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Abstract We present a novel data-driven approach to propagate uncertainty. It
consists of a highly efficient integrated adaptive sparse grid approach. We remove
the gap between the subjective assumptions of the input’s uncertainty and the
unknown real distribution by applying sparse grid density estimation on given
measurements. We link the estimation to the adaptive sparse grid collocation
method for the propagation of uncertainty. This integrated approach gives us two
main advantages: First, the linkage of the density estimation and the stochastic
collocation method is straightforward as they use the same fundamental principles.
Second, we can efficiently estimate moments for the quantity of interest without
any additional approximation errors. This includes the challenging task of solving
higher-dimensional integrals. We applied this new approach to a complex subsurface
flow problem and showed that it can compete with state-of-the-art methods. Our
sparse grid approach excels by efficiency, accuracy and flexibility and thus can be
applied in many fields from financial to environmental sciences.

1 Introduction

There are different types of uncertainty [33] that influence the outcome of large
systems that support risk assessment, planning, decision making, validation, etc.
Uncertainties can enter the system due to missing knowledge about the physical do-
main, think of subsurface flow simulations, or there are inherent stochastic processes
driving the system, such as Brownian motion. The quantification of the influence
of such stochastic components on some quantity of interest is the task of forward
propagation of uncertainty in the field of uncertainty quantification (UQ). This is
challenging since the statistical characteristics of the uncertainties can be unknown
or don’t have an analytic representation. Furthermore, the systems or models we
are interested in can be arbitrarily complex (highly nonlinear, discontinuous, etc.).
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Therefore, we need efficient and reliable algorithms and software that can make
expensive statistical analysis feasible.

In this paper we want to focus on data-driven quantification of uncertainties in
numerical simulations. There are two main problems we face in that context: First,
the uncertainty of the quantity of interest depends strongly on the uncertainty in the
input. Therefore, one needs objective measures to get an unbiased representation of
the uncertainty of the input. Second, to quantify the uncertainties of some quantity
of interest, we need to evaluate the model, which can be very costly and involves to
run a whole simulation. However, the accuracy of the quantities we compute should
be very high, which means in general that we need to evaluate the model often, and
the main challenge is to balance costs and accuracy.

The first problem of obtaining objective measures for the input’s uncertainties
has been assessed in various articles in the past. One idea is to use data and
estimate the stochastic properties using density estimation techniques. The authors
of [7] used kernel density estimators, and [1] proposed to use kernel moment
matching methods, for example. A comparison between data-driven approaches and
approaches based supervised estimation by experts can be found in [21]. However,
often the combination of expert knowledge and data is essential if the reliability in
the data is low. A very popular approach to combine them is Bayesian inference
[35, 39].

The incorporation of data or estimated densities into a UQ forward problem
depends on the method that is required by the application to propagate the
uncertainty. For non-intrusive methods, for example, there has been done a lot of
work in the field of polynomial chaos expansion (PCE) [37, 38]. The generalized
PCE, however, is defined for analytic, independent marginal distributions. It has
therefore been extended to the arbitrary PCE [34] that supports also dependent
marginal distributions [19] and data [23]. However, global polynomials are not
always the best choice to propagate uncertainty [6]. Stochastic collocation methods
[2, 36] became popular in the last years, especially due to sparse grids [15, 20]. They
are used to obtain a surrogate model of the expensive model function. They can
overcome the curse of dimensionality to some extent [3], can handle large gradients
[8] or even discontinuities in the response functions [13, 29].

In this paper we present a new approach to incorporate data into the UQ forward
propagation pipeline. We propose an integrated data-driven sparse grid method,
where we estimate the unknown density of the input using the sparse grid density
estimation (SGDE) [24, 26] method and propagate the uncertainty using sparse grid
collocation (SGC) with adaptively refined grids. The SGDE method has been widely
used for Data Mining problems and can be applied for either small or large data sets.
It is highly efficient with respect to learning, evaluating and sampling. It interacts
seamlessly with SGC since both are based on the same fundamental principles,
which can be exploited to reduce the numerical errors in the forward propagation
pipeline.
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This paper is structured as follows: First, we give a formal definition of a
data-driven UQ forward-propagation problem in Sect. 2. In Sect. 3 we describe the
methods we use for density estimation and for uncertainty propagation. Then we
compare the performance of our approach with other techniques in Sect. 4. We
present a lower-dimensional analytic example and a higher-dimensional subsurface
flow problem in porous media. In Sect. 5 we summarize the paper and give an
outlook to future work.

2 Problem Formulation

We define .�;†;P/ being a complete probability space with � being the set of
outcomes, † � 2� the �-algebra of events and PW† ! Œ0; 1� a probability
measure. Let � D .�1; : : : ; �d/ 2 � be a random sample and let the probability
law of � be completely defined by the probability density function f W � ! R

C
with

R
� f .�/d� D 1. Consider a model M defined on a bounded physical domain

x 2 D � R
ds with 1 � ds � 3, a temporal domain t 2 T � R and the probability

space .�;†;P/ describing the uncertainty in the model inputs as

u.x; t; �/ D M.x; t; �/W D � T �� ! R
dr ; (1)

with 0 < dr 2 N. We restrict ourselves without loss of generality to scalar quantities
of u and define an operator Q, which extracts the quantity we are interested in, i.e.

QŒu.x; t; �/�WRdr ! R: (2)

The outcome of u becomes uncertain due to its uncertain inputs �. This
uncertainty is what we want to quantify. The probability law of �, of course,
influences heavily the probability law of u. Therefore, in data-driven UQ one
assumes to have a set of samples D WD f�.k/gn

kD1 ; with �.k/ D .�
.k/
1 ; : : : ; �

.k/
d / 2 �,

which are drawn from the unknown probability density f . D is an objective measure
describing the uncertainty we want to propagate. A schematic representation of the
data-driven UQ pipeline is given in Fig. 1.

Fig. 1 Data-driven UQ forward pipeline. The data set D describes the stochastic characteristics of
the uncertain parameters � for some physical model u. The underlying probability density function
f is unknown. The stochastic analysis of the uncertain outcome of u depends strongly on f
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3 Methodology

In this section we introduce the methods we use to propagate uncertainty. We
formally introduce stochastic collocation and the concept of sparse grids based on
an interpolation problem. We present the sparse grid density estimation method and
describe how it can be used to estimate efficiently moments of some quantity of
interest.

3.1 Stochastic Collocation

In stochastic collocation we search for a function g that approximates the unknown
model function u. We solve N deterministic problems of u at a set of collocation
points„N WD f�.k/gN

kD1 � � and impose

g.i/.�.k// WD QŒu.xi; ti; �
.k//�; 8�.k/ 2 „N : (3)

at a selected point in space xi 2 D and time ti 2 T. This is, of course, nothing else
than an interpolation problem. A common choice for g.i/ is to use a sum of ansatz
functions on some mesh with either global [17] or local support [8, 12, 15]. The
expensive stochastic analysis is then done on the cheap surrogate g.i/.

For simplicity in the notation we omit in the following the index i on g and focus
on the approximation in �. Without loss of generality, we assume furthermore that
there exists a bijective transformation from� to the unit hypercube and assume the
collocation nodes �.k/ in the following to stem from Œ0; 1�d.

3.2 Sparse Grids

We introduce here the most important properties of sparse grids in the context of
interpolation problems. The general idea of sparse grids is based on a hierarchical
definition of a one-dimensional basis. This means that the basis is inherently
incremental. We exploit this property in higher-dimensional settings to overcome
the curse of dimensionality to some extent. For details and further reading we
recommend [3, 25]. For adaptive sparse grids and efficient implementations of
sparse grid methods we refer to [27], for suitable refinement criteria for UQ
problems you may read [8, 15, 16].

Suppose we are searching for an interpolant g of an unknown multivariate
function u.�/ 2 R on the unit hypercube, i.e. � D .�1; �2; : : : ; �d/ 2 Œ0; 1�d. For
g we restrict ourselves to the space of piecewise d-linear functions V` with ` being
the maximum discretization level in each dimension.
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Let l D fl1; : : : ; ldg and i D fi1; : : : ; idg with lk > 0 and ik > 0 be multi-indices.
We define a nested index set

Il WD f.l; i/ W 1 � ik < 2
lk ; ik odd; k D 1; : : : ; dg (4)

of level-index vectors defining the grid points

�l;i WD .2�l1 i1; : : : ; 2
�ld id/ : (5)

For each grid point we use the general one-dimensional reference hat function
 .�/ WD max.1 � j�j; 0/ to obtain the linear one-dimensional hierarchical hat
functions  l;i.�/ centered at the grid points by scaling and translation according
to level l and index i as  l;i.�/ WD  .2l� � i/, see Fig. 2 (left). We obtain the higher-
dimensional basis via a tensor-product approach,

 l;i.�/ WD
dY

kD1
 lk ;ik .�k/ : (6)

Note that the level-index vectors .l; i/ 2 Il define a unique set of hierarchical
increment spaces Wl WD span.f l;i W .l; i/ 2 Ilg/, which are shown in the center
of Fig. 2. All increment spaces up to jlj1 D maxi li � ` span the space of piecewise
d-linear functions on a full grid.

Now we take advantage of the hierarchical definition of the basis and reduce the
number of grid points by choosing just those spaces Wl that contribute most to our
approximation. An optimal choice is possible a priori if u is sufficiently smooth, i.e.
if u is a function of the mixed Sobolev space H2

mix where the mixed, weak derivatives

l1=1 l1=2 l1=3 l1

l2=1

l2=2

l2=3

l2

Fig. 2 One-dimensional piecewise linear basis functions up to level 3 (left), polynomial ones
(right), and the tableau of hierarchical increments Wl up to level 3 in two dimensions (center)
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up to order 2 are bounded. We define the sparse grid space V.1/

` as

V.1/

` WD
M

jlj1�`Cd�1
Wl ; (7)

where we select just those subspaces that fulfill jlj1 D Pd
kD1 lk � `C d � 1, see the

upper triangle in the center of Fig. 2. We define a sparse grid function gIl 2 V.1/

` as

gIl.�/ D
X

.l;i/2Il;jlj1�`Cd�1
vl;i l;i.�/ ; (8)

where vl;i are the so-called hierarchical coefficients. Note that we omit the index l
when we refer to gI being a sparse grid function defined on an adaptively refined
grid.

The sparse grid space V.1/

` has one main advantage over the full tensor space V`:
The number of grid points is reduced significantly from O..2`/d/ for a full grid to
O.2``d�1/ while the interpolation accuracy is of order O..2�`/2`d�1/, which is just
slightly worse than the accuracy of a full grid O..2�`/2/ [3].

If we can impose a higher smoothness for u in a sense that all the weak mixed
derivatives up to order p C 1 are bounded, it makes sense to employ a higher-
order piecewise polynomial basis  . p/

l;i with maximum degree 1 � p 2 N in
each dimension. Note that these polynomials are defined locally, see Fig. 2 (right).
Therefore, we don’t suffer Runge’s phenomenon even though we use equidistant
grid spacing in each dimension. For details about the construction of the basis we
refer to [3]. The number of grid points, of course, is the same as for the piecewise
linear case. However, the interpolation accuracy is now of order O..2�`/pC1`d�1/.

3.3 Sparse Grid Density Estimation Method

The sparse grid density estimation (SGDE) method is based on a variational problem
presented in [11], first mentioned in the context of sparse grids in [9] and first
developed in [26].

We want to estimate some unknown but existing probability density function f
from which a set of observations/samples are available, D WD f�.k/gn

kD1 � �. The
SGDE method can be interpreted as a histogram approach with piecewise linear
ansatz functions. We search for a sparse grid function Of K 2 V.1/

` with jK j D M grid
points that minimizes the following functional [9]

R. OfK / D
�
�
� Of K

�
�
�
2

L2
� 1

n

X

�.k/2D
OfK .�.k//C �

�
�
�S OfK

�
�
�
2

; (9)

where S is some regularization operator and 0 � � 2 R a regularization parameter.
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In the unit domain the second term is the discrete version of the first one given
a set of observations D. D is a realization of f , so the second term implicitly has
larger weights where the probability is larger. This is done explicitly in the first term
by the multiplication of the pay-off function with the density OfK .

By minimizing R. OfK / we therefore search for a piecewise continuous density
OfK for which the first two terms are equal. Note that the first term is equal to the
definition of the expectation value where the pay off function is the probability
density function itself.

From the point of view of histograms, we can say that the sparse grid discretiza-
tion defines the (overlapping) buckets. The first term in R collects the density mass
in all the buckets while the second term does the same for the observations available
for each hierarchical ansatz function. The penalty term balances fidelity in the data
and smoothness of OfK via the regularization parameter � and the regularization
operator S.

Solving R. OfK / leads to a system of linear equations [11]. The system matrix
is the mass matrix of OfK , which depends only on the number of grid points and
is therefore independent of the number of samples n. We obtain the regularization
parameter via cross validation: we split D in a training and a test set, solve the
optimization problem on the training set and compute the L2-norm of the residual
of the system of linear equations applied on the test set. For details see [26]. The
estimated density function has unit integrand if we choose S D r [26].

Positivity, however, is not guaranteed with this approach. For the numerical
examples in this paper we forced OfK to be positive by employing a local full grid
search on OfK . For piecewise linear ansatz functions there exists a simple algorithm,
see Algorithm 1. A sparse grid function can locally be negative if the coefficient
of an arbitrary level-index vector .l; i/ is negative. If this is the case, then, due to
monotony of OfK between grid points, it is sufficient to apply a full grid search on
the support of .l; i/. We add grid points whenever its function value is negative and

Algorithm 1: Forcing the sparse grid density to be positive everywhere
Data: training sample set D and sparse grid I
Result: positive sparse grid function .I; v/ with unit integrand
done False;
while not done do

v doSparseGridDensityEstimation.D;I/;
newGridPoints list();
for .l; i/ 2 f.l; i/ 2 I W vl;i < 0g do

negativeGridPoints findNegativeFullGridPointsLocally.I; v; l; i/;
newGridPoints append.newGridPoints, negativeGridPoints/;

if newGridPoints is not empty then
I addGridPoints.I; newGridPoints/;

else
done True

return v;I;
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obtain the hierarchical coefficients for these grid points by learning the density on
the extended grid. We repeat this process until we don’t find any negative function
value. This algorithm is, of course, just feasible if the number of local full grid points
to be examined is small. Note that for a piecewise polynomial basis the algorithm
doesn’t work because the maximum of each ansatz function is not at a grid point.

3.4 Sparse Grid Collocation

The sparse grid collocation method (SGC) is based on the sparse grid discretization
scheme (see Sect. 3.2) of the stochastic input space. The level-index vectors .l; i/ 2
I of some sparse grid with jIj D N define our set of collocation nodes as

„N WD f�l;ig.l;i/2I (10)

with �l;i being the grid points, see Eq. (5). We evaluate u at every collocation node
of „N and solve the interpolation problem

gI.� l;i/ WD QŒu.�; �l;i/�;8� l;i 2 „N ; (11)

by a basis transformation from the nodal basis to the hierarchical basis. Efficient
transformation algorithms for both linear and polynomial bases can be found in
[3, 27]. We can furthermore employ adaptive refinement to consider local features
in u. Suitable refinement criteria can be found in [8, 12, 13, 15, 28].

3.5 Moment Estimation

Let � D Ef .u/ and �2 D Vf .u/ be the unknown stochastic quantities of u for the
true density f we want to estimate, gI be a sparse grid surrogate model for u and
therefore � � Ef .gI/ and �2 � Vf .gI/. Let Of be an estimated density for the
unknown probability density f obtained by a set of samples D WD f�.k/gn

kD1 drawn
from f .

To estimate the expectation value and the variance we need to solve integrals,
which can be higher-dimensional, depending on the correlations of � and the density
estimation technique we use. An easy method that can be applied to any estimated
density we can sample or evaluate is vanilla Monte Carlo quadrature. We generate a
new set of samples OD D f�.k/gOnkD1 drawn from Of with On � n. We can now substitute
Of by the discrete density

Of ı.�/ D 1

On
X

�.k/2 OD
ı.� � �.k// ; (12)
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with ı being the Dirac delta function and estimate the expectation value as

E Of .gI/ D
Z

�

gI.�/ Of .�/d� �
Z

�

gI.�/ Of ı.�/d� D 1

On
X

�.k/2 OD
gI.�

.k// : (13)

We obtain the result for the sample variance using the same approach for the
numerically stable two-pass algorithm [4]

V Of .gI/ � 1

On � 1

X

�.k/2 OD
.gI.�

.k// � E Of .gI//
2 : (14)

Due to the substitution of Of by Of ı we can solve the higher-dimensional integrals
easily but we introduce a new numerical error, which converges slowly with respect
to On.

However, this substitution is not necessary if the estimated density Of is a sparse
grid function OfK . Due to the tensor-product approach we can decompose the higher-
dimensional integral into one-dimensional ones and solve them separately without
a numerical error larger than the machine precision �. Let us additionally define
some arbitrary order on the collocation points so that we can iterate over them in a
predefined order. The expectation value of gI with respect to OfK can be computed as

E OfK .gI/ D
Z

�

gI.�/ OfK .�/d�

D
Z

�

X

.l;i/2I
vl;i 

. p/
l;i .�/

X

.k;j/2K
wk;j'

.q/
k;j .�/d�

D
X

.l;i/2I
vl;i

X

.k;j/2K
wk;j

Z

�

 
. p/
l;i .�/'

.q/
k;j .�/d�

D
X

.l;i/2I
vl;i

X

.k;j/2K
wk;j

Z

�1

 
. p/
l1;i1
'
.q/
k1;j1

d�1 � : : : �
Z

�d

 
. p/
ld ;id
'
.q/
kd ;jd

d�d

„ ƒ‚ …
DWA.l;i/;.k;j/

D vTAw : (15)

The same holds for the variance for which we use Steiners translation theorem

V OfK .gI/ D E OfK .g
2
I/� E OfK .gI/

2 (16)
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and compute

E OfK .g
2
I/ D

Z

�

g2I.�/ OfK .�/d�

D
Z

�

2

4
X

.l;i/2I
vl;i 

. p/
l;i .�/

3

5

2

4
X

.Ql;Qi/2I
vQl;Qi 

. p/
Ql;Qi .�/

3

5 OfK .�/d�

D
X

.l;i/2I
vl;i

X

.Ql;Qi/2I
vQl;Qi

Z

�

 
. p/
l;i .�/ 

. p/
Ql;Qi .�/

Of K .�/d�

„ ƒ‚ …
DWB.l;i/;.Ql;Qi/

D vTBv ;

(17)

where the matrix entries B.l;i/;.Ql;Qi/ are

B.l;i/;.Ql;Qi/ D
X

.k;j/2K
wk;j

Z

�

 
. p/
l;i .�/ 

. p/
Ql;Qi .�/'

.q/
k;j .�/d�

D
X

.k;j/2K
wk;j

Z

�1

 
. p/
l1;i1
 
. p/
Ql1;Qi1'

.q/
k1;j1

d�1 � : : : �
Z

�d

 
. p/
ld ;id
 
. p/
Qld ;Qid'

.q/
kd;jd

d�d

„ ƒ‚ …
DWb.k;j/

D wTb :
(18)

The runtime O.N � M/ for a naive implementation for the expectation value is
determined by the matrix vector product. For the variance it holds O.N2 � M/
accordingly. In the inner loop we need to compute the scalar products of the one-
dimensional basis functions, which can be done a-priori using Gauss-Legendre
quadrature for the corresponding polynomial degree. However, we can reduce the
quadratic dependency of the runtime on the number of sparse grid points to just
a linear dependency by employing the UpDown-scheme. In the UpDown-scheme
we exploit the tree-structure of the grid and apply the uni-directional principle
to compute the inner-products [27]. This reduces the quadratic run time for the
expectation value to be just linear in the number of grid points, i.e. O.N C M/.

3.6 The Sparse Grid Data-Driven UQ Forward Pipeline

Here we want to discuss the numerical properties of the sparse grid based data-
driven UQ pipeline for forward problems (see Fig. 3). It consists of four steps: (1)
The data set D is a randomly chosen set of n samples drawn from f . The quality of
the set, how good it represents the moments of f , can vary significantly depending on
it’s size. Furthermore, it makes the estimated density OfK (2) to be a random variable.
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Fig. 3 Data-driven sparse grid UQ forward pipeline

Peherstorfer et al. [26] showed in this context consistency for the SGDE method, i.e.

P

��
�
�f � Of K

�
�
�
2

L2
D 0

�

D 1 ; (19)

for jK j ! 1 and n ! 1. The accuracy of the sparse grid surrogate model gI
(3) depends on the smoothness of u. Bungartz and Griebel [3] showed that with a
piecewise polynomial basis of degree p for regular sparse grids it holds

ku � gIkL2 2 O..2�`/pC1 � `d�1/ : (20)

For very specific adaptively refined sparse grids we refer to the results in [15]
for a convergence proof. The estimated moments of u in the last step become
random variables due to OfK being a random variable. Therefore, when we talk
about convergence of the moments of u we need to consider the mean accuracy
with respect to density estimations based on different realizations of f . We define
the mean relative error for the expectation value as

Ejj.�� E OfK .gI//=�jj ; (21)

and for the variance as

Ejj.�2 � V OfK .gI//=�
2jj ; (22)

where � and �2 are the true solutions. The quadrature step itself adds numerical
errors in the order of the machine precision O.�/ per operation since it consists just
of computing scalar products of one-dimensional polynomials.

4 Numerical Examples

In this section we discuss an analytic example, consisting of independent marginal
Beta-distributions, and a three-dimensional subsurface flow problem with borehole
data.
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4.1 Analytic Example

In preparation of the subsurface problem we consider a two-dimensional analytic
scenario with �1; �2 being two independent Beta-distributed random variables,

�1 	 B.˛1; ˇ1/I �2 	 B.˛2; ˇ2/ ; (23)

with shape parameters ˛1 D 5, ˇ1 D 4, ˛2 D 3 and ˇ2 D 2 and sample space
�1 D �2 D Œ0; 1�. The corresponding density functions are defined as

fk.�k/ D ck�
˛k�1
k .1 � �k/

ˇk�1; k 2 f1; 2g ; (24)

where ck D 	.˛k C ˇk/=.	.˛k/	.ˇk// with 	 being the gamma function. Let
f .�1; �2/ D f1.�1/f2.�2/ be the joint probability density function defined on � D
�1��2. One realization D of f of size n was created in two steps: first, we generated
n uniformly distributed samples in each dimension. Second, we applied the inverse
cumulative distribution function of fk and obtained samples from the beta space �.
As a model function u we use a simple parabola with u.@�/ D 0 and u.0:5; 0:5/ D 1

u.�/ D
2Y

kD1
4�k.1 � �k/ : (25)

This model function has two main advantages: First, we can compute analytic
solutions for the expectation value � and the variance �2 of u as

� D c1c2
4725

� 0:71111 (26)

�2 D c31c
3
2

75;014;100;000
� 2c21c

2
2

22;325;625
C 4c1c2
24;255

� 0:04843 ; (27)

Second, u can be approximated perfectly with a sparse grid function gI of level
1 with a piecewise quadratic basis. This means that the numerical error in the
surrogate model vanishes. The only two errors remaining are the approximation
error estimating the density Of and the quadrature error in moment estimation if we
use Monte Carlo. The second one can be minimized by increasing the sample size;
the first one, however, is limited to the amount of information there is about f , which
is encoded in the data D we use for density estimation. Due to the randomness in
the data we measure the error in the expectation value and the variance according
to Eqs. (21) and (22). We compare these two errors for (1) vanilla Monte Carlo
(k D 200 realizations of f ), omitting the density estimation step, (2) a kernel-density
estimator using the libagf library [18] (k D 20 realizations), (3) density trees (dtrees)
[30] (k D 50 realizations) and (4) SGDE using the SG++ library [27] (k D 20

realizations). For the SGDE approach we used regular sparse grids with different
levels, estimated the density according to [26] and chose the best approximation
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Table 1 KL-divergence (KL) and cross entropy (L) for different density estimation methods and
sizes for the training data sets D. The test data set T to compute the measure had size mD 104

libagf dtrees SGDE

# samples KL L KL L KL L

50 0.2655 �0.7046 2.829 1:85 0.2157 �0.7491

75 0.2387 �0.7314 1.837 0:858 0.1838 �0.781

100 0.213 �0.7571 1.424 0:446 0.1533 �0.8115

500 0.1081 �0.8655 0.4294 �0:5488 0.1157 �0.849

1000 0.07851 �0.8951 0.2744 �0:7027 0.06948 �0.8953

5000 0.03964 �0.9356 0.1185 �0:8598 0.02778 �0.937

10,000 0.03001 �0.9352 0.09217 �0:8847 0.02014 �0.9446

with respect to the minimal cross entropy L for a test set T of size m D 104.

LT . Of / D � 1

m

X

�.k/2T
log2. Of .�.k/// : (28)

The test set T is generated analogous to D with a different seed. This measure is
known to minimize the Kullback-Leibler-divergence (KL) and is therefore a suitable
criterion [32].

Table 1 shows the KL-divergence and the cross entropy for the different density
estimation methods and different sizes of training sets. We can see three main
aspects: First, as expected, the cross entropy minimizes the KL-divergence. Second,
the cross entropy decreases monotonically with the sample size for all density
estimation methods. This means that the density estimation methods are able to
capture the increasing information they get from the larger sample sets. Third,
while SGDE and libagf have very similar results for all number of samples, the
density trees have a poor performance especially for smaller sample sizes. The
KL-divergence of the density trees is 10 times larger for 50–100 training samples
than the ones of SGDE and libagf. This is a significant drawback for applications
where the real costs lie in obtaining the samples. Think of boreholes that need
to be drilled into the ground to obtain information about the physical domain of
subsurface flow problems. If we look at the convergence of the expected error in the
expectation value, see Fig. 4 (left), SGDE performs almost one order of magnitude
better than libagf. Both methods converge with n�1=2, which is basically the Monte
Carlo convergence for the quadrature problem. The convergent phase for density
trees starts later at a size of 1000 samples. We see basically the same picture if we
look at the variance, see Fig. 4 (right). SGDE performs best compared to the other
density estimation methods. However, it seems that the density estimation methods
can not outperform Monte Carlo. The reason is that density estimation is based on
Monte Carlo estimates for the moments of the distribution, see Eq. (9). It would pay
off if there could be gained additional information from the data by extrapolation
or regularization. There is no extrapolation in this case due to the definition of the
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Fig. 4 Decay of the average error in the expectation value (left) and the variance (right) for
Monte Carlo (MC), the sparse grid density estimation (SGDE) method, the kernel density estimator
(libagf), and the density trees (dtrees)

joint probability density function f , which is zero at the boundaries. Neither does
regularization, since there is no noise in the data and we measured the mean error
over several realizations of f and made it therefore independent of single realizations
where regularization could pay off. However, if the number of samples is limited, as
it is in the CO2 benchmark problem, the data-driven forward propagation approach
with density estimation will reduce the error compared to Monte Carlo.

4.2 Multivariate Stochastic Application

In this application we simulate carbon sequestration based on the CO2 benchmark
model defined by [5]. We will not introduce here the modeling of this highly non-
linear multiphase flow in a porous media problem but rather refer to [5] and focus
on the stochastic part. The basic setting however is the following: We inject CO2

through an injection well into a subterranean aquiferous reservoir. The CO2 starts
spreading according to the geological characteristics of the reservoir until it reaches
a leaky well where the CO2 rises up again to a shallower aquifer. A schematic view
on the problem is shown in Fig. 5. The CO2 leakage at the leaky well is the quantity
we are interested in. It depends on the plume development in the aquifer and the
pressure built up in the aquifer due to injection. While we can control the injection
pressure, we cannot control the geological properties of the reservoir like porosity,
permeability, etc. This is where the uncertainty comes in and for which we use data
to describe it.
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Fig. 5 Cross-section through the subterranean reservoir [22]

Fig. 6 Raw data for porosity 
 and permeability Ka from the U.S. National Petroleum Council
Public Database including 1270 data points. The curves show the upper and the lower bound of the
transformed and truncated sample space with respect to the variation �

4.2.1 Stochastic Formulation

The CO2 benchmark model has three stochastic parameters with respect to the
geological properties of the reservoir and the leaky well: (1) the reservoir porosity

, (2) the reservoir permeability Ka, and (3) the leaky well permeability KL. For
the description of the reservoir, i.e. Ka and 
, we use a raw data set from the U.S.
National Petroleum Council Public Database including 1270 reservoirs, shown in
Fig. 6, see also [14]. The data set is assumed to be one realization of the unknown
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Table 2 Marginal densities and ranges used in the analytic approach to describe the uncertainty
of the CO2 benchmark model. They are fitted to the decorrelated samples according to [22]

Uncertain parameter Probability density function Range �k

Porosity 
 f1.
/ D 1


�
p
2�

exp
�
� .ln.
/��/2

2�2

�
with

� D �27:6310; � D 0:3579

Œ0:0896; 0:2511�

Permeability Ka f2.KL/ D 1

KL�
p
2�

exp
�
� .ln.KL/��/2

2�2

�
with

� D �1:8971; � D 0:2

Œ3:88; 25:8� � 10�13

Variation � f3.�/D 	.˛Cˇ/

	.˛/	.ˇ/
�˛�1.1� �/ˇ�1 with

˛ D 3; ˇ D 3

Œ0; 2�

probability density function f that defines the uncertainty of the problem. For the
leaky well permeability there is no data available, which makes it necessary to
make further assumptions. We make here the same assumptions as in Oladyshkin
et al. in [22], see permeability in Table 2. Furthermore, Oladyshkin et al. presented
in the same paper an integrative approach to quantify the stochastic outcome of
the CO2 benchmark model using analytic densities based on the data at hand, see
Table 2. They defined a sample space that is different to the parameter space of
the simulation. They substituted Ka 2 �Ka by a variation parameter � 2 �� and
encoded the correlation in a transformation function from the new sample space to
the parameter space, i.e.

hW�
 ��� ! �Ka


; � 7! c1

c2 Œ1C c3�� ;

(29)

with parameters c1 D 4:0929 � 10�11; c2 D 3:6555; c3 D �2. In the new sample
space � WD �
 � �� � �KL all variables are decorrelated. Therefore we can
define analytic independent marginal densities and can propagate the resulting
uncertainty directly through the model function using polynomial chaos expansion,
for example. We refer to this approach as the analytic approach. To apply stochastic
collocation to this problem, we truncated the infinite sample space � such that in
directions of 
 and Ka we collect 99:99% of their mass around the corresponding
mean, see Table 2. We denote the samples that lie within this truncated space as
D WD f.Ka

.k/; 
.k//g413kD1, see Fig. 7. We use D for density estimation to obtain
objective measures of the input’s uncertainty.

4.2.2 Results

In this section we want to illustrate the ability of the integrated sparse grid approach
to predict accurate expectation values and variances for the CO2 benchmark model
with the given input data set. We assume that a surrogate model using adaptive
sparse grid collocation is available and approximates the unknown model function
so well that the expectation value and the variance can be estimated accurately with
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Fig. 7 The plot shows the
transformed raw data points
h�1.
;Ka/ from Fig. 6 that
lie within the parameter
ranges given in Table 2. They
are additionaly linearly scaled
to Œ0; 1�2. The remaining
number of samples is 413
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Table 3 Mean cross entropy (L) for different density estimation methods and for 10 randomly
chosen training data sets of size 363 and test data sets of size 50

# training # test analytic (L) libagf (L) dtrees (L) SGDE (L)

363 50 0.7279 0.00278 �0.1314 �0.3042

respect to the analytic approach (N D 114, refinement according to the variance
surplus refinement, see [8] for details). We compare these results of the (1) analytic
approach with (2) SGDE, (3) kernel-densities, (4) density trees, and (5) Monte Carlo
with bootstrapping on the available data D.

The results of the density estimations with respect to the cross entropy for a test
set T with m D 50 are listed in Table 3. The analytic approach has by far the largest
cross entropy, which suggests that it doesn’t capture the underlying data as good as
the others do. The SGDE method performs best as it has the lowest cross entropy.
Note that some samples we use for training are located close to the boundary of
the domain (see Fig. 7). This affects the SGDE method since we need to consider
the boundary in the discretization of the sample space. For this problem we used
trapezoidal boundary sparse grids [27] where each inner grid point has two ancestors
in each dimension that lie on the corresponding boundary of the domain.

If we look at the results of the estimation of the expectation value, see Fig. 8
(left), and the variance, see Fig. 8 (right), we obtain surprising results. Let us assume
that the results of the Monte Carlo quadrature approach using bootstrapping on
the available data is our ground truth. By this we say indirectly that we have
large confidence in the available data. Compared to this ground truth, the analytic
approach overestimates the expectation value and underestimates the variance
significantly. We call this difference the “subjective gap”, which has been introduced
by expert knowledge. The other density estimation methods lie in between these
approaches. The density trees match the expectation value of the data almost exactly.
The SGDE method overestimates the expectation value slightly, the kernel density
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Fig. 8 Expectation value (left) and variance (right) over simulation time for the bootstrapping
method with the raw data (data), the analytic approach as in [22] (analytic), the sparse grid density
estimation (SGDE) method, the kernel density estimator (libagf), and the density trees (dtrees)

does as well. But if we look at the variance then the SGDE method gives the best
results compared to the data, while all others underestimate it.

The overestimation of the expectation value for SGDE with respect to the data
can be explained by extrapolation: We used a sparse grid with trapezoidal boundary
for SGDE because some samples are located close to the boundary of the domain.
Furthermore, we impose smoothness on the unknown density. These two facts let the
SGDE method extrapolate towards the boundary resulting in a larger density than
there is in the data. This is not even wrong since the boundaries of our transformed
and truncated domain� are located in the middle of the parametric domain in which
the raw data lies, see Fig. 6 (left). This leads then to the higher expectation values
we see in Fig. 8 (left). In fact, if we use a sparse grid without boundary points for
density estimation we match the expectation value of the data as well as the density
trees do. However, the cross entropy for this sparse grid density is larger compared
to the others (L D 0:2632) indicating a worse estimation. And indeed, with this
estimation we overestimate now the variance significantly.

Due to these arguments, we question the ground truth, which in this application
was based on a very limited data set. Of course, this makes the comparison of
different methods difficult. But, since the balancing between fidelity in the data and
smoothness of the density function is defined clearly for the SGDE approach, we
consider it a reliable and robust approach in the context of UQ.
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5 Conclusions

In this paper we presented a new integrated sparse grid approach for data-driven
uncertainty quantification forward problems. It has two main advantages over
common approaches for such problems: First, it is an unsupervised approach that
relies on the data at hand. It is not influenced by expert knowledge. Second, the
integrated sparse grid approach allows a seamless interaction with the stochastic
collocation method with respect to adaptive refinement and quadrature.

Furthermore, the numerical experiments showed that the SGDE method gives
good approximations of the unknown probability density function already for
small sample sets. It did better than the very popular kernel density. Even newer
approaches such as density trees showed worse results compared to SGDE.

However, the SGDE method has drawbacks when it comes to statistical applica-
tions for which we need to assure unit integrand and positivity. We presented one
way to overcome these problems by suitable discretization and using appropriate
regularization. This approach however is limited in terms of the problem’s dimen-
sionality since it implies a local full grid search. There is ongoing work in this field,
see [10], to overcome these problems.

In this paper we focused on small sample sets. When it comes to large data
sets one can speed up this process significantly using fast algorithms such as
SGDE. For example, when one uses Markov chain Monte Carlo to obtain a discrete
posterior density in an inverse UQ setting. Such densities are often correlated and
pose problems to established forward propagation methods such as the generalized
polynomial chaos expansion. The Rosenblatt transformation [31] and the inverse
Rosenblatt transformation can play an important role in this context. They can be
computed very efficiently without additional numeric errors using sparse grids.
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