search while looking for the optimum similarity metric,
as cluster centres play a key role in forming the new metric. Second, it makes
the final segmentation results stable. This clustering is carried out by the classic
FCM using (2) and (3), and the formed feature matrix as the input.

3.2 The Proposed Similarity Measure

Creating the new Euclidean-based similarity metric is done within a PSO search
procedure. The aim is to create a feature-weighted similarity criterion which
takes advantages of each feature, and PSO provides the search space to find the
optimum weights. The new similarity metric is created according to:

d2(fi, vj) =‖ fi − vj ‖ (1 − Sij) (7)

in which d2(fi, vj) is the similarity metric as in (1), ‖ fi−vj ‖ is Euclidean-based
distance, fi is the feature vector of pixel i, vj is the cluster centre of the jth
cluster, and Sij is a parameter that entangles each feature with its corresponding
cluster centre as:
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Sij =
N∑

i=1

4∑

j=1

αj ‖ (fij − vj) ‖
4∑

j=1

‖ (fij − vj) ‖
(8)

subjected to the two following criteria:

0 < αj <= 1
Sij <= 1 (9)

where N is the number of pixels, and fij is the jth feature value of pixel i. The

term
N∑
i=1

4∑
j=1

‖ (fij − vj) ‖ normalizes the Sij to have reasonable values for αjs

in the optimization procedure.
In the proposed Sij , each feature property from each feature vector is only

affiliated to one cluster centre, and this allows to consider each pixel’s feature
and the corresponding cluster centre coordinate individually while calculating
the term (1−Sij). Overall, we have two phenomenons contributing to the better
performance of the new similarity metric. One is that the proposed similarity
metric reduces the original distance between each pixel and the corresponding
cluster centre in (1), based on the mentioned information from a neighboring
window around the pixel. This fusion of different features allows the metric to
model noise and texture more accurately compared to each individual feature.
The other, is the parameter α which controls the contribution of each feature.
The determination of α values is being taken care of by the PSO procedure.

3.3 PSO Encoding

There are general (see Subsect. 2.2) and specific motivations to use PSO. Sim-
plicity of representing our problem in form of the particles in PSO makes the
encoding/decoding procedure quite straightforward. Nevertheless, this is some-
thing that could be done with other optimization/evolutionary techniques but
probably at a different computational expense. PSO, as an evolutionary compu-
tation technique, searches for optimal values of α in the introduced similarity
metric. The space that PSO does the search is 4-D as we have four features for
each pixel, and thus four α values. Therefore, each potential solution in PSO is
a vector of four values as [α1, α2, α3, α4]. Starting with random values for each
particle, each solution gets evaluated in the course of PSO iterative procedure,
and the best solution in each iteration gets conveyed to the next iteration. The
best solution so far is also recorded. As stated before, PSO needs a fitness func-
tion which examines the goodness of each solution. The objective function of
FCM introduced in (1) replaced with the new similarity metric is taken as the
fitness function here. Minimizing this fitness function determines the values for
optimum solutions locally and globally.



154 S. Mirghasemi et al.

3.4 Summary of the Algorithm

The proposed algorithm summarizes as described in Fig. 2:

Fig. 2. The step-by-step elaborated structure of the proposed algorithm.

4 Experiments and Analysis

In this section we elaborate the results obtained from the proposed algorithm,
and compare them with some of the state-of-the-art methods qualitatively and
quantitatively. All the images in this section have been degraded by Gaussian
noise with the variance of 20 %.

4.1 Datasets and Evaluation

To test the method we use images of two types. The first type is a dataset of
synthetic images that has been created completely digitally. Using this dataset
gives a clear intuition on how segmentation of simple images of limited-intensity
works when it comes to partitioning compact and homogeneous regions. The
second database is the Berkeley dataset [27] specifically created for image seg-
mentation and boundary detection with ground-truths that comes handy when
doing a quantitative evaluation. Using this dataset offers an insight on how the
proposed method can act on real images of multi-intensity.

The proposed method is compared against several state-of-the-art methods
to prove effectiveness. These methods include the hard clustering method K-
means, the FCM itself [14], FCM S1 and FCM S2 [16], EnFCM [17], FGFCM,
FGFCM S1, and FGFCM S2 [11]. The comparison is made both qualitatively
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and quantitatively. For quantitative comparison the Segmentation Accuracy
(SA) [15] is utilized as follows:

SA =
c∑

i=1

Ai ∩ Ci
c∑

j=1

Cj

(10)

where Ai is the number of segmented pixels from the cluster i and, Ci is the
number of pixels belonging to the ith cluster in the groundtruth image.

4.2 Parameter Setting

Both PSO and FCM algorithms have parameters to set intrinsically. Other than
the size of local neighboring window, our algorithm does not have any specific
parameters to set. As mentioned before, parameters related to the new similarity
criterion get tuned automatically according to the properties of each noisy image.
Table 1 shows all the parameters and their corresponding values.

Table 1. Parameter setting

Parameter Value

Neighboring window for filtering 7 × 7

Weighting exponent (m) 2

Termination threshold for FCM 0.001

Maximum number of iterations for FCM 100

Particles number 20

Iterations number 50

Initial value for the first solution 0.001

c1 and c2 in PSO 1

In regards to other state-of-the-art methods, FCM S1, FCM S2, and EnFCM
needs tuning for α, and FGFCM, FGFCM S1, and FGFCM S2 need tuning for
λg according to the type and volume of noise. We take α = 1.8, λs = 3, and
λg = 6 according to the best performance analysis presented in [18].

4.3 Results

Figure 3 shows the segmentation results of the proposed method along other
mentioned methods for some synthetic images. These four images named S1,
S2, S3, and S4 are of size 256 × 256 pixels except for S1 which is of 128 × 128
pixels size. The number of clusters are fixed as 2, 3, 3, and 3 for them respec-
tively. The qualitative comparison from this figure clearly states that one of the
four FGFCM, FGFCM S1, FGFCM S2, and our method comes with the best
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Table 2. Quantitative comparison accor-
ding to SA metric for Fig. 3. Bold numbers
indicate the first two best performances
for each image

Algorithm S1 S2 S3 S4

K-means 66.5283 59.1019 40.9424 46.5927

FCM 66.5161 59.0363 42.0914 46.7850

FCMS1 93.9270 92.7338 68.5333 75.0351

FCMS2 94.9280 95.6512 76.7303 79.2480

EnFCM 93.9697 92.8787 69.3192 75.4379

FGFCM S1 96.7285 98.1827 95.3308 86.6135

FGFCM S2 95.9045 97.3083 94.6289 83.4442

FGFCM 97.0459 97.8058 93.3075 84.3811

Our method 97.0947 98.1934 95.4849 85.9497

Table 3. Quantitative comparison accor-
ding to SA metric for Fig. 3. Bold numbers
indicate the first two best performances
for each image

Algorithm B1 B2 B3 B4

K-means 77.2042 52.8092 66.5896 59.8785

FCM 77.2042 52.8092 66.5896 60.1810

FCMS1 95.8426 59.0715 77.3136 68.9788

FCMS2 96.4689 62.1965 81.0241 72.1887

EnFCM 96.3653 60.5313 79.7793 71.0216

FGFCM S1 97.1127 73.0546 91.5473 78.5111

FGFCM S2 97.3251 72.8946 89.5713 78.9367

FGFCM 97.0343 68.0041 89.5486 76.7754

Our method 98.1101 73.6083 90.7403 78.9464

performance. This cuts off K-means, FCM, FCMS1, FCMS2, and EnFCM from
the list of candidates for the most accurate segmentation. Quantitative evalua-
tion is then performed based on SA metric to introduce the best segmentation
performance. Table 2 shows the SA evaluation values for the sample images in
Fig. 3 in which the two best performances are in bold. The numbers indicate
that three out of four best segmentation performances belongs to our algorithm.
Also, the performance difference between our method and FGFCM S1 is quite
minor and this is repeated for all other synthetic images in our dataset as well.
There is one exception to this however, which is image S1 in which the second-
best performance belongs to FGFCM method. That is, due to the simplicity
of image S1 where there is only one edge in the existing spatial domain of the
image, and other edges are actually image bordering pixels. Poor segmentation
of FGFCM S1 in these bordering pixels results in better performance of FGFCM
compared to FGFCM S1. Overall, in all images which are not simple as image
S1, if the best results are from our algorithm, then the second-best results are
from FGFCM S1 and vise versa. This is not the case in real images which will
be discussed next. In images S1, S2, and S3 our method performs better, and in
image S4 the proposed method acts as the second-best method after FGFCM S1.

The segmentation results of the Berkeley dataset in Fig. 4 compares our
method against other methods visually. The four sample images from this dataset
named B1, B2, B3, and B4 are of the size 481×321 pixels and they have different
levels of gray intensity. This causes more difficulties in detecting the main regions,
and therefore the SA accuracy drops down generally. The number of clusters for
all four images is determined as 2. Here again our method obtains the best or
second-best performance as the quantitative evaluation shows in Table 3. Having
said that, when our method performs as the most accurate algorithm for B1, B2,
and B4, the second-best performance goes to either FGFCM S2 or FGFCM S1.

Overall, the proposed method acts as the most stable algorithm compared
to others testing on two different datasets. While other methods can loose their
place among the first two best performances, our method always comes with the
results as the best or second-best performance in image segmentation of heavy
variance noises.
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Fig. 3. Segmentation results on syn-
thetic dataset. Rows (a) through
(k) are the noisy corrupted images,
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FCM S1, FCM S2, EnFCM, FGFCM S1,
FGFCM S2, FGFCM, and our methods
segmentation results, respectively.
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means, FCM, FCM S1, FCM S2, EnFCM,
FGFCM S1, FGFCM S2, FGFCM, and
our methods segmentation results, respec-
tively.
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5 Conclusion

A new similarity metric was proposed for FCM clustering using PSO with appli-
cation in noisy image segmentation. Four simple features from a neighboring local
window around each pixel were extracted to be combined in a weighted man-
ner. This helped to take advantage from each feature for noise suppression in
each image adaptively. Experiments on one synthetic and one real image dataset
showed that the proposed method produced stable results in case of heavy distri-
bution Gaussian noise while being ranked among the first two best performances
compared to some of the state-of-the-arts methods. Two possible future work
directions are assumed for this research. One is to use the neighboring infor-
mation while forming the new similarity metric for a better normalization. The
other is to use other texture and spatial features for even more effective noise
suppression.
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Abstract. Problem decomposition, is vital in employing cooperative
coevolution for neuro-evolution. Different problem decomposition meth-
ods have features that can be exploited through competition and collab-
oration. Competitive island cooperative coevolution (CICC) implements
decomposition methods as islands that compete and collaborate at dif-
ferent phases of evolution. They have been used for training recurrent
neural networks for time series problems. In this paper, we apply CICC
for training feedforward networks for time series problems and compare
their performance. The results show that the proposed approach has
improved the results when compared to standalone cooperative coevolu-
tion and shows competitive results when compared to related methods
from the literature.

Keywords: Cooperative coevolution · Feedforward network · Problem
decomposition · Neuron level · Synapse level

1 Introduction

Cooperative coevolution (CC) is an evolutionary algorithm that divides a large
problem into subcomponents that are implemented as sub-populations [1]. CC
applied to neuro-evolution is referred to as cooperative neuro-evolution that
has been used for training feedforward and recurrent neural networks [2] for
time series prediction [2]. Problem decomposition is vital for cooperative neuro-
evolution. The two major decomposition methods are synapse level (SL) and
neuron level (NL) methods. In synapse level problem decomposition, the sub-
components are defined by the weight connection which is known as synapse
[2–4]. In neuron level problem decomposition, the neural network gets decom-
posed by the number of hidden and output neurons as reference neurons in the
network [5].

Competition and collaboration are vital components in the evolution
of species in nature and motivated recent trend in design of evolutionary
algorithms. The competitive coevolution technique was proposed for genetic
algorithm where populations called host and parasite contested with each other
c© Springer International Publishing Switzerland 2016
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with different mechanisms that enable fitness sharing and selection [6]. The com-
petition characteristic in cooperative coevolution has also been used for multi-
objective optimization that exploited connection and inter-dependencies between
the components of the problem [7].

Cooperative island cooperative coevolution (CICC) employs problem decom-
position strategies as islands that compete and collaborate during different
phases of evolution [8,9]. It was initially proposed for training recurrent neural
networks for time series problems [8] and later extended for global optimization
[9] where it showed very promising results. The islands evolve in phases that is
defined by evolution time. At the end of each phase of evolution, the best solu-
tions from participating islands are compared and the best solution is copied to
the rest of the islands.

In this paper, we employ CICC for training feedforward networks on chaotic
time series problems. The proposed approach takes advantage of the different
problem decomposition methods during evolution of feedforward neural network
for time series prediction problems. The performance of the proposed approach
is compared with recurrent neural networks used for chaotic time series prob-
lems [8].

The rest of the paper is organized as follows. In Sect. 2, the proposed method
is discussed in detail while Sect. 3 reports on experimental setup and results.
Section 4 reports on discussion and Sect. 5 concludes the paper with discussion
of future work.

2 CICC for Feedforward Neural Networks

In this section, the details of Competitive Island Cooperative Coevolution
(CICC) for training feedforward neural network is given. The proposed method
employs the strengths of different problem decomposition methods that reflects
on the different degrees of separability and diversity [5].

The proposed method is given in Algorithm 1 where a problem decomposition
method is defined as an island that has distinct features in terms of how the
problem is decomposed and encoded. There are two islands which have distinct
problem decomposition methods as given below:

1. SL Island: Decomposes the neural network in its lowest level where each
synapse becomes a subcomponent. The number of subcomponents depends
on the number of synapse [3].

2. NL Island: Neuron level problem decomposition employs hidden and output
neurons as reference point for each subcomponent. The number of subcom-
ponents depends on the number of hidden and output neurons [5].

The subcomponents are implemented as sub-populations which are imple-
mented using an evolutionary algorithm. Initially, all the sub-populations of
each island is initialized and then evaluated.
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Algorithm 1. Competitive Two-Island Cooperative Coevolution for train-
ing Feedforward Neural Networks
Step 1: Initialisation:
i. Cooperatively evaluate Neuron level Island
ii. Cooperatively Evaluate Synapse level Island
Step 2: Evolution:
while FuncEval ≤ GlobalEvolutionTime do

while FuncEval ≤ Island-Evolution-Time do
foreach Sub-population at Synapse level do

foreach Depth of n Generations do
Create new individuals using genetic operators
Cooperative Evaluation

end

end

end
while FuncEval ≤ Island-Evolution-Time do

foreach Sub-population at Neuron level do
foreach Depth of n Generations do

Create new individuals using genetic operators
Cooperative Evaluation

end

end

end
Step 3: Competition: Compare and mark the island with best fitness.
Step 4: Collaboration: Exchange the best fitness individual from the island
into the other island.

end

In Step 2, the evolution of the islands take place where each island is evolved
for a predefined time given by the number of fitness evaluations in a round-
robin fashion. This is called island evolution time that is given by the number
of function evaluations in the respective islands. Once both islands have been
evolved for the island evolution time, the algorithm proceeds and checks if the
best solution of the particular island is better. If the solution is better, then the
collaboration, procedure takes place where the solution is copied to the other
island.

Each island is evolved using genetic operators until the local evolution time
has been reached as shown in Fig. 1. In the collaboration procedure, the method
takes into account how the best solution from one island is copied into the other
since both have different number of sub-populations.

The best individuals from each of the subcomponents needs to be carefully
concatenated into an individual and transferred without losing any genotype
(subcomponents in cooperative coevolution) to phenotype (feedforward neural
network) mapping. When one island wins, the best solution is transferred to the
other island as shown in Fig. 2.
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Fig. 1. The two islands compete with each other and the best solution is transferred
to the losing Island.

Fig. 2. The transfer of the best solution mapped between the islands (SL to NL).

As shown in Step 4 of Algorithm 1, the island that contains an individual with
better solution needs to be shared with the other island. Synapse level island
employs the highest number of sub-populations that are defined by number of
weights in the network, whereas, neuron level island depends on the number of
neurons in the hidden and output layer. Both islands have varied number of sub-
populations with varied size, therefore, the transfer of the best solution needs to
be mapped correctly between the islands which is shown in Fig. 2.
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3 Experiments and Results

This section presents the experiments that feature neuron synapse level islands in
proposed competitive island cooperative coevolution for feedforward networks for
time series problems. The performance and results of the method were evaluated
by using different numbers of hidden neurons.

We use four different benchmark chaotic time series to evaluate the proposed
method. Mackey-Glass time series [10] and Lorenz time series [11] are the two
simulated problems while Sunspot [12] and ACI Worldwide Inc. are the real-
world problems. The results are compared with related work from the literature.

Taken’s embedding theorem [13] allows for chaotic time series data to be
reconstructed into a state space vector with the two conditions of time delay (T)
and embedding dimension (D) [13]. The values of D and T are used as in the
literature in order to provide a fair comparison [2,8].

All the data set used is reconstructed with the embedding dimensions as used
in [2]. The Mackey-Glass and ACI time series datasets are scaled in the range of
[0,1] whereas the Sunspot and Lorenz are scaled in the range of [−1,1].

The four time series are scaled in the range of [0,1] and [−1,1] as in the
literature in order to provide a fair comparison [2,8].

The Generalized Generation Gap with Parent Centric Crossover (G3-PCX)
evolutionary algorithm was used to evolve all the sub-populations with a pool
size of 2 parents and 2 offspring as done in literature [2].

The number of generations for each sub-population known as depth of search
and is kept as 1 since this number has achieved good results in previous work [2].

The algorithm terminates once the maximum number of function evaluations
has been reached by the respective cooperative neuro-evolutionary methods.
CICC employs a total of 100 000 function evaluations where each island employs
50 000. Standalone methods use 50 000 function evaluations.

The feedforward neural network employs sigmoid units in the hidden layer
and in the output layer a sigmoid unit is used for the Mackey-Glass and ACI
Worldwide Inc., while the hyperbolic tangent unit is used for Lorenz and Sunspot
time series. Root mean squared error (RMSE) is used to evaluate the perfor-
mance of the proposed method [2].

3.1 Results

This section reports on the performance of CICC for training the feedforward
network on four different benchmark problems of the chaotic time series.

In Tables 1, 2, 3 and 4, the results are shown for different number of hidden
neurons using the CICC method which is compared with the results of standalone
cooperative coevolution based on feedforward network.

The results in the Tables 1, 2, 3 and 4 report the RMSE for training and gen-
eralisation performance. They are given by the mean and 95 percent confidence
interval for 50 experimental runs for different number of hidden neurons (H).

Table 1 shows experimental results of the Mackey-Glass time series problem
where CICC has outperformed the standalone methods (SL and NL). All the
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Table 1. The prediction training and generalisation performance (RMSE) of NL and
SL Mackey-Glass time series

Prob. H Training Generalisation Best

NL 3 0.0107 ± 0.00131 0.0107 ± 0.00131 0.0050

5 0.0089 ± 0.00097 0.0088 ± 0.00097 0.0038

7 0.0078 ± 0.00079 0.0078 ± 0.00079 0.0040

SL 3 0.0237 ± 0.0023 0.0237 ± 0.0023 0.0125

5 0.0195 ± 0.0012 0.0195 ± 0.0012 0.0124

7 0.0177 ± 0.0009 0.0178 ± 0.0009 0.0121

CICC 3 0.00950 ± 0.0013 0.0947 ± 0.0013 0.0043

5 0.00690 ± 0.0005 0.0068 ± 0.0005 0.0035

7 0.0063 ± 0.0005 0.0063 ± 0.0005 0.0026

Table 2. The prediction training and generalisation performance (RMSE) of NL and
SL for the Lorenz time series

Prob. H Training Generalisation Best

NL 3 0.0170 ± 0.0031 0.0176 ± 0.0031 0.0043

5 0.0249 ± 0.0062 0.0271 ± 0.0067 0.0021

7 0.0379 ± 0.0093 0.0416 ± 0.0092 0.0024

SL 3 0.0680 ± 0.0325 0.0452 ± 0.0229 0.0153

5 0.0526 ± 0.0084 0.0546 ± 0.0084 0.0082

7 0.0574 ± 0.0075 0.0605 ± 0.0074 0.0079

CICC 3 0.0191 ± 0.00328 0.0198 ± 0.00359 0.0022

5 0.0212 ± 0.00569 0.0225 ± 0.00611 0.0012

7 0.0254 ± 0.00701 0.0281 ± 0.00748 0.0023

methods produced better generalization performance with seven hidden neurons.
The overall performance increased for all the methods as the number of hidden
neurons increased.

In Table 2, the CICC method has performed better than SL method and
closer to the NL method in terms of generalization for the Lorenz time series
problem. The generalization performance of the CICC and the other two meth-
ods deteriorates as the number of the hidden neuron increases. The best result
was seen for three hidden neurons for CICC.

Table 3 shows results for the Sunspot time series problem where three hidden
neurons have given the best performance for CICC and also for the other two
methods. The generalization performance of all the methods deteriorates as the
number of the hidden neuron increases.

The ACI Worldwide Inc. time series problem is evaluated in Table 4. It
shows that the CICC has performed much better than the other two standalone
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Table 3. The prediction training and generalisation performance (RMSE) of NL and
SL Sunspot time series

Prob. H Training Generalisation Best

NL 3 0.0207 ± 0.0035 0.0538 ± 0.0091 0.015

5 0.0289 ± 0.0039 0.0645 ± 0.0093 0.017

7 0.0353 ± 0.0048 0.0676 ± 0.0086 0.021

SL 3 0.0539 ± 0.0261 0.04998 ± 0.0238 0.210

5 0.0560 ± 0.0208 0.05210 ± 0.0177 0.302

7 0.0568 ± 0.0178 0.05250 ± 0.0132 0.344

CICC 3 0.0193 ± 0.00351 0.0480 ± 0.00722 0.017

5 0.0216 ± 0.00321 0.0549 ± 0.00993 0.014

7 0.0316 ± 0.00488 0.0719 ± 0.00924 0.018

Table 4. The prediction training and generalisation performance (RMSE) of NL and
SL for ACI time series

Prob. H Training Generalisation Best

NL 3 0.0214 ± 0.00039 0.0215 ± 0.00039 0.020

5 0.0203 ± 0.00047 0.0212 ± 0.00041 0.019

7 0.0201 ± 0.00038 0.0208 ± 0.00033 0.019

SL 3 0.0466 ± 0.0039 0.0411 ± 0.0036 0.080

5 0.0413 ± 0.0038 0.0390 ± 0.0038 0.042

7 0.0449 ± 0.0028 0.0424 ± 0.0027 0.134

CICC 3 0.0301 ± 0.0115 0.0332 ± 0.0197 0.0150

5 0.0240 ± 0.0036 0.0227 ± 0.00566 0.0148

7 0.0202 ± 0.00020 0.0178 ± 0.00088 0.0150

methods (SL and NL). The generalization performance of the CICC and the
other two methods gets better as the number of the hidden neuron increases.
The best result was seen for seven hidden neurons for all the methods.

Figures 3 and 4 show that a typical experimental run from the CICC method
was able to cope with the noise from the real-world datasets. The error graph
is also given which indicates the challenges for the chaotic nature of these time
series problems at certain time intervals.

Table 5, compares the best results from Tables 1, 2, 3 and 4 with some of the
related methods from the literature. The RMSE of the best run together with
NMSE (Normalized Mean Squared Error) are used for the comparison. The
proposed method has given better performance when compared to some of the
methods in the literature.

Table 5, Mackey-Glass time series shows that CICC has outperformed all of
the methods except for Auto Regressive Moving Average with Neural Network
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(b) Error on the test data set given by CICC for the Sunspot time series.

Fig. 3. Typical mean prediction given by CICC for Sunspot time series.

(ARMA-NN), Radial Basis Network with Orthogonal Least Squares (RBF-OLS)
and Locally Linear Neuro-Fuzzy Model (LLNF).

In Lorenz problem given in the Table 5, the proposed method outperformed
all the methods. In Table 5, for the Sunspot time series problem, the proposed
method was able to outperform the rest of the methods from the literature. As
for ACI Worldwide Inc. problem in Table 5, the proposed method outperforms
majority of the methods.

4 Discussion

Competitive island cooperative coevolution enables competition of diversity
enforced through the number of sub-populations. The collaboration feature
allows to improve diversity through injection of the best materials from the win-
ning island after a predefined time. These features seem to improve the results of
the standalone methods. Synapse level problem decomposition method seems to
enable better global search features through higher diversity that is useful dur-
ing the early stages of evolution. Collaboration and competition take advantages
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Fig. 4. Typical mean prediction given by CICC for ACI Worldwide Inc time series.

of these features during evolution. The proposed method takes advantage of
solutions produced by two problem decomposition methods after each phase of
competition.

The comparison of results with literature has shown that the proposed
method performs better than cooperative co-evolutionary recurrent neural net-
works (CCRNN-SL and CCRNN-NL). We note that the performance also
depends on the neural network architecture, hence, we cannot make strict com-
parison and only use the results from the literature of the related methods
as a baseline to evaluate the proposed method. This is also the case when
comparing the performance of proposed CICC-FNN with its counterpart CICC-
RNN for the same problems. We also note that CICC was unable to outper-
form some of the related methods since they have additional enhancements such
as the optimization of the embedding dimensions and strength of architectural
properties [15].
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Table 5. A comparison with the results from literature for all time series

Problem Prediction method RMSE NMSE

Mackey Auto regressive moving average (ARMA-NN)(2008) [14] 2.5E-03

Radial basis network (RBF-OLS)(2006) [15] 1.02E-03

Locally linear neuro-fuzzy model (LLNF) (2006) [15] 9.61E-04

Neural fuzzy network (PS0) (2009) [4] 2.10E-02

Neural fuzzy network (CPS0) (2009) [4] 1.76E-02

Synapse level-CCRNN (SL-CCRNN) (2012) [2] 6.33E-03 2.79E-04

Neuron level-CCRNN (NL-CCRNN) (2012) [2] 8.28E-03 4.77E-04

Competitive island cooperative coevolution (CICC-RNN) (2014) [8] 3.99E-03 1.11E-04

Proposed CICC-FNN 2.61E-03 1.29E-05

Lorenz Radial basis network (RBF-OLS)(2006) [15] 1.41E-09

Locally linear neuro-fuzzy model (LLNF) (2006) [15] 9.80E-10

Auto regressive moving average (ARMA-ANN)(2008) [14] 8.76E-02

Backpropagation neural network and genetic algorithms (2011) [16] 2.96E-02

Synapse level-CCRNN (SL-CCRNN) (2012) [2] 6.36E-03 7.72E-04

Neuron level-CCRNN (NL-CCRNN) (2012) [2] 8.20E-03 1.28E-03

Competitive island cooperative coevolution (CICC-RNN) (2014) [8] 3.55E-03 2.41E-04

Proposed CICC-FNN 1.16E-03 2.80E-05

Sunspot Radial basis network (RBF-OLS)(2006) [15] 4.60E-02

Locally linear neuro-fuzzy model (LLNF) (2006) [15] 3.20E-02

Synapse level-CCRNN (SL-CCRNN) (2012) [2] 1.66E-02 1.47E-03

Neuron level-CCRNN (NL-CCRNN) (2012) [2] 2.60E-02 3.62E-03

Competitive island cooperative coevolution (CICC-RNN) (2014) [8] 1.57E-02 1.31E-03

Proposed CICC-FNN 1.44E-02 5.84E-04

ACI Competitive island cooperative coevolution (CICC-RNN) (2014) [8] 1.92E-02

Synapse level (FNN-SL) (2014) [17] 1.92E-02

Neuron level (FNN-NL) (2014) [17] 1.91E-02

MOCCFNN with 2-objectives (T=2)(MO-CCFNN-T=2) (2014)[18] 1.94E-02

MOCCFNN with 2-objectives (T=3)(MO-CCFNN-T=3) (2014)[18] 1.47E-02

Proposed CICC-FNN 1.48E-02 1.19E-03

5 Conclusion

In this paper, we applied competitive island-based cooperative coevolution of
feedforward neural networks for chaotic time series prediction. The proposed
approach employed two island competitive method where the islands were
defined by neuron level and synapse level problem decomposition methods. The
results have shown good results on the different benchmark problems and has
given competitive performance with the majority of the methods in the litera-
ture. It can be concluded that sharing of resources between the different islands
that have different features helps in achieving better solutions.

In future work, the proposed method can be improved by exploring other
problem decomposition methods that can provide more competition. A multi-
threaded version of the algorithm can be developed to reduce the computation
time. The method can be used to evolve other neural network architectures for
similar problems and those that involve pattern classification and control.
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Abstract. A major challenge in cooperative neuro-evolution is to find
an efficient problem decomposition that takes into account architectural
properties of the neural network and the training problem. In the past,
neuron and synapse Level decomposition methods have shown promis-
ing results for time series problems, howsoever, the search for the opti-
mal method remains. In this paper, a problem decomposition method,
that is based on neuron level decomposition is proposed that features
a reverse encoding scheme. It is used for training feedforward networks
for time series prediction. The results show that the proposed method
has improved performance when compared to related problem decompo-
sition methods and shows competitive results when compared to related
methods in the literature.

Keywords: Cooperative coevolution · Feedforward networks · Problem
decomposition · Time series prediction

1 Introduction

A time series dataset is a chronological series of the past and present data is
involved that are measured regularly at progressive intervals [1,2]. Time series
prediction uses past data to predict future occurrence of events using robust
methods such as neural networks [3].

Cooperative neuro-evolution employs cooperative coevolution for training
neural networks [3–5]. Cooperative coevolution solves a large problem by break-
ing it down into sub-components and implements them as sub-population using
evolutionary algorithms [4]. The sub-populations are evolved in a round-robin
fashion while cooperation takes place for fitness evaluation.

Cooperative neuro-evolution has shown to be effective for training feedfor-
ward [6,7] and recurrent neural networks [3,8] with applications in classification
[6,9], control [8] and time series prediction [3]. In cooperative neuro-evolution,
problem decomposition depends on the structural properties of the network that
c© Springer International Publishing Switzerland 2016
T. Ray et al. (Eds.): ACALCI 2016, LNAI 9592, pp. 171–182, 2016.
DOI: 10.1007/978-3-319-28270-1 15
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have inter-dependencies [9]. The efficiency of a problem decomposition method
depends on the training problem and the neural network architecture [9].

The two established problem decomposition methods for cooperative neuro-
evolution are synapse level (SL) [3,5] and neuron level (NL) [8–10]. In SL, the
network is decomposed to its lowest level of granularity where the number of
subcomponents depends on the number of weight-links or synapses in the neural
network. In NL, the number of subcomponents consists of the total number of
hidden and output neurons.

Synapse level ensures global search and provides the most diversity. However,
this level of decomposition works best if there are less interacting variables or
synapses in the neural network training problem. Synapse level decomposition
has shown good performance for time series and control problems [3,5], howso-
ever, it performed poorly for pattern classification problems [9]. It seems that
time series prediction does not feature a high level of interactions when compared
to pattern classification problems.

Neuron level decomposition has less diversity and enables grouping the
interacting variables. In cooperative neuro-evolution, the problem is to balance
diversity and interacting variables. A study of grouping interacting variables moti-
vated the grouping of synapses with reference to hidden in output neurons [9].

In this paper, we introduce reverse neuron level (RNL) decomposition, which
essentially features reverse encoding of neuron level decomposition. Neuron level
decomposition takes hidden and output layer neurons as reference for each sub-
component, whereas RNL uses hidden and input layer. RNL is used for training
feedforward networks for chaotic time series problems.

The rest of the paper is organized as follows. In Sect. 2, the proposed method
is discussed in detail while in Sect. 3, experiments and results are given. Section 4
concludes the paper with a discussion of future work.

2 Proposed Problem Decomposition

An ideal problem decomposition method efficiently decomposes the network in
a way where the interacting variables or synapses are grouped into separate
subcomponents [9]. In this way, a deep greedy search for the subcomponents
will not be problematic for partially separable problems such as training neural
networks. Analysis of the degree of separability of the neural network train-
ing problem showed that neuron level is an efficient way for decomposition [9].
Howsoever, other strategies for effectively decomposing the network can also be
explored that are related to neuron level (Figs. 1 and 2).

2.1 Reverse Neuron Level Decomposition

Reverse neuron level (RNL) decomposition encodes the neural network in a way
where the input and hidden neurons are used as reference points rather than the
hidden and output neurons as in the case of neuron level. Each subcomponents
in RNL consists of outgoing synapse connected linked with neurons in the input
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Fig. 1. Synapse level decomposition of the neural network training problem. Note that
the subcomponents are implemented as sub-populations.

Fig. 2. Neuron level decomposition of neural network training problem. Note that the
subcomponents are implemented as sub-populations.

and hidden layers. Therefore, each subcomponent for a layer is composed as
follows:

1. For a given neuron i in the input layer, the input layer subcomponents consists
of all the synapses that are connected from input neuron i to the hidden layer.
The bias of i is also included.

2. For a given neuron j in the hidden layer, the hidden layer subcomponents
consists of all synapses that are connected from hidden neuron j to the output
layer. The bias of j is also included.

The total number of subcomponents is the total number of hidden and input
neurons along with biases within hidden and input layer neurons as shown in
Fig. 3. RNL is used to train the feedforward network and is shown in Algorithm1.
In Step 1, the network is encoded using RNL problem decomposition.

In Step 2, subcomponents are encoded as sub-populations. In Step 3, each
sub-population is evolved using the designated evolutionary algorithm. Evalu-
ation of the fitness of each individual in a particular sub-population is done
cooperatively [4]. This is done by concatenating the best individuals from the
rest of the sub-populations and encoding them into the neural network for fitness
evaluation.

All the sub-populations are evolved for a fixed number of generations. The
evolution continues until the termination criteria is met which is either the total
number of function evaluations or the desired fitness for the network based on
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Algorithm 1. RNL for Training Feedforward Networks
Step 1: Decompose the problem into subcomponents according to RNL.
Step 2: Implement each subcomponent in a sub-population.
Step 3: Initialize and cooperatively evaluate each sub-population.
foreach Cycle until termination do

foreach Sub-population do
foreach Depth of n Generations do

Select and create new offspring using genetic operators
Cooperative Evaluation the new offspring

end

end

end

validation dataset. Once the network has been evolved, the neural network is
tested for generalization performance.

Fig. 3. Reverse neuron level problem decomposition. Note that the number of sub-
population are based on the number of input and hidden neurons.

The proposed decomposition creates fewer subcomponents when compared
to synapse level decomposition. It creates more subcomponents when compared
to neuron level decomposition for problems with one output neuron that are
used for single dimensional time series problems.

3 Experiments and Results

This section presents the experiments using the proposed RNL cooperative
neuro-evolution method for training feedforward neural networks. NL and SL
problem decomposition methods are used for comparison. The performance and
results of the method were evaluated using different number of hidden neurons.

Four different benchmark chaotic time series datasets are used to evaluate
the proposed method. Mackey-Glass time series [11] and Lorenz time series [12]
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are the two simulated time series. The real-world problems include the Sunspot
[13] and ACI Worldwide Inc. [14] time series. The results are compared with
related work from the literature.

3.1 Experimental Setup

All the datasets are reconstructed using Taken’s embedding theorem [15]. Taken’s
embedding theorem allows chaotic time series dataset to be reconstructed into a
state space vector using time delay (T) and embedding dimension (D) [15].

The differential equation used to generate the Mackey Glass time series is
given below in Eq. 1.

dx

dt
=

ax(t − τ)
[1 + xc(t − τ)]

− bx(t) (1)

1000 sample points are used and the phase space of the original time series is
reconstructed with the embedding dimensions D = 3 and T = 2. The first half
of samples are used for training while the rest for testing. This time series data
set is scaled in the range [0,1].

The Lorenz time series is simulated time series, which is chaotic in nature
that was proposed by Edward Lorenz along with the principles of Chaos theory
[12]. This dataset is scaled in the range of [-1,1]. The first half of the 1000 sample
points are used for training while the rest for testing. The phase space of the
original time series is reconstructed with the embedding dimensions D = 3 and
T = 2, similar as previous time series data.

The Sunspot time series gives good indication of the solar activities for solar
cycles which impacts Earth’s climate [16]. The monthly smoothed Sunspot time
series has been obtained from the World Data Center for the Sunspot Index
[13]. This time series is scaled in the range [-1,1] and first is used for training
while the second half for testing. Embedding dimension of D = 5 and T = 2 is
used.

The ACI Worldwide Inc. time series [14] is taken from the NASDAQ stock
exchange and contains 800 sample points from December 2006 to February 2010
[14]. It is scaled in the range [0,1]. The first half is used for training and the
second half for testing. Embedding dimension of D = 5 and T = 2 is used.

The feedforward network employs sigmoid units in the hidden and the out-
put layer for the Mackey-Glass and ACI Worldwide Inc. problems. However, the
hyperbolic tangent unit is used in the output layer for the Lorenz and Sunspot
time series. Root mean squared error (RMSE) is used to evaluate the perfor-
mance of the proposed method as done in previous work [3]. The G3-PCX evo-
lutionary algorithm is employed to evolve all the sub-populations [17]. It uses
specific parameters for creation of new solutions such as the pool size of 2 parents
and 2 offspring [3].

The number of generations for each sub-population known as depth of search
is kept as 1 as done in [3]. The algorithm terminates once the maximum number
of function evaluations (50 000) have been reached by the respective cooperative
neuro-evolutionary methods (RNL, NL and SL).
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3.2 Results

In Tables 1, 2, 3, and 4 the results are shown for different number of hidden
neurons using RNL, NL and SL. The RMSE and 95 percent confidence interval
along with the best run are reported for 50 independent experimental runs.
We evaluate the best results for each case with lowest RMSE in training and
generalization performance irrespective of number of hidden neurons used.

In the Mackey-Glass problem shown in Table 1, it was observed that RNL
gives better training and generalization performance when compared to SL. RNL
was unable to outperform NL.

In Table 2, for the Lorenz problem, it was observed that the RNL has per-
formed much better than SL, however, it was unable to outperform NL in terms
of training or generalization. Unlike for the Mackey-Glass problem, it was seen
that the generalization and training performance of all the methods deteriorates
when the number of the hidden neuron increases.

Table 1. Training and generalisation performance for Mackey-Glass time series
problem

Method H Training Generalisation Best

NL 3 0.0107 ± 0.00131 0.0107 ± 0.00131 0.0050

5 0.0089 ± 0.00097 0.0088 ± 0.00097 0.0038

7 0.0078 ± 0.00079 0.0078 ± 0.00079 0.0040

SL 3 0.0237 ± 0.0023 0.0237 ± 0.0023 0.0125

5 0.0195 ± 0.0012 0.0195 ± 0.0012 0.0124

7 0.0177 ± 0.0009 0.0178 ± 0.0009 0.0121

RNL 3 0.0151 ± 0.00087 0.0151 ± 0.00087 0.0076

5 0.0132 ± 0.00064 0.0132 ± 0.00064 0.0088

7 0.0133 ± 0.00066 0.0133 ± 0.00066 0.0092

The performance of the Sunspot time series problem in Table 3 shows that
RNL was able to outperform SL and NL in generalisation performance.

The ACI Worldwide Inc. in Table 4 shows similar performance when com-
pared to Sunspot time series as both are real world applications that contain
noise. RNL outperformed SL and gave close performance to NL.

Tables 5, 6, 7, and 8, compares the best results from Tables 1, 2, 3, and 4
with some of the related methods from the literature. The RMSE of the best
experimental run together with NMSE (normalized mean squared error) are used
for the comparison. The proposed RNL method has given good performance
when compared to some of the methods in the literature.

The best result of Mackey-Glass time series problem was compared to meth-
ods from the literature in Table 5. The proposed method was able to outperform
some of the methods.
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Table 2. Training and generalisation performance for the Lorenz time series problem

Method H Training Generalisation Best

NL 3 0.0170 ± 0.0031 0.0176 ± 0.0031 0.0043

5 0.0249 ± 0.0062 0.0271 ± 0.0067 0.0021

7 0.0379 ± 0.0093 0.0416 ± 0.0092 0.0024

SL 3 0.0680 ± 0.0325 0.0452 ± 0.0229 0.0153

5 0.0526 ± 0.0084 0.0546 ± 0.0084 0.0082

7 0.0574 ± 0.0075 0.0605 ± 0.0074 0.0079

RNL 3 0.0263 ± 0.0051 0.027 ± 0.0051 0.0062

5 0.0309 ± 0.0087 0.0333 ± 0.0087 0.0075

7 0.0395 ± 0.0083 0.0435 ± 0.0083 0.0058

Table 3. Training and generalisation performance for Sunspot time series

Method H Training Generalisation Best

NL 3 0.0207 ± 0.0035 0.0538 ± 0.0091 0.015

5 0.0289 ± 0.0039 0.0645 ± 0.0093 0.017

7 0.0353 ± 0.0048 0.0676 ± 0.0086 0.021

SL 3 0.0539 ± 0.0261 0.04998 ± 0.0238 0.210

5 0.0560 ± 0.0208 0.05210 ± 0.0177 0.302

7 0.0568 ± 0.0178 0.05250 ± 0.0132 0.344

RNL 3 0.0411 ± 0.0051 0.0472 ± 0.0048 0.031

5 0.0390 ± 0.0044 0.0467 ± 0.0039 0.030

7 0.0414 ± 0.0069 0.0533 ± 0.0060 0.030

Table 4. Training and generalisation performance for ACI Worldwide Inc. time series

Method H Training Generalisation Best

NL 3 0.0214 ± 0.00039 0.0215 ± 0.00039 0.020

5 0.0203 ± 0.00047 0.0212 ± 0.00041 0.019

7 0.0201 ± 0.00038 0.0208 ± 0.00033 0.019

SL 3 0.0466 ± 0.0039 0.0411 ± 0.00360 0.080

5 0.0413 ± 0.0038 0.0390 ± 0.00378 0.042

7 0.0449 ± 0.0028 0.0424 ± 0.00270 0.134

RNL 3 0.0250 ± 0.00097 0.0228 ± 0.00077 0.019

5 0.0236 ± 0.00075 0.0220 ± 0.00059 0.019

7 0.0232 ± 0.00072 0.0219 ± 0.00063 0.019
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The Table 6 shows the best result of Lorenz time series problem being com-
pared to works in literature. It was seen that the proposed method outper-
formed all the methods except for co-evolutionary recurrent neural networks
(CICC-RNN) which cannot be strictly compared due to difference in network
architectures.

Table 5. A comparison with the results from literature on the Mackey-Glass time
series

Prediction method RMSE NMSE

Locally linear neuro-fuzzy model (LLNF-LoLiMot) (2006) [18] 9.61E-04

Neural fuzzy network and PS0 (2009) [19] 2.10E-02

Neural fuzzy network and CPS0 (2009) [19] 1.76E-02

Neural fuzzy network and DE (2009) [19] 1.62E-02

Neural fuzzy network and GA (2009) [19] 1.63E-02

Synapse Level-CCRNN (SL-CCRNN) (2012) [3] 6.33E-03 2.79E-04

Neuron Level-CCRNN (NL-CCRNN) (2012) [3] 8.28E-03 4.77E-04

Competitive Island Cooperative Coevolution (CICC-RNN)
(2014) [20]

3.99E-03 1.11E-04

Proposed FNN-RNL 7.59E-03 1.09E-04

Table 6. A comparison with the results from literature on the Lorenz time series

Prediction method RMSE NMSE

Auto regressive moving average (ARMA-ANN)(2008) [21] 8.76E-02

Backpropagation neural network and GA (2011) [22] 2.96E-02

Synapse Level-CCRNN (SL-CCRNN) (2012) [3] 6.36E-03 7.72E-04

Neuron Level-CCRNN (NL-CCRNN) (2012) [3] 8.20E-03 1.28E-03

Competitive Island Cooperative Coevolution (CICC-RNN)
(2014) [20]

3.55E-03 2.41E-04

Proposed FNN-RNL 5.81E-03 1.77E-04

The best result of the Sunspot time series problem was compared to the
literature in Table 7. The proposed method was unable to outperform differ-
ent co-evolutionary recurrent neural networks (SL-RNN, NL-RNN and CICC-
RNN) which cannot be strictly compared due to difference in neural network
architecture.

The best result of the ACI Worldwide Inc. problem was compared to the
literature in Table 8. The proposed method outperformed all the methods except
for multi-objective method with T=3. The results are better when compared to
other works from the literature.
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Table 7. A comparison with the results from literature on the Sunspot time series

Prediction method RMSE NMSE

Radial basis network (RBF-OLS)(2006) [18] 4.60E-02

Locally linear neuro-fuzzy model (LLNF-LoLiMot) (2006) [18] 3.20E-02

Synapse Level-CCRNN (SL-CCRNN) (2012) [3] 1.66E-02 1.47E-03

Neuron Level-CCRNN (NL-CCRNN) (2012) [3] 2.60E-02 3.62E-03

Competitive Island Cooperative Coevolution (CICC-RNN)
(2014) [20]

1.57E-02 1.31E-03

Proposed FNN-RNL 2.96E-02 2.68E-03

Table 8. A comparison with the results from literature on the ACI time series

Prediction method RMSE NMSE

Competitive Island Cooperative Coevolution CICC-RNN [23] 1.92E-02

Synapse Level (FNN-SL) (2014) [24] 1.92E-02

Neuron Level (FNN-NL) (2014) [24] 1.91E-02

MOCCFNN with 2-objectives (T=2)(MO-CCFNN-T=2)
(2014) [25]

1.94E-02

MOCCFNN with 2-objectives (T=3)(MO-CCFNN-T=3)
(2014) [25]

1.470E-02

Proposed FNN-RNL 1.91E-02 2.00E-03

Figure 4 show that a typical experimental run from the RNL method was
able to cope with the noise from one of the real-world dataset. The error graph
is also given which indicates the challenges for the chaotic nature of these time
series problems at certain time intervals.

4 Discussion

In general, the results of the experiments showed that proposed reverse neuron
level is better than synapse level and gives close performance when compared
to neuron level for given time series problems. Reverse neuron level gives a
competitive performance when compared to other methods from the literature.

Reverse neuron level employs fewer subcomponents when compared to synapse
level and more subcomponents when compared to neuron level according to the
network topology with one output neuron used for one step ahead time series prob-
lems. The results showed that reverse neuron level has been able to achieve similar
performance when compared to other methods in terms of the generalization.

Reverse neuron level groups subcomponents similar to synapse level for the
hidden-output layer. It seems that due to more interaction between hidden to
output layer, where more decision making takes place, it was unable to have bet-
ter performance when compared to neuron level. Reverse neuron level seems to
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Fig. 4. Typical train prediction given by RNL for ACI Worldwide Inc time series.

perform better than synapse level mainly due to the weight connections between
input-hidden layer. It is better to combine the weights together, which is the
case in reverse neuron level and neuron level.

5 Conclusion and Future Work

In this paper, we proposed reverse neuron level decomposition for the cooperative
neuro-evolution of feedforward neural networks applied to time series problems.
The results of the experiments have given a better understanding of decompo-
sition of neural network in terms of interacting variables. The proposed method
has also outperformed some of the methods from the literature. In general, the
proposed method is much better than synapse level decomposition and produces
competitive results with neuron level decomposition.

In future work, the proposed method can be further tested on other problems,
including multi-dimensional time series. The method can be used to evolve other
neural network architectures for pattern classification and control.
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Abstract. Diversity preservation is a critical issue in evolutionary multi-
objective optimization algorithms (MOEAs), it has significant influence on the
quality of final solution set. In this wok, a crowding density measurement is
developed for preserving diversity in MOEAs by using the Delaunay triangulation
mesh built on the population in the objective space. Base on the property of the
Delaunay triangulation, the new density measurement considers both the Eucli‐
dean distance and the relative position between individuals, and thus provide a
more accurate estimation of the density around a specific individual within the
population. Experimental results indicate that the suggested density measurement
help to improve the performance of MOEAs significantly.

Keywords: Evolutionary multi-objective optimization · Diversity preservation ·
Delaunay triangulation · Density measurement

1 Introduction

Multi-objective optimization problem (MOP) is a category of problems that optimize
two or more conflicting objectives simultaneously [1]. Different from single-objective
optimization problems, a MOP usually has no unique solution that meets all the objec‐
tives. Instead, there exist some trade-off solutions which are known as the Pareto optimal
solutions. The collection of all the Pareto optimal solutions in the decision space is
termed as the Pareto set (PS) whose image in the objective space is called the Pareto
front (PF). As it is time-consuming or even impossible to obtain the whole PF, the aim
of a multi-objective optimizer is to find a representative set of non-dominated solutions
that approximates the PF as closely as possible and spreads evenly along the PF.
Provided with an approximated set of the PF, a decision maker would have a better
understanding of the target MOP and thus make more reasonable decisions.

Among existing multi-objective optimization approaches, multi-objective optimi‐
zation evolutionary algorithms (MOEAs) are recognized as one of the most successful
techniques. By evolving a population of solutions, MOEAs can provide a required set
of non-dominated solutions in a single run, which is significant advantage over tradi‐
tional approaches [2]. Since the pioneer work by Schaffer [3] who first combined the
traditional multi-objective optimization technique with evolutionary computation, many
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research efforts have been devoted to this area, and many MOEAs have been developed.
These MOEAs can be roughly divided into two categories. One is the Pareto-dominance
based MOEAs in which NSGAII [4] and SPEA2 [5] are the most representative ones.
The other is the Non-Pareto-dominance based MOEAs, including decomposition-based
MOEAs like MOEA/D [6] and indicator-based MOEAs like IBEA [7].

Diversity preservation is considered to be an important technique in an evolutionary
algorithm to prevent it from premature convergence and thus yields good performance.
It is especially critical in MOEAs, because MOP presents more challenges to optimizers
in terms of the coverage and uniformity of the Pareto optimal solutions [8]. Existing
studies on diversity preservation in MOEAs can be classified into the following four
categories: (1) Crowding: including Niching techniques [9, 10] and crowding density
based sorting [4, 11]. (2) Hyper-grid: dividing the objective space into uniform grid cells
and emphasizing solutions in less crowded hyper-boxes [12]. (3) Clustering: extracting
density information by using clustering techniques and reducing the non-dominated set
without destroying its characteristics [5, 13]. (4) Entropy: making use of the entropy
information to measure the population diversity and guide the selection [14, 15]. Among
these diversity preservation techniques, the crowding method is widely used especially
in Pareto-dominance based MOEAs.

In the crowding method, the density measurement of a specific individual in the
population is determined by the distances between the individual and its k-nearest
neighbors [4, 16]. Here, the parameter k is usually assigned to a predetermined value
that equal to the number of objectives. Such density measurement is reasonable when
the k-nearest neighbors of a specific individual scatter surround it in the objective space,
however, when it is not the case, this measurement will be inaccurate. According to our
observation, such inaccuracy comes from the ignorance of the information of relative
position between individuals. On the other hand, the parameter k is not necessary equal
to the number of objectives, it should be assigned to an appropriate value.

In this work, a new density measurement based on Delaunay triangulation is devel‐
oped for diversity preservation in the Pareto-dominance based MOEAs. The main
contributions of this work are as follows:

• A neighborhood relationship between individuals in the population is designed by
constructing the Delaunay triangulation mesh of the points in the decision space
where the parameter k is adaptively determined.

• A novel density measurement based on the Delaunay triangulation mesh, which
considers both the Euclidean distance and the relative position between individuals,
is developed for diversity preservation in MOEAs.

The remainder of this paper is organized as follows. Section 2 describes the moti‐
vation and the main idea of this work. Section 3 presents the proposed density meas‐
urement base on Delaunay triangulation. Section 4 shows some experimental results
which compares the suggested density measurement with existing ones under the same
algorithmic framework. Section 5 concludes this paper.
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2 Motivation

As we have mentioned before, the k-nearest-neighbor density measurement is not always
accurate. Figure 1 illustrates an elaborate example to show its drawbacks. Given a
population with eight individuals in a three-dimensional objective space, as shown in
Fig. 1(a), let’s focus on individuals A and B in the population. Individual A has its three
nearest neighbors C, B and D. While C, A and D are the three nearest neighbors of B.
Now we assume that individuals C and D are located on the midperpendicular line of the
line segment between A and B, in other words, we have |AC| = |BC| and |AD| = |BD|.
In this case, A and B have the same density measurement according to the k-nearest-
neighbor density measurement. Let’s further assume that we move the individual B
along line AB to a new position B′ and keep the three nearest neighbors of the two
individuals unchanged, as shown in Fig. 1(b). Then, individual B′ should have higher
density measurement than A. If we have to remove one individual from the population
at this time, then A will be chosen according to the k-nearest-neighbor density meas‐
urement. However, it is obvious that the population will achieve better uniformity by
removing the individual B’ rather than A. The main reason of this inaccuracy is that the
three nearest neighbors of individual A do not spread surrounding it in the objective
space as it is assumed by the density measurement.

A
B

C

D EF

G

H

A

C

D EF

G

H

B’

A
B

C

D EF

G

H

B’

(a) (b) (c)

Fig. 1. An example to show the inaccuracy of the k-nearest-neighbor density measurement. (a)
The population in the objective space. (b) Changing the population density by moving B to a new
position B′. (c) The neighborhood relationship based on Delaunay Triangulation.

Figure 1(c) shows the Delaunay triangulation mesh of the individuals in the popu‐
lation. It can be seen that, in this mesh, A has five neighbors and B′ has four neighbors.
That is to say, the parameter k is adaptively determined. The Delaunay triangulation
mesh constructs a new neighborhood relationship between individuals in the population,
and if a specific individual in the mesh is not a boundary individual, the mesh guarantees
that the neighbors of the individual scatter surrounding it. In addition, the area bounded
by A’s neighbors is larger than that bounded by neighbors of B′ which implies that B′
can be removed as we expect if a density measurement is appropriately designed based
on the Delaunay triangulation mesh. With this aim, the Delaunay triangulation tech‐
nique, which will be introduced in the next subsection, is employed to model and
describe the relative positions between solutions, giving rise to a new density measure‐
ment for diversity preservation in MOEAs.
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3 The Delaunay Triangulation Based Density Measurement

In this section, the definition of Delaunay triangulation is introduced at first. Then, the
suggested Delaunay triangulation based density measurement is presented. At last, the
selection operator using the newly developed density measurement for MOEAs is
described and analyzed.

3.1 Definition of Delaunay Triangulation

Triangulation is one of the main topics in the field of computational geometry. Given a
point set P, the Delaunay triangulation [17] built on P is a particular triangulation, noted
as DT(P), such that every triangle in DT(P) contains no point from P in its interior (points
are permitted on the circumcircle). In other words, every triangle of a Delaunay trian‐
gulation has an empty circumcircle. Figure 2 compares a Delaunay triangulation with a
non-Delaunay triangulation built on four points. It has been proved that, the Delaunay
triangulation is unique if no more than three points are located on the same cycle.

(b) Non-Delaunay Triangulation(a) Delaunay Triangulation

A B

CD

A B

CD

Fig. 2. Delaunay triangulation and non-Delaunay triangulation

Delaunay triangulation has certain nice properties. The most important one is that
the Delaunay triangulation maximizes the minimum angle of all the angles of the trian‐
gles in the triangulation. To put it simply, the Delaunay triangulation tend to avoid skinny
triangles and generate triangles in regular shape. Due to this property, points in the
Delaunay triangulation mesh are more likely to connect with their nearest neighbors. As
shown in Fig. 2, the edge DB which connects two points with long distance is not likely
to appear in the Delaunay triangulation. To conclude, a specific point in the Delaunay
triangulation mesh, if not a boundary point, keeps connections with several nearest
neighbors surrounding it. That is what we need in the definition of the density meas‐
urement.

3.2 Definition of the Proposed Density Measurement

The proposed density measurement takes advantage of the property of the Delaunay
triangulation mentioned before. The density measurement of a specific individual  in
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population P, noted as , is determined by its connected neighbors 
in the Delaunay triangulation mesh, in which  denotes the neighbor set of indi‐
vidual  with size . The boundary individuals in the Delaunay triangulation mesh are
assigned with an infinite density measurement to guarantee that those boundary indi‐
viduals will always be selected to survive as done in most MOEAs [2, 4, 11]. Therefore,
the density measurement of individual  can be calculated by the following formula (1):

(1)

where,  means the set of boundary individuals in the Delaunay triangulation
mesh . INF denotes an infinite number.  is the Euclidean distance between
individual  and  in the objective space.

Given a point set P with n individuals, its Delaunay triangulation mesh  can
be built by using a divide-and-conquer based Delaunay generation algorithm with time
complexity of  [18]. Using convex hull detecting algorithm, the boundary
individual set  can be determined. The convex hull has been extensively
studied in computational geometry. Currently, many convex hull detecting algorithms
for both two-dimensional [19] and general-dimensional [20] point sets have been devel‐
oped with time complexity from  to . In this work, the Graham algorithm
with  time complexity [19] is employed to identify the boundary individuals
in the population.

3.3 Selection Operator with the New Density Measurement for MOEAs

In this section, a selection operator which combines the fast non-dominated sorting
method [4] and the diversity preservation technique based on the newly developed
density measurement is presented for MOEAs. The main idea of the suggested selection
is the same as that in NSGA-II [4]. More specifically, the selection operator is carried
out base on the non-domination rank and the density measurement of individuals. All
the individuals in the population are sorted by using a crowded-comparison-operator at
first, and then a binary tournament selection is applied to reduce the population into a
predefined size. The crowded-comparison-operator works as following: if two individ‐
uals have different non-domination ranks, the one with lower rank will win. Otherwise,
the one with larger density measurement will be ranked higher.

In the proposed selection operator, the density measurement in NSGA-II, which is
the crowding distance measurement, is replaced by the newly developed density meas‐
urement when the objective number is greater than two. All the other parts are kept
unchanged. With regard to time complexity, constructing the Delaunay triangulation
mesh is  and the convex hull detecting is , therefore, the total time
complexity of the proposed selection operator will not be larger than  which is
the time complexity of the original selection operator in NSGA-II.
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3.4 Workflow of the NSGAII-DT

Following the algorithmic framework of NSGA-II, the proposed NSGAII-DT replaces
the crowding distance based density measurement in NSGA-II with the Delaunay trian‐
gulation based density measurement. In the following Algorithm 1, the flowchart of
NSGAII-DT is described in detail. In which, the statement in line 8 is the only difference
between NSGAII-DT and the original NSGAII.

4 Experimental Studies

In this part, the proposed density measurement is compared with the crowding distance
based density measurement [4] and the vicinity distance based density measurement
[16] by implementing the three density measurements in the same algorithmic frame‐
work of NSGA-II. For ease of discussion, the three compared algorithms are noted as
NSGA-II, NSGA-II-DT and NSGA-II-VD, which means the original NSGA-II with
crowding distance based measurement, NSGA-II with our Delaunay triangulation based
density measurement, and NSGA-II with the vicinity distance based measurement
respectively. The compared algorithms are applied on four benchmark functions with
three objectives, including DTLZ1, DTLZ2, DTLZ6 problems [21] with linear, spherical
and discrete PF respectively, and the WFG1 problem [22] with a convex PF.

The inverted generational distance (IGD) metric [23] is employed to evaluate the
performances of the compared algorithms. IGD is a comprehensive metric which
considers both convergence and diversity of the final non-dominated solution set
obtained by the compared algorithms. Given a set of evenly scattered points  over the
PF of the target problem and the final non-dominated solution set  obtained by MOEAs,
the IGD value of  can be determined by formula (2).

(2)
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where  denotes the minimum Euclidean distance between a specific point  from
 and the solutions in .  is the size of the reference set . The IGD metric has a

nonnegative value and the lower the better.
In the following experimental studies, the size of the reference set is set as 2500. The

parameter setting of all the compared algorithms follows the original NSGA-II [4]. All
the compared algorithms stop when the number of function evaluations reaches 75000
for DTLZ1, DTLZ2 and DTLZ6 problems, and 200000 for WFG1 problem. The exper‐
imental data are calculated over 30 independent runs.
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Fig. 3. Comparisons on the convergence of the IGD values for the three compared algorithms
on the four benchmarks over 30 independent runs. Median (line), the first quartile (top error-bar)
and the third quartile (bottom error-bar).

Figure 3 illustrates the IGD metric values over time obtained by the three compared
algorithms on the four benchmarks. The bottom and top error-bars are the first and third
quartiles, and points on the line are the median points. It can be seen that NSGA-II-DT
significantly outperforms NSGA-II and NSGA-II-VD on DTLZ1, DTLZ2 and WFG1
problems, its performance is unstable on DTLZ6. The reason is that the DTLZ6 problem
has a discrete PF with four disconnected regions, when detecting the boundary individ‐
uals in the population, the inner breakpoints that located on the inner edge of each PF
region are not considered by the NSGA-II-DT method, as they are not the boundary
individuals on the convex hull of the population. On the other hand, there is some degree
of randomness in the shape of the triangles associated with those inner breakpoints in
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the Delaunay Triangulation mesh. These triangles might provide inaccurate neighbor‐
hood relationship between individuals and thus degrade the stability of the algorithm
(Fig. 4).
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Fig. 4. The distribution of the final non-dominated solutions with the lowest IGD values obtained
by the three compared algorithms on the four benchmarks.

To conclude, NSGAII-DT performs better than NSGAII and NSGAII-VD on bench‐
marks with continuous PFs, however it performs unstably on benchmarks with discon‐
nected regions. These results indicate that the suggested density measurement based on
the Delaunay triangulation mesh does help the MOEAs preserve diversity and obtain
better uniformity of the resulting non-dominated solutions.
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5 Conclusions

Base on the Delaunay triangulation mesh built on the population in the objective space,
a crowding density measurement has been developed for diversity preservation in multi-
objective optimization evolutionary algorithms (MOEAs). Experimental results indicate
that MOEAs with the suggested density measurement can obtain significantly better
uniformity of the resulting non-dominated solutions on multi-objective optimization
problems (MOPs) with continuous Pareto fronts (PFs).

Although the suggested density measurement helps to improve the performances of
MOEAs, it might make the algorithm perform unstably on MOPs with discontinuous
PFs. Because the proposed density measurement might provide inaccurate neighbor‐
hood relationship between individuals which are located on the inner edge of each sub-
region of PF. How to refine the density measurement for MOPs with discontinuous PFs
will be the subject of future investigations.
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Abstract. Most real world optimization problems involve constraints
and constraint handling has long been an area of active research. While
older techniques explicitly preferred feasible solutions over infeasible
ones, recent studies have uncovered some shortcomings of such strate-
gies. There has been a growing interest in the efficient use of infeasible
solutions during the course of search and this paper presents of short
review of such techniques. These techniques prefer good infeasible solu-
tions over feasible solutions during the course of search (or a part of it).
The review looks at major reported works over the years and outlines
how these preferences have been dealt in various stages of the solution
process, viz, problem formulation, parent selection/recombination and
ranking/selection. A tabular summary is then presented for easy refer-
ence to the work in this area.

Keywords: Constraint handling · Review · Evolutionary algorithms ·
Optimization · Infeasible solutions

1 Introduction

Real life optimization problems involve constraints arising out of design require-
ments, physical laws, statutory norms, etc. The performance of population based
stochastic optimization algorithms (e.g. evolutionary algorithms) is known to be
largely dependent on the underlying mechanisms of constraint handling [37].
Broadly, the term constraint handling refers to all mechanisms that are used to
deal with infeasible solutions, either in problem formulation or during the run.
Let us start by illustrating why feasibility-first schemes might not be always the
best. Consider, for example the landscape of a constrained function shown in
Fig. 1(a). Explicit preference of feasible solutions over infeasible ones would result
in a search trajectory via the feasible region towards the optimum (Fig. 1(b)). On
the other hand, if some selected infeasible solutions near the constraint bound-
ary (i.e. good infeasible solutions) were allowed to exist in the population, the
search trajectory could have been much shorter thus resulting in significant
savings on the number of function evaluations (Fig. 1(c)). Furthermore, for a
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problem with disconnected feasible regions, explicit preference of feasible solu-
tions over infeasible ones could lead to a premature convergence to a local opti-
mum of a feasible region, where the global optimum lies on a different feasible
region (Fig. 1(d)). Several recent algorithms have implicitly or explicitly pre-
ferred/preserved good infeasible solutions via novel problem formulation, recom-
bination and ranking/selection strategies. This short paper provides a review of
major works in this area.

(a) Objective function land-
scape

(b) Search preferring feasible
solutions

(c) Search preserving feasible
and infeasible solutions

(d) Disconnected feasible
space

Fig. 1. Traversal of objective function landscape using feasible/infeasible solution
preference

2 Review

A number of methods have been proposed in literature to deal with constraints
within a population based stochastic optimization algorithms. Some of the key
review papers [8,35,37] have discussed and classified constraint handling tech-
niques into a few broad categories, namely, penalty function based methods,
decoders, special operators, separation of objectives and constraints, and hybrid
methods. Although there is extensive volume of work in the constraint handling
domain as evident from the list of references assembled in [7], the review pre-
sented here focuses only on those techniques which incorporate preference of
infeasible solutions over feasible in some form to aid the search.

In this paper, an overview of methods that tend to prefer infeasible solutions
during the course of search as opposed to conventional methods that indiscreetly
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prefer feasible solutions, is presented. In recent years, such methods have shown
immense promise and offered significant boost in the efficiency over feasibility
first techniques. A canonical stochastic optimization algorithm is used in the con-
text of this discussion and the issue of constraint handling is discussed in the con-
text of (re-)formulation, parent selection/recombination and ranking/selection
strategies.

2.1 Re-formulation

Formulation of objectives and constraints is the first step of any optimization
exercise. In the absence of specific constraint handling mechanisms, reformu-
lating the problem to eliminate the constraints (and then solving it using an
unconstrained optimizer) is one of the most common approaches that has been
used over the years. More recently, reformulation is used in conjunction with
other constraint handling techniques for further enhancements.

One of the most widely used re-formulation scheme relies on the use of penalty
functions. In this approach, the problem is reformulated by adding a weighted
penalty to the objective function whenever a solution violates its constraint(s).
The weights/penalty parameters dictate the severity of the penalty. If a very
large penalty factor is used, feasible solutions are likely to be always preferred.
Use of controlled/adaptive penalty parameters [13,22,23] often scale the objec-
tives and constraints to similar orders of magnitude and offers the possibility of
preferring infeasible solutions over feasible ones. Such schemes are likely to reach
the constrained optimum faster if the optimum lies on constraint boundaries.

There are also reports on constraint transformation, wherein the con-
straints (or measures based on constraint violations) as used as additional objec-
tives and nondominance based schemes are used for the solution of the prob-
lem [6,24,53,58,59]. In such approaches, infeasible solutions have a chance of
being preserved. Since transforming each constraint to an objective results in too
many objectives, a number of infeasibility measures have been used instead.
In [28], the number of constraint violations were treated as an objective, while a
rank-sum measure was used in [42,46,48–50]. Some recent approaches have also
used a combination of penalty functions and additional objectives [10–14,17].

Yet another form of re-formulation appears in algorithms employing two pop-
ulations [29–31]. In such approaches, the first population is evolved to improve
the objective function values while the second is evolved to minimize constraint
violations. Though a new objective is not introduced in this case, considera-
tion of objectives and constraints in isolation (i.e. in two separate populations),
constitutes a formulation different from the original.

2.2 Parent Selection/Recombination

At each generation of a population based stochastic algorithm, a new set of off-
spring solutions are generated via the process of recombination. The offspring
solutions inherit the properties of the parent solutions, and hence parent selec-
tion can be used as a control measure to influence the search. Fitter parents
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are allowed to participate in recombination and often such parents are identified
using binary tournaments or roulettes based on rank/fitness. If the fitness com-
parison rules favor feasible solutions over infeasible ones, the feasible solutions
would actively participate in recombination e.g. [19]. On the other hand, if the
comparison rules allow for feasible-infeasible recombinations along with feasible-
feasible ones, the algorithm is likely to find solutions near the constraint bound-
ary quicker (if the optimum lies on the constraint boundary). In [42,46,49], a
percentage of marginally infeasible solutions were explicitly preserved and ranked
higher than the feasible solutions to initiate infeasible-infeasible and infeasible-
feasible recombinations.

There are also reports on matching strategies [26,39], wherein two different
solutions satisfying different set of constraints were used in recombination to
generate an offspring satisfying the union of the constraints. In [40,41], different
parent matching schemes for unconstrained, moderately constrained and highly
constrained problems have been suggested. Constraint driven crossovers [22,23],
constraint driven mutation and gradient based local search strategies [10–14,48,
50] have also been reported in literature. Such strategies aim to induce good
solutions relatively early in the course of search.

2.3 Ranking and Selection

Ranking is arguably the most prominent phase where the preferences can be cat-
egorically enforced. In feasibility first schemes, the feasible solutions are ranked
using their objective values and infeasible solutions are ranked based on their
constraint violations. Thereafter, the infeasible solutions are placed below the
feasible set of solutions [16,19,32,36,38]. In the context of a generational model,
the use of such a scheme would select M feasible solutions as members of the
population for the next generation (if there are at least M feasible solutions
in the pool consisting of 2M solutions (M parents and M offspring)). How-
ever, as mentioned in Sect. 1, such an explicit preference may delay convergence.
To overcome this drawback, various ranking/selection strategies have been pro-
posed. Stochastic ranking was proposed in [43], where infeasible solutions were
preferred over feasible solutions with a finite probability. The classical meta-
heuristic Simulated Annealing was also extended along similar lines [24,47,52].
In [22,23], a target proportion of feasible and infeasible solutions was maintained
in the population by adjusting the penalty parameters. In [33], a probability fac-
tor Sr was introduced to prefer a solution based on its objective function value
regardless of its feasibility, in order to promote infeasible solutions in promising
regions. This probability was reduced over generations to a minimal value in
order to reject infeasible solutions in the later half of the search. Similar prefer-
ence for infeasible solutions was incorporated in a PSO algorithm in [60]. In [25],
an objective-first scheme was introduced in contrary to feasibility-first scheme,
where the objective values of the solutions were improved before improving their
feasibility. The scheme allows for infeasible solutions to remain longer in the pop-
ulation, with an expectation that good infeasible solutions will generate good
feasible solutions during the search.
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Epsilon level constraint method is another recent method for constraint han-
dling, where an infeasible solution is preferred over a feasible solution if its
constraint violation is less than certain value, and its objective value is supe-
rior. This technique has been used in [2,4,55,56]. The scheme allows for the
preservation of marginally infeasible solutions.

Lastly, there have been recent efforts to explicitly preserve some fraction
of infeasible solutions in the population irrespective of how many feasible solu-
tions are available or stage of evolution. This translates to an active search
through the infeasible (in addition to feasible) space while simultaneously deliv-
ering marginally infeasible solutions for trade-off studies. In [28], a user defined
percentage of solutions was maintained as infeasible and ranked above feasible
solutions. Number of constraint violations was used as an additional objective.
This additional objective was subsequently modified to incorporate constraint
violation rank, which focuses on solutions closer to the constraint bound-
aries [21,42,46,49,51]. This ranking scheme was also used in conjunction with
local search in [48,50]. In [44,45], the top ranked infeasible solutions were pre-
served and selected for repair. In [29–31], two separate populations were evolved,
one for improving the objective values and the other for improving constraint
violations. Both, feasible and infeasible solutions were preserved in the process.
In another approach, solutions were evaluated and ranked with respect to differ-
ent sequences of constraints [1,3,5]. This approach is particularly beneficial for
problems in multi-disciplinary design, where each constraint evaluation may be
computationally expensive.

The discussion presented here is summarized in Table 1. The tables include
selected references and list details of the baseline algorithm, phase of preference
articulation and the nature of the underlying scheme (i.e. deterministic or sto-
chastic). As evident from the tables, different preference schemes have been used
in various stages of the algorithms.

3 Conclusion and Future Directions/Opportunities

This paper provides a short review of major reported works in the area of evo-
lutionary search, where infeasible solutions have been preferred/preserved over
feasible solutions to improve the efficiency of the search process. Various forms
of preference articulation schemes have been used in various stages of the solu-
tion process i.e. problem formulation, parent selection/recombination and rank-
ing/selection schemes. The review brings forth a new perspective to the impor-
tant area of constraint handling and provide the researchers with a succinct
classification of various schemes.

While extensive research has been done in several areas of constraint han-
dling, there are a number of areas which still need research attention. One of
them relates to the development of novel and more efficient methods to deal with
equality constrained optimization problems. Treatment of equalities as a pair of
inequalities may not be the most efficient scheme. Other areas which have been
less explored include the development of strategies to identify the best sequence
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of constraint evaluation. While complete evaluation of a solution is the current
norm, evaluating a solution till it violates a constraint can offer significant sav-
ings for computationally expensive optimization problems. From a practitioners
point of view, research on constraint handling has been heavily skewed towards
the identification of best feasible solution. Constraints other than ones arising
out of statutory requirements or physical laws are often open for negotiation
and users are keen to know about such trade-offs. Hopefully infeasibility based
techniques can be developed further to deliver practical solutions with a greater
efficiency in the future.
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Abstract. The resource constrained project scheduling problem is considered as
a complex scheduling problem. In order to solve this NP-hard problem, an effi‐
cient differential evolution (DE) algorithm is proposed in this paper. In the algo‐
rithm, improved mutation and crossover operators are introduced with an aim to
maintain feasibility for generated individuals and hence being able to converge
quickly to the optimal solutions. The algorithm is tested on a set of well-known
project scheduling problem library (PSPLIB), with instances of 30, 60, 90 and
120 activities. The proposed DE is shown to have superior performance in terms
of lower average deviations from the optimal solutions compared to some of the
state-of-the-art algorithms.

1 Introduction

The resource constrained project scheduling problem (RCPSP) is a challenging research
topic due to its importance in real life and as similar problems arises in many fields, such
as production planning [1], course and classroom scheduling [2], aircrew-scheduling [3],
control system [4]. In general, the objective of these problems is to generate schedule,
with minimum possible makespan, subject to the satisfaction of a number of constraints.
For detail description of the problem, and it modelling and solution approaches, the
interested readers are referred to Brucker et al. [5] and Kolisch and Padman [6].

In classical RCPSPs, a project consists of a set of activities, where each activity has
to be executed only once and each activity has its own pre-known resource requirement
and execution time. RCPSP aims to schedule project activities in such a way that mini‐
mizes the makespan or the total duration of the project subject to two constraints that
must be strictly satisfied, the first one is the precedence relationship (i.e., the relationship
between each activity with its predecessor and successor activities), while the second
constraint is the resource availability. The resources used by the activities of projects
are generally of two types: renewable and non-renewable. Renewable resources are
available with their full capacity in every time period that can be repeatedly used, such
as available manpower and machines. On the other hand, non-renewable resources are
available with limited capacities, such as the budget of the project [7].

In the literature, many exact methods have been proposed for solving RCPSP.
However, they are not applicable for solving instances with large dimensions, as the
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computational complexity of these approaches are significantly increased with the
number of activities increased. Demeulemeester and Herroelen [8] have developed a
branch and bound based algorithm, which was able to find the optimal solutions for some
RCPSP. In contrast, other algorithms can solve the problem in a reasonable computa‐
tional time, but it is hard to satisfy all problem constraints, such as priority scheduling
[9] and greedy-based [10]. Xu and Cheng [11] combined branch-and-bound procedure
with heuristic algorithms to present a hybrid algorithm and constructed a project sched‐
uling model using a time constraint and the hybrid algorithm.

Also, several meta-heuristic approaches, which are commonly begin with random
solutions and can search very large spaces of candidate solutions without having pre-
assumptions about the problem being optimized, have been developed for solving
RCPSP, such as simulated annealing algorithm (SA), tabu search (TS), ant colony opti‐
mization (ACO), practical swarm intelligence (PSO), differential evolution (DE) and
genetic algorithm (GA). Recently, Zheng et al. [12] proposed a multi-agent optimization
algorithm for RCPSP. In their work, each feasible solution was represented by an agent
and the agents were evolved according to four main elements including social behavior,
autonomous behavior, self-learning, and environment adjustment. The objective func‐
tion was to minimize the total duration of the project by replacing a classical SA search
scheme with a new design that considered the specificity and features of the solution
space of project scheduling problems. Nonobe and Ibaraki [13] extended the definition
of RCPSP further to include various complicated constraints and objective functions.
Then, they developed a TS based heuristic algorithm, which contained improvements
in representing solutions and in constructing neighborhood. Fang and Wang [14]
proposed a heuristic based on the framework of the shuffled frog-leaping algorithm
(SFLA) for solving RCPSP. Chen and Ni [15] proposed a new optimization method
based on chaotic DE (CDE) algorithm for solving the RCPSP by using improved logistic
chaotic map and penalty function. Results showed that their algorithm was competitive
and stable in performance with other optimization methods. Damak et al. [16] proposed
a DE based algorithm to solve RCPSP by improving the performance of DE to solve the
problem within reasonable time. Recently, Cheng and Tran [17] integrated the fuzzy c-
means clustering technique and the chaotic technique into the DE algorithm to develop
an innovative method for solving complex optimization problems. Experimental results
showed that their proposed algorithm obtained optimal results more reliably and effi‐
ciently than the benchmark algorithms considered.

Despite the well-known advantages of DE, it has several drawbacks. DE does not
guarantee the convergence to the global optimum [18]. Also, it does not guarantee the
new offspring are always feasible.

Motivated by these facts, this research uses a new strategy to improve the DE
performance. This strategy incorporates a developed validation procedure, which
provides feasible solutions within the initial population, and improved DE operators,
which force the direction of DE search towards the feasibility. Moreover, the population
size is adaptively reduced in order to increase the exploration process at the begging and
then adaptively focus on the exploitation process by excluding the worst individuals
from the population.
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The numerical experiments on a well-known benchmark (with 30, 60, 90 and 120
activities) show that the proposed algorithm is able to achieve the optimal solutions for
the entire J30 instances and obtain very low average deviation values for J60, J90 and
J120 instances.

The remainder of this paper is organized as follows: Sect. 2 gives a brief description
to RCPSP and its mathematical model; Sect. 3 provides a brief overview of DE algo‐
rithm; Sect. 4 provides a detailed description of the proposed algorithm; Sect. 5 demon‐
strates the performance of the proposed algorithm using numerical experiments and
results comparisons and, finally, Sect. 6 discuss the conclusions and future work.

2 Resource Constrained Project Scheduling Problem

In the description of RCPSP, the objective function of RCPSPs is to finish the project
with minimum total duration by optimizing the execution order of the activities subject
to the non-renewable resources limitation and predecessor-successor relationships (or
dependency) constraints. In this paper, as we consider a single project, let  be the
dimension of the problem (number of activities to be scheduled),  is the number of
available resources to be assigned,  the time required by  activity to be finished, and

 be the number of resource  required by a single activity. Generally, the activities of
the project are represented by a set  where activities  and  are
dummy activities which present the start and end of the project, respectively. Dummy
activates have no resource or time costs so,  and

. Furthermore, the set of resources can be defined by 
and  denotes the predecessor activities of any activity . Two types of resources are
commonly used by the activities of projects renewable and non-renewable. Renewable
resources are available with their full capacity every period of time without limitations,
such as available manpower and machines. In contrast, the non-renewable resources
which can be available with a limited capacity and are allowed for one time use only
such as the budget of the project [7].

In RCPSP, the feasibility of the solution is the main factor for the acceptance of that
solution. Feasibility can be determined according to the satisfaction of two main
constraints. Firstly, precedence constraints or predecessor-successor relationships as an
activity  cannot be started until all its predecessor activities  are scheduled.
Secondly, resource availability as the resources, in a specific time, can be used by the
activities with availability limit.

For more clarify, RCPSP with total 13 activities is considered. In Fig. 1, each activity
is presented by a number inside each circle. Numbers above each circle are presenting
the time ( ) and resources ( ) requirements of each activity, respectively. Maximum
number of resource of type  available per time ( ) is 5. Moreover, arrows between
circles are shown the predecessors-successors relationships between the activities.
Obviously that  and  for both dummy activities  equal to zero. Figure 2
shows the optimal way to schedule the activities of the project to be finished in minimum
total duration equal to 17.
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Fig. 1. Example of a project with 13 activities

Fig. 2. The optimal schedule for the activities of the project

Mathematical model of the RCPSP is developed and described by Christofides et al.
[19] and Kolisch and Hartmann [20] as follows:

(1)

Subject to:

(2)

(3)

(4)
The first equation shows the objective function that is to minimize the finish time of

the last activity  which in turn leads to minimize the total completion time of the project.
The first constraint assures that none of the dependency constraints is violated. The
second constraint ensures that the number of non-renewable resources  used by all
activities does not exceed its limitation in any time period .  is the set of current
activities at . The last constraint enforces that the last times of all activities are non-
negative.
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3 Differential Evolution

DE [21] is a stochastic, population based search technique, which uses selection, cross‐
over and mutation operators to guide the search to find the (near) optimal solutions. So,
it can be classified as an evolutionary algorithm (EA) [22]. Among EAs, DE was
considered to be a powerful algorithm for solving optimization problems.

In DE, an initial population, with a pre-determined size ( ), is generated. Each
individual,  consists of  variables, is evolved using three operators that are mutation,
crossover and selection. In the simplest form of the mutation operator, for each target
vector,  a mutant vector is generated according to

(5)

where  is a scaling factor, , ,  are three vectors selected randomly, and also they
are not equal to each another, or to the target vector 

In the crossover operator, a combination between the target vectors and mutant
vectors, according to a pre-determined probability is occurred in order to generate trail
vectors. In the binomial crossover, the trial vector is generated as follows:

(6)

where  is the crossover rate within a range [0,1],  a uniform random
number generated within [0,1], and  a randomly selected dimension to make sure that
at least one element of the mutant vectors in  exists in the new generated vector.

For the selection operator, the greedy selection can be applied to determine which
vectors will survive to the next generation by comparing each trial vector with its corre‐
sponding target vector, based on the fitness value and/or constraint violation.

4 Improved DE Algorithm

In this paper, a DE based approach is proposed to solve RCPSPs. Details of the proposed
algorithm’s components are briefly discussed in this section.

4.1 Chromosome Representation

In the proposed algorithm, each individual is represented by a vector of integer values,
where the length of the vector equals to the number of activities within the project. In
Fig. 3, an example of one individual representation with start and end dummy activities
is shown.
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0 1 2 4 3 … n n+1

Dummy activity Dummy activityActual activities

Fig. 3. Representation of one solution or chromosome

As DE was originally proposed to deal with continuous space, the following is
proposed to adapt it to solve RCPSPs, in which random vectors of continuous numbers
are generated. So that, each integer value, which represents the activity number, has a
corresponding continuous value as a sequence and determines the appearance of this
activity in the schedule, as shown in Fig. 4.

Chromosome 0 1 2 4 3 … N N+1
Sequence 0 0.05 0.1 0.14 0.25 … 0.95 1

Fig. 4. Random generated sequence for one individual

Since the feasibility of any solution is measured by the violation of the constraints,
it is very important to propose a simple representation of constraints which makes it
easy to be accessed and checked within a reasonable time. So, an incidence matrix is
used to represent the predecessors-successors relationships between activities in the
project. As described in Fig. 5, the incidence matrix is used to represent the dependency
between the four activities shown in the graph, where each row represents the prede‐
cessor activities of the row number activity and each column shows the successor activ‐
ities of the column number activity.

Predecessors

Su
cc

es
so

rs 1 2 3 4
1 0 0 0 0
2 1 0 0 0
3 1 0 0 0
4 0 1 1 0

Fig. 5. An incidence matrix to represent the dependency between four activities

4.2 Individuals Evaluations

In the beginning, individuals of the initial population, of a size , are generated
randomly. Also, sequences for the individuals are generated randomly within the range
[0, 1]. Sequences are used to represent the execution order of each activity in the
schedule.

The fitness value and/or constraints violations are used to evaluate any solution. The
fitness value is calculated under a restriction of the resource availability constraint.
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In the mechanism, the activities of the candidate solutions are scheduled by their orders
(sequences) in the generated schedule. Each activity can be processed if and only if its
required number of resources does not exceed the available amount of resources at
specific time so the produced schedule is guaranteed to satisfy the resource availability
constraint. In general, the objective function is to minimize the finish time of the final
scheduled activity. While, the violation value of each solution is determined by calcu‐
lating the number of violations of the dependency constraint by each activity within the
schedule. Moreover, for calculating the total duration of the project, we do an activity
by activity schedule and after each insertion of a new activity, the finish time of the new
processed activity is cumulatively calculated.

4.3 Proposed Repairing Method

As RCPSPs are complex optimization problems, it was noticed that the evolutionary
process takes long time to converge to the optimal solutions, if there are no feasible
solutions in the initial population. So, in order to speed up the convergence rate of the
algorithm, a heuristic repairing method is developed that finds feasible solutions from
infeasible ones. This is achieved by satisfying the second constraint (predecessors-
successors relationships constraint). In its process, the position of each activity is modi‐
fied to fit its predecessors and successors activates according to the incidence matrix,
which represents the dependencies between the activities. Unfortunately, starting with
all feasible solutions may significantly reduce the population diversity and hence
increase the probability of getting stuck in a local optimum. Therefore, the repairing
method is applied to a certain percent of the population ( ). The steps of the proposed
repairing method and violation calculation are shown in Fig. 6.

Set i=1; feascount=1;violation(Si)=0;
While i < PS
Generate a random solution Si

While feascount<Rm 

Find Prej of each gene j in Si

If all (Prej) is already scheduled, then
j is feasible

else
violation(Si) = violation(Si)+1
Rearrange activities positions in Prej 

Add activity j to the schedule 
feascount= feascount +1

end
end

i =i +1
end

Fig. 6. Scheme for the proposed repairing method
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4.4 Improved DE Operators

DE begins directly to apply its different operators (mutation, crossover, and selection)
to the generated sequence of the individuals to evolve the solutions. The proposed
mutation and crossover operators guarantee the feasibility of any new generated indi‐
vidual.

In the proposed mutation, the mutant vectors are produced using the sequences of
the activities according to the following formula:

(7)

which is same as in Eq. (5), but here,  is selected from the top 10 % solutions within
the current population,  are randomly chosen integer numbers, and they
neither equal to one another, nor to the target individual . The produced mutant vectors
are guaranteed to produce feasible solution by changing the sequence of each activity
within the individual to satisfy its predecessors and successors activities conditions.

After that, the binomial crossover is used to produce trail vectors depending on
Eq. (6). Besides, the sequence of each activity is re-arranged to satisfy the predecessors
and successors activities constraints. The proposed approach is described using the
Pseudo-code in Fig. 7.

Forj=1 to N
Find Prej; the predecessors of current gene (j) 
Calc. newseq(j); the new sequence value of j 
If all(Prej) are already scheduled, then
seqj(the current sequence value of j) newseq(j)

Else
Fori = 1 to end of Prej

Ifseq(Prej)>= newseq(j), then
Swap seq(Prej) with newseq(j)

end
end

end
end

Fig. 7. Proposed approach to obtain feasible solutions from the mutation and crossover

Lastly, for the selection process, the greedy selection strategy is adopted to the indi‐
viduals to decide which individuals can survive to the next generation.

5 Experimental Results

In this section, the computational results for instances of J30 (each with 30 activities),
J60 (each with 60 activities), J90 (each with 90 activities) and J120 (each with 120
activities), taken from a standard benchmark from the well-known test set library
PSPLIB created by Kolisch et al. [23], are shown. The data set, we considered here,
include 16 instances from J30, 15 instances from J60, 15 instances from J90 and 15
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instances from J120. Four types of resources are used in each instance. Also, in order to
judge the performance of our proposed algorithm, comparisons with the state-of-art
algorithms are conducted.

The proposed DE algorithm has been coded using Matlab R2013b, and was imple‐
mented on a PC with a 3.4 GHz CPU and Windows 7. Usually, the average percentage
deviations ( ) from the optimal solutions, if it is available as for J30 instances
which is reported by Stinson et al. [24], or from the lower bound as for J60, J90 and
J120, which are available on PSPLIB, are considered to be a performance metric for
comparison. Generally, a lower , as shown in Eq. (8), means a better solution

(8)

where  is the total number of instances used,  is the best solution achieved by an
algorithm for  instance and  is the pre-known lower bound of  instance.

5.1 Parameters Setting

The parameters of the proposed algorithm are set as follows:  is the number of calling
the fitness function. , the maximum , is set to a value of 5000 and 50,000. ,
which is the number of the individuals that will be repaired to be feasible using the
proposed repairing method explained in Sect. 4.3, is set to a value of 25 % of .  is
adaptively reduced from 150 to 50 using Eq. (9) in order to increase the exploration at
early stages of the search process, and the exploitation capability at the end.

(9)

F = 0.9 [25]. In [21], it was mentioned that CR = 0.1 is a good initial choice for
crossover rate while  = 0.9 or 1.0 can be tried to increase the convergence speed.
Based on the above, we set  to be calculated adaptively using Eq. (10) where 
0.1 and  0.8 to make some balance between a good initial value and the speed
of convergence.

(10)

5.2 Computational Results

For each test problem, 30 independent runs were executed. There were two stopping
criteria: (1) run the algorithm for up to reach ; or (2) no improvement in fitness
value during 150 consecutive generations was achieved. In Table 1, the )
from the optimal solutions for J30 and from the lower bound for J60, J90 and J120, and
the average CPU time in seconds for each instances are given with 5000 and 50,000
maximum number of generations.
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Table 1. Results of the proposed DE algorithm

Max. no. of schedule 5000 50,000

Instances J30 J60 J90 J120 J30 J60 J90 J120

AvgDev(%) 0 0.98 4.04 19.62 0 2.07 8.81 31.68

Avg. CPU time (S) 12.46 41.86 72.12 106.71 46.22 192.26 306.89 453.56

The results show that the proposed DE algorithm has achieved the optimal solutions
for all J30 test problems with deviations from the optimal solution equal to zero with
both 5000 and 50,000 number of schedules. For the J60 instances, the proposed algo‐
rithm obtained the optimal solutions for 80 % of test problems. Moreover, the algorithm
was able to reach the optimality for 67 % of test problems for J90 instances. Finally,
however, only 6.7 % of test problems have been reached to the optimal solution for J120
instances, the algorithm showed a very low average deviation value compared with other
algorithms from literature.

5.3 Comparison with the Art-of-State Algorithms

In this sub-section, the proposed algorithm is compared with six existing algorithms
selected from the literature. The comparison is based on the AvgDev(%).

In Table 2, the AvgDev(%) values of all the comparative algorithms for data sets J30,
J60 and J120 are listed. From these tables, for 5000 maximum number of schedules, it
is clear that the proposed algorithm has the first rank among all 7 algorithms used with
very low values of average deviation for all instances. For 50,000, our algorithm achieves
very low average deviation values for J30 and J60.

Table 2. Average deviation (%) for J30, J60 and J120

Algorithms J30 J60 J120

Max no. of schedules 5000 50,000 5000 50,000 5000 50,000

Proposed DE 0.00 0.00 0.98 2.07 19.6 31.68

CDE [15] 0.19 - 11.36 - 35.17 -

Multi-agent optimization
algorithm [12]

0.06 0.01 10.84 10.64 32.64 31.02

PSO [26] 0.05 0.02 11.19 10.85 33.78 32.4

Magnet-based GA [27] 0.04 0.00 10.94 10.65 32.89 31.30

Shuffled frog-leaping [14] 0.21 0.18 10.87 10.66 33.2 31.11

TS [13] 0.16 0.05 11.17 10.74 33.36 32.06
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6 Conclusions and Future Work

During the last few decades, many heuristic and meta-heuristic algorithms have been
introduced to solve resource constrained project scheduling problems. The main contri‐
butions in this paper can be summarized as following: (1) proposing a repairing proce‐
dure for finding feasible solutions within the initial population; (2) proposing a simple
representation for chromosomes and predecessors-successors relationships between
activities; (3) improving DE operators to produce feasible mutant and trail vectors which
guarantee the feasibility of any individual generated by the mutation and crossover
operators.

The proposed DE has been used to solve instances J30, J60, J90 and J120 from
PSPLIB. The results showed that the proposed DE could achieve the optimal solutions
for the entire J30 instances and obtain very low average deviation values for J60, J90
and J120 instances.

In the future work, the proposed algorithm will be extended to solve problems with
multiple mode resource. Also, we will work on improving the algorithm’s performance
to achieve better computational results and time. Finally, more detailed analysis
regarding the effect of each parameter in the algorithm will be performed.
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Abstract. Flexible job shop scheduling problem (FJSP) is one of the hardest
combinatorial optimization problems known to be NP-hard. This paper proposes
a novel hybrid imperialist competitive algorithm with simulated annealing
(HICASA) for solving the FJSP. HICASA explores the search space by using
imperial competitive algorithm (ICA) and use a simulated annealing (SA)
algorithm for exploitation in the search space. In order to obtain reliable results
from HICASA algorithm, a robust parameter design is applied. HICASA is
compared with the widely-used genetic algorithm (GA) and the relatively new
imperialist competitive algorithm (ICA). Experimental results suggest that
HICASA algorithm is superior to GA and ICA on the FJSP.

Keywords: Flexible job shop scheduling problem � Imperialist competitive
algorithm � Genetic algorithm � Simulated annealing algorithm � Taguchi
parameter design

1 Introduction

The classical job shop problem (CJSP) deals with scheduling n jobs on m machines,
which is known as a NP-hard Problem [1]. Each job involves a set of operations with
their pre-specified sequences as well as processing times. However, in today’s com-
petitive businesses, companies often need to apply more flexible and efficient pro-
duction systems in order to satisfy their requirements. More specifically, not only
automation and flexible machines need to be used, but also a flexible scheduling should
be designed as well.

Flexible job shop scheduling problem (FJSP) extendsCJSPwhich does not restrict the
operations to be processed on pre-specified machines [2, 3]. Flexibility allows the
problem to be modeled in a more realistic manner, however, exact methods are unable to
solve the problem efficiently. The FJSP scheduling encompasses two sub-problems:
assigning an operation to a machine through existing machines and specifying the
sequence of the jobs’ operations. Brucker and Schlie [4] studied the FJSP for thefirst time.
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They introduced a polynomial algorithm for the problemwith two jobs. Although in some
cases the exact methods can in theory find the optimal solution for the problems, com-
putational time is so long that it is not practical to use them. Researchers have been trying
to find ways in which optimal or near optimal solutions can be obtained in reasonable
computational time. In recent years, some heuristic and meta-heuristic methods have
shown to be promising in achieving this goal, including tabu search (TS), simulated
annealing (SA), ant colony optimization (ACO), genetic algorithm (GA) [5–8].

A new evolutionary algorithm named imperialist competitive algorithm (ICA), has
been proposed recently by Atashpaz and Lucas [9]. This meta-heuristic algorithm has
shown promising results on several engineering problems and industrial engineering
field [10–15]. Combining two or more meta-heuristic methods seem to help achieve
good efficiency that is not possible by applying each one alone. Here, TS, SA and
variable neighborhood search (VNS) play an important role. Tavakkoli-Moghaddam
et al. [16] and Naderi et al. [17] presented a hybridization of electromagnetic-like
mechanism and SA. Some other hybrid meta-heuristics for solving the abovementioned
problem are also available [18–22]. Furthermore, Shahsavari-pour and Ghasemisha-
bankareh [23] presented a novel hybrid GA and SA algorithm to solve the FJSP, where
for the first time, an efficient hybrid ICA and SA has been applied for solving the FJSP.

As mentioned earlier, since the FJSP is well-known to be NP-hard, meta-heuristic
algorithms have significant advantages to solve the problem over exact methods.
Hybridization of meta-heuristic methods has attracted much attention of many
researchers. This paper proposes a new hybridized algorithm named as hybrid impe-
rialist competitive algorithm with Simulated Annealing (HICASA), where SA is
applied as a local search algorithm, while ICA does global search in the solution space.
In this study the FJSP is considered as a single-objective problem and the proposed
algorithm is applied to minimize the makespan. The robust parameter setting procedure
is applied to set all parameters for HICASA, GA and ICA. By solving the same
benchmarks, our results show that HICASA is superior to GA and ICA.

The remaining sections of the paper are organized as follow: Sect. 2 gives problem
representation. Section 3 describes solution methodologies for solving the FJSP. The
experimental design and computational results are provided in Sect. 4. Finally the
conclusions are presented in Sect. 5.

2 Problem Representation

The FJSP includes n jobs which are scheduled on m machines. The jobs are represented
by the set J = {1, 2, …, n} and the set M = {1, 2, …, m} indicates the machines. The
purpose of the optimization task is to generate a feasible schedule consistent with
minimization of the objective function and satisfying problem constraints at the same
time. In this FJSP problem, all machines are assumed to be available at time zero, all
jobs can be processed at time zero, each machine can have only one operation at a time,
each job can be processed by only one machine at a time and transportation times are
not considered. Notations and variables of the FJSP are presented as follows:
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J Indices of jobs, j = 1, 2, …,n
i, p Indices of machines, i, p = 1, 2, …, m
e Indices of jobs which operate exactly before job j on the same machine, e = 1, 2, …, n
K The set of numbers of each job’s operations. For example K(j) = L means that the jth

job has L operations.
l, q Indices of numbers of operations, l,q = 1, 2, …, K(j)
Clji Completion time of the lth operation of job j on machine i
Plji Processing time of the lth operation of job j on machine i

The mathematical model of the FJSP is given as follows:

Z ¼ MinfmaxfCKðjÞjigg;KðjÞ 2 K; j 2 J; i 2 M ð1Þ

s.t:

Clji � Plji �Cl�1jp l ¼ 1; 2; . . .;KðjÞ j ¼ 1; 2; . . .; n i; p ¼ 1; 2; ::;m ð2Þ

Clji � Plji �Cqei q; l ¼ 1; 2; . . .;KðjÞ e; j ¼ 1; 2; . . .; n i ¼ 1; 2; . . .;m ð3Þ

Clji � 0 l ¼ 1; 2; . . .;KðjÞ j ¼ 1; 2; . . .; n i ¼ 1; 2; . . .;m; ð4Þ

where Eq. (1) implies the objective function (makespan), which should be minimized.
As noted above, the problem contains two basic restrictions: the first one is precedence
constraint belonging to the operations of a job. It means that the operation l of job j,
cannot be started until the whole previous operations (operation 1 to l − 1) to be
completed (Eq. (2)). The second restriction is non-overlapping constraint of the
operations on a machine which is specified by Eq. (3). It means that the machine does
not start to process the next operation until the current operation is finished completely.

3 Solution Procedure

3.1 Proposed HICASA Algorithm

The imperialist competitive algorithm is one of the efficient evolutionary algorithms in
solving discrete optimization problems [9]. In this algorithm, there are some countries
(or colonies) which are divided into two categories, imperialists and colonies. The
imperialist with its colonies, is called an empire. Competition among imperialists
continues and the most powerful imperialist has a higher chance to take the weakest
colony of the weakest imperialist. This process continues until just one imperialist
remains. Finally all the imperialists and colonies become the same.

HICASA is a novel meta-heuristic algorithm that integrates ICA with the SA
algorithm. SA has functions as a neighborhood search process and improves the
convergence of the solutions. During this process, some colonies are chosen randomly
from each empire and the SA algorithm is used as neighborhood search to alter chosen
colonies. The altered colonies replace the previous ones in each empire and the
algorithm goes on. The structure of HICASA is as follows (all equations of ICA are
captured from Atashpaz and Lucas [9]):
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Establishing Initial Empires. In ICA the initial population, which is generated ran-
domly, as colonies, is located in the form of array. Each individual in the population is
equivalent to the chromosomes in GA. Each array in the FJSP consists of two strings
[24]. The first ordered string represents the number of machines and the second string
represents the order of the job operations. Figure 1 shows an example of an array for
our experiments in Sect. 4. Note that the fifth element in the first string is 2 and the
counterpart element in the second one is 3. It means the second operation of job 3
should be performed on machine 2 (Oij: operation j from job i). The number of initial
population is considered as NC (number of countries) in this paper.

Calculating Objective Function and Generating Colonies. In order to evaluate the
colonies’ power, a cost function should be calculated. In the FJSP, the cost function is
equivalent to the value of makespan (Cmax). For each colony the value ofCmax is equal to:

Cmax ¼ maxfCKðjÞjig; K 2 KðjÞ; j ¼ 1; 2; . . .; n; i ¼ 1; 2; . . .;m ð5Þ

Then Nimp (number of empires) of the best members are chosen as imperialists. Ncol

is the number of remaining countries which should be distributed between the impe-
rialists. The number of colonies for each imperialist depends on the imperialists’ power.
In order to calculate their power, first the normalized cost should be computed
according to Eq. (6) (i.e., normalized makespan):

CO ¼ cO � max
i¼1;2;...;Nimp

fcig; 8O ¼ 1; 2; . . .;Nimp; ð6Þ

where cO is the makespan of the Oth imperialist and CO is its normalized value. Now
the relative power of each imperialist (PO) is calculated through the following:

pO ¼ CO

PNimp

i¼1
Ci

���������

���������
; 8O ¼ 1; 2; . . .;Nimp ð7Þ

Obviously, each imperialist’s power is the portion of colonies that should be
possessed by that imperialist. Hence the number of colonies of each imperialist is
computed by Eq. (8):

N:C:O ¼ roundfpO � Ncolg; 8O ¼ 1; 2; . . .;Nimp; ð8Þ

3 4 2 1 2 1 4 1 5 3 4 2

3 1 1 2 3 4 1 3 2 2 3 4

O31 O32 O33 O34

 String A (Machines)

String B (Operations)

Fig. 1. Array structure of a country (colony).
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where N.C.O is the initial number of Oth imperialist’s colonies. round is a function
which rounds a decimal number into the nearest integers. So each imperialist in an
empire, has N.C.O colonies, which are chosen from the remained initial countries
randomly.

Assimilating. The empires attempt to increase their power by improving their colo-
nies. In other words, they propel their colonies to become similar to their imperialist
through making constructive changes in their structures. This changing process is
similar to the crossover process in GA. The assimilating process in the FJSP is shown
as a designed algorithm in Fig. 2.

3 4 2 1 2 1 4 1 5 3 4 2

Rand=Generate random number in [0,1]
Rand [0.1]AndCount=Count+1

Rand<Pc

Select two colonies randomly from the 
current impire

Select two positions from 1 to L-1
randomly(L is the length of colony)

Change the values that located between 
two positions in string A

2 1 3 2 4 5 3 1 2 2 1 5

3 4 2 2 4 5 3 1 2 3 4 2

2 1 3 1 2 1 4 1 5 2 1 5

String A. Colony 1:

String A. Colony  2 :

String A. New colony 1:

String A. New colony 2:

Assimilating in string A

Count<(Number of colonies of each 
Imperialist)/2?

Count=0
Go to another 

empire

Assimilating in string B

In colony 1, Each value of the genes that is equal to a and 
b, then transfer that value to the first new colony

In colony 2, Each value of the genes that is not equal to a
and b, then transfer that value to the first new colony

3 1 1 2 3 4 1 3 2 2 3 4String B. Colony1:

String B. New colony 1:

String B. Colony 2: 4 2 1 3 2 1 4 2 1 3 3 3

2 1 1 3 2 4 1 2 3 3 3 4

Considered that a=1 and b=4

3 1 1 2 3 4 1 3 2 2 3 4

4 2 1 3 2 1 4 2 1 3 3 3

1 2 1 3 2 4 1 2 4 3 3 3

No

yes

Yes

No

String B. Colony 1:

String B. Colony 2:

String B. New colony 2:

Fig. 2. Assimilating process.
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Now the cost function (makespan) for the colonies resulting from assimilating
process is calculated by Eq. (1).

Neighborhood Search Through SA Algorithm. As mentioned before, neighborhood
search is suitable for further fine-tuning solutions produced by global optimization
methods. In this paper, SA is integrated with ICA to deal with the FJSP problem. The
algorithm works as follows: NSA colonies are chosen randomly from each empire and
SA is carried out for each chosen colony. At first the neighborhood search algorithm
works with the second string of each array, if it does not get improved after NI
iterations, it goes to the first string (machines string) of that array. The ultimate array
replaces the current solution. The function of SA algorithm in this neighborhood search
is shown in Fig. 3.

The Replacement of Colony and Imperialist. During the movement of colonies
towards the imperialist and the neighborhood search, some colonies have better
objective values than their imperialist. In this case, in each empire, the imperialist is
replaced by the colony that has the smallest cost.

The total power of an imperialist is the summation of the power related to the
imperialist and a percentage of its all colonies’ power and calculated by the following:

Fig. 3. Pseudo code of neighborhood search using SA.
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T :C:n ¼ CnðimperialistnÞþ n � meanfCnð colonies of impiren Þg; ð9Þ

where T.C.n is the total cost of the nth empire and ζ is a positive value, which shows the
level of influence of colonies’ power in calculating the total power of the empire.

During an algorithm run, each empire that cannot increase its power loses its
competition power gradually. There is always competition among empires and the
stronger empires have the higher chance to seize the colony, and for this purpose the
chance of possession is defined by possession probability. Total normalized cost of
each empire (N.T.C.o) is calculated by Eq. (10) and the possession probability of each
empire is calculated by Eq. (11):

N:T:CO ¼ T :C:O � max
i¼1;2;...;Nimp

fT :C:ig; 8O ¼ 1; 2; . . .;Nimp ð10Þ

ppO ¼ N:T :C:O
PNimp

i¼1
N:T :C:i

���������

���������
; 8O ¼ 1; 2; . . .;Nimp ð11Þ

The colonies are divided among empires randomly andwith regards to the probability
of acquiring each empire. To do this, first P vector is formed as follows: P ¼
½pp1 ; pp2 ; pp3 ; . . .; ppNimp �: Then vector R should be generated randomly in the closed
interval [0,1] with the same size as P (R ¼ ½r1; r2; r3; . . .; rNimp �). Finally we calculate
vectorD (D ¼ P� R ¼ ½D1;D2;D3; . . .;DNimp �¼ ½pp1 � r1; pp2 � r2; pp3 � r3; . . .; ppNimp

�rNimp �) and a colony belongs to the empire which has the maximum index in D vector.
In each iteration, the algorithm eliminates the empire which has no colonies. In the

algorithm’s each iteration, all the empires collapse gradually except for the strongest
one. The algorithm stops when just one empire is remained. Notations of parameters for
HICASA are as follows: NC is the number of countries, Nimp is the number of empires,
Pc is assimilation rate, ζ is constant value, S and R are the number of internal and
external loop in SA respectively, NSA is the number of local search performed by SA
algorithm and α is decreasing rate for temperature.

3.2 Genetic Algorithm

GA is one of the most widely-used population-based stochastic search algorithms
proposed by Holland [25]. GA begins with an initial population and improves the
solutions based on the evolutionary process. In this regard, GA utilizes two important
operators to modify solutions and produce offspring. A selection procedure is used to
generate offspring in the next generation. In the selection procedure better solutions
have higher probability to be chosen. This process continues until the termination
condition is satisfied. The crossover and mutation are captured from [23, 24].
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4 Design of Experiments

In this paper, to evaluate the proposed algorithm, the FJSP has been considered. The
problem includes 4 jobs and 5 machines. Data containing processing times have been
extracted from [26] and shown here in Table 1. The objective function of the above-
mentioned FJSP problem has been treated as a single-objective through minimizing the
makespan. The results of HICASA, ICA and GA have been compared.

4.1 Taguchi Parameter Design

Since the three algorithms are population-based and their parameters’ values affect the
final solution qualities significantly. There are different methods to calibrate the
parameters of algorithms [14]. In this paper Taguchi method is used. Taguchi method
has been utilized for optimization [27, 28] including evolutionary algorithms [29, 30].
Taguchi method has three phases: system design, parameter design and tolerance
design. In this paper, Taguchi method is used as a robust parameter design. In this
approach parameters’ design is used to define factors which provide the best perfor-
mance of processes/products.

In Taguchi method, instead of doing full factorial trails, an orthogonal array is used
to carry out fewer experiments which examine the effect of noise. The orthogonal array
suggests a definite number of combinations of factor levels which have the same results
as full factorial trails. A robust parameter design tries to minimize the effect of noise
factor through achieving a higher ratio of signal-to-noise (S/N). In other words, a
higher value of S/N causes less effect of uncontrollable and noise factors in the per-
formance of the algorithm. The value of the S/N is calculated as [28]:

Table 1. Processing time of 4 × 5 problem.

Job Operation Processing time for
machine MI
M1 M2 M3 M4 M5

J1 1 2 5 4 1 2
2 5 4 5 7 5
3 4 5 5 4 5

J2 1 2 5 4 7 8
2 5 6 9 8 5
3 4 5 4 54 5

J3 1 9 8 6 7 9
2 6 1 2 5 4
3 2 5 4 2 4

J4 4 4 5 2 1 5
1 1 5 2 4 12
2 5 1 2 1 2
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S=N ¼ �10� log10ðobjectivefunctionÞ2 ð12Þ

In this study, we select crucial factors of the algorithms (GA, ICA) according to the
previous researches. Three factors of HICASA are the same as ICA but we add NSA
parameter to show the effect of neighborhood search in the proposed algorithm.
Interested readers can refer to [14, 30, 31]. By using the Taguchi method the best
combination of the factors and their levels can be obtained for each algorithm. This
process is used to compare the performance of the algorithms. The factors and their
levels for the algorithms are shown in Table 2. Notations for GA algorithm are as
follows: GN is the number of generation, Pop_size is the number of individuals, Pc and
Pm are the probabilities of crossover and mutation respectively.

As shown in Table 2 for GA there are four 3-level factors, for ICA three 3-level
factors and for HICASA four 3-level factors. In order to facilitate and decrease the
number of the experiments, the orthogonal array is used. Appropriate orthogonal arrays
assigned for GA and HICASA is L9 and for ICA is L9 [14]. Table 3 shows the
orthogonal arrays.

Table 2. Factors and their level in GA, HICASA and ICA.

Factors in GA

Levels
A(GN) B(Pop_size) C(Pc) D(Pm)
A1:100 B1:50 C1:0.9 D1:0.1
A2:150 B2:100 C2:0.95 D2:0.15
A3:200 B3:200 C3:.98 D3:0.2

Factors in HICASA

Levels
A(NSA) B(NC) C(Pc) D( )
A1:4 B1:40 C1:0.9 D1:1.4
A2:5 B2:50 C2:0.94 D2:1.5
A3:8 B3:35 C3:0.91 D3:1.6

Factors ICA
A(NC) B(Pc) C( )

Levels
A1:40 B1:0.9 C1:1.4
A2:50 B2:0.94 C2:1.5
A3:35 B3:0.91 C3:1.6

Table 3. Orthogonal array L9 for GA and HICASA.

L9 for GA
and
HICASA

L9 for
ICA

Trail A B C D A B C

1 1 1 1 1 1 1 1
2 1 2 2 2 1 2 2
3 1 3 3 3 1 3 3

(Continued)
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The mean value of S/N is calculated and shown in Figs. 4, 5 and 6 for all
algorithms.

Table 3. (Continued)

L9 for GA
and
HICASA

L9 for
ICA

Trail A B C D A B C

4 2 1 2 3 2 1 2
5 2 2 3 1 2 2 3
6 2 3 1 2 2 3 1
7 3 1 3 2 3 1 3
8 3 2 1 3 3 2 1
9 3 3 2 1 3 3 2

Fig. 4. Mean S/N ratio for each level of factors in GA.

Fig. 5. Mean S/N ratio for each level of factors in ICA.

Fig. 6. Mean S/N ratio for each level of factors in HICASA.
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According to the Figs. 4, 5 and 6 the optimal levels of the factors are the set {A3,
B3, C1 and D2}, the set {A2, B1 and C2} and the set {A2, B2, C1 and D3} for GA,
ICA and HICASA respectively.

4.2 Experimental Results

The algorithms are implemented in Visual Basic Application (VBA) and run on PC
2 GHz with 512 MB RAM. According to the parameters set in the previous section, the
problem presented in Table 1 is solved by the proposed HICASA, ICA and GA. Each
algorithm has been run 50 times and the averaged value was recorded as the final
results. As shown in Fig. 7, the objective function values (makespan) for HICASA in
all 50 runs converged to the optimal value of 11 but for GA and ICA the objective
function values (makespan) did not converge to the optimal makespan in most of the
runs. Clearly, the proposed algorithm (HICASA) obtains better solution in solving the
same benchmark. Figure 8 illustrates the solution obtained by HICASA for the problem
presented in Table 1. The numbers in the Gantt chart (Fig. 8) illustrate jobs’ number.

Fig. 7. Results of GA, ICA and HICASA.

Fig. 8. Gantt chart of the obtained solution by HICASA for 4 × 5 Problem.
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5 Conclusions

In this paper a novel hybrid meta-heuristic method (HICASA) has been developed to
solve the FJSP. The proposed algorithm is a hybridization of ICA and SA algorithm
which attempts to minimize makespan as the objective function. HICASA algorithm is
compared with ICA and GA. Results from calculating and comparing between these
three algorithms demonstrate that HICASA algorithm performs better than GA and
ICA. By using the neighborhood search in the procedure of HICASA algorithm, it is
able to solve the FJSP optimization problems effectively. HICASA can be used for
solving different scheduling problems. It is also possible to integrating this algorithm
with other meta-heuristic algorithms.
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Abstract. In recent years, multi-objective optimization for job shop
scheduling has become an increasingly important research problem for
a wide range of practical applications. Aimed at effectively addressing
this problem, the usefulness of an evolutionary hyper-heuristic approach
based on both genetic programming and island models will be thoroughly
studied in this paper. We focus particularly on evolving energy-aware
dispatching rules in the form of genetic programs that can schedule jobs
for the purpose of minimizing total energy consumption, makespan and
total tardiness in a job shop. To improve the opportunity of identify-
ing desirable dispatching rules, we have also explored several alternative
topologies of the island model. Our experimental results clearly showed
that, with the help of the island models, our evolutionary algorithm could
outperform some general-purpose multi-objective optimization methods,
including NSGA-II and SPEA-2.

Keywords: Job shop scheduling · Genetic programming · Island
model · Multi-objective optimization · Energy-aware scheduling

1 Introduction

Job shop scheduling (JSS) is an NP-hard problem with a wide range of prac-
tical applications in industrial processes, airline scheduling, distributed com-
puting systems, and many other domains. Various evolutionary computation
(EC) technologies, including genetic algorithms citepezzella2008genetic, simu-
lated annealing [15], ant colony optimization algorithms [6], etc., have been
extensively utilized to address this problem. Meanwhile, effective heuristics such
as IFT-UIT+NPT [2], ASP2013-Rule#6 [10], etc. have also been developed with
considerable success to scheduling.

A study of the literature shows that many existing research works feature
the use of sequential scheduling methods and focus primarily on optimizing a
single performance objective, such as the makespan or the total tardiness. In
practice, however, it is frequently shown that multi-objective optimization is
essential for successful job shop scheduling especially when useful schedules must
meet multiple performance criteria. Moreover the objectives to be optimized
are usually conflicting in nature. As a result, not a single optimal solution but
c© Springer International Publishing Switzerland 2016
T. Ray et al. (Eds.): ACALCI 2016, LNAI 9592, pp. 234–245, 2016.
DOI: 10.1007/978-3-319-28270-1 20
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a collection of Pareto optimal solutions will need to be identified in order to
properly schedule jobs in a job shop.

Despite of its practical significance, energy-aware job shop scheduling has
received relatively less attention from the research community [1]. Driven by the
fast improvement of EC-based scheduling technologies over the last decade, we
believe it is now the right time for us to start considering energy consumption
as a major optimization factor.

A key technology to achieve this goal lies on the use of island models [7,14].
Some island models have been proposed in recent years for tackling a variety
of multi-objective optimization problems. For instance, Xiao et al. [17] demon-
strated the effectiveness of using various topological structures in island models.
Their work motivated our research in this paper. We will investigate the useful-
ness of island models towards parallel evolution of dispatching rules for multi-
objective job shop scheduling. In particular, several alternative topologies of the
island model will be experimentally studied and analyzed in order to develop an
in-depth understanding of their practical usefulness. Our results will also pave
the way for future development of more effective island models that can solve
difficult JSS problems.

In addition to the island models, Genetic Programming (GP) will be substan-
tially exploited in this paper as well. GP has been widely used as hyper-heuristic
methods for automated design of dispatching rules with prominent success [2]. In
comparison with other EC techniques for job shop scheduling, GP enjoys the clear
advantage thanks to its flexible representation and its global search ability. Specif-
ically, different from genetic algorithms or ant colony optimization methods, dis-
patching rules can be more straightforwardly represented as genetic programs in
GP. GP also enables efficient search through all possible dispatching rules at a
global scale. Due to these reasons, a GP-based EC approach for evolving useful
dispatching rules will be developed and experimentally evaluated in this paper.

The remainder of this paper is organised as follows. We give a brief overview
of job shop scheduling in Sect. 2. We introduce the objectives used in our exper-
iments specifically the energy objective. The different topologies for the island
model are discussed in the Sect. 3 with our approach to use genetic programming
for scheduling. In the Sects. 4 and 5, we describe our experiments and the results.

2 The Job Shop Scheduling Problem

In a nutshell, the JSS problem aims at identifying suitable ways of scheduling
a set of jobs {J1,J2 . . .Jn} on a set of machines {M1,M2, . . . ,Mm}. Each
job consists of several operations which must each be processed sequentially on
specific machines for a job to complete. Let the processing times of the jobs
be {p1, p2 . . . pn}. Meanwhile, a schedule S specifies the starting times of all
requested operations to be performed on individual machines in order to com-
plete all jobs.

It is generally desirable for a schedule S to minimize its makespan. For any
job Ji, let’s use Ci to refer to its completion time according to schedule S.
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The makespan of schedule S can hence be determined as the maximum comple-
tion time over all jobs, i.e.

Cmax = max
Ji

Ci. (1)

Besides the makespan, the tardiness of any job Ji in a schedule S, i.e. Ti, is
defined as max{0, Ci − Di}, where Di is the due-date of job Ji. Thus, the total
tardiness becomes

total tardiness =
∑

Ji

Ti (2)

Energy-aware scheduling is considered strictly harder than constructing
schedules that minimize merely the makespan [1]. In this paper, we consider
energy optimization for JSS problems. We will adopt an energy consumption
model that is fundamentally identical to the one presented in [8]. Specifically,
it is assumed in the model that total energy consumption (equivalent to energy
cost if we assume constant power tariff) of any working machine is completely
independent from the schedule to be used in a job shop. Moreover, the machines
have constant working and idle power consumption rates. Thus the total energy
could be considered as the sum of the idle energy and the working energy.

Etotal
price = E idle

price + Ework
price (3)

The total idle energy cost across all machines is defined in (4), where Sr
k and

Cr
k stand for the start and completion time of an operation mr

k performed on
machine Mk respectively. P idle

k indicates the machine’s idle power rate.

E idle
price =

∑

Mk

⎧
⎨

⎩P idle
k ×

⎛

⎝max
mr

k

(Cr
k) − min

mr
k

(Sr
k) −

∑

mr
k

(Cr
k − Sr

k)

⎞

⎠

⎫
⎬

⎭ (4)

The total working energy cost across all machines is defined in (5), where Pwork
k

indicates machine’s working power rate.

Ework
price =

∑

Mk

⎧
⎨

⎩Pwork
k ×

⎛

⎝
∑

mr
k

(Cr
k − Sr

k)

⎞

⎠

⎫
⎬

⎭ (5)

3 Evolving Dispatching Rules for JSS by Using GP
and Island Models

One key step towards building effective island models for multi-objective opti-
mzation is to determine the suitable communication topologies to be applied
to these models. In [17], three topologies have been demonstrated to be highly
effective in practice. They are depicted respectively as Topology I, Topology II
and Topology III in Fig. 1. In this paper, the real usefulness of these topologies
for tackling JSS problems will be further examined experimentally by using a
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GP-based algorithm. Before presenting our GP algorithm in detail, it is necessary
to develop a clear technical understanding of the three topologies first.

Every topology shown in Fig. 1 is represented as a graph with a collection of
nodes which are further connected with each other through edges. Every node
refers to a separate island that will be processed by a different computing node.
Therefore the number of islands in a topology determines the level of parallelism
of the corresponding EC algorithm. We can easily distinguish two types of islands
in a topology: (1) type 1 islands which are indicated with numbers and (2) type
2 islands which are indicated through alphabetic letters. Every type 1 island
aims at optimizing all objectives. On the other hand, only a subset of objectives
will be optimized in any type 2 islands.

Besides the islands, the edges in a topology enable direct communication in
between any two connected islands. Following a common practice, communica-
tion through any edge is bi-directional, meaning that individual solutions can be
freely migrated from both ends of an edge.

To further control the migration activities, every island Ii in a topology G
has its own migration policy, denoted as Πi. Hence, a complete island topology
can be represented as a collection of tuples as shown below

G = {< I1,Π1 >, . . . , < Ik,Πk >}
where k gives the total number of islands in topology G. The policy Πi for island
Ii specifies how many individuals in island Ii should be migrated to other islands
directly connected with island Ii. It also specifies the migration frequency, i.e. the
number of generations in between any two consecutive migrations. For example,
if island Ii is connected with island Im and island In in topology G, then its
policy Πi can be defined as

Πi =
{

< Im, hm
i , um

i >,
< In, hn

i , un
i >

}

As clearly indicated in policy Πi above, island Ii should send its um
i individuals

to island Im after every hm
i generations. Similarly, island Ii should also send its

un
i individuals to island In after every hn

i generations.
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Based on the island models described above, we are now ready to propose
a GP-based hyper-heuristic algorithm for producing useful dispatching rules
through parallel evolution. Detailed steps of our algorithm have been summa-
rized through the pseudo code in Algorithm 1. Before running Algorithm 1, an
island model has to be determined. After that, as indicated in Algorithm 1, a
total of F iterations will run in order to closely capture the Pareto front of our
multi-objective JSS problem. Here F is a number to be determined a priori by
the experimenter (or algorithm user). During each iteration, every island in our
island model will be evolved by using a general-purpose optimization algorithm
denoted as A in Algorithm 1.

Input: G, Dataset(train)
Output: {ω1, ω2, . . . , ωp}

1 for s ← 1 : F do
2 for k ← 1 : |G| do
3 Run sth iteration of A for < Ik, Πk > (∈ G).
4 for j ← 1 : |Πk| do
5 if s%hk

j = 0 then

6 Transfer uk
j fit individuals from Ik to Ij , where

< Ij , h
j
k, uj

k >∈ Πk.

7 end
8 if pop. Ij < pop. limit then
9 The individuals are added to Ij .

10 end

11 end

12 end
13 Wait for all the communication to complete.(synchronous)

14 end
15 Collect the genetic programs corresponding to the Pareto front :

{ω1, ω2, . . . , ωp}.
Algorithm 1. JSS using Island Model

According to lines 4–11 of Algorithm 1, for every neighboring island Ij (con-
nected with island Ik through a direct edge), whenever a fixed number of itera-
tions has passed since last migration from island Ik to island Ij , i.e. s%hk

j = 0,
uk
j individuals will be selected from island Ik by using a tournament selection

method. Finally, after F iterations have been completed, suppose there are p non-
dominating dispatching rules identified through Algorithm 1, i.e. {ω1, . . . , ωp}.
These rules will jointly form a Pareto front which is treated as the final output
from our algorithm.

4 Experiment Design

In this section, we explain our design of experiments for job shop scheduling
and provide details about the experimental settings. The dispatching rules in
our experiments are represented by genetic programs constructed from a list of
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function and terminal sets, as summarized in Table 1. We use the standard Koza
parameters for evolution and conduct 51 iterations for all runs. We repeat each
experiment 50 times using 50 independent random seeds.

Table 1. Functional and Terminal Sets for genetic programs.

Function Set Meaning

+ Addition

− Subtraction

∗ Multiplication

/ Division

Max Maximum

Min Minimum

If − then − else Conditional

Terminal Set Meaning

DueDate Due date of job (DD)

MachineIdlePower Power consumed by idle machine(MWP)

MachineWorkPower Power consumed by working machine(MIP)

ProcessingTime Processing time of each operation(PR)

RemainingOperations Remaining operations for each job(RO)

RemainingTime Remaining processing time of each job(RT)

ERC Ephemeral Random constant

In our present work, due to our primary focus on island topologies shown in
Fig. 1, for simplicity only static migration policies are considered. Particularly,
every island will exchange 40 individuals with each adjacent island after every 5
generations. The population sizes for different algorithms have been presented in
Table 2. The values enclosed in brackets refer to population sizes of every island
(or subpopulation) when island models and Algorithm 1 are used.

Table 2. Population size per island in braces

NSGA-II SPEA-2 Top-I Top-II Top-III

Bi objective 4096 4096 3072 {1024} − −
Multi objective 4096 4096 12288 {4096} 16384 {4096} 12288 {1024}

We use the dataset generated by Taillard et al. [13] for our experiments. This
dataset consists of 8 subsets that together cover JSS problems with varied num-
ber of jobs and number of machines. The maximum number of jobs considered in
any subset is 100 jobs, which will have to be scheduled on 20 separate machines.
The JSS problem instances within each subset will be further divided into 60 : 40
train and test set. This division is completely random and all instances will have
an equal probability of being used either for training or testing.
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Since a maximum of 20 machines will be included in any problem instance,
for all the 20 machines, their idle power rates and working power rates are further
determined randomly under a general restriction that the working power rate of
any machine must be greater than its idle power rate. The obtained power rates,
organized in order according to the 20 machines, are given in Table 3. No specific
models have been utilized in our experiments to determine these power rates. We
believe this enables us to evaluate the power consumption of job shops without
being restricted to specific type of machines and application domains. However,
to further evaluate the usefulness of evolved dispatching rules in practical appli-
cations, realistic power consumption settings will need to be adopted. We are
interested in addressing this issue in our future work. Meanwhile, in our exper-
iments, we assume that the machines are always on. Even though temporary
turn-off of machines is proposed to save energy [8], in general many machines
used in real job shops cannot be powered down.

Table 3. Idle power and working power of machines.

Idle power 0.93 0.34 0.77 0.40 0.09 0.25 0.58 0.70 0.23 0.95

0.66 0.51 0.48 0.22 0.48 0.88 0.13 0.78 0.19 0.28

Working power 0.94 0.74 0.95 0.87 0.61 0.56 0.77 0.97 0.55 0.99

0.88 1.0 0.72 0.47 0.8 0.97 0.39 0.8 0.85 0.44

In order to determine the due dates we use a job specific assignment proce-
dure [3]. This follows the procedure of endogenously finding due date by using
total work content (TWK) [3]. The due date is assigned with a tightness of 1.25
with all jobs released at the outset.

In order to evaluate a dispatching rule and calculate its fitness values a sim-
ulation framework for job shop scheduling is required. We use the java library,
jasima [5] which provides an environment to create and run computer experiments
for manufacturing and logistics. We have extended the library to calculate energy
fitness values for the dispatching rules during evolution. For every individual (dis-
patching rule) the fitness values corresponding to the three objectives discussed
earlier are calculated with respect to each job shop instance in the train (test)
dataset by simulating the use of the dispatching rule. The fitness values for each
objective are then obtained by summing across all the problem instances.

5 Experimental Results

Weconduct our experiments usingECJ [9], a Java based evolutionary computation
research system. In order to compare the Pareto fronts obtained for each run we use
hypervolume indicator [18], generational distance [18] and generalized spread [4]
as the three metrics. These metrics need a true Pareto front for evaluation which
is not known to us. Because of that, following a simple strategy demonstrated in
[4], we combine the individual Pareto fronts obtained by NSGA-II, SPEA-2 and
our Algorithm 1 together and jointly determine an approximated Pareto front.
Separate approximated fronts are created with respect to the train and the test
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Fig. 2. Bi objective: combined Pareto fronts.

sets. A higher value of hypervolume indicator means better performance while for
generational distance and generalized spread a lower value is better. We use the
Wilcoxon signed-rank test [16] to verify the significance of our results.

In order to understand whether Algorithm 1 can outperform NSGA-II and
SPEA-2 even with commonly used optimization objectives, including both the
makespan and total tardiness, a series of experiments have been conducted
and the results obtained have been presented in Subsect. 5.1. Inspired by these
encouraging results, further experiments that include energy as the third opti-
mization objective have been conducted and reported in Subsect. 5.2.

5.1 Experiments on Bi-objective JSS Problems

In this experiment, we consider only the optimization of makespan and total
tardiness. Since Topologies II and III in Fig. 1 involve the use of multiple type
2 islands which are not necessary for bi-objective optimization, we conduct the
experiment using only Topology I. In Topology I each island will consider both
the makespan and total tardiness.

We compare our work against the standard implementation of SPEA-2 and
NSGA-II. We combine Pareto fronts from all the runs and generate a single
Pareto front from the combined solutions for each algorithm. The combined
Pareto fronts are shown in Fig. 2. The Pareto front of Topology I dominates the
fronts from SPEA-2 and NSGA-II. We show the box-plot comparisons from the
runs in Fig. 3. For the Wilcoxon test to be significant we need the p-value to
be lower than 0.05. The hypervolume indicator shows Topology I to outperform
NSGA-II and SPEA-2 for the train set. For the hypervolume indicator and gen-
eralized spread we obtained the p-values of 7e − 15 and 0.09 (not significant)
respectively against NSGA-II. For the generational distance the Algorithm 1
shows no improvement. For the test set we observe similar performance, with
the p-values of 7e−15 and 0.02 for hypervolume indicator and generalized spread
respectively against NSGA-II.
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Fig. 3. Bi-objective optimization (up arrow indicates higher the better (vice versa))

More importantly the total population size used for Topology I is less than for
the other two methods. As shown in Table 2, the population used for Topology
I is 1024 per island which sums to 3072 individuals for the topology. In our
experiments we observed that NSGA-II took close to 3.8 h for completion against
approximately 0.76 h for Topology I. The increased performance and saving in
time comes at the price of some communication complexity (Sect. 3).

5.2 Experiments on Multi-objective JSS Problems

In this set of experiments, we evolve solutions to the multi-objective optimization
problem and use all the proposed topologies in Fig. 1.

Algorithm 1 again shows improvement over NSGA-II. The pairs plot of the
pareto front is shown in Fig. 4. The training set shows that there is significant
difference in the quality of solutions generated from the different methods. This
is more clear when we show the results using the box plots (Fig. 5). But we do
not observe a significant difference in the test case, as the solutions represented
by different methods are not visually distinguishable in the plot.

We again use the metrics of hypervolume indicator, generalized spread
and generational distance to compare the different methods and the Wilcoxon
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signed-rank test to determine the significance (0.05) of our results. The box plot
of the results is shown in Fig. 5. For the train set, Topology I outperformed
NSGA-II with a p-value of 2.4e − 06 and 0.0002 for the hypervolume indicator
and generational distance respectively. For the test set Topology I and Topology
II outperformed NSGA-II, with respect to the hypervolume indicator, showing
p-values of 3e − 8 and 1e − 14 respectively. The Topology II also outperformed
Topology I with a p-value of 0.02 for the same metric. There is no significant
difference for performance based on generational distance in the test set.

Though Topology III outperformed SPEA-2 but not NSGA-II, it must be
noted that the computation time needed in Topology III is much lower than
that of NSGA-II. On average, the processing times of 5.2 h, 5.5 h, 6.4 h and
2.7 h were needed for NSGA-II and Topologies I, II and III respectively per run.
For the population sizes as indicated in Table 2, although Topology I and II
required longer processing time than NSGA-II due to the communication and
synchronization overhead, they can achieve significantly better performance.

To summarize, of the three island topologies used with Algorithm 1, Topology
I generally performed better than both NSGA-II and SPEA-2, as confirmed
particularly by the hypervolume indicator. Though Topology II also performed
well in Subsect. 5.2, it did not outperform Topology I significantly. Because only
simple and static migration policies have been utilized in our island models,
useful individuals cannot be effectively exchanged among multiple islands in
Topology III. As a result Topology III failed to perform as we hoped. However,
considering the fact that Topology III could potentially reduce the total time
required for evolving useful dispatching rules, its practical usefulness should be
further investigated in the future.
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Fig. 5. Multi-objective optimization (up arrow indicates higher the better (vice versa))

6 Conclusion

In this paper, we focused on investigating the potential usefulness of island mod-
els for multi-objective job shop scheduling. Island models serve as an important
technology for parallel evolution of dispatching rules that can effectively optimize
multiple performance objectives. We have particularly considered total energy
consumption as an important objective for optimization. Despite of its practical
significance, energy consumption in job shops has not been substantially studied
in the literature.

By using a GP-based hyper-heuristic algorithm, we experimentally studied
several different communication topologies and island models in many bench-
mark JSS problems. Our experimental results showed that, with the help of
these island models, we can achieve significantly better Pareto fronts based on
some standard performance metrics, in comparison with widely used optimiza-
tion algorithms such as NSGA-II and SPEA-2. Moreover, island models also
enable us to obtain desirable dispatching rules much faster than conventional
methods that can only run on a single computing node.
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Abstract. In recent years, Web services technology is becoming increas-
ingly popular because of the convenience, low cost and capacity to
be composed into high-level business processes. The service location-
allocation problem for a Web service provider is critical and urgent,
because some factors such as network latency can make serious effect
on the quality of service (QoS). This paper presents a multi-objective
optimization algorithm based on NSGA-II to solve the service location-
allocation problem. A stimulated experiment is conducted using the
WS-DREAM dataset. The results are compared with a single objective
genetic algorithm (GA). It shows NSGA-II based algorithm can provide
a set of best solutions that outperforms genetic algorithm.

1 Introduction

Web Services are considered as self-contained, self-describing, modular applica-
tions that can be published, located, and invoked across the Web [20]. With the
ever increasing number of functional similar Web services being available on the
Internet, the Web service providers (WSPs) are trying to improve the quality of
service (QoS) to become competitive in the market.

Service response time is a critical measurement in QoS. It has two compo-
nents: transmission time and network latency [14]. Study [13] shows that network
latency is a significant component of service response delay. Ignoring network
latency will underestimate response time by more than 80 percent [21]. To reduce
the network latency WSPs need to allocate services to a location where has the
lower latency to the user center that access the services. User center denotes a
geometric location (e.g., a city) that is encompassed by a service area.

Ideally, WSPs could deploy their services to each user center in order to provide
the best quality. However, the more services deployed, the higher deployment cost
will be.

The Web service location-allocation problem is essentially a multi-objective
optimization problem [2], for which there are two conflict objectives, to provide
optimal QoS to Web service users and to consume minimal deployment cost.
This problem can be classified as a multidimensional knapsack problem (MKP).
c© Springer International Publishing Switzerland 2016
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Therefore, it is considered NP-hard due to the combinatorial explosion of the
search space [22].

[1,21] try to solve the problem by using integer linear programming techniques.
In particular, [21] solved this problem by employing greedy and linear relax-
ations of Integer transportation problem. However, integer programming (IP) is
very effective for small-scale or mid-scale MKP but suffers from large memory
requirement for large-scale MKP [11]. Huang [9] proposes an enhanced genetic
algorithm (GA)-based approach on Web service location allocation. He models
the problem as a single objective problem with respect to network latency. In
particular, the position of a web service in a Web service composition workflow
is considered in his model.

Evolutionary multi-objective optimization (EMO) methodologies is ideal for
solving multi-objective optimization problems [6], since EMO works with a pop-
ulation of solutions and a simple EMO can be extended to maintain a diverse
set of solutions. With an emphasis for moving toward the true Pareto-optimal
region, an EMO can be used to find multiple Pareto-optimal solutions in one
single simulation run [15]. Among numerous EMO algorithms, Non-dominated
sorting GA (NSGA-II) [3], Strength Pareto Evolutionary Algorithm 2 (SPEA-2)
[4] have become standard approaches.

NSGA-II is one of the most widely used methods for generating the Pareto
front, because it can keep diversity without specifying any additional parameters
[5]. In this paper, we propose to use NSGA-II to solve the Web service location-
allocation problem, which has two objectives, to minimize cost and network
latency.

The aim of this project is to propose a NSGA-II based approach to produce
a set of near optimal solutions of service location-allocation, so that cost and
overall network latency are close to minimum. Then, the WSPs could use the
algorithm which is proposed by this paper, to select an optimal plan based on
their fund constraints. The main objectives are:

– To model the Web service location-allocation problem so that it can be tackled
by NSGA-II.

– To develop a NSGA-II based approach to the Web service location-allocation
problem.

– To evaluate our proposed approach using some existing datasets.

In Sect. 2 we introduce the background of NSGA-II and GA. In Sect. 3 we
provide models of the service location allocation problems. Section 4 develops a
NSGA-II based algorithm. Section 5 presents a GA based algorithm. The exper-
iment design and results evaluation are shown in Sect. 6. Section 7 provides a
brief summary.

2 Background

GA [17] is a method to solve combinatorial optimization problems. It is an iter-
ative procedure based on a constant-size population. In GA, a population of
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strings (called chromosomes), which are encoded as candidate solutions (called
individuals) to an optimization problem, evolves towards better solutions. Each
genome is associated with a fitness value based on a fitness function that indi-
cates how close it comes to meet the overall specification, when compared with
other genomes in the population. The fitness value of an individual is also an
indication of its chances of survival and reproduction in the next generation.
A typical genetic algorithm requires a genetic representation of the solution
domain and a fitness function to evaluate the solution domain. Since a chro-
mosome from the population represents a solution, when the algorithm starts,
the whole population moves like one group towards an optimal area. Integer
scalarization technique [2] is used to solve multi-objective problems with GA, by
predefining a weight for each objective.

NSGA-II is a multi-objective algorithm based on GA. When it is used for
problems with two or three objectives, NSGA-II performs well in both conver-
gence and computing speed. NSGA-II permits a remarkable level of flexibility
with regard to performance assessment and design specification. It assumes that
every chromosome in the population has two attributes: a non-domination rank
in the population and a local crowding distance in the population. The goal of
NSGA-II is to converge to the Pareto front as much as possible and with even
spread of the solutions on the front by controlling the two attributes.

3 Problem Description and Modeling

3.1 Problem Description and Assumptions

Web service location-allocation problem is to determine reasonable locations for
Web services so that the deployment cost of WSP can be minimized while service
performance can be optimized. In this paper, to optimize service performance
we consider to minimize network latency.

The task of service location allocation has two objectives:

– To minimize the total cost of the services.
– To minimize the total network latency of the services.

In the mean time, service providers have cost constraints which limit the total
cost of services deployment.

Stakeholder Web Service Providers. Assume the historical information of
Web service usage has been collected. WSPs wish to allocate services to servers
in candidate locations in order to maximum their profit.

The WSP must decide on services locations from a finite set of possible loca-
tions. In order to make a decision, the WSP must obtain data of service usages.
Based on these data, the WSP could summarize several customer demands con-
centrated on n discrete nodes [1], namely user centers. We assume that the WSP
has already done this step and a list of user centers and candidate locations are
given. A candidate location is the geometric location that is suitable to deploy
services. User centers and candidate locations are very likely overlapping when
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Web service are deployed locally to user centers. In addition to deciding loca-
tions of the services, information about network latency between user centers
and candidate locations are needed.

The list below shows some critical information that should be provided by the
WSPs.

1. A list of user centers.
2. A list of candidate locations
3. 3. Service invocation frequencies from user centers to services
4. Average network latencies from user centers to candidate locations
5. Web service deployment cost for each candidate location

These are the main input data that the decision making is dependent on.
The details of these input data and modelling are introduced in Sect. 3.2. Worth
noting that service invocation frequencies are changing over time.

Network latency highly depends on the network traffic and may be very differ-
ent during periods of a day. However, as long as there is no significant changes
in the network topology, the average network latency remain stable. Therefore,
the average network latency for a period of time should be representative.

Although dynamic service deployment is possible [16], the static deployment
is still the mainstream [8]. In this paper, we made an assumption that WSPs
periodically change the Web service deployment.

3.2 Model Formulation

To model service location-allocation problem, we need to make use of a set of
matrices, to present input information and output solutions.

Assume a set of S = {s1, s2, ...ss, sx} services are requested from a set of
locations I = {i1, i2, ...ii, iy}. The service providers allocate services to a set of
candidate facility locations J = {j1, j2, ...jj , jz}.
Service invocation frequency matrix, F = [fis], is used to record services invo-

cation frequencies from user centers, where fis is an integer that indicates the
number of invocations in a period of time from a user center i to a service s. For
example, f31 = 85 denotes service s1 is called 85 times in a predefined period of
time from user center i3.

F =

⎡

⎣

s1 s2 s3

i1 120 35 56
i2 14 67 24
i3 85 25 74

⎤

⎦ L =

⎡

⎣

j1 j2 j3

i1 0 5.776 6.984
i2 5.776 0 2.035
i3 0.984 1.135 2.3

⎤

⎦

Network latency matrix L = [lij ], is used to record network latencies from user
centers to candidate locations. For example, the network latency between user
center i2 with candidate location j1 is 5.776s. These data could be collected by
monitoring network latencies [26,27].

The cost matrix, C = [csj ], is used to record the cost of deployment of services
to candidate locations, where csj is an integer that indicates the cost of deploying



250 B. Tan et al.

a service to a location. For example, c12 = 80 denotes the cost of deploying service
s1 to location j2 is 80 cost units.

C =

⎡

⎣

j1 j2 j3
s1 130 80 60
s2 96 52 86
s3 37 25 54

⎤

⎦ A =

⎡

⎣

j1 j2 j3
s1 0 1 0
s2 0 0 1
s3 1 1 0

⎤

⎦

Service location-allocation matrix A = [asj ] represents the actual service
location-allocation, where asj is a binary value 1 or 0 to indicate whether a
service is allocate to a location or not.

Using service location allocation matrix A = [asj ] and network latency matrix
L = [lij ], we can compute user response time matrix R = [ris],

ris = MIN{lij | j ∈ {1, 2, ..., z} and asj = 1} (1)

For example, we can use the two example matrices L and A presented above
to construct the response time matrix R. For each service s, by checking matrix
A, we can find out which location the service has been deployed. Then we check
matrix L, to find out its corresponding latency to each user center i. If there is
more than one location, then the smallest latency is selected. Therefore, we can
construct the response time matrix R as:

R =

⎡

⎣

s1 s2 s3
i1 5.776 6.984 0
i2 0 2.035 0
i3 1.135 2.3 0.984

⎤

⎦

4 NSGA-II for Web Services Location Allocation

4.1 Chromosome Representation and Constraints

In our approach, we model the service location matrix A = [asj ] as a chromosome.
The constraint setting is based on service providers’ needs. In our case, we need
set two constraints. The first constraint, service number constraints, requires
that each service is deployed in at least one location.

∑

x∈S

axj ≥ 1 (2)

The second constraint, cost constraint, which sets up the upper boundary of the
total cost. An integer number CostLimitation is decided by the WSP.

∑

s∈S

∑

j∈J

csj × asj ≤ CostLimitation (3)

4.2 Genetic Operators

Our problem is discretized, therefore we use the binary GA mutation and
crossover operations [18]. The selection operator is the tournament selection [23],
which allows the highest probability of being reproduced to next generation.
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Fitness Function. In order to accomplish these two objectives, we design two
fitness functions to evaluate how good each chromosome meets the objectives.
We use CostFitness to calculate the overall cost of deploying services under an
allocation plan

CostF itness =
∑

s∈S

∑

j∈J

csj × asj (4)

where csj is the cost of deploying service s at location j, asj represents the deploy-
ment plan. The sum of the multiplication of csj and asj is the total deployment
cost.

We assume the latency is symmetrical between user center and candidate
location. e.g., lij = lji. We use Latency Fitness to calculate overall latency of all
service request over a period of time.

LatencyF itness =
∑

i∈I

∑

s∈S

ris × fis (5)

where ris denotes the minimum network latency from user center i to service s.
fis denotes the invocation frequency from i to s.

Normalise Function. To indicate the goodness of an allocation solution we
normalise CostFitness and LatencyFitness according to the largest and mini-
mum values of CostFitness and LatencyFitness. Normalised fitness values can
also be used to compare results from different approaches. Since the maximum
and minimum values for total cost and total latency are deterministic, we use
exhaustive search to find out the Latencymax. Latencymin is zero for we assume
each service could be deployed in each user center. Costmin is the cost of allo-
cating each of services at a location that leads to the minimal cost and Costmax

is the cost of allocating each service to all the locations.

CostF itness′ =
CostF itness − Costmin

Costmax − Costmin
(6)

LatencyF itness′ =
LatencyF itness − Latencymin

Latencymax − Latencymin
(7)

4.3 NSGA-II Based Algorithm for Service Location-Allocation

In this section we present our NSGA-II based algorithm for service location-
allocation as Algorithm 1, comparing with the original NSGA-II our proposed
algorithm has three new features.

Firstly, in order to avoid repeatedly evaluating the fitness of chromosomes,
after the first generation is initialized, it stores the nondominated solutions in
the nondominated pool. In each generation, when evaluate the chromosomes,
the chromosomes are checked to see they exist in the nondominated pool. If so,
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Algorithm 1. NSGA-II for service location-allocation
Inputs: Cost Matrix C, Server network latency matrix L, Service invocation frequency
matrix F
Outputs: Nondominated set:a set of service allocation matrix A

1: Initialize a population of chromosome with random binary values and include a
chromosome represents location with minimal cost

2: Evaluate population with fitness functions
3: Non-dominated sort and assign a ranking to each chromosome
4: Evaluate the Crowding distance of each chromosome
5: Initialize the Nondominated Pool
6: while predefined generation do
7: Apply Tournament Selection
8: Apply Crossover
9: Apply Mutation

10: for ( do each chromosome)
11: while violate service number constraint do
12: random choose a location j and set asj = 1
13: end while
14: while violate cost constraint do
15: random choose a location j and set asj = 0, as long as

∑
s∈S

asj ≥ 1

16: end while
17: if chromosome does not exist in the Nondominated Pool then
18: Evaluate with the fitness functions
19: end if
20: end for
21: Non-dominated sort and assign ranking
22: Evaluate the Crowding distance
23: Recombination and Selection
24: Update the Nondominated Pool with the current Nondominated solutions
25: end while
26: Return the Nondominated Pool

then the calculation of fitness will be skipped. At the end of each iteration, the
nondominated pool is replaced by current nondominated solutions.

Secondly, it uses general mutation and crossover operation instead of poly-
nomial mutation and simulated binary crossover. It is important to note that
the mutation and crossover operators can produce solutions that might violate
the constraints. Therefore, repair operators are needed to maintain feasible solu-
tions. The proposed algorithm checks the cost and service number constraint to
avoid possible infeasible solutions.

Thirdly, we include a solution that leads to minimal cost as an individual
in the initialized generation. To do that we expect that it could accelerate the
convergence as well as keep the solutions diversity.

5 GA for Web Service Location Allocation

In order to show the performance of our multi-objective NSGA-II based app-
roach, we extend the single-objective GA based approach in [10] to consider
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two objectives. We employ integer scalarization technique [7] to transform the
multi-objective problem into a single objective problem. A weight w needs to be
predefined in GA. The weight measures the importance of objectives. Therefore,
it is used to balance which objective is more favourable to the service provider.
Conventionally, the weight is in the range of [0, 1]. For example, if we define the
weight equals 0.7. It denotes that we consider cost outweigh network latency. In
our approach, we define the weight equals 0.5 since we consider both objectives
equally important.

As in Sect. 3.2 we model an allocation matrix as a chromosome. Crossover and
mutation operators are same as defined in Sect. 4.2. To evaluate the chromosomes
of population. We use Integer Scalarization technique [7] to calculate the fitness
value.

Fitness = w × CostF itness′ + (1 − w) × LatencyF itness′ (8)

w is a predefined value used to measure the important of cost and latency. Note
that CostFitness and LatencyFitness are calculated using Formulas 6 and 7 in
Sect. 4.2.

6 Experiment Evaluation

To evaluate the effectiveness and efficiency of our proposed NSGA-II based app-
roach to service location-allocation, we compare our approach with the GA-
based single objective approach in Sect. 5 using an existing dataset, WS-DREAM
[26,27], which is a historical dataset on QoS of Web services from different loca-
tions. It contains the data of latencies from 339 different user locations invoked
5824 Web services scattered over different locations. The algorithm was coded
in R [19] using existed package: NSGA2R. The program was run on a 3.40 GHz
desktop computer with 8 GB RAM. Four different service location-allocation
problems are designed with different complexities (Table 1).

Table 1. Test cases

Problem User location Server location Number of service

1 3 3 3

2 5 5 5

3 10 10 10

4 15 15 15

A cost matrix is randomly generated from a normal distribution with mean as
100 and standard deviation as 20. In addition, a frequency matrix, is randomly
generated from a uniform distribution over [1, 120].

In each dataset, algorithms are run under four different levels of cost con-
straints: Sufficient condition (indicating services were allocated to all candidate
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locations), good condition (70 %), pool condition (40 %) and minimum budget
condition (0 %). We tried to stimulated a real world budget condition with these
four scenarios. In the minimum budget condition, both algorithms exhaustively
reduce the cost until it reaches the service number constraint. The NSGA-II
based algorithm runs 40 independent times with different random seeds ranging
from 1 to 40. To test the efficiency of the algorithms, we evaluate the average
run time for each algorithm.

Parameter settings for the algorithms are as follow. The population size is
50, and the maximum number of generations is 50. The tournament size is 3.
The crossover probability Pc is 0.8 and the mutation probability Pm is 0.2 as we
found that this combination can produce good results. We use same parameter
settings for GA.

To compare the result of Algorithm 1 with GA-based algorithm, we first derive
the nondominated set by using the approach in [24,25], and then compare the
results using approach in [12]. Under each cost constraint, our NSGA-II based algo-
rithm was run 40 times to generate 40 sets of solutions, which are then combined
into one set. Then we applied non-dominated sort over this set. In the mean time.

GA may also run 40 times to generates 40 sets of solutions. We select the best
one based on its fitness value from each set and combine them into one set. The
non-dominated solutions are presented to compare with the solutions achieved
by GA.

In addition to the comparison between NSGA-II based algorithm and GA
based algorithm, we conducted full experiments on NSGA-II without minimal
cost initialisation and GA without minimal cost initialisation. We expect the
initialized algorithms superior than the uninitialized algorithms.

6.1 Effectiveness Comparison

We conducted experiments on NSGA-II, GA, NSGA-II with initialisation and
GA with initialisation respectively. We use cost fitness value and latency fit-
ness value as x, y coordinates. Our goal is to minimize both cost and latency.
Therefore, better solution should locate close to the origin.

Experiment results (Fig. 1) show that different cost constraints leads to sim-
ilar result patterns. Due to page constraints, we show the results of one cost
constraints.

From the above results we can see that for all the four problems, NSGA-
II based approach produce results that dominate or overlap the results from
GA based approach. Further, NSGA-II with an initialized chromosome that
represents service location-allocation of the minimum cost dominate the results
without a chromosome of the lower cost, though for problem 1 and problem 2 of
small complexity size, this observation is not obvious.

In particular, for big problems, problem 3 and 4, results of NSGA-II based
approaches dominate the results of GA-based approaches. We also notice that
even though the population size is small as 50, including a chromosome of optimal
cost can help to narrow down searching space and to converge to optimal solution
faster (Table 2).
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Table 2. Execution time (s)

problem 1 problem 2 problem 3 problem 4

NSGA-II(s) GA(s) NSGA-II(s) GA(s) NSGA-II(s) GA(s) NSGA-II(s) GA(s)

Sufficient 4.4 ± 0.3 1.6 ± 0.1 ↓ 5.9 ± 0.1 3.2 ± 0.1 ↓ 13.7 ± 0.1 11.0 ± 0.1 27.0 ± 0.1 23.9 ±0.5↓
Good 4.4 ± 0.2 1.6 ±0.1 ↓ 6.0 ± 0.1 3.2 ± 0.1 ↓ 13.9 ± 0.08 11.1 ± 0.3 27.2 ± 0.1 24.1 ± 0.27 ↓
Poor 4.6 ± 0.19 2.2 ±0.2 ↓ 6.3 ± 0.07 4.29 ± 0.17 ↓ 15.2 ± 0.16 14.8 ± 0.3 31.3 ± 0.28↓ 33.6 ± 0.45

Minimum 4.6 ± 0.1 2.2 ± 0.1 ↓ 7.2 ± 0.12 5.75 ±0.17 ↓ 24.12 ± 0.5 ↓ 25.8 ±0.5 56.72 ± 1.6 ↓ 66.8±1.2

(a) 3 × 3 (b) 5 × 5

(c) 10 × 10 (d) 15 × 15

Fig. 1. Comparisons Between NSGA-II, GA, initialized-NSGA-II and initialized-GA

6.2 Efficiency Comparison

The results from initialized algorithms are similar with uninitialized algorithms,
therefore we only present the uninitialized results. As shown in the table above
for small problems GA based approach are faster. However for bigger problem
(problem 3 and 4) NSGA-II based approach, are more efficient than GA-based
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approach. Also NSGA-II based approach produces a set of non-dominated solu-
tions instead of one solution, which provide WSPs with more options.

7 Conclusion

In this paper, we proposed a NSGA-II based approach to Web service location-
allocation problem. Our approach consider two objectives, minimizing cost and
minimizing network latency at the same time. We have conducted a full exper-
iment evaluation using the public WS-DREAM dataset to compare our app-
roach to single-objective GA-based approach. The experiment results shows the
NSGA-II based approach is effective to produce a set near-optima solutions for
the Web service location-allocation problem. Also, NSGA-II based approach are
more efficient than GA-based approach for problem with big number of user
centers and server locations. Future work will investigate the scalability of our
proposed approaches for big datasets.
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Abstract. Scheduling of wind-thermal electrical generators is a challenging
constrained optimization problem, where the main goal is to find the optimal
allocation of output power among various available generators to serve the system
load. Over the last few decades, a large number of solution approaches, including
evolutionary algorithms, have been developed to solve this problem. However,
these approaches are usually ineffective and time consuming. In this paper, we
apply two variants of genetic algorithm (GA) for solving the problem where the
first variant is to optimize the allocation and the second one is to rank the gener‐
ators for allocation. The proposed algorithm is applied to a recent wind-thermal
benchmark that comprises five thermal and 160 wind farms. The model includes
a stochastic nature of wind energy and gas emission effects of thermal plants. The
simulation results show that the proposed method is superior to those results of
different variants of GA and the state-of-the-art algorithms.

Keywords: Economic dispatch · Wind-thermal system · Genetic algorithm ·
Heuristic

1 Introduction

Over the last few decades, the use of fossil fuel in electricity generation has increased
the environmental pollution and consequently fostered the growth and development of
renewable energy generation systems. Wind energy is a promising alternative in power
generation, because of its great environmental and social benefits. However, the avail‐
ability of wind energy is highly fluctuating, which makes it difficult to know the exact
wind power in advance. Hence, it is a challenging optimization problem to schedule the
right mix of generation from a number of wind and thermal units to serve a daily load
demand at minimum cost, which is known as dynamic economic dispatch (DED)
problem [1]. Moreover, DED considers different level of load demands and an internal
coupling of the power plants operations, at each time interval (which is called ramp
limits), and higher variable dimensions [2].

Over the decades, various conventional optimization methods, such as Lagrange
multiplier [3], interior point method [4], and iterative method [5], were used to solve
this DED problem. The gradient-based optimization methods are usually faster, but
sensitive to initial value and easy to get trapped in local optima. In addition, the valve
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point effect of large steam generators produces the cost function non-smooth and multi‐
modal characteristic. Therefore, the gradient based methods may not converge to
optimal solutions for such complex problems.

Over the last few decades, several meta-heuristic optimization techniques have been
effectively used to solve different real world problems [6]. In recent years, these approaches
are applied to solve the high dimensions and complex DED problems, because they are
flexible, efficient and have a stochastic searching feature, for example, genetic algorithm
(GA) [7, 8] simulated annealing (SA) [9], particle swarm optimization (PSO) [10] and
differential evolution (DE) [1]. Some hybrid methods that combine two or more
approaches, such as evolutionary programming and sequential quadratic programming (EP-
SQP) [11], PSO-SQP [12], and modified hybrid EP–SQP (MHEP-SQP) [12], have also
been used. However, it was noticed that such techniques may have a slow convergence rate
and computationally insufficient. The reasons for this is that in those approaches, the
equality constraints were usually handled using the penalty-function technique, but the
existence of many equality constraints makes it hard to generate feasible solutions and
maintain feasibility after applying the evolutionary operators. Even if a feasible solution is
obtained after a huge computational effort, the quality of that solution may be poor.

In this paper, a double action GA with a heuristic is proposed to solve the high
dimensional constrained and complex wind-thermal DED problem. In it, two GAs are
used in parallel, where one GA is used to optimize the overall operating cost by allocating
the load demands among the committed units, while another GA is used to determine
the best set of rank to help this allocation process. In this process, an iteration process
is used to allocate the hourly load demands by providing more portions of demands to
a higher ranked unit (i.e. a cheaper one) and least portion to a lower ranked unit (i.e. an
expensive one). Once the reallocation process of first time interval is performed, the
generation capacity limits of each unit are updated based on their ramp limits. Then, the
iteration process is again applied to reallocate the generation according to their rank
found from second GA, and the process is continued until the reallocation process for
all intervals are performed. As the unit cost of a generator depends on amount of gener‐
ation for a particular period, the rank of a generator is dynamically updated during the
evolutionary process. In the first GA, the simulated binary crossover and non-uniform
mutation are used, while the single point crossover and shift mutation are used in second
GA. The proposed framework is applied for solving the wind-thermal DED problem
with and without considering transmission power losses [2]. The stochastic features of
wind energy at any given time are considered in terms of the overestimation and under‐
estimation cost [13]. Moreover, the environmental effect of thermal power plants is also
included in the DED model. In order to demonstrate the performance of proposed algo‐
rithm, the test problem is also solved using a standard GA, and a GA with a heuristic
that meets the load demands at random slack generation approach [1]. Their obtained
results are compared with each other and recently published state-of-the-art algorithms.
The analysis of results ensures that heuristics enhance the performance of GA, while
our proposed heuristic outperforms all other algorithms considered in this paper.

The rest of this paper is organized as follows: Sect. 2 presents the problem formu‐
lation, Sect. 3 the proposed methodology, Sect. 4, the results from the optimization
exercise, and Sect. 5 a summary of our findings.
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2 Mathematical Formulation

In this section, the mathematical models of DED wind-thermal is presented, in which
the objective function is to minimize the cost of thermal and wind generators. The cost
function comprises the fuel and environmental cost of thermal generators, operating cost
of wind turbines, and the overestimated and underestimated cost of wind energy due to
stochastic nature of wind speeds. The Weibull probability density function is used to
calculate the overestimate and underestimate cost in each interval. Taking into account
these costs for a wind-thermal power system, the DED model in T time intervals is
expressed as [2, 13].

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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(10.1)

(11)

(12)

(13)

(14)

The objective function (1) is to minimize the sum of all fuel ( ) and gas emission
costs  of thermal power plants ( ), and operating ( ), underestimated ( ) and
overestimated ( ) cost of wind power plants ( ) during the operational cycle ( ).
Where,  and  are the cost coefficients of  thermal plant, and  are the
operational coefficients of  wind farm,  and  are output power of  thermal
and  wind unit at  time interval. The underestimated (6) and overestimated (7)
penalty cost is calculated from the probability density function (8), where  and 
are the underestimated and overestimated cost coefficients.  is the rated power, ,

 and  are cut-in, cut-out and rated wind speed, respectively of  wind farm. In
(9),  is a gamma function and  and  are the mean value and standard deviation of
wind speeds for a certain period.

Constraint (10) refers the power balance equation in each cycle. Using the trans‐
mission loss coefficients B, power loss ( ) of each period is expressed in (10.1).
Constraint (11) and (12) are the capacity constraints of thermal and wind power plants,
respectively, where  and  are the minimum and maximum output power of the

 thermal unit, respectively. Constraints (13) and (14) are the minimum on-off time,
and ramp limits of thermal plants, respectively, where, , ,  , and  are the
operation status, continuous online time and minimum on time, continuous offline time
and minimum off time of conventional generator, respectively, and  and  upper
limit and lower limit of variation rate while unit is in the process of startup or shutdown.
Detailed descriptions of the mathematical model can be found in [2, 13].

3 Proposed Approach

As discussed earlier, the wind-thermal DED model is a single-objective constrained
optimization problem involving non-differentiable and multimodal cost functions with
many equality and inequality constraints. To effectively solve this problem using GA,
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in this paper, a double action GA under two populations are considered, one is used to
evolve the decision variables associated with wind and thermal generators in order to
minimize the overall cost, while the other one is used to determine the best set of
sequences in order to allocate the load demands among those generators according to
priority basis. The pseudo code of the proposed algorithm is outlined in Algorithm-1,
and each component described in detail in the following sub-sections.
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3.1 Representation and Initial Population

The representation of chromosome for the proposed algorithm can be expressed as:

(15)

(16)

(17)

Here,  and the number of control variables is

. The individuals in the initial population are generated as:

(18)

where  and  are the upper and lower bounds of each variable that can be found
from each power plant’s limits, and lhsdesign and randperm are MATLAB functions
used for Latin hypercube sampling and random permutation, respectively.

3.2 Genetic Operators

Among various GA search operators, simulated binary crossover (SBX), and non-
uniform mutation (NUM) have been shown good performance for solving continuous
problems [1], while single point crossover (SPX) and shift mutation (SM) have been
found excellent performance in solving integer problems [14]. Hence in this research,
those operators have been considered in which SBX and NUM are used to evolve the
decision variables, while SPX and SM are employed for determining the best set of rank
of each generator at each time interval. The each operator is described below.

3.2.1 Simulated Binary Crossover
In SBX, two random parents ( ) are determined using a tournament pool, and conse‐
quently two child are evaluated as follow:

(19)

(20)

(21)
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where  is a random number, , and  a pre-defined parameter of
distribution index.

3.2.2 Single-point Crossover
In SPX, a crossover point is firstly determined by randomly dividing of such two parents
used in SBX, and two new offspring subsequently created by appending the first part of
the first parent to the second part of the second parent, and the second part of the first
parent to the first part of the second parent, as shown below.

3.2.3 Non-uniform Mutation
In it, a child is diversified from its original value as:

(22)

(23)

where  and  is a random number, and  and  the current and
maximum number of generations, respectively. The speed of the step length can be
controlled by choosing different ‘b’ values and, in this research, is set to 5 [15].

3.2.4 Shift Mutation
In order to maintain diversity and avoid redundancy of the sequences after performing
SPX, shift mutation is used whereby a random element is chosen from an offspring and
shifted to the left or right. If any redundancy occurs in an offspring, the redundant
element is replaced by a non-used element.

3.3 Heuristics for DED Constraints

As previously mentioned, the wind-thermal DED is a highly constrained optimization
problem involving a number of equality and inequality constraints. The solutions gener‐
ated by EAs may not satisfy all these constraints. Even a feasible solution may obtain
in one generation, its child may be become infeasible in next generation. In order to
overcome this deficiency, we propose a heuristic that transforms an infeasible solution
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into a good-quality feasible one. In the process, the T-hour load cycle is divided into T
sub-problems, with production allocated to meet the load demand in each hour. The
generators’ allocations depend on their rank, with inferior ones given higher and costly
ones lower ranks, and consequently higher ranked unit takes more load than lower one,
and so on. As the fuel cost of a generator is not linear, we use another optimization
approach to determine the best set of rankings for each period in each generation. The
proposed priority based heuristic (PH) as shown in Algorithm 2.
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3.4 Selection Process

Once the entire offspring are evaluated according to Eqs. (1) and (8)–(13), respectively,
their FVs, CVs and the parents’ FVs and CVs are sorted, where a greedy selection
scheme is used so that a feasible solution is always considered better than an infeasible
one, as:

(24)

During the selection process, the selected individuals’ sequences are also considered
for next generation evaluation. As a result, at the end of the current generation, the only
better-performing individuals and their corresponding sequences are placed for the next
generation evaluation.

4 Experimental Results

The proposed algorithm has been tested on a wind-thermal DED problem, which
contains five thermal and 160 wind farms for a 6-hour planning horizon with a one-hour
long time period. The problem has been solved with and without considering power
transmission loss (PTL). In order to demonstrate the effectiveness of proposed algo‐
rithm, the test problems have been solved using: (i) GA without any heuristic (GA), (ii)
GA with a heuristic that meets the load demands in a random basis (RH-GA), and (iii)
GA with the proposed heuristic that meets the load demands in priority basis (PH-GA),
under the same platform. It is noted that the RH-GA is almost similar to PH-GA while
the heuristic in RH-GA reallocates the hourly load demands to the committed generators
in random basis [1]. The process of this heuristic is identical of Algorithm 2, but the 
in step 6 is considered randomly from . However, the experimental results from
these three algorithms are compared each other and with results found in [2]. For each
case of illustration, we define the test problem as two cases.

Case 1: wind-thermal system with PTL [2];
Case 2: wind-thermal system without PTL [2].

The algorithm has been coded using MATLAB and run on a desktop computer with
Intel Core i7 processor at 3.4 GHZ with 16 GB of RAM. The GA parameters, the prob‐
ability of crossover, distribution index ( ) and probability of mutation are set to 0.9, 3
and 0.1, respectively. For a fair comparison, each algorithm performs 30 runs, and the

 and  are set to 100 and 1000, respectively for both cases. The algorithm runs until
the number of generations is higher than  (criterion 1) or the best fitness value is no
longer improved for 100 generations (criterion 2) or the average fitness value is no longer
improved for 100 generations (criterion 3).
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4.1 Wind-Thermal DED with Power Loss

As the PTL is very significant in the power system operation, the PTL is considered in
this paper, while the loss coefficients  and generators data can be found in [2]. The
results obtained by GA, RH-GA and PH-GA and those from literature [2] using DE,
PSO, chaotic PSO (CPSO) and bi-population chaotic DE (BPCDE) are listed in
Table 1. From the results, it is clear that PH-GA outperforms all the state-of-the-art
algorithms. In addition, it is found that using a heuristic improves the performance of
GA, while PH-GA consistently obtains the best results within reasonable computational
times. Moreover, PH-GA produces quite stable results in all runs, as the standard devi‐
ation (STD) value is lower than that of RH-GA.

Table 1. Statistical analysis for the wind-thermal system with PTL

Method Production cost ($) CPU time
(min)Minimum Median Maximum STD

DE [2] 798891 NR NR NR NR

PSO [2] 802386 NR NR NR NR

CPSO [2] 799258 NR NR NR NR

BPCDE [2] 795194 NR NR NR NR

GA 888130 956859 983831 32943.83 5.75

RH-GA 791077 791216 794888 1156.0 8.79

PH-GA 790761 791111 791477 254.36 8.93
NR-Not reported in the literature
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Fig. 1. Convergence characteristics of GA, RH-GA and PH-GA for case-1 (left one) and case -2
(right one)
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Also, the convergence characteristics of GA, RH-GA and PH-GA are presented in
Fig. 1. In this figure, GA without heuristic does not find a single feasible solution in first
half of , and after that, it although finds few feasible solutions, but their qualities are
very poor. It is also noticed that GA in case-1 gets stuck and stops before reaching 
because the stopping criterion-2 is met. On the other hand, RH-GA and PH-GA both
obtain feasible solutions quickly and run up to , where PH-GA dominates RH-GA in
terms of obtaining better solutions. A non-parametric statistical (Wilcoxon) test is also
undertaken between PH-GA and both GA and RH-GA, as their results are available.
The tests reveal that the PH-GA provides significant better results than both other
methods.

4.2 Wind-Thermal DED Without Loss

In this section, we demonstrate our algorithm’s performance on solving the test problem
without considering PTL. Likely case-1, the test problem without PTL is also solved
using GA, RH-GA and PH-GA. As the test problem without PTL has not been solved
in the literature, the results obtained from GA, RH-GA and PH-GA are presented in
Table 2. From this table, it is clear that PH-GA outperforms GA and RH-GA in terms
of solutions quality and robustness.

Table 2. Statistical analysis for the wind-thermal system without PTL

Method Production cost ($) CPU time
(min)Minimum Median Maximum STD

GA 716225 798045 940119 82040.51 5.68

RH-GA 625307 625547 625845 185.1668 8.60

PH-GA 625000 625318 625499 157.1584 8.85

Regarding the computational time, of different approaches in both cases (Tables 1
and 2), although the proposed PH-GA takes a little bit more simulation time than those
in RH-GA, and GA, but the quality of solutions is significantly improved than other
methods.

5 Conclusions

In this paper, a nonlinear, constrained and complex DED model of a wind-thermal power
system was solved, in which the objective was to minimize the overall operation cost
including the fuel and environmental cost of thermal generators, operational cost of wind
turbines, underestimated and overestimated cost of uncertain wind speeds by satisfying
load demand and other technical constraints. In order to solve this problem, a GA with
a new heuristic was proposed. The heuristic was used to satisfy the demand constraints
by allocating the generators in priority basis. As the rank of a unit depends on amount
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of generation producing that time, the priority of a unit was dynamically updated using
another GA. The proposed algorithm was referred as PH-GA.

The algorithm was found better than other two GA variants (GA and RH-GA). To
add to this, the algorithm was superior to other meta-heuristics, namely DE and PSO
used in literature.
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Abstract. Performance issues when dealing with a large number of
features are well-known for classification algorithms. Feature selection
aims at mitigating these issues by reducing the number of features in
the data. Hence, in this paper, a feature selection approach based on
a multi-operator differential evolution algorithm is proposed. The algo-
rithm partitions the initial population into a number of sub-populations
evolving using a pool of distinct mutation strategies. Periodically, the
sub-populations exchange information to enhance their diversity. This
multi-operator approach reduces the sensitivity of the standard differen-
tial evolution to the selection of an appropriate mutation strategy. Two
classifiers, namely decision trees and k-nearest neighborhood, are used
to evaluate the generated subsets of features. Experimental analysis has
been conducted on several real data sets using a 10-fold cross validation.
The analysis shows that the proposed algorithm successfully determines
efficient feature subsets, which can improve the classification accuracy
of the classifiers under consideration. The usefulness of the proposed
method on large scale data set has been demonstrated using the KDD
Cup 1999 intrusion data set, where the proposed method can effectively
remove irrelevant features from the data.

1 Introduction

High-dimensional data (data with a high number of features) analysis is gaining
increasing importance in the machine learning community. Many important data
analysis problems in fields like intrusion detection, finance, and satellite imagery,
are high-dimensional. Increasing the number of features could potentially provide
detailed information for classification. However, such high-dimensional feature
spaces cause scalability problems for classification algorithms. On the one hand,
the number of training instances linearly increases as a function of the number
of features for a linear classifier, and increases to square of the number of fea-
tures for a quadratic classifier. For stochastic classifiers, the required number of
training instances increases exponentially as a function of the number of features
[12]. On the other hand, real-world data contains redundant and irrelevant fea-
tures. Redundancy and noise degrade not only the computational efficiency of
classification algorithms, but also their classification accuracy [3].
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To deal with high-dimensional data, feature selection techniques are often
applied to simplify a classification model. They merely identify a representa-
tive subset of features for the original high-dimensional data. By training clas-
sifiers with this representative feature subset, more accurate results can often
be obtained, while reducing the computational costs. Different feature selection
techniques have been studied in the literature, and they can be categorized into
two main categories: (1) filter techniques [8]; and (2) wrapper techniques [9].
In filter techniques, a relevance score is calculated for each feature, and a pre-
determined number of high-scoring features are presented as input to the clas-
sification algorithm. Wrapper techniques explore the space of feature subsets
for the optimal or near optimal feature subset. Evaluation of different feature
subsets is obtained by training and testing a specific classification model using
cross validation on the data set.

Finding the optimal feature subset is considered a NP hard optimisation
problem and a search strategy is needed to explore the feature subset space.
Various search algorithms have been proposed in the literature, such as sequen-
tial forward search and sequential backward search [6]. The forward and back-
ward searches work by adding or removing one feature at a time, depending
on the classification accuracy. The search stops when the classification accuracy
declines. Evolutionary algorithms have also been investigated in feature subset
selection and have provided competitive performance in this regard [1,15,17].

Differential evolution (DE) was originally proposed by Storn and Price [18].
It is a simple and fast population based evolutionary search technique that has
been shown to perform well on a wide variety of problems. It has been used in
the feature selection domain and showed encouraging results. Martinovic et al.
[14] proposed a wrapper based feature selection approach. The classifier used was
k-NN and a DE algorithm was adapted for binary spaces. Good quality solutions
found during the DE run were stored in an archive. A final solution was then
obtained from the archive by performing a k-fold cross-validation of its solutions
and the best one was selected. DE was firstly used for finding informative gene
subsets in Tasoulis et al. [19] used a version of DE for integer representation of
genes (features of microarray data set). It applied a Feedforward Neural Net-
work (FNN) as the classifier of selected subsets. Jose Garcia and Javier Apolloni
[7] have proposed a binary version of DE for the efficient gene selection of high
dimensional microarray datasets. Support vector machines (SVM) classifier was
used to evaluate generated solutions. Khushaba et al. [10] have proposed a DE
filter feature selection algorithm, where the desired number of features is deter-
mined by the user. Instead of using a binary variant of DE, the authors directly
encoded the indices of the features into the DE population, i.e. the lower and
upper boundaries of the entries of a given vector is 1 and the total number of
features respectively.

Despite the encouraging results of DE in the feature selection domain, its
performance is sensitive to the choice of mutation strategy and other parameter
setup [13]. The best parameter setup can be different for different problems.
Therefore, a time-consuming trial-and-error process is performed to select the
most appropriate strategy and to tune its associated parameter to successfully



Investigating Multi-Operator Differential Evolution for Feature Selection 275

solve a specific problem. Elsayed et al. [4] have proposed a multi-operator genetic
algorithm (GA) for single objective optimization problems. The proposed app-
roach partitions the initial population into a number of sub-populations that
evolve using their own parameter setup. Their model overcame the manual selec-
tion of parameter setup and provided better performance than the standard
single operator GA.

The purpose of this paper is to investigate the effectiveness of using the
multi-operator approach in DE based feature selection to search for the most
representative feature subset, and subsequently its usefulness in enhancing the
generalization capabilities of classification models. Our hypothesis is that uti-
lizing the multi-operator approach can mitigate the DE sensitivity to using a
specific mutation strategy for a given problem. The multi-operator approach
can also yield a more refined subset selection and so can provide more accu-
rate classification solutions in complex problems. To achieve this, we propose
a new feature selection algorithm, based on multi-operator DE. The quality of
generated solutions is evaluated using the classification accuracy of a specific
classifier. A final solution is then obtained by selecting the best solution across
all sub-populations. The different sub-populations evolve in parallel alongside
with the 10-fold cross-validation attempts to ensure the selection of the most
salient features from the set. In this paper, four variants of DE from the litera-
ture are chosen and implemented. The performance of the proposed algorithm
is compared with the original data set without feature selection and with two
other popular feature selection algorithms on 12 real-world data sets taken from
the UCI machine learning repository.

The remainder of this paper is organized as follows: Sect. 2 briefly discusses
the feature selection problem, and DE is explained in Sect. 3. The proposed
multi-operator DE based feature selection MODE-FS is presented in Sect. 4.
Experimental setup, results and analysis on small-scale data sets are presented
in Sect. 5. Results on large-scale intrusion detection data sets are discussed in
Sect. 6. Finally, Sect. 7 summarizes the work presented in this paper, concludes,
and discusses future work.

2 Feature Selection Problem

Feature selection is the process of removing irrelevant or redundant features from
the classification task. Although an increasing number of features can improve
the generalization capabilities of classification algorithms, the presence of fea-
tures that are deemed to not be useful to the classification task degrades classi-
fication performance in terms of both classification accuracy and computational
complexity. This is due to the noise that is contributed by these additional fea-
tures [2]. The goal of feature selection is therefore to search for the set of relevant
features that produce comparable or better classification performance than the
case when all the features are used.

Suppose, that the set of available features for a given classifier are denoted
by F = {F1, F2, ..., FD} where D is the total number of features. The feature
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selection problem is then stated as follows: Find the appropriate subset of fea-
tures F̄ ⊆ F such that the classification accuracy of a classifier trained using F̄
is maximized.

3 Differential Evolution

DE is an efficient and powerful population-based stochastic search technique for
solving optimization problems. In comparison to other stochastic search algo-
rithms, DE exhibits better performance in terms of accuracy and convergence
speed, on a wide variety of single and multi-objective optimization problems [20].

Many variants of the standard differential evolution have been proposed in
the literature. To differentiate among them, a notation is often used in the form
of DE/x/y/z, where x denotes how the mutation of new offspring is performed, y
denotes the number of vector differences added to the base vector, and z indicates
the crossover method used. For example, the most popular strategy, denoted by
DE/rand/1/bin, generates the point v by adding the weighted difference of two
points and uses a binomial (uniform) crossover operator.

An initial population of N D-dimensional real-valued vectors is generated
randomly. Each vector in the population (also known as an individual, or a
chromosome in some rare cases) forms a candidate solution to the problem being
solved. At any generation, the ith vector of the current generation g ∈ [1 − G],
where G is the total number of generations, is represented as follows:

Xi,g = [x1,i,g, x2,i,g, ...., xD,i,g] (1)

where D is the dimensionality of the problem.

3.1 Evolutionary Process

For each ith vector from the current population (also known as the target vector
or parent), three other distinct vectors, say xr1 , xr2 , xr3 , are sampled randomly
from the current population. The indices r1, r2, and r3 are mutually exclusive
integers randomly chosen from the range [1, N ], which are also different from
the base (target) vector index i. These indices are randomly generated once for
each mutant vector. To obtain a new vector (referred to as the donor vector),
one of the following mutation strategies is applied:

1. DE/rand/1: A new vector is obtained as follows:

Y i,g = Xr1,g + F. (Xr2,g − Xr3,g) (2)

2. DE/best/1: A new vector is obtained as follows:

Y i,g = Xbest,g + F. (Xr1,g − Xr2,g) (3)
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3. DE/rand-to-best/1: A new vector is obtained by as follows:

Y i,g = Xi,g + F. (Xbest,g − Xi,g) + F. (Xr1,g − Xr2,g) (4)

4. DE/Current-to-best/1: A new vector is obtained as follows:

Y i,g = Xi,g + F. (Xbest,g − Xi,g + Xr1,g − Xr2,g) (5)

where F is a scaling number chosen in the range [0, 2], and Xbest,g is the indi-
vidual with the best fitness value in the current generation.

A crossover operation is performed after generating the donor vector through
mutation. The purpose of this step is to enhance the potential diversity in the
new population. During crossover the donor vector exchanges its entries with the
target vector Xi,g to form the trial vector T i,g = [t1,i,g, t2,i,g, ..., tD,i,g]. Although
various crossover methods have been proposed, the binomial crossover is widely
used in DE in the literature [16]. In binomial crossover, the elements of the trial
vector Ti,g are chosen using the following formula:

Td,i,g =
{
Yd,i,g if (randi,j [0, 1] ≤ Cr or j = jrand)
Xd,i,g otherwise (6)

where randi,j [0, 1] is a uniformly distributed random number.

Algorithm 1. MODE-FS
1: Initialize IP;
2: g ← 0;
3: Partition IP into S sub populations;
4: repeat
5: for s = 1 to S do
6: Create a new generation into Ps;
7: end for
8: Increment g by 1;
9: if g%W = 0 then

10: for s = 1 to S do
11: Replace the worst S − 1 individuals in Ps;
12: end for
13: end if
14: until g > G or optimal value reached

4 Multi-Operator Differential Evolution Based Feature
Selection

The purpose of this section is to introduce the multi-operator DE for feature
selection (MODE-FS). The proposed algorithm is initialized with a randomly
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generated population with a number (N) of individuals. The initial popula-
tion is then partitioned into a number (S) of equal sized sub-populations Ps,
where s ∈ S is the index of the corresponding sub-population. Conventional
DE employs one mutation strategy to generate new candidate solutions. To
overcome the drawbacks of using a single mutation strategy, the proposed algo-
rithm employs multiple mutation strategies. Each sub-population Ps employs
a mutation strategy of choice and which is different from that employed by
other sub-populations. Periodically, migration of solutions is performed where
separately evolving sub-populations identify and exchange genetic information.
After every W generations, the worst S − 1 individuals of each-sub population
Ps are replaced by chosen individuals from the other S − 1 sub-populations. For
each sub-population Pi | i ∈ S and i �= s, the population is sorted in descending
order using the fitness values and an individual is chosen randomly from the top
M individuals. The goal of this migration is to improve the diversity and the
convergence speed of the set of DE sub-populations. The best individual across
all sub-populations is returned as the solution for the feature selection problem.
Algorithm 1 shows pseudo-code of the proposed algorithm MODE-FS.

4.1 Individual Encoding

The length of an individual equals the total number of features in the problem D.
The entries of each individual are randomly initialized in the range [0, 1], where
a value less than 0.5 means that the corresponding feature does not participate
in the feature subset. If the value of a particular entry is greater than or equal
to 0.5, then the corresponding feature participates in the feature subset. An
example of individual encoding with 10 entries is shown in Fig. 1.

0.120.97 0.68 0.17 0.25 0.29 0.59 0.44 0.58 0.07

Fig. 1. An example of individual encoding with 10 features.

4.2 Fitness Calculation

To evaluate generated individuals, a fitness value is assigned to each individual
in the sub-populations. The following steps are followed to calculate the fitness
value.

1. Suppose, there are D features present in a particular individual (i.e., there
are D entries whose values are greater than or equal to 0.5).

2. Construct a classifier with only these D features.
(a) the data is divided into 3 sets: training set, test set, and validation set.

Both the training and testing sets are used during individual evaluation,
while the validation set is used to evaluate the final solution of the algo-
rithm. The classifier is trained using the training set with the D features
encoded in the current individual and are evaluated with the test set.
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3. The classification accuracy of the classifier on the test set is assigned to the
current individual as its fitness value.

4.3 Mutation

Each sub-population in MODE-FS employs its own mutation strategy. For each
target vector in a given sub-population, a mutant vector (donor) is generated
according to the mutation strategy of choice. The donor vector is then checked
for boundary excess, i.e. if an entry falls outside the range [0,1] then it is approx-
imated to remain in that range.

4.4 Crossover

Crossover is introduced in order to increase the diversity in the population of
individuals. To this end, the trial vector is generated according to Eq. 6, where
CR belongs to [0,1] and has to be determined by the user.

5 Experiments on Small Scale Data Sets

In this section, an experimental analysis of the performance of the proposed
MODE-FS model is discussed. First, the experimental setup is presented, fol-
lowed by an analysis and comparison of the performance of MODE-FS with two
of the popular feature selection algorithms in the literature, namely RELIEF [11],
and fast correlation-based filter (FCBF) [21].

5.1 Experimental Setup

A set of experiments were run on 12 real data sets that were extracted from
the UCI repository [5], and are summarized in Table 1. All the data sets were
partitioned using a stratified 10-fold cross-validation to generate training/testing
data sets. Each generated training set is then repartitioned using a stratified
10-fold cross validation to generate training/validating data sets. The results
represent the average of a total of 10 folds. The subset that achieves the highest
classification accuracy is output as the final selected feature subset.

The parameters of MODE-FS were set as follows: N = 100, S = 4, the top
number of individuals from which individuals were chosen for migration M = 5.
The scaling factor F varies in the range [0.4, 1], the crossover probability Cr =
0.95. Four variants of the mutation operators were used in the sub-populations as
follows: DE/rand/1/bin, DE/best/1, DE/rand-to-best/1, and DE/Current-to-
best/1. The performance of the proposed feature selection algorithm was tested
with two classifiers: K-nearest neighbor (KNN), and decision tree classifier (DT).
Student t-tests with a confidence interval of 95 % were used to determine whether
significant differences between the classification accuracy of MODE-FS and other
algorithms were recognized over the 10 folds.
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Table 1. Data set description. #inst represents the number of instances, #feat repre-
sents the total number of features, and #cls represents the number of classes.

Id. Data set #inst #feat #cls

win Wine 178 13 3

h-s Heart-s 270 13 2

vot Vote 436 15 2

veh Vehicle 846 18 4

hep Hepatitis 155 19 2

seg segmentation 2310 19 7

thy Thyroid 7200 21 3

par Parkinson 195 22 2

wpbc Wisc. pronostic breast cancer 198 33 2

spt Spectf 267 44 2

son Sonar 208 60 2

old Ozone level detection 2536 73 2

5.2 MODE-FS with K-Nearest Neighbor Classifier

Table 2 contains the results of the experiments performed to evaluate MODE-FS.
In Table 2, each data set is represented by one row. The classification accuracy
reported is the average over 10 folds along with their standard deviations. Orig-
inal data set denotes the accuracies with the original data set before feature
selection. MODE-FS denotes the classification accuracies with the feature sub-
set generated by MODE-FS. RELIEF denotes the classification accuracies with
the feature subset generated by RELIEF algorithm. FCBF denotes the classi-
fication accuracies with the feature subset generated by FCBF algorithm. All
classification accuracies were obtained using KNN classifier algorithm. The best
result for each data set is shown in bold, where significantly better results are
marked by âĂŸ*âĂŸ.

It can be observed in Table 2, that for all data sets, the feature subset gener-
ated by the proposed MODE-FS algorithm produces higher accuracy than the
original data set and the feature subsets generated by RELIEF and FCBF. Also,
the accuracy difference was significant in 7 of the 12 data sets. The null hypoth-
esis that all algorithms present similar classification accuracy was tested using a
Friedman’s test with 95 % confidence interval. The resulting p-value of (0.000075
< 0.05) indicates that the null hypothesis of equivalence was rejected. The last
row in Table 2 shows the corresponding Friedman’s rank of each algorithm.

5.3 MODE-FS with Decision Tree Classifier

Table 3 contains the results of the experiments performed to evaluate MODE-FS
using a DT classifier. On the data sets under consideration, there was no signifi-
cant difference between the feature subset generated by the proposed algorithm
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Table 2. Classification comparison of MODE-FS with KNN classifier.

Id. Original data set MODE-FS RELEIF FCBF

win 96.93 ± 1.25 97.47 ± 0.31 96.81 ± 1.91 96.75 ± 0.93

h-s 75.27 ± 9.56 92.48 ± 1.05 * 89.00 ± 1.16 90.52 ± 0.41

vot 77.78 ± 12.83 82.72 ± 5.66 79.78 ± 12.83 79.01 ± 14.97

veh 79.26 ± 14.31 95.42 ± 0.06 * 88.26 ± 4.31 93.09 ± 0.09

hep 74.39 ± 4.30 81.49 ± 2.03 * 76.39 ± 2.10 64.16 ± 3.80

seg 83.33 ± 14.09 91.67 ± 7.22 90.33 ± 6.09 91.67 ± 7.22

thy 96.97 ± 0.98 98.12 ± 0.12 * 90.97 ± 1.11 88.02 ± 5.75

par 94.95 ± 0.79 99.21 ± 0.21 * 94.95 ± 0.79 92.55 ± 0.08

wpbc 93.16 ± 2.93 96.58 ± 0.97 * 90.24 ± 2.93 89.74 ± 4.90

spt 77.72 ± 6.61 88.16 ± 2.75 * 78.63 ± 6.53 72.54 ± 7.42

son 84.90 ± 7.84 88.75 ± 3.71 79.19 ± 5.84 71.18 ± 6.24

old 85.32 ± 8.94 95.16 ± 0.14 * 89.62 ± 3.94 90.32 ± 4.77

Friedman’s rank 1.96 3.96 2.29 1.79

Table 3. Classification comparison of MODE-FS with DT classifier.

Id. Original data set MODE-FS RELEIF FCBF

win 97.16 ± 2.85 98.33 ± 1.68 92.68 ± 9.69 99.41 ± 0.86

h-s 90.37 ± 7.65 88.89 ± 4.28 90.37 ± 7.65 87.78 ± 6.99

vot 96.75 ± 3.83 97.69 ± 2.11 98.10 ± 1.55 95.61 ± 3.55

veh 90.65 ± 6.16 89.95 ± 3.69 92.50 ± 7.54 68.43 ± 4.51

hep 92.50 ± 7.54 97.50 ± 2.27 96.75 ± 3.83 95.00 ± 3.74

seg 98.44 ± 1.43 99.00 ± 0.41 95.10 ± 4.40 95.24 ± 1.88

thy 99.83 ± 0.13 99.71 ± 0.14 90.65 ± 6.16 92.58 ± 0.07

par 96.42 ± 3.50 97.97 ± 2.52 90.47 ± 7.69 90.63 ± 7.72

wpbc 92.68 ± 6.69 94.84 ± 4.90 90.37 ± 7.65 85.50 ± 13.00

spt 94.26 ± 5.76 95.88 ± 3.27 99.83 ± 0.13 * 81.64 ± 4.49

son 95.10 ± 4.40 98.55 ± 1.34 94.83 ± 3.21 95.62 ± 3.38

old 98.37 ± 1.26 98.43 ± 0.65 96.42 ± 3.50 96.92 ± 0.26

Friedman’s rank 2.21 4.00 2.21 1.58

and the original data set, except in the spectf data set where RELIEF was the
best algorithm. Compared to the other feature selection algorithms, MODE-FS
achieved similar results on all data sets in comparison to RELIEF algorithm
where the difference in classification accuracy was not significant. MODE-FS
provided significantly better results than FCBF on six data sets, it was out-
performed on one data set (wbcd). On the remaining data sets, the difference
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in classification accuracies was not significant. To add to that, the proposed
algorithm achieved more robust results which is shown by its lowest standard
deviation among other techniques. The p-value of a Friedman’s test with 95 %
confidence interval indicates that the null hypothesis of equivalence is rejected
with probability (0.000006 < 0.05). The last row in Table 3 shows the correspond-
ing Friedman’s rank of each algorithm. To sum up, the proposed algorithm has
been shown to provide similar, if not better performance than the other feature
selection algorithms considered in this study when using a DT classifier.

6 Experiments on Intrusion Detection Data Set

The problem of intrusion detection has been studied extensively in computer
security and has received a lot of attention in machine learning and data min-
ing. The KDD CUP 1999 data set is a popular data set to evaluate learning
algorithms in the literature, it was extracted from the original 1998 DARPA
intrusion detection data set. The KDD CUP data set contains 494,021 connec-
tion records as training data and 311,000 connection records for testing. Each
record is described with 41 features and a label that specifies whether it is
a normal record or a specific attack type. In this section, we investigate the
applicability of MODE-FS in the intrusion detection domain. The parameters
of MODE-FS are set as explained in Sect. 5. The reported results represent the
average of the classification accuracy over 10 independent runs on the data set.

Table 4. Classification performance on KDD Cup 1999 data set. Clr refers to the
classifier used, #feat refers to the number of features selected by each algorithm. Acc
refers to the average accuracy rate achieved along with the corresponding standard
deviation.

Clr MODE-FS RELEIF FCBF

#feat Acc #feat Acc #feat Acc

DT 10.4 98.92 ± 0.13 19 98.76 ± 0.28 21 97.33± 0.45

KNN 10.4 99.25 ± 0.15 19 98.94 ± 0.18 21 98.63± 0.29

Table 4 summarizes the results of the experiments obtained on the KDD CUP
data set. There were variations among the feature selection algorithms used in
the experiments. As to the number of selected features, MODE-FS resulted in the
lowest number of relevant features when compared to both RELEIF and FCBF.
In regard to the classification accuracy, a student t-test with a confidence interval
of 95 % showed that MODE-FS presented significantly better classification accu-
racy compared to FCBF. On the other hand, there was no significant difference
in the classification accuracy between MODE-FS and RELEIF.
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7 Conclusion and Future Work

Different DE algorithms have been proposed to solve feature selection problems.
Most of these algorithms were designed to use a single mutation operator. For
a given data set, multiple DE mutation strategies may be more effective than
a single mutation strategy, as in conventional DE. Based on this observation, a
multi-operator DE feature selection algorithm was proposed in this paper. The
performance of MODE-FS was evaluated on a set of benchmark classification
data sets of varying sizes and numbers of features and was compared with two
popular feature selection algorithms. The results of the analysis show the use-
fulness of the proposed approach. The results achieved by the proposed method
were statistically evaluated using a student t-test. In the KNN classifier, it was
shown that the differences in performance were in most cases statistically sig-
nificant. MODE-FS has been also shown perform well on the large-scale KDD
CUP 1999 data set. As future work, other advanced variants of DE will be inves-
tigated. In addition, controlling algorithm’s parameters, such as the number of
mutation variants and each sub-populations size can be adaptively based on
convergence performance.
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Abstract. Feature reconstruction of time series problems produces
reconstructed state-space vectors that are used for training machine
learning methods such as neural networks. Recently, much consideration
has been given to employing competitive methods in improving coop-
erative neuro-evolution of neural networks for time series predictions.
This paper presents a competitive feature selection and reconstruction
method that enforces competition in cooperative neuro-evolution using
two different reconstructed feature vectors generated from single time
series. Competition and collaboration of the two datasets are done using
two different islands that exploit their strengths while eradicating their
weaknesses. The proposed approach has improved results for some of the
benchmark datasets when compared to standalone methods from the
literature.

Keywords: Cooperative coevolution · Feedforward networks · Problem
decomposition · Time series

1 Introduction

Cooperative Coevolution (CC) provides an architecture for evolutionary algo-
rithms that breaks down a problem into subcomponents that are implemented
as sub-populations [1]. The application of CC for training neural networks is
also referred as cooperative neuro-evolution [2]. In cooperative neuro-evolution,
problem decomposition is defined by the structural properties of the network
that contains interdependencies and dependent on the architecture and the type
of training problem [2].

Chaotic time series problems are highly sensitive to noise and initial con-
ditions [3]. Neural networks have been successfully used to tackle chaotic time
series problems [4,5]. Time series prediction can be improved by exploring dif-
ferent features of the time series data and by selecting optimal values of the
associated variables that are used for pre-processing [6].

Takens theorem [7] is one of the techniques for reconstructing the original
time series into a phase space that is used for training neural networks [4].
c© Springer International Publishing Switzerland 2016
T. Ray et al. (Eds.): ACALCI 2016, LNAI 9592, pp. 285–297, 2016.
DOI: 10.1007/978-3-319-28270-1 24
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The time lag defines the interval at which the data points are to be picked
and the embedding dimension specifies the size of the sliding window. These
parameters are essential for building robust prediction systems that have been
the focus of recent work where a quantum-inspired hybrid method was used for
financial time series [6]. A multi-objective cooperative coevolution method was
also introduced using time-lag as a parameter for reconstruction of the original
data into different state space vector dataset as different objectives for financial
prediction [8]. A similar approach was used in [9].

Competitive island cooperative coevolution algorithm (CICC) was intro-
duced for training recurrent neural networks for time series prediction [10]. The
method used different problem decomposition methods as islands and ensured
that their features are used during evolution. It was later applied for global
optimization problems [11].

Previous work focused on employing competitive methods that feature prob-
lem decomposition methods in neural networks. There has not been much work
done that exploited the different parameters used for reconstructed state space
vectors the original time series.

This paper presents a cooperative neuro-evolution method that enforces com-
petition and collaboration using two different reconstructed feature vectors gen-
erated from a single time series. The method is called co-evolutionary feature
selection and reconstruction which employs feedforward neural networks for time
series prediction. Taken’s theorem for state-space feature reconstruction.

The remainder of this paper is organized as follows. In Sect. 2, the proposed
method is introduced. In Sect. 3, experiments, results and discussion are high-
lighted. Section 4 concludes the paper with plans for future work.

2 Co-evolutionary Feature Selection and Reconstruction

This section provides details of co-evolutionary feature selection and reconstruc-
tion (CSFR) for training feedforward network for time series prediction.

CSFR follows the same principle as the competitive island cooperative coevo-
lution for problem decomposition methods where the exchange of best individ-
uals takes place between the islands after competition [10].

In the proposed method, an island is defined by different reconstructed state
space vectors generated from a single time series along with sub-populations that
evolve using cooperative coevolution.

The proposed method has two different islands that are created using neuron
level decomposition as seen in Fig. 1. Each island is evaluated using feedfoward
networks with a unique reconstructed dataset as seen in Fig. 2. The reconstructed
dataset is generated using Taken’s embedding theorem with the two conditions
that are time delay (T) and embedding dimension (D) [7]. The embedding dimen-
sion is used to determine the number of input neurons in feedforward network.
The embedding dimension is fixed while time delay is varied as shown in Fig. 3.

Details of the CSFR using feedforward network is given in Algorithm1. Neu-
ron level problem decomposition is used where the network is broken down into
subcomponents that are based on hidden and output neurons [2].
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Fig. 1. Neuron level decomposition showing number of sub-components.

Fig. 2. The islands with different reconstructed datasets compete and collaborate with
each other for Sunspot time series. Note that the same problem decomposition is used
in both islands, hence the transfer of best solution is done without complications.

In Step 1, the sub-populations of both islands are initialized with random
real values in a suitable range. In Step 2, the evolution of both the islands takes
place where each network is evolved for a predefined time based on the number
of fitness evaluations (FE) which is called local island evolution time. In Step
3, the competition takes place where the algorithm checks if the best solution
of the particular island is better than the other island. In Step 4, the solution
that is marked as best is copied to the other island which helps the other island
evolve. The best solution from both the islands is used to test for generalization.
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Fig. 3. Reconstruction of Sunspot data set using Taken’s Theorem.

3 Experiments and Results

This section presents the experiments and results for co-evolutionary feature
selection and reconstruction (CSFR) using feedforward network for time series
prediction.

3.1 Experimental Setup

The proposed method is evaluated with four different chaotic time series data
sets. They include the Mackey-Glass [12] and Lorenz time series [13] that are
the two simulated time series. Sunspot [14] and ACI Worldwide Inc. [15] are the
two real-world problems.

The data sets used is based on the same configuration as used in past
work [4]. The Mackey-Glass and ACI Worldwide Inc. time series are scaled in
the range of [0,1], whereas the Sunspot and Lorenz are scaled in the range of
[-1,1]. Mackey-Glass and ACI Worldwide Inc., employs feedforward network with
sigmoid units in the hidden and the output layer. Lorenz and Sunspot use the
hyperbolic tangent unit in the output layer.

The neuron level (NL) decomposition method was used in each of the islands
[2]. Standalone cooperative coevolution methods are used for comparison of the
results with different time delays. The performance and results of the method
were evaluated by using three different numbers of hidden neurons (3, 5 and 7),
and compared with standalone methods. The maximum evolution time used is
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50 000 for standalone methods. In the proposed method, both islands have 50
000 function evaluations, each similar to the approach used in [10].

The generalized generation gap algorithm with parent-centric crossover (G3-
PCX) evolutionary algorithm is used to evolve the sub-populations [16]. Depth
of search for each sub-population is 1 with pool size of 2 parents and 2 offspring
[4]. We have used the population size of 300 from the literature [10]. The root
mean squared error (RMSE) and normalized mean squared error (NMSE) are
used to measure the performance of the network as given in Eqs. 1 and 2.

RMSE =

√√√√ 1
N

N∑

i=1

(yi − ŷi)2 (1)

NMSE =

(∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

)
(2)

Algorithm 1. CSFR for Feedforward Networks
Step 1: Create Island-One and Island-Two with Sub-populations based on
neuron level problem decomposition:
i. Cooperatively Evaluate Island-One FNN using Reconstructed Dataset-One
ii. Cooperatively Evaluate Island-Two FNN using Reconstructed Dataset-Two
Step 2: Evolution:
while Total-FE ≤ Max-FE do

while Local-FE ≤ Island-Evolution-Time do
foreach Sub-population at Island-One do

foreach Depth of n Generations do
Create new individuals using genetic operators
Cooperative Evaluation

end

end

end
while Local-FE ≤ Island-Evolution-Time do

foreach Sub-population at Island-Two do
foreach Depth of n Generations do

Create new individuals using genetic operators
Cooperative Evaluation

end

end

end
Step 3: Competition: Compare the best solutions from both islands
Step 4: Collaboration: Exchange the best fitness individuals from the
winning island into the other island. Evaluate the other island.

end
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where yi, is observed data, ŷi is predicted data and ȳi is average of observed
data and N is the length of the observed data. These two performance measures
are used in order to compare the results with the literature.

3.2 Results

Tables 1, 2, 3 and 4 report the results for different number of hidden neurons
using co-evolutionary feature selection and reconstruction feedforward neural
network (CSFR-FNN) with time lags (T=2, T=3). The two different time lags
are also used for standalone methods which are cooperative coevolutionary feed-
forward neural networks (CCFNN) that use different time delays (T=2 and
T=3), but with same dimension (D).

The results report RMSE and 95 percent confidence interval from different
numbers of hidden neurons, where each case executed 50 independent experi-
mental runs. Note that the best results are those with the least value of RMSE
for each case.

In Table 1, in the Mackey-Glass problem, it was observed that CSFR was able
to beat both standalone methods (T=2, T=3), and the best result was given by
5 hidden neurons. The overall performance in terms of generalization increased
as the number of hidden neurons increased.

Table 1. The prediction training and generalisation performance (RMSE) of stand-
alone and CSFR on the Mackey-Glass time series

Prob. H Training Generalisation Best

CCFNN(T=2) 3 0.0107 ± 0.00131 0.0107 ± 0.00131 0.0050

5 0.0089 ± 0.00097 0.0088 ± 0.00097 0.0038

7 0.0078 ± 0.00079 0.0078 ± 0.00079 0.0040

CCFNN(T=3) 3 0.0112 ± 0.00149 0.0112 ± 0.00149 0.0039

5 0.0081 ± 0.00063 0.0080 ± 0.00063 0.0041

7 0.0080 ± 0.00070 0.0078 ± 0.00070 0.0047

CSFR-FNN 3 0.0090 ± 0.00109 0.00090 ± 0.001103 0.0041

(T=2,T=3) 5 0.0065 ± 0.00068 0.0065 ± 0.00069 0.0029

7 0.0072 ± 0.00086 0.0072 ± 0.00086 0.0041

In Table 2, Lorenz problem shows that the CSFR has been able to outperform
both the standalone methods. The best result was seen in the case of 3 hidden
neurons for CSFR and standalone methods.

In Table 3, the Sunspot problem shows that CSFR method has not been able
to outperform the one of the standalone methods (T=3). Five hidden neurons
have given good results for CSFR methods.

In Table 4, the ACI Worldwide Inc. problem shows that the CSFR method
gives competitive results when compared to the standalone methods (T=2,



Coevolutionary Feature Selection and Reconstruction in Neuro-Evolution 291

Table 2. The prediction training and generalisation performance (RMSE) of Stand-
alone and CSFR on the Lorenz time series

Prob. H Training Generalisation Best

CCFNN(T=2) 3 0.0170 ± 0.0031 0.0176 ± 0.0031 0.0043

5 0.0249 ± 0.0062 0.0271 ± 0.0067 0.0021

7 0.0379 ± 0.0093 0.0416 ± 0.0092 0.0024

CCFNN(T=3) 3 0.0165 ± 0.0028 0.0167 ± 0.0028 0.0030

5 0.0278 ± 0.00830 0.0292 ± 0.00829 0.0022

7 0.0419 ± 0.00982 0.0425 ± 0.0104 0.0031

CSFR-FNN 3 0.0159 ± 0.0037 0.0163 ± 0.0040 0.0027

(T=2,T=3) 5 0.0149 ± 0.0033 0.0162 ± 0.0039 0.0023

7 0.0293 ± 0.0079 0.0321 ± 0.0083 0.0035

Table 3. The prediction training and generalisation performance (RMSE) of stand-
alone and CSFR on the Sunspot time series

Prob. H Training Generalisation Best

CCFNN(T=2) 3 0.0207 ± 0.0035 0.0538 ± 0.0091 0.015

5 0.0289 ± 0.0039 0.0645 ± 0.0093 0.017

7 0.0353 ± 0.0048 0.0676 ± 0.0086 0.021

CCFNN(T=3) 3 0.0189 ± 0.0145 0.0538 ± 0.0108 0.016

5 0.0291 ± 0.0143 0.0690 ± 0.0091 0.017

7 0.0302 ± 0.0174 0.0849 ± 0.00859 0.015

CSFR-FNN 3 0.0211 ± 0.00034 0.0180 ± 0.00072 0.015

(T=2,T=3) 5 0.0205 ± 0.00044 0.0187 ± 0.0036 0.014

7 0.0209 ± 0.00035 0.0181 ± 0.00077 0.015

Table 4. The prediction training and generalisation performance (RMSE) of stand-
alone and CSFR on the ACI Worldwide Inc. time series

Prob. H Training Generalisation Best

CCFNN(T=2) 3 0.0246 ± 0.00348 0.0247 ± 0.00348 0.015

5 0.0231 ± 0.00588 0.0284 ± 0.00570 0.016

7 0.0204 ± 0.00159 0.0194 ± 0.00157 0.015

CCFNN(T=3) 3 0.0204 ± 0.0014 0.0170 ± 0.00110 0.014

5 0.0202 ± 0.00116 0.0164 ± 0.00046 0.014

7 0.0202 ± 0.00383 0.0199 ± 0.00383 0.014

CSFR-FNN 3 0.0206 ± 0.00054 0.0187 ± 0.00131 0.015

(T=2,T=3) 5 0.0196 ± 0.00020 0.0166 ± 0.00058 0.013

7 0.0194 ± 0.00023 0.0183 ± 0.00274 0.014
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Fig. 4. Typical prediction given by CSFR for Sunspot time series.
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Table 5. A comparison with the results from literature for all data sets

Problem Prediction method RMSE NMSE

Mackey Radial basis network (RBF-OLS)(2006) [5] 1.02E-03

Locally linear neuro-fuzzy model (LLNF-LoLiMot)
(2006) [5]

9.61E-04

Neuro-fuzzy system with time delay coordinates
(2008) [17]

1.26E-03

Neural fuzzy network (PS0) (2009) [18] 2.10E-02

Neural fuzzy network (CPS0) (2009) [18] 1.76E-02

Neural fuzzy network and DE (2009) [18] 1.62E-02

Neural fuzzy network and GA (2009) [18] 1.63E-02

Synapse Level-CCRNN (SL-CCRNN) (2012) [4] 6.33E-03 2.79E-04

Neuron Level-CCRNN (NL-CCRNN) (2012) [4] 8.28E-03 4.77E-04

Competitive Island Cooperative Coevolution
(CICC-RNN) (2014) [10]

3.99E-03 1.11E-04

MOCCFNN with 2-objectives
(T=2)(MO-CCFNN-T=2) (2014) [8]

3.84E-03 2.80E-05

MOCCFNN with 2-objectives
(T=3)(MO-CCFNN-T=3) (2014) [8]

3.77E-03 2.70E-05

Proposed CCFNN-CSFR 2.90E-03 1.60E-06

Lorenz Radial basis network (RBF-OLS)(2006) [5] 1.41E-09

Locally linear neuro-fuzzy model (LLNF-LoLiMot)
(2006) [5]

9.80E-10

Auto regressive moving average (ARMA-ANN)(2008)
[19]

8.76E-02

Backpropagation neural network and GA (2011) [20] 2.96E-02

Synapse Level-CCRNN (SL-CCRNN) (2012) [4] 6.36E-03 7.72E-04

Neuron Level-CCRNN (NL-CCRNN) (2012) [4] 8.20E-03 1.28E-03

Competitive Island Cooperative Coevolution
(CICC-RNN) (2014) [10]

3.55E-03 2.41E-04

MOCCFNN with 2-objectives
(T=2)(MO-CCFNN-T=2) (2014) [8]

2.19E-03 2.53E-05

MOCCFNN with 2-objectives
(T=3)(MO-CCFNN-T=3) (2014) [8]

2.18E-03 2.54E-05

Proposed CCFNN-CSFR 2.32E-03 2.85E-05

Sunspot Radial basis network (RBF-OLS)(2006) [5] 4.60E-02

Locally linear neuro-fuzzy model (LLNF-LoLiMot)
(2006) [5]

3.20E-02

Synapse Level-CCRNN (SL-CCRNN) (2012) [4] 1.66E-02 1.47E-03

Neuron Level-CCRNN (NL-CCRNN) (2012) [4] 2.60E-02 3.62E-03

(Continued)
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Table 5. (Continued)

Problem Prediction method RMSE NMSE

Competitive Island Cooperative Coevolution
(CICC-RNN) (2014) [10]

1.57E-02 1.31E-03

MOCCFNN with 2-objectives
(T=2)(MO-CCFNN-T=2) (2014) [8]

1.84E-02 1.02E-03

MOCCFNN with 2-objectives
(T=3)(MO-CCFNN-T=3) (2014) [8]

1.81E-02 9.98E-04

Proposed CCFNN-CSFR 1.58E-02 7.56E-04

ACI Competitive Island Cooperative Coevolution
(CICC-RNN) (2014) [10]

1.92E-02

MOCCFNN with 2-objectives
(T=2)(MO-CCFNN-T=2) (2014) [8]

1.94E-02

MOCCFNN with 2-objectives
(T=3)(MO-CCFNN-T=3) (2014) [8]

1.47E-02

Proposed CCFNN-CSFR 1.34E-02 9.95E-04

T=3). The five hidden neurons have given best result of CSFR method. It has
also been observed that the generalization performance of the CSFR and the
other two methods does not deteriorate as the number of the hidden neuron
increases as it does for other problems.

Figures 4 and 5 show typical prediction given by the proposed method. It
shows that CSFR has been able to give a good prediction performance. CSFR
has been able to cope with the noise in the Sunspot time series given in Fig. 4
and ACI time series given in Fig. 5.

The Table 5 compares the best results of CSFR given in Tables 1, 2, 3 and 4
with some of the closely related methods from the literature. The best results are
used for the comparison. CSFR has given better performance when compared to
the majority of the methods in the literature. However, there are specific cases
that need further improvement.

In Table 5, for Mackey-Glass, the proposed method outperformed all the
methods except for locally linear neuro-fuzzy model (LLNF) and radial basis
network (RBF). Due to competition and collaboration, CSFR has outperformed
them.

In Table 5, for problem Lorenz, it shows the best result on Lorenz time series
problem that is compared with some of the related methods from the litera-
ture. CFSR outperformed all the methods for Lorenz, except for multi-objective
cooperative coevolution (MO-CCFNN), radial basis network (RBF) and locally
linear neuro-fuzzy model (LLNF).

In Sunspot problem, the performance of the proposed method on the Sunspot
time series problem is compared to the methods in the literature. CFSR outper-
formed all the methods except for CICC-RNN.
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(b) Error on the test data set given by CSFR for the ACI Worldwide time series.

Fig. 5. Typical prediction given by CSFR for ACI Worldwide time series.

In ACI Worldwide Inc. problem, CFSR was able to outperform all the meth-
ods in the literature. This shows that the proposed method can handle the noise
and the regions which are very chaotic in dataset as it is real world application
problem.

3.3 Discussion

The main strength of the proposed method allows to explore and learn from the
regions within the data set which are missed given that it is difficult to find the
optimal value for the time delay parameter. CFSR was able to perform better
due to information sharing during evolution via the neural network weights from
two diverse features extracted datasets implemented as islands.
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The proposed method gave exceptional results for generalization performance
when compared to standalone methods for the Sunspot problem. This shows
that the proposed method can perform very well in real world applications that
contain noise. This is also the best results when compared to other methods in
the literature as shown in Table 5.

One of the major advantages of the proposed method is that it can be imple-
mented in a multi-threaded environment that will speed up the computation
time. Neuro-evolution methods have limitations in terms of time when com-
pared to gradient based methods. In a multi-threaded implementation, each
island can run on a separate thread and speed up the evolutionary process. Note
that when only one neural network is used to evaluate both islands, there can
be problems in multi-threaded environment. Appropriate mutex locks as used
in multi-thread programming needs to be implemented. One solution is to use
two different neural networks that mirror each other in terms of topology one
for each island.

4 Conclusion

We proposed a co-evolutionary feature selection and reconstruction method that
used different reconstructed features of the separate data sets generated from
single time series. It has shown good results on all the different time series
problems and has outperformed majority of the methods in the literature.

Future work can employ different problem decomposition methods in the
islands and be extended to three of more islands. The proposed framework can
employ other neural network architectures such as recurrent neural networks
where both the dimension and time lag can be varied to generate different data
sets that provide competition. Different methods of feature extraction for time
series can be used to enforce the competition. The analysis about the strength
of the different islands at different stages of evolution can also be done, i.e.
to check which island wins the competition in different time series problems.
The proposed approach can also be extended for pattern classification problems
where feature selection has been extensively studied.
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Abstract. This paper presents a particle swarm optimisation (PSO)
based multi-objective feature selection method for evolving a set of
non-dominated feature subsets and achieving high classification perfor-
mance. Firstly, a multi-objective PSO (named MOPSO-SRD) algorithm,
is applied to solve feature selection problems. The results of this algo-
rithm are then used to compare with the proposed multi-objective PSO
algorithm, called MOPSO-SiD. MOPSO-SiD is specifically designed for
feature selection problems, in which a subset similarity distance measure
(distance in the solution space) is used to select a leader for each particle
in the swarm. This distance measure is also used to update the archive
set, which will be the final solutions returned by the MOPSO-SiD algo-
rithm. The results show that both algorithms successfully evolve a set
of non-dominated solutions, which include a small number of features
while achieving similar or better performance than using all features.
In addition, in most case MOPSO-SiD selects smaller feature subsets
than MOPSO-SRD, and outperforms single objective PSO for feature
selection and a traditional feature selection method.

Keywords: Feature selection · Classification · Multi-objective optimi-
sation · Particle swarm optimisation

1 Introduction

Classification is one of the most important tasks in machine learning, which
aims to predict the class label of an instance based on the value of instance’s
features. In the learning process, a set of instances, called the training set, is
used to train a classification algorithm, which is tested on an unseen test set. In
many problems, a large number of features is used to describe the instances well.
Unfortunately, due to “the curse of dimensionality”, the larger the feature set
is, the longer time the training process takes. In addition, relevant features are
often unknown without prior knowledge. Therefore, a large number of features
often contain irrelevant or redundant features, which are not useful for classifica-
tion. Those features might lower the quality of the whole feature set [4], because
they usually conceal the useful information from the relevant features. Feature
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selection methods [4,9] are used to remove those redundant and irrelevant fea-
tures, which will not only speed up the learning/classification process but also
maintain or even increase the classification performance over using all features.
However, due to the complex interaction between features and the huge search
space, it is hard to develop a good feature selection approach.

In feature selection, suppose there are n features in a dataset, then the total
number of possible subsets is 2n, which is a large search space. Exhaustive search
is too slow to perform in most situations. In order to reduce the searching time,
some greedy algorithms such as sequential forward selection [16] and sequential
backward selection [11] have been developed. However, these methods easily
get stuck into local optima. Because of their global search ability, evolutionary
computation (EC) techniques, such as genetic programming (GP) [12], genetic
algorithm (GAs) [8] and particle swarm optimisation (PSO) [14,17,18], have
been applied to solve feature selection problems. Compared with GAs and GP,
PSO is more preferable because it is simple and easy to implement. In addition,
PSO not only uses fewer parameters but also converges more quickly.

Feature selection can be viewed as a multi-objective problem because it needs
to maximise the classification accuracy and simultaneously minimise the dimen-
sionality of the selected subset. However, with fewer features being used for
classification, the classification accuracy is likely to decrease. Those two objec-
tives often conflict with each other and the searching process needs to con-
sider the trade-off between them. EC techniques are particularly suitable for
multi-objective optimisation since their population based mechanism can pro-
duce multiple trade-off solutions in a single run. However, directly using existing
multi-objective approaches to feature selection problems may not achieve promis-
ing performance since feature selection has a very complex search space, which
requires a specifically designed multi-objective algorithm to solve the problem.

Goals: The overall goal of this study is to develop a PSO based multi-objective
feature selection approach, which can produce a set of non-dominated solutions
that include a small number of features and achieve better classification per-
formance than using all features. To achieve this goal, we firstly directly apply
a very recently developed multi-objective PSO (MOPSO), called MOPSO-SRD
[7] to solve feature selection problems. After that, we develop a new MOPSO
algorithm, called MOPSO-SiD, which is specifically designed for feature selection
problems. This algorithm will then be compared with MOPSO-SRD. Specifically,
we will investigate

– whether the two multi-objective PSO algorithms can be applied to evolve a
set of non-dominated solutions with a small number of features and better
classification performance than using all features and single objective feature
selection methods;

– whether MOPSO-SiD, as an MOPSO algorithm specifically designed for fea-
ture selection problems, can produce better Pareto front than MOPSO-SRD.
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2 Background

2.1 Particle Swarm Optimisation (PSO)

Particle Swarm Optimisation (PSO) [5] is inspired by social behaviours such
as bird flocking and fish schooling. In PSO, a problem is optimized by using
a population (called swarm) of candidate solutions (called particles). To find
the optimal solution, each particle moves around the search space by updating
its position as well as velocity. Particularly, the current position of particle i
is represented by a vector xi = (xi1, xi2, . . . , xiD), where D is the dimension-
ality of the search space. These positions are updated by using another vector,
called velocity vi = (vi1, vi2, . . . , viD), which is limited by a predefined maximum
velocity, vmax and vid ∈ [−vmax, vmax]. During the search process, each particle
maintains a record of the position of its previous best performance, called pbest.
The best position of its neighbours is also recorded, which is called gbest. The
position and velocity of each particle are updated according to the following
equations:

vt+1
id = w ∗ vtid + c1 ∗ ri1 ∗ (pid − xt

id) + c2 ∗ ri2 ∗ (pgd − xt
id) (1)

xt+1
id = xt

id + vt+1
id (2)

where t denotes the tth iteration in the search process, d is the dth dimension
in the search space, i is the index of particle, w is inertia weight, c1 and c2
are acceleration constants, ri1 and ri2 are random values uniformly distributed
in [0,1], pid and pgd represent the position entry of pbest and gbest in the dth

dimension, respectively.

2.2 Related Work on Feature Selection

Traditional Feature Selection Methods. Sequential search techniques are
also applied to solve feature selection problems. In particular, sequential forward
selection (SFS) [16] and sequential backward selection (SBS) [11] are proposed.
At each step of the selection process, SFS (or SBS) adds (or removes) a feature
from an empty (full) feature set. Although these local search techniques achieve
better performance than the feature ranking method, they might suffer “nesting”
problem, in which once a feature is added (or removed) from the feature set, it
cannot be removed (or added) later.

EC Approaches to Feature Selection. EC techniques have recently been
used to solve feature selection problems due to their powerful global search
abilities, such as GAs [8], GP [12], and PSO [6,14,20]. Muni et al. [12] developed
a wrapper feature selection model based on multi-tree GP, which simultaneously
selected a good feature subset and learned a classifier using the selected features.
Two new crossover operations were introduced to increase the performance of GP
for feature selection. Based on the two crossover operations introduced by Muni
et al. [12], Purohit et al. [13] further introduced another crossover operator, which
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was randomly performed for selecting a subtree from the first parent and finding
its best place in the second parent. Lin et al. [8] proposed a GA-based feature
selection algorithm adopting domain knowledge of financial distress prediction,
where features were classified into different groups and a GA was used to search
for subsets consisting of top candidate features from each group.

To avoid premature convergence in PSO, Chuang et al. [2] proposed a new
gbest updating mechanism, which resets gbest elements to zero if it maintains the
same value after several iterations. However, the performance of this algorithm is
not compared with other PSO based algorithms. Tran et al. [14] used the gbest
resetting mechanism in [3] to reduce the number of features and performed a
local search process on pbest to increase the classification performance of PSO
for feature selection. The proposed algorithm further reduced the number of
features and improved the classification performance over [3] and standard PSO.
PSO with multiple swarms to share experience has also been applied to feature
selection [10], but may lead to the problem of high computational cost.

Two multi-objective PSO algorithms were used to solve feature selection
problems [19]. The first algorithm applied the idea of non-dominated sorting
based multi-objective genetic algorithm II (NSGAII) into PSO for feature selec-
tion. The other algorithm bases on the idea of crowding, mutation and dominance
to evolve the Pareto front solutions. According to the experimental results, both
algorithms can select a small number of features while achieving better classifi-
cation performance than using all features. However, the above algorithms did
not propose any specific design for feature selection problems. Therefore, this
work will propose a new multi-objective PSO algorithm, which is specifically
designed for feature selection problems.

3 Proposed Approach

PSO was originally proposed to deal with single objective problems, therefore
some multi-objective PSO approaches (MOPSO) are proposed to solve multi-
objective problems. In MOPSO algorithms, instead of recording gbest for each
particle, an archive set is used to maintain a set of non-dominated solutions
being discovered so far. Most of the existing MOPSO algorithms are different
in terms of the way to control this archive set as well as how to select a good
leader (gbest) for the swarm among the archive set.

Although there are many works which apply MOPSO to solve feature selec-
tion problems, most of them do not consider the properties of feature selection
problems. For example, in most MOPSO approaches, if two particles have exactly
same objective values, one of the particle will not be added into the archive set.
However, two particles might select the same number of features and achieve
the same classification accuracy, but the selected features might be different. In
feature selection problems, beside the two main objectives, which features being
selected is also important. Therefore, in this study we propose a new algorithm
called MOPSO using the subset Similarity Distance (MOPSO-SiD), where the
two main contributions are a new leader selection and a new control mechanism
for the archive set.
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Algorithm 1. Pseudo-code of MOPSO-SiD
1: begin
2: initialize the swarm and Archive A = {};
3: while Maximum iterations is not reached do
4: for each particle i in the swarm do
5: update the pbest of particle i;
6: select the archive member with the shortest SiD as its gbest;
7: update the velocity and the position of particle i;
8: mutation;
9: evaluate particles;

10: if the ith particle is not dominated by any archive members then
11: insert ithparticleintoA;
12: end if
13: end for
14: if A is full then
15: compute SiD between all pairs of archive members;
16: select a pair with the shortest SiD;
17: remove the archive member (among the selected pair) with lower accuracy;
18: end if
19: end while
20: calculate the testing classification error rate of the solutions in A (archive set);
21: return the position of particles in A;
22: return the training and test classification error rates of the solutions in A; end

3.1 The MOPSO-SiD Agorithm
Algorithm 1 shows the pseudo-code of MOPSO-SiD. In MOPSO-SiD, the sim-
ilarity distance (SiD) and the continuous multi-objective PSO are applied to
search for the non-dominated solutions. The representation of each particle is a
vector of n real numbers, where n is the total number of features. Each position
entry xi ∈ [0, 1] corresponds to the ith feature in the original feature set. A
threshold θ is used to decide whether or not a feature is selected. In particular,
the ith feature is selected if and only if θ < xi. The two objective is to minimise
the number of features and the classification performance.

3.2 Leader Selection

The main difference between PSO and MOPSO is how each particle selects its
gbest. In PSO, each particle records its own gbest, which is the best position
being discover by it and its neighbours. However in MOPSO, each particle will
select its gbest from an archive set, which contains all non-dominated solutions
being discovered so far. In MOPSO-SiD, for each generation, each particle freely
selects its own leader by using the subset similarity distance calculation. Given
two particles p1 and p2, the similarity distance (SiD) between two particles (i.e.
two feature subsets) is calculated according to the Eq. 3.

SiD(p1, p2) =
n∑

i=1

√
(x1i − x2i)2 (3)
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where n is the total number of features (i.e. length of each position vector),
x1i, x2i are the ith position entries of two particles p1, p2 respectively.

In each generation, for each particle in the swarm, the similarity distance
(SiD) between the particle and all archive members is calculated. After that, the
archive member with the shortest SiD is chosen as the leader of that particle.

This distance measure (SiD) is especially good at the early iterations com-
paring with SRD in MOPSO-SRD. As mentioned above, MOPSO-SRD selects
the leader based on the distance of objective values. In other word, MOPSO-
SRD only considers the objective space. In MOPSO-SRD a particle might select
an archive member, which is the closest to it in the objective space. However,
in the solution space (search space), the selected archive member might be very
far way from the particle if their selected features are different. Comparing with
MOPSO-SRD, MOPSO-SiD provides more exploitation ability by selecting the
closest archive member in terms of the position distance rather than the objective
distance.

3.3 Archive Control

Controlling the archive set is also an important part of a MOPSO algorithm.
The controlling mechanism aims to decide whether or not a solution is added to
the archive set or which solution should be removed from the archive set when
this set is full. In general, a solution S is added to the archive set if it is not
dominated by any archive members. This rule is still applied in MOPSO-SiD.
However, if there is at least one archive member, which has the same objective
values as the solution S, whether or not S will be added into the archive set.
In MOPSO-SRD, S will not be added to the archive set since it only consider
the objective values. In feature selection problems, the situation can be different.
Suppose that two particles might select the same number of features and achieve
the same classification, their selected features can still be different. This mean
that those particles might be at the same position in the objective space but they
are on different position in the solution space (search space). This is considered
by MOPSO-SiD. In particular, if there is an archive member, called A, which has
the same objective values as S (solution to be added), MOPSO-SiD will further
check the features being selected by both A and S. If the selected features of
A and S are different, S will be added into the archive set, otherwise S will be
discarded. Once more, MOPSO-SiD considers not only the objective space but
also the solution space.

Beside adding solutions, removing solutions from the archive set is also impor-
tant in an MOPSO algorithm. In general, each MOPSO approach has a measure
to rank solutions within an archive set. For example, MOPSO-SRD ranks the
archive members according to the square root distance (SRD). However, most
measures only consider the objective space, which might not be sufficient in
feature selection problems. Two particles which are close in the objective space
(similar classification accuracy and number of selected features) might select very
different features. Therefore instead of using the square root distance (SRD),
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Table 1. Datasets.

Dataset #features #classes #instances

Vehicle 18 4 946

WBCD 30 2 569

Ionosphere 34 2 351

Lung 56 4 32

Sonar 60 2 208

Movementlibras 90 15 360

Musk1 166 2 476

Arrhythmia 279 16 452

MOPOS-SiD uses the similarity between particles (i.e. feature subsets) in the
solution space to rank all archive members.

In particular, when the archive set is full, the subset similarity distance
between each pair of archive members is calculated according to the Eq. 3. After
that, MOPSO-SiD will select a pair of archive members with the shortest sim-
ilarity distance, which means that these members are the most similar pair in
terms of feature being selected. Since in feature selection problems, the classi-
fication accuracy is preferable when the number of selected features is similar,
MOPSO-SiD will remove the archive member with lower classification accuracy
from the above selected pair of archive members. In general, MOPSO-SiD con-
siders not only the objective values but also which features are selected by each
particle, which are both important in feature selection problems.

4 Experimental Design

Eight datasets (shown in Table 1) chosen from the UCI machine learning repos-
itory [1] are used in the experiments. These datasets have different numbers
of features, classes and instances. For each dataset, all instances are randomly
divided into a training set and a test set, which contains 70 % and 30 % of the
instances, respectively. In the experiments, the classification/learning algorithm
is K-nearest neighbour (KNN) where K = 5.

In both MOPSO-SRD and MOPOS-SiD, the parameters are set as follows
[15]: w = 0.7298, c1 = c2 = 1.49618, vmax = 0.2, population size is 30, and the
maximum number of iterations is 100. The threshold used for feature selection
is set to 0.6. For each dataset, each algorithm has been run 50 independent runs.
After each run, a set of non-dominated solutions are obtained. A single objective
PSO algorithm (SOPSO) for feature selection is also run 50 independent times
on the above datasets. SOPSO produces a single feature subset from each inde-
pendent run. In order to compare MOPSO-SRD and MOPSO-SiD with SOPSO,
firstly all the 50 archive sets are combined together to create an union set. In this
union set, the classification error rate of feature subsets, which share the same
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Table 2. Results of SFS.

Dataset #features Train error(%) Test error(%)

Vehicle 5 13.0 18.3

WBCD 1 5.5 11.1

Ionosphere 2 9.4 21.0

Lung 1 13.6 10.0

Sonar 5 19.4 27.0

Movementlibras 7 3.9 7.7

Musk1 1 22.8 27

Arrhythmia 3 5.4 7.0

number of features, are averaged. A set of average solutions is obtained by using
the average classification error rate and the corresponding number of features.
This average set is called the average Pareto front. In addition, for each dataset,
all the non-dominated solutions are selected from the union set to create a set
of best solutions, called best set.

5 Results and Discussions

Experimental results of the three PSO algorithms on the training and test sets
are shown in Figs. 1 and 2, respectively. For each dataset, the total number
of original features and the classification error rate when using all features for
classification are shown in the brackets on top of the chart. In each chart, the hor-
izontal axis shows the number of selected features and the vertical axis shows the
classification error rate. In Fig. 1, “SRD-Train-Ave” (“SiD-Train-Ave”) stands
for the average Pareto front resulted from MOPSO-SRD (MOPSO-SiD) in the
50 independent runs. “SRD-Train-Best” (“SiD-Test-Best”) represents the non-
dominated solutions of all solutions resulted from MOPSO-SRD (MOPSO-SiD).
The results of single objective PSO for feature selection is shown as SOPSO in
the figure. Figure 2 shows the same information as in Fig. 1 but the classification
error rates are calculated on the test set. The results of SFS as a benchmark
feature selection algorithm are shown in Table 2.

5.1 MOPSO-SiD vs All Features

According to Fig. 2, in all datasets, “SRD-Test-Ave” and “SiD-Test-Ave”contain
at least one solution, which selects no more than 30 % of the available features
and achieves similar or better performance than using all features. In all datasets,
both “SRD-Test-Best” and “SiD-Test-Best” contains one or more solution, which
select around 8 % of the available features and achieves similar or better perfor-
mance than using all features.
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Fig. 1. Results of MOPSO-SRD and MOPSO-SiD on training set (Color figure online).

The results suggest that in all datasets, both MOPSO-SRD and MOPSO-SiD
can evolve a set of features subsets with a small number of features and better
classification performance than using all features.

5.2 MOPSO-SiD vs SOPSO and SFS

Comparing results from Figs. 1 and 2, and Table 2, on most datasets, both
MOPSO-SRD and MOPSO-SiD can evolve at least one solution, which selects
smaller number of features while achieving better classification accuracy than
SFS. On Musk1 and Arrhythmia dataset, although SFS selects a smaller num-
ber of features than the multi-objective PSO approaches, its classification accu-
racy is even worse than the worst solution of both MOPSO algorithms. This is
because MOPSO considers the interaction between features while SFS doe not.

Comparing with SOPSO for feature selection, on most of datasets, both
MOPSO approaches can find better solutions than SOPSO. In particular,
MOPSO approaches can evolve at least one solution that selects a smaller num-
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Fig. 2. Results of MOPSO-SRD and MOPSO-SiD on test set (Color figure online).

ber of features and achieves better performance than the best solution evolved
by the SOPSO.

5.3 MOPSO-SiD vs MOPSO-SRD

Firstly, let consider the training results in Fig. 1, which show the searching ability
of these two algorithms. As can be seen in Fig. 1, the patterns of both “SiD-Train-
Ave” and “SRD-Train-Ave” are similar. However, “SiD-Train-Ave” oscillates
more than “SRD-Train-Ave”, which is due to the gbest selection mechanism.
MOPSO-SRD concentrates more on the objective values to select gbest. Mean-
while, MOPSO-SiD selects gbest by mainly using the similarity in the feature
search space. In addition, in all dataset, the “SiD-Train-Ave” line is mostly on
the left of “SRD-Train-Ave” line, which means that MOPSO-SiD usually selects
smaller numbers of features than MOPOS-SRD to achieve similar classification
performance.

In terms of the best solutions, MOPSO-SiD outperforms MOPSO-SRD. As
can be seen from Fig. 1, in all datasets, the “SiD-Train-Best” lines are at the
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same position or on the left of the “SRD-Train-Best” lines, which indicates
that MOPSO-SiD can evolve a smaller subset of features while achieving similar
classification performance as MOPSO-SRD.

Figure 2 shows the results on the test set. In this figure, both lines “SRD-Test-
Ave” and “SiD-Test-Ave” are even closer and more similar than in Fig. 1. On the
two small datasets (WBCD and Movementlibras), “SiD-Test-Best” is at the same
position or on the left of “SRD-Test-Best”. So for the same number of features,
MOPSO-SiD can achieve better classification performance than MOPSO-SRD.
However, on the Musk1 dataset, when the number of features exceeds about
13 % of the available features, MOPSO-SRD achieves better performance than
MOPSO-SiD. The points with high classification accuracy and a large number
of selected features are usually discovered at the end of each run. The similarity
distance is very helpful at the beginning of each run, when most of particles in the
swarm are at different positions and the exploitation ability is more important.
However, in the later iterations, when the particles in the swarm and archive
set become similar, the exploration ability is more important. Compare with
MOPSO-SiD, MOPSO-SRD provides more exploration ability. In MOPSO-SiD,
a particle in the swarm always selects the closest archive member in the solution
space as its leader. At the end of a run, the leader might be very similar to
the particle, and therefore the particle is trapped at that position. On the other
hand, in MOPSO-SRD, a leader is selected by using the square root distance in
the objective space. In this case, although the particle and its leader are similar
in term of objective values, they still can select very different features (different
positions in the solution space). Therefore, the particle has a chance to get out of
the current position (probably a local optima). This explains why on the large
datasets, MOPSO-SRD can discover points in the objective space, where the
number of selected features is high and the classification accuracy is better.

6 Conclusion and Future Work

The goal of this study was to develop a PSO based multi-objective feature selec-
tion approach to evolving a set of non-dominated feature subsets and achiev-
ing high classification performance. To achieve this goal, a similarity distance
measure to evaluate the similarity between solutions (i.e. feature subsets) is
proposed to update the archive in multi-objective PSO and choose gbest for
each particle in the swarm, based on which a multi-objective feature selection
algorithm called MOPSO-SiD is proposed. The performance of MOPSO-SiD is
examined and compared with a recently developed multi-objective algorithm
named MOPSO-SRD, a single objective PSO, and a traditional feature selec-
tion method on eight datasets of varying difficulty. The results show that both
multi-objective algorithms successfully evolved a set of non-dominated solutions,
which selected a small number of features while achieving similar or better per-
formance than using all features. They outperformed the single objective PSO
and the traditional method, especially in terms of the classification performance.
Furthermore, in most cases, MOPSO-SiD selects smaller number of features than
MOPSO-SRD but still achieves similar classification performance.
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This work starts incorporating the characteristics of feature selection prob-
lems into the multi-objective search to find a better Pareto front, which shows
some success. In the future, we will further improve the exploration and exploita-
tion abilities of multi-objective PSO for feature selection by embedding some
genetic operators or a local search during the search process. We also intend to
develop novel approaches to feature selection tasks with thousands or even tens
of thousands of features.
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Abstract. The airports have emerged as a major bottleneck in the air
transportation network. Thus during the busiest time, optimal utiliza-
tion of the limited airport resources such as runways and taxiways can
help to avoid the congestion and delay as well as increase the airport
capacity. This problem is further aggravated by use of Hub-Spoke model
by airlines which sees a burst of medium size aircraft arrival followed
by few heavy aircraft departure. To address this problem, strategic as
well as efficient tactical approaches are essential to deal with arrivals and
departures. In this paper, we propose an evolutionary optimization app-
roach to maximize the runway throughput capacity for integrated arrival
and departure in a single runway scenario. An evolutionary computation
based Genetic Algorithm (GA) is developed to optimize and integrate a
stream of arriving and departing aircraft sequence for a given time win-
dow. The evolved optimal arrival and departure sequencing was analyzed
using the Time-Space diagrams for different aircraft configuration.The
distribution shows that in Hub airports heavy and large aircrafts are
sequenced consecutively where in Spoke airports similar aircraft (i.e.,
medium (M)-medium (M), large (L)-large (L) and so on) are positioned
side by side to reduce the process time. Simulation result also shows that
proposed model obtained optimal sequence that takes lower processing
time as well as achieves a higher throughput comparing to First Come
First Serve (FCFS) approach commonly used for arriving and departing
aircraft.

Keywords: Runway capacity · Genetic algorithm · Air traffic controller
(ATC) · Optimal sequencing

1 Introduction

The continued growth in air traffic presents an increasing challenge to its oper-
ating environment for example, en-route and airports [1]. The growing traffic
combined with the use of “hub and spoke” operations by air carriers cause many
challenges such as increased congestion at airports and en-route flight delays [2].

In hub and spoke airport system, all traffic move along the spokes (smaller
airports) connected to the hub (major airport) at the center. The congestion
c© Springer International Publishing Switzerland 2016
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Fig. 1. Percentage of different flight delays in Europe in 2014 [3]

becomes so acute at the hub airport where air carriers schedule large numbers of
flights to land and take-off within a short interval. The simultaneous arrivals and
departures of several aircraft with different configurations (e.g. heavy, medium
and light) can easily strain the capacity of the airport resources (runways, taxi-
ways, gates and so on). As a result, flight delays have become routine occurrences
in major hub airports. Figure 1 shows the statistics of different flight delays in
Europe in 2014 [3] where airport delays have emerged as second largest cause
of man-made delays. The hub-and-spoke network in intermodal transport has
become one of the potential solutions to increase the intermodal market share.
Such a network systems are widely used in the aviation industry due to its sig-
nificant cost savings [4]. The advantages of hub-and-spoke networks are a higher
frequency of transport services comparing to point-to-point networks.

To reduce the congestion and delay, it is imperative to increase the airport
capacity to balance the resulting traffic load. The capacity of an airport depends
on multiple factors such as the arrival-departure management, geometric layout
of runway, number of runways, number of taxiways, number of gates, aprons,
efficiency of the ATC and weather condition. The capacity maximization by
utilizing multiple resources is a challenging task. The optimization of multiple
resources make the runway capacity estimation a NP-hard problem [5].

In this paper, we propose an evolutionary optimization approach using Genetic
Algorithm (GA) to integrate arrival and departure traffic sequence in a single run-
way configuration. The proposed model dynamically integrates (using a moving
window) a set of different arriving and departing aircrafts and sequence them
optimally that maximize the runway throughput capacity. The moving window
size (set of arriving and departing aircraft in a given time interval) and time
can be varied depending upon the communication, navigation and surveillance
(CNS) system in use at a given airport. Better the CNS capability, ATC have
better situation awareness of arriving and departing traffic.

In this work we also assume that for a given airport the demand for the
runway is continuous (i.e. traffic is departing and arriving incessantly). For better
insight into optimal arrival and departure sequencing, we further analyze the
Time-Space diagrams of different aircraft configuration in hub and spoke airport.
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Remainder of the paper is organized as follows: Sect. 2 describes background
of the studies. Problem formulation is presented in Sect. 3. Section 4 describes the
methodologies used. Experimentation is presented in Sect. 5. Section 6 presents
the result analysis and discussion and finally Sect. 7 gives the conclusion of the
paper.

2 Background

The airport runway capacity estimation is vital for airport operational planning
and development. A number of deterministic and mathematical model have been
proposed in the literature to estimate the capacity of the runway [6–9]. How-
ever such model fails to capture complex interaction of different aircraft in a
mix mode (arrival and departure) operation. Further they are mode suitable
for capacity estimation in a static configuration (given arrival distribution find
runway capacity and likewise).

A ripple-spreading based GA (RSGA) is applied for aircraft sequencing prob-
lem (ASP) [10]. RSGA transforms the original landing-order-based ASP solu-
tions into value-based ones. In the this scheme, arriving aircraft are projected
as points into an artificial space. A very basic binary GA is then used to evolve
these ripple-spreading parameters in order to find an optimal landing sequence.
However, this studies only considers the optimal landing sequence of aircraft
which is very simplified with respect to the complex mix operation in a single
runway configurations.

Wenjing Zhao et al. [11] examine two widely used algorithms for Aircraft
Landing Sequencing: First Come First Served (FCFS) and Constrained Posi-
tion Shifting (CPS). They show that scenario representation affects the quality
of evolutionary outputs such as variable-length chromosome representation of
aircraft scheduling sequence scenarios converges fast and finds all relevant risk
patterns.

The FAA-MITRE’s Center for Advanced Aviation System Development
(CAASD) is investigating techniques to provide computerized arrival spacing
guidance. A case study on that is conducted by Diffenderfer et al. [12]. The
spacing guidance communicates arrival intervals based on the order of departure
traffic queued at or taxiing to the dependent runway. This approach gives the
safety operations of aircrafts. However, it did not consider the optimal sequence
for reducing flight-processing time.

NASA Ames has also developed the integration of trajectory-based arrival
management automation controller tools and Flight-Deck Interval Management
avionics to enable advanced arrival operations during periods of sustained high
traffic demand [13]. However, the focus is more on human in the loop simulation
and controller performance rather than dynamic capacity estimation in arrival
and departure integration for a given runway operation.

The large search space (possibilities) resulting from complex interactions
between aircraft type configuration (heavy, medium, light etc.), runway mode
configuration (arrival or departure) and sequencing requirements (time and space
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between different aircraft types) with different airport configurations (hub and
spoke) makes traditional search methods such as Monte Carlo Simulation unsuit-
able for this kind of optimization problems. Nature-Inspired techniques such
as Evolutionary Computation (EC) [14] have emerged as an important tool to
effectively address complex problems in the air transportation domain, in which
traditional methodologies and approaches are ineffective or infeasible [15].

3 Problem Formulation

Runway is the most obvious and important resource at any airport. It directly
influences to the overall capacity of an airport. The capacity of a runway sys-
tem (measured hourly) depends on many factors such as strategic planning and
tactical initiative for event handling (e.g. arrivals and departures). Optimized
aircraft sequence and queue management are very essential for obtaining the
best possible capacity.

It is observed that the inefficient utilization of the resources (i.e., runway,
taxiway) and the lack of optimal sequencing tools for mix mode operation
lead to the reduced overall capacity [12]. Therefore, we have been motivated
to implement an approach that integrates arrival/departure traffic and optimize
the sequence of arriving and departing aircraft. Figure 2 illustrates the concep-
tual problem formulation of our implementation. Arrival and departure aircrafts
(based on distribution characteristics of hub and spoke) are integrated into a
mixed queue which is optimally sequenced using a GA algorithm to maximize
runway throughput capacity.

Fig. 2. Problem formulation

In this study, we focus on integrating and optimizing the sequence of arrival
and departure aircraft that minimizes the processing time for each window. We
assume that ATC can control up to the maximum window size (e.g. 10 arriv-
ing, 10 departing aircraft). We also assume that demand for runway occupancy is
continuous. In these circumstances, proposed model optimally sequences the air-
craft for each window and lock the optimized sequence for processing. Likewise,
GA process another window dynamically as the demand is continuous. Consider
the arrival and departure look ahead window size is Wa and Wd respectively.
Hence the window size for mix operation is Wad.

Wad = Wa + Wd (1)
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Let l is the length of the final approach path and δij is the ATC mini-
mum longitudinal separation between two arriving aircraft. Table 1(a) shows the
minimum separation of two successive arriving aircraft. Here leading indicates
the operation execute first where trailing means operation execute after leading
operation. For arriving aircraft, separation is indicated by nautical miles (NM).
Equations (2) and (3) estimate the inter-arrival time atij .

aatij = max[
l + δij

vj
− l

vi
, aOi] when vi > vj (2)

aatij = max[
δij
vj

, aOi] when vi ≤ vj (3)

where vi , vj and aOi, denote the speed on final approach path and runway
occupancy time of leading and trailing aircraft respectively.

The ATC applies the separation rules between two successive departing air-
craft to prevent them to simultaneously occupy the runway. The inter-departure
time between aircraft i and j can be estimated as:

ddtij =d tijmin − (dOi −d Oj) − γd(1/vjd − 1/vid) (4)

where dtijmin is minimum separation time required between two departing air-
craft i and j. Table 1(b) shows the minimum separation between two successive
departing aircraft. Separation for two consecutive departing aircraft is measured
in seconds according to the aviation practice. dOi and dOj is the runway occu-
pancy time of the take-off aircraft i and j respectively.

In mix operation, when leading aircraft is departing and trailing aircraft is
arriving then the inter-event time is estimated as:

datij = max[dOi,
dδij
vj

] (5)

where dOi is the runway occupancy time of the departing aircraft, dδij is the lon-
gitudinal distance from the runway threshold and vj is the speed of the arriving
aircraft. Table 1(c) shows the values of dδij .

When the leading aircraft is arriving and trailing is departing then the inter-
event time is as follows:

adtij =a Oi (6)

where aOi is the runway occupancy time by arriving aircraft. Likewise if a leading
aircraft is departing and trailing aircraft is landing then trailing aircraft must
follows the separation at least the runway occupancy time of the leading aircraft.

3.1 Objective Function

We consider a dynamic window based optimization approach. Each window con-
sist of a stream of arriving and departing aircraft. Our objective is to minimize
the processing time of each window.The formulation of this estimation problem
is as follows:

min Ψ =
∑

i,j∈C

aatij +
∑

i,j∈C

ddtij +
∑

i,j∈C

datij +
∑

i,j∈C

adtij (7)
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where C is the set of all arriving and departing aircraft in the window and Ψ is
the summation of all aircrafts’ process time in the window. The fitness function
of the optimization is as:

Fitness = maximize(1/Ψ) (8)

4 Methodology

Figure 3 shows the flowchart of the genetic algorithm implementation for opti-
mization. We classify the aircraft into four categories such as heavy (H), large
(L), medium (M) and small (S). Arrival and departure sequences are geneti-
cally represented as chromosome. Each chromosome is represented as a solution
set of arrival and departure aircraft sequence. Initially population of possible
solution sequence are generated randomly. The evolutionary process attempts
to maximize the fitness function through genetic operations.

Tournament selection is used to select the candidate solution for crossover
operation (described further). A fixed mutation rate of 1.5% is used to prevent
premature convergence. The elitism algorithm is used to determine the survival
of parents and children in the new generation [16]. The GA is terminated at 500
generations even though the initial experiment shows that the solution converges
within 200 generations.

Fig. 3. Flowchart of the genetic algorithm implementation.
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4.1 Genetic Operator

(1) Crossover: Crossover is a genetic operator used to reproduce from one
generation to the next. In this crossover method a subset of gene is selected
from the first parent and then add that subset to the offspring. The missing
genes are then added to the offspring from the second parent ensuring that
total number of genes (i.e., aircraft) remain similar to the parents. To make this
explanation a little clearer consider an example in Fig. 4.

A subset of genes is taken from the parent 1 (La, Ld, Sa) and added to
the offspring chromosome. Here subscript a indicates arrival and d indicates
departure, i.e. La means large aircraft arrives. Next, the missing genes locations
are added in order from the parent 2. Notice that first location in the parent 2
chromosome is Hd which is not exist in the offspring chromosome, thus it is added
in the first available position. The next position in the parent 2 chromosome is
Md, which is not in the offspring chromosome so it is also added to offspring.
The third position in parent chromosome is La which is already included in child
chromosome so it is skipped. This process continues until the offspring has no
remaining empty gene. Note that seventh position of parent 2 is again La which
belongs to the offspring, however this time La is added because total number of
similar gene remain same with the parents chromosome.

Fig. 4. An example of crossover procedure

(2) Mutation: Mutation is used to maintain genetic diversity from one genera-
tion of population to the next generation. In this implementation swap mutation
is used. With swap mutation two genes position in the chromosome are selected
at random fashion then their positions are swapped. Swap mutation is only swap-
ping pre-existing genes, it never creates a gene which has missed or duplicates
gene.

5 Experimentation

The optimization model is evaluated through simulation. The performance of
the model is evaluated using the mix of arrival and departure aircraft by taking
into consideration that all the ATC separation rules are satisfied. ATC rules
are pairwise statements about the minimum separation requirements between
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Table 1. Separation (a) Arrival-Arrival (b) Departure-Departure (c) Departure-Arrival

Trailing

L
ea

d
in

g

Ha La Ma Sa

Ha 4 5 6 6
Ma 2.5 2.5 4 4
La 2.5 2.5 2.5 2.5
Sa 2.5 2.5 2.5 2.5

(a)Separation (NM)

Trailing

L
ea

d
in

g

Hd Ld Md Sd

Hd 90 120 120 120
Md 60 60 60 60
Ld 60 60 60 60
Sd 60 60 60 60

(b) Separaton (Sec)

Trailing

L
ea

d
in

g

Ha La Ma Sa

Hd 2.90 2.50 2.15 1.75
Md 2.50 2.15 1.90 1.50
Ld 2.30 2.0 1.70 1.40
Sd 1.90 1.60 1.40 1.15

(c) Separaton (NM)

two aircraft. For example, if an aircraft enter the runway then another aircraft
cannot enter the runway threshold area until the first aircraft clear the runway.

Table 1 shows the pair wise ATC separations for arrival-arrival, departure-
departure and arrival-departure case. In practice arrival separation is measured
as nautical mile (NM) and departure separation is measured in seconds(sec). In
this study, we use separate distributions for arrival and departure that repre-
senting the traffic characteristics of hub and spoke airport. Table 2 shows the
summary of the experimental parameters used. Each experiment is conducted
30 times to get the average value.

Table 2. Experimental setup

Parameter Values

Mutation rate 0.015

Chromosome size 20

Population size 50

Tournament size 5

Mix distribution Hub: H (20%), L(35%), M(35%), S(10%)

Spoke: H (10%), L(20%), M(35%), S(35%)

Generation 500

Simulation time for runway throughput 1 h

6 Result Analysis and Discussion

Figure 5 presents the convergence curve of the optimization problem. The
evolutionary process where the fitness do not improve further just after 200
generations.

The simulation result presented in this section are the hourly throughput of
the runway for mixed mode (i.e., arrival and departure) operation. Notice that
as shown in Fig. 6(a), the average throughput of our optimized model increases
up to 15% comparing to FCFS approach.

In addition, we also measure the processing time for each window of air-
craft as shown in Fig. 6(b). Our model saves average 272.83 s for each window
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Fig. 5. Convergence curve

(a) (b)

Fig. 6. Simulation result (a) Average throughput (b) Average process time/window

processing which is significant for a busy airport, where maximum process time
is 2209.95 s/window and minimum process time is 1505.06 s/window. Finally, we
analyze the time-space diagram of optimal sequence for hub and spoke airport.
Figure 7 shows the optimal sequence for hub airport. Note that for the best pos-
sible sequence, a departing heavy (Hd) aircraft followed by a stream of medium
and large arriving aircraft. An interesting result here is that heavy and large
aircraft are sequenced consecutively to reduce the processing time.

Likewise, for the spoke airport configurations the time-space diagram is pre-
sented in Fig. 8. Note here that, the occurrence of medium and small aircraft are
higher than heavy and large aircraft. The optimal sequence that, a large (La)
arriving aircraft followed by a stream of departure aircraft. Another interest-
ing outcome of the optimal sequence is that, similar aircraft (i.e., medium(M)-
medium(M), large(L)-large(L) and so on) are positioned side by side.
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Fig. 7. Time-space diagram of optimal aircraft sequence for hub airport

Fig. 8. Time-space diagram of optimal aircraft sequence for spoke airport

7 Conclusion

In this paper, we developed an evolutionary optimization based runway capacity
maximization model that optimize the arrival-departure sequence using genetic
algorithm. An optimization problem has been formulated to dynamically opti-
mize the aircraft sequence to minimize the process time. Several simulations
have been conducted considering ‘hub and spoke’ airport scenarios. The opti-
mization model finds the best sequences of aircraft for the utilization of the
runway. Simulation result shows that the model obtained optimal sequence that
took lower process time as well as achieved a higher throughput comparing to
First Come First Serve approach commonly used at aircraft sequencing. The
result also demonstrates the strength of evolutionary algorithm in dealing with
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NP hard problems from real world. In future, we will develop multi-objective
optimization models to handle other objectives such as weather and multiple
runways. We will compare our work with state of the art technology. We will
also consider different CNS configurations and their effect on runway capacity
however design of fitness function and solution representation can be a major
challenge.
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Abstract. Our previous work introduced the N player trust game and
examined the dynamics of this game using replicator dynamics for an infi-
nite population. In finite populations, quantization becomes a necessity
that introduces discontinuity in the trajectory space, which can impact
the dynamics of the game differently. In this paper, we present an analysis
of replicator dynamics of the N player trust game in finite populations.
The analysis reveals that, quantization indeed introduces fixed points in
the interior of the 2-simplex that were not present in the infinite popula-
tion analysis. However, there is no guarantee that these fixed points will
continue to exist for any arbitrary population size; thus, they are clearly
an artifact of quantization. In general, the evolutionary dynamics of the
finite population are qualitatively similar to the infinite population. This
suggests that for the proposed trust game, trusters will be extinct if the
population contains an untrustworthy player. Therefore, trusting is an
evolutionary unstable strategy.

Keywords: Trust · Evolutionary game theory · N-person trust game

1 Introduction

Human interaction is a complex process. Despite being the focus of exten-
sive investigation for decades, a number of questions remain without adequate
answers. Social dilemmas are particularly interesting. Social dilemmas arise
whenever short-term, individual interests must be weighed against long-term,
collective interests.

Game theory is a useful vehicle for studying social dilemmas. Players com-
pete against each other using strategies to make decisions. They receive payoffs
(rewards) for the decisions they make and their competitors make. Good strate-
gies return high rewards. Theories can be postulated to explain how strategies
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might evolve over time and computer models can be constructed to generate
empirical evidence to support or disprove these theories [3,9,15].

Consider a game with m strategies and let pi be the frequency of strategy
i in the population. At any given time the state of the population is given by
p ∈ Sm. If pi is a differential function of time, then the evolution of strate-
gies in the population can be expressed using replicator equations [8]. (Differ-
entiability assumes the population is infinitely large.) Each replicator equation
is a 1st-order differential equation. Under replication dynamics individuals do
not change strategies via mutation nor by some contrived procedure such as a
Moran process [10]. Instead, strategies change frequency following Darwinian
theory—i.e., reproductive success is directly proportional to fitness. Individuals
with above average fitness grow in population over time while those with below
average fitness die out.

Usually the N player games studied thus far only have a small number of
strategies (typically m ≤ 4). Most of these games study cooperation in pop-
ulations and try to discover human characteristics that promote cooperation.
These games model social dilemmas where mutual cooperation is the best out-
come for the group, but individual self-interest always pays better, leading to
the undesirable outcome where ultimately everyone defects. Empirical evidence
from these N player games suggest that several mechanisms such as reciprocity
and kin-selection promote cooperation in human populations [11].

One aspect of human interaction that has been extensively investigated in the
past is trust and the role it plays in society. Schmueli et al. [14] maintain that the
concept of trust is pervasive in social relationships and it has a great impact on
social persuasion and behavioral change. Their experiment revealed that trust
was significantly more effective than the closeness of ties in determining the
amount of behavior change, with respect to individual fitness. High levels of
trust have shown to impose social controls in political and economic institutions
thereby increasing accountability, productivity and effectiveness [13].

Nevertheless, evolutionary game theoretical studies on trust are lacking and
those that have been conducted were limited to 2 players. (See [12] for a notable
exception.) Recently this situation changed when Abbass et al. [1] introduced a
game specifically designed to investigate the role of trust in human populations.
Players in this game make two choices in advance: whether to be trustworthy
or not and whether to be an investor or be a trustee. Each investor contributes
an amount tv. A trustworthy trustee returns an amount R1 > 1 to the investor
(and keeps an equal amount for herself) whereas an untrustworthy trustee keeps
the contribution and returns nothing. The game is designed as a social dilemma.
Replicator dynamics indicate that the inevitable outcome is when the population
converges to state with a mixture of trustworthy and untrustworthy players and
no investors.

Replicators equations provide valuable insights into how strategies evolve in a
population. Their limitation is the assumption of an infinite population. Nature
does not produce infinite populations. Indeed, human populations are always
finite for a variety of reasons such as geographical isolation or cultural restric-
tions. More importantly, it has been conclusively shown that, when comparing
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Table 1. Utility matrix for a N-player trust game.

Player in the k1
population

Player in the
k2 population

Player in the
k3 population

Pay tv R1 · tv · k1
k2+k3

0

Receive R1 · tv · k2
k2+k3

2·R1·tv· k1
k2+k3

R2 · tv · k1
k2+k3

Net Wealth tv ·(R1· k2
k2+k3

−1) R1 · tv · k1
k2+k3

R2 · tv · k1
k2+k3

infinite population dynamics and finite population dynamics, the latter have
qualitatively different results [4–6]. This issue is important because the trust
game results reported in [1] were obtained using an infinite population model.

In this paper, we extend our previous work by studying finite population
models using a discrete form of replicator equations and report the findings.
Our results indicate the finite population dynamics are remarkably similar to
those found in the infinite population. However, the discrete replicator equa-
tions do require quantization and quantization effects introduce additional fixed
points not found in the infinite population models. Surprisingly, these fixed
points appear and disappear as a function of the population size. We provide an
analysis of this phenomenon.

This paper is organized as follows. In Sect. 2 the trust game is formally defined
and an overview of the infinite population replicator dynamics is given. Section 3
develops the replicator equations for the trust game with finite populations.
Section 4 analyzes the finite population results. Finally, Sect. 5 summarizes our
findings and discusses future work.

2 Background

This section gives a formal definition of the N player trust game and a brief
overview of the infinite population replicator dynamics. See [1] for more detailed
information.

2.1 The N Player Trust Game

Assume N players. Each player makes two decisions in advance: (1) whether or
not to be trustworthy, and (2) whether to be an investor or a trustee. Let k1
be the number of investors, k2 the number of trustworthy trustees and k3 the
number of untrustworthy trustees. The obvious restriction is

∑
i ki = N .

An investor player pays tv to the trustee, where tv > 0 denotes the trusted
value. The dynamics of the game does not depend on the value of tv. However, we
maintain tv to allow flexibility in adopting the game to different contexts. With
k1 governed players, the total money contributed is (k1 · tv). Each trustworthy
trustee returns to an investor a multiplier of R1 of what was received and keeps
the same amount for herself, with R1 > 1. An untrustworthy trustee returns
nothing but instead keeps for herself a multiplier of R2 of what was received,
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where R1 < R2 < 2R1. The payoff matrix for this game can then be represented
as shown in Table 1 with the following constraints:

1 < R1 < R2 < 2R1

N = k1 + k2 + k3

2.2 Infinite Population Replication Dynamics

The evolutionary behavior of a population playing the trust game can be studied
using replicator dynamics. Let yi be the frequency of players using strategy i in
an infinitely large population with

∑
i yi = 1. Then the time evolution of yi is

given by the differential equation

ẏi = yi ·
(
fi − f̂

)
(1)

where fi is the expected fitness of an individual playing strategy i at time t and
f̂ is the mean population fitness. Here, fitness and net wealth are equivalent.
The number of copies of a strategy increases if fi > f̂ and decreases if fi < f̂ .
We can calculate f̂ as follows

f̂ =
y1 · y2 · tv (2 · R1 − 1) + y1 · y3 · tv · (R2 − 1)

(y2 + y3)

The three replicator equations are

ẏ1 =
y2
1 · tv

1 − y1
(y2 (1 − 2 · R1) + y3 · (1 − R2)) +

y1 · tv

1 − y1
(y2 (R1 − 1) − y3)

ẏ2 =
y1 · y2 · tv

1 − y1
· (y2 (1 − 2 · R1) + y3 (1 − R2) + R1)

ẏ3 =
y1 · y3 · tv

1 − y1
· (y2 (1 − 2 · R1) + y3 (1 − R2) + R2)

Figure 1 shows the population evolution for various initial player distribu-
tions. Figure 2 shows the effect of different R1 and R2 values (but with R1 < R2).
The replicator equations predict a rapid growth of untrustworthiness in the pop-
ulation, leading to the eventual extinction of investors. However, a fraction of the
population always remains trustworthy, even in the absence of investors. This
predicted steady-state outcome is independent of the initial player distribution,
but the ratio of trustworthy to untrustworthy players in the final population is
dependent on the R1 and R2 values.
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Fig. 1. A 2-simplex showing the time evolution for a game with R1 = 6, R2 = 8,
tv = 10, and different initial distributions of y1, y2 and y3. (Reproduced from [1])

Fig. 2. A 2-simplex showing the time evolution for a game with tv = 10 and different R1
and R2 values (R1 < R2). Values increase from left to right with R1 = 1.5, R2 = 2.9 for
the far left trajectory to R1 = 6, R2 = 8 for the far right trajectory. Initial distribution
is y1(0) = 0.1, y2(0) = 0.8, and y3(0) = 0.1. (Reproduced from [1])

3 Finite Population Replicator Dynamics

The population dynamics depicted in Fig. 1 and predicted by (1) apply only to
infinite size populations. It has been conclusively shown that finite population
dynamics can be qualitatively different from those of infinite populations [4–6].
It is therefore important to see if and, if so, how the dynamics of the trust game
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change for finite populations. Replicator equations can still be used to predict
how a population evolves although, as will be shown shortly, the equation format
is different.

Let N be the (finite) population size and ki, i = {1, 2, 3} be the number of
players choosing strategy i. The frequency of players choosing strategy i at time
t is pti = ki/N . With finite populations, the discrete replicator equations are now
expressed as a set of first order difference equations

pt+1
i = ptiF

t
i (2)

where F t
i = fi

/
f̂ t with f̂ t the mean fitness at time t. Fi > 1 means the propor-

tion of strategy i in the population grows, Fi < 1 means it shrinks and Fi = 1 it
is at a fixed point. Unfortunately, the discrete form of the replicator equations
introduces a couple of problems not found in the infinite population case.

The first problem is with the definition of fitness. Fitness is equated to net
wealth in both the infinite population case and the finite population case. Sub-
stituting pti = ki/N into the net wealth equations and simplifying yields the
following finite population fitness equations

f t
1 = tv ·

(
R1 · pt

2
pt
2+pt

3
− 1

)

f t
2 = tv · R1 · pt

1
pt
2+pt

3

f t
3 = tv · R2 · pt

1
pt
2+pt

3

(3)

The problem is f1 won’t be positive for all strategy frequencies. Unlike with
differential equations, negative fitness values are not permitted in discrete repli-
cator equations because this makes pt+1

i < 0. Moreover, f̂ t cannot equal zero.
We therefore slightly modified the fitness values as shown below.

f1 =

{
0 < ε � 1 if k2

k2+k3
≤ 1

R1

tv ·
(
R1 · k2

k2+k3
− 1

)
otherwise

f2 = tv · R1 · k1
k2+k3

f3 = tv · R2 · k1
k2+k3

(4)

The second problem involves trajectories in the 2-simplex. In the finite pop-
ulation case each pti = ki/N . This means there are only a finite set of feasible
points in the 2-simplex (see Fig. 3). Any trajectory must therefore consist of
straight line segments between pairs of feasible points.

Clearly, the right-hand side must be an integer. This means only a finite set
of points in the simplex can be visited—i.e., points where pti = ki/N . These
points for N = 20 are shown in Fig. 3.

The pi values have to be quantized to make sure only integer values for
kt+1
i are produced. The quantization method described in [2] is used here.
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Fig. 3. A 2-simplex for a finite population with N = 20. Only the points shown rep-
resent an integer number of strategies in the population. Any trajectory must move
between these points.

Fig. 4. A velocity plot for a finite population with N = 20, R1 = 6, R2 = 8 and tv = 10.
(c.f. Fig. 1)

The algorithm below returns k′
i which is the new number of players choosing

the i-th strategy.

1. Compute
k′
i =

⌊
Npi + 1

2

⌋
, N ′ =

∑
i

k′
i
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2. Let d = N ′ − N . If d = 0, then go to step 4. Otherwise, compute the errors
δi = k′

i − Npi.
3. If d > 0, decrement the d k′

i’s with the largest δi values. If d < 0, increment
the |d| k′

i’s with the smallest δi values.
4. Return [k′

1 k′
2 k′

3] and exit.

Figure 4 shows a velocity plot for a finite population with N = 20, R1 =
6, R2 = 8 and tv = 10. The vectors are shown as unit vectors because the
direction is of importance here and not the magnitude. These finite population
replicator dynamics are the analog of the infinite population replicator dynamics
shown in Fig. 1. Notice the finite population dynamics are remarkably similar
including the presence of an attractor.

4 Discussion

The finite population trust game has a Nash equilibrium at k3 = N and a Pareto
optimal distribution at k1 = N − 1, k2 = 1. (See [1] for proofs.)

Many of the fixed points in the finite population are the same as those in the
infinite population. For example, in the infinite population the three 2-simplex
corners and every point on the p2 −p3 line is a fixed point. Similarly in the finite
population model the three 2-simplex corners are fixed points but only a finite
number of points on the p2−p3 line are fixed points—i.e., the N +1 points where
pi is a rational number. The infinite population model also has a fixed point at

y1 =
R1 − 1

2 × R1 − 1

y2 =
R1

2 × R1 − 1
y3 = 0

With R1 = 6 in our example, the fixed point is, p = [5/11 6/11 0/11]. In the
finite model this fixed point varies (due to quantization) but it is the rational
number closest to p.

Figure 5 shows a magnified view of a portion of the p1 − p2 line. Notice
there are two fixed points that do not appear in the infinite population mode.
Consider the fixed point at [p1 p2 p3] = [0.450 0.550 0.000] (equivalently,
[k1 k2 k3] = [9 11 0]). That population mixture yields fitness values of
f1 = 50, f2 = 49.09, f3 = 0.0 and a mean population fitness of f̂ = 49.499.
The discrete replicator equations predict no change in the population mixture.
It is also worth mentioning the fixed point on the p1 − p2 line at [p1 p2 p3] =
[0.450 0.550 0.000] matches well to the fixed point in the infinite population at
[p1 p2 p3] = [0.455 0.545 0.000].

To understand why the finite population has fixed points which are not
present in infinite populations it is important to understand how quantization
actually works. Quantization is a form of data compression. It maps an entire
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Fig. 5. A magnified portion of the 2-simplex for N = 20. The distribution of strategies
is shown for the three fixed points. The fixed point with distribution [0.45 0.55 0.0]
corresponds to a similar fixed in the infinite population module. The other two fixed
points are a consequence of quantization (see text).

range of real numbers into a single value, which subsequently represents any real
number in the range that was mapped.

For the trust game quantization must map real numbers into integers. To see
why this is necessary substitute pti = kt

i/N into the discrete replicator equation.
After multiplying both sides of the equation by N

kt+1
i = kt

iF
t
i (5)

Clearly the left-hand side must be an integer but the right-hand side typi-
cally won’t be because F t

i = f t
i /f̂ t is a real number. The quantization process

described previously was specifically picked because it maps a real number into
an integer. However, there is no guarantee that, quantizing three frequencies that
sum to 1.0 will produce three integers that sum to N—unless a repair mechanism
is incorporated into the quantization process to enforce this constraint.

Each iteration of the discrete replicator equation updates the number of
strategies in the population. Thus update is a mapping from I → I. Unfortu-
nately the right-hand side of (2) is rarely an integer. Quantization will produce
an integer right-hand side of the replicator equation but this process introduces
some fixed points not present in the infinite population model. To understand
how these fixed points arise it is necessary to take a more detailed look at the
quantization process.

Step 1 of the quantization process computes the new number of the i-th
strategy:

k′
i =

⌊
Npt+1

i + 1
2

⌋

=
⌊
N ki

N F t
i + 1

2

⌋

=
⌊
kiF

t
i + 1

2

⌋
(6)

where the integer floor is necessary to make sure k′
i is an integer. It is easy to

show ki → k′
i as follows

k′
i =

⎧
⎨

⎩

< ki if F t
i < 1 − 1/2ki

> ki if F t
i > 1 + 1/2ki

= ki otherwise
(7)
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The new sum
∑

i k
′
i = N ′ is calculated and then compared with N . Obviously

no adjustment is required if N ′ = N . However, if N ′ �= N then some k′
i values

must be incremented (if N ′ < N) or decremented (if N ′ > N). This adjustment
is done in steps 2 through 4 of the quantization process. Which ones get incre-
mented or decremented depends on the δi error values: those with the largest
errors are decremented and those with the smallest errors get incremented. Thus,
the only role of the δi values is to identify which k′

i’s must be adjusted to make
N ′ = N .

Now consider the upper fixed point highlighted in Fig. 5 where N = 20.
The population mixture is [p1 p2 p3] = [0.4 0.5 0.1] at that simplex point. The
corresponding fitness values are [f1 f2 f3] = [40 40 53.33] and the mean fitness
is f̂ = 41.33. Consequently F t

1 = F t
2 = 0.967 and F t

3 = 1.29. Thus,

1. k′
1 = k1 because 0.967 ≮ 1 − 1

16 and 0.967 ≯ 1 + 1
16 .

2. k′
2 = k2 because 0.967 ≮ 1 − 1

20 and 0.967 ≯ 1 + 1
20 .

3. k′
3 > k3 because 1.29 > 1 + 1

4 . (Note: k3 = 2 and
⌊
1.29 · 2 + 1

2

⌋
= �3.08�)

Readjustment is necessary because
∑

i k
′
i = 21 > N . Step 3 of the quan-

tization algorithm implements the repair mechanism. Specifically, in this case
d = +1 and δ3 is larger than δ1 or δ2. Thus k3 is decremented once, which
makes k′

3 = k3. Now
∑

i ki = N and fixed point is created since none of the kis
changed. A similar analysis can be done for the fixed point with the distribution
[0.45 0.5 .05].

The fixed points in the interior of the 2-simplex caused by quantization will
change as N increases and they completely disappear as N → ∞. To investigate
this phenomenon a simulation was run with N = 40. Figure 6 shows a magnified
portion of the 2-simplex. The fixed point with distribution [0.45 0.55 0.0] remains
and will never disappear as N increases. Notice a new fixed point appeared at
distribution [0.45 0.525 .025]. More importantly, the fixed point at distribution
[0.4 0.5 0.1], which was a fixed point when N = 20 is no longer a fixed point
when N = 40. An analysis conducted as done above will explain why. The same
fitness values exist but now the new strategy numbers are as follows:

1. k′
1 < k1 because 0.967 < 1 − 1

32 . (k1 = 16; k′
1 = 15)

2. k′
2 < k2 because 0.967 < 1 − 1

40 . (k2 = 20; k′
2 = 19)

3. k′
3 > k3 because 1.29 > 1 + 1

8 . (k3 = 4; k′
3 = 5)

Readjustment is necessary because
∑

i k
′
i = 39 < N . From step 2 of the quan-

tization algorithm δ1 = −0.472, δ2 = −0.34, δ3 = −0.16 and d = −1. δ1 is the
smallest so k′

1 is increased from 15 to 16 making the number of strategies total
to N . The simplex point with strategy distribution [0.4 0.5 0.1] is no longer a
fixed point when N = 40 because k′

2 �= k2 and k′
3 �= k3.

One area where the finite population replicator dynamics differs markedly
from the infinite population dynamics is the region in the 2-simplex near the
p2 vertex (see Fig. 7). The presence of an attractor is obvious but, unlike the
infinite population case, the fixed points on the p2 − p3 axis are not unique (c.f.,
Fig. 2). Most likely this is another effect of quantization.
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Fig. 6. A magnified portion of the 2-simplex for N = 40. The distribution of strategies
is shown for the three fixed points. The fixed point with distribution [0.45 0.55 0.0]
corresponds to a similar fixed in the infinite population module. The other fixed point
is a consequence of quantization (see text).

Fig. 7. A magnified portion of the 2-simplex for N = 40. (c.f., Fig. 1)

5 Summary

In this paper we have extended our previous work on the N player trust game
by studying finite population effects. The discrete replicator equations impose
certain restrictions including the necessity of quantization. Quantization intro-
duces fixed points in the interior of the 2-simplex but these disappear (and other
may take their place) as N varies. Nevertheless, the finite population evolution is
qualitatively similar to the infinite population. This research extended previous
research on computational measurement of trust by using game theory in both
finite and infinite populations.

The replicator equations describe strategy evolution based on Darwinian
principles—i.e., fitness based evolution. In particular no mutation is permit-
ted. It will be interesting to see if trust persists when individuals are allowed to
modify their strategy. Trust is the foundation of all human interactions regard-
less of who is involved or the duration of the encounter. This suggests emotions
may play a role in whether or not individuals are seen as trustworthy and, if so,
for how long. Greenwood [7], has previously shown emotions such as guilt can
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affect cooperation levels in social dilemmas. In our future work we intend to see
how emotions may affect trust levels in social dilemmas.
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Abstract. Bio-inspired controllers based on visual odometry — or time
to contact — have been previously shown to allow vehicles to navigate
in a way that simultaneously specifies both the spatial waypoint and
temporal arrival time at the waypoint, based on a single variable, tau
(τ). In this study, we present an initial investigation into the evolution
of neural networks as bio-inspired tau-controllers that achieve successful
mappings between τ and desired control outputs. As this mapping is
highly nonlinear and difficult to hand-design, an evolutionary algorithm
is used to progressively optimise a population of neural networks based
on quality of generated behaviour. The proposed system is implemented
on Hardware-in-the-loop setup and demonstrated for the autonomous
landing of a quadcopter. Preliminary results indicate that suitable con-
trollers can be successfully evolved.

Keywords: Neurocontroller · Evolutionary algorithm · Time to
contact · Tau theory · UAV

1 Introduction

Most existing Guidance, Navigation and Control (GNC) systems or autopilots
for Unmanned Aerial Vehicles (UAVs) follow a conventional approach which
consists of estimating the relative position and/or velocity between the UAV
and a target point and then applying standard hierarchical guidance and con-
trol techniques for achieving the desired task. These methods require relatively
complex planning and control algorithms and do not allow for time constraints
to be specified. Furthermore, they are limited to position sensors only because
computing the relative position is not always easy or even possible with bearing-
only sensors such as cameras. On the other hand, flying insects and birds exhibit
highly versatile and robust flight maneuvers using only the available vision and
vestibular sensory information (without position sensors). It is postulated that
these maneuvers are based on the processing of the time to contact (TTC)
between the creature and a surface. TTC is defined as the time remaining before
an anticipated contact between the approaching agent and the target object.
Further research has led to the development of tau theory (e.g., [14]) — that
c© Springer International Publishing Switzerland 2016
T. Ray et al. (Eds.): ACALCI 2016, LNAI 9592, pp. 336–347, 2016.
DOI: 10.1007/978-3-319-28270-1 28
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TTC is embodied in a variable τ , which is directly available from neuronal cir-
cuitry and used by animals to effect precise and reliable control in dynamic
environments.

Out of a desire to impart such precise and reliable control to their systems,
researchers have previously studied the application of tau theory to navigation
and guidance for UAVs. Rotorcraft UAVS (RUAVs) are particularly amenable
to tau-based GNC as they can perform “soft” (near-zero velocity) contacts at
target points. To date, RUAV tau research has focused on the replacement of the
higher-level system components — guidance and navigation — with those based
on tau theory [1,12], leaving the actual low-level control of these platforms to
standard engineering approaches such as PID [2]. In this study we present the
first demonstration of a fully tau-based GNC, by replacing traditional control
approaches with a tau-controller and integrating it with existing tau strategies
for navigation and guidance.

As the control mapping is anticipated to be highly nonlinear and unintuitive
to hand-design, we employ an evolutionary algorithm to automatically discover
useful tau-controllers. As the control mappings are highly nonlinear, feedforward
neural networks [18] are our chosen representation, used as nonlinear function
approximators. To assess the suitability of the neuroevolutionary system, tests
are conducted on a single-axis quadcopter descent and landing manoeuver. Evo-
lution takes place in a hardware-in-the-loop (HiL) setup, with spoofed τ gener-
ation but other parts identical to the real quadcopter setup. We envisage that
this will allow for easy transfer to the real-world scenarios.

Our hypothesis is that evolutionary algorithms can provide an automatic
method to discovering effective mappings between τ and the desired control out-
puts to allow a quadcopter UAV to follow a guidance strategy that specifies
both spatial position and a desired time to reach that position. The major con-
tributions of this work are (i) the first application of evolutionary algorithms to
generate time-to-contact controllers, (ii) the first use of bio-inspired tau-based
components in all three of the fundamental RUAV systems — guidance, navi-
gation, and control, and (iii) validation of the feasibility and performance of the
system in HiL simulations using real hardware and real-time implementation.

2 Background Research

2.1 Guidance, Navigation, and Control

It is important to understand how tau strategies fit into Guidance, Navigation,
and Control (GNC) for autonomous UAVs, which is traditionally segregated
into three parts as shown in Fig. 1. At the highest level, guidance can be viewed
as a cognitive system that plans missions, generates flight paths and outputs
trajectories/waypoints for the UAV to follow. Navigation is responsible for sens-
ing, perception and state estimation — essentially how the platform is acting
in it’s environment. Typically, navigation outputs a multi-element state vec-
tor that comprises position information, attitude, angular rates, and optionally
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includes aspects such as obstacle detection, which can be passed back to guid-
ance to update flight plans. Control takes inputs from guidance and navigation
to generate control outputs which allow the platform to follow the plan speci-
fied by guidance. See [11] for an overview. Tau-GNC provides more streamlined
information exchanges, and as such theoretically allows for faster processing.
Tau-guidance generates a series of references τref , based on mission parame-
ters. Tau-navigation estimates the platforms current τ from sensing devices, i.e.
a camera. By generating actuator outputs, tau-control attempts to match the
actual τ to the desired τref , thereby resulting in mission accomplishment.

Fig. 1. GNC architecture for an autonomous UAV. Blue lines indicate traditional
approaches, red lines denote tau-inspired approaches. Control attempts to follow way-
point/trajectories generated by guidance, using additional information from naviga-
tion state estimates to track the behaviour of the platform. Tau approaches potentially
allow the full 4-dimensional control of a UAV based on matching the platform τ to the
desired τref (Color figure online).

2.2 Time to Contact and Tau Theory

Animals are thought to navigate in dynamic environments based on their esti-
mated time to contact (TTC) with a given surface. It is thought to be derived
from optical flow, whereby the relative motion between an observer and some
scene features is used to navigate. Optical flow can be intuitively thought of as
a vector field specifying the movements of such objects. Myriad TTC models
have been implemented on UAVs with reasonable results. Constant optic flow
is applied on a fixed-wing aircraft [3], a small quadcopter [7], and a tethered
rotorcraft [17] for an autonomous landing task. Constant optic flow strategies
suffer from problems including a lack of timing control and an inability to shape
the dynamics of the maneuvers.
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Tau Theory [14] addresses the aforementioned issues with TTC, and con-
ceptualizes the visual strategy with which many species are believed to control
and navigate. Tau theory casts the variable τ as a measure of TTC which is
directly available from neuronal circuitry without the need for explicit compu-
tation (which is also called direct or Gibsonian perception [6]), and has some
experimental verification [20]. It states that goal-directed movements and actions
require intrinsic tau-guidance, which is generated in the brain as an intrinsic ref-
erence tau that specifies a desired TTC to the goal. Coupling this ideal intrinsic
reference τ with an extrinsic τ (i.e., a measure of the agent’s actual TTC) allows
the agent to move to a point at a specified time [13]. A sequence of such move-
ments allows an agent to navigate and control in 4D.

The application of tau theory to UAVs is a new research area, and very
few works and papers are available. One of the most documented works [12]
develops and demonstrates the application of tau theory to achieve 4D guidance
and control of a quadcopter UAV during landing and docking maneuvers. A
similar system [1] demonstrates autonomous landing of a quadcopter using a
tau strategy and TTC from monocular camera plus inertial measurement unit.
Although these works highlight the relevance and applicability of tau theory to
autonomous UAVs, they all rely on traditional control methods such as PIDs to
map tau information into control commands. This results in systems that are
sensitive to initial conditions and don’t generalise well. We aim to ameliorate this
situation by evolving biologically-inspired controllers based on neural networks.

2.3 Neuroevolution for UAV Control

Neuroevolution [5] involves the use of evolutionary algorithms to optimise a
population of neural networks, which are assessed on a task via a behaviour-
based fitness function. Promising solutions are preserved and modified using
genetics-inspired operators, which can alter e.g., synaptic connection weights,
connectivity patterns, network complexity, etc. Over a number of generations,
the networks are incrementally improved to be better at achieving the behav-
iour defined by the fitness function. Previous research includes a studies into
evolving feedforward controllers for single-rotor RUAVs [4] and quadcopters [19].
Both report robust control: a higher tolerance to noise compared with standard
PID controllers [2], a more graceful degredation of performance under increasing
noise, and more robust handling of disturbances.

The neural model is a key determinant of the capabilities of the neuroevolu-
tionary system. Both of the discussed works [4,19] use feedforward Multi-Layered
Perceptron (MLP) neural networks [18], which are popular due to their “Univer-
sal Approximation” property — simply that an MLP of sufficient complexity can
approximate any nonlinear function and hence provide highly nonlinear input-
output mappings. This ability may be critical to the success of our τ -controllers.
We note the promise of spiking neural models in e.g., performing waypoint-
holding [8], however we use MLP networks for this study as spiking networks
are only universal approximators under certain conditions (e.g., when they are
made to simulate a MLP that approximates the desired function). We note that
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all of the above work focuses on traditional GNC. In contrast, we use τ for
guidance, navigation, and control.

Justification of our approach is based on the benefits of tau-GNC (which
is robust, fast, precise, and temporally sensitive), the universal approximation
property and highlighted robustness of MLP RUAV controllers, and the proven
suitability of evolutionary techniques to design such controllers.

3 Experimental Setup

Our chosen platform is CSIRO’s in-house Eagle quadcopter. The GNC system is
implemented onboard in the ESM realtime state machine framework [15], which
provides guarantees on the maximum possible delays when controlling the quad-
copter. This HiL setup aims to ease the transition to a real quadcopter, following
e.g. [10] For our purposes, guidance takes a desired target point and arrival time
as input and outputs a reference τref for the platform to follow (computed as
in [12]). The navigation system is responsible for continuously estimating the
actual τ between the quadcopter and the target point using available sensors
such as camera. In the current HiL experimental setup, a “virtual τ sensor” is
used to emulate the computation of τ . For real flight experiments, τ will be
estimated in real-time from a monocular camera. Only τ and τref are passed to
the control system (an evolved feedforward neural network), which attempts to
output motor commands so that the platform accurately follows τref .

An experiment proceeds as follows: 25 random networks are generated. Each
network is trialled on the problem and assigned a fitness. Following this, 500
generations take place in which each of the networks makes 4 children, which
are altered by the evolutionary algorithm, trialled, and assigned a fitness. The
best network is preserved in that population slot. Each trial involves a number
of steps; a step starts with the receipt of τ and τref by the controlling network,
and ends with outputting a thrust. One step is 20 ms, hence the system works in
real time at 50 Hz. We conduct 10 experimental repeats, and record the current
population state and associated statistics every 20 generations.

3.1 Test Problem

For our initial test we task the platform with descending from a height of 5.5 m
in 7 s, the ideal result being a perfect match between τ and τref , and subsequent
arrival at the point after exactly 7 s with zero velocity. We focus only on z-
axis control, x, y and yaw are controlled by PIDs which are tasked to keep
their respective variable neutral. At the start of a trial, the quadcopter virtually
ascends to a height of 5.5 m. When the UAV reaches this height, it switches
to hover mode and waits for the flight mode manager to trigger the landing
maneuver. The tau-guidance and tau-navigation systems start generating τref
and estimating the actual τ , respectively. Thrust is calculated at every step
using the current controller. Note that this is a difficult task as we require highly
nonlinear control in 2D with a single state variable.
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Fitness is accumulated every step according to the controller’s ability to
follow τref . Per step, error calculated as in (1), bounded to a maximum error
emax as calculated in (2). Both τ and τref are bounded between τmin=−100 and
τmax=100 — due to the nature of τ , it is possible for computational errors to
occur if it approaches infinity. θτzref=−0.01 is a maximum value of τzref . Total
trial fitness is then calculated as (3), where tlive = 350 (7 s * 50 Hz), or the final
step number before the trial is aborted.

e = abs(log10 τzref/τz) (1)

emax = abs(log10 τzmax/θτzref ) (2)

f =

(
t<tlive∑

t=0

(emax − e)2
)

+ vbonus + zbonus (3)

A trial ends with either successful arrival at the target, or abort due to
following criterea: (i) absolute velocity > 4m/s, (ii) absolute difference between
z and setpoint z > 8m, z < 0m, e.g. platform has crashed. If a trial successfully
ends, it may be eligible for fitness bonuses: vbonus if final platform velocity <
0.3m/s, and zbonus, if final platform 0 > z < 0.1m, calculated as:

vbonus = zbonus = 70 ∗ emax
2, (4)

where the constant is experimentally derived as a sufficient weighting. A con-
troller can receive none, one, or both bonuses. The constant term appropriately
weights the importance of arriving under those conditions. Bonuses are added
to the final fitness value generated in (3) before being assigned to the controller.

To counter the effects of noise, etc., on the assignment of appropriate fitness
values, a controller that receives vbonus or zbonus is immediately retested. If the
retest also results in the award of vbonus and/or zbonus, the controller is flagged
to indicate that it has successfully attained that bonus. If it is the first controller
in an experiment to achieve that bonus, the generation is recorded. Regardless
of the result of the retest, the fitness from both runs is averaged and assigned
to the controller. Note that optimising based on τ allows us to create general
controllers, as τref can correspond to any setpoint/timing.

3.2 Neurocontrollers

Our neural networks allow for mapping τ to control outputs on a single axis.
They are three-layer MLPs, following a standard input, hidden, output arrange-
ment. The networks are feedforward with no recurrency, and are fully-connected
as there are a small number of inputs and only a single output — it is likely that
feature selection or connection masks (e.g., [9]) would disable connections that
carry useful information and be detrimental to controller performance. The net-
works have four inputs, a variable-sized hidden layer under evolutionary control,
and one neuron in the output layer. All neurons have a tanh activation function,
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Fig. 2. Showing the architecture of our MLP networks. Networks are fully connected.
Inputs are τ , τref , and their derivatives. The single output is the quadcopter thrust.

and all connection weights w exist in the range [−10,10]. Each neuron has an
associated bias b, also in the range [−10,10]. Network topology is shown in Fig. 2.

At every step during a trial, the four inputs i (τz, τΔz, τzref , and τΔzref ,
with range [−100,100]) are scaled to [0,1] and passed along the appropriate
connections to the hidden layer. Each hidden layer neuron sums the inputs, each
input multiplied by the weight of the connection it travels down, and applies
tanh to the sum to give the instantaneous neuron state y (0 ≥ y ≤ 1). The
process is repeated for the output neuron, taking the values of the respective
hidden neurons as inputs i. For an arbitrary neuron, the instantaneous state y
is calculated according to (5); j is the weight layer connecting to the neuron and
k indexes those connections. The output neuron’s y is rescaled to [−40,40] and
used as the thrust u for that step.

y = tanh

(
n∑

k=0

(wjk ∗ ik) + b

)
(5)

3.3 Evolutionary Algorithm

To search for high-fitness network configurations we use a 25+4 Evolution Strat-
egy (ES)[16], which is chosen to give a stable search process (important given
the realtime nature of the task). The networks are codified as two weight vectors
(one per weight layer), a variable-length bias vector (one element per hidden
neuron), and a bias for the output neuron. Connection weights, bias weights,
and hidden layer size are all controlled by the ES.

Experimentally-determined mutation rates are μ = 0.06 (rate of mutating
a connection/bias value), and ψ = 0.06 (rate of performing a neuron addi-
tion/removal event). As a concession to the long evaluation times associated
with the task, we include a single self-adaptive mutation parameter, ω, which
controls the relative probabilities of performing node addition/removal events.
As ψ is set to a low value, the mutation process is relatively incremental, however
as ω can adapt itself, the ES can influence the probability of adding as opposed
to removing neurons, allowing for more expedient location of suitable hidden
layer sizes.
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At the start of an experiment, a population of 25 uniform-randomly weighted
MLPs with 10 hidden neurons are generated, together with an initial ω, uniform-
randomly assigned in the range [0–1]. Each network is tested on the problem
and assigned a fitness. In each subsequent generation, every network produces
4 copies of itself. Each network copies it’s parents ω and modifies it as ω →
ω expN(0,1) to generate a new ω for each child.

For each connection/bias, a random number [0,1] is drawn from a uniform
distribution. If that number is < μ, that connection/bias value is uniformly
altered by ±0 − 10% of the total range of the value. Another number is drawn
from the same distribution; if it is < ψ a neuron addition/removal event takes
place. This involves drawing a further number from the distribution and com-
paring it to ω. If < ω, a fully-connected neuron is added to the hidden layer.
Otherwise, a neuron is picked at random from the hidden layer and its bias and
connections are removed. Each modified network is then evaluated on the test
problem and assigned a fitness. Of the five candidate networks (4 children and
the original parent), the best is kept and the rest discarded. Once this occurs for
each of the 25 networks in the population, the generation is complete and the
next generation begins.

4 Results

In terms of performance, we note a convergence of best fitness to near 7000
at ≈350 generations (Fig. 3(a)) — low error after this point indicates that all
experimental repeats are able to find a highly fit solution that is rewarded with
both vbonus and zbonus. Mean fitness follows a similar trend to that of best
fitness, achieving a maximum value of ≈2600. Low fitness does not improve
during the generations — this shows that at least one of the initial controllers
per experiment cannot escape an initial local fitness minima through the ES,
and demonstrates the difficulty of the tau-control task. A uniformly-low initial
best fitness provides similar intuition — none of the controllers are good at the
task by chance.

Bonuses associated with low final velocity vbonus and position error zbonus
are attained on average after 40.1 (st.dev 11.57) and 39.9 (st.dev 11.68) genera-
tions respectively; the effects of those bonuses on population fitness can be most
easily seen in the best fitness in Fig. 3(a), where best fitness rises dramatically
from ≈3500 to ≈5300 between generations 20 and 60. Nine of the ten experimen-
tal repeats generated a controller that attained vbonus and zbonus in the same
generation — one bonus was not easier to achieve than the other.

Evolved network composition (Fig. 3(b), blue line) shows a decline of mean
neurons per network from 11 (10 hidden, 1 output) to ≈10.45 after 500 genera-
tions. Lowering the number of neurons reduces the dimensionality of the network
search space as fewer connection weights need to be optimised. Simpler networks
may find it easier to approximate the required function as having fewer connec-
tions reduces the effect of crosstalk and reduce the likelihood of overfitting. We
note that the convergence in best fitness at ≈300–350 generations corresponds
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(a) (b)

Fig. 3. (a) Best/average/worst population fitness (b) average number of neurons/ω in
population through the experiment (Color figure online)

to the final significant drop in average neuron numbers from ≈10.5 to ≈10.45
over the same period.

Following an initial period of instability as many networks are replaced, the
self-adaptive ω (Fig. 3(b), red line) is, apart from a small period covering gener-
ations ≈290-310, below the average of 0.5. This aids the evolutionary process in
biasing the networks to removing neurons rather than adding them, and expe-
dites the process of finding an adequetly-sized hidden layer. Stability is achieved
after ≈350 generations, which corresponds to the aforementioned rise in best
fitness and drop in average neuron numbers.

4.1 Evolutionary Performance

We show the progressive optimisation of control generated by the eventual best
network at the end of generations 0, 20, 40, and 500. Initially, the best controller
(which is functionally random), survives for 100 steps before being terminated
for having velocity > 4m/s (Fig. 4(b)), at a final z =≈2 m (Fig. 4(a)).

Generations 20 and 40 are very similar in terms of z, velocity and τ —
the controller at generation 40 survives 15 steps longer than the controller at
generation 20, (an incremental improvement) and as such is awarded higher
fitness. Note that neither controller completes the full 350 steps — both are
terminated for having z < 0m.

The best controller for generation 500 successfully arrives at the target at
the desired step with ≈0 velocity and z≈0 (Fig. 4(a)/(c)), resulting in the award
of both bonuses. The z path shows that the controller descends in stages, with
plateaus at steps 0-20 and 60-80 likely a way to dealing with the nondetermin-
istic initial platform conditions. Compared to the best controllers for previous
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4. Showing (a) - (c) the gradual improvement in z, z velocity, and τ following for
the experiment that produced the eventual highest-fitness controller. Showing (d) - (f)
z, z velocity, and τ for the best controller from each experimental repeat. (c) and (f)
show the τref as a black dashed line.
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generations, the generation 500 controller generates a z profile that approaches
horizontal towards the end of the trial, with a velocity that does not diverge
from the target as shown by the generation 0/20/40 controller (Fig. 4(b)).

4.2 Task Performance

In-trial, z values are similar amongst 9 of the 10 repeats — Fig. 4(d). One outlier
achieves a final z of 1.5 m, the rest <0.1 m. This is enough to earn these con-
trollers zbonus. In contrast, the velocities (Fig. 4(e)) generated are very variable
for the first 150 steps, after which much more uniform. All of the controllers
except one achieve vbonus. τ values are similarly variable through the first 100
steps — controller output is based solely on τ , which is influenced heavily by
the initial platform state (Fig. 4(f)). Recall that the platform must fly to its
start position in simulation, hence its instantaneous initial state can include a
wide range of velocities and positions, leading to a large degree of variance in
both velocity and τ as the controller attempts to stabilise the platform. We
also note that the variance in τ is not necessarily reflected in the z profiles
attained by the controller — τ is highly variable and sensitive to disturbance,
even in successful trials. By basing our fitness function on a variable with these
properties, we are able to generate controllers that can robustly cope with such
variations/disturbances in τ . We further note that variations in τ in the first
hundred steps of a trial are less critical than those later on, as the controller has
time to adapt and bring the platform under control.

5 Conclusions

In this study we present the first evolved neural τ -controller, and the first fully
τ -based GNC system for bio-inspired quadcopter control. The system employs a
population of neural networks that evolve to follow τref using a self-adaptive evo-
lution strategy, and is grounded in a hardware in-the-loop setup. Our hypothesis
was proven in that MLP controllers were successfully evolved to provide precise
τ control for a difficult single-axis descent task. Results indicate that the evolved
controllers can generate robust and precise control, despite using only two inputs
(τ and τref ).

We intend to follow up this preliminary investigation by transferring the
controllers to a real quadrotor RUAV (easier thanks to the hardware in-the-loop
setup), and extending the remit of the networks into the guidance and navigation
parts of the GNC architecture. We envisage that this will include the use of more
complex, network forms that can perform temporal processing.
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Abstract. Interdependent security (IDS) refers to a class of problems
that involve making security investment decisions under uncertainty aris-
ing from the interdependency between the actions of different decision
making entities in the system. Such problems arise in many real world sit-
uations such as cyber, airline and homeland security and epidemics. IDS
games provide a framework to study the behaviour of decision-makers in
such environments. This paper presents a study of the IDS game dynam-
ics in a simulation setting when the payoffs are varied based on different
risk attitude functions using the concept of expected utilities. A special
case of iterated IDS games is considered where the assumption of com-
plete loss immunity, in the case where all agents cooperate in investing
in their own security, is relaxed by introducing a small stochastic loss
term in the payoff. The simulations are carried out using an evolution-
ary game-theoretic framework where strategies are evolved based on the
payoffs accumulated over homogeneous iterated encounters. The results
of the simulations suggest that the level of investments are reduced when
agents take a risk-averse or risk-taking view of the game in comparison
to risk-neutral view.

Keywords: Evolutionary game theory · Interdependent security
games · Iterated evolutionary games · Risk attitude · Expected utility

1 Introduction

The role of decision makers’ risk attitude in making decisions under risk has
long been acknowledged and considered a vital direction in the decision analysis
research [16]. While normative decision analysis approaches have been proposed
to formally factor in risk attitude in decision models (e.g., prospect theory [7]),
expected utility theory proposed by Cramer and Bernoulli in early 1700s [2,3],
remains a dominant approach in the field due to its simplicity and elegance in
representing risk attitudes using parametric utility functions. Expected utility
model relaxes the risk neutrality assumption underlying the predecessor expected
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value approach, which relies only on the average outcomes for the states of
nature, and provides an intuitive way to incorporate risk attitudes in making
decisions.

Similar to utility theory, game theory is the long standing and dominant
approach used for decision analysis in competitive environments where the indi-
vidual outcomes depend on the actions of all agents involved. The concept of
utility has played an important role in game theory since its inception [13]. The
issue of risk attitude becomes even more important when considering decision
making in competitive environments because the decision making then becomes
a function of not only one’s own risk preferences but also that of the opponents’
risk preferences. However, game-theoretic models usually assume risk neutral
agents, i.e., the relationship between utility of their preference over the choice is
assumed linear for most analysis.

Notice that the risk neutrality assumption is different from the rationality
principle which assumes that agents always choose the action that maximizes
their expected payoffs and is also a subject of debate in game theory literature
due to non-conformance of observed human behaviour in real experiments and
real world scenarios. Nonetheless, while the focus of this paper is definitely not
to address this debate, we do note that the evolutionary game-theoretic models,
adopted in this study as well, relax the rationality assumption using the concept
of fitness based evolution. Interestingly, this implies that studying game dynam-
ics in evolutionary game-theoretic setting with utility-based agent models can
potentially allow relaxing both the rationality as well as risk-neutrality assump-
tions. To the best of our knowledge, there is little work done in this direction
in standard two-player games and specifically in interdependent securities (IDS)
games.

To this end, this paper investigates the dynamics of IDS games in an evolu-
tionary setting where agents make their decisions based on risk perceived payoffs
that are moderated by a parameterized utility function. IDS games model secu-
rity related investment decision problems under uncertainty which arises due
to the interdependency between the actions of other agents in the system (see
next section for further details). Due to the involvement of stochasticity, IDS
games become a natural candidate for such a study, although we acknowledge
that other stochastic games, such as stochastic prisoner’s dilemma (PD) game,
would also benefit from such an investigation. An extended version of the game
is introduced here in order to fully map the payoffs to utility functions using a
stochastic loss term in all invest case. IDS games have not been studied before
in an evolutionary setting, except the studies reported in [14,15], which consider
a replicator dynamics-based spatial version of IDS games. In this paper, we use
the same simulation set up as commonly used in iterated PD (IPD) game [1] to
study the evolutionary dynamics of IDS games.

There are a few models presented in the literature that closely relate to
this work. The effect of payoff magnitudes in two player games was studied
in [12]. In a way the work presented in this paper also studies the effect of payoff
magnitudes, however our models are evolutionary and payoffs vary using a utility
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function that allows us to relate the results from a risk attitude perspective.
Some researchers have studied and shown the evidence of risk averse behaviour
in experimental game settings [6]. Recently, Gemelli et al. [8] used a risk-aware
utility model in repeated investment game. However, they have used extensive
form to represent the game and focused on studying the effect of varying marginal
utility on agent decisions. Further, their simulation experiments are done in a
non-population and non-evolutionary setting.

The rest of the paper is organised as follows. Section 2 discusses the IDS game
and presents the proposed IDS risk attitude model. In Sect. 3 we discuss our
experimental framework. Experimental results and analysis are given in Sect. 4.
Section 5 concludes the study and discusses future work.

2 IDS Game and Risk Attitude IDS Model

IDS Game. The IDS game was introduced in [10] to model many real-life
security related problems where the lack of security in one site (e.g., house or
computer node in a network) may affect other sites even if they are secured. Each
player has an asset of value Y to protect against a future adversarial event. Each
player has two discrete choices, either to invest (I) or to not invest (NI) in risk
reducing security measures to secure its asset. The player pays a fixed cost c if
it chooses to invest in security measures, which would prevent or mitigate the
player’s potential losses. When a bad future event occurs, a player may incur a
stochastic loss of magnitude L. The probability of incurring such loss depends
on the I or NI decisions made by all players. The loss is considered direct if
it comes because of its own decision to not invest. Each agent faces a chance
of indirect loss for every other agent in the system who decide not to invest in
securing their sites. Direct and indirect losses occur with probabilities p and q
respectively.

Table 1. Two-player IDS game
expected payoff matrix.

P2

I NI
P1 I Y − c Y − c − qL

NI Y − pL Y − [pL + (1 − p)qL]

Table 2. Two-player α-IDS game expected
payoff matrix.

P2

I NI
P1 I Y − c − αL Y − c − qL

NI Y − pL Y − [pL + (1 − p)qL]

Table 1 shows the payoff matrix for a standard two-player IDS game [10].
If player 1 (P1) invests and player 2 (P2) does not invest, then P1 will incur a
fixed cost c for its investment, but may incur an indirect loss with probability q
because P2 does not invest. The overall payoff of P1 will be Y − c− qL where qL
is its expected loss. If P1 does not invest and P2 invests, then P1 may incur a
direct loss with probability p. The corresponding expected loss for P1 is pL, and
its overall payoff will be Y − pL. If both players do not invest, then P1 face a
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risk of direct and indirect losses. This results in a payoff of Y − [pL+(1− p)qL],
where the factor (1 − p) ensures that a (catastrophic) loss is counted only once.
Conversely, if both players do invest, then P1 incurs the investment cost with
no expected loss, and its payoff is given by Y − c. The previous analysis holds
for P2 as we assume a homogeneous and symmetric game, i.e., players have the
same set of actions and the payoffs do not change if the players’ positions are
reversed.

Standard IDS game (Table 1) assumes that when both players invest in secu-
rity measures, no loss may occur. In other words, the security measures either
prevent the bad future event from happening or completely neutralize its con-
sequences. We propose a slightly modified version of the IDS game - denoted
by α-IDS game (Table 2), where there is still a probability α for loss when both
players choose to invest, i.e., If both players do invest, still there is an expected
loss of αL, and the payoff will be Y − c − αL. We assume α to be an infinites-
imal probability when compared to p and q. The α-IDS game is more realistic
for some security problems, where investing in security measures decreases the
probability of the expected loss but does not eliminate it completely, e.g., all
countries invest in their security systems but terrorist attacks still may succeed.
This modified version is more suitable when studying risk attitudes, since risk
is involved regardless of the players’ actions, i.e., the four cells of the payoff
matrix have an expected loss. Assuming that both players choose their actions
simultaneously and with no communication, i.e., no precedent information about
the action taken by the other players, the following three different cases can be
defined for IDS game under different cost structures:

1. Both players are better off investing as investment will be a dominant strategy
when Y − c − αL ≥ Y − pL and Y − c − qL ≥ Y − [pL + (1 − p)qL]. Thus,
(I, I) is a dominant strategy equilibrium for c ≤ pL(1 − q).

2. Two possible Nash equilibria (I, I) and (NI, NI) for c > pL(1 − q) and
c < (p−α)L respectively. Thus for c in the interval ]pL(1−q), (p−α)L[, both
(I, I) and (NI, NI) are Nash equilibria.

3. Both players are better off not investing in the security; i.e., (NI, NI) is
a dominant strategy equilibrium for c ≥ (p − α)L. This case resembles the
prisoner dilemma (PD) game which models the conflict between self interest
and the group interest, i.e., (I, I) is a Pareto optimal solution and they would
benefit by investing cooperatively.

Risk Attitude IDS Model. In game theoretic studies, players are usually
assumed to be risk neutral, i.e., the player cares only about the expected payoff
regardless of any taken risk. However in reality, not all decision makers have the
same attitude towards the risk associated with future gains or losses. A player’s
risk attitude is defined by the risk premium value, which is the difference between
the player’s expected value (i.e., average payoff of future gamble possibilities)
and the certainty equivalence (i.e., the amount the player would accept instead
of the future gamble). Risk neutral represents the middle of the risk attitude
continuum, which have risk averse attitude at one extreme, and risk taking



352 A. Ghoneim and K. Shafi

attitude at the other. Risk averse player would prefer a lower but more certain
expected payoff rather than a higher expected value with high uncertainty. On
the contrary, a risk taking player would prefer a high uncertain expected payoff
rather than a smaller more certain expected payoff. Between these two extremes,
players can have different degrees of being risk averse or risk takers. Considering
different players’ attitude towards expected payoff in the IDS game brings the
game one step closer to reality.

In the α-IDS game, other than a player’s own actions of whether to invest
or not invest, the opponent’s actions and the effect of the bad event affect the
player’s payoff. Thus, from the player’s perspective, there is a risk associated
with the future event consequences and the opponent’s moves.

Fig. 1. The decision tree showing the α-IDS game from a player’s perspective (Color
figure online).

Figure 1 shows a decision tree which illustrates the α-IDS game from a
player’s perspective. In Fig. 1, the player take a certain action of whether to
invest or not to invest in security measures. Then, the opponent may decide1

to invest with a probability OI or not to invest with a probability 1 − OI . The
actions taken by the player and its opponent will define the system-wide level of
security, and thus, the probability that a bad future event will cause a loss L.

Based on the choices made and the impact of the bad future event, the
player’s realized payoff can be either Y − c − L, Y − c, Y − L or Y . Assuming
the player’s knowledge of the probabilities associated with its opponent actions
and the bad event impact, the player will choose the action which maximizes
its expected payoff. The expected payoff of the player when investing in security
measures is

E(I) = OI × (α × (Y − c − L) + (1 − α) × (Y − c))
+(1 − OI) × (q × (Y − c − L) + (1 − q) × (Y − c)), (1)

while its expected payoff when not investing is
1 This decision tree does not represent a sequential game where the opponent takes its

decision after knowing the decision of the player. We assume a simultaneous game.
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E(NI) = OI × (p × (Y − L) + (1 − p) × Y ) + (1 − OI)
×((p + (1 − p) × q) × (Y − L) + (1 − (p + (1 − p) × q)) × Y ). (2)

To capture the player’s risk attitude, we use a risk function R which gives
new values for the payoffs Y −c−L, Y −c, Y −L and Y , where these new values
(shown in Fig. 1 in red) reflects the player’s attitude toward possible future
gains or loses. Several risk functions were introduced in the literature, we use a
bounded exponential risk function [9] defined as

R(X) =

⎧
⎨

⎩

exp
−(X−low)

r −1

exp
−(high−low)

r −1
, if r �= ∞

X−low
high−low , otherwise

The exponential risk function takes an input X and outputs a bounded value
in the [0, 1] interval. For scaling the input values, the function uses high and low
variables, which in the IDS game are the Y and Y − c−L, respectively. The risk
function has a parameter r which defines the degree of risk aversion. Assuming
values Y = 100, L = 10 and c = 4, Fig. 2 shows the exponential risk function
with different values for the parameter r. When r = ∞, the risk function is a
straight line corresponding to the risk neutral attitude. The values r = 1, r = 3,
r = 6 reflect the risk averse attitude. While the values r = −1, r = −3, r = −6
reflect the risk taking attitude. The expected payoff of the player considering
the player’s risk attitude is computed according to Eqs. 1 and 2 while replacing
Y − c − L, Y − c, Y − L and Y by R(Y − c − L), R(Y − c), R(Y − L) and R(Y ).

3 Experimental Design

Evolutionary computation approaches are frequently used to investigate how
cooperation may evolve between self-interested players. Evolved complex strate-
gies are more likely to be adopted by players in real situations than simple strate-
gies [1,11]. Here, we use genetic algorithms (GAs) to analyse the evolutionary
dynamics of single-round and iterated rounds IDS games, while investigating
how different risk attitudes for players affect the investment level.

Strategy Representation. A lookup table representation for player strategies
is used [1]. The lookup table is a binary representation (‘0’ for invest; ‘1’ for
not invest). Each table entry is split into a history portion and a strategy por-
tion. The bit size depends on the number of players and how much historical
information is recorded. For example - Fig. 3, if there were 2 players and L = 1
history step, then the history portion will consist of 2 bits (1 bit for the player
indicating his own previous action and 1 bit indicating the other player’s action).
Since there are 4 possible such histories there are 4 bits needed for the strategy
portion. Generally, the strategy portion size is 2nL bits where n is the number
of players and L is the number of historical steps.

Initialization. We consider history length of zero (Hist0) which requires a 1-
bit encoding because no history is recorded and history length of one (Hist1)
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Fig. 2. The exponential risk function with different values for parameter r.

Fig. 3. The lookup table representation for n = 2 players with L = 1 bit of history
recorded. Here in the previous round the players chose ‘10’, then the player in the next
round would choose to not invest ‘1’.

which requires a 6-bit encoding (Fig. 3). For each player (genotype), we initialize
its bit(s) randomly to be ‘0’ for invest or ‘1’ for not to invest. We consider a
population of size PopSize = 50.

Fitness Evaluation. Similar to [4], we evaluate each genotype (player) in a
co-evolving population by making it play against every other strategy in the
population. In each generation, each genotype is evaluated by playing the α-IDS
game against all other strategies. The game has a single round if the players
have Hist0. While the game has 200 rounds if the players have Hist1, where this
number of rounds are sufficient to reach a stable payoff [5]. In each round, a player
will get the expected payoff according to the α-IDS game matrix depending on
his action and his opponent’s action. Each genotype has a cumulative payoff from
the played games against all opponents. The fitness is calculated by dividing a
genotype’s cumulative payoff by the number of games it participated in (i.e.,
the number of opponents) multiplied by the number of rounds in each game to
obtain the average payoff per round for this genotype.

Selection and Reproduction Operators. Linear ranking selection is used
where a new fitness is calculated for each genotype according to its position
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(Pos) in the population, with the smallest average payoff ranked at the first
position and the highest average payoff at the last position. Equation 3 is used,
with SP = 1.25 denoting the selection pressure.

Fitness(Pos) = 2 − SP + 2 · (SP − 1) · (Pos − 1)
(PopSize − 1)

(3)

We use binary crossover followed by bit mutation with probabilities of 0.6
and 0.001 respectively. All GA parameters are set according to preliminary tests.

4 Results and Discussion

In this section, we investigate the effect of different risk attitudes on the evo-
lutionary dynamics of the α-IDS game using the risk attitude IDS game model
proposed in Sect. 2 and the experimental design illustrated in Sect. 3.

We use the values Y = 100, L = 10, p = 0.6, q = 0.4, and α = 0.01 while
conducting our experiments. The values of p, q, α and L define the bounds on the
cost of investment variable c and thus different cases in the α-IDS game, where
c ≤ pL(1 − q) = 3.6 corresponds to Case 1 (i.e., (I,I) is a Nash equilibrium),
c ∈]pL(1 − q), (p − α)L[=]3.6, 5.99[ corresponds to Case 2 (i.e., both (I,I) and
(NI, NI) are Nash equilibria), and c ≥ (p − α)L = 5.99 corresponds to Case 3
(i.e., (NI, NI) is a Nash equilibrium). We consider the values 3, 3.6, 4, 4.5, 5, 5.5,
5.99 and 6.5 for c to cover the previous three cases. In this set of experiments,
we assume that a player has no information or beliefs about his opponent’s
actions. Thus, a player will assign a probability of 0.5 for his opponent investing
in security measures (i.e., OI = 0.5) and a probability of 0.5 for his opponent
not investing (1 − OI = 0.5).

We use the exponential risk attitude function (Eq. 2) and experiment with
different values for the parameter r to capture different risk attitudes (as shown
in Fig. 2). For r = 1, r = 3, and r = 6, the players will be risk averse with r = 1
the highest risk aversion level in our experiments, while r = 6 is the mildest level
of risk aversion. When r = ∞, players are risk neutral. For r = −1, r = −3, and
r = −6, the exponential risk function expresses the risk taking attitude, where
r = −1 is the highest level of risk taking and r = −6 is the mildest risk taking
attitude.

When fixing the values Y = 100, L = 10, p = 0.6, q = 0.4, α = 0.01, and
OI = 0.5, for a particular value c and a particular value r, the α-IDS game
matrix (Table 2) will be computed according to the decision tree in Fig. 1. Thus,
when fixing all other variable, each combination of c and r values will correspond
to a different α-IDS game matrix. Figure 4 shows the α-IDS game matrices when
c = 3 and different values of r.

Single-Round α-IDS Game. In order to establish a baseline for comparing
the effect of different risk attitudes, we discuss first the neutral risk attitude (i.e.,
r = ∞). This is also crucial for validating our experimental implementation by
showing how the evolutionary dynamics coincide with the theoretical equilibria
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Fig. 4. The α-IDS game matrices when c = 3 and different values of r.

of the α-IDS game. Given a population of 50 players, each player plays pairwise
games with all other players in the population (i.e., 49 games for each player),
and a single round per game, we have 50×49×1 = 2450 actions taken by all the
players in the population in one GA generation. For each α-IDS game, we make
100 different run, each run has 150 generations. Figure 5 shows the number of
investment actions taken in each run (left) and the average number of investment
actions of the 100 runs (right) for c = 4.5. The figure shows that 150 generations
was sufficient for the population to converge.

Fig. 5. The number of investment actions taken in each run (left) and the average
number of investment actions of the 100 runs (right) for c = 4.5.

Figure 6 shows the average number of investment actions of the 100 runs
(right) for all considered values of c. It shows that all the 100 runs converged
to the (I, I) equilibrium for c = 3 and 3.6, which is the Nash equilibrium in
Case 1 of the IDS game. For c = 4.5 (Fig. 5) or 5, some runs converge to the (I,
I) equilibrium and others converge to the (NI, NI) equilibrium, which are the
two possible Nash equilibria in Case 2 in the IDS game. For c = 5.5, 5.99 or 6.5,
all runs converge to the (NI, NI) equilibrium, which is the Nash equilibrium in
Case 3 of the IDS game.

Now we move to consider different risk attitudes. Figure 7 considers all risk
attitudes (i.e., all considered values of r) with each c value. It plots the final
convergence level of the averaged investment actions of 100 runs for each risk
attitude (i.e., r value) against c values. The figure shows that the risk neutral
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Fig. 6. The average number of investment actions of the 100 runs for different c values.

Fig. 7. Single-Round α-IDS: the final convergence level of the averaged investment
actions of 100 runs for each risk attitude (i.e., r value) against c values (Color figure
online).

attitude (the black dotted curve) has higher values than all other curves (i.e.,
other risk attitudes) for all values of c. This is followed by the mildest level
of risk averse r = 6 (pink) and risk taking r = −6 (cyan). The investment
level decreases dramatically for other r values. This concludes that the highest
investment level in the IDS game is attained when players are risk neutral,
and having any other risk attitude decreases the investment level. Further, the
investment level continues to decrease as the players deviate further from being
risk neutral.

Iterated α-IDS Game. In the iterated version of the α-IDS game we assume
players using one history step. Again, we start with the neutral risk attitude
(i.e., r = ∞) to establish a baseline for comparing the effect of different risk
attitudes. Given a population of 50 players, each player plays pairwise games
with all other players in the population (i.e., 49 games for each player), and 200
rounds per game, we have 50×49×200 = 490000 actions taken by all the players
in the population in one GA generation. Repeating the previous analysis, Fig. 8
shows the similar outcome that the highest investment level in the IDS game
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Fig. 8. Iterated α-IDS: the final convergence level of the averaged investment actions
of 100 runs for each risk attitude (i.e., r value) against c values.

is attained when players are risk neutral, and having any other risk attitude
decreases the investment level.

5 Conclusion and Future Work

This paper presented a study of evolutionary game dynamics when the agents
perceive their payoffs based on different risk attitudes in a stochastic game set-
tings. A parameterized utility function is used to model risk based perception and
an extended version of IDS games is introduced that allows mapping between the
payoff and utility functions. The simulations are run using standard evolutionary
game-theoretic framework where a population of agents interact homogeneously
in iterated encounters and strategies are evolved using a genetic algorithm. The
simulation results suggest that agents tend to decrease security investments when
they take a non-risk-neutral view of their payoffs. Future work will investigate
the use of agent models with embedded risk profiles to study game dynamics
in a heterogeneous setting as well as mechanisms to promote cooperation under
such models.
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Abstract. We investigate the design of trading systems using a genetic
algorithm (GA). Technical indicators are used to define entry and exit
rules. The choice of indicators and their associated parameters are opti-
mized by the GA which operates on integer values only. Holding time
and profit target exit rules are also evaluated. It is found that a fitness
function based on winning probability coupled with a profit target and
one based on the Sharpe ratio are useful in maximizing percentage of
winning trades as well as overall profit. Strategies are developed which
are highly competitive to buy and hold.

Keywords: Genetic algorithms · Trading systems

1 Introduction

Investors wishing to profit in the financial markets may approach it a number
of different ways. Use of fundamental analysis may be made to evaluate the
prospects of future earnings for a company and thus expect an ever rising share
price. Alternatively, the underlying philosophy of technical analysis says that
all fundamental information is reflected in the asset price and so analysis of
the price itself and perhaps the associated trading volume is sufficient. A final
alternative approach is a combination of the two mentioned. In this paper we
utilize technical analysis alone in the development of trading systems [2].

There have been many academic investigations with the aim of develop-
ing technical trading strategies for financial markets which have used computa-
tional intelligence techniques. These include methods such as Artificial Neural
Networks [8], Genetic Algorithms [6,10,13], Genetic Programming [9], a game-
theoretic approach employing fuzzy logic [14] as well as other approaches [7,12].
These have been applied to a range of different financial assets such as, stocks
[9], forex [11,13] and futures [10]. The techniques discussed in this paper may
also be more generally applied to these assets but we will provide simulation
results in the futures domain, specifically, S&P500 e-mini index futures (symbol:
ES). The S&P500 index is a broad based index which serves as a proxy for the
US stock market.

c© Springer International Publishing Switzerland 2016
T. Ray et al. (Eds.): ACALCI 2016, LNAI 9592, pp. 360–373, 2016.
DOI: 10.1007/978-3-319-28270-1 30
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In this paper a large number of widely known, as well as a couple of newer
technical indicators are searched to find combinations to form entry and exit
rules for trading. These indicators in essence quantify market conditions and
thus when selected herald auspicious entry or exit conditions based on historical
data. The selection of trading rules as well as the associated indicator parameters
are evolved using a genetic algorithm. Since the rule selection and indicator
parameter values (which for the main part represent lookback periods used in
the indicators) are integer values, the GA reproduction and mutation operations
are specifically coded with this in mind.

In this work indicator based rules are used to initiate trade entry and exits.
However we first investigate the efficacy of using two alternative non-indicator
based rules for exits. Furthermore, the results of using a number of different
fitness functions are examined. The final results lead to strategies which are
highly competitive as compared to the buy and hold strategy.

2 Trading Strategies

Mechanical trading systems are generally comprised of a set of objective rules
which dictate the entry and exit conditions for trading an asset. In this paper
we consider the design of long-only, end-of-day trading strategies. Consequently,
entry conditions are such that there is an expectation that the asset will appreci-
ate in value with a subsequent exit at a higher price level resulting in profitable
trades. This is contrasted with trading on the short side where profits are made
when the asset depreciates in value.

2.1 Technical Indicators

Objective entry and exit rules can be defined in a number of different ways.
Generally for entries technical indicators are used. The indicators are simply
mathematical functions which take as input the asset price and/or on occasion
the asset trading volume. The price is generally aggregated to a certain time
period, such as daily bars in end-of-day strategies so that a trading decision is
only made at most once per day. For any time aggregation four price values
can be considered. These are the opening, the high, the low and the closing
prices. The output of an indicator may comprise one or more values. Generally
indicators take into consideration a number of past price bars to derive the
indicator value(s). The range of the historical bars considered is referred to as
the lookback period.

A widely used indicator is the moving average, where generally a weighted
sum of past closing prices are used to derive the indicator value. One such moving
average is the exponential moving average (EMA), where more recent data points
have greater weight than data further back in the lookback period. We will refer
to EMA(k, p) as the value of the p lookback period exponential moving average
time series at time index k which is evaluated using the following formula

EMA(k, p) = (1 − K) · EMA(k − 1, p) + K · ck (1)

where K = 2/(1 + p) and ck is the closing price for the k-th bar.
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A large number of indicators have been developed in the past and newer ones
are appearing constantly. The set of indicators used in the present work are a
subset of those offered in the TA-Lib library [3] which is available for use in a
number of different coding languages and in particular in the language used in
this paper, Matlab. The indicators used are listed in Table 1. Here we see that
the value of an indicator is accessed by supplying the value of the time series
index, k and also the lookback period, p. Some indicators only use the k-th bar
data and so do not require a lookback specifier. An example of this is the Balance
of Power (BOP) indicator which is simply determined as follows:

BOP (k) =
ck − ok
hk − lk

(2)

where ck, ok, hk and lk are the close, open, high and low prices of the k-th bar,
respectively.

On the other hand a number of indicators require more than the two parame-
ters to specify an output. One example of this is the newly developed Connors′

Relative Strength Index (ConRSI) [4]. This indicator is a composite of three
indicators: (1) RSI used on closing price, (2) RSI used on “streaks” of up and
down closing prices, and (3) percent rank of period returns. Each component
indicator has its own appropriate lookback period. For our use two of the indica-
tor lookback values were left constant. Specifically, the RSI price period was set
at 3 and the RSI streak period was set at 2. The period associated with percent
rank of returns was left variable.

Another interesting indicator that was used is the Modified RSI defined as
follows:

ModRSI(k, p) =
√

p − 1 · [RSI(k, p) − 50] (3)

This formulation shifts the output indicator range of the standard RSI indi-
cator from [0, 100] to [–50, 50] and also scales the output value with a value
dependent on the lookback period. This was devised so as to allow RSI obtained
values of different periods to be compared to each other. Apart from ConRSI
and ModRSI indicators, all other indicators listed in Table 1 are standard well
known indicators [5].

2.2 Indicator Based Rules

Conditions to initiate entry or exit of trades may be specified using indicators.
To illustrate this, consider the widely known moving average crossover system
[2]. A typical version of this system contains two moving averages with differing
lookback periods, normally referred to as the short and long periods. When the
short period moving average crosses above the long period moving average, this
can be taken as a signal to enter a trade, i.e. to go long the asset. The condition
can be stated as follows for the case of exponential moving averages:

EMA(k, pSHORT ) > EMA(k, pLONG) (4)
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Table 1. List of indicators used in defining the trading rules. All indicators are widely
known and used except for the newly developed ConRSI (#5) and ModRSI (#6)
indicators. k is the time-series index and p is the indicator lookback period

Ind Indicator name and Abbreviation

1 Close(k) – bar closing price

2 EMA(k, p) – exponential moving avg

3 TEMA(k, p) – triple exponential moving avg

4 RSI(k, p) – relative strength index

5 ConRSI(k, p – Connor’s RSI

6 ModRSI(k, p) – modified RSI

7 BBU(k, p) – upper Bollinger band

8 BBL(k, p) – lower Bollinger band

9 StochK(k, p) – Stochastics %K

10 StochD(k, p) – Stochastics %D

11 Range(k) – price bar range

12 ATR(k, p) – avg true range

13 NATR(k, p) – normalized avg true range

14 MFI(k) – money flow index

15 BOP(k) – balance of power

16 WILLR(k, p) – Williams’ %R

17 UO(k, p) – ultimate oscillator

18 ROC(k, p) – rate of change

19 MOM(k, p) – momentum

20 OBV(k) – on balance volume

21 STDDEV(k, p) – std deviation

22 PPO(k, p) – percentage price oscillator

23 MEDPRICE(k) – median price

24 ADX(k, p) – avg directional move index

25 CMO(k, p) – Chande momentum oscillator

26 CCI(k, p) – commodity channel index

27 KAMA(k, p) – Kaufman adaptive moving avg

The result of this rule at time instant k is Boolean. The logic behind entering
a long position under this rule is that it indicates a change of trend. This rule
is an example of rules comprised of a comparison of the same indicator using
different lookback periods.

Another category of an indicator based entry signal is the following. In the
following example a long position is taken when the closing price of the cur-
rent bar crosses below the lower Bollinger Band with a lookback period p—i.e.,
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Close(k) < BBL(k, p). Again the result of this rule at time instant k is Boolean.
The logic here of entering a long position is that the price has moved sufficiently
away from its moving average (which is a component of the Bollinger Bands)
that a price reversion to the mean is expected. This rule exemplifies rules where
a price level, or a derived price level, such as the median price (= (hk + lk)/2
where hk and lk are the high and low prices of the k-th bar, respectively) is
compared to an indicator value.

The last category of rule is one where the indicator value is compared to
a threshold level. Note that different indicators may have different ranges of
possible output values. For example, the RSI indicator ranges from 0 to 100
whereas the CMO (Chande Momentum Oscillator) and Stochastics Oscillator
are range bound to –100 and +100. This category of rule can be stated in the
RSI example as RSI(k, p) > threshold. In this example, if threshold ≈ 80, then
this condition when satisfied signifies an over-bought market condition over the
lookback period. Conversely, if the rule were RSI(k, p) < threshold and if say
threshold ≈ 20 is satisfied, then this may signify an over-sold market condition
and subsequent appropriate action may be taken.

To further generalize the three different categories of rules the time index k
may be varied by a parameter, so that the decision is no longer dependent on the
current bar but some prior bar, and the threshold level may be parameterized and
scaled and/or translated so as to appropriately match the associated indicator
output range. The set of rules used in this paper are listed in Table 2 where they
are numbered from 2 to 65. The more generalized rules corresponding to the
specific rules discussed above appear in Table 2 as rules numbers #45, #11, #9
and #8, respectively in the order presented above.

2.3 Trade Exits–Alternative Possibilities

As discussed above, a position may be exited using signals from technical indi-
cators. However, other possibilities also exist. We will consider two of these here.
The first is a time based condition: the position is exited after a certain number
of days has elapsed. The second is the condition that a profit target has been
reached and if this is not achieved in a certain maximum number of days the
position is exited.

The results of applying indicator based signals for entry and exit as well as
the alternative exit conditions just discussed are presented in Sect. 4, however
in the next section we first present a discussion of the structure of a genetic
algorithm and accompanying genome with which optimization may be achieved.

3 Genetic Algorithm Based Search

A genetic algorithm (GA) was used to evolve the best strategy. In this section
we describe its construction and initialization.

The genome describes how each solution (strategy) is encoded in the GA while
the genotype is the encoding of a particular strategy. The genome used in this
research is a sequence of 12 genes, where each group of 3 genes encodes a rule.
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Fig. 1. The genome structure consists of 12 genes. Each group of 3 genes defines a rule
and a set of four rules defines an investment strategy. Light shaded groups correspond
to buy rules while dark shaded groups refer to sell rules.

In the ensuing discussion we focus on the structure of the genome used for
strategies where both the buy and sell rules are evolved. This is one of the
three variations presented further below. For the two cases where sell rules are
not dictated by indicators only half the number of genes are required. Figure 1
shows the genome structure where ri, αi, βi ∈ I. The light groups correspond
to buy rules while the dark groups to sell rules. Every genotype specifies four
rules where each rule checks to see if some condition exists in the asset time-
series data. There are currently 64 rules, indexed from 2 to 65. Each rule ri has
two associated integer parameters αi and βi with a range from 2 to 65. Also
associated with each rule is a characteristic function

f(ri) =

{
1 if condition is met in data
0 otherwise

(5)

Every trading day is evaluated and a conjunction of the characteristic func-
tions indicates what actions, if any, should be taken. An example will help illus-
trate how a genotype is decoded. Consider the genotype shown in Fig. 2. Rules
19 and 49 are used for buy decisions and rules 22 and 8 for sell decisions. Suppose
at a given time the asset is not held. If the conjunction of f(19) and f(49) is
“1”, then the asset is purchased and the purchase price is recorded. Conversely,
if the asset is held and the conjunction of f(22) and f(8) is “1” the asset is sold
and the sell price recorded. (No action is taken if the respective conjunctions are
“0”.)

Fig. 2. An example genotype. The first six (with light background) alleles on the left
represent two buy rules and their associated parameters. The second set of six (with
dark background) alleles used with the indicator based sell (exit) strategy.

The GA evolves a population of 100 individuals (genotypes) over 500 gen-
erations. Reproduction is performed using uniform crossover (probability 0.7)
and every gene is subject to mutation (probability 0.02). Randomly replacing
an allele with another integer does mutation. Elitism is implemented by copying
the best-fit individual in the current generation to the next generation. We used
binary tournaments to select parents for reproduction.
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Table 2. List of rules used to evolve trading strategies. k represents the time-series
index. p1 and p2 are evolved parameters. The term ‘adjusted(p2)’ appearing in the
table refers to a threshold value parameterized by variable p2 and adjusted by value by
scaling and/or translation to match the range of values in the corresponding indicator
output.

Rule # Rule Rule # Rule

2 ConRSI(k, p1) > adjusted(p2) 34 STDDEV(k, p1) < STDDEV(k − p2, p1)

3 ConRSI(k, p1) < adjusted(p2) 35 STDDEV(k, p1) > STDDEV(k − p2, p1)

4 Close(k) > Close(k − p1) 36 OBV(k) < OBV(k − p1)*adjusted(p2)

5 Close(k) < Close(k − p1) 37 OBV(k) > OBV(k − p1)*adjusted(p2)

6 Range(k) > Range(k − p1) 38 PPO(k, p1) > adjusted(p2)

7 Range(k) < Range(k − p1) 39 PPO(k, p1) < adjusted(p2)

8 RSI(k, p1) < adjusted(p2) 40 MEDPRICE(k) > TEMA(k, p1)

9 RSI(k, p1) > adjusted(p2) 41 MEDPRICE(k) < TEMA(k, p1)

10 BBL(k, p1) < Close(k − p2) 42 MEDPRICE(k) > EMA(k, p1)

11 BBL(k, p1) > Close(k − p2) 43 MEDPRICE(k) < EMA(k, p1)

12 BBU(k, p1) < Close(k − p2) 44 EMA(k, p1) < EMA(k, p2)

13 BBU(k, p1) > Close(k − p2) 45 EMA(k, p1) > EMA(k, p2)

14 StochK(k, p1) > adjusted(p2) 46 TEMA(k, p1) < TEMA(k, p2)

15 StochK(k, p1) < adjusted(p2) 47 TEMA(k, p1) > TEMA(k, p2)

16 StochD(k, p1) > adjusted(p2) 48 ADX(k, p1) < adjusted(p2)

17 StochD(k, p1) < adjusted(p2) 49 ADX(k, p1) > adjusted(p2)

18 MFI(k) < adjusted(p2) 50 ADX(k, p1) > ADX(k, p2)

19 MFI(k) > adjusted(p2) 51 ADX(k, p1) < ADX(k, p2)

20 BOP(k) < adjusted(p2) 52 CMO(k, p1) < adjusted(p2)

21 BOP(k) > adjusted(p2) 53 CMO(k, p1) > adjusted(p2)

22 WILLR(k, p1) > adjusted(p2) 54 CCI(k, p1) > adjusted(p2)

23 WILLR(k, p1) < adjusted(p2) 55 CCI(k, p1) < adjusted(p2)

24 UO(k, p1) > adjusted(p2) 56 KAMA(k, p1) > adjusted(p2)*Close(k)

25 UO(k, p1) < adjusted(p2) 57 KAMA(k, p1) < adjusted(p2)*Close(k)

26 ROC(k, p) > adjusted(p2) 58 KAMA(k, p1) > KAMA(k − p2, p1)

27 ROC(k, p) < adjusted(p2) 59 KAMA(k, p1) < KAMA(k − p2, p1)

28 MOM(k, p) > adjusted(p2) 60 ModRSI(k, p1) < adjusted(p2)

29 MOM(k, p) < adjusted(p2) 61 ModRSI(k, p1) > adjusted(p2)

30 ATR(k, p1) > adjusted(p2) 62 ModRSI(k, p1) > ModRSI(k, p2)

31 ATR(k, p1) < adjusted(p2) 63 ModRSI(k, p1) < ModRSI(k, p2)

32 NATR(k, p1) > adjusted(p2) 64 ModRSI(k, p1) > ModRSI(k − p2, p1)

33 NATR(k, p1) < adjusted(p2) 65 ModRSI(k, p1) < ModRSI(k − p2, p1)
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The fitness of a genotype is based on the number of trades conducted over
the time frame covered by the data set. To evolve a strategy which features a
sufficient number of trades the fitness is set to 0 if less than 100 trades were
conducted. Two fitness functions were used. The first type of fitness function is
percentage of winning trades. The second type of fitness function is a variation
of Sharpe ratio [1]. Specifically,

fitness(Ik) = λ · E [Ik profit]
σ

(6)

where the expected profit is from all trades, σ is the standard deviation of the
profits and λ is a scaling factor. This second version of fitness considers risk. The
numerator may result in values that are less than or equal to 0.

4 Genetic Algorithm Search Results

In this section we will present the results of a number of simulations of different
trading strategies that are evolved by the GA. Each of the different strategies
will use indicator based entry rules but the trade exit conditions will vary to
examine the efficacy of each of these approaches. We will examine exits based
on the following:

(1) A fixed holding period. That is, trade exit is initiated after a fixed number
of days after entry.

(2) A fixed profit target. That is, the trade is exited when a prescribed profit
target has been achieved. If the target is not reached in the prescribed time
of ten days, the trade is exited after ten days.

(3) A set of indicator-based rules which are evolved to optimize the fitness func-
tion. Two different fitness functions are considered in the sequel.

The data used in the subsequent studies is the S&P500 e-mini futures con-
tract (day session only, i.e. 8:30 am to 3:15 pm central time). The symbol for this
contract is ES. The data used ranges from Sept 11, 1997 to Dec. 29, 2006, a total
of 2351 daily bars. This data was segmented into three periods: (1) the period
from Sept.11, 1997 to Mar. 25, 1998 (137 daily bars) is used as initial set-up
data for the indicators, (2) the period from Mar 26, 1998 to Dec 31, 2002 (1205
bars) is used as the in-sample (IS) testing period, and (3) the period from Jan
2, 2003 to Dec 29, 2006 (1009 daily bars) represents the out-of-sample (OOS)
period.

4.1 Fixed Holding Period Strategy

We first examine the efficacy of using a fixed holding period when trading. The
market entry conditions are formed by a combination of two rules chosen from
a set of technical indicators. Both entry rules must be satisfied concurrently for
entry. However, the exit condition is a fixed time period from entry, here we will
examine periods varying from 1 to 10 days.
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Table 3. Summary of results from evolved 2-rule entry conditions and fixed hold-
ing periods after 500 generations. Performance (fitness) is measured by percentage of
profitable trades.

Days 1 2 3 4 5 6 7 8 9 10

IS fit (%) 67 64 65 62 66 66 63 60 61 61

OOS fit (%) 50 62 52 59 62 63 59 62 60 59

Rule #1 13 65 63 64 6 35 35 51 51 16

43 4 46 34 37 14 14 59 62 38

42 52 28 38 9 12 19 58 47 10

Rule #2 15 59 35 12 36 56 20 52 12 13

14 38 6 3 40 39 40 49 58 60

8 42 63 44 44 31 54 10 47 11

IS profit ($) 40,425 37,225 47,088 37,288 25,815 24,338 25,950 12,074 2,451 −5,587

OOS profit ($) 8,925 10,625 6,250 3,850 21,150 20,275 17,100 24,763 27,287 22,425

# IS trades 100 110 114 114 102 106 104 104 100 106

# OOS trades 71 60 70 62 111 90 82 86 90 90

Table 4. Summary of results from evolved 2-rule entry conditions and a profit based
exit strategy (P = {1, 2, . . . , 10} points, where 1 point = $50) after 500 generations.
Performance (or fitness) is measured by percentage of profitable trade.

Profit target +1 +2 +3 +4 +5 +6 +7 +8 +9 +10

IS fit (%) 80.37 77.19 78.26 80.58 80.39 77.88 77.45 83.17 77.31 74.51

OOS fit (%) 67.61 67.78 64.06 69.61 70.91 74.39 69.64 70.83 76.74 70.24

Rule #1 6 62 6 13 36 7 29 36 6 42

18 34 37 7 59 32 47 56 31 3

53 44 28 20 58 37 57 44 28 18

Rule #2 36 6 27 35 6 6 61 35 40 16

42 18 47 14 21 19 50 15 5 18

65 37 35 33 19 49 25 10 60 36

IS profit ($) 62,512 29,700 27,400 33,063 35,512 20,313 22,525 58,737 50,425 18,200

OOS profit ($) 11,613 10,263 11,475 13,925 21,338 14,100 6,550 17,863 28,663 15,538

# IS trades 107 115 116 104 102 105 103 101 121 102

# OOS trades 141 89 63 101 109 81 55 71 85 83

The goal of the strategy is to consistently provide positive value trades over
the back-testing interval. Initially, the magnitude of the profit or loss of each
trade is not considered. The assumption is that a high probability of positive
value trades will result in a profitable trading strategy. Thus the performance
metric used to evaluate fitness of each individual in the population is calculated
as the ratio of the number of winning trades to the total number of trades.

The results of the evolved 2-rule strategies after 500 generations for the full
range of holding periods from 1 day to 10 days are shown in Table 3. The mean
IS performance is 63.5 % and the mean OOS performance is 58.8 %. For fixed
holding periods of 5 days and more, the OOS performance is consistently close to
60 %. Additionally, each rule set achieves approximately the same total number
of trades over the IS and OOS range. The maximum OOS profit of $27,287
occurs for the 9 day holding period, but the IS performance in terms of profit for
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both the 9 and 10 day hold periods indicate that a small number of large losing
trades occur. Consequently in the next section we modify the trading strategy
by adding a profit target that is taken at the earliest opportunity.

4.2 Profit Target Based Strategies

We next examine the efficacy of using profit targets and we evolve strategies
using the GA under this constraint. The previous trading strategy was modified
such that rather than imposing a fixed holding period, the trade may be exited
when a specified profit target is achieved or, in the event that this target is not
attained, a maximum holding period has elapsed. For example, if the trade was
entered at price X, it will be exited when the price reaches a value of X + P or
if N days elapse.

Figure 3 shows the equity curve for the IS and OOS periods, for the case of
a 9 point profit target, i.e. P = 9 (which corresponds to a profit target of $450
per contract per trade) and a maximum holding period of 10 days, i.e. N=10.

Fig. 3. Results from evolved 2-rule entry conditions with profit based exit conditions
(P = 9, N = 10). Top graph: The equity curve achieved by the final evolved strategy
with the delineation of IS and OOS range shown by the vertical line. Bottom graph: the
evolution of IS performance (viz. percentage of profitable trades) over 500 generations.

Table 4 summarizes the results for profit targets of P = 1 to 10 points, with
a maximum holding period of N = 10 days. Compared to the previous results,
where exit was based on holding period only, we see that the average IS and OOS
profitability has greatly increased from 63.5 % and 58.8 % to 78.1 % and 70.2 %,
respectively. The maximum OOS profits of $21,338 and $28,663 occur for profit
targets of 5 and 9 points, respectively. The corresponding winning probabilities
were 70.91 % and 76.74 %, respectively. The limited number of holding days and
high probability may make this strategy particularly useful for long option trades
(since erosion of option value due to option theta decay would be minimal).
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Fig. 4. Equity curves of the GA determined strategy (solid line) and buy and hold
(dotted line) over the same period. The profit is given in terms of dollars (= 50 times
the point value). IS (OOS) data appears to the left (right) of the vertical line.

4.3 Indicator Based Exit Strategies

In this last strategy variant GA is used to select both entry and, in particular,
exit rules and their associated parameters. Similarly as in the case for trade
entry, two exit rules are used which when simultaneously satisfied constitute an
exit signal for the current long position.

The GA searches for a solution that maximizes the Sharpe ratio. As before,
the following GA parameters were used in the simulation: population size of
100, uniform crossover with probability of 0.7, and mutation probability of 0.02.
The algorithm was run for 500 generations. A number of simulations were per-
formed and the final result discussed next was chosen where the out-of-sample
performance was deemed the best based on linearity of the total equity curve.

The equity curve is shown by the solid line in the plot of Fig. 4. The buy
and hold equity curve over the corresponding period is also shown in this figure
by the dotted line. As before, the vertical line marks the boundary between in-
sample and out-of-sample trades, with trades to the left of the line representing
in-sample trades during which the GA searches for an optimal set of trading
rules.

The rules discovered were encoded in the following genotype: [42, 64, 18, 65,
9, 63, 21, 59, 22, 42, 49, 22]. Decoding this genotype using Table 2 indicates the
rules were:

Entry rules :
MedPrice(k) > EMA(k, 64) ∧
ModRSI(k, 9) < ModRSI(k − 63, 9)

Exit rules :
BOP(k) > −0.36 ∧
MedPrice(k) > EMA(k, 49)

(7)

In words, the entry rules state that when the current median price, i.e. the
average of the high and low of the current day bar, is greater than the exponential
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moving average (EMA) of the past 64 closing prices and the current day nine
period modified relative strength index (ModRSI) indicator value is less than its
value 63 days prior to today then a position is to be entered into at the current
close. Note that the newly developed ModRSI indicator has been chosen from
all the available indicators providing some validation for this indicator.

Similarly, a trade exit is signaled when the balance of power (BOP) indicator
for the current day is greater than -0.36 and concurrently the median price is
greater than the 49 period EMA of daily closing prices. The position is exited on
the next day’s open. Note that the BOP indicator has values in the range [−1, 1],
as can be deduced from equation (2). We see in the evolved genotype that the
evolved parameters in positions 3, 8 and 12 (counting left to right), specifically
18, 59 and 22 are not used in the rules but are only present to encompass the
more general phenotype.

The discovered strategy shows excellent out-of-sample equity curve linearity
with the performance holding up well mimicking the in-sample performance.
Table 5 summarizes the performance metrics for this strategy.

Table 5. Performance metrics for the 2 rule buy and 2 rule sell, indicator-based entry
and exit strategy.

Average trade length (days) 2.24

IS probability (%) 69

OOS probability (%) 74

IS profit ($) 38,212

OOS profit ($) 27,350

IS # trades 120

OOS # trades 146

5 Conclusions

In this paper a GA has been used in the design of trading strategies based on
technical indicators. These indicators are used to define rules which can signal
opportune trade entry and exit conditions. We have also examined a number of
variations on this theme.

At first we considered a strategy where trade entry is dictated by indicator
based rules but the exit signal is given after an elapsed holding period. For a
given holding period, ranging from 1 to 10 days, the GA optimized the entry rules
based on a fitness function which maximized the percentage of winning trades.
Average IS and OOS percentages of 63.5 % and 58.8 % were achieved. However, it
was found that overall profitability may not be achieved due to a few large losing
trades occurring. To overcome this limitation, we next examined a modification
of the first strategy where a profit target exit condition was added. So that if
this target was achieved before a maximum elapsed time the trade is exited.
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The GA was again used to determine optimum indicator based rules for entry
for a range of profit targets. Again the fitness optimized was the percentage
of winning trades. This modification to the strategy proved beneficial as the
average winning percentages for IS and OOS data increased to 78.1 % and 70.2 %,
respectively. At the same time a good level of profitability was attained.

The last strategy variation considered was to have exit as well as entry con-
ditions determined by GA optimized indicator-based trading rules. The fitness
function considered here was the Sharpe ratio. The Sharpe ratio is a measure of
risk adjusted return and so optimizing it produced a linear equity curve since
deviations from a constant return are penalized. The evolved strategy features
average IS and OOS probability of winning trades of 69 % and 74 %, respectively
whilst also attaining a very good level of profit. A comparison with a buy and
hold strategy proved it to be highly competitive.

In this work we have also seen that the new modified RSI (ModRSI) indicator
has somewhat been validated as it appears as one of the GA chosen indicators
in the final strategy. Future extensions of the present work may involve setting
profit targets that are adaptive to current market volatility which should improve
winning percentages and profitability. Further investigations into different fitness
functions are also warranted. These would include maximizing the Sortino ratio
which does not penalize upside deviations in the equity curve, unlike the Sharpe
ratio. It may also prove useful to consider a fitness function which minimizes the
number and magnitude of losing trades.
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