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Preface

Sparse grids are a popular approach for the numerical treatment of high-dimensional
problems. Where classical numerical discretization schemes fail in more than three
or four dimensions, sparse grids, in their different flavors, are frequently the method
of choice, be it spatially adaptive in the hierarchical basis or via the dimensionally
adaptive combination technique.

The third Workshop on Sparse Grids and Applications (SGA2014), which took
place at the University of Stuttgart from September 1 to 5 in 2014, demonstrated
once again the importance of this numerical discretization scheme. Organized by
Hans-Joachim Bungartz, Jochen Garcke, Michael Griebel, Markus Hegland, Dirk
Pflüger, and Clayton Webster, almost 60 participants from 8 different countries
have presented and discussed the current state of the art of sparse grids and
their applications. Thirty-eight talks covered their numerical analysis as well as
efficient data structures and new forms of adaptivity and a range of applications
from clustering and model order reduction to uncertainty quantification settings
and optimization. As a novelty, the topic high-performance computing covered
several talks, targeting exascale computing and related tasks. Besides data structures
and communication patterns with excellent parallel scalability, fault tolerance was
introduced to the SGA series, the hierarchical approach providing novel approaches
to the treatment of hardware failures without checkpoint restart. This volume of
LNCSE collects selected contributions from attendees of the workshop.

We thank the SimTech Cluster of Excellence and the Informatik Forum Stuttgart
(infos e.V.) for their financial support. Furthermore, we thank Mario Heene, Fabian
Franzelin, and David Pfander for their assistance with the local organization.

Bonn, Germany Jochen Garcke
Fraunhofer SCAI
Sankt Augustin, Germany
Stuttgart, Germany Dirk Pflüger
October 2015
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Adaptive Sparse Grid Model Order Reduction
for Fast Bayesian Estimation and Inversion

Peng Chen and Christoph Schwab

Abstract We present new sparse-grid based algorithms for fast Bayesian es-
timation and inversion of parametric operator equations. We propose Reduced
Basis (RB) acceleration of numerical integration based on Smolyak sparse grid
quadrature. To tackle the curse-of-dimensionality in high-dimensional Bayesian
inversion, we exploit sparsity of the parametric forward solution map as well as of
the Bayesian posterior density with respect to the random parameters. We employ
an dimension adaptive Sparse Grid method (aSG) for both, offline-training the
reduced basis as well as for deterministic quadrature of the conditional expectations
which arise in Bayesian estimates. For the forward problem with nonaffine
dependence on the random variables, we perform further affine approximation based
on the Empirical Interpolation Method (EIM) proposed in [1]. A novel combined
algorithm to adaptively refine the sparse grid used for quadrature approximation of
the Bayesian estimates, of the reduced basis approximation and to compress the
parametric forward solutions by empirical interpolation is proposed. The theoret-
ically predicted computational efficiency which is independent of the number of
active parameters is demonstrated in numerical experiments for a model, nonaffine-
parametric, stationary, elliptic diffusion problem, in two spacial and in parameter
space dimensions up to 1024.

1 Introduction

Bayesian estimation, ie. the “most likely” prediction of responses of ordinary and
partial differential differential equations (ODEs and PDEs, for short), subject to
uncertain input data, given noisy observation data, is a key topic in computational
statistics and in computational science. We refer to [16, 34] and the references there
for a survey.

P. Chen (�) • C. Schwab
HG G 56.1, Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, CH-8092 Zürich,
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2 P. Chen and C. Schwab

As a rule, Monte-Carlo (MC) based sampling methods are used. Then, the
methods are computationally intensive due to the slow convergence of MC methods
(implying a rather large number of samples) and due to the high cost of forward
solves per “sample” (which, in PDE models, amounts to one numerical PDE solve
per sample). Distributed uncertain inputs such as, for example, uncertain diffusion
coefficients, require forward solves of infinite-dimensional, parametrized PDEs.

Recent mathematical results [12–14, 20, 22, 23] indicate that the parameter-to-
solution maps of these parametric operator equations exhibit sparsity in the sense
that their n-widths are small, independent of the number of parameters which are
activated in the approximation. This has lead to the proposal of sparse, dimension-
adaptive interpolation schemes for the exploitation of this sparsity in the solution
map, see, e.g. [11], and to deterministic sparse, adaptive quadrature methods in
Bayesian inversion [31]. Small n-widths of parametric PDE solution maps can,
in principle, be exploited by greedy approximation strategies, according to recent
mathematical results [2, 35]. This observation was used in recent works by one of
the authors [3–6, 8] to accelerate forward solves of parametric PDEs.

Similar accelerations are possible for the widely used Markov-chain Monte Carlo
(MCMC) methods. Specific accerelations via sparse, generalized polynomial chaos
(gPC)-based surrogates of the parametric forward maps are analyzed in [24].

Accelerations of forward solutions via model order reduction (MOR for short)
approaches [15, 17, 27] have also been proposed. In the present note, we consider
acceleration via reduced basis methods (RB) relying on adaptive sparse grid
(aSG) collocation for both interpolation and integration. At each sparse grid node
generated in the parameter space U by the adaptive algorithm, we evaluate the
RB surrogate density of the Bayesian posterior or of some other Quantity of
Interest (QoI for short). If the surrogate is not determined to sufficient accuracy,
as certified by some reliable and efficient goal-oriented error estimator (which is
an essential, and novel, element of the presently proposed algorithm), then a full
forward problem is to be solved numerically to evaluate the posterior density. The
RB approximation is refined by the full (“HiFi”) solution at this grid node. The
efficient online evaluation of the RB surrogate and the error estimator introduced in
[9] depends on an affine-parametric structure of the underlying PDEs that enables
efficient offline-online decomposition. For more general nonaffine problems such as
those considered in the present paper, we propose in the present paper to compute
their affine approximations by empirical interpolation methods [1, 7] in combination
with aSG. To this end, a combined adaptive sparse grid, empirical interpolation
and reduced basis methods (aSG-EIM-RB) are developed to reliably and efficiently
accelerate the Bayesian estimation and inversion. In this paper, we present the
first detailed description of the corresponding algorithm, and the first numerical
experiments performed with the proposed numerical inversion strategy. Dimension-
independent convergence rates are demonstrated with parameter space dimensions
up to 1024.

This paper is organized as follows: the formulation of parametric Bayesian
inversion in function space is presented in Sect. 2. The admissible forward maps
are countably-parametric operator equations. Section 3 presents a constructive
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algorithm based on adaptive sparse grid interpolation for gPC approximation of
the parametric solution, of the posterior density and of the related QoI. Section 4 is
devoted to the development of reduced basis acceleration for the Bayesian inversion,
where a combined aSG-EIM-RB algorithm is presented. Numerical experiments
in demonstrating the dimension-independent convergence rates and computational
efficiency of the proposed algorithm are provided in Sect. 5, followed by conclusions
in Sect. 6.

2 Bayesian Inversion

We review the mathematical setting of Bayesian inversion of partial differential
equations with distributed uncertainty, in the mathematical framework of [16].

By uncertainty parametrization together with a Bayesian prior on the (generally
infinite-dimensional) parameter space, the problem of Bayesian estimation is
converted to a problem of quadrature of the parametric, deterministic posterior
density.

Sparsity of the parametric forward solution map and of the Bayesian posterior
density as well as its integration with respect to the infinite-dimensional parameter
sequence will be presented. Dimension-independent convergence rates of sparsity-
exploiting Smolyak quadratures are stated and verified in numerical experiments.

2.1 Formulation of Bayesian Inversion

We consider Bayesian inversion problems that consist of: given observation data
subject to additive, centered gaussian observation noise of some system output,
and given a prior distribution of the uncertain, distributed system input, Bayes’
theorem yields the posterior distribution and an estimate of the “most likely” system
response for some quantity of interest (QoI), that depends on the system state
[16]. More precisely, we consider a system with state variable q belonging to a
separable Hilbert space X (with (anti-)dual X0), which is determined through the
system forward map G W X ! X by an uncertain system input variable u that
takes values in a separable Banach space X. The observation data ı 2 Y D R

K ,
K 2 N, is assumed to correspond to a true system response G.u/ observed through K
sensors O.�/ D .o1; : : : ; oK/ 2 .X0/K , whose readings we assume to be corrupted by
additive Gaussian observation noise � � N.0; �/ with symmetric positive definite
correlation matrix � 2 R

K�K , i.e.

ı D O.G.u//C � : (1)

We assume that a prior probability distribution �0 defined on a Banach space X of
uncertain input data is prescribed for the uncertain system input u with �0.X/ D 1.
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Under appropriate continuity conditions on the uncertainty-to-observation map
G WD O ı G.�/ W X ! Y, Bayes’ rule guarantees the existence of a posterior
distribution �ı that is absolutely continuous with density‚ W X ! R with respect to
the prior distribution. Various concrete, sufficient conditions for absolute posterior
continuity are provided in the surveys [16, 34]. We parametrize the uncertain
input u taking values in the separable Banach space X by postulating a countable
basis .�j/j2J 2 X, where J D f1; : : : ; Jg with J 2 N or J D N. We assume
that the uncertain input u can be represented by these bases: there is an affine
parametrization, i.e. u D u.y/ with the parameter (after possible rescaling and
shifting) y D .yj/j2J 2 U, being U D Œ�1; 1�J a reference parameter space.
Under appropriate re-scaling of the basis �j, we may reparametrize the distributed,
uncertain input data u as

u.y/ D Nu C
X

j2J
yj�j; y 2 U ; (2)

where Nu 2 X is the “nominal” value of the uncertain data u and u� Nu entails possible
fluctuations of u through y 2 U. An example of the expression (2) is Karhunen–
Loève expansion of a random field u with mean field Nu and (rescaled) eigenfunctions
.�j/j2J. In practice, the parametrization may also be a nonlinear transformation of
an affine input, i.e. the parameters can not be separated from the bases. For instance
in describing a positive permeability field �, we may assume that � D eu with u
defined in (2), so that � is positive at each parameter value y 2 U but nonaffine
with respect to y. An example for a “non-affine” uncertainty parameterization is a
Karhunen–Loève expansion of log.�/, which typically arises in log-gaussian models
for u, in which case the Bayesian prior is a Gaussian measure on X. Under the
parametrization, for prescribing a prior distribution of the uncertain input data u we
only need to prescribe a prior measure for the parameters, i.e.

�0 D
O

j2J

1

2
�1 or d�0.y/ D

O

j2J

1

2
dyj ; (3)

where �1 denotes the Lebesgue measure on Œ�1; 1�. By Bayes’ theorem, there exists
a posterior measure which is absolutely continuous with respect to the prior. For the
corresponding Radon–Nikodym derivative holds

d�ı

d�0
.y/ D 1

Z
‚.y/ ; (4)

where the (rescaled) posterior density‚ is given by

‚.y/ D exp

�
�1
2
.ı � O.G.u.y////>��1.ı � O.G.u.y////

�
; (5)
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and the renormalization constant Z is defined as

Z WD E
�0 Œ‚� D

Z

U
‚.y/d�0.y/ : (6)

Under the posterior distribution, we can evaluate some quantity of interest (QoI)
‰ that depends on the system input u, e.g. the system input itself ‰.u/ D u or
the system response ‰.u/ D G.u/, as well as some statistics of the QoI, e.g. the
expectation

E
�ı Œ‰.u/� D E

�0 Œ‰.u/‚� D
Z

U
‰.u.y//‚.y/d�0.y/ : (7)

2.2 Parametric Operator Equations

Under the above parametrization of the system input, we consider a class of
parametric operator equations for the modelling of the system, which read as: for
any parameter value y 2 U, find the solution q.y/ 2 X such that

A.y/q.y/ D f .y/ in Y0 ; (8)

where Y is a separable Hilbert space with anti-dual Y0, A.y/ is a parametric
operator and f .y/ is a parametric right hand side, both depending on the parameter
y through the uncertain system input u.y/. In particular, we consider linear systems
modelled by countably-parametric, linear operator families A.y/ 2 L.X;Y0/. We
associate the parametric operator A.y/ and f .y/ with sesquilinear and antilinear
forms, respectively, in the Hilbert spaces X and Y over C as

a.yI w; v/ DY hv;A.y/wiY0 and f .yI v/ WDY hv; f .y/iY0 8w 2 X; v 2 Y : (9)

The weak formulation of the parametric operator equation (8) reads: for any
parameter value y 2 U, find the solution q.y/ 2 X such that

a.yI q.y/; v/ D f .yI v/ 8v 2 Y : (10)

For the well-posedness of problem (10) and for the approximation of its solution, of
the corresponding Bayesian posterior density, and of the QoI in Bayesian prediction,
we make the following assumptions.

Assumption 1

A1 For 	 > 0 and 0 < p < 1, there exists a positive sequence .bj/j2J 2 `p.J/

such that for any sequence 
 WD .
j/j2J with 
j > 1 for all j 2 J and

X

j2J
.
j � 1/bj � 	; (11)



6 P. Chen and C. Schwab

the parametric maps a and f in (10) admit holomorphic extensions to certain
cylindrical sets O
 D ˝j2JO
j , where O
j � C is an open set containing the
Bernstein ellipse E
j with foci at ˙1 and with semi axes of length .
j C
�1j /=2 >

1 and .
j � 
�1j /=2 > 0.
A2 There exist constants 0 < ˇ < � < 1 and � > 0 such that these extensions

satisfy for all z 2 O
 the uniform continuity conditions

sup
v2Y

f .zI v/
jjvjjY � � and sup

w2X
sup
v2Y

a.zI w; v/

jjwjjXjjvjjY � � (12)

and the uniform inf-sup conditions

inf
0¤w2X

sup
0¤v2Y

ja.zI w; v/j
jjwjjXjjvjjY � ˇ and inf

0¤v2Y
sup

0¤w2X
ja.zI w; v/j
jjwjjXjjvjjY � ˇ : (13)

We point out that the abstract assumptions A1 and A2 are valid for a host of
countably-parametric problems, which are not necessarily of the specific form (10).
We mention only elliptic and parabolic problems in uncertain domains (see, e.g.
[12]) and nonlinear, parametric initial values ODEs (see, e.g., [20]). The following
approximations results are key to dimension-robust convergence rate of the model
order reduction methods; we refer to [12, 33] and [31] for proofs.

Theorem 1 Under Assumption 1, there exists a positive constant C < 1 depend-
ing on �; �; ˇ; p; 	 and 
, such that the operator equation (8) admits a unique
uniformly bounded solution satisfying a generalized polynomial chaos expansion
(gPC)

sup
z2O


jjq.z/jjX � C and the gpc expansion q.y/ D
X

2F
q�P�.y/ (14)

holds. Here P�.y/ WD Q
j2J Pj.yj/, with Pn denoting the univariate Legendre poly-

nomial of degree n for the interval Œ�1; 1� normalized such that jjPnjjL1.Œ�1;1�/ D 1.
In (14), F denotes the countable set of all finitely supported sequences � 2 N

J

0, and
the convergence is unconditional and in the supremum norm over y 2 U.

Moreover, there exists a nested sequence fƒMgM�1 of downward closed index
setsƒM � F (“dc set”, for short)1 with at most M indices such that the dimension-
independent convergence rate holds

sup
y2U

kq.y/�
X

�2ƒM

q�P�.y/kX � CqM�s; s D 1

p
� 1 : (15)

1A subset ƒ � F is a dc set if for every � 2 ƒM also � 2 ƒM for any � � � (�j � j for all
j 2 J)
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Here the constant Cq neither depends on M nor on the number of active coordinates,
ie. maxf#fj 2 N W j ¤ 0g W � 2 ƒMg. The same convergence rate (15) also holds
for the approximation of the posterior density ‚.y/ as well as for the QoI ‰.y/.

3 Adaptive Sparse Grid Approximation

Theorem 1 in the last section guarantees the existence of sparse generalized
polynomial approximations of the forward solution map and of the posterior density
which approximate these quantities with dimension-independent convergence rate.
We exploit this sparsity in two ways: first, in the choice of sparse parameter samples
during the offline-training phase of model order reductions, and, as already proposed
in [32], for adaptive, Smolyak-based numerical integration for the evaluation of the
Bayesian estimate.

Both are based on constructive algorithms for the computation of such sparse
polynomial approximations, To this end, we present an adaptive sparse grid algo-
rithm for both interpolation and integration, based on the approaches in [9, 12, 18],
see also [28, 29, 36] for anisotropic and, in certain cases, quasi-optimal sparse grid
interpolation in the high-dimensional parameter space U.

3.1 Adaptive Univariate Approximation

In the univariate case U D Œ�1; 1�, given a set of interpolation nodes �1 � y1 <
� � � < ym � 1, we define the interpolation operator I W C.UIZ/ ! Pm�1.U/˝ Z
as

Ig.y/ D
mX

kD1
g.yk/`k.y/; (16)

where the function g 2 C.UIZ/, representing e.g. the parametric forward solution
map q with Z D X or the posterior density ‚ with Z D R; `k.y/, 1 � k � m,
are the associated Lagrange polynomials in Pm�1.U/, the space of polynomials of
degree at most m � 1. To define the sparse collocation, as usual the interpolation
operator defined in (16) is recast as telescopic sum, ie.,

ILg.y/ D
LX

lD1
Dlg.y/ ; (17)

where L represents the level of interpolation grid; Dl WD Il�Il�1 with I0g � 0. Let
„l denote the set of all interpolation nodes in the grid of level l, such that the grid is
nested, i.e. „l � „lC1, l D 0; : : : ;L � 1, with „0 D ; and „L D fy1; : : : ; ymg. As
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Il�1g.y/ D g.y/ for any y 2 „l�1, we have Il�1 D Il ı Il�1 and, with the notation
„l

D D „l n„l�1, the interpolation operator (17) can be written in the form

ILg.y/ D
LX

lD1

X

yl
k2„l

D

.Il � Il ı Il�1/g.y/ D
LX

lD1

X

yl
k2„l

D

.g.yl
k/ � Il�1g.yl

k//„ ƒ‚ …
sl

k

`l
k.y/ ;

(18)

where sl
k represents the interpolation error of Il�lg evaluated at the node yl

k 2 „l
D,

k D 1; : : : ; j„l
Dj, so that we can use it as a posteriori error estimator for adaptive

construction of the interpolation (18). More precisely, we start from the root level
L D 1 with the root interpolation node y D 0, whenever the interpolation error
estimator

Ei WD max
yL

k2„L
D

jsL
k j (19)

is larger than a given tolerance, we refine the interpolation to the next level L C 1 by
taking new interpolation node, for instance one Leja node

yLC1
1 D argmax

y2U

LY

lD1
jy � ylj ; (20)

or Clenshaw–Curtis nodes

yLC1
k D cos

�
k

2L�1 �
�
; k D 0; 1 for L D 1I k D 1; 3; : : : ; 2L�1 � 1 for L � 2 :

(21)

Based on the adaptive interpolation, an associated quadrature formula is given by

EŒg� 	 EŒILg� D
LX

lD1

X

yl
k2„l

D

sl
kwl

k; being wl
k D EŒ`l

k� ; (22)

for which the integration error estimator can be taken as

Ee WD
ˇ̌
ˇ̌
ˇ̌
X

yL
k2„L

D

sL
k wL

k

ˇ̌
ˇ̌
ˇ̌ : (23)
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3.2 Adaptive Sparse Grid Approximation

In multiple dimensions y 2 U D Œ�1; 1�J , we construct an adaptive sparse grid
(aSG) interpolation by tensorizing the univariate interpolation formula (17)

SƒM g.y/ D
X

�2ƒM

�
D1
1 ˝ � � � ˝ DJ

J

�
g.y/ ; (24)

whereƒM is a downward closed index set defined in Theorem 1. Asƒ1 � � � � � ƒM

and the interpolation nodes are nested, the aSG formula (24) can be rewritten as

SƒM g.y/ D
MX

mD1

X

y�m
k 2„�m

D

�
g.y�m

k /� Sƒm�1g.y
�m

k /
�

„ ƒ‚ …
s�m

k

`�m

k .y/ ; (25)

where „�m

D is the set of added nodes corresponding to the index �m D
.m
1 ; : : : ; 

m
J / D ƒmnƒm�1; `�m

k .y/ D `
1
k1
.y1/˝� � �˝`J

kJ
.yJ/, is the multidimensional

Lagrange polynomial; s�m

k denotes the interpolation error of Sƒm�1g evaluated at
y�m

k , which can be used as an interpolation error estimator for the construction of
the aSG.

More explicitly, we start from the initial index � D 1 D .1; : : : ; 1/, thus ƒ1 D
f1g, with root node y D 0 D .0; : : : ; 0/. We then look for the maximal active
index set ƒa

M such that ƒM [ f�g remains downward closed for any � 2 ƒa
M , e.g.

for ƒM D f1g when M D 1, we have ƒa
M D f1 C ej; j D 1; : : : ; Jg, being ej D

.0; : : : ; j; : : : ; 0/ whose j-th entry is one and all other entries are zeros. For each
� 2 ƒa

M , we evaluate the errors of the interpolation SƒM g at the nodes „�
D, and

enrich the index set ƒMC1 D ƒM [ f�MC1g with the new index

�MC1 WD argmax
�2ƒa

M

max
y�

k2„�
D

1

j„�
Dj js

�
kj ; (26)

where the error is balanced by the work measured in the number of new nodes j„�
Dj.

An adaptive sparse grid quadrature can be constructed similar to (24) as

EŒg� 	 EŒSƒM g� D
MX

mD1

X

y�m
k 2„�m

D

s�m

k w�m

k ; being w�m

k D EŒ`�m

k � ; (27)

for which can enrich the index set with the new index

�MC1 WD argmax
�2ƒa

M

1

j„�
Dj

ˇ̌
ˇ̌
ˇ̌
X

y�
k2„�

D

s�
kw�

k

ˇ̌
ˇ̌
ˇ̌ : (28)
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To terminate the aSG algorithm for either interpolation or quadrature, we monitor
the following error estimators compared to some prescribed tolerances, respectively:

Ei WD max
�2ƒa

M

max
y�

k2„�
D

js�
kj and Ee WD

ˇ̌
ˇ̌
ˇ̌
X

�2ƒa
M

X

y�
k2„�

D

s�
kw�

k

ˇ̌
ˇ̌
ˇ̌ : (29)

The following convergence results can be obtained for the aSG interpolation and
integration errors based on that for gPC approximation in Theorem 1, see [12, 31].

Theorem 2 Under Assumption 1, there exists a downward closed set ƒM such that
the interpolation error

sup
y2U

jjq.y/� SƒM q.y/jjX � CiM
�s; s D 1

p
� 1 ; (30)

where Ci is independent of M. Analogously, there exists a nested sequence of dc sets
ƒM of cardinality not exceeding M and a constant Ce > 0 which is independent
of parameter dimension activated by interpolation in PƒM such that the integration
error

jjE�0 Œq� � E
�0 ŒSƒM q�jjX � CeM�s; s D 1

p
� 1 ; (31)

where Ce is independent of M. The same convergence rate holds also for the aSG
interpolation and integration errors of the posterior density ‚ and the QoI ‰.

Remark 1 When p � 2=3 in Assumption 1 A1, the aSG integration error can
converge faster the (dimension-independent) rate M�1=2, which is the convergence
rate of Monte Carlo integration (in L2 norm, however). This dimension-independent,
possibly higher convergence rate renders aSG integration preferable.

4 Model Order Reduction

The evaluation of the posterior density ‚, the renormalization constant Z, the
QoI ‰ as well as its statistics, e.g. E�

ı
Œ‰�, requires the solutions of the forward

parametric equation (10) at many interpolation or integration nodes y 2 U by
the aSG algorithms. This section is devoted to the development of model order
reduction techniques, in particular the reduced basis method (see e.g. [2, 4, 30, 35]
for a general introduction and the convergence analysis) combined (for nonaffine-
parametric problems) with the empirical interpolation method (denoted by EIM
for short. We refer to [1, 7, 19, 25] for the basic ideas and error analysis of the
EIM), to effectively reduce the computational cost for the forward solutions. We
extend these ideas and of the numerical evaluation of the Bayesian posterior density
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and related QoIs. A crucial aspect of this work is the extension of the RB and of
EIM techniques to high-dimensional parameter spaces such as U, which has been
developed in recent years in [5, 8, 21].

4.1 High-Fidelity Petrov-Galerkin Approximation

For the solution of the forward parametric problem (10) at any given parameter y, we
introduce the finite-dimensional trial space Xh and test space Yh, with dim.Xh/ D
dim.Yh/ D N , N 2 N. Here h denotes a discretization parameter, such as the
mesh width of finite element discretization or the reciprocal of polynomial degree
for spectral discretization. The Petrov–Galerkin (PG), high-fidelity (HiFi for short)
approximation of problem (10) reads: for any y 2 U, find qh.y/ 2 Xh such that

a.yI qh.y/; vh/ D f .yI vh/ 8vh 2 Yh (32)

We proceed under the hypothesis that Assumption 1 holds also in the finite-
dimensional spaces Xh and Yh, in particular the inf-sup condition (13) is satisfied
with constant ˇh > 0 uniformly w.r. to y. The parametric Bayesian posterior density
‚.y/ in (5) can then be approximated by

‚h.y/ D exp

�
�1
2
.ı � Oh.qh.y///>��1.ı � Oh.qh.y///

�
; (33)

where Oh represents the finite-dimensional approximation of the observation func-
tional O. Similarly, the QoI ‰ can be approximated by the corresponding quantity
‰h. Under Assumption 1 in Xh and Yh, the well-posedness and gPC as well as the
aSG approximation properties in Theorem 1 and Theorem 2 hold with the same
convergence rates.

4.2 Reduced Basis Approximation

In order to compute an approximation subject to a prescribed error tolerances for
the quantities q, ‚ and ‰, the dimension N of the finite-dimensional spaces used
in the PG approximation problem (32) is, typically, large. Thus, the numerical
solution of the HiFi problem (32) is generally expensive, rendering the aSG
approximation that requires one solution at each of many interpolation/integration
nodes computationally unfeasible in many cases. To reduce it, we propose a model
order reduction technique based on reduced basis (RB) approximations constructed
by a greedy algorithm with goal-oriented a-posteriori error estimation and Offline-
Online decomposition.
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4.2.1 Reduced Basis Construction

Analogous to the HiFi -PG approximation, we look for a RB trial space XN � Xh

and a RB test space YN � Yh with dim.XN/ D dim.YN/ D N, N 2 N, N << N .
Then we approximate the forward solution map by solving a PG-RB problem:

for any y 2 U, find qN.y/ 2 XN such that

a.yI qN.y/; vN/ D f .yI vN/ 8vN 2 YN : (34)

For accurate and efficient approximation of the solution manifold Mh D fqh.y/; y 2
Ug, RB takes the HiFi solutions qh.y/ at N carefully chosen parameter values y D
yn, 1 � n � N, called snapshots, as the basis functions of the trial space, i.e.

XN D spanfqh.yn/; 1 � n � Ng : (35)

In order to select “most representative snapshots” for the approximation of the
posterior density‚ (or the QoI ‰, which can be approximated in the same way),

‚N.y/ D exp

�
�1
2
.ı � Oh.qN.y///>��1.ı � Oh.qN.y///

�
; (36)

which is nonlinear with respect to the solution qN , we propose a greedy algorithm
based on a goal-oriented a-posteriori error estimator 4‚

N .y/ for the RB approxima-
tion error of the posterior density, j‚h.y/�‚N.y/j for any y 2 U. We start with the
first parameter value y1, e.g. the center of U or a random sample, and construct the
initial RB trial space as X1 D spanfqh.y1/g. Then, for N D 1; 2; : : : , we pick the
next parameter value by

yNC1 WD argmax
y2U

4‚
N .y/ ; (37)

and enrich the RB space as XNC1 D XN ˚ spanfqh.yNC1/g. In practice, instead of
solving a high-dimensional optimization problem (37), we can replace the parameter
domain U by a suitable training set „train, e.g. the sparse grid nodes. The basis
functions for the test space YN are chosen such that the PG-RB approximation is
stable. In the case that the bilinear form a.yI �; �/ is coercive in Xh 
Yh for Yh D Xh,
the choice YN D XN satisfies the stability condition for the PG-RB approximation.
For noncoercive problems, we construct the RB test space through the supremizer
operator Ty W Xh ! Yh defined as

.Tywh; vh/Y D a.yI wh; vh/ 8vh 2 Yh : (38)
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Then Tywh 2 Yh is the supremizer for the element wh 2 Xh with respect to the
functional a.yI wh; �/ W Yh ! R, i.e.

Tywh D argsup
vh2Yh

a.yI wh; vh/

jjwhjjXjjvhjjY : (39)

For any y 2 U, the y-dependent RB test space Yy
N is defined as

Yy
N WD spanfTyqh.yn/; 1 � n � Ng : (40)

It can be shown (see [9]) that

ˇN.y/ WD inf
0¤wN2XN

sup
vN2Yy

N

ja.yI wN ; vN/j
jjwN jjXjjvN jjY � ˇh > 0 ; (41)

ie., the PG-RB approximation problem (34) is uniformly well-posed w.r.to y 2 U.

4.2.2 A-Posteriori Error Estimator

The goal-oriented a-posteriori error estimator 4‚
N plays a key role in constructing

the RB spaces, which should be reliable and efficient, i.e. there exist two constants
0 < c4 � C4 < 1 such that

c4j‚h.y/�‚N.y/j � 4‚
N .y/ � C4j‚h.y/�‚N.y/j : (42)

As we can view the function‚h W U ! R as a functional‚h.�/ W Xh ! R through
‚.y/ D ‚h.qh.y//, following the derivation in [9], smooth dependence of the
posterior on the parameters in the forward map implies a formal Taylor expansion
of ‚h.qh.y// about qN.y/:

‚h.qh.y// D ‚h.qN.y//C @‚h

@qh

ˇ̌
ˇ
qN .y/

.qh.y/� qN.y//C O.jjqh.y/� qN.y/jj2X/ ;

(43)

where the second term of the right hand side is the Fréchet derivative of‚h at qN.y/
with respect to qh, evaluated at the error eh

N.y/ D qh.y/ � qN.y/. As the first term
‚h.qN.y// D ‚N.y/, as long as the last term is dominated by the second term, we
can define the error estimator for j‚h.y/�‚N.y/j as the second term in (43), i.e.

4‚
N;h.y/ WD @‚h

@qh

ˇ̌
ˇ
qN .y/

.eh
N.y// : (44)
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In order to evaluate 4‚
N;h.y/ more efficiently, we propose a dual HiFi PG approxi-

mation [9, 26]: for any y 2 U, find the dual solution 'h.y/ 2 Yh such that

a.yI wh; 'h.y// D @‚h

@qh

ˇ̌
ˇ
qN .y/

.wh/ 8wh 2 Xh : (45)

Then, with the definition of the residual for the primal HiFi problem (32) evaluated
at the RB solution of (34), i.e.

r.yI vh/W D f .yI vh/ � a.yI qN.y/; vn/ 8vh 2 Yh ; (46)

we obtain, as the primal HiFi equation (32) holds for 'h 2 Yh,

r.yI'h.y// D f .yI'h.y//� a.yI qN.y/; 'h.y// D a.yI eh
N.y/; 'h.y// ; (47)

which, together with definition (44) and (45), imply

4‚
N;h.y/ D r.yI'h.y// : (48)

As it is computationally expensive to obtain the solution 'h.y/, we propose to
use RB approximation for the HiFi -PG approximation of the dual problem (45)
following the same development as for the primal HiFi problem in the last section.
With the dual RB solution 'N.y/ (where number N of degrees of freedom of the dual
problem could be different from N which was used in the RB-PG approximation
of the primal problem), we define the a-posteriori error estimator for the error
j‚h.y/�‚N.y/j as

4‚
N .y/ D r.yI'N.y// ; (49)

whose difference from 4‚
h .y/ can be bounded by

j4‚
h .y/� 4‚

N .y/j D r.yI "h
N.y// D a.yI eh

N.y/; "
h
N.y// � � jjeh

N.y/jjXjj"h
N.y/jjY ;

(50)

where "h
N.y/ D 'h.y/�'N.y/ and � represents the continuity constant of the bilinear

form a. In general, the primal and dual RB errors eh
N.y/ and "h

N.y/ tend to zero so
that, asymptotically, (50) and the second order term in (43) are both dominated
by the first order term of (43), we can expect to obtain a reliable and efficient,
computable a-posteriori error estimator 4‚

N .y/ for the error j‚h.y/ �‚N.y/j, with
the corresponding constants c4 and C4 in (42) close to one uniformly w.r. to y.

4.2.3 Offline-Online Computation

To this end, we make a crucial assumption that the HiFi PG discretization of the
parametric problem, (32) is affine, i.e. 8wh 2 Xh; vh 2 Yh, the bilinear and linear
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forms can be written as

a.yI wh; vh/ D
MaX

mD1
�a

m.y/am.wh; vh/ and f .yI vh/ D
MfX

mD1
�f

m.y/fm.vh/ : (51)

For instance, for a diffusion problem with affine-parametric diffusion coefficient (2),
we have �a

m.y/ D ym and am.wh; vh/ D .�mrwh;rvh/, 1 � m � Ma D J. We defer
the discussion of linearization in parameter space, ie., the approximation of the non-
affine parametric problem by an affine parametric model in (51).

For the sake of algebraic stability of the PG-RB approximation (34), we compute
the orthonormal bases .wn

N/
N
nD1 of XN obtained by Gram–Schmidt orthonormaliza-

tion algorithm for the bases .qh.yn//NnD1. Then the RB solution of problem (34) at
any y 2 U can be represented by

qN.y/ D
NX

nD1
qn

N.y/w
n
N ; (52)

where qN.y/ D .q1N.y/; : : : ;q
N
N.y//

> 2 R
N , denoting the coefficient of qN.y/. In

the coercive case where YN D XN with basis vn
N D wn

N , 1 � n � N, the algebraic
system of the PG-RB problem (34) becomes

 
MaX

mD1
�a

m.y/Am

!
qN.y/ D

MfX

mD1
�f

m.y/fm ; (53)

where the RB matrix Am, 1 � m � Ma, and the RB vector fm, 1 � m � Mf , are
given respectively by

.Am/n0;n D am.w
n
N ; v

n0

N / and .fm/n D fm.v
n
N/ n; n0 D 1; : : : ;N ; (54)

which do not depend on the parameter y 2 U and can therefore be assembled
and stored once and for all in the Offline stage. Given any y 2 U, the algebraic
system (53) can be assembled and solved Online with O.MaN2 C Mf N/ and O.N3/

operations, respectively, which do not depend on the number N of high-fidelity
degrees of freedom. In the noncoercive case, for any y 2 U, the test basis vn

N ,
1 � n � N, is given by

vn
N D Tywn

N D
MaX

mD1
�a

m.y/Tmwn
N ; (55)

where Tmwn
N , 1 � m � Ma, 1 � n � N, is the solution of

.Tmwn
N ; vh/Y D am.w

n
N ; vh/ 8vh 2 Yh ; (56)
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which does not depend on y 2 U and which can be computed and stored once and
for all during the Offline stage. The corresponding algebraic system of the PG-RB
problem (34) is given by

 
MaX

m

MaX

m0

�a
m.y/�

a
m0.y/Am;m0

!
qN.y/ D

MfX

mD1
�f

m.y/fm ; (57)

where the (densely populated) RB matrix Am;m0 , 1 � m;m0 � Ma, is given by

.Am;m0/n0;n D am.w
n
N ;Tm0 wn0

N / 1 � n; n0 � N : (58)

This matrix does not depend on y and can be computed and stored once and for
all during the Offline stage. Given any y 2 U, the algebraic system (57) can be
assembled and solved Online in O.M2

aN2 C Mf N/ and O.N3/ operations.
The dual RB solution 'N.y/ can be computed by the same Offline-Online

procedure. The a-posteriori error estimator (49) takes the explicit form

4‚
N .y/ D

MfX

mD1

NX

nD1
�f

m.y/fm.v
n;du
N /'n

N.y/

�
MaX

mD1

NX

nD1

NX

n0D1
�a

m.y/q
n
N.y/am.w

n
N ; v

n;du
N /'n0

N .y/ ;

(59)

where 'n0

N .y/ is the coefficient of the dual RB solution 'N.y/ on the trial RB basis

v
n0;du
N 2 Ydu

N , 1 � n0 � N. As fm.v
n;du
N /, 1 � m � Mf and am.wn

N ; v
n;du
N /, 1 � m �

Ma, 1 � n; n0 � N, are independent of y, they can be computed and stored once
during the Offline stage and the error estimator (59) can be assembled during the
Online stage for any given y 2 U with O.Mf N C MaN2/ operations.

Finally, the RB posterior density ‚N.y/ can be computed by

‚N.y/ D exp

�
�1
2

�
ı � ON

KqN.y/
�>
��1

�
ı � ON

KqN.y/
��

; (60)

where the observation matrix ON
K 2 R

K�N with elements .ON
K/k;n D ok.wn

N/, 1 �
k � K, 1 � n � N, is computed and stored for once during Offline stage and‚N.y/
is assembled for any y 2 U during the Online stage in O.NK2/ operations.

As the error estimator 4‚
N .y/ is an approximation of the second term in the Taylor

expansion (43) for ‚h.y/, we correct the RB approximation‚N.y/ by

‚4N .y/ D ‚N.y/C 4‚
N .y/ ; (61)

which is generally more accurate than ‚N.y/.
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Theorem 3 ([9]) Under Assumption 1, the RB error for the posterior density
satisfies

sup
y2U

j‚h.y/�‚4N .y/j � C4‚N�2s; s D 1

p
� 1; (62)

where the constant C4‚ is independent of the number of RB bases N and the active
dimension J. The same convergence rate holds for RB approximation of the QoI ‰.

4.3 Empirical Interpolation Method (EIM)

As the computational reduction due to the N-independent Online RB evaluation
crucially depends on the assumption (51), which is however not necessarily valid in
practice: we mention only diffusion problems with lognormal diffusion coefficient
given by � D eu. We outline the Empirical Interpolation Method (EIM) for affine-
parametric approximation of problems with nonaffine parameter dependence. More
precisely, suppose Xh is defined in the domain D � R

d, d 2 N, with the finite set
of discretization nodes Dh 2 D, we seek to approximate an arbitrary, non-affine
function g W Dh 
 U ! R in the bilinear and linear forms by

g.x; y/ 	 JMŒg�.x; y/ D
MX

mD1
�m.y/gm.x/ ; (63)

which results in an approximation of the problem (32) with affine representa-
tion (51). For instance, when g is the diffusion coefficient of a diffusion problem,
we obtain (51) with �a

m.y/ D �m.y/ and am.wh; vh/ D .gmrwh;rvh/, 1 � m �
Ma D M.

One choice for the approximation (63) is by the aSG interpolation based on some
structured interpolation nodes, e.g. Leja nodes or Clenshaw-Curtis nodes, presented
in Sect. 3. As the work for each Online RB evaluation is proportional to the number
M of affine terms, it is important to keep M as small as possible. To this end,
we propose an adaptive construction of a sparse interpolation set by the following
greedy algorithm. We start by searching for the first parameter value y1 2 U and the
first discretization node x1 2 Dh such that

y1 D argsup
y2U

max
x2Dh

jg.x; y/j and x1 D argmax
x2Dh

jg.x; y1/j : (64)

The first basis g1 is taken as g1.x/ D g.x; y1/=g.x1; y1/, x 2 Dh. We define the
EIM node set S1 D fx1g. For M D 1; 2; : : : , for any y 2 U, the coefficient �m.y/,
1 � m � M, of the interpolation (63) is obtained by Lagrange interpolation at the
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selected discretization nodes, i.e.

MX

mD1
�m.y/gm.x/ D g.x; y/ 8x 2 SM : (65)

Then we define the empirical interpolation residual as

rMC1.x; y/ D g.x; y/�
MX

mD1
�m.y/gm.x/ : (66)

The next parameter sample yMC1 and discretization node xMC1 are chosen as

yMC1 D argsup
y2U

max
x2Dh

jrMC1.y/j and xMC1 D argmax
x2Dh

jrMC1.x; yMC1/j : (67)

We define EEIM.yMC1/ WD jrMC1.xMC1; yMC1/j and SMC1 WD SM [ fxMC1g and
choose the next basis function gMC1 according to

gMC1.x/ D rMC1.x; yMC1/
rMC1.xMC1; yMC1/

x 2 Dh : (68)

We remark that in practice the parameter domain U is replaced with a finite
training set „train to avoid solving a continuous, high-dimensional maximization
problem (67). Details and error bounds is available in, e.g. [7, 10, 25].

4.4 Adaptive aSG-EIM-RB Algorithm

In this section, we propose an adaptive algorithm for the evaluations of the posterior
density‚ as well as its expectation Z for Bayesian inversion with nonaffine forward
map by incorporation of approximations of aSG, EIM and RB in order to reduce
the total computational cost. The same algorithm applies for the evaluation of the
QoI ‰ and its statistical moments as well. The basic idea is that at each step of the
construction of aSG with new interpolation or integration nodes, we refine the EIM
approximation of the nonaffine parametric function and refine the RB approximation
of ‚ when their approximation errors are larger than prescribed tolerances at the
new nodes. In the end, instead of solving a large number of HiFi problems for the
evaluation of ‚h.y/ at all aSG nodes, we approximate ‚h.y/ by the ‚N.y/ resp.
by ‚4N .y/, which only requires inexpensive RB solutions. The main procedure of
simultaneous aSG-EIM-RB construction and evaluation is provided in Algorithm 1.

In the adaptive refinement of EIM interpolation, we may replace the set of
discretization nodes Dh in (67), which depends on the HiFi degree of freedom N ,
by (i) a smaller number of randomly selected discretization nodes in Dh n SM; or
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Algorithm 1: Adaptive aSG-EIM-RB Algorithm
1. Specify the tolerances "aSG, "EIM and "RB and the maximum numbers of nodes Mmax

aSG, Mmax
EIM for

aSG, EIM and bases Nmax for RB approximations, respectively, set EaSG D 2"aSG;
2. Initialize the aSG, EIM and RB approximation with MaSG D MEIM D N D 1:

a. solve the primal and dual HiFi problems (32) and (45) at the root node y1 D 0 2 U;
b. initialize the index set ƒ1 D f1g, and construct the aSG approximation, either the

interpolation as Sƒ1‚h.y/ D ‚h.y1/ or the integration as EŒSƒ1‚h�D ‚h.y1/;
c. set the first EIM basis as J1Œg�.y/ D g.y1/, set x1 2 argmaxx2Dh

jg.x; y1/j;
d. construct the first RB primal trial space X1 D spanfqh.y1/g and dual trial space

Ydu
1 D spanf'h.y1/g, compute and store all quantities in Offline stage.

3. While MaSG < Mmax
aSG and EaSG > "aSG

a. compute the active index set ƒa
MaSG

for the aSG approximation;
b. For each � 2 ƒa

MaSG

i. compute the set of added nodes „�
D associated to �;

ii. For each y 2 „�
D

A. compute EIM interpolation of g at y and the interpolation error EEIM.y/;
B. If MEIM < Mmax

EIM and EEIM.y/ > "EIM

• refine the EIM interpolation with the new basis g.y/, select xMEIM C1;
• set MEIM D MEIM C 1;

EndIf
C. compute the RB solution and ‚4

N .y/ and the error estimator ERB.y/ D 4‚
N .y/;

D. If N < Nmax and ERB.y/ > "RB

• enrich the RB trial spaces XN with qh.y/ and Ydu
N with 'h.y/;

• compute and save the all Offline quantities;
• set N D N C 1;

EndIf

EndFor

EndFor
c. compute the aSG error estimator EaSG as one of (29) with the RB approximation ‚4

N ;
d. enrich ƒMaSG by �MaSG C1 according to (26) for interpolation or (28) for integration;
e. set MaSG D MaSG C 1;

EndWhile

(ii) the last s (e.g. s D 1; 2; : : : ) selected nodes fxM; xM�1; xM�sC1g and use the first
M � s EIM bases to evaluate the error estimator EEIM.y/.

Remark 2 In practice, the specification of the tolerances "aSG, "EIM and "RB depends
on the given problem and the user specified accuracy. A general (heuristic) guideline
for their selection is that the EIM error be smaller than or equal to the RB error,
which should be in turn smaller than or equal to the aSG error. Therefore, we
propose to set "aSG > "RB > "EIM (as was done in all numerical experiments reported
below). As the number of aSG nodes is considerably larger than the number of
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EIM and RB bases, we set Mmax
aSG > Mmax

EIM and Mmax
aSG > Nmax. Concrete examples

for the specification of these parameters will be given in the ensuing numerical
experiments.

5 Numerical Experiments

We consider a linear diffusion problem in the physical domain D D .0; 1/2: for
y 2 U, find the solution q.y/ 2 H1

0.D/ such that

� div.�.y/rq.y// D f ; (69)

where we set f D 1 and prescribe homogeneous Dirichlet boundary conditions
q.y/ D 0 on @D; the parametric diffusion coefficient �.y/ in (69) is given by

�.y/ D eu.y/ with u.y/ D 1C
JX

jD1
yj
1

j3
sin..j1 C 1/�x1/ sin..j2 C 1/�x2/ ; (70)

where j1; j2 D 1; : : : ;
p

J such that j D j1 C j2
p

J for a square J; x D .x1; x2/ 2
D. Note that u.y/ is nonaffine with respect to y. We perform interpolation for an
affine decomposition of �.y/ by applying both aSG and EIM. We first investigate the
convergence of the aSG interpolation error with respect to the number of dimensions
J. For simplicity, we only consider the interpolation for the function �.y/ at a sample
node x D .0:3; 0:6/ (interpolation at any other node (or set of nodes) or the worst
case scenario measured in L1.D/-norm can be performed in the same way, but
with much more computational cost for the latter case). We test the cases of J D
16; 64; 256, and 1024, and construct the aSG (by Algorithm 1 where we replace
EIM-RB construction and evaluation, i.e. procedure ii. in Algorithm 1, by a HiFi
solution and density estimation at each y 2 „�

D) using Clenshaw–Curtis nodes
defined in (21) with the maximum number of interpolation nodes set to 105. Figure 1
displays the convergence of the interpolation error estimator defined in (29) with
respect to the number of interpolation nodes. We observe that the convergence rate
converges to the one close to M�2 when the number active parameters increases
from 16 to 1024, which is in agreement with the theoretical prediction of the error
convergence rate in Theorem 2 for high-(infinite-)dimensional sparse interpolation.

In the numerical convergence study of the empirical interpolation error, we
consider the J D 64 dimensional case for uniform, triangular meshes with
mesh widths h D 1=16; 1=32; 1=64, and 1=128. The tolerance is chosen as 10�8
and the same 1000 random samples as the training samples for the construction
of EIM are selected. M D 161; 179; 179, and 179 EIM bases are constructed
for h D 1=16; 1=32; 1=64 and 1=128, respectively. This shows that at a given
level of accuracy, the number of EIM bases is independent of HiFi mesh width,
provided it is sufficiently fine. We use h D 1=32, i.e. with Finite Element nodes
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Fig. 1 Decay of the aSG interpolation error with respect to the number of interpolation nodes M
for �.y/ in J D 16; 64; 256 and 1024 parameter dimensions at a sample node x D .0:3; 0:6/

x D .i1=32; i2=32/, i1; i2 D 0; : : : ; 32, and 1000 random training samples to evaluate
the convergence of EIM error with respect to the number of dimensions J D
16; 64; 256, and 1024, which is shown in Fig. 2. We observe that as J increases,
the convergence rate tends to M�2, as could be expected from the results in the
affine-parametric setting in [9]. However, as the number of EIM bases increases
beyond the dimension J of the set of active parameters, the convergence for EIM
error exceeds the rate M�2 and becomes much faster (in fact, exponential) than the
aSG error that still converges with a rate close to M�2. This is further demonstrated
in the case J D 64 in Fig. 3, where the aSG is constructed for interpolation only at
the sample node x D .0:3; 0:6/ and at the Finite Element nodes x D .i1=32; i2=32/,
i1; i2 D 0; : : : ; 32, respectively. The EIM bases are constructed with all previously
computed aSG nodes (5 
 104) as training samples.

From Fig. 3 we see that the worst aSG interpolation error over all mesh nodes
(where a single sparse grid is adaptively constructed using the largest error indicator
over all the mesh nodes) decays at a lower rate (with rate about M�1:2) than the
theoretical prediction M�2 in Theorem 2 and that of aSG at only one sample node.
This indicates that the aSG constructed to minimize the maximal interpolation error
over all mesh nodes can produce approximations which do not converge at the rate
afforded by the N-approximation results.

We also see that, in order to achieve the same interpolation accuracy, a much
smaller number of EIM bases is needed compared to that of aSG nodes. For
example, only 50 EIM bases are needed in order to achieve the same accuracy
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Fig. 2 Decay of the EIM interpolation error with respect to the number of interpolation nodes M
for �.y/ in J D 16; 64; 256 and 1024 dimensions uniformly at all Finite Elment nodes
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Fig. 3 Decay of interpolation error with respect to the number of interpolation nodes M for �.y/
in J D 64 dimensions by aSG at the sample node x D .0:3; 0:6/ (aSG at x=(0.3,0.6)) and at the
Finite Element nodes (aSG worst error), and by EIM at the Finite Element nodes
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3:7
10�4 as for the worst case scenario aSG that requires 1248 interpolation nodes,
while 289 EIM bases are needed to attain the interpolation accuracy 4:5
 10�9, for
which about 1:3 
 107 interpolation nodes are expected (according to the estimated
convergence rate M�1:2) for the worst case scenario aSG, even only 15748 nodes
are needed for aSG interpolation at a single mesh sample point x D .0:3; 0:6/.
Therefore, in the affine approximation of the nonaffine function �.y/ for this
example with J D 64 parameters, EIM is much more efficient than aSG. For the
higher dimensional case, e.g. for J D 1024, the same conclusion can be drawn as
the worst aSG interpolation error converges at a lower rate (about M�1:2) than EIM,
which converges at a rate of about M�2 when the number of EIM bases is smaller
than J and much faster than M�2 when the number of EIM bases becomes larger
than J.

To study the convergence of the RB errors and the error estimator as well
as its effectivity for the approximation of the posterior density ‚ in different
dimensions, here in particular J D 16; 64; 256 and 1024, we first construct the
EIM approximation of the nonaffine random field using 1000 random samples with
tolerance 10�8 (selected so small that EIM interpolation error is dominated by
the RB error). We next construct the RB approximation for the posterior density
using the same 1000 samples with tolerance 10�8. Then, the RB approximation
errors of the posterior density, defined as eN D j‚h.ymax/ � ‚N.ymax/j, where
ymax D argmaxy2„test

j‚h.y/ � ‚N.y/j, e�N D j‚h.ymax/ � ‚4N .ymax/j, and the
RB error estimator 4‚

N .ymax/ defined in (49), are computed in a test set „test with
100 random samples that are independent of the 1000 training samples. Figure 4
displays the convergence of the RB errors and the error estimator with respect to
the number of RB bases in different dimensions. We can see that the RB error eN

can hardly be distinguished from the error estimator 4‚
N , which implies that the

error estimator is very effective. As parameter space dimension J increases, the
approximation error becomes larger. The corrected density ‚4N is more accurate
than‚N in all cases, especially when N is relatively small. In fact, a convergence rate
N�2 can be observed for eN compared to N�4 for e�N when N is small. When N and
J become larger, both errors converge with a dimension-independent, asymptotic
convergence rate N�4, which is in complete agreement with Theorem 3. We remark
that the convergence rate depends on the sparsity of the problem. For problems
whose parametric solution families exhibit less sparsity (e.g. when 2=3 < p < 1),
the convergence rate may be inferior than N�1=2. In this case sampling (ie., Monte-
Carlo) methods might be preferable.

In the last experiment, we consider the influence of the tolerance for RB
training to the accuracy of the RB approximation of the posterior density ‚ and
its integration Z using the aSG-EIM-RB Algorithm 1, where we set the maximum
number of the sparse grid nodes as 104 and 2 
 103 for the interpolation of ‚ and
the integration of Z, respectively, and set the tolerance for RB training as 10�4,
10�6 and 10�8 for the construction of aSG interpolation, and 10�5, 10�7 and 10�9
for the construction of aSG integration. Figure 5 shows the convergence rates of
the aSG interpolation and integration error estimators defined in (29), which are
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Fig. 4 Decay of the RB approximation errors eN.ymax/, e�N .ymax/, and the RB error estimator
4‚

N .ymax/ with respect to the number of RB bases N in J D 16; 64; 256 and 1024 dimensions. The
training set consists of 1000 random samples for the construction of RB approximation with EIM
and RB tolerances set as 10�8 . The test set „test consists of another 100 random samples

close to M�2 (the same as theoretical prediction in Theorem 2) and M�3 (faster than
the theoretical prediction M�2). Figure 5 also displays the number of RB and its
approximation accuracy with different tolerances. We see that in order to achieve
the same approximation accuracy for pointwise evaluation of the posterior density
‚, the number of RB required is considerably smaller than the number of aSG
nodes, e.g. 74 RB bases compared to 3476 aSG nodes. This entails the need to
solve a smaller number of high-fidelity problems by RB. For the approximation of
Z, for which we need a combination of aSG for integration and RB for pointwise
evaluation, 96 RB bases are constructed out of 2 
 103 aSG nodes, which preserves
the same integration accuracy as aSG with 584 nodes. Note that in this test, we
set the tolerance of EIM as 10�9 for the interpolation of ‚ and as 10�10 for the
integration of Z, both of which are negligible compared to the accuracy/tolerance of
RB and aSG. When the tolerances for the EIM were selected smaller, the number of
EIM bases, whose cost of construction depends linearly onN , are relatively large. In
order to balance the errors from aSG, EIM and RB to reach a prescribed numerical
accuracy at minimum computational cost, an algorithm will be presented in [10].
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Fig. 5 Decay of aSG interpolation and integration errors with respect to the number of aSG nodes
in J D 64 dimensions; RB is trained adaptively at the aSG nodes with different tolerances. The
lines of aSG interpolation and aSG integration are corresponding to using Algorithm 1 without
EIM-RB but only HiFi solution. Note also that the line of aSG interpolation is overlapped with that
of tol=1e-8, N D 74. The error of aSG integration practically coincides with the the error produced
by tol=1e-9, N D 96

6 Conclusion

We investigated acceleration of computational Bayesian inversion for PDEs with
distributed parameter uncertainty. Upon reformulation, forward models which are
given in terms of PDEs with random input data take the form of countably-
parametric, deterministic operator equations. Sparsity of the parameter-to-solution
maps is exploited computationally by the reduced basis approach. Sparse grids
enter the proposed numerical methods in several ways: first, sparse dimension-
adaptive quadratures are used to evaluate conditional expectations in Bayesian
estimates and second, sparse grids are used in the offline stage of the reduced
basis algorithms (in particular, the empirical interpolation method) to “train” the
greedy algorithms and to facilitate the greedy searches over the high-dimensional
parameter spaces. For a model diffusion problem, we present detailed numerical
experiments of the proposed algorithms, indicating their essentially dimension-
independent performance and convergence rates which are only limited by the
sparsity in the data-to-solution map.

In the present work, we considered only a model problem with uniform Bayesian
prior on the parameter space U. The proposed approach is, however, also applicable
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directly to priors with separable densities w.r. to uniform priors. Generalizations
to nonseparable prior densities will be presented elsewhere. The present methods
and results can also be extended to nonlinear parametric problems with non-affine
parameter dependence, in particular problems with uncertain domain of definition
[10].
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From Data to Uncertainty: An Efficient
Integrated Data-Driven Sparse Grid Approach
to Propagate Uncertainty

Fabian Franzelin and Dirk Pflüger

Abstract We present a novel data-driven approach to propagate uncertainty. It
consists of a highly efficient integrated adaptive sparse grid approach. We remove
the gap between the subjective assumptions of the input’s uncertainty and the
unknown real distribution by applying sparse grid density estimation on given
measurements. We link the estimation to the adaptive sparse grid collocation
method for the propagation of uncertainty. This integrated approach gives us two
main advantages: First, the linkage of the density estimation and the stochastic
collocation method is straightforward as they use the same fundamental principles.
Second, we can efficiently estimate moments for the quantity of interest without
any additional approximation errors. This includes the challenging task of solving
higher-dimensional integrals. We applied this new approach to a complex subsurface
flow problem and showed that it can compete with state-of-the-art methods. Our
sparse grid approach excels by efficiency, accuracy and flexibility and thus can be
applied in many fields from financial to environmental sciences.

1 Introduction

There are different types of uncertainty [33] that influence the outcome of large
systems that support risk assessment, planning, decision making, validation, etc.
Uncertainties can enter the system due to missing knowledge about the physical do-
main, think of subsurface flow simulations, or there are inherent stochastic processes
driving the system, such as Brownian motion. The quantification of the influence
of such stochastic components on some quantity of interest is the task of forward
propagation of uncertainty in the field of uncertainty quantification (UQ). This is
challenging since the statistical characteristics of the uncertainties can be unknown
or don’t have an analytic representation. Furthermore, the systems or models we
are interested in can be arbitrarily complex (highly nonlinear, discontinuous, etc.).
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Therefore, we need efficient and reliable algorithms and software that can make
expensive statistical analysis feasible.

In this paper we want to focus on data-driven quantification of uncertainties in
numerical simulations. There are two main problems we face in that context: First,
the uncertainty of the quantity of interest depends strongly on the uncertainty in the
input. Therefore, one needs objective measures to get an unbiased representation of
the uncertainty of the input. Second, to quantify the uncertainties of some quantity
of interest, we need to evaluate the model, which can be very costly and involves to
run a whole simulation. However, the accuracy of the quantities we compute should
be very high, which means in general that we need to evaluate the model often, and
the main challenge is to balance costs and accuracy.

The first problem of obtaining objective measures for the input’s uncertainties
has been assessed in various articles in the past. One idea is to use data and
estimate the stochastic properties using density estimation techniques. The authors
of [7] used kernel density estimators, and [1] proposed to use kernel moment
matching methods, for example. A comparison between data-driven approaches and
approaches based supervised estimation by experts can be found in [21]. However,
often the combination of expert knowledge and data is essential if the reliability in
the data is low. A very popular approach to combine them is Bayesian inference
[35, 39].

The incorporation of data or estimated densities into a UQ forward problem
depends on the method that is required by the application to propagate the
uncertainty. For non-intrusive methods, for example, there has been done a lot of
work in the field of polynomial chaos expansion (PCE) [37, 38]. The generalized
PCE, however, is defined for analytic, independent marginal distributions. It has
therefore been extended to the arbitrary PCE [34] that supports also dependent
marginal distributions [19] and data [23]. However, global polynomials are not
always the best choice to propagate uncertainty [6]. Stochastic collocation methods
[2, 36] became popular in the last years, especially due to sparse grids [15, 20]. They
are used to obtain a surrogate model of the expensive model function. They can
overcome the curse of dimensionality to some extent [3], can handle large gradients
[8] or even discontinuities in the response functions [13, 29].

In this paper we present a new approach to incorporate data into the UQ forward
propagation pipeline. We propose an integrated data-driven sparse grid method,
where we estimate the unknown density of the input using the sparse grid density
estimation (SGDE) [24, 26] method and propagate the uncertainty using sparse grid
collocation (SGC) with adaptively refined grids. The SGDE method has been widely
used for Data Mining problems and can be applied for either small or large data sets.
It is highly efficient with respect to learning, evaluating and sampling. It interacts
seamlessly with SGC since both are based on the same fundamental principles,
which can be exploited to reduce the numerical errors in the forward propagation
pipeline.
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This paper is structured as follows: First, we give a formal definition of a
data-driven UQ forward-propagation problem in Sect. 2. In Sect. 3 we describe the
methods we use for density estimation and for uncertainty propagation. Then we
compare the performance of our approach with other techniques in Sect. 4. We
present a lower-dimensional analytic example and a higher-dimensional subsurface
flow problem in porous media. In Sect. 5 we summarize the paper and give an
outlook to future work.

2 Problem Formulation

We define .�;†;P/ being a complete probability space with � being the set of
outcomes, † � 2� the �-algebra of events and PW† ! Œ0; 1� a probability
measure. Let � D .�1; : : : ; �d/ 2 � be a random sample and let the probability
law of � be completely defined by the probability density function f W � ! R

C
with

R
� f .�/d� D 1. Consider a model M defined on a bounded physical domain

x 2 D � R
ds with 1 � ds � 3, a temporal domain t 2 T � R and the probability

space .�;†;P/ describing the uncertainty in the model inputs as

u.x; t; �/ D M.x; t; �/W D 
 T 
� ! R
dr ; (1)

with 0 < dr 2 N. We restrict ourselves without loss of generality to scalar quantities
of u and define an operator Q, which extracts the quantity we are interested in, i.e.

QŒu.x; t; �/�WRdr ! R: (2)

The outcome of u becomes uncertain due to its uncertain inputs �. This
uncertainty is what we want to quantify. The probability law of �, of course,
influences heavily the probability law of u. Therefore, in data-driven UQ one
assumes to have a set of samples D WD f�.k/gn

kD1 ; with �.k/ D .�
.k/
1 ; : : : ; �

.k/
d / 2 �,

which are drawn from the unknown probability density f . D is an objective measure
describing the uncertainty we want to propagate. A schematic representation of the
data-driven UQ pipeline is given in Fig. 1.

Fig. 1 Data-driven UQ forward pipeline. The data set D describes the stochastic characteristics of
the uncertain parameters � for some physical model u. The underlying probability density function
f is unknown. The stochastic analysis of the uncertain outcome of u depends strongly on f
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3 Methodology

In this section we introduce the methods we use to propagate uncertainty. We
formally introduce stochastic collocation and the concept of sparse grids based on
an interpolation problem. We present the sparse grid density estimation method and
describe how it can be used to estimate efficiently moments of some quantity of
interest.

3.1 Stochastic Collocation

In stochastic collocation we search for a function g that approximates the unknown
model function u. We solve N deterministic problems of u at a set of collocation
points„N WD f�.k/gN

kD1 � � and impose

g.i/.�.k// WD QŒu.xi; ti; �
.k//�; 8�.k/ 2 „N : (3)

at a selected point in space xi 2 D and time ti 2 T. This is, of course, nothing else
than an interpolation problem. A common choice for g.i/ is to use a sum of ansatz
functions on some mesh with either global [17] or local support [8, 12, 15]. The
expensive stochastic analysis is then done on the cheap surrogate g.i/.

For simplicity in the notation we omit in the following the index i on g and focus
on the approximation in �. Without loss of generality, we assume furthermore that
there exists a bijective transformation from� to the unit hypercube and assume the
collocation nodes �.k/ in the following to stem from Œ0; 1�d.

3.2 Sparse Grids

We introduce here the most important properties of sparse grids in the context of
interpolation problems. The general idea of sparse grids is based on a hierarchical
definition of a one-dimensional basis. This means that the basis is inherently
incremental. We exploit this property in higher-dimensional settings to overcome
the curse of dimensionality to some extent. For details and further reading we
recommend [3, 25]. For adaptive sparse grids and efficient implementations of
sparse grid methods we refer to [27], for suitable refinement criteria for UQ
problems you may read [8, 15, 16].

Suppose we are searching for an interpolant g of an unknown multivariate
function u.�/ 2 R on the unit hypercube, i.e. � D .�1; �2; : : : ; �d/ 2 Œ0; 1�d. For
g we restrict ourselves to the space of piecewise d-linear functions V` with ` being
the maximum discretization level in each dimension.
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Let l D fl1; : : : ; ldg and i D fi1; : : : ; idg with lk > 0 and ik > 0 be multi-indices.
We define a nested index set

Il WD f.l; i/ W 1 � ik < 2
lk ; ik odd; k D 1; : : : ; dg (4)

of level-index vectors defining the grid points

�l;i WD .2�l1 i1; : : : ; 2
�ld id/ : (5)

For each grid point we use the general one-dimensional reference hat function
 .�/ WD max.1 � j�j; 0/ to obtain the linear one-dimensional hierarchical hat
functions  l;i.�/ centered at the grid points by scaling and translation according
to level l and index i as  l;i.�/ WD  .2l� � i/, see Fig. 2 (left). We obtain the higher-
dimensional basis via a tensor-product approach,

 l;i.�/ WD
dY

kD1
 lk ;ik .�k/ : (6)

Note that the level-index vectors .l; i/ 2 Il define a unique set of hierarchical
increment spaces Wl WD span.f l;i W .l; i/ 2 Ilg/, which are shown in the center
of Fig. 2. All increment spaces up to jlj1 D maxi li � ` span the space of piecewise
d-linear functions on a full grid.

Now we take advantage of the hierarchical definition of the basis and reduce the
number of grid points by choosing just those spaces Wl that contribute most to our
approximation. An optimal choice is possible a priori if u is sufficiently smooth, i.e.
if u is a function of the mixed Sobolev space H2

mix where the mixed, weak derivatives

l1=1 l1=2 l1=3 l1

l2=1

l2=2

l2=3

l2

Fig. 2 One-dimensional piecewise linear basis functions up to level 3 (left), polynomial ones
(right), and the tableau of hierarchical increments Wl up to level 3 in two dimensions (center)
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up to order 2 are bounded. We define the sparse grid space V.1/

` as

V.1/

` WD
M

jlj1�`Cd�1
Wl ; (7)

where we select just those subspaces that fulfill jlj1 D Pd
kD1 lk � `C d � 1, see the

upper triangle in the center of Fig. 2. We define a sparse grid function gIl 2 V.1/

` as

gIl.�/ D
X

.l;i/2Il;jlj1�`Cd�1
vl;i l;i.�/ ; (8)

where vl;i are the so-called hierarchical coefficients. Note that we omit the index l
when we refer to gI being a sparse grid function defined on an adaptively refined
grid.

The sparse grid space V.1/

` has one main advantage over the full tensor space V`:
The number of grid points is reduced significantly from O..2`/d/ for a full grid to
O.2``d�1/ while the interpolation accuracy is of order O..2�`/2`d�1/, which is just
slightly worse than the accuracy of a full grid O..2�`/2/ [3].

If we can impose a higher smoothness for u in a sense that all the weak mixed
derivatives up to order p C 1 are bounded, it makes sense to employ a higher-
order piecewise polynomial basis  . p/

l;i with maximum degree 1 � p 2 N in
each dimension. Note that these polynomials are defined locally, see Fig. 2 (right).
Therefore, we don’t suffer Runge’s phenomenon even though we use equidistant
grid spacing in each dimension. For details about the construction of the basis we
refer to [3]. The number of grid points, of course, is the same as for the piecewise
linear case. However, the interpolation accuracy is now of order O..2�`/pC1`d�1/.

3.3 Sparse Grid Density Estimation Method

The sparse grid density estimation (SGDE) method is based on a variational problem
presented in [11], first mentioned in the context of sparse grids in [9] and first
developed in [26].

We want to estimate some unknown but existing probability density function f
from which a set of observations/samples are available, D WD f�.k/gn

kD1 � �. The
SGDE method can be interpreted as a histogram approach with piecewise linear
ansatz functions. We search for a sparse grid function Of K 2 V.1/

` with jK j D M grid
points that minimizes the following functional [9]

R. OfK / D
��� Of K

���
2

L2
� 1

n

X

�.k/2D
OfK .�.k//C �

���S OfK
���
2

; (9)

where S is some regularization operator and 0 � � 2 R a regularization parameter.
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In the unit domain the second term is the discrete version of the first one given
a set of observations D. D is a realization of f , so the second term implicitly has
larger weights where the probability is larger. This is done explicitly in the first term
by the multiplication of the pay-off function with the density OfK .

By minimizing R. OfK / we therefore search for a piecewise continuous density
OfK for which the first two terms are equal. Note that the first term is equal to the
definition of the expectation value where the pay off function is the probability
density function itself.

From the point of view of histograms, we can say that the sparse grid discretiza-
tion defines the (overlapping) buckets. The first term in R collects the density mass
in all the buckets while the second term does the same for the observations available
for each hierarchical ansatz function. The penalty term balances fidelity in the data
and smoothness of OfK via the regularization parameter � and the regularization
operator S.

Solving R. OfK / leads to a system of linear equations [11]. The system matrix
is the mass matrix of OfK , which depends only on the number of grid points and
is therefore independent of the number of samples n. We obtain the regularization
parameter via cross validation: we split D in a training and a test set, solve the
optimization problem on the training set and compute the L2-norm of the residual
of the system of linear equations applied on the test set. For details see [26]. The
estimated density function has unit integrand if we choose S D r [26].

Positivity, however, is not guaranteed with this approach. For the numerical
examples in this paper we forced OfK to be positive by employing a local full grid
search on OfK . For piecewise linear ansatz functions there exists a simple algorithm,
see Algorithm 1. A sparse grid function can locally be negative if the coefficient
of an arbitrary level-index vector .l; i/ is negative. If this is the case, then, due to
monotony of OfK between grid points, it is sufficient to apply a full grid search on
the support of .l; i/. We add grid points whenever its function value is negative and

Algorithm 1: Forcing the sparse grid density to be positive everywhere
Data: training sample set D and sparse grid I
Result: positive sparse grid function .I; v/ with unit integrand
done False;
while not done do

v doSparseGridDensityEstimation.D;I/;
newGridPoints list();
for .l; i/ 2 f.l; i/ 2 I W vl;i < 0g do

negativeGridPoints findNegativeFullGridPointsLocally.I; v; l; i/;
newGridPoints append.newGridPoints, negativeGridPoints/;

if newGridPoints is not empty then
I addGridPoints.I; newGridPoints/;

else
done True

return v;I;
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obtain the hierarchical coefficients for these grid points by learning the density on
the extended grid. We repeat this process until we don’t find any negative function
value. This algorithm is, of course, just feasible if the number of local full grid points
to be examined is small. Note that for a piecewise polynomial basis the algorithm
doesn’t work because the maximum of each ansatz function is not at a grid point.

3.4 Sparse Grid Collocation

The sparse grid collocation method (SGC) is based on the sparse grid discretization
scheme (see Sect. 3.2) of the stochastic input space. The level-index vectors .l; i/ 2
I of some sparse grid with jIj D N define our set of collocation nodes as

„N WD f�l;ig.l;i/2I (10)

with �l;i being the grid points, see Eq. (5). We evaluate u at every collocation node
of „N and solve the interpolation problem

gI.� l;i/ WD QŒu.�; �l;i/�;8� l;i 2 „N ; (11)

by a basis transformation from the nodal basis to the hierarchical basis. Efficient
transformation algorithms for both linear and polynomial bases can be found in
[3, 27]. We can furthermore employ adaptive refinement to consider local features
in u. Suitable refinement criteria can be found in [8, 12, 13, 15, 28].

3.5 Moment Estimation

Let � D Ef .u/ and �2 D Vf .u/ be the unknown stochastic quantities of u for the
true density f we want to estimate, gI be a sparse grid surrogate model for u and
therefore � 	 Ef .gI/ and �2 	 Vf .gI/. Let Of be an estimated density for the
unknown probability density f obtained by a set of samples D WD f�.k/gn

kD1 drawn
from f .

To estimate the expectation value and the variance we need to solve integrals,
which can be higher-dimensional, depending on the correlations of � and the density
estimation technique we use. An easy method that can be applied to any estimated
density we can sample or evaluate is vanilla Monte Carlo quadrature. We generate a
new set of samples OD D f�.k/gOnkD1 drawn from Of with On � n. We can now substitute
Of by the discrete density

Of ı.�/ D 1

On
X

�.k/2 OD
ı.� � �.k// ; (12)
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with ı being the Dirac delta function and estimate the expectation value as

E Of .gI/ D
Z

�

gI.�/ Of .�/d� 	
Z

�

gI.�/ Of ı.�/d� D 1

On
X

�.k/2 OD
gI.�

.k// : (13)

We obtain the result for the sample variance using the same approach for the
numerically stable two-pass algorithm [4]

V Of .gI/ 	 1

On � 1

X

�.k/2 OD
.gI.�

.k// � E Of .gI//
2 : (14)

Due to the substitution of Of by Of ı we can solve the higher-dimensional integrals
easily but we introduce a new numerical error, which converges slowly with respect
to On.

However, this substitution is not necessary if the estimated density Of is a sparse
grid function OfK . Due to the tensor-product approach we can decompose the higher-
dimensional integral into one-dimensional ones and solve them separately without
a numerical error larger than the machine precision 	. Let us additionally define
some arbitrary order on the collocation points so that we can iterate over them in a
predefined order. The expectation value of gI with respect to OfK can be computed as

E OfK .gI/ D
Z

�

gI.�/ OfK .�/d�

D
Z

�

X

.l;i/2I
vl;i 

. p/
l;i .�/

X

.k;j/2K
wk;j'

.q/
k;j .�/d�

D
X

.l;i/2I
vl;i

X

.k;j/2K
wk;j

Z

�

 
. p/
l;i .�/'

.q/
k;j .�/d�

D
X

.l;i/2I
vl;i

X

.k;j/2K
wk;j

Z

�1

 
. p/
l1;i1
'
.q/
k1;j1

d�1 � : : : �
Z

�d

 
. p/
ld ;id
'
.q/
kd ;jd

d�d

„ ƒ‚ …
DWA.l;i/;.k;j/

D vTAw : (15)

The same holds for the variance for which we use Steiners translation theorem

V OfK .gI/ D E OfK .g
2
I/� E OfK .gI/

2 (16)
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and compute

E OfK .g
2
I/ D

Z

�

g2I.�/ OfK .�/d�

D
Z

�

2

4
X

.l;i/2I
vl;i 

. p/
l;i .�/

3

5

2

4
X

.Ql;Qi/2I
vQl;Qi 

. p/
Ql;Qi .�/

3

5 OfK .�/d�

D
X

.l;i/2I
vl;i

X

.Ql;Qi/2I
vQl;Qi

Z

�

 
. p/
l;i .�/ 

. p/
Ql;Qi .�/

Of K .�/d�

„ ƒ‚ …
DWB.l;i/;.Ql;Qi/

D vTBv ;

(17)

where the matrix entries B.l;i/;.Ql;Qi/ are

B.l;i/;.Ql;Qi/ D
X

.k;j/2K
wk;j

Z

�

 
. p/
l;i .�/ 

. p/
Ql;Qi .�/'

.q/
k;j .�/d�

D
X

.k;j/2K
wk;j

Z

�1

 
. p/
l1;i1
 
. p/
Ql1;Qi1'

.q/
k1;j1

d�1 � : : : �
Z

�d

 
. p/
ld ;id
 
. p/
Qld ;Qid'

.q/
kd;jd

d�d

„ ƒ‚ …
DWb.k;j/

D wTb :
(18)

The runtime O.N � M/ for a naive implementation for the expectation value is
determined by the matrix vector product. For the variance it holds O.N2 � M/
accordingly. In the inner loop we need to compute the scalar products of the one-
dimensional basis functions, which can be done a-priori using Gauss-Legendre
quadrature for the corresponding polynomial degree. However, we can reduce the
quadratic dependency of the runtime on the number of sparse grid points to just
a linear dependency by employing the UpDown-scheme. In the UpDown-scheme
we exploit the tree-structure of the grid and apply the uni-directional principle
to compute the inner-products [27]. This reduces the quadratic run time for the
expectation value to be just linear in the number of grid points, i.e. O.N C M/.

3.6 The Sparse Grid Data-Driven UQ Forward Pipeline

Here we want to discuss the numerical properties of the sparse grid based data-
driven UQ pipeline for forward problems (see Fig. 3). It consists of four steps: (1)
The data set D is a randomly chosen set of n samples drawn from f . The quality of
the set, how good it represents the moments of f , can vary significantly depending on
it’s size. Furthermore, it makes the estimated density OfK (2) to be a random variable.
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Fig. 3 Data-driven sparse grid UQ forward pipeline

Peherstorfer et al. [26] showed in this context consistency for the SGDE method, i.e.

P

����f � Of K
���
2

L2
D 0

�
D 1 ; (19)

for jK j ! 1 and n ! 1. The accuracy of the sparse grid surrogate model gI
(3) depends on the smoothness of u. Bungartz and Griebel [3] showed that with a
piecewise polynomial basis of degree p for regular sparse grids it holds

ku � gIkL2 2 O..2�`/pC1 � `d�1/ : (20)

For very specific adaptively refined sparse grids we refer to the results in [15]
for a convergence proof. The estimated moments of u in the last step become
random variables due to OfK being a random variable. Therefore, when we talk
about convergence of the moments of u we need to consider the mean accuracy
with respect to density estimations based on different realizations of f . We define
the mean relative error for the expectation value as

Ejj.�� E OfK .gI//=�jj ; (21)

and for the variance as

Ejj.�2 � V OfK .gI//=�
2jj ; (22)

where � and �2 are the true solutions. The quadrature step itself adds numerical
errors in the order of the machine precision O.	/ per operation since it consists just
of computing scalar products of one-dimensional polynomials.

4 Numerical Examples

In this section we discuss an analytic example, consisting of independent marginal
Beta-distributions, and a three-dimensional subsurface flow problem with borehole
data.
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4.1 Analytic Example

In preparation of the subsurface problem we consider a two-dimensional analytic
scenario with �1; �2 being two independent Beta-distributed random variables,

�1 � B.˛1; ˇ1/I �2 � B.˛2; ˇ2/ ; (23)

with shape parameters ˛1 D 5, ˇ1 D 4, ˛2 D 3 and ˇ2 D 2 and sample space
�1 D �2 D Œ0; 1�. The corresponding density functions are defined as

fk.�k/ D ck�
˛k�1
k .1 � �k/

ˇk�1; k 2 f1; 2g ; (24)

where ck D �.˛k C ˇk/=.�.˛k/�.ˇk// with � being the gamma function. Let
f .�1; �2/ D f1.�1/f2.�2/ be the joint probability density function defined on � D
�1
�2. One realization D of f of size n was created in two steps: first, we generated
n uniformly distributed samples in each dimension. Second, we applied the inverse
cumulative distribution function of fk and obtained samples from the beta space �.
As a model function u we use a simple parabola with u.@�/ D 0 and u.0:5; 0:5/ D 1

u.�/ D
2Y

kD1
4�k.1 � �k/ : (25)

This model function has two main advantages: First, we can compute analytic
solutions for the expectation value � and the variance �2 of u as

� D c1c2
4725

	 0:71111 (26)

�2 D c31c
3
2

75;014;100;000
� 2c21c

2
2

22;325;625
C 4c1c2
24;255

	 0:04843 ; (27)

Second, u can be approximated perfectly with a sparse grid function gI of level
1 with a piecewise quadratic basis. This means that the numerical error in the
surrogate model vanishes. The only two errors remaining are the approximation
error estimating the density Of and the quadrature error in moment estimation if we
use Monte Carlo. The second one can be minimized by increasing the sample size;
the first one, however, is limited to the amount of information there is about f , which
is encoded in the data D we use for density estimation. Due to the randomness in
the data we measure the error in the expectation value and the variance according
to Eqs. (21) and (22). We compare these two errors for (1) vanilla Monte Carlo
(k D 200 realizations of f ), omitting the density estimation step, (2) a kernel-density
estimator using the libagf library [18] (k D 20 realizations), (3) density trees (dtrees)
[30] (k D 50 realizations) and (4) SGDE using the SG++ library [27] (k D 20

realizations). For the SGDE approach we used regular sparse grids with different
levels, estimated the density according to [26] and chose the best approximation
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Table 1 KL-divergence (KL) and cross entropy (L) for different density estimation methods and
sizes for the training data sets D. The test data set T to compute the measure had size mD 104

libagf dtrees SGDE

# samples KL L KL L KL L

50 0.2655 �0.7046 2.829 1:85 0.2157 �0.7491

75 0.2387 �0.7314 1.837 0:858 0.1838 �0.781

100 0.213 �0.7571 1.424 0:446 0.1533 �0.8115

500 0.1081 �0.8655 0.4294 �0:5488 0.1157 �0.849

1000 0.07851 �0.8951 0.2744 �0:7027 0.06948 �0.8953

5000 0.03964 �0.9356 0.1185 �0:8598 0.02778 �0.937

10,000 0.03001 �0.9352 0.09217 �0:8847 0.02014 �0.9446

with respect to the minimal cross entropy L for a test set T of size m D 104.

LT . Of / D � 1

m

X

�.k/2T
log2. Of .�.k/// : (28)

The test set T is generated analogous to D with a different seed. This measure is
known to minimize the Kullback-Leibler-divergence (KL) and is therefore a suitable
criterion [32].

Table 1 shows the KL-divergence and the cross entropy for the different density
estimation methods and different sizes of training sets. We can see three main
aspects: First, as expected, the cross entropy minimizes the KL-divergence. Second,
the cross entropy decreases monotonically with the sample size for all density
estimation methods. This means that the density estimation methods are able to
capture the increasing information they get from the larger sample sets. Third,
while SGDE and libagf have very similar results for all number of samples, the
density trees have a poor performance especially for smaller sample sizes. The
KL-divergence of the density trees is 10 times larger for 50–100 training samples
than the ones of SGDE and libagf. This is a significant drawback for applications
where the real costs lie in obtaining the samples. Think of boreholes that need
to be drilled into the ground to obtain information about the physical domain of
subsurface flow problems. If we look at the convergence of the expected error in the
expectation value, see Fig. 4 (left), SGDE performs almost one order of magnitude
better than libagf. Both methods converge with n�1=2, which is basically the Monte
Carlo convergence for the quadrature problem. The convergent phase for density
trees starts later at a size of 1000 samples. We see basically the same picture if we
look at the variance, see Fig. 4 (right). SGDE performs best compared to the other
density estimation methods. However, it seems that the density estimation methods
can not outperform Monte Carlo. The reason is that density estimation is based on
Monte Carlo estimates for the moments of the distribution, see Eq. (9). It would pay
off if there could be gained additional information from the data by extrapolation
or regularization. There is no extrapolation in this case due to the definition of the
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Fig. 4 Decay of the average error in the expectation value (left) and the variance (right) for
Monte Carlo (MC), the sparse grid density estimation (SGDE) method, the kernel density estimator
(libagf), and the density trees (dtrees)

joint probability density function f , which is zero at the boundaries. Neither does
regularization, since there is no noise in the data and we measured the mean error
over several realizations of f and made it therefore independent of single realizations
where regularization could pay off. However, if the number of samples is limited, as
it is in the CO2 benchmark problem, the data-driven forward propagation approach
with density estimation will reduce the error compared to Monte Carlo.

4.2 Multivariate Stochastic Application

In this application we simulate carbon sequestration based on the CO2 benchmark
model defined by [5]. We will not introduce here the modeling of this highly non-
linear multiphase flow in a porous media problem but rather refer to [5] and focus
on the stochastic part. The basic setting however is the following: We inject CO2

through an injection well into a subterranean aquiferous reservoir. The CO2 starts
spreading according to the geological characteristics of the reservoir until it reaches
a leaky well where the CO2 rises up again to a shallower aquifer. A schematic view
on the problem is shown in Fig. 5. The CO2 leakage at the leaky well is the quantity
we are interested in. It depends on the plume development in the aquifer and the
pressure built up in the aquifer due to injection. While we can control the injection
pressure, we cannot control the geological properties of the reservoir like porosity,
permeability, etc. This is where the uncertainty comes in and for which we use data
to describe it.
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Fig. 5 Cross-section through the subterranean reservoir [22]

Fig. 6 Raw data for porosity � and permeability Ka from the U.S. National Petroleum Council
Public Database including 1270 data points. The curves show the upper and the lower bound of the
transformed and truncated sample space with respect to the variation 

4.2.1 Stochastic Formulation

The CO2 benchmark model has three stochastic parameters with respect to the
geological properties of the reservoir and the leaky well: (1) the reservoir porosity
�, (2) the reservoir permeability Ka, and (3) the leaky well permeability KL. For
the description of the reservoir, i.e. Ka and �, we use a raw data set from the U.S.
National Petroleum Council Public Database including 1270 reservoirs, shown in
Fig. 6, see also [14]. The data set is assumed to be one realization of the unknown
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Table 2 Marginal densities and ranges used in the analytic approach to describe the uncertainty
of the CO2 benchmark model. They are fitted to the decorrelated samples according to [22]

Uncertain parameter Probability density function Range �k

Porosity � f1.�/ D 1

��
p

2�
exp

�
� .ln.�/��/2

2�2

�
with

� D �27:6310; � D 0:3579

Œ0:0896; 0:2511�

Permeability Ka f2.KL/ D 1

KL�
p

2�
exp

�
� .ln.KL/��/2

2�2

�
with

� D �1:8971; � D 0:2

Œ3:88; 25:8� � 10�13

Variation  f3./D �.˛Cˇ/

�.˛/�.ˇ/
˛�1.1� /ˇ�1 with

˛ D 3; ˇ D 3

Œ0; 2�

probability density function f that defines the uncertainty of the problem. For the
leaky well permeability there is no data available, which makes it necessary to
make further assumptions. We make here the same assumptions as in Oladyshkin
et al. in [22], see permeability in Table 2. Furthermore, Oladyshkin et al. presented
in the same paper an integrative approach to quantify the stochastic outcome of
the CO2 benchmark model using analytic densities based on the data at hand, see
Table 2. They defined a sample space that is different to the parameter space of
the simulation. They substituted Ka 2 �Ka by a variation parameter  2 � and
encoded the correlation in a transformation function from the new sample space to
the parameter space, i.e.

hW�� 
� ! �Ka

�;  7! c1�
c2 Œ1C c3� ;

(29)

with parameters c1 D 4:0929 
 10�11; c2 D 3:6555; c3 D �2. In the new sample
space � WD �� 
 � 
 �KL all variables are decorrelated. Therefore we can
define analytic independent marginal densities and can propagate the resulting
uncertainty directly through the model function using polynomial chaos expansion,
for example. We refer to this approach as the analytic approach. To apply stochastic
collocation to this problem, we truncated the infinite sample space � such that in
directions of � and Ka we collect 99:99% of their mass around the corresponding
mean, see Table 2. We denote the samples that lie within this truncated space as
D WD f.Ka

.k/; �.k//g413kD1, see Fig. 7. We use D for density estimation to obtain
objective measures of the input’s uncertainty.

4.2.2 Results

In this section we want to illustrate the ability of the integrated sparse grid approach
to predict accurate expectation values and variances for the CO2 benchmark model
with the given input data set. We assume that a surrogate model using adaptive
sparse grid collocation is available and approximates the unknown model function
so well that the expectation value and the variance can be estimated accurately with
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Fig. 7 The plot shows the
transformed raw data points
h�1.�;Ka/ from Fig. 6 that
lie within the parameter
ranges given in Table 2. They
are additionaly linearly scaled
to Œ0; 1�2. The remaining
number of samples is 413
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Table 3 Mean cross entropy (L) for different density estimation methods and for 10 randomly
chosen training data sets of size 363 and test data sets of size 50

# training # test analytic (L) libagf (L) dtrees (L) SGDE (L)

363 50 0.7279 0.00278 �0.1314 �0.3042

respect to the analytic approach (N D 114, refinement according to the variance
surplus refinement, see [8] for details). We compare these results of the (1) analytic
approach with (2) SGDE, (3) kernel-densities, (4) density trees, and (5) Monte Carlo
with bootstrapping on the available data D.

The results of the density estimations with respect to the cross entropy for a test
set T with m D 50 are listed in Table 3. The analytic approach has by far the largest
cross entropy, which suggests that it doesn’t capture the underlying data as good as
the others do. The SGDE method performs best as it has the lowest cross entropy.
Note that some samples we use for training are located close to the boundary of
the domain (see Fig. 7). This affects the SGDE method since we need to consider
the boundary in the discretization of the sample space. For this problem we used
trapezoidal boundary sparse grids [27] where each inner grid point has two ancestors
in each dimension that lie on the corresponding boundary of the domain.

If we look at the results of the estimation of the expectation value, see Fig. 8
(left), and the variance, see Fig. 8 (right), we obtain surprising results. Let us assume
that the results of the Monte Carlo quadrature approach using bootstrapping on
the available data is our ground truth. By this we say indirectly that we have
large confidence in the available data. Compared to this ground truth, the analytic
approach overestimates the expectation value and underestimates the variance
significantly. We call this difference the “subjective gap”, which has been introduced
by expert knowledge. The other density estimation methods lie in between these
approaches. The density trees match the expectation value of the data almost exactly.
The SGDE method overestimates the expectation value slightly, the kernel density
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Fig. 8 Expectation value (left) and variance (right) over simulation time for the bootstrapping
method with the raw data (data), the analytic approach as in [22] (analytic), the sparse grid density
estimation (SGDE) method, the kernel density estimator (libagf), and the density trees (dtrees)

does as well. But if we look at the variance then the SGDE method gives the best
results compared to the data, while all others underestimate it.

The overestimation of the expectation value for SGDE with respect to the data
can be explained by extrapolation: We used a sparse grid with trapezoidal boundary
for SGDE because some samples are located close to the boundary of the domain.
Furthermore, we impose smoothness on the unknown density. These two facts let the
SGDE method extrapolate towards the boundary resulting in a larger density than
there is in the data. This is not even wrong since the boundaries of our transformed
and truncated domain� are located in the middle of the parametric domain in which
the raw data lies, see Fig. 6 (left). This leads then to the higher expectation values
we see in Fig. 8 (left). In fact, if we use a sparse grid without boundary points for
density estimation we match the expectation value of the data as well as the density
trees do. However, the cross entropy for this sparse grid density is larger compared
to the others (L D 0:2632) indicating a worse estimation. And indeed, with this
estimation we overestimate now the variance significantly.

Due to these arguments, we question the ground truth, which in this application
was based on a very limited data set. Of course, this makes the comparison of
different methods difficult. But, since the balancing between fidelity in the data and
smoothness of the density function is defined clearly for the SGDE approach, we
consider it a reliable and robust approach in the context of UQ.
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5 Conclusions

In this paper we presented a new integrated sparse grid approach for data-driven
uncertainty quantification forward problems. It has two main advantages over
common approaches for such problems: First, it is an unsupervised approach that
relies on the data at hand. It is not influenced by expert knowledge. Second, the
integrated sparse grid approach allows a seamless interaction with the stochastic
collocation method with respect to adaptive refinement and quadrature.

Furthermore, the numerical experiments showed that the SGDE method gives
good approximations of the unknown probability density function already for
small sample sets. It did better than the very popular kernel density. Even newer
approaches such as density trees showed worse results compared to SGDE.

However, the SGDE method has drawbacks when it comes to statistical applica-
tions for which we need to assure unit integrand and positivity. We presented one
way to overcome these problems by suitable discretization and using appropriate
regularization. This approach however is limited in terms of the problem’s dimen-
sionality since it implies a local full grid search. There is ongoing work in this field,
see [10], to overcome these problems.

In this paper we focused on small sample sets. When it comes to large data
sets one can speed up this process significantly using fast algorithms such as
SGDE. For example, when one uses Markov chain Monte Carlo to obtain a discrete
posterior density in an inverse UQ setting. Such densities are often correlated and
pose problems to established forward propagation methods such as the generalized
polynomial chaos expansion. The Rosenblatt transformation [31] and the inverse
Rosenblatt transformation can play an important role in this context. They can be
computed very efficiently without additional numeric errors using sparse grids.
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financial support of the project within the Cluster of Excellence in Simulation Technology at the
University of Stuttgart.
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Combination Technique Based Second Moment
Analysis for Elliptic PDEs on Random Domains

Helmut Harbrecht and Michael Peters

Abstract In this article, we propose the sparse grid combination technique for
the second moment analysis of elliptic partial differential equations on random
domains. By employing shape sensitivity analysis, we linearize the influence of
the random domain perturbation on the solution. We derive deterministic partial
differential equations to approximate the random solution’s mean and its covariance
with leading order in the amplitude of the random domain perturbation. The partial
differential equation for the covariance is a tensor product Dirichlet problem which
can efficiently be determined by Galerkin’s method in the sparse tensor product
space. We show that this Galerkin approximation coincides with the solution
derived from the combination technique if the detail spaces in the related multiscale
hierarchy are constructed with respect to Galerkin projections. This means that the
combination technique does not impose an additional error in our construction.
Numerical experiments quantify and qualify the proposed method.

1 Introduction

Various problems in science and engineering can be formulated as boundary
value problems for an unknown function. In general, the numerical simulation is
well understood provided that the input parameters are known exactly. In many
applications, however, the input parameters are not known exactly. Especially, the
treatment of uncertainties in the computational domain has become of growing
interest, see e.g. [5, 21, 38, 41]. In this article, we consider the elliptic diffusion
equation

� div
�
˛ru.!/

� D f in D.!/; u.!/ D 0 on @D.!/ (1)

as a model problem, where the underlying domain D.!/ � R
d or respectively its

boundary @D.!/ are random. For example, one might think of tolerances in the
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shape of products fabricated by line production or shapes which stem from inverse
problems, like for example from tomography. Of course, besides a scalar diffusion
coefficient ˛.x/, one can also consider a diffusion matrix A.x/, cf. [18]. Even so,
the emphasis of our considerations will be laid on the case ˛.x/ � 1, that is the
Poisson equation.

Except for the fictitious domain approach considered in [5], one might essentially
distinguish two approaches: the domain mapping method, cf. [6, 23, 27, 38, 41],
and the perturbation method. They result from a description of the random domain
either in Lagrangian coordinates or in Eulerian coordinates, see e.g. [37]. The latter
approach will be dealt with in this article.

The perturbation method starts with a prescribed perturbation field

V.!/W Dref ! R
d

for a fixed reference domain Dref and uses a shape Taylor expansion with respect to
this perturbation field to represent the solution to the model problem, see e.g. [19,
21]. In fact, as we will see later on, it is sufficient to know the perturbation field in a
vicinity of @Dref, i.e.

V.!/W @Dref ! R
d:

This is a remarkable feature since it might in practice be much easier to obtain
measurements from the outside of a work-piece to estimate the perturbation field
V.!/ rather than from its interior.

The starting point for our considerations will be the knowledge of an appropriate
description of the the random field V.!/. To that end, we assume that the random
vector field is described in terms of its mean

EŒV�W Dref ! R
d; EŒV�.x/ D 	

EŒV1�.x/; : : : ;EŒVd�.x/

|

and its (matrix valued) covariance function

CovŒV�W Dref 
Dref ! R
d�d; CovŒV�.x; y/ D

2

64
Cov1;1.x; y/ � � � Cov1;d.x; y/

:::
:::

Covd;1.x; y/ � � � Covd;d.x; y/

3

75:

For the perturbation method, this representation of the random vector field is already
sufficient. Having the mean and the covariance of the random vector field at hand,
we aim at approximating the corresponding statistics of the unknown random
solution.

Making use of sensitivity analysis, we linearize the solution’s nonlinear depen-
dence on the random vector field V.!/. Based on this, we derive deterministic
equations, which compute, to leading order, the mean field and the covariance. In
particular, the covariance solves a tensor product boundary value problem on the
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product domain Dref 
 Dref. This linearization technique has already been applied
to random diffusion coefficients or even to elliptic equations on random domains in
[18, 20, 21]. In difference to these previous works, we do not explicitly use wavelets
[21, 33, 34] or multilevel frames [18, 20] for the discretization in a sparse tensor
product space. Instead, we define the complement spaces which enter the sparse
tensor product construction by Galerkin projections. The Galerkin discretization
leads then to a system of linear equations which decouples into subproblems with
respect to full tensor product spaces of small size. These subproblems can be solved
by standard multilevel finite element methods. In our particular realization, we need
only the access to the stiffness matrix, the BPX preconditioner, cf. [3], and the
sparse grid interpolant, cf. [4], of the covariance function of the random vector field
under consideration. In this sense, our approach can be considered to be weakly
intrusive. The resulting representation of the covariance is known as the combination
technique [14]. Nevertheless, in difference to [14, 28, 32, 42], this representation is
a consequence of the Galerkin method in the sparse tensor product space and is not
an additional approximation step.

The rest of this article is structured as follows. In Sect. 2, we introduce the
underlying framework. Here, we define random vector fields and the related
Lebesgue-Bochner spaces. Moreover, we briefly refer to the Karhunen-Loève
expansion of random vector fields. Section 3 is devoted to shape sensitivity
analysis. Especially, the shape Taylor expansion is introduced here. In Sect. 4, we
apply the shape Taylor expansion to our model problem and derive deterministic
equations for the mean and the covariance. Section 5 deals with the approximation
of tensor product Dirichlet problems. In Sect. 6, we present in detail the sparse
grid combination technique for the solution of tensor product Dirichlet problems.
The efficient implementation of the proposed method is non-trivial. Therefore, we
believe it is justified to dedicate Sect. 7 to this topic. Finally, in Sect. 8 we present
our numerical results.

Throughout this article, in order to avoid the repeated use of generic but
unspecified constants, by C . D we mean that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously, C & D
is defined as D . C, and C Å D as C . D and C & D.

2 Preliminaries

The natural environment for the consideration of random vector fields are the so
called Lebesgue-Bochner spaces. These spaces quantify the integrability of Banach
space valued functions and have originally been introduced in [1]. In this section, we
shall provide some facts and results on Lebesgue-Bochner spaces. For more details
on this topic, we refer to [24].

Let .�;F ;P/ denote a complete and separable probability space with �-algebra
F and probability measure P. Here, complete means that F contains all P-null sets.
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The separability is e.g. obtained if F is countably generated, cf. [16, Theorem 40.B].
Furthermore, let Dref � R

d denote a sufficiently smooth domain.

Definition 1 For p � 0, the Lebesgue-Bochner space Lp
P

�
�I L2.DrefIRd/

�
consists

of all equivalence classes of strongly P-measurable maps uW� ! L2.DrefIRd/ with
finite norm

kukL
p
P
.�IL2.DrefIRd// WD

8
ˆ̂<

ˆ̂:

�Z

�

ku.!; �/kp
L2.DrefIRd/

dP

�1=p

; p < 1

ess sup
!2�

ku.!; �/kL2.DrefIRd/; p D 1:

(2)

Two functions u; vW� ! L2.DrefIRd/ are identified if they coincide P-almost
everywhere, i.e. if P.fu ¤ vg/ D 0. Moreover, the space L2.DrefIRd/ is equipped
with the inner product

.u; v/L2.DrefIRd/ WD
Z

Dref

hu; vi dx for all u; v 2 L2.DrefIRd/;

where h�; �i denotes the canonical inner product in R
d.

In the definition, the term strongly P-measurable refers to functions which are
measurable in the classical sense and in addition essentially separable valued. The
second condition is automatically met for functions uW� ! L2.DrefIRd/ which are
measurable in the classical sense.

The spaces Lp
P

�
�I L2.DrefIRd/

�
are complete for all p 2 Œ1;1� with respect to

the norm defined in (2) and thus Banach spaces, see e.g. [24] for a proof of this
statement. For p D 1, the space L1

P

�
�I L2.DrefIRd/

�
coincides with the space of

Bochner integrable functions, cf. [9, Theorem 2.4]. It is moreover well known that
L2
P
.�/ is separable if .�;F ;P/ is separable, cf. [16, Exercise 43.(1)]. Hence, for

p D 2, the Bochner space L2
P

�
�I L2.DrefIRd/

�
is a separable Hilbert space equipped

with the inner product

.u; v/L2
P
.�IL2.DrefIRd// WD

Z

�

�
u.!; �/; v.!; �/�

L2.DrefIRd/
dP:

In particular, it holds L2
P

�
�I L2.DrefIRd/

� Š L2
P
.�/˝ L2.DrefIRd/.

We summarize some important facts about the Bochner integral from [24].

Theorem 1

(a) The Bochner integral

Z

�

� dPW L1P
�
�I L2.DrefIRd/

� ! L2.DrefIRd/

is a linear map.
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(b) For u 2 L1
P

�
�I L2.DrefIRd/

�
it holds

����
Z

A
u.!; �/ dP

����
L2.DrefIRd/

�
Z

A
ku.!; �/kL2.DrefIRd/ dP

for all A 2 F .
(c) Let fungn be a sequence of Bochner integrable functions with limn!1 un D u

in P-measure and g a Lebesgue integrable function on � such that
kunkL2.DrefIRd/ � g P-almost everywhere. Then, u is Bochner integrable and

lim
n!1

Z

A
un dP D

Z

A
u dP

for all A 2 F . Moreover, it holds

lim
n!1

Z

�

kun � ukL2.DrefIRd/ dP D 0:

(d) Let TW U ! B be a closed linear operator for some Banach space B and
U � L2.DrefIRd/. If u and Tu are Bochner integrable, then

T

�Z

A
u dP

�
D
Z

A
Tu dP

for all A 2 F .

Let the random vector field V 2 L2
P

�
�I L2.DrefIRd/

�
be represented according to

V.!; x/ D ŒV1.!; x/; : : : ;Vd.!; x/�|:

Then, we can define the mean of V in terms of the Bochner integral

EŒV�.x/ WD
Z

�

V.!; x/ dP 2 L2.DrefIRd/:

Especially, it holds EŒVi�.x/ D R
� Vi.!; x/ dP:With respect to the centered random

field

V0 D V � EŒV�;

we introduce the (matrix valued) covariance function of V according to

CovŒV�.x; y/ D ŒCovi;j.x; y/�di;jD1
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with

Covi;j.x; y/ D E
	
V0;i.!; x/V0;j.!; y/�: (3)

The boundedness of Covi;j.x; y/ in L2.Dref 
Dref/ follows from the Cauchy-Schwarz
inequality and the application of Fubini’s theorem. Since Covi;j.x; y/ 2 L2.Dref 

Dref/ holds, we conclude CovŒV�.x; y/ 2 L2.Dref 
 DrefIRd�d/.

In order to make the random vector field V.!; x/ 2 L2
P

�
�I L2.DrefIRd/

�

feasible for numerical computations, e.g. for a (quasi-) Monte Carlo method, we
shall introduce its Karhunen-Loève expansion, cf. [26]. Since we may identify
L2
P

�
�I L2.DrefIRd/

� Š L2
P
.�/˝ L2.DrefIRd/, one can show that V0.!; x/ exhibits

the orthogonal decomposition

V0 D
X

i2I
�iXi ˝ 'i;

where f'igi2I � L2.DrefIRd/ and fXigi2I � L2
P
.�/ are orthonormal families. With

respect to the canonical map

L2P.�/˝ L2.DrefIRd/ ! L2P
�
�I L2.DrefIRd/

�
; X ˝ ' 7! X.!/'.x/;

we end up with the following

Definition 2 Let V.!; x/ be a vector field in L2
P

�
�I L2.DrefIRd/

�
. The expansion

V.!; x/ D EŒV�.x/C
X

i2I
�iXi.!/'i.x/

with .Xi;Xj/L2
P
.�/ D ıi;j and EŒXi� D 0 is called Karhunen-Loève expansion of

V.!; x/.

Remark 1 The knowledge of the random vector field V.!; x/ is sufficient to
compute the related Karhunen-Loève expansion. In practice, however, the random
field is often only given in terms of its (empirical) mean EŒV� and its (empirical)
covariance function CovŒV�. In this case, the orthogonal basis in L2

P
.�/ is only

determined up to isometry. Therefore, for the use of e.g. a (quasi-) Monte Carlo
method, the law of the random variables fXigi2I has to be approximated appropri-
ately, for example by a maximum likelihood estimate, cf. [35]. This is in contrast
to the discretization in the perturbation method, where we do not need to know the
random variables’ distribution at all.

Without loss of generality, we may assume that EŒV�.x/ D x is the identity
mapping. Otherwise, we replace Dref and 'k by

QDref WD EŒV�.Dref/ and Q'k WD
p

det.EŒV��1/0'k ı EŒV��1:
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3 Shape Sensitivity Analysis

In this section, we summarize results on shape sensitivity analysis for the Poisson
equation

��u D f in Dref; u D 0 on �ref WD @Dref: (4)

For a more general framework and the details on this topic, we refer the reader to
[8, 12, 37] and the references therein.

Assume that Dref is of class C2. This smoothness assumption guarantees the H2-
regularity of problems (4) and (5), cf. [37, Proposition 2.83]. Moreover, let V 2
C2.RdIRd/ be a vector field. We may define the family of transformations fT"g">0
by the perturbations of identity

T".x/ D Id.x/C "V.x/:

Then, there exists an "0 > 0 such that the transformations T" are C2-
diffeomorphisms for all " 2 Œ0; "0�, cf. [36, Section 1.1]. The related family of
domains will be denoted by D" WD T".Dref/. We shall consider the Poisson equation
on these domains, i.e.

��u" D f in D"; u" D 0 on �" WD @D": (5)

Here, in order to guarantee the well-posedness of the equation, we assume that the
right hand side is defined on the hold-all

D D
[

0�"�"0
D":

Now, we have for the weak solution u" 2 Hs.D"/ with s 2 Œ0; 2� that

u" D u" ı T" 2 Hs.Dref/

for all " 2 Œ0; "0�, see e.g. [37]. Especially, we set u WD u 2 Hs.Dref/. Then, we may
define the material derivative of u as in [37, Definition 2.71].

Definition 3 The function PuŒV� 2 Hs.Dref/ is called the strong (weak) material
derivative of u 2 Hs.Dref/ in the direction V if the strong (weak) limit

PuŒV� D lim
"!0

1

"
.u" � u/

exists.

The shape sensitivity analysis considered in this section is based on the notion
of the local shape derivative. To this end, we consider for u 2 Hs.Dref/ and u" 2
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Hs.D"/ the expression

1

"

�
u".x/� u.x/

�
:

Obviously, this expression is only meaningful if x 2 D" \ Dref. Nevertheless,
according to [12, Remark 2.2.12], there exists an ".x;V/ due to the regularity of
T" such that x 2 D" \ Dref for all 0 � " � ".x;V/. Moreover, in order to define a
meaningful functional analytic framework for the limit " ! 0, one has to consider
compact subsets K b Dref, cf. [36]. Hence, we have from [12, Definition 2.2.13] the
following

Definition 4 For K b Dref, the function ıuŒV� 2 Hs.K/ is called the strong (weak)
local Hs.K/ shape derivative of u in direction V, if the strong (weak) Hs.K/ limit

ıuŒV� D lim
"!0

1

"
.u" � u/

exists. It holds ıu 2 Hs
loc.Dref/ strongly (weakly) if the limit exists for arbitrary

K b Dref.

Notice that the definition of ıuŒV� has no meaning on �ref in general, cf. [12,
Remark 2.2.14]. Nevertheless, since boundary values for PuŒV� are obtained via the
trace operator, cf. [37, Proposition 2.75], we may define the boundary values for
ıuŒV� by employing the relation

PuŒV� D ıuŒV�C hru;Vi;

cf. [37, Definition 2.85]. Therefore, if f 2 H1.D/, the local shape derivative for the
Poisson equation (5) satisfies the boundary value problem

�ıu D 0 in Dref; ıu D �hV;ni @u

@n
on �ref; (6)

cf. [37, Proposition 3.1]. Here, n.x/ denotes the outward normal at the boundary
�ref.

The representation (6) of ıuŒV� indicates that it is already sufficient to con-
sider vector fields V which are compactly supported in a neighbourhood of �ref,
i.e. V

ˇ̌
K

� 0 for all K b Dref, cf. [12, Remark 2.1.6]. More precisely, it holds for

two perturbation fields V and QV that

ıuŒV� D ıuŒ QV� if V
ˇ̌
�ref

D QVˇ̌
�ref
;

cf. [37, Proposition 2.90]. For example, it is quite common to consider (normal)
perturbations of the boundary, see e.g. [12, 25, 29, 30].
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Having the local shape derivative of the solution u to (4) at hand, we can linearize
the perturbed solution u" to (5) in a neighbourhood of Dref in terms of a shape Taylor
expansion, cf. [10, 11, 21, 31], according to

u".x/ D u.x/C "ıu.x/C "2C.x/ for x 2 K b .Dref \ D"/; (7)

where the function jC.x/j < 1 depends on the distance dist.K; �ref/ and the load f .

4 Approximation of Mean and Covariance

We shall return now to our model problem, the Poisson equation on a random
domain:

��u.!; x/ D f .x/ in D.!/; u.!; x/ D 0 on �.!/: (8)

We assume that the random domain is described by a random vector field. This
means, we have

D.!/ WD V.!;Dref/:

With respect to the discussion in the end of Sect. 2, it is reasonable to assume that V
is a perturbation of identity. More precisely, we assume that it holds

V.!; x/ D Id.x/C V0.!; x/

for a vector field V0.!/ 2 C2.DrefIRd/ for almost every ! 2 � with EŒV0� D 0.
We shall further assume the uniformity condition kV0.!/kC2.DrefIRd/ � c for some
c < 1 and for almost every ! 2 �. Then, in view of (7), the first-order shape
Taylor expansion for the solution u.!/ to (8) with respect to the transformation

T".!; x/ D Id.x/C "V0.!; x/; (9)

is given by

u.!; x/ D u.x/C "ıu.x/ŒV0.!/�C O."2/:

In this expansion, u is the solution to

��u D f in Dref; u D 0 on �ref; (10)

while ıuŒV0.!/� is the solution to

�ıuŒV0.!/� D 0 in Dref; ıuŒV0.!/� D �hV0.!/;ni @u

@n
on �ref: (11)
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As already pointed out in the end of the preceding section, it is sufficient to know
V0.!; x/ only in a neighbourhood of the boundary �ref of Dref. This is in contrast to
the domain mapping method where one always has to know the perturbation field
for the whole domain Dref.

In order to simplify the notation, we will write ıu.!/ instead of ıuŒV0.!/� in the
sequel. Having the first-order shape Taylor expansion (9) of u.!/ at hand, we can
approximate the related moments from it.

Theorem 2 For " > 0 sufficiently small, it holds for K b .Dref \ D"/ that

EŒu� D u C O."2/ in K (12)

with u 2 H1
0.Dref/. The covariance of u satisfies

CovŒu� D "2 CovŒıu�C O."3/ in K 
 K (13)

with the covariance CovŒıu� 2 H1.Dref/˝ H1.Dref/. The covariance is given as the
solution to the following boundary value problem

.�˝�/CovŒıu� D 0 in Dref 
 Dref;

.�˝ � int
0 /CovŒıu� D 0 in Dref 
 �ref;

.� int
0 ˝�/CovŒıu� D 0 in �ref 
 Dref;

.� int
0 ˝ � int

0 /CovŒıu� D hn.x/;CovŒV�n.y/i
�
@u

@n
˝ @u

@n

�
on �ref 
 �ref:

(14)

Here, � int
0 W H1.Dref/ ! H1=2.�ref/ denotes the interior trace operator.

Proof The equation for the mean is easily obtained by exploiting the linearity of the
mean. It remains to show that

EŒıu� D 0:

By Theorem 1, we know that we may interchange the Bochner integral with the
Laplace operator. Thus, from (11), we obtain the following boundary value problem
for EŒıu�:

�EŒıu� D 0 in Dref; EŒıu� D �E

�
hV0;ni @u

@n

�
on �ref:

By the linearity of the Bochner integral, the boundary condition can be written as

�E

�
hV0;ni @u

@n

�
D �hEŒV0�;ni @u

@n
D 0
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since EŒV0� D 0. Thus, EŒıu� solves the Laplace equation with homogeneous
boundary condition. From this, we infer EŒıu� D 0.

For the covariance CovŒu�, we obtain

CovŒu� D E
	
.u � EŒu�/˝ .u � EŒu�/




D E

h�
u C "ıu.!/C O."2/ � EŒu�

�˝ �
u C "ıu.!/C O."2/ � EŒu�

�i
:

Since we can estimate EŒu� � u D O."2/ in K due to (12), we arrive at

CovŒu� D E

h�
"ıu.!/C O."2/

�˝ �
"ıu.!/C O."2/

�i

D "2EŒıu.!/˝ ıu.!/�C O."3/:

In view of CovŒıu� D EŒıu.!/˝ıu.!/�, we conclude (13). Finally, by tensorization
of (11) and application of the mean together with Theorem 1, one infers that
CovŒıu� 2 H1.Dref/˝ H1.Dref/ is given by (14). ut
Remark 2 The technique which we used to derive the approximation error for the
covariance of u can straightforwardly be applied to obtain a similar result for the
k-th moment, i.e.

E
	
.u � EŒu�/˝ : : :˝ .u � EŒu�/„ ƒ‚ …

k-times



:

In this case, we end up with the expression

E
	�
"ıu C O."2/

�˝ : : :˝ �
"ıu C O."2/

�
 D "k
EŒıu ˝ : : :˝ ıu�C O."kC1/;

where the constant depends exponentially on k, see also [7].

5 Discretization of Tensor Product Dirichlet Problems

In the previous section, we have seen that we end up solving the tensor product
Dirichlet problem (14) in order to approximate the covariance of the model
problem’s solution. The treatment of the non-homogenous tensor product Dirichlet
boundary condition is non-trivial. Therefore, we shall consider here the discretiza-
tion by finite elements in detail.

We start with the discretization of univariate Dirichlet problems and then
generalize the approach towards the tensor product case. We thus aim at solving
the Dirichlet boundary value problem

�u D 0 in Dref; u D g on �ref: (15)
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By the inverse trace theorem, see e.g. [40], there exists an extension of ug 2 H1.Dref/

with � int
0 ug D g provided that g 2 H1=2.�ref/. Therefore, it remains to determine the

function u0 D u � ug 2 H1
0.Dref/ such that there holds

aD.u0; v/ D �aD.ug; v/ for all v 2 H1
0.Dref/: (16)

Here and in the sequel, the H1
0.Dref/-elliptic bilinear form related to the Laplace

operator is given by

aD.u; v/ WD .ru;rv/L2.Dref/ for u; v 2 H1.Dref/:

The question arises how to numerically determine a suitable extension ug of
the Dirichlet data. We follow here the approach from [2], see also [13], where the
extension is generated by means of an L2-projection of the given boundary data. To
that end, we introduce the nested sequence of finite element spaces

V0 � V1 � � � � � VJ � H1.Dref/:

Herein, given a uniform triangulation for Dref, the space Vj corresponds to the space
of continuous piecewise linear functions with the basis f'j;k 2 Vj W k 2 Ijg.
Of course, by performing obvious modifications, one can employ the presented
framework also for higher order ansatz functions. Notice that we have dim Vj Å 2dj.
In the following, we distinguish between basis functions f'j;k 2 Vj W k 2 ID

j g which
are supported in the interior of the reference domain, i.e. 'j;k

ˇ̌
�ref

� 0, and boundary

functions f'j;k 2 Vj W k 2 I�j g with 'j;k

ˇ̌
�ref

6� 0. Notice that Ij D ID
j [ I�j and

ID
j \ I�j D ;. The related finite element spaces are then given by

VD
j WD spanf'j;k 2Vj W k 2 ID

j g and V�
j WD span

˚
'j;k

ˇ̌
�ref

W 'j;k 2Vj; k 2 I�j

:

Moreover, we denote the L2-inner product on �ref by

a�.u; v/ WD .u; v/L2.�ref/ for u; v 2 L2.�ref/:

Then, the L2-orthogonal projection of the Dirichlet data is given by the solution to
the following variational formulation:

Find gj 2 V�
j such that

a�.gj; v/ D a�.g; v/ for all v 2 V�
j :

(17)
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We are now prepared to formulate the Galerkin discretization of (16). To that
end, we introduce the stiffness matrices

Sƒj WD 	
aD.'j;`; 'j;k/



k2ID

j ; `2Iƒj ; ƒ 2 fD; �g; (18)

and the mass matrices with respect to the boundary

Gj WD 	
a�.'j;`; 'j;k/



k2I�j ; `2I�j0

: (19)

The related data vector reads

gj D 	
a�.g; 'j;k/



k2I�j :

In order to compute an approximate solution to this boundary value problem in the
finite element space VJ � H1.Dref/ for J 2 N, we make the ansatz

uJ D
X

k2IJ

uJ;k'J;k D
X

k2ID
J

uJ;k'J;k C
X

k2I�J
uJ;k'J;k D uD

J C u�J :

At first, we determine the boundary part u�J 2 H1.D/ such that

GJu�J D gJ : (20)

Therefore, u�J
ˇ̌
�ref

is the L2-orthogonal projection of the Dirichlet data g onto the

discrete trace space V�
J . Having u�J at hand, we can compute the domain part uD

J 2
H1
0.D/ from

SD
J uD

J D �S�J u�J : (21)

We use the conjugate gradient method to iteratively solve the systems of linear
equations (20) and (21). Using a nested iteration, combined with the BPX-
preconditioner, cf. [3], in case of (21), results in a linear over-all complexity,
see [15]. Moreover, from [2, Theorem 1], we obtain the following convergence
result.

Theorem 3 Let g 2 Ht.�ref/ for 0 � t � 3=2. Then, if gJ 2 V�
J is given by (17),

the Galerkin solution uJ to (15) satisfies

ku � uJkL2.Dref/ . 2�J.tC1=2/kgkHt.�ref/:
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Next, we deal with the tensor product boundary value problem (14) and discretize
it in VJ ˝ VJ. We make the ansatz

CovŒıu�J D
X

k2IJ

X

k02IJ

uJ;k;k0.'J;k ˝ 'J;k0/

D CovŒıu�D;DJ C CovŒıu�D;�J C CovŒıu��;DJ C CovŒıu��;�J

(22)

with

CovŒıu�ƒ;ƒ
0

J D
X

k2IƒJ

X

k02Iƒ0

J

uJ;k;k0.'J;k ˝ 'J;k0/ forƒ;ƒ0 2 fD; �g:

In complete analogy to the non-tensor product case, we obtain the solution
scheme:

1. Solve .GJ ˝ GJ/u
�;�
J D gJ.

2. Solve .GJ ˝SD
J /u

�;D
J D �.GJ ˝S�J /u

�;�
J and .SD

J ˝GJ/u
D;�
J D �.S�J ˝GJ/u

�;�
J .

3. Solve .SD
J ˝ SD

J /u
D;D
J D �.S�J ˝ S�J /u

�;�
J � .S�J ˝ SD

J /u
�;D
J � .SD

J ˝ S�J /u
D;�
J .

Herein, we set uƒ;ƒ
0

J D ŒuJ;k;k0 �k2IƒJ ;k02Iƒ0

J
for ƒ;ƒ0 2 fD; �g and

gJ D
"�

hn.x/;CovŒV�n.y/i
�
@u

@n
˝ @u

@n

�
; 'J;k ˝ 'J;k0

�

L2.�ref��ref/

#

k;k02I�J
:

The different tensor products of mass matrices and stiffness matrices in this
formulation arise from the related tensor products of the bilinear forms aD.�; �/ and
a�.�; �/. Namely, these are

a�;� .u; v/ WD �
u; v

�
L2.�ref��ref/

for u; v 2 L2.�ref/˝ L2.�ref/;

a�;D.u; v/ WD �
.Id ˝ r/u; .Id ˝ r/v�

L2.�ref�Dref/
for u; v 2 L2.�ref/˝ H1.Dref/;

aD;�.u; v/ WD �
.r ˝ Id/u; .r ˝ Id/v

�
L2.Dref��ref/

for u; v 2 H1.Dref/˝ L2.�ref/;

aD;D.u; v/ WD �
.r ˝ r/u; .r ˝ r/v�L2.Dref�Dref/

for u; v 2 H1.Dref/˝ H1.Dref/:

For the approximation error of the Galerkin solution in VJ ˝ VJ, there holds a
result similar to Theorem 3, where we set here and in the sequel

Ht
mix.Dref 
 Dref/ WD Ht.Dref/˝ Ht.Dref/;

Ht
mix.�ref 
 �ref/ WD Ht.�ref/˝ Ht.�ref/:

Theorem 4 Let g 2 Ht
mix.�ref 
 �ref/ for 0 � t � 3=2. Then, if gJ 2 V�

J ˝ V�
J is

the L2-orthogonal projection of the Dirichlet data, the Galerkin solution uJ to the



Combination Technique Based Second Moment Analysis 65

tensor product Dirichlet problem satisfies

ku � uJkL2.Dref�Dref/ . 2�J.tC1=2/kgkHt
mix.�ref��ref/:

Proof By a tensor product argument, the proof of this theorem is obtained by
summing up the uni-directional error estimates provided by Theorem 3. ut

Unfortunately, the computational complexity of this approximation is of order
.dim VJ/

2, which may become prohibitive for increasing level J. A possibility to
overcome this obstruction is given by the discretization in sparse tensor product
spaces. In the following, we shall focus on this approach.

6 Sparse Second Moment Analysis

According to Sect. 4, to leading order, the mean of the solution of the random
boundary value problem (8) satisfies the deterministic equation (10). This equation
can be discretized straightforwardly by means of finite elements. The resulting
system of linear equations may then be solved in optimal complexity, e.g. by a
multigrid solver. The solution of the tensor product structured problem (14) is a
little more involved and requires another approach in order to maintain the overall
complexity.

Instead of discretizing the tensor product boundary value problem (14) in the
space VJ ˝ VJ , we consider here the discretization in the sparse tensor product
space

2VJ ˝ VJ WD
X

jCj0�J

Vj ˝ Vj0 D
X

jCj0DJ

Vj ˝ Vj0 � H1
mix.Dref 
 Dref/: (23)

For the dimension of the sparse tensor product space, we have

dim 2VJ ˝ VJ Å dim VJ log.dim VJ/

instead of .dim VJ/
2, which is the dimension of VJ ˝VJ, cf. [4]. Thus, the dimension

of the sparse tensor product space is substantially smaller than that of the full tensor
product space.

The following lemma, proven in [34, 39], tells us that the approximation power in
the sparse tensor product space is nearly as good as in the full tensor product space,
provided that the given function has some extra regularity in terms of bounded
mixed derivatives.
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Lemma 1 For 0 � t < 3=2, t � q � 2 there holds the error estimate

inf
OvJ21VJ˝VJ

kv � OvJkHt
mix.Dref�Dref/ .

(
2J.t�q/

p
JkvkH

q
mix.Dref�Dref/

; if q D 2;

2J.t�q/kvkH
q
mix.Dref�Dref/

; otherwise;

provided that v 2 Hq
mix.Dref 
 Dref/.

This lemma gives rise to an estimate for the Galerkin approximation 2CovŒıu�J
of (14) in the sparse tensor product space 2VJ ˝ VJ , see e.g. [18, Proposition 5].

Corollary 1 The Galerkin approximate 2CovŒıu�J 2 2VJ ˝ VJ to (14) satisfies the
error estimate

��CovŒıu� � 2CovŒıu�J
��

L2.Dref�Dref/
. 2�2JJk CovŒıu�kH2

mix.Dref�Dref/

provided that the given data are sufficiently smooth.

The Galerkin discretization of (14) in the sparse tensor product space is now
rather similar to the approach in [18], where sparse multilevel frames, cf. [20], have
been employed for the discretization. We can considerably improve this approach
by combining it with the idea from [22]: Instead of dealing with all combinations
which occur in the discretization by a sparse frame for each of the four subproblems
on �ref 
 �ref, on Dref 
 �ref, on �ref 
 Dref and in Dref 
 Dref, we shall employ the
combination technique, cf. [14]. Then, we have only to compute combinations of
the solution on two consecutive levels instead of all combinations.

The analogue to the ansatz (22) for the Galerkin approximation in the sparse
tensor product space reads

2CovŒıu�J D
X

jCj0�J

X

k2Ij

X

k02Ij0

Ouj;j0;k;k0.'j;k ˝ 'j0;k0/

D 2CovŒıu�D;DJ C 2CovŒıu�D;�J C 2CovŒıu��;DJ C 2CovŒıu��;�J

(24)

with

2CovŒıu�ƒ;ƒ
0

J D
X

jCj0�J

X

k2IƒJ

X

k02Iƒ0

J

Ouj;j0;k;k0.'j;k ˝ 'j0;k0/ 2 4Vƒ
J ˝ Vƒ0

J (25)

for ƒ;ƒ0 2 fD; �g. The basic idea of our approach is to define detail spaces
with respect to Galerkin projections in order to remove the redundancy in the
sparse frame ansatz for the subproblems (25). We need thus the Galerkin projection
PjW H1

0.Dref/ ! VD
j , w 7! Pjw defined via

�r.w � Pjw/;rvj
�

L2.Dref/
D 0 for all vj 2 VD

j
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and the L2-orthogonal projection QjW L2.�ref/ ! V�
j , w 7! Qjw, defined via

�
.w � Qjw/; vj

�
L2.�ref/

D 0 for all vj 2 V�
j :

Furthermore, we introduce the related detail projections

‚D
j WD Pj � Pj�1; where P�1 WD 0;

and

‚�
j WD Qj � Qj�1; where Q�1 WD 0:

With the detail projections at hand, we define the detail spaces

WD
j WD ‚D

j H1
0.Dref/ D .Pj � Pj�1/H1

0.Dref/ � VD
j

and

W�
j WD ‚�

j L2.�/ D .Qj � Qj�1/L2.�/ � V�
j :

Obviously, it holds Vƒ
j D Vƒ

j�1 ˚ Wƒ
j for ƒ 2 fD; �g. This gives rise to the

decompositions

Vƒ
J D Wƒ

0 ˚ Wƒ
1 ˚ : : :˚ Wƒ

J for ƒ 2 fD; �g:

Especially, these decompositions are orthogonal with respect to their defining inner
products.

Lemma 2 It holds

.rwj;rwj0/L2.Dref/ D 0 for wj 2 WD
j ; wj0 2 WD

j0 and j0 ¤ j

as well as

.wj;wj0/L2.Dref/ D 0 for wj 2 W�
j ; wj0 2 W�

j0 and j ¤ j0:

Proof We show the assertion for the spaces WD
j . The proof for the spaces W�

j is
analogous. Without loss of generality, let j > j0. Otherwise, due to the symmetry of
the inner products, we may interchange the roles of j and j0. Let wj D ‚jv 2 W�

j for
some v 2 H1

0.Dref/ and wj0 2 W�
j0 � V�

j0 . Then, since j � 1 � j0, we have that

.rPjv;rwj0 /L2.Dref/ D .rv;rwj0/L2.Dref/
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and

.rPj�1v;rwj0/L2.Dref/ D .rv;rwj0 /L2.Dref/:

Thus, we obtain

.rwj;rwj0/L2.Dref/ D .rPjv;rwj0 /L2.Dref/ � .rPj�1v;rwj0/L2.Dref/

D .rv;rwj0 /L2.Dref/ � .rv;rwj0 /L2.Dref/ D 0:

ut
Now, we shall rewrite the sparse tensor product spaces given by (23) according

to

4Vƒ
J ˝ Vƒ0

J D
X

jCj0DJ

Vƒ
j ˝ Vƒ0

j0 D
X

jCj0DJ

� jM

iD0
Wƒ

i

�
˝ Vƒ0

j0 D
JM

jD0
Wƒ

j ˝ Vƒ0

J�j:

Thus, fixing a basis  j;k 2 Wƒ
j for ƒ 2 fD; �g, we have for the subproblems (25)

the formulation

2CovŒıu�ƒ;ƒ
0

J D
JM

jD0

X

k2IƒJ

X

k02Iƒ0

J�j

Ouj;J�j;k;k0. j;k ˝ 'J�j;k0/ forƒ;ƒ0 2 fD; �g:

(26)

Taking further into account the orthogonality described by Lemma 2, we can show
that the computation of 2CovŒıu�ƒ;ƒ

0

J forƒ;ƒ0 2 fD; �g decouples into independent
subproblems.

Lemma 3 Let ƒ;ƒ0 2 fD; �g. For Ovj 2 Wƒ
j ˝ Vƒ0

J�j and Ovj0 2 Wƒ
j0 ˝ Vƒ0

J�j0 , there
holds

aƒ;ƒ
0

. Ovj; Ovj0/ D 0 if j ¤ j0:

Proof We show the proof for the case ƒ D � and ƒ0 D D. The other cases are
analogous, see also [22, Lemma 6]. Assume that

Ovj D
X

i2I
˛i. j;i ˝ 'J�j;i/ and Ovj0 D

X

i2I0

ˇi. j0 ;i ˝ 'J�j0;i/
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is a representation of Ovj 2 W�
j ˝ VD

J�j and Ovj0 2 W�
j0 ˝ VD

J�j0 , respectively, for some
finite index sets I;I0 � N. Then, we obtain

a�;D. Ovj; Ovj0/

D
�
.Id ˝ r/

X

i2I
˛i. j;i ˝ 'J�j;i/; .Id ˝ r/

X

i02I0

ˇi. j0 ;i0 ˝ 'J�j0;i0/

�

L2.�ref�Dref/

D
X

i2I

X

i02I0

˛iˇi0. j;i;  j0 ;i0/L2.�ref/.r'J�j;i;r'J�j0;i0/L2.Dref/ D 0

whenever j ¤ j0 due to Lemma 2. ut
This lemma tells us that, given 2CovŒıu��;�J , the computation of 2CovŒıu�ƒ;ƒ

0

J for
ƒ;ƒ0 2 fD; �g decouples into J C 1 subproblems. It holds

2CovŒıu�ƒ;ƒ
0

J D
JX

jD0
Ovj;

where Ovj 2 Wƒ
j ˝ Vƒ0

J�j is the solution to the following Galerkin formulation:

Find Ovj 2 Wƒ
j ˝ Vƒ0

J�j such that

aƒ;ƒ
0

. Ovj; Ow/ D rhsƒ;ƒ
0

. Ow/ for all Ow 2 Wƒ
j ˝ Vƒ0

J�j:

Herein, we set

rhsƒ;ƒ
0

. Ow/ WD

8
ˆ̂<

ˆ̂:

�aD;�
�
2CovŒıu��;�J ; Ow�; ƒDD; ƒ0D�;

�a�;D
�
2CovŒıu��;�J ; Ow�; ƒD�; ƒ0DD;

�aD;D
�
2CovŒıu�D;�J C2CovŒıu��;DJ C2CovŒıu��;�J ; Ow�; ƒDD; ƒ0DD:

(27)

By taking into account the definition of the detail spaces, we end up with the
final representation of the solution to (14) in the sparse tensor product space, which
is known as the combination technique.

Theorem 5 Given 2CovŒıu��;�J , the computation of 2CovŒıu�ƒ;ƒ
0

J for ƒ;ƒ0 2 fD; �g
decouples as follows. It holds

2CovŒıu�ƒ;ƒ
0

J D
JX

jD0
pj;J�j � pj�1;J�j; (28)
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where pj;J�j 2 Vƒ
j ˝ Vƒ0

J�j and pj�1;J�j 2 Vƒ
j�1 ˝ Vƒ0

J�j satisfy the following
subproblems which are defined relative to full tensor product spaces:

Find pj;j0 2 Vƒ
j ˝ Vƒ0

j0 such that

aƒ;ƒ
0

.pj;j0 ; qj;j0/ D rhsƒ;ƒ
0

.qj;j0/ for all qj;j0 2 Vƒ
j ˝ Vƒ0

j0 :

Here, the right hand side is given according to (27).

Proof The proof of this theorem is a consequence of the previous lemma together
with the definition of the detail spaces Wƒ

j forƒ 2 fD; �g. ut

7 Numerical Implementation

Our numerical realization heavily relies on the sparse frame discretization of the
model problem presented in [18]. Nevertheless, in contrast to this work, we make
here use of the fact that we already obtain a sparse tensor product representation of
the solution if we have the representations in the spaces Vj ˝ VJ�j and Vj�1 ˝ VJ�j.
This means that it is sufficient to compute the diagonal .j; J � j/ for j D 0; : : : ; J and
the subdiagonal .j; J � j � 1/ for j D 0; : : : ; J � 1 of a sparse frame representation.
Moreover, each block in this representation corresponds to the solution of a tensor
product subproblem as stated in Theorem 5. The corresponding right hand sides
are obtained by means of the matrix-vector product in the frame representation.
Therefore, in this context, the combination technique can be considered as an
improved solver for the approach presented in [18], which results in a remarkable
speed-up. In the sequel, we describe this approach in detail.

We start by discretizing the Dirichlet data. The proceeding is as considered in
[17]. Setting J0 WD I�0 and Jj WD I�j n I�j�1 for j > 0, the hierarchical basis in

spanf'j;k 2 Vj W k 2 I�j g is given by
SJ

jD0f'j;kgk2Jj . We replace the normal part of
the covariance by its piecewise linear sparse grid interpolant, cf. [4],

hn.x/;CovŒV�n.y/i 	
� X

jCj0�J

X

k2Jj

X

k02Jj0

�.j;k/;.j0;k0/.'j;k ˝ 'j0;k0/

�ˇ̌
ˇ̌
�ref��ref

:

Thus, the coefficient vector gj;j0 of the Dirichlet data becomes

gj;j0 D
X

`C`0�J

.Bj;` ˝ Bj0 ;`0/Œ�.`;k/;.`0;k0/�k2Jj;k02Jj0
; (29)

where the matrices Bj;j0 are given by

Bj;j0 D
�

a�
�
@u

@n
'j;k; 'j0;k0

��

k2Ij;k02Jj0

; 0 � j; j0 � J:
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The expression (29) can be evaluated in optimal complexity by applying the
matrix-vector multiplication from [43], i.e. the UNIDIRML algorithm. Nevertheless,
for the sake of an easier implementation, we employ here the matrix-vector
multiplication from [20], which is optimal up to logarithmic factors. In particular,
by using prolongations and restrictions, the matrices Bj;j0 have to be provided only
for the case j D j0. Thus, having all right hand sides at hand, we can solve next

.Gj ˝ Gj0/p
�;�
j;j0 D gj;j0

for all indices satisfying j0 D J � j or j0 D J � j � 1. With these coefficients,
we determine the right hand sides for the problems on Dref 
 �ref and �ref 
 Dref

according to

fD;�
j;j0 D �

X

`C`0�J

.S�j;` ˝ Gj0;`0/p�;�`;`0 and f�;Dj;j0 D �
X

`C`0�J

.Gj;` ˝ S�j0 ;`0/p�;�`;`0 ;

where the matrices S�j;j0 and Gj;j0 are given by

S�j;j0 D 	
aD.'j0;`; 'j;k/



k2ID

j ; `2I�j0
Gj;j0 D 	

a�.'j0;`; 'j;k/



k2I�j ; `2I�j0

9
=

; 0 � j; j0 � J:

Notice that we have S�j;j D S�j and Gj;j D Gj, cf. (18) and (19). Now, we can solve

.SD
j ˝ Gj0/p

D;�
j;j0 D fD;�

j;j0 and .Gj ˝ SD
j0 /p

�;D
j;j0 D f�;Dj;j0

for all indices satisfying j0 D J � j or j0 D J � j � 1.
From the solutions pD;�

j;j0 and p�;Dj;j0 , we can finally determine the right hand sides

fD;D
j;j0 D �

X

`C`0�J

.S�j;` ˝ S�j0 ;`0/p�;�`;`0 C .SD
j;` ˝ S�j0 ;`0/pD;�

`;`0 C .S�j;` ˝ SD
j0;`0/p�;D`;`0 ;

where the matrices SD
j;j0 are given by

SD
j;j0 D 	

aD.'j0;`; 'j;k/



k2ID
j ; `2ID

j0
; 0 � j; j0 � J:

It remains to compute the solutions to

.SD
j ˝ SD

j0 /p
D;D
j;j0 D fD;D

j;j0

for all indices satisfying j0 D J � j or j0 D J � j � 1.
Appropriate tensorization of the BPX-preconditioner, cf. [3], yields an asymp-

totically optimal preconditioning for each of the preceding linear systems, cf. [20,
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Theorem 7]. Consequently, the computational complexity for their solution is linear,
which means it is of the order O.2.jCj0/d/. Moreover, the right hand sides fƒ;ƒ

0

j;j0 for
ƒ;ƒ0 2 fD; �g can be computed by the UNIDIRML algorithm proposed in [43]
with an effort of O.J2dJ/. We thus obtain the following result:

Theorem 6 The cost of computing the Galerkin solution 2CovŒıu�J via the expan-
sion (28) is of optimal order O.J2dJ/.

Proof For each 0 � j � J and ƒ;ƒ0 2 fD; �g, the cost to determine pƒ;ƒ
0

j;J�j and

pƒ;ƒ
0

j�1;J�j is of order O.2dJ/. Summing over j yields immediately the assertion. ut

8 Numerical Results

To demonstrate the described method, we consider an analytical example on the
one hand and a stochastic example on the other hand. In the latter, for a given
random domain perturbation described by the random vector field V, we compute
the approximate mean u in accordance with (10) and the approximate covariance
CovŒıu� in accordance with (14). All computations are carried out on a computing
server with two Intel(R) Xeon(R) X5550 CPUs with a clock rate of 2.67 GHz and
48 GB of main memory. The computations have been performed single-threaded,
i.e. on a single core.

8.1 An Analytical Example

In this analytical example, we want to validate the convergence rates of the
combination technique for the sparse tensor product solution of tensor product
Dirichlet problems. To that end, consider the tensor product boundary value problem

.�˝�/u D 0 in Dref 
 Dref;

.�˝ � int
0 /u D 0 in Dref 
 �ref;

.� int
0 ˝�/u D 0 in �ref 
 Dref;

.� int
0 ˝ � int

0 /u D g1 ˝ g2 on �ref 
 �ref;

(30)

where Dref D fx 2 R
2 W kxk2 < 1g is the two-dimensional unit disk. We choose g1

and g2 to be the traces of harmonic functions. More precisely, we set

g1.x/Dx21 � x22 and g2.x/D� 1

2�
log

�p
.x1 � 2/2 C .x2 � 2/2

�
for x 2 �ref:
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Fig. 1 Trace ujxDy of the solution u to (30)
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Fig. 2 Relative L2-error (left) and computation times (right) of the combination technique in case
of the analytic example

Then, the solution u is simply given by the product

u.x; y/ D � 1

2�
.x21 � x22/ log

�p
.y1 � 2/2 C .y2 � 2/2

�
:

A visualization of the trace ujxDy of this function is found in Fig. 1.
The convergence plot on the left of Fig. 2 shows that the relative L2-error,

indicated by the blue line, exhibits almost the convergence rate predicted in
Corollary 1, indicated by the black dashed line. On level 10, there are about 2:1
million degrees of freedom in each spatial variable, which is, up to a logarithmic
factor, the number of degrees of freedom appearing in the discretization by the
combination technique. Vice versa, a full tensor product discretization on this level
would result in about 4:4 � 1012 degrees of freedom, which is no more feasible.

The plot on the right hand side of Fig. 2 depicts the related computation times.
For comparison, we have added here the computation times for the sparse tensor
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product frame discretization from [18]. The related curve is indicated in green. The
computation time consumed by the combination technique is represented by the
red curve. Notice that we have set up both methods such that they provide similar
accuracies for the approximation of the solution. From level 3–9, the combination
technique is in average a factor 30 faster than the frame discretization, where the
speed-up is growing when the level increases. Nevertheless, it seems that, from level
7 on, both methods do not achieve the theoretical rate of J34J anymore.

We present in the plot on the right hand side of Fig. 2 also the time consumed for
exclusively computing the respective right hand sides for the combination technique,
indicated by the blue line. As can be seen, on the higher levels, this computation
takes nearly half of the total computational time. A potential improvement could
thus be made by using the matrix-vector product from [43]. Finally, we have plotted
the time which is needed for exclusively solving the linear systems by the tensor
product solver. Here, it seems that we have the optimal behavior of order J4J up to
level 7. Then, also this rate deteriorates.

8.2 The Poisson Equation on the Random Unit Disc

For this example, we consider also Dref D fx 2 R
2 W kxk2 < 1g as reference domain

and the load is set to f .x/ � 1. The random vector field V is provided by its mean
EŒV�.x/ D x and its covariance function

CovŒV�.x; y/ D "2

125

�
5 exp.�4kx � yk22/ exp.�0:1k2x � yk22/

exp.�0:1kx � 2yk22/ 5 exp.�kx � yk22/
�
:

In Fig. 3, a visualization of the solution u to (10) (left) and the variance VŒıu�
of the solution to (14) (right) is depicted. In order to validate the computational
method, we consider a reference solution computed with a quasi-Monte Carlo
method based on Halton points. To that end, we have solved the Poisson equation
on 104 realizations of the random parameter on level J D 7 (this corresponds to

Fig. 3 Solution u (left) and variance VŒıu� (right) on the unit disc
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Fig. 4 Error in EŒu� (left) and VŒu� (right) for increasing values of " on K

65,536 finite elements). The solutions obtained have then been interpolated on a
mesh on level J D 5 (this corresponds to 4096 finite elements) for the compactum
K D fx 2 R

2 W kxk2 � 0:8g. For the combination technique, we set J D 7 for the
computation of the mean and J D 9 for the computation of the variance. The related
error plots for the combination technique with respect to different values of " are
shown in Fig. 4, where we used the `1-norm to measure the error. As can be seen,
the error in the mean, found on the left hand side of the figure, exhibits exactly the
expected quadratic behavior, whereas the error in the variance, found on the right
hand side of the figure, shows exactly a cubic rate.
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Adaptive Sparse Grids and Extrapolation
Techniques

Brendan Harding

Abstract In this paper we extend the study of (dimension) adaptive sparse grids by
building a lattice framework around projections onto hierarchical surpluses. Using
this we derive formulas for the explicit calculation of combination coefficients, in
particular providing a simple formula for the coefficient update used in the adaptive
sparse grids algorithm. Further, we are able to extend error estimates for classical
sparse grids to adaptive sparse grids. Multi-variate extrapolation has been well
studied in the context of sparse grids. This too can be studied within the adaptive
sparse grids framework and doing so leads to an adaptive extrapolation algorithm.

1 Introduction

In [8] sparse grids were studied via projections onto function space lattices.
This was a powerful tool which led to the adaptive sparse grid algorithm, in
which approximations to sparse grid solutions by the summation of many coarse
approximations is iteratively improved by adding additional coarse approximations
to the solution space. By viewing the coarse approximations as projections of the
true solution onto the coarse solution space, an underlying lattice structure was
exploited to provide an update formula for the combination coefficients. This work
will be reviewed in Sect. 2.

The hierarchical surplus is an important notion in the study of sparse grids, see
for example [1, 3, 5]. The main contribution of this paper is the study of projections
onto these hierarchical surpluses within the adaptive sparse grids framework. In
Sect. 3.1 we will introduce these projections in relation to the projections onto coarse
approximation spaces and derive several well-known properties. These results are
then applied in Sect. 3.2 in the study of combination coefficients. Finally, in Sect. 3.3
we show how error analysis of the classical combination technique can be extended
to adaptive sparse grids. We derive formulas which may be used to compute a priori
error estimates within an adaptive sparse grids algorithm.
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Extrapolation techniques involve the computation of a more accurate solution
from several less accurate ones. Given the many coarse approximations typically
used in the computation of adaptive sparse grids, it is natural to see if extrapolation
techniques can be used to obtain more accurate approximations. Multi-variate
extrapolation has been extensively studied in the context of sparse grids [2, 9–
11]. In Sect. 4 we study adaptive sparse grids applied to extrapolations onto coarse
approximation spaces using the framework which has been developed. In particular
we study the combination coefficients which provide extrapolations. This leads to
results which may be applied to an adaptive extrapolation algorithm.

2 Background

Consider function spaces which are tensor products V D V1 ˝ � � � ˝ Vd where the
components Vk (k 2 f1; : : : ; dg) are nested hierarchical spaces, that is,

Vk
0 � Vk

1 � � � � � Vk
mk

� Vk ;

where mk is possibly 1. We form coarse approximation spaces of V via the tensor
product Vi D V1

i1
˝ � � � ˝ Vd

id
where i is a multi-index .i1; : : : ; id/ 2 N

d with ik � mk

for k D 1 : : : ; d. We claim that the collection of these Vi form a function space
lattice, that is a partially ordered set .L;�/ in which any two members have a unique
least upper bound (_) and unique greatest lower bound (^). An example is the
spaces of piecewise multi-linear functions Vi which interpolate function values at
points on uniform grids which are successively refined by a factor of 2 in each
dimension starting from some initial V0.

We define an ordering on these spaces given by Vk
i � Vk

j iff Vk
i � Vk

j for i; j 2 N.
This leads to a natural definition of the greatest lower bound and least upper bound,
namely Vk

i ^ Vk
j WD Vk

i \ Vk
j and Vk

i _ Vk
j WD Vk

i [ Vk
j respectively, which defines

a lattice on fVk
0;V

k
1 ; : : : ;V

k
mk

g. Given the nested nature of the Vk
i we observe that

Vk
i \ Vk

j D Vk
minfi;jg and Vk

i [ Vk
j D Vk

maxfi;jg. Notice that Vk
i � Vk

j , i � j, that is

the ordering of the Vk
i is consistent with the natural ordering of f0; 1; : : : ;mkg � N.

This ordering of N leads to a lattice on f0; 1; : : : ;mkg via the greatest lower bound
and least upper bound defined by i^j WD minfi; jg and i_j WD maxfi; jg respectively.
Therefore we observe that Vk

i ^ Vk
j D Vk

i^j and Vk
i _ Vk

j D Vk
i_j which effectively

‘lifts’ the lattice structure of f0; 1; : : : ;mkg to fVk
0 ;V

k
1 ; : : : ;V

k
mk

g.
Now consider the partial ordering induced on the tensor product space V . Given

Vi and Vj we define the partial ordering Vi � Vj iff Vi � Vj, or equivalently Vik � Vjk

for k D 1; : : : ; d. Additionally, we define Vi ^ Vj WD .V1
i1

^ V1
j1
/˝ � � � ˝ .Vd

id
^ Vd

jd
/

and similarly Vi _ Vj WD .V1
i1

_ V1
j1
/˝ � � � ˝ .Vd

id
_ Vd

jd
/. Equivalently we can write

Vi ^ Vj D Vminfi;jg and Vi _ Vj D Vmaxfi;jg where min and max are taken component
wise over the multi-indices (e.g. minfi; jg D .minfi1; j1g; : : : ;minfid; jdg/). Observe
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that whilst Vi ^ Vj D Vi \ Vj it is generally not true that Vi _ Vj is equal to Vi [ Vj.

As with the Vk
i , this lattice on the Vi can be viewed as a ‘lifting’ of the natural lattice

structure on N
d. In particular, given the partial ordering of i; j 2 N

d defined by i � j
iff ik � jk for k D 1; : : : ; d, then the addition of the binary relations i^ j WD minfi; jg
and i _ j WD maxfi; jg describes a lattice. Thus we observe a ‘lifting’ of the lattice
structure via Vi � Vj , i � j, Vi ^ Vj D Vi^j and Vi _ Vj D Vi_j.

The notion of a covering element is also useful. Given a partial ordered set .L;�/
then b 2 L is said to cover a 2 L if a < b (where a < b if a � b and a ¤ b) and
there is no c 2 L such that a < c < b. We use the notation a � b to denote that b
covers a. Thus, given the partial ordering onNd described above, i�j if jk D ikC1 for
exactly one k 2 f1; : : : ; dg with the remaining components being equal. Similarly,
as the partial ordering on N

d lifts to the Vi, it is immediate that Vi � Vj , i � j.

Consider a family of projections Pk
ik

W Vk ! Vk
ik

from which the tensor product
provides the projections Pi D N

k Pk
ik

W V ! Vi. The existence of such projections
is given by the following proposition [8].

Proposition 1 For every lattice space generated from a tensor product of nested
hierarchical spaces, we have:

• there are linear operators Pi on V with range R.Pi/ D Vi and PiPj D Pi^j.
• Consequently PiPi D Pi and PiPj D PjPi.

Let I be a subset of the lattice of multi-indices on N
d. We say I is a downset if

i 2 I & j � i H) j 2 I :

Given J � N
d we use the notation J # to denote the smallest downset that contains

J. Consider P.Nd/, i.e. the power set of the set of all multi-indices, and let D.Nd/

be the subset of the power set containing all of the downsets.

Definition 1 Given I; J 2 D.Nd/ then we define the partial ordering

I � J , I � J

Additionally we define the binary relations

I ^ J WD I \ J and I _ J WD I [ J :

This leads us to the following lemma.

Lemma 1 D.Nd/ with the partial ordering and binary operations defined in
Definition 1 is a lattice.

Proof We need only show that given any I; J 2 D.Nd/ then I ^ J 2 D.Nd/ and
I _ J 2 D.Nd/.
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Let i 2 I ^ J D I \ J, then i 2 I and i 2 J. It follows that for each j 2 N
d with

j � i one has j 2 I and j 2 J since I and J are downsets and therefore j 2 I ^ J. As a
consequence I ^ J is a downset.

A similar argument shows that I _ J is also a downset. ut
For I; J 2 D.Nd/ we also have the cover relation I � J iff J D I [ fig for some i … I
for which j � i ) j 2 I for all j 2 N

d (or equivalently j < i ) j 2 I for all j 2 N
d).

Just as the lattice on N
d can be lifted to a lattice on fVigi2Nd we can lift the lattice

on D.Nd/ to the so called combination space lattice fVIgI2D.Nd/ where

VI WD
X

i2I

Vi :

It is straightforward to show that VI is a downset if I is itself a downset, and
furthermore VJ #D VJ#. Furthermore, we have the induced partial ordering VI � VJ

iff I � J and the binary relations VI ^ VJ D VI^J and VI _ VJ D VI_J which are
lifted from the lattice on D.Nd/ to define a lattice on fVIgI2D.Nd/. Lastly, we also
have the covering relation VI �VJ iff I �J. This brings us to a second proposition [8].

Proposition 2 Let the lattices Vi have the projections Pi as in Proposition 1. Then
for I; J 2 D.Nd/ there are linear operators PI on V with range R.PI/ D VI such
that PIPJ D PI\J . Conversely, if PI is a family of projections with these properties,
then Pi WD Pfig# defines a family of projections as in Proposition 1.

The proof given in [8] shows that the linear operators

PI D 1 �
Y

i2I

.1 � Pi/ (1)

are the projections described by Proposition 2. Further, the product may be expanded
to the sum

PI D
X

i2I

ciPi (2)

where the ci 2 Z are commonly referred to as combination coefficients. Unfortu-
nately Proposition 2 doesn’t tell us much more about the ci, this leads us to the
following corollary [8].

Corollary 1 Let J D I [ fjg be a covering element of I and let PI be the family of
projections as in Proposition 2 and Pi D Pfig#. Then one has:

PJ � PI D
X

i2J

diPi
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where dj D 1 and for i 2 I we have

di D �
X

l2Iij j

cl

with Iij j WD fl 2 I W j ^ l D ig.

Proof Notice that

PJ � PI D Pj

Y

i2I

.1 � Pi/ D Pj � PjPI D Pj � Pj

X

i2I

ciPi

D Pj �
X

i2I

ciPj^i D
X

i2J

diPi : ut

As a result, if we have a solution to a problem using the combination PI and we
add a solution from another function space Vj such that VJ D VI[fjg covers VI then
the new combination coefficients can be obtained from:

PJ D .1/Pj C
X

i2I

.ci C di/Pi

where the di’s are given by Corollary 1. Using this result, one obtains the adaptive
sparse grids algorithm, which takes an approximation uI D PIu and produces
a better approximation uJ D PJu by finding the covering element I � J which
minimises J.PJu/, where J is some functional that measures the quality of the
approximation PJu.

3 Further Analysis of Adaptive Sparse Grids

3.1 Hierarchical Projections

We introduce new projections which will be an important tool in this section.

Definition 2 For k D 1; : : : ; d and ik 2 N let Qk
ik

W Vk ! Vk be defined as Qk
ik

WD
Pk

ik
� Pk

ik�1 (where Pk
ik�1 WD 0 if ik � 1 < 0).

We now give some basic properties of the Qk
ik

.

Lemma 2 Qk
ik

has the following properties:

1: Qk
ik

has range in Vk
ik
; 4: Qk

ik
Qk

ik
D Qk

ik
;

2: Pk
jk

Qk
ik

D Qk
ik

Pk
jk

D 0 for jk < ik; 5: Qk
jk

Qk
ik

D 0 for ik ¤ jk;

3: Pk
jk

Qk
ik

D Qk
ik

Pk
jk

D Qk
ik

for jk � ik; 6: Pk
ik

D Pik
jkD0 Qk

jk
:
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Proof The first is immediate as Pk
ik

has range Vk
ik

and Pk
ik�1 has range Vk

ik�1 � Vk
ik

.
For the second and third, one has

Pk
jk

Qk
ik

D Pk
jk

Pk
ik

� Pk
jk

Pk
ik�1 D

(
Pk

jk
� Pk

jk
D 0 for jk < ik ;

Pk
ik

� Pk
ik�1 D Qk

ik
for jk � ik :

It follows from these two that

Qk
jk Qk

ik D .Pk
jk � Pk

jk�1/Q
k
ik D

8
ˆ̂<

ˆ̂:

Qk
ik

� 0 D Qk
ik

for jk D ik ;

Qk
ik

� Qk
ik

D 0 for jk > ik ;

0 � 0 D 0 for jk < ik :

The last equality is a result of the telescoping sum

ikX

jkD0
Qk

jk D
ikX

jkD0
Pk

jk � Pk
jk�1 D Pk

ik � Pk�1 D Pk
ik : ut

As with the Pi, we define Qi by the tensor product Qi WD N
k Qk

ik
. This leads us

to the following lemma

Lemma 3 Let Qk
ik

WD Pk
ik

� Pk
ik�1 and Qi WD N

k Qk
ik

. Then

Qi D
X

.0�/j�1
.�1/j jjPi�j

with Pi�j D 0 if ik � jk < 0 for some k 2 f1; : : : ; dg. Furthermore,

Pi D
X

.0�/ j�i

Qj :

Proof It follows from the definition that

Qi D
dO

kD1
Qk

ik D
dO

kD1
.Pk

ik � Pk
ik�1/ D

X

.0�/j�1
.�1/j jj

dO

kD1
Pk

ik�jk D
X

.0�/j�1
.�1/j jjPi�j :

Since Pk
ik�1 WD 0 if ik � 1 < 0 one obtains Pi�j D 0 if ik � jk < 0 for some

k 2 f1; : : : ; dg. For the latter equality we have

X

.0�/ j�i

Qj D
i1X

j1D0
� � �

idX

jdD0

dO

kD1
.Pk

jk � Pk
jk�1/ D

dO

kD1

ikX

jkD0
.Pk

jk � Pk
jk�1/ D

dO

kD1
Pk

ik D Pi

as required. ut
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A few more properties of the Qi will also be useful.

Lemma 4 With Pi and Qi as previously defined, one has

1: QiQi D Qi; 3: PiQj D QjPi D Qj for j � i;

2: QiQj D QjQi D 0 for j ¤ i; 4: PiQj D QjPi D 0 for j 6� i:

Proof Each is a direct consequence of the analogous results shown for the Qk
ik

and
Pk

ik
in Lemma 2. ut
Given a downset I 2 D.Nd/ let us define QI WD P

i2I Qi. Given that Pi DP
j�i Qj it would be reasonable to expect that QI D PI and indeed this is the case.

Proposition 3 Let I 2 D.Nd/, then PI D QI.

Proof First we define the maximal elements of I as max I WD fi 2 I W fj 2 I W j �
ig D figg. Now for each j 2 In max I there exists l 2 max I such that j < l and thus

1 �
Y

i2I

.1 � Pi/ D 1 � .1 � Pj/
Y

i2Infjg
.1 � Pi/

D 1 �
Y

i2Infjg
.1 � Pi/C Pj.1 � Pl/

Y

i2Infj;lg
.1 � Pi/

D 1 �
Y

i2Infjg
.1 � Pi/ :

Repeating for all j 2 In max I we have that

PI D 1 �
Y

i2max I

.1 � Pi/ D 1 �
X

J�max I

.�1/jJj
Y

j2J

Pj D
X

J�max I
J¤;

.�1/jJjC1
X

j�^J

Qj ;

where jJj is the number of elements of J and ^J is the greatest lower bound over all
elements of J (that is given J D fj

1
; j
2
; : : : ; jjJjg then ^J D j

1
^ j

2
^ � � � ^ jjJj). The

right hand side can be expanded to a simple sum over the Qj, that is

PI D
X

j2I

qjQj

for some coefficients qj. We are required to show that qj D 1 for all j 2 I. Since

QiPI D
X

j2I

qjQiQj D qiQi :
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we need only to show that QiPI D Qi. Note that

Qi

X

j�^J

Qj D
(

Qi if i � ^J

0 otherwise.

Further, i � ^J if and only if i � j for all j 2 J. Let Ji � max I be the largest subset
of max I such that i � j for all j 2 Ji. It follows that

QiPI D
X

J�max I
J¤;

.�1/jJjC1Qi

X

j�^J

Qj D
X

J�Ji
J¤;

.�1/jJjC1Qi :

Expanding this yields

QiPI D
jJi jX

mD1

X

J�Ji

jJjDm

.�1/jJjC1Qi D Qi

jJijX

mD1

 
jJij
m

!
.�1/mC1

D Qi

0

@1 �
jJi jX

mD0

 
jJij
m

!
.�1/m

1

A

D Qi

�
1 � .1 � 1/jJij

�
D Qi :

Therefore qi D 1. Since the choice of i 2 I was arbitrary the proof is complete. ut

3.2 Characterisation of Combination Coefficients

The previous results bring us to a corollary about the nature of the combination
coefficients.

Corollary 2 Given I 2 D.Nd/ with corresponding projection PI D 1 � Q
j2I.1 �

Pj/ D P
j2I cjPj then for each i 2 I

ci D 1 �
X

i<j2I

cj ;

where i < j 2 I means fj 2 N
d W j 2 I & j > ig.

Proof From Proposition 3 one has QiPI D Qi and hence

Qi D QiPI D Qi

X

j2I

cjPj D
X

j2I

cjQi

X

l� j

Ql D
X

i� j2I

cjQi D Qi

X

i� j2I

cj :
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It follows that

1 D
X

i� j2I

cj D ci C
X

i<j2I

cj

and re-arranging gives the desired result. ut
Let �I be the characteristic function on multi-indices, that is

�I.i/ D
(
1 if i 2 I

0 otherwise.

We now give a useful result regarding the calculation of combination coefficients
which appears in [4] without proof.

Proposition 4 Let I 2 D.Nd/ with corresponding projection PI D P
i2I ciPi. Then

for each i 2 I one has

ci D
X

i� j�iC1
.�1/j j�ij�I.j/ :

Proof From Corollary 2 we have that for i 2 I

1 D
X

i� j2I

cj D
X

i� j

cj�I.j/ :

It follows that for i 2 N
d

�I.i/ D
X

i� j

cj�I.j/ :

Substituting this into the right hand side of the desired result we obtain

X

i� j�iC1
.�1/j j�ij�I.j/ D

X

i� j�iC1
.�1/j j�ijX

j�l

cl�I.l/

D
X

i� j�iC1

0

@.�1/j j1�i1j
1X

l1Dj1

� � � .�1/jjd�idj
1X

ldDjd

1

A cl�I.l/

D
0

@
1X

l1Di1

�
1X

l1Di1C1

1

A � � �
0

@
1X

ldDid

�
1X

ldDidC1

1

A cl�I.l/ D ci�I.i/ ;

as required. ut
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This enables fast computation of combination coefficients given an arbitrary
downset I. The following corollary shows that many of these coefficients are
typically 0.

Corollary 3 Let I 2 D.Nd/ with corresponding projection PI D P
i2I ciPi. If i C

1 2 I, then ci D 0.

Proof i C 1 2 I implies that j 2 I for all j � i C 1. Therefore

ci D
X

i� j�iC1
.�1/ji�jj D 0 : ut

Corollary 1 provided an update formula when a covering element is added to a
downset I. It turns out that the update coefficients have a very particular structure as
the next lemma will demonstrate.

Lemma 5 Let I; J 2 D.Nd/ such that I � J. Further, let i be the multi-index such
that J D I [ fig. Then

PJ � PI D
X

i�1� j�i

.�1/ji�jjPj

where Pj WD 0 if jk < 0 for any k 2 f1; : : : ; dg.

Proof Clearly we have PJ � PI D Qi. Now we simply note that

Qi D
X

j�1
.�1/j jjPi�j D

X

i�1� j�i

.�1/ji�jjPj ;

as required. ut
This is quite a useful result. For example, in 2 dimensions when a covering

element is added with i D .i1; i2/ � .1; 1/ then only 4 coefficients need to be
changed, namely c.i1;i2/ 7! 1, c.i1�1;i2/ 7! c.i1�1;i2/ � 1, c.i1;i2�1/ 7! c.i1;i2�1/ � 1 and
c.i1�1;i2�1/ 7! c.i1�1;i2�1/ C 1. Similarly in d dimensions one only needs to change
2d coefficients.

Another interesting observation to be made is that Proposition 4 and Lemma 5 are
in some sense mirror images. The former shows how a coefficient ci is determined
by the existence of positive neighbours in I whilst the latter shows how adding a
covering element i to I affects the coefficients of the negative neighbours.

The following lemma is essentially a consistency property for combinations
arising from adaptive sparse grids.

Lemma 6 If I 2 D.Nd/ is non-empty, then the coefficients ci corresponding to the
projection PI D P

i2I ciPi satisfy

1 D
X

i2I

ci :
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Proof We note that I ¤ ; implies 0 2 I and one has

P0 D P0PI D P0
X

i2I

ciPi D P0
X

i2I

ci ;

from which the desired result follows. ut
As adaptive sparse grids are meant to generalise the combination technique we

show that the classical coefficients [6] come out for the appropriate downset I.

Lemma 7 Let I D fi 2 N
d W jij � ng. Then, the ci corresponding to PI satisfy

ci D .�1/n�jij
 

d � 1

n � jij

!
:

Proof We know generally that

ci D
X

i� j�iC1
.�1/j j�ij�I.j/ :

Therefore, given i 2 I such that jij D n � k for some k 2 f0; : : : ; d � 1g, one has

ci D
kX

lD0
.�1/l

 
d

l

!
:

With an induction argument on k using the identity
�d

k

� � �d�1
k�1
� D �d�1

k

�
it is easily

shown that

ci D .�1/k
 

d � 1

k

!
:

Substituting k D n � jij and recognising that
� d�1

n�jij
� WD 0 for jij � n � d and jij > n

completes the proof. ut

3.3 Error Formula for Adaptive Sparse Grids

From here we are going to restrict ourselves to considering nested hierarchical
spaces of piecewise multi-linear functions so that we may formulate some general
error formulas. Specifically we let the Vi be the function spaces of piecewise
multi-linear functions on Œ0; 1�d which interpolate between the function values at
grid points xj WD .j12�i1 ; : : : ; jd2�id / with 0 � j � 2i D .2i1 ; : : : ; 2id/. Let
u 2 V D C.Œ0; 1�d/ and I 2 D.Nd/. We define ui WD Piu and uI WD PIu from
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which one obtains a unique combination formula

uI D
X

i2I

ciui : (3)

If the projections ui D Piu are exactly the piecewise multi-linear interpolants of u,
then uI is the (linear) sparse grid interpolant of u onto VI . The following proposition
considers the interpolation error of functions u 2 H2

0;mix.�/, that is u W � � R
d !

R for which the norm

kuk2
H2
0;mix

D
X

0�˛�2

�����
@j˛j

@x˛
u

�����

2

2

D
X

0�˛�2
kD˛uk22

is finite and uj@� D 0.

Proposition 5 Let I � N
d be a downset, u 2 H2

0;mix.�/ and Vi, Pi, ui as above.
Let ci 2 R be the combination coefficients corresponding to the projection PI DP

i2I ciPi and let uI D PIu, then

ku � uIk2 � 3�dkD2uk2
0

@3�d �
X

1�i2I

2�2jij
1

A : (4)

Proof We note that as u is zero on the boundary one has

uI D
X

1�i2I

wi and ui D
X

1�i

wi

where wi D Qiu are the hierarchical surpluses of u. It follows that

ku � uIk2 D
������

X

1�i62I

wi

������
2

�
X

1�i62I

kwik2 :

Now applying the standard bound kwik2 � 3�dkD2uk22�2jij for i � 1 (see for
example [1, 3]), one has

ku � uIk2 � 3�dkD2uk2
X

1�i62I

2�2jij

and using the fact that

X

1�i2I

2�2jij C
X

1�i62I

2�2jij D
X

1�i

2�2jij D
1X

i1;:::;idD1
2�2i1 � � � 2�2id D 3�d

one obtains the desired result. ut
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More generally, the projections ui D Piu will be approximations of u in the function
space Vi. Classical analysis of the combination technique assumes that the ui satisfy
an error splitting. We derive a formula for calculating the error of adaptive sparse
grid combinations based on such error splittings. First we provide a result which
says that projecting a d dimensional combination onto a k < d dimensional function
space yields coefficients corresponding to a k dimensional combination. We note
that a result similar to Lemma 8 may be found in [12].

Let I 2 D.Nd/ be non-empty, 1 � k � d and fe1; : : : ; ekg � f1; : : : ; dg (with
fekC1; : : : ; edg D f1; : : : ; dgnfe1; : : : ; ekg). We define

Ie1;:::;ek WD f.ie1 ; : : : ; iek/ W i 2 Ig :

It is immediate that Ie1;:::;ek 2 D.Nk/.

Lemma 8 Let I 2 D.Nd/ and PI be the corresponding projection with PI DP
i2I ciPi. Further, let

PIe1;:::;ek
W Ve1 ˝ � � � ˝ Vek ! VIe1;:::;ek

WD
X

i2Ie1;:::;ek

Ve1
i1

˝ � � � ˝ Vek
ik
;

which may be written as the combination PIe1;:::;ek
D P

j2Ie1;:::;ek
cj
Nk

lD1 Pel
jl

. Then,
for all j 2 Ie1;:::;ek one has

cj D
X

i2I s.t. .ie1 ;:::;iek /Dj

ci :

Proof Consider a function u 2 V D V1 ˝ � � � ˝ Vd which only depends on the
coordinates xe1 ; : : : ; xek , that is u.x1; : : : ; xd/ D v.xe1 ; : : : ; xek/ for some v 2 Ve1 ˝
� � � ˝ Vek . It follows that Piu D Nk

lD1 Pel
iel
v and therefore

PIu D
X

i2I

ciPiu D
X

i2I

ci

kO

lD1
Pel

iel
v

D
X

.ie1 ;:::;iek /2Ie1::::;ek

 
kO

lD1
Pel

iel
v

!
X

.iekC1
;:::;ied /2IekC1;:::;ed

�I.i/ci

D
X

j2Ie1::::;ek

 
kO

lD1
Pel

jl
v

!
X

i2I s.t. .ie1 ;:::;iek /Dj

ci :

Finally, since it is clear that PIu D PIe1;:::;ek
v and u depending on only xe1 ; : : : ; xek is

arbitrary (i.e. v is arbitrary), one has the desired result. ut
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This result allows us to write down a general formula regarding error estimates
of dimension adaptive sparse grids when an error splitting is assumed.

Proposition 6 Let I 2 D.Nd/ be non-empty. For 1 � k � d, fe1; : : : ; ekg �
f1; : : : ; dg and Ie1;:::;ek the set defined previously, we define c.ie1 ;:::;iek /

to be the
coefficient corresponding to the k dimensional projection PIe1;:::;ek

as in Lemma 8.
Let uI D P

i2I ciui where each ui satisfies the error splitting

u � ui D
dX

kD1

X

fe1;:::;ekg�f1;:::;dg

Ce1;:::;ek.hie1
; : : : ; hiek

/h
pe1
ie1

� � � h
pek
iek
; (5)

with p1; : : : ; pd > 0, hl WD 2�l and for each fe1; : : : ; ekg � f1; : : : ; dg one has
jCe1;:::;ek .hie1

; : : : ; hiek
/j � �e1;:::;ek 2 R

C for all ie1 ; : : : ; iek . Then

ju � uIj �
dX

kD1

X

fe1;:::;ekg�f1;:::;dg

�e1;:::;ek

X

i2Ie1;:::;ek

jc.ie1 ;:::;iek /
jhpe1

ie1
� � � h

pek
iek
:

Proof Since
P

i2I ci D 1we have u�uI D P
i2I ci.u�ui/. From here one substitutes

the error splitting formula obtaining

ju � uIj D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

X

i2I

ci

dX

kD1

X

fe1;:::;ekg�f1;:::;dg

Ce1;:::;ek.hie1
; : : : ; hiek

/h
pe1
ie1

� � � h
pek
iek

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

dX

kD1

X

fe1;:::;ekg�f1;:::;dg

X

j2Ie1;:::;ek

X

i2I s.t.
.ie1 ;:::;iek /Dj

ciCe1;:::;ek.hie1
; : : : ; hiek

/h
pe1
ie1

� � � h
pek
iek

ˇ̌
ˇ̌
ˇ̌
ˇ̌

�
dX

kD1

X

fe1;:::;ekg�f1;:::;dg

X

j2Ie1;:::;ek

ˇ̌
Ce1;:::;ek .hje1

; : : : ; hjek
/
ˇ̌
h

pe1
je1

� � � h
pek
jek

ˇ̌
ˇ̌
ˇ̌
ˇ̌

X

i2I s.t.
.ie1 ;:::;iek /Dj

ci

ˇ̌
ˇ̌
ˇ̌
ˇ̌

�
dX

kD1

X

fe1;:::;ekg�f1;:::;dg

�e1;:::;ek

X

j2Ie1;:::;ek

h
pe1
je1

� � � h
pek
jek

ˇ̌
c.ie1 ;:::;iek /

ˇ̌
:ut

Whilst this result is not simple enough that one could easily write (by hand) the
resulting bound for a given I, it does give one a way to quickly compute a bound.
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4 Extrapolation Based Adaptive Sparse Grids

4.1 Multivariate Extrapolation

Extrapolation techniques are used to obtain higher rates of convergence of a given
method for which the rate of convergence is known. For example, in one spatial
dimension, suppose an approximation ui 2 Vi of u 2 V � C.Œ0; 1�/ is known to
satisfy pointwise

u � ui D D 
 2�pi C O.2�qi/

for some D 2 R (which may depend on x) and p; q 2 N with 1 � p < q, then via
classical Richardson extrapolation one obtains

u �
�

2p

2p � 1
uiC1 � 1

2p � 1
ui

�
D 2p

2p � 1.u � uiC1/� 1

2p � 1
.u � ui/ D O.2�qi/ :

This may be extended to higher dimensional approximations where, for each i 2 N
d,

one has approximations ui 2 Vi of u 2 V � C.Œ0; 1�d/. One may cancel terms in the
error expansion of u � ui of the form Ck2

�pik (univariate terms) for k D 1; : : : ; d by
computing

2p

2p � 1
uiC1 � 1

2p � 1
ui :

There are a couple of issues with this approach. First, uiC1 is approximately 2d

times more expensive to compute than ui if complexity is linear with the number
of unknowns. This makes uiC1 impractical to compute for large d. Second, error
expansions in high dimensions typically have terms proportional to 2�p.ie1C			Ciek /

for k 2 f1; : : : ; dg and fe1; : : : ; ekg � f1; : : : ; dg (multivariate terms). If all terms of
i are not sufficiently large then some of these terms may be significant such that the
cancellation of univariate terms provides little improvement.

Multivariate extrapolation techniques typically attempt to deal with at least one
of these issues. Here we use the notation iC1k for the multi-index .i1; : : : ; ik�1; ik C
1; ikC1; : : : ; id/. One may extrapolate the univariate terms by computing

2p

2p � 1

 
dX

kD1
uiC1k

!
� .d � 1/2p C 1

2p � 1 ui :

Each uiC1k costs approximately twice as much as ui thus the additional cost is
approximately 2d compared to 2d. This type of extrapolation has been extensively
studied in the literature [2, 7, 9, 11]. We focus on a different type of extrapolation
which focuses on the second problem of classical extrapolation in higher dimen-
sions, that is the cancellation of multivariate terms in the error expansion.
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For the remainder of this paper we assume that the ui satisfy the generalised
pointwise error splitting

u � ui D

0
BB@

dX

kD1

X

fe1;:::;ekg�f1;:::;dg

De1;:::;ek h
pe1
ie1

� � � h
pek
iek

1
CCAC R.hi1 ; : : : ; hid/ ; (6)

where p1; : : : ; pd 2 NC, hj WD 2�j for j 2 N, and

R.hi1 ; : : : ; hid/ D
dX

kD1

X

fe1;:::;ekg�f1;:::;dg

Ee1;:::;ek .hie1
; : : : ; hiek

/h
qe1
ie1

� � � h
qek
iek

for some q1 > p1; : : : ; qd > pd and with each jEe1;:::;ek.hie1
; : : : ; hiek

/j bounded for
all i 2 N

d. This extends the error splitting considered in [10] by allowing the rate
of convergence to differ for each dimension. For p1 D � � � D pd D 2 one has the
extrapolation formula [10]

Qui D
X

i� j�iC1

.�4/j j�ij

.�3/d uj : (7)

For p1 D � � � D pd D p one may take

Qui D
X

i� j�iC1

.�2p/j j�ij

.1 � 2p/d
uj :

In the most general case one has the extrapolation formula

Qui D
X

j�1

 
dY

mD1

.�2pm/jm

1 � 2pm

!
uiCj : (8)

To show these do indeed result in an extrapolation we first need two lemmas.

Lemma 9 One has

X

j�1

dY

mD1

.�2pm/jm

1 � 2pm
D 1 :
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Proof We notice that

X

j�1

dY

mD1

.�2pm/jm

1 � 2pm
D

1X

j1D0
� � �

1X

jdD0

.�2p1/j1

1 � 2p1
� � � .�2

pd/jd

1 � 2pd

D
0

@
1X

j1D0

.�2p1 /j1

1� 2p1

1

A � � �
0

@
1X

jdD0

.�2pd/jd

1 � 2pd

1

A

D
dY

mD1

1X

jmD0

.�2pm/jm

1 � 2pm
D

dY

mD1

1 � 2pm

1 � 2pm
D 1 : ut

Lemma 10 Fix k 2 f1; : : : ; dg and fe1; : : : ; ekg � f1; : : : ; dg, then

X

j�1

dY

mD1

.�2pm/jm

1 � 2pm
De1;:::;ek h

pe1
je1

� � � h
pek
jek

D 0 :

Proof Similar to the previous lemma note we can swap the sum and product

X

j�1

dY

mD1

.�2pm/ jm

1 � 2pm
De1;:::;ek h

pe1
je1

� � � h
pek
jek

D De1;:::;ek

dY

mD1

1X

jmD0

.�2pm/jm

1 � 2pm
h

pe1
je1

� � � h
pek
jek
:

Now consider m 2 fe1; : : : ; ekg, without loss of generality let m D e1, one has

1X

jmD0

.�2pm/jm

1 � 2pm
h

pe1
je1

� � � h
pek
jek

D h
pe2
je2

� � � h
pek
jek

1X

jmD0

.�2pm/jmhpm
jm

1 � 2pm

D h
pe2
je2

� � � h
pek
jek

1X

jmD0

.�1/jm
1 � 2pm

D 0 ;

from which the result follows. ut
Thus we have the following proposition.
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Proposition 7 If ui satisfies the pointwise error splitting (6) then

u � Qui D
X

j�1

 
dY

mD1

.�2pm/jm

1 � 2pm

!
dX

kD1

X

fl1;:::;lkg�f1;:::;dg

R.hi1Cj1 ; : : : ; hidCjd / :

Proof We need only to show that the De1;:::;ek terms vanish. Lemma 9 tells us that

u � Qui D u �
X

j�1

 
dY

mD1

.�2pm/jm

1 � 2pm

!
uiCj D

X

j�1

 
dY

mD1

.�2pm/jm

1 � 2pm

!
.u � ujCi/ :

From here we can substitute in the error splitting (6). We look at a single term, hence
fix k 2 f1; : : : ; dg and fe1; : : : ; ekg � f1; : : : ; dg, then we have

X

j�1

 
dY

mD1

.�2pm/jm

1 � 2pm

!
De1;:::;ek h

pe1
je1Cil1

� � � h
pek
jekCiek

D h
pe1
ie1

� � � h
pek
iek

 
dY

mD1

.�2pm/jm

1 � 2pm

!
De1;:::;ek h

pe1
je1

� � � h
pek
jek

D 0 ;

from Lemma 10. Thus all terms except the R.hi1Cj1 ; : : : ; hidCjd/ terms sum to 0
which yields the result. ut
One could substitute R.hi1Cj1 ; : : : ; hidCjd/ and obtain a more precise expression for
the remainder (as has been done for the case p1 D � � � D pd D 2 and q1 D � � � D
qd D 4, see [10]) but we shall not do so here.

4.2 Extrapolation Within Adaptive Sparse Grids

In [10] the classical combination formula was studied if the approximations ui are
replaced with the extrapolations Qui of (7), that is the combination

Quc
n D

d�1X

kD0
.�1/k

 
d � 1

k

!
X

jijDn�k

Qui :

The main result was a careful calculation of an error bound for this particular case
with p1 D � � � D pd D 2 and q1 D � � � D qd D 4. It was also shown that the
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combination of extrapolations may be expressed as

Quc
n D

dX

kD�dC1

X

jijDnCk

Qciui ;

where, if jij0 is the number of non-zero entries in i, then

Qci D
minfji�nCd�1;d�1jgX

kDmaxf0;jij�n�1g

.�4/jij�nCd�1�k

.�3/d .�1/d�1�k

 
d � 1

k

! 
jij0

jij � n C d � 1 � k

!
:

These coefficients will be the focus of this section and, using the framework of
adaptive sparse grids, we develop an adaptive way of combining extrapolations.
Whilst we focus on the case with p1 D � � � D pd D 2 and q1 D � � � D qd D 4, the
framework is easily applied to the general case.

We first observe that, if we were to define ui WD Piu, then one has

Qui D
0

@
X

j�1

.�4/j jj
.�3/d PiCj

1

A u :

Thus we will define

QPi WD
X

j�1

.�4/j jj
.�3/d PiCj

such that Qui D QPiu. The idea now is that rather than substituting this into a classical
combination formula we may substitute this into any combination formula obtained
via the adaptive sparse grids formulation. That is given a downset I 2 D.Nd/ and
the corresponding projection PI D P

i2I ciPi then we instead use the extrapolation
projections to obtain

QPI WD
X

i2I

ci QPi :

Since the two approaches give reasonable approximations individually, it follows
that the above projection would give a reasonable approximation. If the ui satisfy
the error splitting (6) then for each I one may carry out an analysis similar to that
in [10] for the classical case.
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There are two questions that immediately come to mind regarding the choice of
I and the resulting coefficients. Consider the set IC1 WD fi W j 2 I for some i � 1 �
j � ig, then one can write

QPI D
X

i2IC1

QciPi :

Note that QPI is actually a projection onto VIC1
rather than VI . The first question is

whether there is a simple way to determine the Qci. The answer is yes and this will
be addressed in Proposition 8. The second question is more subtle and relates to
whether the QPI can be extended to projections onto VJ for any given downset J (as
opposed to only those J for which there exists a downset I such that J D IC1). This
will be addressed later as a consequence of a simple expression for the Qci.

Proposition 8 Let I 2 D.Nd/. Given the combination of extrapolations QPI DP
i2IC1

QciPi ; then the Qci are given by

Qci D
X

�1�l�1

.�1/jlj
.�3/d 5

d�jlj04d�jlC1j0�I.i C l/

where jlj0 is defined to be the number of non-zero elements of l.

Note here we allow elements of j to be negative and that �I.i C j/ WD 0 if ik C jk < 0
for any k 2 f1; : : : ; dg.

Proof We first write QPI D P
i2I ci QPi for which we know the ci are given by

ci D
X

j�1
.�1/j jj�I.i C j/ : (9)

Now we note that a QPj contains a Pi term in its sum if j � i � j C 1. Conversely,

for a given Pi, those QPj which have a Pi term in its sum are those with i � 1 � j � i
(and j � 0). Further, the term in

QPj D
X

k�1

.�4/jkj
.�3/d PjCk

for which PjCk D Pi clearly satisfies k D i � j. It follows that

QciPi D
X

i�1� j�i
j�0

cj
.�4/ji�jj

.�3/d Pi
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and therefore

Qci D .�3/�d
X

i�1� j�i
j�0

cj.�4/ji�jj :

Now substituting (9) for cj we obtain

Qci D .�3/�d
X

i�1� j�i
j�0

.�4/ji�jj X

.0�/k�1
.�1/jkj�I.j C k/

D .�3/�d
X

.0�/ j�1
j�i

.�4/j jj
X

.0�/k�1
.�1/jkj�I.i � j C k/ :

We will now make a substitution l D k � j, (allowing l to have negative values),

Qci D .�3/�d
X

.0�/ j�1
j�i

.�4/j jj
X

�j�l�1�j

.�1/jlCjj�I.i C l/

D .�3/�d
X

�1�l�1
lCi�0

X

maxf0;�lg�j�minf1;1�lg
.�4/j jj.�1/jlCjj�I.i C l/

D .�3/�d
X

�1�l�1
�I.i C l/

X

maxf0;�lg�j�minf1;1�lg
.�4/j jj.�1/jlCjj :

The second last equality here is a change of order of summation, and the min
and max over the multi-indices are component wise. We now consider the inner
summation. Noting that j � 0 and l C j � 0, we can write this as

X

maxf0;�lg�j�minf1;1�lg
.�4/j1C			Cjd.�1/l1Cj1C			CldCjd

D.�1/l1C			Cld
X

maxf0;�lg�j�minf1;1�lg
4j1 � � � 4jd

D.�1/l1C			Cld

0

@
minf1;1�l1gX

j1Dmaxf0;�l1g
4j1

1

A � � �
0

@
minf1;1�ldgX

jdDmaxf0;�ldg
4jd

1

A

D.�1/l1C			Cld5d�jlj04d�jlC1j0 ;

where d � jlj0 and d � jl C 1j0 essentially count the number of elements of l which
are 0 and �1 respectively. Finally we note that .�1/l1C			Cld D .�1/jlj since for any
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lk D �1 we have .�1/lk D .�1/lkC2 D .�1/�lk . Substituting these back yields the
desired result. ut
As a result of this proposition, we can compute coefficients for an adaptive
extrapolation approach very quickly.

Lemma 11 Let I 2 D.Nd/ (non-empty) and QPI be the combination of extrapola-
tions QPI D P

i2IC1
QciPi ; then for i 2 I one has

P
j�i Qcj D 1 :

Proof We note that as QPI D P
j2I cj QPj and the QPj sums over Pk with j � k � j C 1

then

X

j�i

Qcj D
X

j�i

cj

X

k�1

.�4/jkj
.�3/d :

Further, the sum of coefficients in each QPi sum to 1 (Lemma 9), that is

X

j�1

.�4/j jj
.�3/d D 1 :

Thus
P

j�i Qcj D P
j�i cj D 1 as a consequence of Lemma 2. ut

Corollary 4 If I 2 D.Nd/ is non-empty then
P

i2IC1
Qci D 1 :

Proof Simply apply the previous lemma to i D 0. ut
Note that when a covering element i is added to a downset I for which i has one

or more 0 coefficients then we actually need to compute a few additional grids in
order to compute QPI[fig. In fact this is connected to our second question regarding
the downsets IC1 for which our extrapolations operate on. Let us rewrite the Qci of QPI

by shifting l by 1 as follows

Qci D
X

�1�l�1�1

.�1/jl�1j
.�3/d 5d�jl�1j04d�jlj0�I.i C l � 1/

D
X

0�l�2

.�1/jlj
3d

5d�jl�1j04d�jlj0�IC1
.i C l/ :

Now given a non-empty downset J we consider the combination

QQPJ D
X

i2J

QQciPiu



Adaptive Sparse Grids and Extrapolation Techniques 101

where the coefficients are given by

QQci D
X

0�l�2

.�1/jlj
3d

5d�jl�1j04d�jlj0�J.i C l/ : (10)

Our second question can now be rephrased as determining for which J is the above
approximation reasonable. By reasonable we specifically mean two things. First,
the coefficients should sum to 1 to provide consistency. Second, the 2nd order error
terms should sum to zero when the Piu satisfy the error splitting. Observations and
experiments seem to indicate that the resulting combination is reasonable if 1 2 J
(and thus f1g #� J). This is not too surprising as the multivariate extrapolation
applied to a single ui requires those uj with i � j � i C 1. We suspect this is a both
a sufficient and necessary condition. This is relatively straightforward to show in 2
dimensions by breaking the problem up into the few cases that can occur. Whilst a
case by case argument could also be used for higher dimensions the number of cases
grows quickly.

The formula (10) lends itself to a more general adaptive scheme for extrapola-

tions, and analogous to the regular adaptive sparse grids we could look at QQPJ � QQPI

where J covers I.

Lemma 12 Let I 2 D.Nd/ with 1 2 I and let i be a covering element of I. Let
J D I [ fig, then

QQPJ � QQPI D
X

i�2� j�i
j�0

.�1/ji�jj

3d
5d�ji�j�1j04d�ji�jj0Pj :

Proof Simply note that the QQci that are affected are those with i C l D j for some
0 � l � 2 and that (10) provides the update for each such i. ut

For the general extrapolation formula (8) one may follow the same procedure to
obtain the formulas

Qci D
X

�1�l�1
.�1/jlj�I.i C l/

 
dY

mD1

ı�1;lm2pm C ı0;lm.1C 2pm/C ı1;lm
1 � 2pm

!
;

(with ıa;b D 1 if a D b and ıa;b D 0 otherwise), and

QQPJ � QQPI D
X

i�2� j�i
j�0

.�1/ji�jj
 

dY

mD1

ıim�2;jm C ıim�1;jm.1C 2pm/C ıim;jm2
pm

2pm � 1

!
Pj

for Proposition 8 and Lemma 12 respectively.
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5 Conclusions

We have extended the early work on adaptive sparse grids by studying the
projections onto the hierarchical surpluses. Specifically we have derived exact
expressions for the coefficient updates and provided error bounds. Further, we have
applied this framework to the study of multivariate extrapolations. By studying the
coefficients of extrapolation formulas within the adaptive sparse grids framework we
derive several results which could be applied in an adaptive extrapolation algorithm.
The effectiveness of this approach for numerical applications is something to be
tested in the future.
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A Cache-Optimal Alternative to the
Unidirectional Hierarchization Algorithm

Philipp Hupp and Riko Jacob

Abstract The sparse grid combination technique provides a framework to solve
high-dimensional numerical problems with standard solvers by assembling a sparse
grid from many coarse and anisotropic full grids called component grids. Hierar-
chization is one of the most fundamental tasks for sparse grids. It describes the
transformation from the nodal basis to the hierarchical basis. In settings where the
component grids have to be frequently combined and distributed in a massively
parallel compute environment, hierarchization on component grids is relevant to
minimize communication overhead.

We present a cache-oblivious hierarchization algorithm for component grids of

the combination technique. It causes jG`j �
�
1
B C O

�
1

dpM

��
cache misses under the

tall cache assumption M D !
�
Bd
�
.1 Here, G` denotes the component grid, d the di-

mension, M the size of the cache and B the cache line size. This algorithm decreases
the leading term of the cache misses by a factor of d compared to the unidirectional
algorithm which is the common standard up to now. The new algorithm is also
optimal in the sense that the leading term of the cache misses is reduced to scanning
complexity, i.e., every degree of freedom has to be touched once. We also present

a variant of the algorithm that causes jG`j �
�
2
B C O

�
1

d�1
p

M	Bd�2

��
cache misses

under the assumption M D ! .B/. The new algorithms have been implemented and
outperform previously existing software. In several cases the measured performance
is close to the best possible.

1The dimension d is assumed to be constant in the O-notation.
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1 Introduction

The gap between peak performance and memory bandwidth on modern processors
is already large and still increasing. In many situations, this phenomenon can be
counteracted by using caches, i.e., a small but fast additional memory close to
the processor. Now, the expensive communication is between the memory and the
cache, and this kind of communication efficiency is crucial for high performance
code. All areas of computer science acknowledge this phenomenon, but call it
and the methods to design such algorithms slightly differently. The algorithms
that reduce memory traffic are called, e.g., I/O efficient algorithms [1, 22, 31],
communication avoiding algorithms [2, 13, 27], and blocked algorithms [30]. Still,
all these efforts aim to increase temporal locality (reuse over time) and spatial
locality (use of several items of a cache line) to reduce the amount of data that
is transferred between the different levels of the memory hierarchy.

Sparse grids [3, 40, 41] are a numerical discretization scheme that allows to solve
high-dimensional numerical problems by lessening the curse of dimensionality

from O
�
h�d

n

�
to O

�
h�1n � jlog2 hnjd�1� for dimension d and minimum mesh size

hn D 2�n. Crucial for the reduction in the degrees of freedom is a change of
basis from the nodal basis to the hierarchical basis and the selection of the most
important basis functions of the hierarchical basis. This change of basis is called
hierarchization and is one of the most fundamental algorithms for sparse grids.
The reduction in the degrees of freedom for sparse grids comes at the cost of a
less regular structure and more complicated data access patterns for sparse grid
algorithms. In consequence, communication efficient algorithms are in particular
important and less obvious for sparse grids. Because hierarchization is among the
most simple algorithmic tasks that are based on the hierarchical structure of the
sparse grids, we consider it prototypical in the sense that algorithmic ideas that
work for it are also applicable to more complicated tasks.

The sparse grid combination technique [18] assembles the sparse grid from
a linear combination of many coarse and anisotropic, i.e. refined differently in
different dimensions, full grids called component grids. This allows to solve the
numerical problem on the full component grids with standard solvers while taking
advantage of the reduced number of degrees of freedom of the sparse grid. For
time dependent problems, the combination technique can be applied as depicted
in Fig. 1: a standard solver is employed to each of the (regular) component grids.
Then, a reduce step assembles the sparse grid solution as a linear combination of the
component grid solutions. This is followed by a broadcast step that distributes the
joint solution back to the component grids. The change of basis from the regular grid
basis to the hierarchical basis can facilitate the reduce and the broadcast step. In this
situation, hierarchization is on the performance critical path of the solver. Current
approaches to master large simulations of hot fusion plasmas are a prominent
example [37].

The task of hierarchization we consider here has as input an array of values
representing the sampled function in the nodal basis, i.e., as function values
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Fig. 1 (De-)hierarchization as pre- and postprocessing steps for the reduce/broadcast step of the
combination technique. The combination technique computes a solution in the sparse grid space
by a suitable linear combination (blue:C1; red: �1) of the component grid solutions

sampled at the grid point, and as output the same function represented in the
hierarchical basis as explained later. The grid points form a regular anisotropic
(not all dimensions are refined equally) grid, and the coefficient values are laid
out in lexicographic order, i.e., in a generalized row major layout. The algorithm
is formulated and analyzed in the cache oblivious model [10]. In this model the
algorithm is formulated to work on a random access memory where every memory
position holds an element, i.e., an input value, an intermediate value or an output
value. It is analyzed in the I/O model with a fast memory (cache) that holds M
elements, the transfer to the slower memory is done in blocks or cache lines with
B elements, and the cache replacement strategy is optimal. This makes sure that
elements that participate in algebraic operations reside in cache. The performance
is measured as the number of cache misses (also called I/Os) the algorithm incurs.
Note that in this model the CPU operations are not counted as if the CPU was
infinitely fast. Hence, this model focuses on one level of the memory hierarchy,
usually the biggest relevant one. As our experiments demonstrate, these assumptions
capture the most important aspects of our test machine. More precisely, it turns out
that the shared level 3 cache of the CPU is usually the bottleneck, because the four
cores of the CPU together are fast enough to keep the memory connection busy
all the time. Hence it is reasonable as a theoretical model to regard the CPU(s) as
infinitely fast.

The unidirectional principle is the dominating design pattern for sparse grid
algorithms. The unidirectional principle exploits the tensor product structure of
the underlying basis and decomposes the global operator into d sweeps over the
grid. In each sweep it works locally on all one-dimensional subproblems, called
poles, of the current work direction [3]. By working in d sweeps the unidirectional
hierarchization algorithm (Algorithm 1) needs only 3d arithmetic operations to
hierarchize piecewise d-linear basis functions. In contrast, a direct hierarchization
algorithm, i.e., calculating the hierarchical surplus (the coefficient in the hierarchical
basis) of each grid point in one go, like formulating the task as a multiplication with
a sparse matrix, would require c � 3d arithmetic operations for 1� c � 2. Therefore,
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the unidirectional algorithm is a good choice with respect to the number of
arithmetic operations. As such, the unidirectional algorithm is, however, inherently
cache inefficient in the sense that it performs d sweeps over the data and therefore
causes at least d � jG` j

B � .d � 1/ � M
B D d � 1B � �jG`j � d�1

d � M
�

cache misses. Here,
G` denotes the input grid, M the size of the internal memory or cache and B the
block or cache line size. Furthermore, the unidirectional hierarchization algorithm
has been implemented for component grids such that it is within a factor of 1.5
of this unidirectional memory bound [24]. In consequence, any significant further
improvements have to avoid the unidirectional principle on a global scale.

This paper presents a cache-oblivious [10] hierarchization algorithm (Algo-
rithm 2) that avoids the unidirectional principle on a global scale but applies
it (recursively) to smaller subproblems that fit into cache. It actually computes
precisely the same intermediate values at the same memory locations as the
unidirectional algorithm, but it computes them in a different order. By doing so, the
algorithm avoids the d global passes of the unidirectional algorithm. For component

grids and the piecewise-linear basis this algorithm causes jG`j �
�
1
B C O

�
1

dpM

��

cache misses, i.e., it works with scanning complexity (touching every grid point
once) plus a lower order term. For the second term to be of lower order a strong
tall cache assumption of M D !

�
Bd
�

is needed. It reflects that we, as is usual
(e.g. [10, 38]), consider the asymptotics of increasing M, and here in particular
demand that M grows faster than Bd. With this strong tall cache assumption, the
leading term of this complexity result is optimal, as every algorithm needs to scan
the input. In addition, the presented algorithm reduces the leading term of the cache
misses by at least a factor of d compared to any unidirectional algorithm. For the
situation that the cache is not that tall but only of size M D ! .B/, we give a variant

of the algorithm that causes at most jG`j �
�
2
B C O

�
1

d�1p
M	Bd�2

��
cache misses.

Depending on the size of the cache, the leading term of the cache misses is therefore
reduced by a factor of d or d=2 compared to the unidirectional algorithm. The
presented algorithm is cache-oblivious, works on a standard row major layout, relies
on a least recently used (LRU) cache replacement strategy, is in-place, performs the
same arithmetic operations as the unidirectional algorithm and works for anisotropic
component grids.

To ease readability and in agreement with common usage in the sparse grid
literature, this paper generally assumes for the O-notation that the dimension d is
constant: In numerics, the dimension d is a parameter inherent to the problem under
consideration. If a more accurate solution is required, the refinement level of the
discretization is increased while the dimension of the problem stays constant. For
completeness, we state the complexity of the divide and conquer hierarchization
algorithm for component grids also including the constant d at the end of the relevant
section.

The rest of the paper is organized as follows: Sect. 2 considers related work,
Sect. 3 explains the relevant concepts of sparse grids and how they are presented in
this paper, Sect. 4 formulates the algorithm and analyses it, Sect. 5 reports on run
time experiments of an implementation on current hardware, and Sect. 6 discusses
conclusions and directions for future work.
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2 Related Work

Hong and Kung started the analysis of the I/O-complexity of algorithms with their
red-blue pebble game [22] assuming an internal memory of size M and basic
blocks of size B D 1.2 To use data for computations, it has to reside in internal
memory. Aggarwal and Vitter extended this basic model to the cache-aware external
memory model [1] with arbitrary block or cache line size B to account for spatial
locality. Frigo et al. generalized this to the cache-oblivious model [10] in which
the parameters M and B are not known to the algorithm and the cache replacement
strategy is assumed to be the best possible. As the parameters M and B are not
known when a cache-oblivious algorithm is designed, a cache-oblivious algorithm
is automatically efficient for several layers of the memory hierarchy simultaneously.
All mentioned theoretical models assume a fully associative cache and so does the
analysis presented in this paper.

Sparse grids [3, 40, 41] and the sparse grid combination technique [18] have
been developed to solve high-dimensional numerical problems. They have been
applied to a variety of high-dimensional numerical problems, including partial
differential equations (PDEs) from fluid mechanics [17], financial mathematics [4,
21] and physics [29], real-time visualization applications [6, 7], machine learning
problems [11, 12, 36], data mining problems [5, 12] and so forth. In a current
project [37], the combination technique is used as depicted in Fig. 1 to simulate
hot fusion plasmas as they occur in plasma fusion reactors like the international
flagship project ITER. In this project the fusion plasmas are modeled using the
gyrokinetic approach which results in a high-dimensional PDE, i.e., five space and
velocity dimensions plus time. Furthermore, the convergence of the combination
technique has been studied for several special cases [34, 35, 39] as well as general
operator equations [15].

Due to the coarse grain parallelism of the component grids the combina-
tion technique is ideal for high performance computing [14]. This coarse grain
parallelism also allows to incorporate algorithm based fault tolerance into the
combination technique [20]. It was discovered early that, for time dependent PDEs,
the component grid solutions need to be synchronized after few time steps [16]
and that the communication needed for this synchronization can be reduced if the
component grid solutions are represented in the hierarchical basis [19]. Recently,
communication schemes that use the hierarchical representation of the component
grid solutions to minimize communication in this synchronization step were derived,
implemented and tested for the setting of the gyrokinetic approach [23, 25, 26].

The problem considered in this work, namely finding efficient hierarchization
and dehierarchization algorithms for sparse grids, has been investigated in many
occasions [6, 8, 9, 24, 28, 32, 33, 36]. All these algorithms implement the unidirec-
tional algorithm and hence sweep d times over the whole data set. The unidirectional

2We use the terms internal memory and cache as well as cache line size and block size
synonymously.
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hierarchization algorithm for component grids has been implemented such that it
is within a factor of 1.5 of the unidirectional memory bound [24]. Therefore, any
significant further improvements have to avoid the global unidirectional principle.
This paper extends the first algorithm that avoids the unidirectional principle on a
global scale [23]. In contrast to this initial version of the algorithm, the algorithm
presented in this paper works in-place and performs the same arithmetic operations
as the unidirectional algorithm. Also, the first lower bound for the hierarchization
task was proven in [23].

3 Sparse Grid Definitions and the Unidirectional
Hierarchization Algorithm

This section describes the necessary notation and background to discuss the sparse
grid hierarchization algorithm. For a thorough description of sparse grids we refer
to the survey by Bungartz and Griebel [3].

Let us begin with a conventional level ` discretization of the 1-dimensional space
� WD Œ0; 1�. The grid points x of G` are

G` D
�

x D i

2`
2 � W i 2 ˚0; 1; : : : ; 2`

�
:

The corresponding nodal basis functions are the piecewise linear hat functions with
peak at the grid point and support of the form � i�1

2`
; iC1
2`
Œ. The 1-dimensional sparse

grid of level n D ` has the same grid points. We use the notation xk;i D i
2k for

0 � k � ` and i 2 f0; : : : ; 2kg. Two distinct pairs .k; i/ and .k0; i0/ describe the same
grid point if the coordinates of the grid points are identical, i.e., if xk;i D xk0;i0 . For a
level-index pair .k; i/ the reduced pair .k0; i0/ is defined to have the smallest i0, i.e., i0
is odd, with xk0;i0 D xk;i. For odd i and 1 � k, the interval Ik;i D�xk;i �2�k; xk;i C2�kŒ,
is the support of the corresponding hierarchical basis function �k;i.x/ with xk;i as
its midpoint, i.e. �k;i.x/ D max.0; 1 � jx � xk;ij � 2k/ as is also depicted in Fig. 2.
The reduced level index pairs of the two endpoints (allowing .0; 0/ as a special
case) define the functions L and R by Ik;i D�xL.k;i/; xR.k;i/Œ. The two grid points
xL.k;i/ and xR.k;i/ are called the left and respectively right hierarchical predecessor.
We additionally define the interval I0;0 D Œ0; 1�. I0;0 differs from I1;1 D�0; 1Œ only
by its two endpoints which are called global boundary points. These two global
boundary points are the only grid points that have no hierarchical predecessors.
The closure Ik;i of an interval Ik;i D�xL.k;i/; xR.k;i/Œ is defined in the usual way as
Ik;i WD ŒxL.k;i/; xR.k;i/�.

We say that Ik;i has the two children intervals IkC1;2i�1 D�xL.k;i/; xk;iŒ and
IkC1;2iC1 D�xk;i; xR.k;i/Œ. We extend this notion (by transitive closure) to descendants,
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Fig. 2 The intervals Ik;i and the corresponding grid points xk;i as well as the piecewise linear basis
functions 'k;i of the hierarchical basis

and observe that an interval Ik0;i0 is a descendant of Ik;i if and only if Ik0;i0 � Ik;i. This
immediately leads to the following statement:

Lemma 1 If a grid point xk0;i0 is element of the interval Ik;i (with odd i and i0)
then k0 � k and the hierarchical predecessors of xk0;i0 are in the closure of Ik;i, i.e.,
.xk0;i0 2 Ik;i/ ) �˚

xL.k0;i0/; xR.k0;i0/
 � Ik;i

�
.

Hierarchization is a change of basis of a piecewise linear function from the nodal
basis of level `, given as the function values yi at position i2�` 2 f0; 2�`; : : : ; 1g, into
the hierarchical basis of the sparse grid. For odd i, k � ` and Ik;i D�xL.k;i/; xR.k;i/Œ,
we get the hierarchical surplus as ˛k;i D yk;i � 1

2
.yL.k;i/ C yR.k;i// for k � 1, and

for the global boundary points we have ˛0;0 D y0;0 and ˛0;1 D y0;1. The grid points
fxk;i; xL.k;i/; xR.k;i/g form the 3-point stencil of xk;i.

Let us now address the d-dimensional case and the discretization of the space
� WD Œ0; 1�d. In general, vectors are written in bold face and operations on them
are meant component wise. The conventional anisotropic grid G` with mesh-width
h`r WD 2�`r and discretization level `r in dimension r 2 f1; : : : ; dg has the grid
points

G` D
�

x D i
2`

2 � W ir 2 ˚0; 1; : : : ; 2`r
8r 2 f1; : : : ; dg

�
:
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The corresponding basis functions are the tensor products of the one-dimensional
basis functions. Hence, the grid G` � Œ0; 1�d is completely defined by its level vector
` 2 N

d
0 describing how often dimension r 2 f1; : : : ; dg has been refined. A grid of

refinement level `r consists of 2`r C 1 grid points in dimension r, the outermost two
of which are called global boundary points, i.e., the points with ir 2 ˚0; 2`r


.

The d-dimensional sparse grid results from a tensor product approach. To express
this, a level and index is replaced by a d-fold level- and index-vector in the
above definition of the sparse grid. The grid points have the form .xk1;i1 ; : : : ; xkd ;id /

corresponding to the basis function with support Ik1;i1 
 � � � 
 Ikd ;id . The regular
sparse grid of level n consists of the grid points with jkj1 � n C d � 1, i.e.,
k1 C � � � C kd � n C d � 1. The anisotropic component grid with level vector `

consists of the grid points with kr � `r .
In this case hierarchization can be performed using the unidirectional principle

using d � 1 intermediate results at every grid point. More precisely, we define d C 1

variables ˛.j/`;i. For j D 0, the variable ˛.0/`;i is the function value at position described

by .i; `/. The final value ˛.d/`;i is the hierarchical surpluses, i.e., the coefficient of the
hierarchical basis functions that represent the function with the prescribed values
at the grid points. For j > 0, the variable ˛.j/`;i is what we call “hierarchized up to
dimension j”, also referred to as the coefficient at position .`; i/ being in state j,
and it is computed from the variables ˛.d�1/
 by applying the 3-point stencil in
direction j. More precisely, for a level index vector .`; i/ define the left hierarchical
predecessor in direction r as Lr.`; i/ WD .`0; i0/, with .`0r; i0r/ WD L.`r; ir/ and
.`0s; i0s/ D .`s; is/ for s ¤ r. Rr is defined analogously for the right hierarchical

predecessor in direction r. With this we define ˛.j/`;i D ˛
.j�1/
`;i � 1

2

�
˛
.j�1/
Lj.`;i/

C ˛
.j�1/
Rj.`;i/

�
,

and for the boundary points in direction r with .kr; ir/ D .0; 0/ or .kr; ir/ D .0; 1/

we have ˛.j/`;i D ˛
.j�1/
`;i . If boundary points are not part of the task, for the sake of

uniformity, we consider the modification of the boundary points as applying a 3-
point stencil, too, only that the non-existent hierarchical predecessor variables are
considered being 0. For a set of grid points U and a direction r let Hr.U/ denote the
set of hierarchical predecessors in direction r.

It is well known that one-dimensional hierarchization can be performed in-
place by performing the hierarchization from high level to low level. It follows
immediately that also high-dimensional hierarchization can be performed in-place
by using the unidirectional principle. This is expressed in Algorithm 1, the classical
unidirectional hierarchization algorithm. This formulation of the algorithm uses the
notion of a pole, i.e., the grid points that are an axis-aligned one-dimensional grid
in dimension k. In our notation, a pole in direction r is expressed as G`;I where the
interval I is such that Ir D Œ0; 1� for the direction r and all other components of
I are single (grid) coordinates. We also use �r.G`/ for the projection of G` along
dimension r, i.e., replacing the r-th coordinate by 0. Therefore, �r.G`/ contains
exactly one grid point of each pole in direction r and can be used to loop over all
poles in this direction.
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Algorithm 1: The unidirectional hierarchization algorithm

1 Function unidirHierarchize(G`)
2 for r 1 to d do // unidirectional loop over dimensions
3 forall xk;i 2 �r.G`/ do // loop over all poles in dimension r
4 for level `r down to 1 do // update pole bottom up
5 kr D level
6 forall index 2 ˚1; : : : ; 2kr � 1 and index odd do
7 ir D index
8 xk;i D xk;i � 0:5 
 �xLr.k;i/ C xRr.k;i/

�

4 Divide and Conquer Hierarchization

This section first derives the basic version of the divide and conquer hierarchization
algorithm (Algorithm 2), proves its correctness and then analyzes its complexity.
Subsequently, this algorithm is used as basic building block to derive hybrid
algorithms which trade a weaker tall cache assumption for an increase in cache
misses. The section ends with a sketch of parallelization possibilities for the derived
algorithms.

In the new algorithm, Algorithm 2, we perform hierarchization in-place as in the
unidirectional algorithm, but we do not follow the unidirectional principle globally.
Like in the unidirectional algorithm We still have one intermediate result per grid
point at any time, but the dimension up to which a grid point is hierarchized depends
on its location.

The new algorithm divides the grid spatially and works on d-dimensional
intervals (generalized axis parallel rectangle). The constituting one-dimensional
interval may consist of a single grid point or be the support of a basis function
corresponding to a grid point. More precisely, we call the d-dimensional interval
I D I1
� � �
Id a valid grid interval for the grid G` with respect to level vector ` if all
intervals are of the form Ir D Ikr ;ir or a single grid point Ir D fxkr;ir g D Œxkr ;ir ; xkr ;ir �,
with kr � `r. Now the subgrid of G` corresponding to the interval I is defined as

G`;I D G` \ I

Such valid grid intervals have few hierarchical predecessors outside of the interval
itself which will ensure that the algorithm is efficient: if Ir is a singleton of the form
Ir D fxk;ig, then I0r WD fxL.k;i/; xR.k;i/g. Otherwise (Ir is an open interval) set I0r WD Ir.
Complete the definition of I0 by setting I0s D Is for s ¤ r. With that, the notion of
hierarchical predecessors is extended to valid grid intervals by defining Hr.G`;I/ WD
I0. Subgrids G`;I can be defined for arbitrary intervals I and are not restricted to
valid grid intervals. Furthermore, we write the shorthand G`;Hr.I/ WD Hr.G`;I/.
To describe the hierarchical predecessors that are part of the 3-point stencil, it is
convenient to define the boundary of an interval as Br.I/ D Hr.I/ n I, i.e., the
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hierarchical predecessors of I which are outside of I. Observe that these boundary
points in different directions are disjoint, i.e., Br.I/\ Bs.I/ D ; if r ¤ s.

The number of grid points sr.G`;I/ (size) in dimension r of grid G`;I , sr.G`;I/ is
the number of different coordinates in dimension r that occur for grid points in G`;I .
For a valid grid interval I of G` we have

sr.G`;I/ D

8
ˆ̂<

ˆ̂:

2`r�krC1 � 1 if Ir D Ikr ;ir (with ir odd);

2`r C 1 if Ir D Œ0; 1�;

1 if Ir is a single grid point:

Next, we define the chooseDim
�
G`;I

�
function for a grid G`;I . It returns the

dimension for which the grid G`;I has the most grid points (ties can be broken
arbitrarily, e.g., choose the smallest dimension).

chooseDim
�
G`;I

� D arg max
1�r�d

fsr.G`;I/g :

To split the multidimensional interval I D I1
� � �
Id in direction r into three parts
we define the following functions. The split functions rely upon G`;I containing
more than one grid point in direction r, i.e. kr < `r. For all dimensions s ¤ r we
set I*

s D Is (for  2 f0; int; 1; left;mid; rightg). The case where Ir D Œ0; 1� is the
only situation where an outer boundary should be split off, hence we set I0r D f0g,
Iint
r D�0; 1Œ and I1r D f1g, and write

boundarySplit
�
r; I
� WD �

I0r ; I
int
r ; I

1
r

�
:

Otherwise Ir D Ik;i, and we set Ileft
r D IkC1;2i�1 D�xL.k;i/; xk;iŒ, Imid

r D fxk;ig and

Iright
r D I`C1;2i�1 D�xk;i; xR.k;i/Œ. We write

interiorSplit
�
r; I
� WD �

Ileft
r ; Imid

r ; Iright
r

�
:

Both splits are depicted in Fig. 3. Clearly, the three parts are a partitioning of the
subgrid, and because only non-trivial dimensions are split, they are all non-empty.

With these definitions, Algorithm 2 is well defined. Its call structure is illustrated
in Fig. 4. Next we show that a call hierarchizeRec

�
0; d;G`; Œ0; 1�

d
�

hierar-
chizes the grid correctly. Subsequently, the complexity of the algorithm is analyzed.

Fig. 3 Left: Applying the boundarySplit to the interval Œ0; 1�. Right: Applying the
interiorSplit to an interior grid interval �xk;j; xk0 ;j0 Œ
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Algorithm 2: Divide and conquer hierarchization algorithm

1 Function hierarchizeRec(s; t;G`; I)
// I is a valid grid interval for G` . Initially, all variables
// of G`;I store the values ˛.s/ , in the end they store ˛.t/.
// This function changes only variables of G`;I .
// It assumes that G`;Br .I/, i.e., the boundary points of I in
// direction r, stores the values ˛.r/.

2 if G`;I D fxk;ig then // grid consists of a single grid point
3 for r .sC 1/ to t do
4 xk;i D xk;i � 0:5 
 �xLr .k;i/ C xRr.k;i/

�

5 else // i.e.,
ˇ̌
G`;I

ˇ̌
> 1

6 r = chooseDim
�
G`;I

�

// split G into subgrids in dimension r
7 if Ir D Œ0; 1� then // case of global boundary
8

�
I0; Iint ; I1

� D boundarySplit
�
r; I
�

9 hierarchizeRec
�
s; .r � 1/;G`; I0

�

10 hierarchizeRec
�
s; .r � 1/;G`; I1

�

11 hierarchizeRec
�
s; t;G`; Iint

�

12 hierarchizeRec
�
.r � 1/; t;G`; I0

�

13 hierarchizeRec
�
.r � 1/; t;G`; I1

�

14 else // Ir � .0; 1/, i.e., no global boundary
15

�
Ileft ; Imid ; Iright

� D interiorSplit
�
r; I
�

16 hierarchizeRec
�
s; .r � 1/;G`; Imid

�

17 hierarchizeRec
�
s; t;G`; Ileft

�

18 hierarchizeRec
�
s; t;G`; Iright

�

19 hierarchizeRec
�
.r � 1/; t;G`; Imid

�

4.1 Correctness

To prove the correctness of Algorithm 2 it is sufficient to show that whenever we
apply the 3-point stencil in direction r, all three participants store the value ˛.r�1/
and that, in the end, the 3-point stencils in all d dimensions have been applied for
all grid points. The presented argument does not rely on the regular structure of the
component grids and hence works for regular and adaptively refined sparse grids
identically.

When an interval Ik;i is split, the boundary of the resulting subintervals is either
part of the boundary of Ik;i or lies exactly in the middle of Ik;i:

Lemma 2 Let I D Ik;i for k � 1 be a valid interval for some grid and assume I is
split by

�
Ileft; Imid; Iright

� WD interiorSplit
�
r; I
�
.

1. In directions different from r, the boundary remains: If s ¤ r we have Bs.Ileft/ �
Bs.I/, Bs.Iright/ � Bs.I/, and Bs.Imid/ � Bs.I/.



114 P. Hupp and R. Jacob

Fig. 4 Hierarchizing a 2-dimensional grid with the divide and conquer hierarchization algorithm
(Algorithm 2). The yellow (or blue or red) grid points are hierarchized up to dimension 0 (or 1 or
2), i.e., store the original functional values ˛.0/k;i (or the values ˛.1/k;i or the hierarchical surpluses ˛.2/k;i ,
respectively). The subgrid that is currently updated is hatched (in red). The algorithm progresses
by hierarchizing complete grid intervals (depicted on the sides)

2. The boundary of full-dimensional parts is the boundary or the split-plane:
Br.Ileft/ � �

Br.I/ [ Imid
�
, and Br.Iright/ � �

Br.I/ [ Imid
�
.

3. The hierarchical predecessors of the split plane is the old boundary: Br.Imid/ D
Br.I/.

Proof Follows from the definitions and Lemma 1 ut
For the correctness of Algorithm 2 observe that the purpose of the call is to

hierarchize the points inside I in direction s C 1; : : : ; t. Accordingly, all points
inside I are assumed to be already hierarchized in directions up to s, i.e., the
variables present ˛.s/. We show that the following invariants hold for the recursion.

For a call of hierarchizeRec(s; t;G`; I) we formulate the following states
of the grid G` .
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Definition 1 (Precondition(G`; I; s))

1. a variable in G`;I holds the value ˛.s/.
2. a variable in G` \ Br.I/ holds the value ˛.r/.

Definition 2 (Postcondition(G`;G0̀ ; I; t))

1. a variable in G0̀ ;I holds the value ˛.t/.
2. all other variables have the same value in G0̀ as in G` .

Lemma 3 If hierarchizeRec(s; t;G`; I) is called in a situation as described
by Definition 1, then the grid G0̀ after the call is as described by Definition 2.

Proof By induction on size of the current subgrid, i.e., the number of grid points in
G`;I . First, consider the case that the current subgrid G`;I contains a single grid
point. Then the for-loop in Line 3 changes the state from the first item of the
precondition to the first item of the postcondition. In this, the stencil in Line 4 is
correct because of the second item of the precondition.

Second, if jG`;I j > 1, then the algorithm performs a split operation. By Lemma 2,
Item 1, the invariant on the boundary in directions different from r is transferred
from the call to all recursive calls. Because the split partitions G`;I into three
subgrids, Item 1 of the precondition is also transferred. The algorithm distinguishes
between 2 further cases with jG`;Ij > 1, namely Ir D Œ0; 1� or Ir � .0; 1/.

In the first case we have Ir D Œ0; 1�. In this case the boundary of I0 and I1 in
direction r is empty, i.e., Br.I0/ D Br.I1/ D ;. Hence, Item 2 of the precondition
holds trivially for the calls in Lines 9, 10 and 12, 13. As Br.Iint / D �

I0 [ I1
�
, it

follows from the postcondition of the first two calls that Item 2 of the precondition
for the call in Line 11 is fulfilled. Item 1 of the precondition for the call in Line 12
follows from Item 1 of the postcondition of the call in Line 9. A similar argument
works for Line 13.

Otherwise Ir is an open interval that contains at least 3 grid points of G` . Hence,
the split operation partitions the subgrid into three non-empty subgrids. Item 2 of
the precondition for the call in Line 16 follows directly from Lemma 2, Item 3.
This establishes by Lemma 2, Item 2 the precondition for the calls in Item 17 and
Item 18. Item 1 of the precondition for the call in Line 19 follows from Item 1 of
the postcondition of the call in Line 16.

The postcondition on the final grid G0̀ for the whole call now follows from the
postconditions of the recursive calls. ut

Therefore, the call hierarchizeRec
�
0; d;G`; Œ0; 1�

d� hierarchizes the whole
grid G` correctly as the precondition holds trivially and the postcondition means
that all grid points are correctly hierarchized.
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4.2 Complexity Analysis

For each grid point Algorithm 2 performs exactly d updates and for each update
precisely 3 grid points are needed. As at most 3 cache lines are needed in cache
simultaneously, the hierarchization of any grid point does not cause more than 3d
cache misses, i.e., 3 cache misses per update, for any reasonable cache replacement
strategy. If the subgrid the algorithm works on is sufficiently small, i.e., the subgrid
and all hierarchical predecessors of the stencil fit it into memory, the algorithm is
much more efficient. In that case the whole subgrid can be hierarchized by loading
it and its hierarchical predecessors into memory once and performing the updates
in memory. As the subgrid fits into cache and no other cache lines are accessed
in between, a LRU strategy ensures that the subgrid stays in cache as long as it is
needed. The analysis builds upon these observations.

Note that for all d-dimensional grids, i.e., for all grids that have more than 1 grid
point in each dimension, the call hierarchizeRec

�
s; t;G`;I

�
always happens

with s D 1 and t D d. The parameters s and t are only altered for the grids of the
form G`;I0r

, G`;I1r
and G`;Imid

r
which have at least one dimension with a single grid

point.
The presented analysis assumes that the grid G` is significantly larger than the

cache. In particular, it is assumed that all directions are refined such that there
exist isotropic subgrids, i.e., subgrids with the same number of grid points in
each dimension, that do not fit into cache. For component grids, this is the case
if
�
2minr `r � 1�d � M, where M is the memory size.
We analyze the performance of the algorithm by focusing on certain calls to

hierarchizeRec
�
0; d;G`; Ii

�
on the same level of the recursion, given by the

family of intervals Ii; i 2 F, where F D f.`; i/ j ` D .m; : : : ;m/g. All Ii have
the same shape and size. We choose them in a way that the level of the subgrid
in each dimension is m. With our particular definition of chooseDim

�
G`;I

�
and

the sufficiently large grids we consider, these calls are actually performed. The
intervals Ii .i 2 F/ almost partition the domain, namely they are disjoint and the
union of their closures is the complete domain, i.e., [iIi D Œ0; 1�d. Note that G`;IinIi

contains the boundary points in all directions and a few more points.
The analysis of such a call is based on the number of grid points of the subgrid

in its interior N.m/ D jG`;Ii j and on its boundary Q.m/ D jG`;IinIi
j. More precisely,

we need a good lower bound on N.m/ (progress), and good upper bounds on N.m/C
Q.m/ (base cost and memory requirement) and Q.m/ (additional cost). For the base
cost and memory requirement we additionally, have to take into consideration the
layout of the grid and how it interacts with the blocks of the (external) memory.

Once we identified an m such that the whole grid G`;Ii
fits into memory, we

can estimate the overall number of cache misses in the following way: the call
hierarchizeRec(0; d;G`; Ii) hierarchizes G`;Ii and costs loading the subgrid
and its boundary. The number of cache misses is .N.m/ C Q.m//=B plus an
additional term that is less then Q.m/ to account for blocks that are not completely
filled (assuming a row major layout). Hierarchizing the boundary G`;IinIi

incurs at
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most 3d cache misses per boundary point. The number of calls can be estimated by
jFj < jG`j=N.m/. Hence, the total number of cache misses is at most

jG`j
N.m/

�
N.m/C Q.m/

B
C .3d C 1/Q.m/

�
� jG`j

�
1

B
C .3d C 2/Q.m/

N.m/
/

�

Hence, in the following we analyze the asymptotic behavior of the additional term
.3dC2/Q.m/

N.m/ , and show that it is o.1=B/.

Lemma 4 Hierarchizing a component grid G` with `r � 1
d log2 M (8r/ using

Algorithm 2 takes

jG`j
�
1

B
C O

�
1

d
p

M

��

cache misses in the cache-oblivious model with the tall cache assumption B D
o. d

p
M/ and an LRU cache replacement strategy.

Proof In the setting of component grids we have N.m/ D .2m � 1/d, and Q.m/ �
2d.2m C 1/d�1. We choose

m D log2
�

d
p

M=2� 1
�
:

leading to

1

N.m/
D 1

.2m � 1/d
D O

�
1

M

�
and Q.m/ � 2d

�
d
p

M=2
�d�1 D O

�
M

d�1
d

�
:

From the tall cache assumption we conclude that for any constant c we have
c � Bd � M for large enough M and B, which we use as B � 1

2
� d
p

M=2. Assuming a
row major layout, the number of occupied cache lines is upper bounded by

��
2m C 1

B

�
C 1

�
� .2m C 1/d�1 � .2m C 1/d

B
C 2 � .2m C 1/d�1 D

D M

2 � B
C 21=d � M

d�1
d � M

2 � B
C 21=d � M

d�1
d � M1=d

2
dC1

d B„ƒ‚…
�1

D M

B
:

Hence, the choice of m is as required in the preceding discussion. In that case the
additional term is

.3d C 2/Q.m/

N.m/
D O

 
M

d�1
d

M

!
D O

�
1

d
p

M

�
D o

�
1

B

�
;

where the last equality is the tall cache assumption. ut
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When the constant d is made explicit in the last equation the lower order term

reads O
�

d2
ı

d
p

M
�

.

4.3 Hybrid Algorithms

One aspect of Algorithm 2 and its analysis that might limit its applicability is the

fairly strong tall cache assumption B D o
�

d
p

M
�

. Algorithm 1, in contrast, can be

modified to work with jG`j � d
B C O

�
1
M

��
cache misses if B D o .M/. In fact, these

two algorithms mark the corners of a whole spectrum of algorithms that become
more cache efficient as the cache gets taller. Instead of working subsequently in
all d directions as Algorithm 1, or merging all d phases as Algorithm 2, these hybrid
algorithms merge c 2 N, 1 � c � d phases of the unidirectional principle. To
discuss these hybrid algorithms it is first assumed that the component grid G` is
stored in a block aligned fashion, i.e., every pole in direction 1 is padded with
dummy elements such that every pole starts at the beginning of a cache line. As a
result, all poles are split into cache lines in the very same way. After discussing this
aligned case, the hybrid algorithms are also sketched for the case that the alignment
is not possible.

Lemma 5 For every c 2 N, 1 � c � d and c divides d there is an algorithm
that, assuming a tall cache with M D ! .Bc/, performs hierarchization on a block

aligned component grid G` with jG`j
�

d
c � 1B C O

�
1

cpM

��
cache misses.

Proof Let us first consider the case of c D 1, i.e., the mentioned modification of
Algorithm 1. To hierarchize a pole, replace Algorithm 4 to Algorithm 8 by the call
hierarchizeRec(r�1; r;G`; I) for the one-dimensional poles e.g. I D Œ0; 1�

fxk2;i2g 
 � � � 
 fxkd;id g.

For r D 1 and the considered row major layout, the poles are contiguous in
memory. Therefore, each pole can be considered as a 1-dimensional subgrid to
which Algorithm 2 is applied. Therefore, Lemma 4 yields that this modification
of Algorithm 1 needs jG`j � 1B C O

�
1
M

��
cache misses for the first unidirectional

pass, i.e., to hierarchize the first dimension. In that case, the tall cache assumption
of Lemma 4 is B D o .M/.

For r > 1 the poles worked on are not stored contiguously in memory, and
working on a single pole at a time would access a whole cache line to only work
with a single element. This can be avoided by the following kind of blocking that
works with the poles in direction r that share the same cache line. These poles
are by layout neighboring in direction 1. For the sake of the formulation of the
algorithm and its complexity analysis, this allows us to consider the cache lines
instead of the grid points as the atomic elements, which results in cache line size
B0 D 1, internal memory size M0 D M=B and grid size G0̀ D G`

ı
B (all in cache

lines). As we now consider B0 D 1, the memory can be filled with the new
(meta-)poles without polluting the internal memory with other grid points.
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Therefore the analysis is identical to the case of r D 1 which yields that transferring
the grid from state ˛.r�1/ to state ˛.r/ needs jG`j � 1B C O

�
1
M

��
cache misses and a

tall cache assumption of B D o .M/.
For c > 1 the one-dimensional poles are replaced by c-dimensional planes.

The hybrid algorithm works in d=c phases and each phases hierarchizes the grid
from state ˛..p�1/	c/ to state ˛.p	c/ for some p 2 N. If c D 2, the interval is for
example I D Œ0; 1� 
 Œ0; 1� 
 fxk3;i3g 
 � � � 
 fxkd;id g and this I can be regarded as
a 2-dimensional pole which can be hierarchized in dimension 1 and 2 by the call
hierarchizeRec(0; 2;G`; I). The hybrid algorithm performs this call for all
such intervals, bringing the complete grid to the state ˛.c/.

For p D 1, the intervals are in contiguous memory and the c-dimensional analysis
of Lemma 4 applies. This shows that transforming the grid from state ˛.0/ to state

˛.c/ takes jG`j
�
1
B C O

�
1

cpM

��
cache misses and requires the tall cache assumption

B D o. c
p

M/.
For p > 1, i.e., if the intervals are orthogonal to the direction of the layout, we

can again use a version of the algorithm that works on B intervals simultaneously,
i.e., regards the cache lines as the atomic elements instead of the grid points (i.e.,
cache line size B0 D 1, internal memory size M0 D M=B and grid size G0̀ D G`

ı
B

(all in cache lines)). As we consider the case B0 D 1, the same analysis as in the
case of hierarchizing the first c dimensions, i.e., p D 1, can be applied. This yields
that transforming the grid from state ˛..p�1/	c/ to state ˛.p	c/ for any p > 1 causes
jG` j

B

�
1
1

C O
�

c

q
B
M

��
D jG`j

�
1
B C O

�
1

cp
M	Bc�1

��
cache misses. The tall cache

assumption required to use the analysis of the p D 1 case is B D o .M/. This
assumption also guarantees that the second term is of lower order.

As this hybrid algorithm performs d=c sweeps over the complete grid and the

lower order term for p D 1 dominates that of p > 1, i.e., 1
cp

M	Bc�1
D O

�
1

cpM

�
given

B D o .M/, the statement of the lemma follows. ut
Lemma 6 For 1 � u < d and assuming a tall cache of M D ! .Bu/, the number of
cache misses to hierarchize a block aligned component grid G` is

jG`j
�
2

B
C O

�
1

u
p

M

�
C O

�
1

d�u
p

M � Bd�u�1

��
:

Proof Consider a hybrid algorithm which works in 2 passes, each pass hierarchizing
a different number of dimensions: the first pass hierarchizes the first u dimensions,
i.e., c D u and p D 1. The second pass hierarchizes the last .d � u/ dimensions,
i.e., c D .d � u/ and p > 1. It follows from the proof of Lemma 5 that the first pass

requires a tall cache assumption of B D o
�

u
p

M
�

and causes jG`j
�
1
B C O

�
1

upM

��

cache misses. Also by the proof of Lemma 5, the second pass requires a tall cache

assumption of B D o .M/ and causes jG`j
�
1
B C O

�
1

d�up
M	Bd�u�1

��
cache misses.

ut
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For u � d=2, it holds that 1
d�up

M	Bd�u�1
D O

�
1

upM

�
such that the first lower order

term in Lemma 6 dominates. As the tall cache assumption M D ! .Bu/ just becomes
stronger as u increases, choosing u > d=2 is therefore not advantageous. For u <
d=2, it depends on the actual size of the cache whether the first or the second lower
order term dominates. In particular, for u D 1, Lemma 6 becomes:

Lemma 7 Assuming a cache of size M D ! .B/, a block aligned component

grid G` can be hierarchized with jG`j
�
2
B C O

�
1

d�1p
M	Bd�2

��
cache misses.

If for some reason a block aligned layout of the component grid is not feasible,
the hybrid algorithms can block b poles together. When b is sufficiently larger than B
(i.e., B D o .b/), then there are at most two cache lines which contain also unused
grid points for every bb=Bc�1 full cache lines. This changes the term 1=B to .1=BC
3=b/ in the above analysis, adding another lower order term, and the effective size
of the cache to M0 D M=b.

4.4 Parallelization

To achieve high performance on modern machines, it is important that an algorithm
can use many parallel processors. In Algorithm 2 this is possible by executing
the two recursive calls in Line 17 and Line 18 in parallel. This is still a correct
algorithm because Ileft

r and Iright
r are disjoint and the precondition for both calls

is already established after Line 16. On the level of grid points, i.e. B D 1,
the resulting algorithm implements an “exclusive write” police, i.e., two different
processors never write to the same memory location simultaneously. Without further
synchronization it requires the possibility of “concurrent read” because both parallel
calls read the variables in G`;Imid

r
.

Considering cache-lines, it is possible that two different processors write to the
same cache line. To avoid this, the algorithm performs the two calls serially if and
only if the split was done in dimension 1, the direction in which a cache line extends.
Hierarchization of the boundaries only needs O.jG`j=M/ cache misses, even if it
would be performed in serial. On a system with P processors, each having a private
cache of size M, the above version of Algorithm 2 achieves that the number of

parallel cache misses is jG`j
�
1

PB C O
�

1
dpM

��
as long as P � Qd

rD2 2`r .

5 Experimental Evaluation

In this section we report on the run times of our implementation of the described
recursive algorithm, its variants and alternatives. The experiments confirm that
the main bottleneck of the task is the memory access. We conclude this from
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the observation that the measured running times are generally close to what
the I/O model predicts. Hence, further improvement can only be expected when
implementing a different I/O algorithm. Still, it should be noted that this is only true
once the implementation is sufficiently carefully optimized in other aspects, most
notably multicore parallelism and vectorization, but also branch mispredictions,
overhead for (recursive) function calls, and the creation of parallel tasks. We also
observe that with increasing dimension the gap between the prediction and the
measurements increases, which we suppose has several reasons: Our analysis is not
particularly careful with respect to higher dimensions and constant memory size.
The I/O-model ignores additional memory effects like the TLB, i.e., the cache used
to perform virtual memory translation.

5.1 Setup and Systems

We implemented the algorithm in C++, using openMP for parallelization and hand
coded AVX-vectorization. In the implementation we use the C-style numbering of
the dimensions starting with 0, but in the description here we translate this to the
usual numbering from 1 to d. The experiments are performed for the case without
boundary points, i.e., where all global boundary points are implicitly 0.0. For the
recursive algorithms, this is actually more complicated than if all boundaries are
present because the recursive calls create some cases with boundaries and hence it
is necessary to keep track of the existence of boundaries in the different directions.
This allows a direct comparison with [24].

The main focus of the experiments is wall-clock run-time as measured by the
chrono timer provided in C++11. This is usually taken relative to the time it takes
to touch the grid once, as calculated from the measured performance by the stream
benchmark (using as many cores as helpful), multiplied with the size of the grid. The
stream benchmark measures the speed at which the CPU can access large amounts
of data that is stored contiguously. It turned out to be sensitive to the used compiler,
so we always took the highest performance reported.

The experiments do not empty the cache in order to provide cold cache
measurements, but by the size of the grid and the structure of the algorithm, the
influence of the content of the cache when the measurement starts is small.

The implementation is compiled with gcc in the version available on the
architecture (see below), using the flags -mavx -Wa,-q -Wall -fopenmp
-std=c++11 -march=native -O3. We use openMP to run the code on
several cores in parallel, using the static scheduling to distribute the work of for
loops, and the concept of tasks for the recursive algorithm. Our code compiles with
icc, but a small set of test runs showed that for the bigger grids we are interested in,
there were hardly any differences to gcc.
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5.1.1 System 1: Rechenteufel

Most of the experiments were performed on this system. It is a standalone
workstation (called Rechenteufel) with an IvyBridge Intel(R) Xeon(R) CPU E3-
1240 V2 3.40 GHz. with 8 MB shared L3 cache. (From IvyBridge Specs: private
L2 Cache of 256 KB, private L1 Cache of 64 KB.) It has 1 CPU with 4 cores (no
hyperthreading) and 32 GB DDR3 main memory. The stream benchmark using icc
version 13.1.3 (gcc version 4.7.0 compatibility) gives a performance of 21.9 GB/s =
21:9 � 109 byte/s. The used gcc has version 4.8.3. For the reported experiments the
maximum grid sizes are roughly 8 GB (a quarter of the main memory).

5.1.2 System 2: Hornet

This system is used for the experiments with GENE. It is one node of a super-
computer called hornet. The CPU is an Intel Haswell E5-2680v3 2,5 GHz with 12
Cores, hyperthreading off, and 30 MB shared L3 cache. (from haswell sepcs: L2
cache: 256 KB per core, L1 cache 64 KB per core), and it has 64 GB DDR4 main
memory. One node has two such CPUs, but our experiments only used one of them.

The stream Benchmark with cc (cray compiler) version 8.3.6, using 12 cores,
gives 57:286 � 109 Bytes/s.

5.2 Compared Algorithms

Our experimental evaluation considers the task of hierarchization without boundary
points.

5.2.1 Unidirectional Algorithm

The basic unidirectional algorithm has been implemented very efficiently as de-
scribed in [24]. It has a natural lower bound of d times scanning, which is almost
achieved in many cases.

5.2.2 Recursive Algorithm

This is an implementation of Algorithm 2, as explained and analyzed in Sect. 4.
Hence, for sufficiently big cache (compared to the dimension), this algorithm scans
the data set once.

To reduce the overhead of recursive execution, we use as base case regions
(sub-)poles in dimension 1 of level recTile. In our data layout, such a region is
consecutive in memory. Hierarchization in dimension 1 needs two additional values
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and is done iteratively and without vectorization. In contrast, each hierarchization
in a dimension different from 1 needs two other such regions, and the application of
the stencil is done vectorized using AVX instructions on 4 doubles.

Multi-core parallelism is implemented as described in Sect. 4 using openMP
tasks. To avoid the task creation overhead for very small tasks, we do not create
tasks if the level sum of the current recursive call is too small. With a focus on the
shared level 3 cache, we also do not parallelize the tasks if the level sum is too big.
These limits are called minSpawnLevel and maxSpawnLevel.

Given that this algorithm has the three parametersrecTile,minSpawnLevel
and maxSpawnLevel, we conducted a parameter study that lead to a reasonable
heuristic to choose these parameters. This algorithm turned out to be the fastest for
problems with 2, 3 or 4 dimensions.

5.2.3 Hybrid Algorithm: Twice Rec

This is an implementation of the hybrid Algorithm described in Sect. 4.3 that
performs two scans over the data set. The first phase considers meta-poles in
dimensions 1 to dsplit, i.e. 1 � dsplit < d. These are small complete dsplit dimensional
component grids, presumably small enough to fit into cache. They are hierarchized
iteratively using the optimized unidirectional algorithm of [24]. The loop over these
subgrids is parallelized.

The second phase is Algorithm 2 operating on vectors that constitute the
hierarchized dsplit dimensional subgrids. Here, the base case is a single vector, and
the application of the stencil is vectorized. To increase the number of vectors that
can fit into cache, we split the vectors into chunks of BlockSize elements. But, to
amortize the overhead of the recursive call structure to sufficiently big base cases,
we should not choose BlockSize too small. Hence for the second phase we have
the parameters BlockSize, minSpawnLevel and maxSpawnLevel, and for
the overall algorithm the additional dsplit. Again, a parameter study lead to a heuristic
to choose good values for these parameters, namely to use BlockSize D 1024

and choose dsplit in a way that the level sum of the subgrids is at least 14.
This algorithm currently gives the best performance for dimensions 5 and 6.

5.3 Parameter Study and Heuristics

The study of the parameters minSpawnLevel, maxSpawnLevel, and
recTile for the recursive and BlockSize and dsplit for the hybrid Algorithm
needs to consider a big parameter space. Hence, we did not include further
parameters and always used 8 openMP threads and grids of size 8 GB. Further,
we did not repeat the individual runs. Accordingly, the heuristic to choose the
parameters might not be perfect, but as we will see in the next sections, the
performance achieved with this heuristic is usually already pretty good.
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5.3.1 Recursive

The parameters of the recursive algorithms are all depending on the level sum
of the current rectangle. Hence, they can be at most maxLevel D Pd

iD2 `i.
In the parameter study we vary maxSpawnLevel between 4 and maxLevel,
and minSpawnLevel between 3 and maxSpawnLevel � 1. The parameter
recTile varies between 2 and `1.

The following heuristic yields performance that is close to the best choice of
parameters: We chose recTile to be `1 if this is smaller than 14, else we
choose it to be 5. Further we choose maxSpawnLevel D maxLevel � 2,
minSpawnLevel D maxLevel � 7. This choice of parameters is reasonable
in the following sense: A real split in the first dimension is expensive as on the
boundary we access a whole cache line to use a single grid point. Therefore, if
the first dimension is small, it is better to not split it at all. If the first dimension
is very large, then the recTile is chosen rather small such that the tiles are
more quadratic and the interior to boundary ratio is better than for tiles with a
very long first dimension. Only recursive calls between maxSpawnLevel and
minSpawnLevel are parallelized. Hence, this difference needs to be at least the
binary log of the intended number of parallel tasks, explaining the difference of 5.
Keeping maxSpawnLevel slightly away from maxLevel leads to all threads
working on some (still big) subgrid, which seems beneficial, perhaps because of
caching effects in the virtual address translation (TLB). Generally we observe that
the performance was not very sensitive to the choice of the spawn levels.

5.3.2 Twice Recursive

The algorithm is only meaningful if the parameter split dimension is in the interval
1 � dsplit < d, and the parameter study explores this whole range. The block size

BlockSize is set to all powers of 2 between 4 and
�Qdsplit

iD1 2`i

�
� 2.

This lead to the heuristic of choosing dsplit as the smallest dimension i such
that l D Pi

jD1 `j > 13, and choosing BlockSize D 1024. With this heuristic,
the subgrids of the first phase are at least 214C3bytes D 128KB big (and not
too much bigger). Hence, they can fit into the private L2 cache of 256 KB if
l � 15, and will fit into the 8 MB big L3 cache even if all four cores are active
if l � 18. The choice of BlockSize is a reasonable compromise between keeping
the memory requirement small and having enough work to amortize the overhead
of the recursion.

5.3.3 Data and Results for Parameter Study

The results of the parameter study for the recursive algorithm are shown in Table 1,
that of the twice recursive algorithm in Table 2. Comparing the running times
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Table 1 Best runtime of the “Recursive” Algorithm over the searched parameter space and run-
time given the parameters chosen by the heuristic. 8 OMP threads on a 4 core CPU (rechenteufel)

d D 2
Runtime Parameters Runtime Parameters Runtime (heuristic)

Runtime (best)
(best) [s] (best) (heuristic) [s] (heuristic)

` D .15; 15/ 0.98
SpawnLevel D .13; 14/

1.00
SpawnLevel D .8; 13/

1.01
recTile D 5 recTile D 5

` D .20; 10/ 0.99
SpawnLevel D .7; 8/

1.00
SpawnLevel D .3; 8/

1.01
recTile D 5 recTile D 5

` D .10; 20/ 0.88
SpawnLevel D .16; 17/

0.90
SpawnLevel D .13; 18/

1.02
recTile D 7 recTile D 10

d D 3
Runtime Parameters Runtime Parameters Runtime (heuristic)

Runtime (best)
(best) [s] (best) (heuristic) [s] (heuristic)

` D .10; 10; 10/ 1.21
SpawnLevel D .17; 20/

1.21
SpawnLevel D .13; 18/

1.00
recTile D 7 recTile D 10

` D .15; 8; 7/ 1.57
SpawnLevel D .12; 14/

1.58
SpawnLevel D .8; 13/

1.01
recTile D 5 recTile D 5

` D .8; 7; 15/ 1.12
SpawnLevel D .19; 20/

1.12
SpawnLevel D .15; 20/

1.00
recTile D 8 recTile D 8

d D 4
Runtime Parameters Runtime Parameters Runtime (heuristic)

Runtime (best)
(best) [s] (best) (heuristic) [s] (heuristic)

` D .8; 8; 7; 7/ 1.77
SpawnLevel D .18; 21/

1.80
SpawnLevel D .15; 20/

1.02
recTile D 6 recTile D 8

` D .12; 6; 6; 6/ 2.14
SpawnLevel D .4; 17/

2.21
SpawnLevel D .11; 16/

1.03
recTile D 7 recTile D 12

` D .6; 6; 6; 12/ 1.86
SpawnLevel D .15; 16/

1.98
SpawnLevel D .17; 22/

1.06
recTile D 6 recTile D 6

d, `
Runtime Parameters Runtime Parameters Runtime (heuristic)

Runtime (best)
(best) [s] (best) (heuristic) [s] (heuristic)

d D 5
2.76

SpawnLevel D .19; 20/
3.04

SpawnLevel D .17; 22/
1.10

` D .6; 6; 6; 6; 6/ recTile D 5 recTile D 6

d D 6
3.81

SpawnLevel D .10; 22/
4.61

SpawnLevel D .18; 23/
1.21

` D .5; 5; 5; 5; 5; 5/ recTile D 3 recTile D 5

between the tables shows that the recursive algorithm is clearly faster for up to 3
dimensions, for 4 dimensions it is slightly faster, and for 5 and 6 dimensions twice
recursive is faster. This is coherent with the theoretical analysis that the interior
to boundary ratio and the tall cache requirement become bad for the recursive
algorithm, whereas the twice recursive algorithm can in both phases be close to
the scanning bound. The anisotropic grids are only reported for the generally faster
algorithm.

The heuristic works well, it manages to get within 5 % of the running time
with the best parameters for the recursive algorithm, and within 22 % for the twice
recursive algorithm. In one case the running time of the heuristic is actually reported
to be faster than that of the best parameters, which is an artifact of repeating the
run and means that the heuristic is optimal up to measurement accuracy. In the
following, we will always use the heuristic to chose the parameters.
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Table 2 Best runtime of the “Twice Recursive” Algorithm over the searched parameter space and
runtime given the parameters chosen by the heuristic

d, `
Runtime Parameters Runtime Parameters Runtime (heuristic)

Runtime (best)(best) [s] (best) (heuristic) [s] (heuristic)

d D 2
1.77

dsplit D 2
1.85

dsplit D 2
1.05

` D .15; 15/ BlockSizeD 8192 BlockSizeD 1024

d D 3
2.12

dsplit D 2
2.90

dsplit D 3
1.37

` D .10; 10; 10/ BlockSizeD 256 BlockSizeD 1024

d D 4
2.03

dsplit D 3
1.99

dsplit D 3
0.98

` D .8; 8; 7; 7/ BlockSizeD 1024 BlockSizeD 1024

d D 5
Runtime Parameters Runtime Parameters Runtime (heuristic)

Runtime (best)(best) [s] (best) (heuristic) [s] (heuristic)

` D .6; 6; 6; 6; 6/ 2.42
dsplit D 3

2.45
dsplit D 4

1.01
BlockSizeD 1024 BlockSizeD 1024

` D .10; 5; 5; 5; 5/ 1.97
dsplit D 3

2.22
dsplit D 3

1.13
BlockSizeD 2048 BlockSizeD 1024

` D .5; 5; 5; 5; 10/ 1.41
dsplit D 4

1.50
dsplit D 4

1.06
BlockSizeD 1024 BlockSizeD 1024

d D 6
Runtime Parameters Runtime Parameters Runtime (heuristic)

Runtime (best)(best) [s] (best) (heuristic) [s] (heuristic)

` D .5; 5; 5; 5; 5; 5/ 1.66
dsplit D 4

1.72
dsplit D 4

1.04
BlockSizeD 1024 BlockSizeD 1024

` D .8; 5; 5; 4; 4; 4/ 2.23
dsplit D 4

2.30
dsplit D 4

1.03
BlockSizeD 8192 BlockSizeD 1024

` D .5; 5; 4; 4; 4; 8/ 1.55
dsplit D 4

1.89
dsplit D 4

1.22
BlockSizeD 512 BlockSizeD 1024

5.4 Strong Scaling

A classical experiment is that of strong scaling, i.e., comparing the runtime for
the same task with different number of threads, depicted in Fig. 5. In all cases
we see perfect scaling between one and two threads, and in most cases a constant
performance for four or more threads, which reflects that the machine has four cores.
We also see that two threads already achieve more than half of the best performance.
For the 6 dimensional case we observe that the second phase of the twice recursive
algorithm has a somewhat unstable performance, and that only for 11 and 12 threads
it is close to scanning time. For the 5 dimensional case the performance is stable but
the first phase takes two times scanning, reflecting that the subgrids are bigger than
they should ideally be. All in all, twice recursive does not quite achieve the possible
performance of scanning twice, but it still outperforms the unidirectional scanning
bound by a factor of two for six dimension, and almost that for five dimensions.
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Fig. 5 Scaling of the two algorithms on a four core single CPU machine

Fig. 6 Influence of anisotropy on the performance

5.5 Anisotropic Grids

In the context of the combination technique, many component grids are anisotropic.
We address this by considering grids of different dimensions with level sum 30, i.e.,
roughly 8 GB of data, as reported Fig. 6. In all tested cases, the unidirectional bound
is beaten, in many cases quite clearly. Three cases achieve almost the best possible
performance. The recursive algorithm suffers somewhat from the first dimension
being refined further. For the twice recursive algorithm, changing the most refined
dimension actually changes the split between the two phases, which has a strong
influence on performance. Further, the performance is better if the refined dimension
is handled in the second phase.

5.6 Speedup over Unidirectional ICCS Code

So far we mainly compared the recursive implementations with the scanning bound,
which provides lower bounds, directly for the recursive algorithm, multiplied by 2
for twice recursive and multiplied by d for the unidirectional algorithm. Here we
compare this performance with the unidirectional implementation presented in [24].
As we can see in Fig. 7, the new implementation is superior for grids with more than
a million points, i.e., roughly 100 MB size.
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Fig. 7 Comparison of the unidirectional implementation and the recursive ones

Fig. 8 Performance of the recursive algorithms with respect to grid size. Reports average running
time per point (relative to scanning bound) over 10 runs, errorbars show min and max

5.7 Increase Grid Size

Another important aspect of the code is how it scales with the size of the grids
as depicted in Fig. 8. We see that for grids with at least a million points (8 MB
size), the performance is stable, and it seems to converge to a constant depending
on the dimension. This is in line with the analysis in Sect. 4.2. In all cases we
see the performance well below the bound of the unidirectional algorithm, and for
dimensions 2 and 3 the recursive algorithm is close to scanning once. In dimensions
5 and 6 the performance is reasonable close to scanning twice, as expected for the
twice recursive algorithm.

5.8 GENE

One important example for the combination technique, as mentioned in the introduc-
tion, is the case of using GENE to simulate a fusion reactor, as reported in Fig. 9. The
peculiar situation here is that the first two dimensions are in phase space and should
hence not be hierarchized. This can easily be accommodated by using the twice
recursive algorithm with dsplit D 2. The grid sizes stem from a pilot study performed
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Fig. 9 Grid sizes relevant for the fusion reactor simulation using GENE; haswell system running
with 12 threads on 12 cores. The grids have size 32 GB and scanning once is roughly one second

by Mario Heene and Dirk Pflüger in Stuttgart, and we conducted these experiments
on the haswell system (as described earlier). We see that the hierarchization of
dimensions 3 to 5 takes less time than scanning the grid twice. These measurements
show that also on this architecture the implementation performs well and even the
heuristic for choosing the parameters (taken from rechenteufel) is not too system
specific.

6 Conclusions

This paper has introduced a novel approach to sparse grid algorithms by deriving
a cache-oblivious hierarchization algorithm (Algorithm 2) that avoids the d global
phases of the unidirectional principle but applies it recursively to smaller subprob-
lems that fit into cache. For the piecewise linear basis and the component grids
of the sparse grid combination technique, a discretization scheme to solve high-
dimensional numerical problems, the cache complexity of this algorithm is optimal
as the leading term of the cache misses is reduced to scanning complexity. For
optimality, Algorithm 2 relies on the tall cache assumption M D !

�
Bd
�
. The

general idea of divide and conquer, however, can also be used to derive hybrid
algorithms that merge several but not all phases of the unidirectional principle.
These hybrid algorithms trade a weaker tall cache assumption off against a slightly
increased complexity. One such algorithm only needs a cache of size M D ! .B/
and, basically, scans the grid twice.

As sparse grids are inherently hierarchical, the divide and conquer approach can
also be generalized to other kinds of basis functions and sparse grid tasks such as
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dehierarchization, i.e., the inverse transformation from the hierarchical basis to the
nodal basis, and up-down schemes used to solve PDEs directly in the sparse grid
space. In addition, Algorithm 2 is not limited to component grids but can also be
applied for adaptive and regular sparse grids. In these cases, the ratio of the number
of interior grid points of a grid interval divided by the boundary grid points, which
can be seen as progress/costs, becomes worse. As a result, the analysis presented
for component grids would need to be altered to show that the leading term of cache
misses is also optimal in the setting of regular sparse grids.

The analysis of the I/O complexity of Algorithm 2 is complemented with an
implementation. The presented results show, that it is possible to handle additional
factors that influence runtime such as vectorization and branch predictions well
enough that the memory connection is used almost fully. In particular, the new
implementation clearly outperforms previously existing implementations, and in
several cases it comes close to optimal performance (as is possible by the memory
system).

In the experiments, we see that it is advantageous if the base case is square with
respect to cache lines, a case that should be possible to analyze theoretically as well.
Then, perhaps, a weaker tall cache assumption might be sufficient.
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Spatially-Dimension-Adaptive Sparse Grids
for Online Learning

Valeriy Khakhutskyy and Markus Hegland

Abstract This paper takes a new look at regression with adaptive sparse grids.
Considering sparse grid refinement as an optimisation problem, we show that it is
in fact an instance of submodular optimisation with a cardinality constraint. Hence,
we are able to directly apply results obtained in combinatorial optimisation research
concerned with submodular optimisation to the grid refinement problem. Based on
these results, we derive an efficient refinement indicator that allows the selection
of new grid indices with finer granularity than was previously possible. We then
implement the resulting new refinement procedure using an averaged stochastic
gradient descent method commonly used in online learning methods. As a result
we obtain a new method for training adaptive sparse grid models. We show both for
synthetic and real-life data that the resulting models exhibit lower complexity and
higher predictive power compared to currently used state-of-the-art methods.

1 Introduction

Sparse grids have been successfully used for different data mining and machine
learning tasks including regression, classification, clustering, and density estimation
[10, 13, 14, 23, 24, 26]. As the demand for mining larger datasets with more
and more features increased over the years, so did the number of different sparse
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grid techniques. These new techniques are based on the application of dimension-
adaptive generalised sparse grids [15] and the combination technique [13] to data
mining problems, the development of spatially-adaptive sparse grids [27], and the
implementation of different methods for parallelised training of sparse grids models,
i.e. parallel CG [16] and ADMM [18].

Replacing a full grid by a sparse grid leads to a substantial reduction in time
complexity with just slightly lower accuracy, consequently delaying the onset of
the curse of dimensionality [9]. As a result, Garcke [13] and Pflüger [26] were
able to solve high-dimensional data mining problems including the 18-dimensional
Data-Mining-Cup, the 22-dimensional mushroom classification problem, the 64-
dimensional optical digits recognition problem, and the 166-dimensional Musk-1
benchmark.

This paper focuses on the procedures for refinement and fitting of sparse grid
models. In particular, we suggest to fit models using online gradient descent
methods instead of the conjugate gradient method used before for this purpose.

Online learning is an actively developing area of machine learning with many
different facets. Moreover, the term “online learning” is used alongside and some-
times interchangeably with the terms “stream learning” and “one-pass learning”.
In the following, we will use the term “online learning” to imply “training a
predictive model incrementally, by updating the model using one data point at
a time”. Other aspects of online learning with sparse grids have been discussed
elsewhere: for example, Peherstorfer et al. presented a classification method based
on the Offline/Online splitting [25] and Strätling analysed incremental updates to
handle concept drifts [31].

The online gradient descent method – a stochastic approximation of the gradient
– enables online learning of predictive models [5] and thus renders regression
problems with large numbers of data instances feasible [4]. In this work we focus
on the averaged stochastic gradient descent (ASGD) method, which is a stabilised
version of the online gradient descent method [28]. While some studies investigate
the setting where every training example can be considered only once (stream
or one-pass learning), we allow a revision of the samples (multi-pass learning).
Although ASGD is not a new method, to the best of our knowledge, its effectiveness
in the context of sparse grid regression has not been studied previously.

Furthermore, we show how the grid refinement can be analysed in the framework
of submodular optimisation and develop new optimality criteria arising from this
analysis. Based on this we are able to present a new procedure for training sparse
grids with lower computational costs.

The remainder of this paper is organised as follows: Sect. 2 introduces the basic
theory and notation used throughout this paper. The new method is described in
Sect. 4. We compare and discuss the performance of the new method in Sect. 14.
Finally, Sect. 3 concludes this work with a summary and a discussion of open
questions.
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2 Theoretical Background

We begin with the description of how regression can be cast into the regularised
least squares problem and how adaptive sparse grid models can be used to solve this
problem.

A typical regression problem in data mining goes as follows: We are given
a dataset, a finite set S D f.xi1; : : : ; xid; yi/gN

iD1 � Œ0; 1�d 
 Rg drawn from a
probability distribution S with often unknown probability density function p. We
call xi D .xi1; : : : ; xid/

T the input variables and corresponding yi the dependent or
target variables. In general, xi may take any value in R

d. However, for any finite
dataset we can normalise the input variables to Œ0; 1�d.1

We further assume the existence of an unknown function that generates the
targets from the input variables. Our goal is to find an approximation to this function
in a function space V .

In practice we are computing the minimiser of the regularised empirical risk with
squared loss function

R. f I S/ WD 1
N

NX

iD1
. f .xi/� yi//

2 C �kf k2V : (1)

The regularisation term kf k2V measures the model complexity and the parameter �
controls the trade-off between data fitting and smoothness.

Since the sample size is limited, the minimisation of (1) can be ill-posed if V is
infinite-dimensional. In this work we use a finite-dimensional Hilbert space

VG WD spanf'g j g 2 Gg;

where G is a finite set whose elements index the basis functions.
Let f and u be two functions from VG with f .x/ D P

g2G wg'g.x/ and u.x/ DP
g2G vg'g.x/. Let w D .wg/g2G and v D .vg/g2G be the vectors indexed by the set

G with components wg and vg respectively. Since the elements of G can uniquely
identify the components of w and v, we denote the space of all possible values of
these vectors by R

G. The inner product of VG is defined as

h f ; uiVG D
X

g2G

wgvg: (2)

1To normalise a finite dataset we would need to calculate minimal and maximal values of the
input in all dimensions. This can be done even by passing through the dataset: first we initialise
two variables xmin and xmax with the first element and then update the components of these two
variables if the new input patterns would have smaller/larger vales than stored.
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Every f 2 VG is uniquely identified by its coefficients w 2 R
G. Hence, the

regularised expected risk functional (1) for finite-dimensional function spaces can
be rewritten in terms of w and G:

J.wI G/ WD
NX

iD1

0

@
X

g2G

wg�g.x/� yi

1

A
2

C �N
X

g2G

w2g: (3)

Here we have also multiplied the expression by N, which simplifies the notation that
follows and does not change the minimiser of J.

Given that the function space VG is fixed, to solve the regression problem we
compute the minimiser

w? WD arg min
w2RG

J.wI G/: (4)

This cost function can be further split into the sum of functions of individual data
points:

J.wI G/ D
NX

iD1

0

@
X

g2G

wg'g.xi/� yi

1

A
2

C �N
X

g2G

w2g

D
NX

iD1

0

B@

0

@
X

g2G

wg'g.xi/ � yi

1

A
2

C �
X

g2G

w2g

1

CA :

We denote the term corresponding to the data point .x; y/ by

Jpoint.w; x; yI G/ WD
0

@
X

g2G

wg'g.x/� y

1

A
2

C �
X

g2G

w2g; (5)

such that

J.wI G/ D
NX

iD1
Jpoint.w; xi; yiI G/:

Numerically, one may determine the minimiser of J.wI G/ using the gradient
descent method which defines a sequence wt by

wtC1 D wt � � trwJ.wtI G/: (6)
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Depending on the particular choice of � t and the adjustment of the update direction
with respect to the past updates, the update step (6) leads to a number of different
methods, such as the Newton’s method, the Broyden–Fletcher–Goldfarb–Shanno
algorithm, or the conjugate gradients (CG) method [22]. Borrowing a term from
the neural network literature, we call this class of algorithms optimisation in batch
mode, since the information from the whole “batch” S is taken into account at every
update step [4].

The complexity of these descent methods is dominated by function evaluations.
And since the intermediate results are rarely stored explicitly, every gradient descent
iteration would have a time complexity in O.N � jGj/. For k update steps the
algorithms also perform k passes through the data points. This yields a time
complexity of the whole gradient descent procedure in O.kN � jGj/. Therefore, in
Sect. 14 we will evaluate the results using the number of data passes as a complexity
measure.

For some problems the batch gradient descent method is infeasible, for example,
when the dataset is too large to fit into the main memory at once. For some problems
the batch gradient descent is impractical, for example, when the training patterns
arrive continually in a data stream. To overcome this problem, one can consider a
stochastic approximation of the gradient term in (6) by the gradient at one (random)
point [5], which yields an update of the form

wtC1 D wt � � trwJpoint.wt; xt; ytI G/: (7)

This class of methods is called online gradient descent or optimisation in online
mode [4].

In practice, additional measures are taken to obtain robust results and faster
convergence [2, 28, 30]. Bottou suggested an averaging scheme for training neural
networks [7]. We use his averaging scheme in this work as discussed in Sect. 2.3.

2.1 Classification by Regression

If the target variable y can have only two values, e.g. 0 or 1, we call this problem
binary classification. This problem is simpler than general multi-class classification
problems. We can solve it by training a regression function and establishing a
threshold for decision making:

class.x/ WD
(
0 f .x/ < 0:5

1 f .x/ � 0:5:
(8)

We will use this property in Sect. 2.5 to evaluate the suggested refinement
algorithm.
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2.2 Adaptive Sparse Grids for Regression

In the past decade a number of works have focused on solving the problem (4)
using sparse grid discretisation techniques [10, 14, 15, 27]. We build upon these
works and, in particular, we use piecewise linear basis functions constructed using
the following principles:

�l;i.x/ WD
dY

tD1
�lt ;it .xt/;with l; i 2 N

d (9)

with

�l;i.x/ WD �.x � 2l � i/ (10)

for the linear basis and with

�l;i.x/ WD

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

1 if l D 1 ^ i D 1;(
2� 2l � x if x 2 Œ0; 21�l�

0 else
if l > 1 ^ i D 1;

(
2l � x C 1 � i if x 2 Œ1 � 21�l; 1�

0 else
if l > 1 ^ i D 2l � 1;

�.x � 2l � i/ else

for the modified linear basis and

�.x/ WD maxf1� jxj; 0g:

These functions have proved to offer a good trade-off between approximation
accuracy and fast evaluation. The models the with linear basis functions are
restricted to the value 0 on the boundaries, while the models with modified linear
basis do not have this restriction.

Figure 1 illustrates these functions for a one-dimensional case. An index .l; i/
with l WD .l1; : : : ; ld/T and i WD .i1; : : : ; id/T uniquely identifies a basis function.
Let G be a set of indices .l; i/, called sparse grid index-set. Hence, the set of all
sparse grid basis functions spans the function space VG defined through the one-
dimensional basis function construction rule (9) and the inner product (2).

An important property of a sparse grid model is its ability to adapt the grid
structure to a particular distribution and smoothness of the underlying generating
function. Since basis functions have local support, by adding new basis functions



Spatially-Dimension-Adaptive Sparse Grids for Online Learning 139

(a) Linear basis functions. (b) Modified linear basis functions.

Fig. 1 Sparse grid piecewise linear basis functions in one-dimensional space

we are able to refine the model in the areas with high data density or high target
variance, while keeping the rest of the model unchanged. This leads to higher
resolution in the areas where it is really needed. The refinability gives sparse grid
methods a competitive advantage over the other additive basis function methods,
such as neural networks.

One can see sparse grid adaptivity as a transition from exploration and exploita-
tion in the problem space. Exploration extends the function space broadly, even
without the evidence from data supporting this extension. For example, starting with
a sparse grid index-set of a certain level is exploration. Exploitation adds new basis
functions to the model only if the benefit of this extension is evident from the data.

A formal definition of refinement requires the notion of hierarchical ancestry and
descendancy between indices. Let � be a set of all possible indices

� WD f.l; i/ j .l; i/ 2 N
d 
 N

d; it odd and 1 � it < 2
lt for each 1 � t � dg

and let desc be the function that computes the hierarchical descendants of a level-
index pair .l; i/ in the dimension t:

desc W Nd 
 N
d 
 f1; : : : ; dg ! P.�/ (11)

l; i; t 7! f.l C et; i C .it C r/et/ j r 2 f�1;C1gg :
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Here, et is a vector containing 1 in the tth component and 0 everywhere else, and
r signifies if the left or the right hierarchical descendant is created. The reverse
function anc computes all hierarchical ancestors of a level-index pair .l; i/:

anc W Nd 
 N
d ! P.�/ (12)

l; i 7! f.l � et; bi � it�..itC1/ mod 4/
2

etc/ j 1 � t � dg:

Let G.k/ denote the sparse grid index-set after the kth refinement. The set G.k/ is
extended using the elements from the admissible set of candidates

AG.k/ WD ˚
.l; i/ j .l; i/ 2 N

d 
 N
d and anc.l; i/\ G.k/ ¤ ; : (13)

We can either refine a point in a particular dimension:

G.kC1/ D G.k/ [ .desc.l; i; t/ \ AG.k/ / ; (14)

or in all dimensions:

G.kC1/ D G.k/ [ .alldesc.l; i/\ AG.k/ / (15)

with

alldesc.l; i/ WD
d[

tD1
desc.l; i; t/: (16)

In the first case we speak of spatially-dimension-adaptive refinement (Fig. 2b) and
in the second case we speak of spatially-adaptive refinement (Fig. 2c).

(a) Initial sparse grid. (b) Two grid points refined
in one dimension each.

(c) One grid point refine-
ment in all dimensions.

Fig. 2 Illustration of spatially-dimension-adaptive and spatially-adaptive refinement schemes.
The sparse grid points with indices to be refined are depicted as black squares, the new children
points are white circles, the new ancestor grid points are white squares
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Finding the optimal indices to refine can be viewed as an optimisation problem
itself. The regression with adaptive sparse grids minimises the cost function (3) over
a sequence of monotonically growing function spaces VG.k/ W VG.0/ � VG.1/ � � � � �
V as well as over the parameter w 2 R

G.k/ .
Let QJ.G/ be a set function over the sparse grid index-set G that computes the

minimal risk:

QJ.G/ WD min
w2RG

J.wI G/: (17)

The refinement procedure aims to find the best n basis function indices I? to
maximise the marginal gain among all candidates in AG:

I? D arg max
I�AGjIjDn

QJ.G/� QJ.G [ I/: (18)

This formulation was first suggested by Hegland and Garcke in the context of
generalised sparse grids and the dimension-adaptive refinement [13, 15]. They con-
sidered subsets of indices that belong together in so-called hierarchical subspaces.
As a result, the authors derived a greedy method, which yields optimality bounds
under certain conditions as discussed in Sect. 2.4. However, their method bears
large computational costs at every step and becomes infeasible for large problems.
Furthermore, the need to include complete hierarchical subspaces limits the desired
ability to refine only some parts of the domain, which may be important for some
regression problems.

Pflüger suggested a heuristic indicator for marginal gain and local adaptivity in
order to overcome these limitations [26]. Assuming that the errors are normally
distributed around 0, one can minimise QJ.G [ I/ by adding new indices that
correspond to the area with high local error variation. This variation is weighted by
a potential influence of the basis functions. To capture this influence, Pflüger uses
the absolute value of the basis functions evaluated at the data points. Altogether, he
suggests to refine the indices that have the highest indicator:

s
 WD arg maxf�.s/ j s 2 G.k/;alldesc.s/\ AG.k/ ¤ ;g;
G.kC1/ WD G.k/ [ alldesc.s
/ [ anc.s
/ (19)

with

�.s/ WD
NX

iD1
.yi � f .xiI w//2 � jwsj�s.xi/: (20)

Formula (19) ensures that all hierarchical ancestors of a new index are also in the
index-set, which is a fundamental assumption for many algorithms [11, 26]. As there
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Algorithm 1: Regression with adaptive sparse grids

1 start with some initial G.0/;
2 for k D 0; 1; : : : do
3 Fit-Step: Compute w.k/ and QJ.G.k// from (17) for a given G.k/;
4 Refine-Step: G.kC1/ D G.k/ [ I? for I? maximising the marginal gain (18);

is no way to tell how the new indices would contribute to the results, the refinement
occurs in all directions.

The computation of this indicator is inexpensive even for large datasets. However,
even though the intuition behind the indicator is clear, its optimality is difficult to
analyse. It also fails to indicate the importance of the individual dimensions that will
be refined. In Sect. 2.4 we come back to this idea, deriving a refinement method that
combines efficiency, flexibility, and optimality guarantees.

Altogether, regression with adaptive sparse grids is performed in a succession of
fitting and refinement steps, as illustrated in Algorithm 1. These steps alternate until
some global convergence criterion is satisfied, for example, until the generalisation
error on a validation dataset is sufficiently small, or until the computational limit is
reached.

Let us consider the steps in Algorithm 1 more closely. The optimisation problem
in Line 3 is often solved using the CG method, as we mentioned earlier. However, if
the number of entries in a dataset is very large, the cost of even a single CG iteration
becomes significant. Similarly, the spatially-adaptive refinement in Line 4 creates
an unnecessarily large sparse grid, especially if the dataset has many different
attributes. Finally, it is often advisable to find a suboptimal solution in the fit-step,
which is sufficient to distinguish good refinement candidates from bad ones in the
refine-step. The optimal parameters can then be computed only once after the last
refinement step.

Hence, our new method for regression with adaptive sparse grids is based on the
following principles:

Fit-Step: We use ASGD for fast parameter fitting on large datasets, which offers
fast convergence to a sufficiently good solution (see Sect. 2.3 and Algorithm 2).

Refine-Step: We derive a new indicator for spatially-dimension-adaptive re-
finement, which is based on marginal gain maximisation (see Sect. 2.4 and
Algorithm 3).

2.3 Averaged Stochastic Gradient Descent

We replace the gradient of J in (6) by its stochastic approximation – the gradient
of Jpoint at a random point. Furthermore, to improve convergence, we re-shuffle the
dataset every time we pass through the last point. After the last index was selected,
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Algorithm 2: Fit(S, G.k/, �0, �) using averaged stochastic gradient descent
method by Bottou [7]

input : dataset S, current sparse grid index-set G.k/, step size �0, regularisation parameter �
output: parameters Nwt

1 initialise w0  0; Nw0 0; t 0;
2 repeat
3 compute partial derivatives at a random point .x; y/ 2 S W �wt  @Jpoint

@w as in (21);
4 update learning rate � t  �0.1C �0�t/�2=3;
5 update parameters wtC1  wt � � t�wt;

6 update averaged parameters NwtC1 .1� ˛/ Nwt C ˛wtC1 with ˛ D 1
maxf1;t�minfd;Ngg

;

7 t tC 1;
8 until local convergence criteria satisfied;

the random variable starts selecting from the complete dataset again. Altogether, the
gradient has the form

wtC1 WD wt � � t�wt

with

�wt WD rwJpoint

ˇ̌
ˇ̌
ˇxDxT.t/

yDyT.t/

wDwt

GDG.k/

D 2

0

@

0

@
X

g2G.k/

wt
g�g.xT.t// � yT.t/

1

AC �

1

Awt: (21)

We summarise the algorithm in Algorithm 2. As the individual parameter updates
depend on the selected input points, it can strongly oscillate, prohibiting conver-
gence. Therefore, we introduce an additional parameter vector Nwt that aggregates
the values of individual parameters using exponential smoothing in Line 6 of
Algorithm 2. This stabilises and accelerates the optimisation procedure in the long
run, as Fig. 3 illustrates.

Unfortunately, ASGD often starts slower than the plain stochastic gradient
descent and can require many steps before reaching its optimal asymptotic con-
vergence speed. To accelerate this process, the exponential smoothing coefficient ˛
takes the form 1=maxf1; t � minfd;Ngg [7]. Suppose that d is smaller than N. Then
for the first d steps the algorithm behaves as the plain stochastic gradient descent.
Afterwards, the smoothing coefficient diminishes as O.1=t/.

The convergence of ASGD has been rigorously studied for regressors with a fixed
number of basis functions [2, 28, 33]. Xu showed that, if the learning rate decreases
as � t 2 ‚.t�2=3/, the objective function converges linearly [33].
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Fig. 3 Illustration of ASGD for a two-dimensional parameter space. Aggregation of coefficients
wt into Nwt leads to higher stability and faster convergence

0.02

0.03

1 10 100

R
M

S
E

data passes

CG train
CG test

ASGD train
ASGD test
Best result

Fig. 4 Convergence comparison of ASGD and CG. The errors were computed for regression on
the Sloan Digital Sky Survey dataset described in Sect. 14 and a sparse grid level 5 with same
meta-parameters. Both methods started with the same initial parameter w0 D 0

We observed that ASGD exhibits a significantly faster initial convergence than
CG with respect to the number of data passes. This observation is in line with
observations of other researchers [6, 8]. Consider Fig. 4 that compares the decrease
of the root mean square error for CG and ASGD methods over a number of data
passes (a metric motivated in Sect. 2.2). ASGD shows fast initial convergence
and significantly reduces the error after a single data pass. Meanwhile, CG needs
approximately 20 data passes to achieve the same error.
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Hence, we suggest using ASGD to solve (17) – not perfectly but close enough
to compute distinguishable error indicators in Line 4 of Algorithm 1. Once the
structure of the grid is established, one can compute the final optimal parameters
w using several CG iterations if necessary.

2.4 Sparse Grid Refinement as an Optimisation Problem

In Sect. 2.2 we saw that sparse grid basis sets can be extended to befit a regression
problem. Now we discuss how to select the new indices for the extension. Let J�.X/
be the negative of QJ.X/ defined in (17):

J�.X/ WD �QJ.X/: (22)

We begin our discussion by showing that J�.X/ belongs to a special class of func-
tions well studied in combinatorial optimisation. Then we derive the optimisation
problem of finding the optimal sparse grid and explain the complexity results from
combinatorial optimisation that can be directly applied to our problem. Finally, we
derive and evaluate an efficient greedy algorithm for finding the optimal sparse grid
structure.

Definition 1 Let � be a set, P.�/ its powerset, and h W P.�/ ! R a set function.
Let the marginal gain with respect to the function h be defined as

h.xjX/ WD h.X [ fxg/� h.X/: (23)

Then h is said to be submodular if it satisfies the property of diminishing returns

h.xjX/ � h.xjY/ (24)

for all sets X � Y � � and all elements x 2 � n Y. The submodular function h is
monotonically non-decreasing if h.xjX/ � 0 for each element x 2 � n X and each
set X � �.

In particular, if � is the set of all sparse grid indices and G � �, it turns out that
J�.G/ is submodular. To show this, we first establish the following relation between
projections onto subspaces.

Lemma 1 Let V1;V2, and W be Euclidean vector spaces, V1 � V2, and let PV1 ;PV2 ,
and PW be orthogonal projections onto the corresponding spaces. Then

k.PV1CW � PV1/yk � k.PV2CW � PV2/yk: (25)
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Proof The vector space W can be either a part of V2 or a part of its orthogonal
complement V?2 or consist of parts in V2 and parts in its orthogonal complement.
We consider these three cases separately.

Case 1 If W � V2 then we have

k.PV1CW � PV1 /yk � k.PV2CW � PV2 /yk D 0:

Case 2 If W ? V2 then

k.PV1CW � PV1/yk D kPWyk D k.PV2CW � PV2/yk:

Case 3 Finally, if W D W1 C W2 such that W1 � V?2 and W2 � V2 then

k.PV1CW1CW2 � PV1 /yk D k.PV1CW2 C PW1 � PV1/yk D k.PV1CW2 � PV1 /y C PW1yk

D
q

k.PV1CW2 � PV1 /yk2 C kPW1yk2 � kPW1yk:
k.PV2CW1CW2 � PV2 /yk D k.PV2CW2 C PW1 � PV2/yk D kPW1yk

and together we have

k.PV1CW1CW2 � PV1/yk � k.PV2CW1CW2 � PV2/yk:

Let I W f1; : : : ; j�jg ! � be a bijective mapping that enumerates the elements
of �. For every sparse grid index g we define a vector in R

NCj�j as

vg WD
�
�g.x1/; : : : ; �g.xN/;

p
�NıI.g/;1;

p
�NıI.g/;2; : : : ;

p
�NıI.g/;j�j

�T
;

(26)

with ıi;j being the Kronecker delta. Then

VX WD spanfvggg2X (27)

is a vector space embedding of X. We appropriately extend the target vector y to the
dimensionality N C j�j by appending j�j zeros:

Qy WD
�

y
0

�
: (28)

Lemma 2 Assume that VX is defined as in (27) and Qy is defined as in (28). Then for
the orthogonal projection PX that satisfies

PX W RNCj�j ! VX

Qy 7! arg min
f2VX

kf � Qyk2 (29)
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we have

J�.X/ D �kPX Qy � Qyk2: (30)

Proof For any f 2 VX there is a set of linear combination coefficients w WD fwggg2X

such that

f D
X

g2X

wgvg:

The squared norm of the difference between f and Qy is equal to the value of the cost
function J.wI X/ defined in (3):

kf � Qyk2 D
NX

iD1

0

@
X

g2X

wg�g.xi/� yi

1

A
2

C �N
X

g2X

.wg � 0/2:

Hence, the projection PX Qy that minimises (29) corresponds to w? that solves the
minimisation problem in (22). This leads directly to (30).

Proposition 1 The function J� defined in (22) is a monotonically non-decreasing
submodular function.

Proof Suppose that X � �, VX is defined as in (27), Qy is defined as in (28), and PX

is defined as in (29). For simplicity of the notation we also introduce the residual
vector

RX WD PX Qy � Qy: (31)

Let Y be another sparse grid index-set such that X � Y � �, and let
s 2 � n Y be a new sparse grid index. Analogously, we define the projections
PY ; Ps; PX[fsg; PY[fsg as well as the residual vectors RY ; Rs; RX[fsg; RY[fsg.

We are going to show the property of diminishing returns

J�.s j X/ � J�.s j Y/;

where J�.� j �/ is a marginal gain function of J� as defined in (23).
We begin by writing the relation (25) from Lemma 1 as

kRX[fsg � RXk2 D k.PX[fsg � PX/Qyk2 � k.PY[fsg � PY/Qyk2 D kRY[fsg � RYk2:
(32)

We now consider the norms kRX[fsg � RXk2 and kRY[fsg � RYk2 in (32). We can
rewrite the inequality as

kRX[fsgk2 � 2hRX[fsg;RXi C kRXk2 � kRY[fsgk2 � 2hRY[fsg;RYi C kRYk2:
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Since PX and PX[fsg are orthogonal projections, we have PX[fsg.PXa/ D PXa
and hRX[fsg;PX[fsgai D 0 for any a 2 R

NCj�j. With this in mind, we can rewrite
the inner product as

hRX[fsg;RXi D h.PX[fsg � I/Qy; .PX � I/Qyi
D hPX[fsgQy;PX Qyi � hPX[fsgQy; Qyi � hQy;PX Qyi C hQy; Qyi
D hQy; Qyi � hPX[fsg Qy; Qyi C hRX[fsg;PX Qyi
D hQy; Qyi � hPX[fsg Qy; Qyi C hRX[fsg;PX[fsgPX Qyi
D hQy; Qyi � hPX[fsg Qy; Qyi: (33)

Similarly, we obtain

kRX[fsgk2 D hRX[fsg;RX[fsgi D hQy; Qyi � hPX[fsg Qy; Qyi: (34)

Using identities (33) and (34), we can rewrite the expression kRX[fsg � RXk2 as

kRX[fsg � RXk2 D kRX[fsgk2 � 2hRX[fsg;RXi C kRXk2
D hQy; Qyi � hPX[fsgQy; Qyi � 2hQy; Qyi C 2hPX[fsgQy; Qyi C kRXk2
D kRXk2 � �hQy; Qyi � hPX[fsg Qy; Qyi� D kRXk2 � kRX[fsgk2: (35)

The expression kRY[fsg � RYk2 can be rewritten analogously. Hence, plugging it
back into (32), we get

�kRX[fsgk2 C kRXk2 � �kRY[fsgk2 C kRYk2

and then with (30):

J�.X [ fsg/� J�.X/ � J�.Y [ fsg/� J�.Y/:

Hence, J�.X/ satisfies the diminishing returns property from Definition 1.
Finally, we show that J�.X/ is monotonically non-decreasing. Suppose that

J�.X/ is not monotonically non-decreasing and there is s 2 � n Y such that

J�.X [ fsg/� J�.X/ < 0:

From (30) and (31) this would be equivalent to kRXk2 < kRX[fsgk2. In this case,
there would be a vector v 2 VX such that kv� Qyk2 < kv0� Qyk2 for every v0 2 VX[fsg.
This is a contradiction, since VX � VX[fsg.

Theorem 1 The submodular optimisation problem with cardinality constraint

max
G��;jGj�m

J�.G/ (36)
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is NP-hard. It can be solved with a greedy algorithm such that, if bG is the greedy
solution and G
 is the optimal solution, we have

J�.bG/
J�.G
/

� 1 �
�

m � 1

m

�m

�
�
1 � 1

e

�
	 0:632:

This boundary is tight unless P=NP.

Proof The result was shown in [21] for all submodular functions and, hence, can be
applied to J� as well. The tightness of the boundary follows from [12].

A greedy algorithm for (36) selects a sequence of grid index-sets G.0/ � G.1/ �
� � � � G.k/ � � � � such that

G.k/ WD G.k�1/ [ arg max
s2�nG.k�1/

J�.sjG.k�1//: (37)

Albeit using the marginal gain for the greedy algorithm leads to near-optimal
results, the computation of the marginal gain can be expensive, since adding a new
grid index to the index-set requires re-estimating all sparse grid coefficients. To
make it more practical, the following lemma offers an inexpensive lower bound
approximation.

Lemma 3 The marginal gain can be bounded from below as

J�.sjG/ � 
.0/.s;G/; with 
.0/.s;G/ D
�PN

iD1 ri�s.xi/
�2

PN
iD1 �2s .xi/C �N

: (38)

Proof Let OwG 2 R
G be the minimiser of (17), with OwG D . Owg/g2G, and

let ri WD P
g2G Owg�g.xi/ � yi be the residual at the point .xi; yi/. Then, with

definitions (17), (22), and (23), the marginal gain function J�.sjG/ satisfies

J�.sjG/ D � min
w2RG[fsg

0

B@
NX
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D � min
ws2R

NX

iD1

�
2wsri�s.xi/C w2s�

2
s .xi/

�C �Nw2s DW 
.0/.s;G/: (39)

We can determine the minimising weight Ows of 
.0/.s;G/:

2

NX

iD1
�s.xi/ .ri C Ows�s.xi//C 2�N Ows

ŠD 0;

NX

iD1
Ows�

2
s .xi/C �N Ows D �

NX

iD1
ri�s.xi/;

Ows D �
PN

iD1 ri�s.xi/PN
iD1 �2s .xi/C �N

: (40)

We then evaluate 
.0/.s;G/ explicitly by substituting ws D Ows in (39):


.0/.s;G/ D � min
ws2R

NX

iD1

�
2wsri�s.xi/C w2s�

2
s .xi/

�C �Nw2s

D �
 
2 Ows

NX

iD1

ri�s.xi/C Ow2s
NX

iD1

.�s.xi//
2 C �N Ow2s

!

D 2

PN
iD1 ri�s.xi/PN

iD1 �
2
s .xi/C�N

NX

iD1

ri�s.xi/�
�PN

iD1 ri�s.xi/
�2

�PN
iD1 �

2
s .xi/C�N

�2
NX

iD1

.�s.xi/C�N/2

D 2

�PN
iD1 ri�s.xi/

�2

PN
iD1 �

2
s .xi/C �N

�
�PN

iD1 ri�s.xi/
�2

PN
iD1 �

2
s .xi/C �N

D
�PN

iD1 ri�s.xi/
�2

PN
iD1 �

2
s .xi/C �N

: (41)

This establishes Formula (38) and proves the lemma.

In our algorithm, instead of maximising the more expensive marginal gain of
J� with respect to candidate indices s, we maximise its lower bound 
.0/.s;G/.
The computation of 
.0/.s;G/ is no more expensive than the computation of the
refinement indicator (20). The resulting refinement procedure selects the grid index
s with the highest indicator 
.0/.s;G/ among all indices in the candidate set.

In practice it is advisable to add multiple new grid indices in every refinement
step instead of just one. However, it may be insufficient to choose the indices based
on the size of the indicators. For example, taking two basis functions with a large
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Algorithm 3: Refine(G.k/, A, n) using Fast Greedy Refinement

input : Old grid G.k/, admissible index set A, number of new indices n
output: New grid G.kC1/

1 compute the error indicators 
.0/.g;G.k// for all candidates using (38);
2 store the grid indices in a priority queue Q such that


.0/.QŒ0�;G.k// � 
.0/.QŒ1�;G.k// � : : : � 
.0/.QŒjAj � 1�;G.k//;
3 select the index with largest error indicator I.1/ fQ:pop()g;
4 j 2;
5 repeat
6 select the largest element v Q:pop();
7 update the indicator refinement indicator of v using (44);
8 if 
.j/.v;G.k// is greater or equal to the refinement indicator stored for the next index in

the queue then
9 add the index to the sparse grid index-set I.j/ I.j�1/ [ fvg;

10 increment j jC 1;

11 else
12 sort v back into the queue Q:push.v/;

13 until j D n;
14 G.kC1/  G.k/ [ I.j/;

support overlap may be less expedient than taking functions with disjoint support.
Hence, selecting a grid index may reduce the refinement indicators (potential
benefit) of the other candidate indices in the admissible set.

The algorithm of our Algorithm 3 makes use of a priority queue with refinement
indicators, similarly to the lazy greedy procedure for submodular optimisation
[19, 20, 32]. At the step j of the refinement procedure we retrieve the largest element
v from the queue and update its refinement indicator 
.j/.v;G/. If the updated
indicator is still greater than the upper bound of the following index u in the queue,
we accept it. Otherwise we put v back into the queue and repeat.

What is an efficient way to update the refinement indicators? Suppose that I.j/

contains j grid indices already selected from the candidate set. If every g 2 I.j/ has
the optimal coefficient Owg computed as in (40), the error terms become

r.j/i D ri C
X

g2I.j/

Owg�g.xi/ D r.j�1/i C Owu�u.xi/; such that u 2 I.j/ n I.j�1/:

For every v 2 A n I.j/ the refinement indicator is updated as


.j/.v;G/ D
�PN

iD1 r.j/i �s.xi/
�2

PN
iD1 �2s .xi/C �N
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D

2
64

PN
iD1 ri�v.xi/qPN

iD1 �2v.xi/C �N
C
PN

iD1 �v.xi/
P

g2I.j/ Owg�g.xi/qPN
iD1 �2v.xi/C �N

3
75

2

(42)

D

2

64
PN

iD1 r.j�1/i �v.xi/qPN
iD1 �2v.xi/C �N

C
PN

iD1 Owu�u.xi/�v.xi/qPN
iD1 �2v.xi/C �N

3

75

2

; s.t. u 2 I.j/ n I.j�1/:

(43)

Equation (42) implies that the updated refinement indicator can be obtained from
the original one using the formula


.j/.v;G/ D

2
64
q

.0/.v;G/C

PN
iD1 �v.xi/

P
g2I.j/ Owg�g.xi/qPN

iD1 �2v.xi/C �N

3
75

2

: (44)

Similarly, Eq. (43) implies that it can also be obtained from a previously updated
indicator as


.j/.v;G/ D

2

64
q

.j�1/.v;G/C

PN
iD1 Owu�u.xi/�v.xi/qPN

iD1 �2v.xi/C �N

3

75

2

: (45)

What happens if more than one index is taken in the greedy procedure? While the
theoretical guarantees for this case are missing, the idea was successfully applied in
a number of algorithms for large sparse inverse problems using matching pursuit
methods [3, 17].

To combine the greedy procedure with spatially-dimension-adaptive refinement
of sparse grids, one considers not individual indices but the pairs that will be created
in one dimensions. In this case, the sum of the individual refinement indicators
serves as an indicator for the pair.

In this section we compare the performance of the regression method intro-
duced in the Sects. 2 and 4 with currently used state-of-the-art techniques. The
performance is assessed both with synthetic and real data. First, we focus on
refinement and compare the state-of-the-art spatially-adaptive refinement proce-
dure [27] with our greedy algorithm for spatially-dimension-adaptive refinement
introduced in Sect. 2.4. After this, we consider our new regression method, which
combines ASGD and spatially-dimension-adaptive refinement with a state-of-the-
art technique using conjugate gradient descent and the standard spatially-adaptive
refinement [26, 27].
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2.5 Spatially-Dimension-Adaptive Refinement

As argued in Sect. 2.4, adding several indices in one step of spatially-dimension-
adaptive refinement is preferable to adding a single index, and it comes in two
variants: either taking into account the mutual influence of new basis functions or
ignoring it.

The method that takes the mutual influence into account selects one best
candidate pair n times in a row, as described in Algorithm 3. We call this method
a spatially-dimension-adaptive greedy refinement. The method that ignores the
mutual influence selects n pairs at once. This method may be less effective but
it requires significantly less computation. We call it spatially-dimension-adaptive
block refinement.

To test the sparse grids’ ability to recognise the decision shapes of an axis-parallel
square and a rhombus, we created two densely sampled datasets with strict decision
boundaries, as depicted on Figs. 5a and 6a. Both datasets contain 2016 points from a
Sobol sequence on a two-dimensional unit square. Points within the decision shape
have the target values 1, the rest is 0.

We do a classification by regression using an adaptive sparse grid: the spatially-
dimension-adaptive methods add n D 10 index pairs to the index-set and the spatial-
ly-adaptive method chooses 5 sparse grid indices from the index-set, adds all their
descendents, and possibly the ancestors of the new indices (if those are missing from
the index-set). Since the spatially-adaptive refinement method adds ca. 4 new points
in every refinement, while spatially-dimension-adaptive only 2, these configurations
are comparable.

We use a sparse grid with linear basis functions and 3 levels initially. The
regularisation parameter � is set to 0 in all three cases, as because of the abundant
sampling and small grid sizes, there is no danger of overfitting even without
regularisation.

Figures 5b–d and 6b–d illustrate the decision boundaries of the sparse grid
models obtained after one or two refinement steps and have comparable sizes.
These decision boundaries were estimated using Rule (8). While for the square
dataset, with its axis-parallel decision boundaries, all three methods produce similar
results, the spatially-adaptive refinement method has more difficulties identifying
the skewed decision boundaries of the rhombus dataset. The greedy version of the
spatially-dimension-adaptive refinement method is slightly better than the block
version.

Besides the qualitative comparison, we show the quantitative results of the
mean squared error and the number of misclassifications on Figs. 7 and 8 after 4
alternations of the fit- and refine-steps. The spatially-dimension-adaptive methods
clearly outperform the spatially-adaptive refinement, showing better results with
fewer grid indices. The difference in the results between the greedy and the block
selection methods is not very large, such that in practice one may be willing
to sacrifice the small precision advantage of the former method for the higher
computational efficiency of the latter.
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2.6 Spatially-Dimension-Adaptive Online Learning

We assess the overall performance of the regression method suggested in this paper
using the data from the Sloan Digital Sky Survey from Data Release 5 [1]. We aim
to predict the redshift of galaxies from the Main Galaxy Sample using 6 features
from the dataset: dereded intensities in five broad bands (ugriz) together with a
meta-parameter eClass [26]. Both training and test datasets contain 60,000 data
points each.

The new regression method has the following configuration:

• Fit-Step is carried out using ASGD suggested in Sect. 2.3.
• Refine-Step is carried out using the spatially-dimension-adaptive method as

follows:

– Refinement indicators were computed as defined in (38).
– New grid index pairs were selected all at once (block selection).
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(a) Square dataset.
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(b) Spat.-adapt.: 35 grid indices.
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(c) Spat.-dim.-adapt. block: 33 grid indices.
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(d) Spat.-dim.-adapt. greedy: 37 grid indices.

Fig. 5 Different refinement methods: square dataset. The rectangle contour indicates the true
decision boundaries, the shaded area indicates the predicted decision boundaries, the black points
are the misclassified entries of the train dataset
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(a) Rhombus dataset.
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(b) Spat.-adapt.: 43 grid indices.
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(c) Spat.-dim.-adapt. block: 42 grid indices.
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(d) Spat.-dim.-adapt. greedy: 37 grid indices.

Fig. 6 Different refinement methods: rhombus dataset. The rectangle contour indicates the true
decision boundaries, the shaded area indicates the predicted decision boundaries, the black points
are the misclassified entries of the train dataset

– The extension of the grid index-set was performed as in Eq. (19), adding all
missing ancestors of the new grid indices to the grid.2

We denote this Online mode Spatially-Dimension-Adaptive method as OSDA for
short.

We compare OSDA with the state-of-the-art method using the following config-
uration:

• Fit-Step is carried out using CG.
• Refine-Step is carried out using the spatially-adaptive method as follows:

– Refinement indicators were computed as defined in (20).
– The extension of the grid index-set was performed as in Eq. (19), adding all

missing ancestors of the new grid indices to the grid.

2We noticed that this rule gives a better regularisation properties to the model with acceptable extra
costs.
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Fig. 7 MSE and misclassifications on the training data for refinements on square
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Fig. 8 MSE and misclassifications on the training for refinements on rhombus

We denote this Batch mode Spatially-Adaptive method as BSA for short.
Usually, sparse grid regression utilises the normalisation technique where input

variables are mapped into a unit hypercube by shifting in scaling, keeping its
distributions unchanged (see Fig. 9a) [13, 26]. However, if the data are highly
correlated, this can deteriorate the effectiveness of spatial adaptivity. An alternative
is the Rosenblatt transformation [29], which effectively makes the data distribution
uniform (see Fig. 9b). Hence, OSDA and BSA were evaluated and compared using
both normalisation techniques.

The performance of the models depends on a number of parameters. The previous
analysis showed that the choice of the regularisation parameter is not critical for the
results, as long as it is not too large [26]. Hence, we set � to 10�6 for all models. We
use a sparse grid with modified linear basis functions and initial level 3 in all cases.
Other model parameters were estimated in a validation procedure used in [26]. We
list them in Tables 1 and 2.

Since we only want to compare the new method with the state of the art, we use
a hard termination criterion: the training stops after a certain number of refinement
steps (even if the global convergence has not been achieved yet).
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(a) Shifting and scaling. (b) Rosenblatt transformation.

Fig. 9 Illustration of the normalisation methods for the first three attributes of the SDSS Data
Release 5 dataset

Table 1 OSDA parameters

Parameter w. Rosenblatt w/o Rosenblatt

Training points for refinement indicator evaluation 60,000 10,000

Initial ASGD step size �0 3:16 	 10�5 10�3

Index pairs selected at every refine-step 50 100

Dataset passes in ASGD (Algorithm 1 Line 3) 2 2

Iterations of outer loop (Algorithm 1 Line 2) 20 20

Table 2 BSA parameters

Parameter w. Rosenblatt w/o Rosenblatt

Training points for refinement indicator evaluation 60,000 60,000

Maximum CG iterations 100 250

Relative tolerance for CG 10�3 10�2

Grid indices refined at every refine-step 20 20

During the validation we observed that some parameters are more important than
others. One or two passes through the data in the ASGD optimisation procedure
were seen to be sufficient for proper pre-training before refinement. The results are
significantly worse if only a small portion of lately seen data points in OSDA were
used for refinement indicator computation. However, using between 10,000 and all
60,000 training points shows uniformly good results.

We also noticed that the algorithms favour different normalisation methods, as
illustrated in Fig. 10. While the baseline BSA produces better results if we only shift
and scale the data to the unit square, the spatially-dimension-adaptive refinement
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Fig. 10 Performance comparison between OSDA and BSA. The new method clearly shows
the ability to create smaller sparse grids with the same representation power (a) using less
operations (b)
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Table 3 Final results of comparison between OSDA and BSA

OSDA BSA

Rosenblatt w/o Rosenblatt Rosenblatt w/o Rosenblatt

Train RMSE Œ�10�2� 1.82/1.71 2.06/1.99 3.48 1.99

Test RMSE Œ�10�2� 1.91/1.93 2.04/2.00 3.88 2.00

Grid size 4247 5709 9366 9940

Data passes 408 570 1446 2224

Note: For the OSDA method we provide the RMSE before (left) and after (right) the final CG
iterations

of OSDA benefits from the uniform distribution of the input data. There is a big
gap between the performance of BSA with the Rosenblatt transformation and the
performance of the rest, so that we had to break the continuity of the ordinate
to compact the representation. The ordinate axis starts at 1:8 � 10�2 instead of 0.
Prediction of SDSS DR5 is well studied in the literature, and 1:8 � 10�2 seems to be
the limit that nonlinear models do not surpass [26, Tab. 6.8].3

As Fig. 10a shows, the best OSDA model has RMSE of 1:82 � 10�2 on the test
data with 4247 grid indices. This is better than 2:00 � 10�2 with 9940 grid indices of
the best BSA model. Figure 10b illustrates the convergence of the methods with
increasing number of passes through the data.4 Comparing the best results, the
difference between OSDA and BSA is over 250 %: 408 data passes for OSDA vs.
1446 for BSA.

Table 3 summarises the final results. We performed several CG steps at the end
of the OSDA procedure. For both OSDA results we give the errors before and after
the finalising CG iterations. While the CG finalisation leads to a slight degradation
of the generalisation performance for the OSDA model trained on the data with
Rosenblatt transformation, for the OSDA model without Rosenblatt transformation
CG yields exactly the same performance and that of the BSA model, but with fewer
grid indices and data passes.

Altogether, the results show that the new method can build smaller sparse grid
models which have the same predictive power as the state of the art. It also requires
just a fraction of the number of data passes to build and train a new model.

3In this experiment we focused on the comparison between OSDA and BSA. Hence, we terminated
the training of OSDA with Rosenblatt transformation prematurely. However, Fig. 10 suggests that
further improvement may be possible.
4For OSDA we counted 2 passes through data in online optimisation loop and one for computing
the refinement indicators.
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3 Conclusions

We presented a new method for solving regression problems using spatially-
dimension-adaptive sparse grids and ASGD. Our experiments on synthetic and real
data show that the new method exhibits a competitive advantage over the state
of the art. This advantage is twofold. On the one hand, the proposed spatially-
dimension-adaptive refinement leads to models with lower complexity and similar
representation power. On the other hand, the method reduces the number of required
numerical operations between refinements and hence trains the models faster.

There are still questions to be answered. As the performance of ASGD crucially
depends on the initial learning rate, a fast way to determine the optimal initial
learning rate is paramount. The problem of determining the initial learning rate,
however, is not specific to sparse grid models and its solution would benefit other
machine learning methods as well. Furthermore, the spatially-dimension-adaptive
refinement procedure derived in Sect. 2.4, while very effective at minimising the
training error, may overfit a model faster than other refinement procedures. To
prevent this overfitting one may need to develop new regularisation methods.
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Sparse Grids for the Vlasov–Poisson Equation

Katharina Kormann and Eric Sonnendrücker

Abstract The Vlasov–Poisson equation models the evolution of a plasma in an
external or self-consistent electric field. The model consists of an advection equation
in six dimensional phase space coupled to Poisson’s equation. Due to the high
dimensionality and the development of small structures the numerical solution is
quite challenging. For two or four dimensional Vlasov problems, semi-Lagrangian
solvers have been successfully applied. Introducing a sparse grid, the number of
grid points can be reduced in higher dimensions. In this paper, we present a semi-
Lagrangian Vlasov–Poisson solver on a tensor product of two sparse grids. In
order to defeat the problem of poor representation of Gaussians on the sparse grid,
we introduce a multiplicative delta-f method and separate a Gaussian part that is
then handled analytically. In the semi-Lagrangian setting, we have to evaluate the
hierarchical surplus on each mesh point. This interpolation step is quite expensive
on a sparse grid due to the global nature of the basis functions. In our method,
we use an operator splitting so that the advection steps boil down to a number of
one dimensional interpolation problems. With this structure in mind we devise an
evaluation algorithm with constant instead of logarithmic complexity per grid point.
Results are shown for standard test cases and in four dimensional phase space the
results are compared to a full-grid solution and a solution on the four dimensional
sparse grid.

1 Introduction

In order to build fusion energy devices, it is necessary to understand the behavior
of plasmas in external and self-consistent electromagnetic fields. Within the kinetic
theory, the plasma is described by its distribution function in phase-space and its
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motion is described by the Vlasov–Maxwell or, for low-frequency phenomena, by
the Vlasov–Poisson equation. Since analytic solutions are not known, numerical
simulations are inevitable to understand the behavior of plasmas in a fusion
device. Because the distribution is a function in phase-space, the problem is six-
dimensional. Several approximative models exist with the aim of reducing the
dimensionality of the problem. However, only a simulation of the full 6D problem
can reveal the full structure of the problem and can help to understand the validity
of lower dimensional models. Three types of methods are widely used in the
simulation of the Vlasov equation: Particle-In-Cell (PIC) methods, semi-Lagrangian
and Eulerian methods. Since the latter two are grid-based, they suffer from the
curse of dimensionality. For this reason PIC methods are most common for high-
dimensional Vlasov simulations. On the other hand, the semi-Lagrangian method
[21] has proven to be an accurate alternative in simulations of the Vlasov equation
in two and four dimensional phase space and there are deterministic numerical
methods that are specially designed to solve high-dimensional problems efficiently.

The sparse grid method [6] is targeted at moderately high-dimensional problems
with solutions of bounded mixed derivatives. The subject of the present paper
is to introduce an efficient semi-Lagrangian method to solve the Vlasov–Poisson
equation on a sparse grid. In [3] sparse grids are combined with the semi-Lagrangian
method to solve the Hamilton–Jacobi–Bellman equation.

The evolution of small filaments in the plasma distribution function yields large
mixed derivatives which causes a major problem for the performance of sparse grids.
However, if the filaments evolve mainly along the coordinate axes, a tensor product
of separate spatial and velocity sparse grids can yield good compression as we will
demonstrate.

Sparse grids have previously been introduced to plasma physics in the context of
solving an eigenvalue problem in linear gyrokinetics with the sparse grid combina-
tion technique [13]. For this application the sparse grid method is particularly suited
since field-aligned coordinates are used and nonlinear effects are not considered.

The outline of the paper is as follows. First we will briefly define a semi-
Lagrangian Vlasov solver in Sect. 2 and discuss typical features of the solution
to the Vlasov equation. The sparse grid method is introduced in Sect. 3 before
we describe the main components of our combined semi-Lagrangian solver on a
sparse grid in Sect. 4. Section 5 explains how to use the structure of the problem
in order to improve on the implementation and the accuracy of the problem. In
Sect. 6, we explain how to improve the interpolation of Gaussians on a sparse grid
and introduce our multiplicative ıf method. A brief discussion on conservation and
stability properties of our method is given in Sect. 7 before we show the numerical
performance for benchmark problems in Sect. 8. Finally, conclusions are drawn and
further research directions indicated in Sect. 9.
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2 The Vlasov–Poisson Equation

The Vlasov–Poisson equation describes the motion of a plasma in its self-consistent
electric field for low-frequency phenomena. In this paper, we will consider the
dimensionless Vlasov–Poisson equation for electrons with a neutralizing ion back-
ground,

@tf .x; v; t/C v � rx f .x; v; t/� E.x; t/ � rvf .x; v; t/ D 0;

���.x; t/ D 1 � 
.x; t/; E.x; t/ D �r�.x; t/; 
.x; t/ D
Z

f .x; v; t/ dv:

Here, f denotes the probability density of finding a particle at position x 2 D � R
3

and velocity v 2 R
3, E denotes the electric field, � the electric potential, and 
 the

charge density. As for any scalar hyperbolic conservation law with divergence-free
advection field, the value of f is constant along the characteristics defined by

dX
dt

D V;
dV
dt

D �E.X; t/: (1)

Let us denote by X.tI x; v; s/;V.tI x; v; s/ the solution of the characteristic equa-
tions (1) at time t with initial conditions X.s/ D x and V.s/ D v. Given an initial
distribution f0 at time 0, the solution at time s > 0 is given by

f .x; v; s/ D f0.X.0I x; v; s/;V.0I x; v; s//; (2)

i.e. we can find the solution at any time s by solving the characteristic equations
backwards in time. However, we cannot solve (1) analytically since the right-hand
side depends on f through the Poisson equation. Existence and uniqueness of the
solution are shown in [9, Ch. 4]. The regularity of the solution depends on the initial
condition [14] and typical features will be discussed in the following subsection.
In Sect. 2.2, we will then discuss how to use the characteristic equations to find a
numerical solution of the Vlasov equation.

2.1 Some Linear Analysis of the Solution
to the Vlasov–Poisson Equation

The typical equilibrium solution to the Vlasov–Poisson problem is a Maxwellian of
the form

f0.x; v/ D 1

.2�vth/
3=2

exp

�
�kvk22
2v2th

�
: (3)
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In this case, the electric field is zero. Also linear combinations of several
Maxwellians are possible. This can be verified by inserting the Maxwellian into
the Vlasov equation. The dynamics are typically initiated by small perturbations
in space from equilibrium. For example the Landau test case refers to an initial
condition of the type

f0.x; v/ D 1

.2�vth/
3=2

exp

�
�kvk22
2v2th

� 
1C "

3X

iD1
cos.kxi/

!
; (4)

where " is a small parameter. While the solution stays close to equilibrium for small
values of ", a filamentation in phase space depending on " develops over time. In
Fig. 1a, b, the projection of f .x; v; t/ � f0.x; v/ to the .x1; v1/ plane is visualized
at time 5 and 15 for a four dimensional simulation of the Landau problem with
" D 0:01 and k D 0:5. Comparing the phase-space distribution one can clearly
see the filamentation at time 15. This filamentation is typical for solutions to the
Vlasov–Poisson system (cf. [7]). Other configurations give rise to instabilities where
the solution does not only show filamentation but also new structures form. In this
case, the solution does not stay close to equilibrium and nonlinear effects eventually
become dominant. A typical unstable problem for the two dimensional Vlasov–
Poisson problem is the two stream instability defined by the initial condition

f0.x; v/ D 1

2
p
2�

.1C 0:001 cos.0:2x//
�

e�0:5.v�2:4/2 C e�0:5.vC2:4/2
�
: (5)

Figure 1d, e shows the phase-space distribution for a simulation of the two stream
instability at time 5—where the distribution is close to the initial distribution—
and time 30 where a hole structure has formed. A good approximation of the
dynamics can often be obtained by linearizing the Vlasov–Poisson equations around
the equilibrium (cf. e.g. [4, Ch. 7]). This yields a description to the first order in ".
For instance for the Landau damping problem with initial value (4), linear analysis
tells us that

� lin.x; t/ / "e�� t cos.ˇt � �/
3X

iD1
cos.kxi/; (6)

with �; ˇ; � 2 R depending on k. The (oscillating) electric field is damped by the
rate � . For weak Landau damping—that is if " is small—linear theory gives a good
description of the actual phenomenon. Due to the fact that the initial perturbation
in (4) is separable, the dispersion relation is the sum of three two-dimensional cases.
Note that the form (6) of the electric potential implies that Elin

i .x; t/ D Elin
i .xi; t/

for i D 1; 2; 3, and the characteristic equations separate into three independent
subproblems for the tuples .xi; vi/, i D 1; 2; 3. Therefore, the filamentation is limited
to the .xi; vi/-planes. In Fig. 1c, we have plotted the projection of f .x; v; 15/�f0.x; v/
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(a) (b)

(d)(c)

(e) (f)

Fig. 1 Phase space distributions and electrical energy for Landau and two stream instability
test cases. (a) Landau damping: .x1; v1/-projection of f .x; v; 5/ � f0.x; v/. (b) Landau damping:
.x1; v1/-projection of f .x; v; 15/� f0.x; v/. (c) Landau damping: .x1; v2/-projection of f .x; v; 15/�
f0.x; v/. (d) Two stream instability: f .x; v; 5/. (e) Two stream instability: f .x; v; 30/. (f) Two stream
instability: electric energy

to the .x1; v2/-plane. As opposed to the situation in .x1; v1/-plane, there is no
filamentation.

For the two-stream instability, a linear perturbation analysis is also possible. For
the given parameters, the electrical field is growing in the linear description. Hence,
the perturbation is increasing over time. Figure 1f shows the time evolution of the
simulated electric energy, 1

2
kEkL2 , together with the straight line with slope equal to

the predicted growth rate of the electrical energy by the linear theory. The numerical
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solution of the two stream instability indeed shows that the electrical energy does
not follow the linear behavior over long times but the electrical energy stops growing
at a certain point where nonlinear effects become dominant. For the following two
reasons, this problem will be more challenging for a solution on a sparse grid as we
will discuss later: Firstly, the solution is no longer close to equilibrium and secondly
nonlinear effects are not limited to couplings in the .xi; vi/-planes. Numerically, it
has been observed that there occur considerable couplings between the different
coordinate directions for a similar problem in [12] where the solution of the Vlasov–
Poisson system has been represented in tensor train format. In the tensor train
format, a function on a tensor product grid it compressed by higher order singular
value decompositions. This can roughly be considered as an adaptive procedure to
sparsify the grid.

2.2 A Semi-Lagrangian Vlasov Solver

The idea of the semi-Lagrangian method is to introduce a grid G in phase space and
to solve the characteristics successively on small time intervals�t. Given the values
f n of the solution at the grid points for some time tn, the values of f nC1 at time
tnC1 D tn C �t can be found by numerically solving the characteristics equation
starting at the grid points and then interpolating the value at the origins for time
tn from the values f n. The advantage of the semi-Lagrangian method over Eulerian
solvers is the fact that usually no CFL conditions are required for stability. Stability
of the semi-Lagrangian method on a bounded velocity domain has been shown in
[2]. Since the Vlasov problem is posed on an unbounded domain, artificial boundary
conditions have to be added to close the system. The effect of boundary conditions
has not been considered in [2]. A reasonable choice of�t is on the order of the grid
spacing or slightly below.

The solution of the characteristic equations can be found using a numerical ODE
solver. For the Vlasov–Poisson system, one can instead split the x and v advection
steps applying a Strang splitting, solving the two problems

@tf � E.x/ � rvf D 0; @tf C v � rx f D 0 (7)

separately. Note that the v-advection equation is a constant-coefficient advection for
each x and the characteristics are given as

X.tI x; v; s/ D x; V.tI x; v; s/ D v � .t � s/E.x/: (8)

Note that the density 
 and hence the field E do not change in the v-advection step.
Also the x-advection equation has constant coefficients for each v and the solution
for the characteristics are

X.tI x; v; s/ D x C .t � s/v; V.tI x; v; s/ D v: (9)
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This idea yields the following split semi-Lagrangian scheme originally intro-
duced by Cheng and Knorr [7]

1. Solve v-advection on half time step: f .n;
/.xi; vj/ D If .n/ .xi; vj C E.n/.xi/
�t
2
/.

2. Solve x-advection on full time step: f .n;

/.xi; vj/ D If .n;�/ .xi � vj�t; vj/.
3. Compute 
.xi; vi/ from f .n;

/.xi; vj/ and solve the Poisson equation for E.nC1/.
4. Solve v-advection on half time step: f .nC1/.xi; vj/ D If .n;��/ .xi; vjCE.nC1/.xi/

�t
2
/.

For a given function g at all grid points, Ig evaluated at any point .X;V/, generally
not a grid point, denotes the interpolated value at .X;V/ from the values of g
on the grid points. In the split step method, the interpolation along the three x
and v directions, respectively, is split again into three successive one-dimensional
interpolations. For instance, we have the one dimensional interpolation problem

g
.x1;i1 ; x2;i2 ; x3;i3 ; vj/ D Ig.x1;i1 ��tv1;j1 ; x2;i2 ; x3;i3 ; vj/ for all .xi; vj/ 2 G:
(10)

Defining a one dimensional stripe of varying x1 component from the grid by
Sy2;y3;w D f.x; v/ 2 Gjx2 D y2; x3 D y3; v D wg, the interpolation problem (10)
splits into a one-dimensional interpolation problem for each such stripe: All the
points x1;i1 are shifted by the constant displacement ��tv1;j1 .

The building blocks of the split semi-Lagrangian scheme are hence

1. Interpolation along one-dimensional stripes to propagate.
2. Integration over velocity dimension.
3. Solution of the three dimensional Poisson problem.

Using linear interpolation for the one-dimensional interpolation problems is too
diffusive [7] and high-order interpolation needs to be used. The use of a cubic
spline interpolator is common in Vlasov codes since cubic splines are a good
compromise between accuracy and complexity (cf. [20, Ch. 2]). As mentioned
in [7], trigonometric interpolation gives very good results for periodic problems,
however, this is very specific and does not easily generalize to more complex
geometries or mesh adaptivity.

3 The Sparse Grid Method

In this section, we give a brief introduction to the concept of sparse grids and
introduce the notation used throughout the rest of the paper. For the definition
of a sparse grid, we restrict ourself to the domain Œ0; 1�d. However, a scaling of
the domain is straightforward. Moreover, we will concentrate on piecewise linear
functions first.

On the interval Œ0; 1�, we define for each ` 2 N the grid points

x`;k D k

2`
; k D 0; : : : ; 2`: (11)
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Associated to each grid point, we have the nodal hat function

'`;k.x/ D
(
1 � 2`abs.x � x`;k/ for x 2 Œx`;k � 1

2`
; x`;k C 1

2`
�

0 elsewhere:
(12)

with '`;k.x`;j/ D ık;j and support of size 1

2`�1
centered around x`;k. In d dimensions,

we define the grid of level ` 2 N
d by

�` WD ˚
x`;k D .x`1;k1 ; : : : ; x`d ;kd /jki D 0; : : : ; 2`i


(13)

and, associated to �`, the space spanned by the piecewise d-linear nodal functions

V` WD span

(
'`;k.x/ D

dY

iD1
'`i;ki.xi/jki D 0; : : : ; 2`i

)
: (14)

From the definition of �` in one dimension, we can see that �`�1 � �` contains
all the points from�` with even index, that is �` is the disjoint union of�`�1 and

�odd
` WD fx`;k 2 �`; k oddg : (15)

This leads us to the definition of the hierarchical increment

W` WD span
˚
'`;kjk D 1; 3; : : : ; 2`�1 � 1


: (16)

The space VL can be decomposed into the direct sum of hierarchical increments
with level indices smaller equal L, i.e.

VL D
M

`�L
W` : (17)

Instead of expanding a function f 2 VL in the nodal basis, we can represent it by its
hierarchical surplus v`;k as

f .x/ D
X

j`j`1�L

X

k2�odd
`

v`;k'`;k.x/: (18)

There are two important differences between the nodal and the hierarchical
representation: Firstly, the number of functions different from zero at a point
x 2 Œ0; 1�d increases. Except for the points on the grid, one function per hierarchical-
increment basis is different from zero. On the other hand, the hierarchical surpluses
express the additional information on the corresponding hierarchical increments
compared to the representation of the solution on the space spanned by the
hierarchical increments with smaller indices.
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The sparse grid method is based on the possibility to leave out hierarchical
increments where the hierarchical surpluses are smaller. In a standard sparse grid
this is not done adaptively but a priori according with the aim of optimizing the
cost-benefit ratio: The `1 norm of the index vector is restricted yielding

Vs
L D

M

j`j`1�L
W`: (19)

This reduces the number of hierarchical increments to

LX

iD0

 
d � 1C i

d � 1

!
: (20)

Note that the number of increments is still of the order Ld

dŠ . On the other hand, the
hierarchical increments that are left out are the ones with more points. The number
of points for Vs

L is O.2LLd�1/. This means the exponential growth in the dimension
is only for the basis L D ln.N/, while on the other hand the accuracy is only
decreased to

O.2�L.pC1/Ld�1/ (21)

for functions of bounded mixed derivatives, i.e. again by the dth power of the
logarithm. Here, the parameter p denotes the degree of the basis functions. So far,
we have only defined linear basis functions. A construction of higher order basis
functions for sparse grids has been proposed by Bungartz [5]. For each x`;k 2 �odd

` ,

the basis function '.p/
`;k of degree p is defined by the p C 1 conditions

'
.p/
`;k .x`;k/ D 1; '

.p/
`;k .xj/ D 0; (22)

where xj are the two neighbors x`;k � 1

2`
and x`;k C 1

2`
as well as the p � 2 next

hierarchical ancestors of x`;k. The support of '.p/
`;k is restricted to Œx`;k � 1

2`
; x`;k C 1

2`
�.

In the following, let us denote by ML the number of points of Vs
L.

Now that we have exploited the benefits of a hierarchical representation, we
need to discuss the downside that the support of the bulk of the basis function is
increased. If we want to evaluate a representation in the nodal piecewise d-linear
basis, the number of basis functions different from zero are mostly 2d, whilst we
have one function per hierarchical increment, i.e. Ld functions on a sparse grid of
maximum level L, in a hierarchical representation. Hence, the function evaluation
has a complexity that is exponential in d for the basis L (cf. also [17, Sec. 2]). Also
forming the hierarchical surplus in a naive implementation suffers from logarithmic
scaling. However, for the piecewise d-linear basis, there is a simple relation between
the hierarchical surplus and the function values that can be evaluated in linear
complexity. A similar relation applies between the hierarchical surplus for a basis
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of order p and order p C 1 when they are constructed as described by Bungartz
[5]. Hence, we can hierarchize and also dehierarchize the representation of a
function on a sparse grid in linear complexity. Note, however, that this algorithm
for hierarchization is specific to the basis functions constructed in [5] which is why
using another basis is generally not advisable on sparse grids. One other basis that
can efficiently be used on sparse grids is a hierarchical Fourier basis since a fast
Fourier transform on sparse grids based on the so-called unidirectional principle [5]
can be devised [10].

4 A Semi-Lagrangian Solver on a Sparse Grid

In the previous two sections, we have introduced the central ingredients of our novel
Vlasov solver. Next, we will discuss various variants of introducing a sparse grid to
the phase space. Once we have introduced the sparse grid, we discuss the design of
the three building blocks of the split semi-Lagrangian method on the sparse grid.

4.1 Representation on a Sparse Grid

The basic ansatz would be to represent the distribution function f on a 6D sparse
grid. However, since there is a natural splitting of x and v coordinates, a tensor
product of a sparse grid in x and a sparse grid in v is also an interesting variant. This
is actually a very special case of a dimension adaptive [11] 6D sparse grid. Using
dimension or also spatial adaptivity [18] intermediate variants can be designed.
However, we concentrate on non-adaptive variants in this paper where we have a
simple construction principle whose structure can be exploited when implementing
the building blocks of our solver.

Comparing the full 6D sparse grid (SGxv) to the tensor product of two 3D
sparse grids (SGxSGv), it becomes immediately clear that the number of points
will grow quadratically in N D 2L (up to a logarithmic scaling Ld) for the SGxSGv
variant as opposed to the linear growth for the SGxv variant since we have the
product of two sparse grids. On the other hand, the structure of the interpolation
becomes simpler and parallelization is much simpler for the SGxSGv variant as
will be discussed in Sect. 5. The strongest argument in favour of the tensor product
variant SGxSGv lays, however, in the structure of the problem: Since the sparse grid
prefers hierarchical increments with anisotropic refinement, functions that can be
well approximated by the sum of univariate functions are also well approximated on
a sparse grid. When we consider the Vlasov–Poisson system, we know that filaments
evolve in phase-space which cause large mixed derivatives. Hence, a sparse grid
representation of the solution to the Vlasov equation can be problematic. However,
the filamentation is limited to the .xi; vi/-planes, i D 1; 2; 3, as long as linear effects
dominate the dynamics and the initial perturbation is aligned with the coordinate
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axes (cf. the discussion in Sect. 2.1). Since the .xi; vi/-plane is not sparsified in the
SGxSGv sparse grid, a good representation of the distribution function is expected
for problems with field-aligned coordinate axes and where no instabilities arise.
Also note that the SGxSGv is a structured special case of a dimension-adaptive
sparse grid. Since not only the pairs .xi; vi/ are fully resolved but also pairs with
different indices, we expect that a dimension adaptive algorithm will further increase
compression. However, this will be at the price of less structure, making efficient
implementation more difficult.

Finally, let us discuss the boundary conditions. We note that in our definition of
the sparse grid, level 0 is the level of the boundary points. Due to the constraint on
the `1 norm, the points of the sparse grid are most dense on the boundary. Since the
domain is periodic in x in our model, choosing periodic boundary conditions along
the x-coordinates is natural. In this case, only the left boundary is included along
each dimension. Along the velocity dimensions, we have an unbounded domain.
On the other hand, our solutions have a Gaussian shape as discussed in Sect. 2.1
and therefore decay fast towards infinity. We therefore truncate the computational
domain where the value of the distribution function is negligible and we have
to set artificial boundary conditions. Since the solution is very small, not much
information is kept at the boundary points which is a bit problematic in light of
the fact that the sparse grid has most points at the boundary. A simple solution
would be to set the solution equal to zero at the boundary and to skip level zero of
the sparse grid. However, the Vlasov equation is a first order equation that does not
allow for outflow boundary conditions which lead to unstable discretizations. Zero
inflow boundary conditions are more suitable but require many boundary points.
Another mathematically correct boundary closure are periodic boundaries. This is,
of course, unphysical but since the solution is small at the boundary, the effect of the
boundary condition is small and the advantage on a sparse grid is that we only need
half the boundary points. In our experiments, we have chosen periodic boundary
conditions.

In order to reduce the fraction of boundary points, we can modify the definition
of the sparse grid by requiring the following two conditions on the level vector of
the sparse grid

j`j`1
� L; j`j`1 � L C d � 1: (23)

This reduces the number of points on the boundary compared to a sparse grid defined
by j`j`1 � LCd�1 only. On the other hand, we have experimentally seen accuracies
of the same order for both grids for the velocity sparse grid. Alternatively, we
could have placed boundary and mid points on the same level which would have a
similar—but not exactly the same—effect. We have chosen the former modification
due to its ease of implementation. Note that the modification (23) yields worse
results for the spatial sparse grid.
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4.2 Interpolation

The first building block of the split-semi-Lagrangian algorithm, is one-dimensional
interpolation. Interpolation on a sparse grid can be realized by computing and
evaluating the hierarchical surplus. The major problem is the complexity of this
operation. As long as we use piecewise d-linear basis functions or the pth order
functions constructed in [5], computing the hierarchical surplus is comparably cheap
as explained in Sect. 3. As a next step, we have to evaluate the function on the origin
of each characteristic, i.e. at ML points. As mentioned in Sect. 3, each evaluation
of the sparse grid function has a complexity of pLd. In Sect. 5, we will design an
algorithm that exploits the structure of this problem which reduces the complexity of
the whole interpolation step to O.pML/ for the SGxSGv variant and to O.pL3ML/
for the SGxv variant.

Another question is about a suitable interpolation method. On the full grid,
using a cubic spline interpolator is common as mentioned in Sect. 2.2. However,
computing the hierarchical surplus for splines is generally more expensive [22, Sec.
4.1]. On sparse grids, the piecewise d-linear basis is most-frequently used. Even
though linear interpolation has its advantages on sparse grids when it comes to
conservation properties (cf. Sect. 7), linear interpolation is too diffusive yielding
much worse results compared to higher order interpolation [7]. Hence, using sparse
grids with third or fourth order polynomial basis functions constructed as in [5]
are a good compromise between accuracy and computational complexity. However,
the main interpolation task is only one dimensional and we will see in Sect. 5.4
how we can efficiently combine spline interpolation along the advection direction
with higher order sparse grid interpolation along all other dimensions to improve
accuracy.

4.3 Integration Over Velocity Coordinates

In order to compute the particle density 
 we need to integrate over the velocity
dimensions. If we have a tensor product of a sparse grid in space and velocity, this
is a simple sparse grid integration [8, 16]: For each point in the x-sparse grid, we
have a v-sparse grid over which we have to integrate.

If we have a full sparse grid (SGxv), the velocity coordinates of all the points
on the sparse grid with one particular spatial coordinate form a three dimensional
sparse grid and we can perform a three dimensional sparse grid integration for each
point in space. Note that the representation of the distribution function needs to
be in the hierarchical surplus along the spatial dimensions before performing the
integration on the three dimensional sparse grids. If we want to have the value of
the density at each point, we have to dehierarchize over the spatial dimensions in
the end.

In our numerical experiments, we use the sparse grid trapezoidal rule to compute
the integrals.
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4.4 Solution of the Poisson Problem

Once we have computed 
 and hence the right-hand side of the Poisson problem,
we need to solve a three dimensional Poisson problem. In this paper, we focus on
problems posed on a periodic domain in x and use a pseudospectral Poisson solver
based on the sparse grid fast Fourier transform [10].

5 Improved Efficiency and Accuracy

As mentioned in Sect. 3 the advantage of the hierarchical basis is that we can
leave out points without loosing too much in accuracy. On the other hand, the
computational complexity of the algorithms increases. Efficient algorithms exist for
some tasks but the evaluation of a sparse grid interpolant is the task in our algorithm
with highest complexity, namely O.pLdML/. However, our interpolation problem
exhibits a certain structure: We only have a displacement along one direction and
the displacement only depends on some of the dimensions. In this section, we are
going to explain how to exploit this structure to improve on the efficiency. Finally,
in the last subsection we will exploit the same idea also in order to improve on the
accuracy of our method.

5.1 Mixed Nodal-Hierarchical Representation

A key ingredient to our implementation is the observation that we can represent
a sparse grid interpolant by its semi-hierarchical surplus, i.e. by values that are
hierarchized along all but one dimension. In the derivation, we will only consider a
two dimensional function and a hierarchization along dimension one for the ease of
notation. Replacing the one hierarchized dimension by several ones or interchanging
the indices is straightforward.

Let us consider the sparse grid interpolant If of a function f . It can be expressed as

If .x1; x2/ D
LX

`1D0

L�`1X

`2D0

X

k12�odd
`1

X

k22�odd
`2

v`;k'`;k.x1; x2/

D
LX

`1D0

X

k12�odd
`1

'`1;k1 .x1/

2

64
L�`1X

`2D0

X

k22�odd
`2

v`;k'`2;k2 .x2/

3

75 :

(24)

In the second step, we have reordered the sum such that the expression in brackets
is a one-dimensional hierarchical sum of basis functions for all index pairs .`1; k1/.
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Hierarchical grid. Semi-hierarchical grid.

(b)(a)

Fig. 2 Sparse grid with maximum level L D 2 and periodic boundary conditions. Part (a) shows
the hierarchical increments with hierarchical basis functions. Part (b) shows the semi-hierarchical
version where the horizontal basis functions are nodal with different level for each horizontal stripe.
The hierarchical basis functions are drawn in blue and the nodal ones in green

Since the nodal basis is equivalent to the hierarchical, we can dehierarchize v`;k

along dimension 2 and use a nodal representation along dimension 2. This gives

If .x1; x2/ D
LX

`1D0

X

k12�odd
`1

'`1;k1 .x1/

2

4
X

k22�L�`1

v`1;k1 .x`2;k2 /'L�`1;k2 .x2/

3

5 (25)

In Fig. 2, we have visualized the hierarchical representation (24) and the semi-
hierarchical representation (25) for a sparse grid with maximum level L D 2 and
periodic boundaries.

If we want to evaluate the representation (25), we only have a hierarchical
representation along dimension 1 and a nodal representation along dimension 2.
Hence, the cost of one evaluation goes down from order L2 to L, or in the
d-dimensional case from Ld to Ld�1. Of course this requires that we have the semi-
hierarchical surplus available. If we start from the function values of the grid points,
we can compute this by just hierarchizing along d � 1 dimensions in the same way,
but even slightly cheaper than the full hierarchical surplus. If we start of from the
hierarchical surplus, we have to apply dehierarchization along one dimension with a
complexity of order ML. So in this case, this way of evaluating a sparse grid function
is only worthwhile if we want to evaluate the functions about ML times. But this is
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the case in our method. The total complexity of the interpolation step will hence
reduce to O.pLd�1ML/.

5.2 Constant Displacement

As a next step, we want to exploit the fact that we have a one-dimensional
interpolation and that the displacement is constant along some dimensions. First,
we consider the case where the displacement is fully constant. In the variant
SGxSGv, all interpolations fall into this category. Even though the coefficients are
not constant, the coefficient of the x-advections only depend on v and vice versa and
the sparse grids are only including the x or v directions separately. In our analysis,
we also allow for displacements that are dependent on the dimension along which
we have the displacement, even though this is not the case for the interpolations in
the SGxSGv method.

Let f .x1; x2/ be the original function and let If be its sparse grid interpolant. Now,
we want to find a sparse grid representation of a function g.x1; x2/ that satisfies

Ig.x1; x2/ D If .x1; x2 C c.x2// for all .x1; x2/ 2 S; (26)

whereS is the set of points representing the sparse grid and c.x2/ is the displacement
along x2 that is a function of x2, i.e. constant along x1. Note that we can again
interchange the indices or add more hierarchical dimensions without displacement.

Now, we choose a semi-hierarchical representation that is nodal along dimension
2. For a point .xL1;K1 ; xL2;K2 / 2 S, this representation reads

If .xL1;K1 ; xL2;K2 C c.xL2;K2 // D
LX

`1D0

X

k12�odd
`1

'`1;k1 .xL1;K1 /�

2

4
X

k22�L�`1

v
f
`1;k1

.xL2;K2 /'L�`1;k2 .xL2;K2 C c.xL2;K2 //

3

5

Ig.xL1;K1 ; xL2;K2 / D
LX

`1D0

X

k12�odd
`1

'`1;k1 .xL1;K1 /v
g
`1;k1

.xL2;K2 /:

(27)

If we now set

v
g
`1;k1

.yL2;K2 / D
X

k22�L�`1

v
f
l1;k1

.xL2;K2 /'L�`1;k2 .xL2;K2 C c.xL2;K2 // (28)
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for all combinations of .`1; k1/ and .L2;K2/ on the sparse grid, Eq. (26) is satisfied.
Now, we found a representation of the semi-hierarchical surplus of Ig from which
we can either compute the hierarchical surplus by hierarchization along dimension
2 or the function values by dehierarchization along dimension 1. Evaluating
equation (28) is independent of L since we have a nodal representation. In this
way, we can find the representation of the interpolant of the shifted function by a
combination of algorithms with linear complexity.

Following this implementation the complexity of each advection step reduces to
O.pML/ for a sparse grid interpolation on the SGxSGv variant.

5.3 Interpolation with Coefficients Constant Along Some
Dimensions

While we have found a very efficient implementation of the interpolation steps for
the SGxSGv variant, the situation is more complicated for the SGxv variant since
now the displacement is still dependent on some of the dimensions in the sparse
grid. In order to still be able to somewhat reduce the complexity, we would like to
partly apply the algorithm derived in the previous section. In order to understand the
algorithm for a simple example, we consider the case of a three dimensional sparse
grid with displacement along x3 only depending on x2; x3. This means, we consider
a function f .x1; x2; x3/ with known interpolant If on the sparse grid S and want to
compute a sparse grid representation of the function g.x1; x2; x3/ such that

Ig.x1; x2; x3/ D If .x1; x2; x3 C c.x2; x3// for all .x1; x2; x3/ 2 S: (29)

Let us consider the point .xL1;K1 ; xL2;K2 ; xL3;K3 / 2 S and use a representation of If

that is nodal along x3 and a representation of Ig that is nodal in x2; x3. We then have

If .xL1;K1 ; xL2;K2 ; xL3;K3 C c.xL2;K2 ; xL3;K3 // D
LX

`1D0

X

k12�odd
`1

'`1;k1 .xL1;K1 /

L�`1X

`2D0

X

k22�odd
`2

'`2;k2 .xL2;K2 /�

2

4
X

k32�L�`1�`2

v
f
`1;k1;`2;k2

.xL3;K3 /'L�`1�`2;k3 .xL3;K3 C c.xL2;K2 ; xL3;K3 //

3

5

Ig.xL1;K1 ; xL2;K2 ; xL3;K3 / D
LX

`1D0

X

k12�odd
`1

'`1;k1 .xL1;K1 /v
g
`1;k1

.xL2;K2 ; xL3;K3 /:

(30)
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From this representation, we can see that (29) is satisfied for all .xL1;K1 ; xL2;K2 ; xL3;K3 /

2 S if we set for all combinations of .`1; k1/, .L2;K2/ and .L3;K3/

v
g
`1;k1

.xL2;K2 ; xL3;K3 / D
L�`1X

`2D0

X

k22�odd
`2

'`2;k2 .xL2;K2 /�

X

k32�odd
L�`1�`2

v
f
`1;k1;`2;k2

.xL3;K3 /'L�`1�`2;k3 .xL2;K2 C c.xL2;K2 ; xL3;K3 //:

(31)

This can now no longer be computed within linear complexity since we have one
sum over hierarchical basis functions. Hence, we get a logarithmic scaling by L.
For the general case of a d dimensional sparse grid and a displacement depending
on � directions (different from the direction of the displacement), the complexity
of the evaluation step is O.pL�ML/. In particular, each velocity advection step on
a six-dimensional sparse grid will have complexity of O.pL3ML/ and each spatial
advection step O.pLML/.

5.4 Mixed Interpolation

When we solve the interpolation problem based on the efficient evaluation formulas
discussed above, we always need the semi-hierarchical surplus that is hierarchical
along all directions except for the one along which the displacement appears. In
this section, we discuss how to exploit this fact to improve on the accuracy. As
mentioned in Sect. 2.2, spline interpolation has proven very efficient for semi-
Lagrangian methods on the full grid but computing the hierarchical surplus for a
spline basis on a sparse grid has too high complexity. However, we do not need to
hierarchize along the dimension along which we displace the points. This gives us
the freedom to use another basis (i.e. another interpolator) along that dimension. To
illustrate this, let us revisit the example of a function f .x1; x2/ of two variables where
we have a displacement c1.x1; x2/ along x1 and a displacement c2.x1; x2/ along x2.
For a given one-dimensional set of equidistant points �` as defined in (13), let us
consider an arbitrary set of basis functions .�`;k/kD1;:::;2` associated with �`. Then,
we represent f on the sparse grid by

I.1/f .x1; x2/ D
LX

`1D0

X

k12�odd
`1

'`1;k1 .x1/

2

4
X

k22�L�`1

v
.1/

`1;k1
.x`2;k2 /�L�`1;k2 .x2/

3

5 (32)

for the interpolation problem along x2. In order to solve the interpolation problem,
we can thus succeed in two steps:

1. Compute the semi-hierarchical surplus v.1/`1;k1 .x`2;k2 /.
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2. For each one-dimensional stripe SxL1;K1
D f.x1; x2/ 2 SLjx1 D xL1;K1g defined

by the x1-coordinate xL1;K1 appearing on the sparse grid SL, solve the one-
dimensional interpolation problem in the basis .�L�`1;k/k.

For the interpolation along x1, we will then exchange the roles of the coordinates
and use the following interpolant

I.2/f .x1; x2/ D
LX

`2D0

X

k22�odd
`2

'`2;k2 .x2/

2

4
X

k12�L�`2

v
.2/

`2;k2
.x`1;k1 /�L�`2;k1 .x1/

3

5 : (33)

Note that unless we choose the basis .�L�`1;k/k equivalent to the basis used on the
sparse grid, the representations (32) and (33) will not be equivalent, i.e. we use
different representations for each one-dimensional interpolation problem. This also
means (32) and (33) are—other than (25)—not equivalent to the representation with
the fully hierarchical sparse grid interpolation. Generalization to higher dimensions
is straight-forward. In our experiments, we will use cubic spline interpolations along
the one-dimensional stripes combined with sparse grids with cubic basis functions
in order to improve the accuracy (cf. Sect. 8.2).

5.5 Parallelization

Even though the number of grid points is reduced when using a sparse grid, for
six-dimensional problems with reasonable resolution the number of points and the
number of arithmetic operations can become so large that parallel computations
become necessary. Due to the non-locality of the hierarchical basis, parallelizing
sparse grid routines is not trivial.

On the other hand, the split-step semi-Lagrangian method provides trivial
parallelism: Each one-dimensional interpolation step reduces to operations on one-
dimensional stripes if a nodal basis is used. This is exploited in the parallelization
strategy of the semi-Lagrangian library SeLaLib [1] which is the basis for our
implementation: When we are computing the advection step along one dimension,
the domain is decomposed along one or several of the other dimensions and
distributed between the processors. Then each of the processors can work on its one-
dimensional stripes independently of the other. The only thing that has to be done is
a redistribution of the data once we turn to an advection step along a direction over
which the data was distributed.

One of the advantages of the SGxSGv variant is the fact that we can apply
this parallelization strategy. When computing the x-advection steps, the problem
is nodal along the v directions and vice versa. We can therefore distribute the
distribution function over the points of the velocity sparse grid when performing the
x-advection steps, and along the points of the spatial sparse grid when performing
the v-advection steps.
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6 Multiplicative ıf Method

It is well-known that sparse grids and, especially higher order polynomials on sparse
grids, are badly suited to interpolate Gaussians [18, Sec. 4.2]. The major problem
is that a quite large number of points is necessary before the interpolation starts
to converge. Since the initial value of the distribution function is a Gaussian, the
quality of the representation along the velocity dimensions needs a considerable
resolution. On the other hand, we know that the solution often stays close to the
equilibrium distribution (cf. Sect. 2.1). For this reason, we could only simulate the
difference of the solution from the Gaussian equilibrium. Since the perturbation
typically follows the same Gaussian decay, we consider a multiplicative splitting
which we call multiplicative ıf method.

In order to keep the presentation simple, we will explain our multiplicative
splitting for the two-dimensional case. The main idea is to split the distribution
function into a time-dependent part and a time-constant Gaussian part,

f .x; v; t/ D g.x; v; t/h.v/; (34)

and to represent the function g on the sparse grid only while h is known analytically.
If our solution is close to equilibrium, g.x; v; t/ will be close to one. For the Landau
damping problem introduced in Sect. 2.1, the initial splitting would be

g.x; v; 0/ D 1C " cos.kx/; h.v/ D 1

2�
exp.�0:5v2/: (35)

Since h is independent of x, this part of the distribution function will not change for
the x-advection. For a v-advection, on the other hand, we have

f .x; v C E.x/�t; t/ D g.x; v C E.x/�t/h.v C E.x/�t/

D g.x; v C E.x/�t/
h.v C E.x/�t/

h.v/
h.v/:

(36)

Hence, we have to perform a usual sparse grid integration for g followed by a scaling
by h.vCE.x/�t/

h.v/ . Finally, when integrating over the velocity dimension, we analytically
compute the weighted integrals

w`;k WD
Z

h.v/'`;k.v/ dv; (37)

as quadrature weights for the hierarchical surpluses v`;k. In three dimensions, on the
SGxSGv grid, the density 
 at grid point x is thus computed as


.x/ D
X

.`;k/2G

w`1;k1w`2;k2w`3;k3v`;k.x/; (38)
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where G denotes the index set defining the sparse grid along v direction. Of course,
this would result in a considerable computational overhead since evaluating (37)
requires evaluations of the error function. However, the weights are not depending
on time and can be precomputed once.

In Sect. 8.3 we will show that a considerable improvement of the solution can
be obtained for the Landau damping problem when the multiplicative ıf method
is applied. On the other hand, this procedure fails to improve accuracy when, for
instance, an instability occurs, at least as long as h.v/ is not updated when the
instability occurs.

7 A Note on Stability and Conservation Properties

A major disadvantage of a sparse grid solver is the fact that stability of sparse grid
algorithms is not very well-understood or not guaranteed. A lack of L2 stability
was discussed in [6]. Also Bokanowski et al. [3] point out that they cannot provide
stability estimates for their semi-Lagrangian solver.

Stability for a one-dimensional semi-Lagrangian Vlasov solver on a uniform grid
was analyzed in [2]. However, effects from domain truncation are not considered.
Due to the fact that we have stripes with very coarse refinement in a sparse grid, the
sphere of influence of the boundary points is increased which is a potential source
of numerical instability.

Indeed, if the solution is not well-resolved, unstable results have been obtained
in our numerical experiments (cf. Sect. 8.4). From our experience, instabilities arise
first when the solution is severly underresolved and mixed derivatives become
large. As shown in Sect. 8.4, the method can be stabilized by switching to linear
interpolation or alternating between linear and higher-order interpolation once the
resolution becomes too bad. This introduces diffusion to the system and we observe
that energy is dissipated depending on the amount of diffusion added.

Alternatively, we could add a small diffusive term on the scale of the smallest grid
size as it was discussed in [19] for gyrokinetic simulations. However, a smallest grid
size is not well-defined on a sparse grid. We have seen that diffusion on an increasing
scale must be introduced when increasing simulation time. A better theoretical
understanding of the stability of the method would be necessary to develop a robust
stabilization method that does not unnecessarily deteriorate accuracy. Also the
influence of the time step and the boundary conditions needs to be better understood.

Moreover, the sparse grid method does not mimic the conservation properties
of the continuous model. In the continuous model, we have conservation of mass,
momentum, energy and all Lp-norms. Only when using a linear interpolator and
trapezoidal sparse grid integration, mass conservation is assured. We assume that
improving on the conservation properties might increase the stability of the method
as well.
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8 Numerical Results

We have implemented the sparse grid method as part of the Fortran library SeLaLib
[1]. In this section, we study the performance of our method. We will often compare
the sparse grid solution to a full grid solution. The full grid solution is computed
with the split-step semi-Lagrangian scheme based on a cubic spline interpolator. In
all simulations on the SGxSGv grid, the spatial sparse grid is a sparse grid of the
form (19) with `1 bound and periodic boundary conditions and the velocity sparse
grid is a modified sparse grid with `1 and `1 bound on the level vector according
to (23) and with periodic boundary conditions. The given maximal level Lx refers to
the upper bound in the `1 norm of the level vector and Lv to the upper bound in the
`1 norm of the level vector. Except for the comparative study in Sect. 8.2 a sparse
grid with cubic basis functions is used together with cubic spline interpolation along
the one dimensional stripes with displacement (cf. Sect. 5.4). The interpolation steps
are implemented with the efficient algorithms devised in Sects. 5.1, 5.2 and 5.3. The
multiplicative ıf method is only applied if this is explicitly noted.

In Sects. 8.1, 8.2 and 8.3, we will consider the weak Landau problem in d
dimensions (d D 2; 3) with initial value

f .x; v/ D
 
1C 0:01

dX

iD1
cos.0:5xi/

!
1

.2�/d=2
exp.�0:5kvk22/: (39)

In order to assess the quality of the solution, we will compare the time evolution
of the electric energy (cf. e.g. Fig. 3) to the decay rate predicted by linear theory
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Fig. 3 Weak Landau damping in 4D. Electric energy for simulations on full grid (FG), SGxSGv
and SGxv
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(cf. Sect. 2.1). For the given parameter of " D 0:01 the electric energy should show
this decay over long times. However, in numerical solutions on a grid, one typically
observes an approximative recurrence of the initial state after a certain time that is
proportional to the reciprocal of the velocity grid spacing, 1

�v
(see [15]). Of course,

the simulated solution is incorrect as soon as this artificial recurrence appears.

8.1 Comparison of Full Grid, SGxSGv, and SGxv

Let us consider the weak Landau damping problem in four dimensions. We compare
the two variants of the sparse grid with a full grid solution. The time evolution of
the potential energy is shown in Fig. 3. In this experiment, we use a sparse grid with
cubic polynomial basis functions and cubic spline interpolation along the dimension
with displacement. On the full grid, we use 32 points along each dimension. The
number of levels on the SGxSGv grid is chosen such that the damping rate is
recovered for at least the same time interval as on the full grid. For this we need
Lx D 5 and Lv D 7. This means we have a grid of Mx 
 Mv D 112 
 1024

grid points. Compared to the full grid, we can considerably reduce the number
of grid points along the x directions. However, there is no reduction along the v
directions. Also using the multiplicative ıf method, we cannot recover the damping
rate with a maximum level less than Lv D 7. Therefore, we can conclude that the
use of a sparse grid only reduces the number of points in the x grid for this two-
dimensional simulation. Note that it is clear from the structure of the initial value
that a representation of f on a sparse grid is more difficult in velocity space where
we have a function depending on v1 multiplied by a function depending on v2 while
the perturbations along x1 and x2 are additive. Note that we observe an artificial
recurrence on the sparse grid as well which is, however, damped and appears earlier
than it would for a full grid with the same resolution of the finest level present in the
sparse grid.

In Fig. 3, we also show the results obtained with a full sparse grid SGxv of
maximum level L D 10 (`1 bound) and periodic boundary conditions. In this
case, the number of grid points is 66,304, i.e. only 6 % compared to the full and
58 % compared to the SGxSGv variant. On the other hand, we have to bear in
mind that the complexity of the v-advection steps is of the order O.pL2/ per
grid point, i.e. about a factor L2 D 100 higher than for the FG and SGxSGv
variants (cf. Sect. 5). Hence, the computing time is expected to be highest for our
SGxv variant. Since the solution of the SGxv method is the worst, the numerical
experiments are in line with our theoretical considerations in Sect. 4.1 that a
complete sparse grid will not be very successful in representing the distribution
function governed by the Vlasov–Poisson equation.

In order to numerically verify our estimates on the complexity of our algorithms
from Sect. 5, the CPU times for the three experiments are reported in Table 1. For
each run, 2000 time steps have been simulated. The simulations were performed
in serial on an Intel Ivy Bridge notebook processor at 3.0 GHz and the SeLaLib
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Table 1 Comparison of CPU times for FG, SGxSGv, and SGxv

Method No. of grid points CPU time [s] CPU time/grid point [s]

FG 1,048,576 448 4:3 	 10�4

SGxSGv 114,688 216 2:3 	 10�3

SGxv 66,304 8270 1:2 	 10�1

library was compiled with the GNU Fortran compiler 4.8 and optimization level
-O3. Normalizing the CPU times by the number of grid points, we see that the
time per grid point is increased by a factor 5 for SGxSGv and by a factor 292
for SGxv, respectively, compared to the FG solution. Considering the fact that the
complexity is increased by a factor L2 for the SGxv grid, this means the complexity
constant is increased by a factor 5 or 2.9 for SGxSGv and SGxv, respectively, in our
prototype implementation. Given the fact that the sparse grid algorithms described
in Sect. 5 require (de)hierarchization steps, the constants were expected to be larger
than on the full grid. Note however that the codes are not completely optimized
for the complexity constant so that these values should rather be used as qualitative
estimates.

8.2 Comparison of Various Interpolators

In this section, we again consider the four dimensional Landau problem on a
Mx 
 Mv D 112 
 1024 SGxSGv grid and compare various interpolators. The
resulting potential energy plots are shown in Fig. 4. It can be clearly seen that
linear interpolation is too dissipative. This is not an effect of the sparse grid but can
likewise be observed on the full grid. Comparing the cubic sparse grid interpolator
with the cubic sparse grid with cubic splines on the one-dimensional stripes, we can
clearly see that applying mixed interpolation helps in increasing the accuracy of the
interpolation.

8.3 Effects of the Multiplicative ıf Method

So far, we have only looked at the Landau damping in four dimensions. If we use
the same values for the maximum level Lx D 5 and Lv D 7 also in six-dimensions,
the damping rate can only be recovered over a time interval of about 10 (see Fig. 5).
However, if we apply the multiplicative ıf method as described in Sect. 6, we can
again recover the damping rate until time 25 as in the four dimensional case. The
sparse grid only contains Mx 
 Mv D 272 
 7808 mesh points which only amounts
to 0:2% of the 326 points on the full grid with similar accuracy. This shows the
potential of the multiplicative ıf method. Note that the multiplicative ıf method



186 K. Kormann and E. Sonnendrücker

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35 40

po
te

nt
ia

l e
ne

rg
y

time

cubic FG
linear SGxSGv
cubic SGxSGv

SGxSGv, cubic spline
decay
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Fig. 5 Weak Landau damping in 6D. Electric energy for simulations with SGxSGv grid with
Mx �Mv D 272 � 7808 points with and without multiplicative ıf modeling

did not noticeably improve the results of our four dimensional experiments and is
therefore not used in the four dimensional experiments reported here.
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8.4 The Two Stream Instability: Effects of Instabilities

In this section, we want to consider a second test case: the two stream instability
with initial value

f .x; v/ D 1

4�

0

@1C 0:001

2X

jD1
cos.0:2xj/

1

A
�

e�0:5.v1�2:4/2 C e�0:5.v1C2:4/2
�

e�0:5v
2
2 :

(40)

The perturbation along x1 will yield an instability as discussed in Sect. 2.1. During
a first linear phase the energy grows and a hole structure evolves in .x1; v1/ space.
Around time 35, the energy stops to grow and nonlinear effects take over. During the
nonlinear phase, particles are trapped in the hole structure and smaller and smaller
filaments evolve. In the light of the discussion on the structure of the problem in
Sect. 4.1, this problem is more difficult to represent on a sparse grid than the Landau
damping problem. We can see from the results in Fig. 6 that a SGxSGv sparse grid
of 262,144 points in total (Lx D 6;Lv D 7) can nicely recover the linear phase.
In the nonlinear phase, the electric energy only keeps an oscillating structure on the
right level but the error in the solution is rather large.
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Fig. 6 Two stream instability in 4D. Electric energy for simulation on full grid and SGxSGv
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When solving the extension of the problem to six dimensions

f .x; v/ D 0:5

.2�/1:5

0

@1C 0:001

3X
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cos.0:2xj/
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A
�

e�0:5.v1�2:4/2 C e�0:5.v1C2:4/2
�

e�0:5.v22Cv23 /:
(41)

we have observed a numerical instability at the same resolution (see Fig. 7). For this
simulation, we have applied the multiplicative ıf method along v2 and v3. We can
see that the simulation can be stabilized when switching to a linear interpolator at
time 45. At this point in time the resolution is poor and dissipation needs to be added
to keep the simulation stable. However, we can see that the propagation method
becomes too diffusive and energy is dissipated. In this case, we have added too
much diffusion. If we instead use a linear interpolation each 6th step from time 40,
the solution still remains stable but is much less diffusive. From our experiments,
we have seen that more and more diffusion needs to be added as time evolves. In
order to design a stable algorithm that adds as little diffusion as possible, one would
need to analyze stability of the sparse grid method.
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9 Conclusions

We have introduced a semi-Lagrangian Vlasov solver on a sparse grid. From both
theoretical considerations and numerical performance, we have seen that a tensor
product of a sparse grid in spatial and a sparse grid in velocity coordinates is
better suited than a full six-dimensional sparse grid. We have introduced an efficient
implementation that improves on the efficiency by exploiting the special structure
of the problem. Moreover, we have devised a multiplicative ıf method to defeat the
problem of poor representation of Gaussians on a sparse grid.

From the results, we can conclude that good compression and reduced com-
putational complexity can be obtained in six dimensions for problems close to
equilibrium or when the filaments are aligned with the coordinate directions. For
this reason, sparse grids might be interesting in a hybrid method where the bulk
of the domain is resolved by a sparse grid while small structures are additionally
resolved using localized full grids or particles.
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An Adaptive Sparse Grid Algorithm for Elliptic
PDEs with Lognormal Diffusion Coefficient

Fabio Nobile, Lorenzo Tamellini, Francesco Tesei, and Raúl Tempone

Abstract In this work we build on the classical adaptive sparse grid algorithm
(T. Gerstner and M. Griebel, Dimension-adaptive tensor-product quadrature),
obtaining an enhanced version capable of using non-nested collocation points,
and supporting quadrature and interpolation on unbounded sets. We also consider
several profit indicators that are suitable to drive the adaptation process. We then
use such algorithm to solve an important test case in Uncertainty Quantification
problem, namely the Darcy equation with lognormal permeability random field, and
compare the results with those obtained with the quasi-optimal sparse grids based
on profit estimates, which we have proposed in our previous works (cf. e.g. Con-
vergence of quasi-optimal sparse grids approximation of Hilbert-valued functions:
application to random elliptic PDEs). To treat the case of rough permeability fields,
in which a sparse grid approach may not be suitable, we propose to use the adaptive
sparse grid quadrature as a control variate in a Monte Carlo simulation. Numerical
results show that the adaptive sparse grids have performances similar to those of the
quasi-optimal sparse grids and are very effective in the case of smooth permeability
fields. Moreover, their use as control variate in a Monte Carlo simulation allows to
tackle efficiently also problems with rough coefficients, significantly improving the
performances of a standard Monte Carlo scheme.

1 Introduction

In this work we consider the problem of building a sparse grid approximation of
a multivariate function f .y/ W � ! V with global polynomials, where � is an
N-dimensional hypercube� D �1
�2
: : :
�N (with �n � R, n D 1; : : : ;N), and
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V is a Hilbert space [1, 3, 6, 24, 29]. We also assume that each �n is endowed with a
probability measure %n.yn/dyn, so that %.y/dy D QN

nD1 %n.yn/dyn is a probability
measure on � . This setting is common in many optimization and Uncertainty
Quantification problems, where sparse grids have been increasingly used to perform
tasks such as quadrature, interpolation and surrogate modeling, since they allow
for trivial parallelization and maximal reuse of legacy codes, with little or no
expertise required by the end-user. While very effective for moderate dimensions
(say N 	 10), the basic sparse grid algorithms show a significant performance
degradation when N increases (the so-called “curse of dimensionality” effect). The
search for advanced sparse grid implementations, ideally immune to this effect, has
thus become a very relevant research topic.

A general consensus has been reached on the fact that the “curse of dimension-
ality” should be tackled by exploiting the anisotropy of f , i.e. by assessing the
amount of variability of f due to each parameter yi and enriching the sparse grid
approximation accordingly. Two broad classes of algorithms can be individuated
to this end: those that discover the anisotropy structure “a-posteriori”, i.e. at
run-time, based on suitable indicators, and those based on “a-priori” theoretical
estimates, possibly aided by some preliminary computations (we refer to the
latter as “a-priori/a-posteriori” methods). A-priori algorithms based on a sharp
theoretical analysis save the cost of the exploration of the anisotropy structure, while
a-posteriori approaches are to a certain extent more flexible and robust. Focusing on
the field of Uncertainty Quantification, examples of a-priori/a-posteriori algorithms
can be found e.g. in [4, 24, 26], while the classical a-posteriori algorithm originally
proposed in [17] has been further considered e.g. in [8, 28, 32].

A-posteriori sparse grid algorithms have always been used in the literature in
combination with nested univariate quadrature rules, since this choice eases the
computation of the anisotropy indicators, cf. [17]. In Uncertainty Quantification it
is quite natural to choose univariate quadrature points according to the probability
measures 
n.yn/dyn, see e.g. [1]: hence, one is left with the problem of computing
good univariate nested quadrature rules for the probability measures at hand. While
the case of the uniform measure has been thoroughly investigated and several
choices of appropriate nested quadratures are available, like Leja, Gauss–Patterson
or Clenshaw–Curtis points (see e.g. [24, 25] and references therein), non-uniform
measures have been less explored. In the very relevant case of normal probability
distribution a common choice is represented by Genz-Keister quadrature rules [16];
however, the cardinality of such quadrature rules increases very quickly when
moving from one quadrature level to the following one, hence leading to an heavy
computational burden when tensorized in a high-dimensional setting. The very
recent work [23] develops instead generalized Leja quadrature rules for arbitrary
measures on unbounded intervals: the main advantage of such quadrature rules over
the Genz-Keister points is that two consecutive quadrature rules differ by one point
only, rendering the Leja points more suitable for sparse grids construction. In this
work we will approach the problem from a different perspective and propose a slight
generalization of the classical a-posteriori adaptive algorithm that allows to use non-
nested quadrature rules: this immediately permits to build adaptive sparse grids
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using gaussian-type quadrature nodes, which are readily available for practically
every common probability measure. We will also consider different profit indicators
and compare the performances of the corresponding adaptive schemes.

We will then test our version of the adaptive algorithm on a classical Uncertainty
Quantification test problem, i.e. an elliptic PDE describing a Darcy flow in a porous
medium, whose diffusion coefficient is modeled as a lognormal random field [5, 7, 9,
14, 18] and discretized by a Karhunen–Loève expansion. The covariance structure
of the random field will be described by a tensor Matérn covariance model [11],
which is a family of covariance structures parametrized by a scalar value  that
governs the smoothness of each realization of the random field and includes the
Gaussian and the Exponential covariance structure as particular cases ( D 1 and
 D 0:5, respectively); more specifically, we will first consider the case  D 2:5,
that results in fairly smooth random field realizations, and then move to the rough
case  D 0:5, which leads to continuous but not differentiable field realizations. In
both cases we will compare the performance of the adaptive sparse grid procedure
with the “a-priori/a-posteriori” quasi-optimal sparse grid proposed in [5] for the
same problem.

In the case  D 2:5, the lognormal random field can be very accurately
described by including a moderate number of random variables in the Karhunen–
Loève expansion, and a sparse grid approach to solve the Darcy problem is quite
effective. Note however that we will not fix a-priori the number of random variables
to be considered, but rather propose a version of the adaptive algorithm that
progressively adds dimensions to the search space, thus formally working with N D
1 random variables. Yet, even such dimension adaptive sparse grids (as well as the
quasi-optimal ones) may suffer from a deterioration of the performance when the
lognormal random field gets rougher. In particular, in the case  D 0:5, numerical
experience seems to indicate that their performance might be asymptotically not
better than a standard Monte Carlo method. Thus, in this case we will actually
compare the performances of the adaptive and quasi-optimal sparse grids in the
framework proposed in [27], in which they will be applied to a smoothed version of
the problem (where a sparse grid approach can be effective), and the results used as
control variates in a Monte Carlo approach.

The rest of the paper is organized as follows. We start by introducing the general
construction of sparse grids in Sect. 2. Then, we discuss in detail the construction of
the quasi-optimal and adaptive sparse grids in Sect. 3: in particular, we will setup a
common framework for the two methods in the context of the resolution of discrete
optimization problems, and specify the details of the two algorithms in Sects. 3.1
and 3.2 respectively. The details of the Darcy problem are presented in Sect. 4, and
in particular we will describe the dimension adaptive algorithm in Sect. 4.1 and the
Monte Carlo Control Variate approach in Sect. 4.2. The numerical results are shown
in Sect. 5, while Sect. 6 presents the conclusions of this work.

In what follows, N will denote the set of integer numbers including 0, and NC
that of integer numbers excluding 0. Given two vectors v;w 2 N

N , jvj0; jvj1; jvj2
denote respectively the number of non-zero entries of v, the sum of their absolute
values and the euclidean norm of v, and we write v � w if and only if vj � wj
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for every 1 � j � N. Moreover, 0 will denote the vector .0; 0; : : : ; 0/ 2 N
N , 1 the

vector .1; 1; : : : ; 1/ 2 N
N , and ej the j-th canonical vector in R

N , i.e. a vector whose
components are all zero but the j-th, whose value is one. To close our introduction,
we recall the definition of some functional spaces that will be useful in the following.
In particular, we will need the weighted Lp spaces

Lp
%.�I V/ D

�
f W � ! V s.t.

Z

�

k f .y/kp
V %.y/dy < 1

�
; 8p 2 .0;1/;

and the space of continuous functions with weighted maximum norm

C0
� .�I V/ D

�
f W � ! V s.t. f is continuous and max

�
kf .y/kV�.y/ < 1

�
;

where � D QN
nD1 �n.yn/; �n W �n ! R; is a positive and smooth function. The

reasons for introducing two different weight functions % and � will be clearer later
on. Observe in particular that since V and L2%.�/ are Hilbert spaces, L2%.�I V/ is
isomorphic to the tensor space V ˝ L2%.�/, and is itself an Hilbert space.

2 Sparse Grid Approximation of Multivariate Functions

As already mentioned in the introduction, we consider the problem of constructing
a sparse grid approximation with global polynomials of the V-valued multivariate
function f , defined over the hypercube � with associated probability measure
%.y/dy D QN

nD1 %n.yn/dyn. More precisely, we will consider functions f that are
continuous with respect to y and with finite variance, i.e. belonging to L2%.�I V/ \
C0
�.�I V/ for some suitable weight � (which can be often taken equal to %, but

not always, as indeed in certain instances of the stochastic Darcy problem we
will consider in the numerical part of this paper, see e.g. [1, 19]). Observe that
approximating f with global polynomials is a sound approach if f is not just
continuous, but actually a smooth function of y, see [1, 24]. Sparse grids based on
piecewise polynomial approximations, which are suitable for non-smooth or even
discontinuous functions, have been developed e.g. in [15, 20].

To begin with the construction of the sparse grid, we consider a sequence
fUm.in/

n gin2N of univariate Lagrangian interpolant operators along each dimension
�n of the hypercube � ,

Um.in/
n W C0

�n
.�n/ ! Pm.in/�1.�n/;

where m.in/ denotes the number of collocation points used by the in-th interpolant,
and Pq.�n/ is the set of polynomials in yn of degree at most q. The function m W
N ! N is called “level-to-nodes function” and is a strictly increasing function, with
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m.0/ D 0 and m.1/ D 1; consistently, we set U0
n Œ f � D 0. Next, for any i 2 N

NC we
define the tensor interpolant operator

T m
i Œf �.y/ D

NO

nD1
Um.in/

n Œf �.y/; (1)

and the hierarchical surplus operator

�m.i/ D
NO

nD1

�
Um.in/

n � Um.in�1/
n

�
; (2)

where with a slight abuse of notation we have denoted with m.i/ the vector
Œm.i1/m.i2/ : : :m.iN/�. A sparse grid approximation is built as a sum of hierarchical
surplus operators; more specifically, we consider a sequence of index sets I.w/ �
N

NC such that I.w/ � I.w C 1/, I.0/ D f1g and [w2NI.w/ D N
NC, and we define the

sparse grid approximation of f .y/ at level w 2 N as

Sm
I.w/ W L2%.�I V/\C0

� .�I V/ ! L2%.�I V/; Sm
I.w/Œf �.y/ D

X

i2I.w/

�m.i/Œf �.y/ : (3)

To ensure good approximation properties to the sparse approximation, the sum (3)
must be telescopic, cf. [17]: to this end we require that

8 i 2 I; i � ej 2 I for 1 � j � N such that ij > 1:

A set I satisfying the above property is said to be a lower set or a downward closed
set, see e.g. [10]. The choice of the set I.w/ plays a crucial role in devising effective
sparse grid schemes: the next section will be entirely devoted to the discussion
of two possible strategies to this end, namely the a-posteriori adaptive and the
“a-priori/a-posteriori” quasi-optimal procedures that have been mentioned in the
introduction.

Further insight into the structure of sparse grid operators can be obtained by
rewriting (3) as a linear combination of tensor interpolant operators (1), see e.g.
[31]. Assuming that I.w/ is downward closed, we get indeed

Sm
I.w/Œf �.y/ D

X

i2I.w/

ciT m
i Œf �.y/; ci D

X

j2f0;1gN
.iCj/2I.w/

.�1/jjj: (4)

Observe that many of the coefficients ci in (4) may be zero: in particular ci is zero
whenever i C j 2 I.w/ 8j 2 f0; 1gN . The set of all collocation points needed
by (4) is actually called a sparse grid, and we denote its cardinality by WI.w/;m.
It is useful to introduce the operator pts.S/ that returns the set of points associated
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to a tensor/sparse grid operator, and the operator card.S/ that returns the cardinality
of pts.S/:

card.T m
i / D

NY

nD1
m.in/; card.Sm

I.w// D WI.w/;m : (5)

Finally, consider a sequence of univariate quadrature operators built over the same
set of points of fUm.in/

n gin2N; it is then relatively straightforward to derive a sparse
grid quadrature scheme Qm

I.w/Œ�� starting from (4):

Z

�

f .y/%.y/dy 	
Z

�

Sm
I.w/Œf �%.y/dy D

Wm
I.w/X

jD1
f .yj/ˇj D Qm

I.w/Œf �; (6)

for suitable quadrature weights ˇj 2 R.

Coming to the choice of the univariate collocation points used to build Um.in/
n ,

as mentioned in the introduction they should be chosen according to the probability
measure %n.yn/dyn on �n. Although the use of nested points seems to be particularly
indicated for the hierarchical construction (3), as the �m.i/ operator would entail
evaluations only on the new points added going from the tensor grid T m

i�1 to T m
i ,

at this point any choice of univariate collocation points is allowed (see Table 1),
and in particular Gauss interpolation/quadrature points, associated to the underlying
probability density functions %n.yn/, have been widely used, cf. e.g. [2, 12, 13, 26].
Note however that non-nested interpolatory rules have not been used in the adaptive
context, for reasons that will be clearer in a moment; the aim of this work is to
extend the adaptive algorithm to non-nested quadrature rules.

Table 1 Common choices of univariate collocation points for sparse grids

Collocation points

Measure Nested m.i/

Gauss–Legendre Uniform No i

Clenshaw–Curtis Uniform Yes 2i�1 C 1
Gauss–Patterson Uniform Yes 2i � 1
Leja Uniform Yes m.i/D i or m.i/ D 2i� 1
Gauss–Hermite Gaussian No i

Genz–Keister Gaussian Yes Tabulated: m.i/ D 1; 3; 9; 19; 35

Generalized Leja Gaussian Yes i
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3 On the Choice of I.w/

In this section we detail two possible strategies to design the sequence of sets I.w/.
To simplify the notation, let us assume that V D R, i.e. f is a real-valued N-variate
function over � , and that we are measuring the sparse grid approximation error
by some non-negative sublinear functional1 E Œ��, e.g. a semi-norm on Lp

%.�/ (we
will give three such examples in the following). Furthermore, assume that we can
formally write f D Sm

N
N
C

Œf � D P
i2NN

C

�m.i/Œf �. Then, we have

E
h
f � Sm

I.w/Œf �
i

D E

2

4
X

i…I.w/

�m.i/Œf �

3

5 �
X

i…I.w/

E
h
�m.i/Œf �

i
: (7)

Since the exact value of E
h
�m.i/Œf �

i
may not be at disposal, we further define

the error contribution operator �E.i/ as any computable (and hopefully tight)

approximation of E
h
�m.i/Œf �

i
, namely �E.i/ 	 E

h
�m.i/Œf �

i
. Moreover, we also

introduce the work contribution �W.i/, i.e. the number of evaluations of f implied
by the addition of the hierarchical surplus operator �m.i/Œf � to the sparse grid
approximation. Observe that this is actually a quite delicate issue when using non-
nested points as discussed later on.

Upon having assigned an error and a work contribution to each hierarchical
surplus operator, the selection of the sequence of sets I.w/ can be rewritten as a
“binary knapsack problem” [6, 22],

max
X

i2NN
C

�E.i/xi s.t.
X

i2NN
C

�W.i/xi � Wmax.w/ and xi 2 f0; 1g;

where Wmax.w/ is the maximum computational work allowed for the approximation
level w. Note that we are not explicitly enforcing that the resulting sets I.w/ be
downward closed (which will have to be verified a-posteriori).

While the binary knapsack problem is known to be computationally intractable
(NP-hard) its linear programming relaxation, in which fractional values of xi are
allowed, can be solved analytically by the so-called Dantzig algorithm [22]:

1. Assign a “profit” to each multi-index i,

P.i/ D �E.i/
�W.i/

I (8)

1A sublinear functional over a vector space X is a function ‚ W X! R such that

• ‚.˛x/ D ˛‚.x/, 8˛ > 0 and x 2 X;
• ‚.xC y/ � ‚.x/C‚.y/, 8x; y 2 X.
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2. sort multi-indices by decreasing profit;
3. set xi D 1, i.e. add i to I.w/, until the constraint on the maximum work is fulfilled.

In particular, whenever the multi-index 1 C en enters the set I.w/ we say that the
random variable yn is activated.

Note that only the last multi-index included in the selection is possibly taken not
entirely (i.e. with xi < 1), whereas all the previous ones are taken entirely (i.e. with
xi D 1). However, if this is the case, we assume that we could slightly adjust the
computational budget, so that all xi have integer values; observe that such integer
solution is also the solution of the original binary knapsack problem with modified
work constraint.

Both the quasi-optimal and the a-posteriori adaptive sparse grids strategies fit in
this general framework. What changes between the two schemes are just the choice
of the error indicator E Œ�� and the way �W.i/ and �E.i/ are computed.

3.1 Quasi-Optimal Sparse Grids

In this section we briefly summarize the quasi-optimal sparse grids construction, see
[24] for a thorough discussion. In this case, the error indicator E Œ�� is the L2%-norm,
so that (7) becomes

���f � Sm
I.w/Œf �

���
L2%

�
X

i…I.w/

����m.i/Œf �
���

L2%
;

and we need to provide a computable approximation
����m.i/Œf �

���
L2%

	 �E.i/.

Following [4, 5, 24], this can be obtained by further introducing the spectral
expansion of f over a N-variate Q
-orthonormal polynomial basis 'q.y/,2 with Q

not necessarily equal to %; for example, in the case where yn are uniform random
variables, 
n.yn/ D 1=j�nj, one is allowed to expand f on tensorized Chebyshev
polynomials, which are orthonormal with respect to Q
 D QN

nD1 e
n, with e
n.yn/ D
1=
p
1 � y2n. Next, let us denote by fq the q-th coefficient of the Q%-expansion of f and

by M
m.in/
n the “C0

� ! L2% Lebesgue constant” of the univariate interpolant operators

Um.in/
n for a suitable weight � , i.e.

M
m.in/
n D sup

kfk
C0� .�n/

D1

��Um.in/
n Œf �

��
L2%.�n/

:

Then, assuming that the coefficients fq are at least exponentially decreasing in each
yn, jfqj � C

Q
n exp.�gnqn/, and that

��'q
��

C0�
� Cjqj0 , following [24] we have that

2Here the n-th component of q denotes the polynomial degree with respect to yn.



Adaptive Sparse Grids for Elliptic PDES with Lognormal Coefficients 199

for a suitable constant C there holds

����m.i/Œf �
���

L2%
� �E.i/ D C.N/ jfm.i�1/j

NY

nD1
M

m.in/
n ; (9)

where m.i�1/ indicates the vector Œm.i1�1/; m.i2�1/; : : : ;m.iN �1/�. Observe that
in practical cases, the constant Mm.in/

n can be estimated numerically, and computable
ansatzes for fm.i�1/ can be derived, so that it is possible to obtain numerical estimates
of the quantities �E.i/. Such computable ansatzes depend on the exponential
coefficients g1; : : : ; gN , that can be conveniently precomputed with a numerical
procedure that requires O.N/ evaluations of f . We will return on this matter in the
next sections, proposing an ansatz for the Darcy problem, as well as giving details
on the numerical procedure needed to estimate g1; : : : ; gN .

Concerning the work contributions �W.i/, the definitions are different depend-
ing on whether the family of nodes considered is nested or non-nested (see [24] for
details). In the former case, we can set

�W.i/ D
NY

nD1

�
m.in/� m.in � 1/

�
; (10)

and there holds

WI.w/;m D
X

i2I.w/

�W.i/;

i.e. the cardinality of the sparse grid is equal to the sum of the work contributions.
On the contrary, when considering non-nested points the number of new evaluations
of f needed by the addition of �m.i/ will depend in general on the set I to which i
is added to, i.e. if I; I0 are two index sets such that both I [ fjg and I0 [ fjg are
downward closed, it can happen that

card.Sm
I[fjg/ ¤ card.Sm

I0[fjg/; (11)

and nodes that are present in the sparse grid built over I are not necessarily present
in the one built over I [ fjg, i.e.

pts.Sm
I / 6� pts.Sm

I[fjg/: (12)

Therefore, we have to use the pessimistic estimate

�W.i/ D
NY

nD1
m.in/ D card.T m

i Œf �/; (13)
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i.e. the cardinality of the entire tensor grid associated to i, which ensures

WI.w/;m �
X

i2I.w/

�W.i/:

Once the numerical values of �E.i/ and �W.i/ are available, the profits (8) and
the sequence of optimal sets I.w/ can be computed right-away, and the sparse grid
construction can proceed. Thus, this algorithm is said to be “a-priori”/“a-posteriori”
since it relies on a-priori estimates whose constants g1 : : : ; gN need however to be
tuned numerically.

3.2 An Extended Adaptive Sparse Grid Algorithm

We now describe the adaptive sparse grid construction algorithm [8, 17, 28], and its
extension to non-nested points and unbounded intervals. To this end, we introduce
the concepts of margin and reduced margin of a multi-index set I, and the concept
of neighbors of a multi-index. The margin of I, which we denote by MI, contains
all the multi-indices i that can be reached within “one-step forward” from I, i.e.

MI D fi 2 N
NC n I W 9 j 2 I W ji � jj1 D 1g:

The reduced margin of I, denoted by RI, is the subset of the margin of I containing
only those indices i such that “one-step backward” in any direction takes into I, i.e.

RI D fi 2 N
NC n I W i � ej 2 I; 8 j D 1; : : : ;N W ij > 1g � MI:

This means that the reduced margin of I contains all indices i such that I [ fig is
downward closed, provided that I itself is downward closed. Furthermore, given an
index i on the boundary of I, we call neighbors of i with respect to I, neigh.i; I/, the
indices j not included in I that can be reached with “one step forward” from i, so
that MI D S

i2I neigh.i; I/.
Instead of computing the profits and the sets I.w/ beforehand as in the quasi-

optimal algorithm, the idea of the adaptive algorithm is to compute the profits and
the sets I.w/ at run-time, proceeding iteratively in a greedy way. More specifically,
given a multi-index set I and its reduced margin RI, the adaptive algorithm operates
as follows:

1. the profits of i 2 RI are computed;
2. the index i with the highest profit is moved from RI to I;
3. the reduced margin is updated and the algorithm moves to the next iteration, until

some stopping criterion is met (usually, a check on the number of evaluations of
f or on the values of the profits or error contributions of the multi-indices in RI).
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Note that the profits of the indices i 2 RI are computed by actually adding the
hierarchical surpluses to the sparse grid operator (as will be clearer in a moment),
hence the definition of “a-posteriori”; therefore, the outcome of the algorithm at
each iteration is the sparse grid approximation built on I [ RI and not on I only.

In this work, we consider two different error indicators E Œ��, namely the absolute
value of the expectation of f � Sm

I.w/Œf �, which is a semi-norm on L1%.�/, and the

weighted C0
�.�/ norm, so that (7) becomes

ˇ̌
ˇ̌E Œf � � E

	
Sm

I Œf �

 ˇ̌ˇ̌ �

X

i…I

ˇ̌
ˇE
h
�m.i/Œf �

i ˇ̌
ˇ;

kf � Sm
I Œf �kC0� .�/

�
X

i…I

����m.i/Œf �
���

C0� .�/
:

To derive the error indicator �E.i/ for the quantity E
h
�m.i/Œf �

i
, let us consider an

arbitrary set I, and let J D I [ fig, with both I; J downward closed index sets and
observe that �m.i/Œf � D Sm

J Œf � � Sm
I Œf �. For the L1%.�/ seminorm, we immediately

have

E

h
�m.i/Œf �

i
D E

h
Sm

J Œf � � Sm
I Œf �

i
D Qm

J Œf � � Qm
I Œf �;

and therefore we define �E.i/ as

�E.i/ D
ˇ̌
ˇE
h
�m.i/Œf �

iˇ̌
ˇ D ˇ̌

Qm
J Œf � � Qm

I Œf �
ˇ̌
: (14)

In the case of the C0
�.�/ norm, the computation is different for nested and non-

nested points. For nested points the sparse grid operator is interpolatory (see e.g. [3,
Prop. 6]), hence �m.i/Œf �.y/ D Sm

J Œf �.y/ � Sm
I Œf �.y/ D 0 for any y 2 pts.Sm

I / and
Sm

J Œf �.y/ D f .y/ ¤ Sm
I Œf �.y/ for any y 2 New D pts.Sm

J / n pts.Sm
I /, cf. Eq. (5).

Therefore we can estimate the C0
� .�/ norm of �m.i/Œf � by looking only at the values

on y 2 New. Thus we approximate the norm
����m.i/Œf �

���
C0� .�/

by

����m.i/Œf �
���

C0� .�/
	 max

y2New

ˇ̌
ˇ�m.i/Œf �.y/�.y/

ˇ̌
ˇ

and define

�E.i/ D max
y2New

ˇ̌
ˇ�m.i/Œf �.y/�.y/

ˇ̌
ˇ D max

y2New

ˇ̌
ˇ
�

f .y/ � Sm
I Œf �.y/

�
�.y/

ˇ̌
ˇ: (15)

On the other hand, sparse grids built with non-nested points are not interpolatory,
and the set of points added to a sparse grid by �m.i/ is not unique, cf. Eq. (11), as
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it depends on the current index set I to which i is added. Thus, we define New D
pts.T m

i / and approximate the C0
� .�/ norm as

�E.i/ D max
y2New

ˇ̌
ˇ�m.i/Œf �.y/�.y/

ˇ̌
ˇ D max

y2New

ˇ̌
ˇ
�
Sm

J Œf �.y/ � Sm
I Œf �.y/

�
�.y/

ˇ̌
ˇ: (16)

The right hand side in (14), (15) and (16), with suitably chosen I and J, are the
actual formulas we have used to compute �E.i/ (see Algorithm 1 and 2 for further
details). However, we remark that these values do not depend on the set I chosen
for evaluation, since the quantities �E.i/ are defined starting from the hierarchical
surplus operator �m.i/. This means that we can consider the indices of the reduced
margin RI in any order, and that the values of �E.i/ do not need to be recomputed
at each iteration.

As for the work contribution �W.i/, we consider the same indicators defined in
the quasi-optimal case, i.e. (10) for nested points and (13) for non-nested points,
which is equivalent to setting the work contributions equal to the cardinality of the
sets New introduced above. A third option is to consider �W.i/ D 1, i.e. driving
the adaptivity only by the error contributions. This is the choice considered e.g. in
[8, 28], while [17, 21] combine�E.i/ and�W.i/ in a different way. To summarize,
we will drive the adaptive algorithm with any of the four profit definitions listed
next, whose formulas differ depending on whether nested or non-nested points are
used:

• “deltaint”: set �E.i/ as in (14) and�W.i/ D 1;
• “deltaint/new points” combine �E.i/ as in (14) with �W.i/ in (10) for nested

points and in (13) for non-nested points;
• “weighted Linf” set �E.i/ as in (15) and �W.i/ D 1 for nested points, and
�E.i/ as in (16) and�W.i/ D 1 for non-nested points;

• “weighted Linf/new points” combine �E.i/ in (15) with �W.i/ in (10) for
nested points and �E.i/ in (16) with �W.i/ in (13) for non-nested points.

The pseudo-code of the algorithm is listed in Algorithm 1. Since nodes that are
present in a given sparse grid are not necessarily present in the following ones when
using non-nested points, cf. Eq. (12), the full work count in this case is not simply
pts.S/ (as it would be for nested points), but should rather include all the points
“visited” to reach that grid in the adaptive algorithm, which motivates lines L1–L2
in Algorithm 1. Observe however that all Gaussian quadrature rules associated to a
symmetric weight (or probability density) are in a sense “partially nested”, meaning
that rules with odd number of points place a quadrature node in the midpoint of the
interval, implying that a non-negligible number of points can still be in common
between two grids (e.g., the grid with 3 
 5 Gauss–Legendre points shares 5 of its
15 points with the grid 1 
 5).
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Algorithm 1: Adaptive sparse grids algorithm

Adaptive sparse grids(MaxPts, ProfTol, � , <ProfitName>)
I D f1g, G D f1g, RI D ¿, i D 1 ;
Sold D Sm

I Œ f �, Qold D Qm
I Œ f � ;

H D pts.Sold/, NbPts=card.Sold/, ProfStop=1 ;
while NbPts < MaxPts and ProfStop > ProfTol do

Ng D neigh.i; I/
for j 2 Ng and I[ fjg downward closed do

G D G[ fjg ; at the end of the for loop, GD I[ RI

S D Sm
GŒf � ; j must be added to S to evaluate its profit.

Q D Qm
GŒf � ;

if using nested points then
New D pts.S/ n pts.Sold/ ; i.e. the points added by j to S
NbPts = NbPts + card.New/ ;
v = evaluations of f on each y 2 New ; cf. Eq. (15)

else
New D pts.T m

i /

L1 H D H [ pts.S/ ; add points of S to H (no repetitions)
L2 NbPts = card(H) ; for non-nested points, card(H)>card(S)

v = evaluations of S on each y 2 New ; cf. Eq. (16)

vold = evaluations of Sold on each y 2 New ;
� = evaluations of � on each y 2 New ;
P.j/ = Compute_profit(New; v; vold;�;Q;Qold,<ProfitName>)
RI D RI [ fjg
Sold D S, Qold D Q ;

choose the i from RI with highest profit;
I D I[ fig, RI D RI n fig
update ProfStop with a suitable criterion based on the values of P

return S;Q
Compute_profit(New; v; vold;�;Q;Qold,<ProfitName>)

switch ProfitName do
case deltaint do

profit.i/ D jQ� Qold j ;
case deltaint/new points do

profit.i/ D jQ� Qold j
card.New/

;

case Weighted Linf do
profit.i/ D maxfjv� voldj ˇ �g ; ˇ denotes element-wise multiplication

case Weighted Linf/new points do

profit.i/ D maxfjv� voldj ˇ �g
card.New/

;

return profit.i/

4 Darcy Problem

As mentioned in the introduction, in this work we are concerned with the application
of the adaptive sparse grid algorithm in the Uncertainty Quantification context. In
particular, we focus on the numerical approximation of the solution of the stochastic
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version of the Darcy problem [5, 7, 14, 18] in which an unknown Darcy pressure p
is obtained as solution of an elliptic PDE having a lognormal random field a as
diffusion coefficient; a models the permeability of the medium in which the flow
takes place and, since it is a quantity that often can not be properly estimated, it is
modeled as a random field over a suitable probability space .�;F�;P/, where � is
the set of possible outcomes !, F� a �-algebra and P W F� ! Œ0; 1� a probability
measure. The mathematical formulation of the problem is the following:

Problem 1 Given D 2 R
d, find a real-valued function p W D 
 � ! R, such that

P-almost surely (a.s) there holds:

8
ˆ̂<

ˆ̂:

� div.a.x; !/rp.x; !// D f .x/ x 2 D;

p.x; !/ D g.x/ x 2 @DD
j ; j D 1; : : : ; kD;

rp.x; !/ � n D 0 x 2 @DN
j ; j D 1; : : : ; kN ;

where the operators div and r imply differentiation with respect to the physical
coordinates only, a W D 
� ! R is a given random field, n is the outward normal
to the boundary, @DD D [kD

jD1@DD
j denotes the Dirichlet boundary, @DN D [kN

jD1@DN
j

denotes the Neumann boundary and @DD [ @DN D @D, V@DD \ V@DN D ;.

More specifically, we set a.x; !/ D e�.x;!/, � being a mean-free stationary Gaussian
random field having a tensor covariance function belonging to the so-called Matérn
family [11], namely:

cov.x; x0/ D �2
dY

iD1

�p
2
jxi�x0

i j
Lc

�
K
�p

2
jxi�x0

i j
Lc

�

�./2�1
;  � 0:5; (17)

where �2 is the pointwise variance, Lc is a correlation length, � is the gamma
function, K is the modified Bessel function of the second kind and  is a
parameter that governs the regularity of the covariance function and, in turn, of
the realizations of the random field. In particular, for  D 1=2 we obtain a tensor
Exponential covariance function cov.x; x0/ D �2expf�jx � x0j1=Lcg which is
only Lipschitz continuous and produces realizations of the random field a.x; !i/,
!i 2 �, that are a.s. Hölder continuous C0;s.D/ with parameter s < 1=23;
on the other hand when  ! 1 we obtain a Gaussian covariance function
cov.x; x0/ D �2expf�jx � x0j22=L2cg which is analytic and generates infinitely
differentiable realizations; in between, depending on , we have all the possible
regularities; in general realizations with  D n C ˛ with n 2 N and ˛ 2 .0; 1�, are

3A function f W D � R
d ! R is said to be Hölder continuous with parameter s 2 .0; 1�, f 2

C0;s.D/, if there exist non-negative real constants C and s such that

jf .x/� f .y/j � Cjx� yjs2 8x; y 2 D:
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n times a.s. differentiable and have all the n-th derivatives a.s. Hölder continuous
C0;s.D/ with parameter s < ˛ (see e.g. [27, Lemma C.2]). The well-posedness of
Problem 1 has been studied e.g. in [7, 18]. The choice of the diffusion coefficient
a just detailed guarantees that Problem 1 has a unique solution p 2 L2

P
.�;V/,

V D H1.D/, see e.g. [7, 18] for details, under standard regularity assumptions on
f ; g, that will be fulfilled by the test case that we will detail later on.

To make Problem 1 suitable for the sparse grid methodology developed in the
previous sections, we consider a truncated Karhunen-Loève (KL) expansion of
the Gaussian random field �.x; !/ with N i.i.d. standard normal random variables
fyigN

iD1 and approximate a.x; !/ D e�.x;!/ accordingly, namely

�.x; !/ D
1X

nD1

p
�n n.x/yn.!/ 	

NX

nD1

p
�n n.x/yn.!/ D �.x; y.!//;

a.x; !/ D e�.x;!/ 	 e�.x;y.!// D a.x; y.!//I
(18)

where the functions  n.x/ W D ! R, n D 1; 2; 3 : : :, and the positive coefficients
f�ng1nD1 are the solutions of the eigenvalue problem

Z

D
cov.x; x0/ .x/dx D � .x0/:

Once the random field has been (approximately) parametrized with a random vector
y D .y1; : : : ; yN/ belonging to the probability space .�;F�; %.y/dy/, where � D R

N

is the image of y, F� is the Borel �-algebra and %.y/ D .2�/� N
2 exp

�
� jyj22

2

�
is the

probability density function of y, we can approximate Problem 1 with the following
finite dimensional parametric problem:

Problem 2 Find a real-valued function p W D 
 � ! R, such that %.y/dy-almost
everywhere there holds:

8
ˆ̂<

ˆ̂:

� div.a.x; y/rp.x; y//D f .x/ x 2 D;

p.x; y/ D g.x/ x 2 @DD
j ; j D 1; : : : ; kD;

rp.x; y/ � n D 0 x 2 @DN
j ; j D 1; : : : ; kN :

Consistently with what we said about the infinite dimensional case, Problem 2
admits a unique solution p 2 L2%.�;V/, and it is now ready to be solved numerically.
In particular, in our analysis we will be interested in computing the expectation
of some quantity of interest (QoI) related to the solution p of the Darcy problem,
defined as u.!/ D L.p.�; !//, where L is a functional L W V ! R that we will
detail later on. At this point it is also crucial to remark that solving the stochastic
Darcy problem with sparse grids is a sound approach since it can be shown that
the dependence of p on the random parameters y is smooth, and more precisely
analytic, as shown in [1, 14]; moreover it can be shown that p 2 C0

�.�;V/ with
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�.y/ D QN
nD1 exp.�jynjp�n k nkL1.D//, see [19]. Nonetheless, we will choose

% D Q
 D � in the computations, cf. Eqs. (9), (15), (16). In particular, this means
that we can use Hermite polynomials 'q in the quasi-optimal approach, for which
indeed

��'q
��

C0�
� C, and we will use the following ansatz for the Hermite coefficient

of u:

juqj 	 C
NY

nD1

e�gnqn

p
qnŠ

; (19)

cf. [5]. Concerning the truncation of the Karhunen–Loève expansion of � , it is
desirable to select the number of random variables N such that essentially the
entire spatial variability is taken into account (say more than 99.9 %), in order
to obtain a negligible distance between the exact solution of Problem 1 p.x; !/
and the exact solution of Problem 2 p.x; y/, and, in turn, between u.!/ and u.y/.
As a consequence, the problem will depend on a number of random variables N
ranging from a few tens (for choices of  that yield smooth realizations of a) to
several hundreds (for  ! 1=2). This will require some adaptations of the adaptive
algorithm introduced earlier, that will be detailed in the following sections.

4.1 Dimension-Adaptive Sparse Grid Algorithm

When considering a large number of random variables, generating and exploring
the reduced margin of I might be computationally intensive. Thus, in the following
we present a modified version of the adaptive sparse grid algorithm that starts
by working over a parameter space e� with a moderate dimensionality eN and
progressively increases eN. Crucially, such strategy actually relieves us from fixing
a-priori a truncation for the Karhunen–Loève expansion, i.e. it allows to work with
N D 1 random variables.

To this end, we start by assuming that the importance of the random variables
in the approximation of the QoI u follows to a good extent the Karhunen–Loève
ordering: in other words, yn may contribute less than ynC1 to the variability of the
QoI but there is a certain “dimensional buffer” Nb such that yn is guaranteed to
be more important than ynCNb . Then, the adaptive algorithm starts by considering
eN D Nb random variables only, and whenever a variable yn with n < eN is activated
(cf. Sect. 3.2), the random variable yeNC1 enters the approximation (i.e. the multi-
index i D 1Ce QNC1 is included in the reduced margin) and the countereN is increased
by one, so that there is always a buffer of Nb non-activated directions. This strategy
is detailed in Algorithm 2.
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Algorithm 2: Dimension adaptive algorithm

Note: To avoid ambiguities we write vN to make clear that the vector v has N components;
analogously IN indicates that the multi-index set I is composed of N-dimensional vectors.

Dimension adaptive sparse grids(MaxPts, ProfTol, � , <ProfitName>,Nb)

eN D Nb, AeN D 0eN ; A is a Boolean vector indicating which variables are active

IeN D f1eNg, GeN D f1eNg, ReNI D¿, ieN D 1eN , Sold D Sm

IeN Œf �, Qold D Qm

IeN Œf � ;

H D pts.Sold/, NbPts=card.Sold/, ProfStop=1 ;
while NbPts < MaxPts and ProfStop > ProfTol do

Ng D neigh.ieN ; IeN/ ;

for j 2 Ng and IeN [ fjg is downward closed do

GeN D GeN [ fjg ;
S D Sm

GeN Œf � ;

Q D Qm

GeN Œf � ;

if using nested points then
New D pts.S/ n pts.Sold/, NbPts = NbPts + card.New/ ;
v = evaluations of f on each y 2 New ; cf. Eq. (15)

else
New D pts.T m

i /, H D H [ pts.S/, NbPts = card(H) ;
v = evaluations of S on each y 2 New ; cf. Eq. (16)

vold = evaluations of Sold on each y 2 New ;
� = evaluations of � on each y 2 New ;
P.j/ = Compute_profit(New; v; vold;�;Q;Qold,<ProfitName>)

ReNI D ReNI [ fjg
Sold D S, Qold D Q ;

choose keN from ReNI with highest profit; ieN D keN ;
if 9n D 1; : : : ;eN s.t. An D 0 and kn > 1 then

An D 1;eN DeN C 1 ; activate n-th variable and updateeN
extend the containers I;RI;G; k;A by adding the new direction.

GeN D GeN [ f1eN C eeNeNg; SD Sm

GeN Œf �; Q D Qm

GeN Œf � ;

if using nested points then
New D pts.S/ n pts.Sold/, NbPts = NbPts + card.New/ ;
v = evaluations of f on each y 2 New ; cf. Eq. (15)

else
New D pts.T m

i /, H D H [ pts.S/, NbPts = card(H);
v = evaluations of S on each y 2 New ; cf. Eq. (16)

vold = evaluations of Sold on each y 2 New ;
� = evaluations of � on each y 2 New ;

P.1eN C eeNeN/ = Compute_profit(New; v; vold;�;Q;Qold,<ProfitName>)

ReNI D ReNI [ f1eN C eeNeNg,
ieN D argmax.max.P.1eN C eeNeN/;P.k

eN/// ; select ieN with highest profit

IeN D IeN [ fieNg, ReNI D ReNI n fieNg
update ProfStop with a suitable criterion based on the values of P.j/

return S, Q
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4.2 Monte Carlo Method with Control Variate (MCCV)

For values of  close to 1=2, the decay of the eigenvalues of the KL expansion of �
is so slow that a very large number of random variables will equally contribute to the
variability of the QoI; therefore, even the dimension-adaptive sparse grid algorithm
detailed in the previous section may not be effective. In such a case we propose
to combine the sparse grid approximation with a Monte Carlo sampling following
the ideas proposed in [27]. More precisely, we will introduce an auxiliary problem
having a smoothed coefficient a	 as random permeability, whose solution u	 can
be effectively approximated by a quasi-optimal or an adaptive sparse grid scheme.
Then we will use u	 as control variate in order to define a new QoI, namely uCV ,
upon which we build a MC estimator.

The first step in order to apply this strategy is to define a proper smoothed random
field. Thus, let �.x; !/ and �	.x; !/ be two random fields obtained respectively
by considering a covariance function of the Matérn family and the convolution of
�.x; !/ with a smooth kernel (e.g. Gaussian),

�	.�; !/ D �.�; !/  �	.�/ where �	.x/ D e�
jxj
2

2	2 =.2�	2/
d
2 ;

and let a	 D e�
	
. Using this definition, it is easy to see that the smoothed random

field �	 has a covariance function defined as

cov	.x; x
0/ D EŒ�	.x; �/�	.x0; �/� D �	.x/  cov.x; x0/  �	.x0/: (20)

Clearly, the smaller the parameter 	 is, the more correlated the two random fields �
and �	 are, as it can be seen in Fig. 1; consistently, u	 ! u when 	 ! 0.

Next, let us assume for the moment that we know exactly the mean of the control
variate EŒu	 � and define

QuCV D u � u	 C EŒu	�:

Fig. 1 Three different regularizations of the same realization of a.  D 0:5, Lc D 0:5, � D 1.
(a) 	 D 1=24 . (b) 	 D 1=26 . (c) Original field
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This new variable is such that EŒQuCV � D EŒu� and

Var.QuCV/ D Var.u/C Var.u	/� 2cov.u; u	/; (21)

showing that the more positively correlated the quantities of interest are, the larger
the variance reduction achievable. Although we do not have the exact mean of u	.y/
at our disposal, we can successfully compute it with a sparse grid method, since
a	.x; y/ has smooth realizations, and hence the coefficients of the KL expansion are
rapidly decreasing, as long as the smoothing parameter 	 remains sufficiently large.
The final variable on which we will actually apply our MC algorithm is therefore

uCV D u � u	 C Qm
I.w/Œu

	�; (22)

and the associated MC control variate estimator (MCCV) is defined as

OuMCCV
M D 1

M

MX

iD1
uCV.!i/ D 1

M

MX

iD1
.u.!i/ � u	.!i//C Qm

I.w/Œu
	�; (23)

where uCV.!i/ are i.i.d. realizations of the control variate and M is the sample size.
Note that

Var.uCV/ D Var.QuCV/: (24)

Observe that care must be taken from a computational point of view when
generating the samples ui.!/� u	i .!/. We propose to generate realizations of u � u	

starting from the Fourier expansions of � and �	: indeed, the Fourier expansion is
very convenient when expansions over several random variables are needed, as the
basis functions are known analytically; moreover, the Fourier expansions of � and
�	 share the same basis functions and differ only by the coefficients. On the other
hand, to compute Qm

I.w/Œu
	�, it is more convenient to start from a Karhunen–Loève

expansion of �	 , that needs less variables than a Fourier expansion but whose basis
functions need to be determined solving an eigenvalue problem (which is however
doable for �	 given that it is a smooth field). In other words, two expansions of
�	 and one expansion of � will be used simultaneously. In particular, we have
considered the following truncated Fourier expansion over an hypercube of size
.2L/d, containing the domain D, with L D max.6Lc; diam.D//:

�.x; y/ D
X

k2K

p
ck

X

n2f0;1gd
yn

k.!/

dY

lD1
cos

�
�kl

L
xl

�nl

sin

�
�kl

L
xl

�1�nl

;

where K � N
d is a suitable multi-index set having cardinality K, the resulting vector

of i.i.d. standard normal random variables is y D fyn
k; k 2 K; n 2 f0; 1gdg, and the

coefficients ck are the positive coefficients of the cosine expansion of the covariance
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function cov.x; x0/ on Œ�L;L�d , namely

cov.x; x0/ D
X

k2Nd

ck

dY

lD1
cos

�
�kl

L
.xl � x0l/

�
:

Consistently, the realization u	i .!/ will be computed starting from a truncated
Fourier expansion of �	 over the same index-set K and using the same realization
y.!i/ used to generate ui.!/.

Concerning the mean square error associated to the estimator (23), namely
e.OuMCCV

M /2 D E
	
.OuMCCV

M � E Œu�/2


, the following result holds:

Proposition 1 The mean square error of the estimator (23) can be split as

e.OuMCCV
M /2 D Var.uCV/

M
C
�
EŒu	 � � Qm

I.w/Œu
	�
�2
: (25)

Proof We have

e.OuMCCV
M /2 D EŒ.OuMCCV

M � EŒu�/2�

D E

h� MX

iD1

ui � u	i
M

C Qm
I.w/Œu

	�˙ EŒu	� � EŒu�
�2i

D E

h� 1
M

MX

iD1

�
ui � u	i � EŒu�C EŒu	�

� �2iC EŒ.Qm
I.w/Œu

	� � EŒu	�/2�

D Var.uCV/

M
C
�
EŒu	� � Qm

I.w/Œu
	�
�2
: ut

The first term on the right hand side of (25) represents the variance of the estimator
OuMCCV

M , i.e. the error coming from the MCCV sampling, and it is expected to be
significantly smaller than the variance of the standard MC estimator thanks to the
presence of the control variate, cf. Eqs. (24) and (21); the second term represents
instead the error due to the approximation of the mean of the smoothed quantity
of interest u	 with a sparse grid scheme. As already hinted, when 	 goes to 0 the
term Var.uCV/=M vanishes, and more precisely, the following result (which is a
simplified version of Theorem 5.1 in [27]) holds:

Proposition 2 Let � and �	 be two Gaussian random fields having covariance
functions respectively defined as in (17) and (20); assume @DD D @D, f 2 L2.D/
and L 2 H�1.D/. Then, P-a.s. in � it holds

ju � u	j.!/ � C.; !/	min.2;˛/; 8˛ < ;
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where the constant C.; !/ is Lq
P
-integrable for any q > 0 so the bound can also be

expressed as

ku � u	kL
q
P
.�/ � C.; q/	min.2;˛/; 8˛ < :

In particular, Var.uCV/ � C2.; 2/	2min.2;˛/; 8˛ < .

On the other hand an accurate approximation of EŒu	� by a sparse grid scheme
might becomes non-advantageous if 	 ! 0. The parameter 	 should therefore be
chosen so as to have a good variance reduction while still keeping a manageable
sparse grid approximation problem.

Remark 1 In this work we do not address the issue of the spatial approximation
of Problem 2. In general all the results previously presented still hold if a finite
dimensional subspace Vh � V , e.g. a finite element space, is considered in order to
approximate functions in V .

5 Numerical Results

In this section we present the convergence results obtained for the Darcy problem on
the unit square D D .0; 1/2 with f D 0, Dirichlet boundary conditions g.x/ D 1�x1
on @DD D fx 2 @D W x1 D 0 or x1 D 1g, and homogeneous Neumann conditions on
the remaining part of @D; the spatial approximation of the Darcy problem is done
by piecewise linear finite elements defined on a structured mesh.

We will consider two cases: first we will solve Problem 2 with a smooth random
field a, corresponding to the choice  D 2:5 in (17), and then we will move to
the rough random field corresponding to  D 0:5, in which case we will consider
the MCCV approach. In both cases we set � D 1 and Lc D 0:5, while the mesh
over D consists of 33 
 33 vertices in the case  D 2:5 and 65 
 65 vertices in
the case  D 0:5; both meshes have been verified to be sufficiently refined for our
purposes. In particular we will be interested in approximating the expected value of
the functional

u.!/ D
Z 1

0

a.1; x2; !/
@p

@x1
.1; x2; !/dx2; (26)

which represents the mass flow on the outlet. The aims of this section are:

1. establish whether using non-nested points in an adaptive sparse grid framework
might be convenient or not;

2. verify the performance of adaptive sparse grids built with different profit
indicators;

3. compare the performance of the adaptive sparse grids with that of the quasi-
optimal sparse grids (note that our previous numerical experiences suggest that
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indeed these two sparse grid constructions behave similarly when used to solve
UQ problems depending on uniform random variables if nested univariate points
are used, see [4, 24]);

4. test the effectiveness of using an adaptive (or quasi-optimal) sparse grid con-
struction as control variate in a MC framework in order to tackle also problems
depending on rough coefficients.

All results have been obtained using the Matlab package [30], available for
download.

5.1 Smooth Case: � D 2:5

In this case we deal with an input random field with twice differentiable realizations;
therefore the eigenvalues of the Karhunen–Loève expansion decay quickly enough
to justify the use of the N-adaptive sparse grid algorithm to approximate the QoI.

For this test, we consider as a reference solution the approximation of the QoI
obtained with a quasi-optimal sparse grid with approximately 8300 quadrature
points base of Gauss–Hermite abscissas, for which 45 out of the first 50 random
variables of the KL expansion are active: observe that this is sufficient to take
into account 99:99% of the total variability of the permeability field, i.e. there
is essentially no KL truncation error. We monitor the convergence of the error
measured as

err.w/ 	 jQm
I.w/Œu� � Qm

I.wref /
Œu�j;

i.e. the absolute value of the sparse grid quadrature error, where I.w/;w D
0; 1; 2; : : : ; are the sequences of multi-index sets generated either by the adap-
tive or the quasi-optimal sparse grid scheme and I.wref / is the multi-index set
corresponding to the above-mentioned reference solution. More specifically, the
sets I.w/ for the adaptive strategies are obtained by stopping the algorithm as
soon as at least Wmax.w/ points have been added to the sparse grid (including
the points needed for the exploration of the reduced margin), with Wmax.w/ D
f1; 20; 50; 100; 250; 500; 1000; 2000; 4000g, for w D 0; : : : ; 8. As for the quasi-
optimal sparse grids, the sets I.w/ are defined as

I.w/ D ˚
i 2 N

NC W P.i/ � e�w


(27)

with w D 0; 1; : : : ; 5, the reference solution being obtained with w D 6.
We recall that the profits P.i/ are defined as the ratios between the error and
work contributions, P.i/ D �E.i/=�W.i/, where �E.i/ are estimated combining
Eqs. (19) and (9), and �W.i/ are defined either as (10) or (13).

The computational cost associated to each sparse grid is expressed in terms
of number of linear system solves. For the adaptive sparse grids, this count also
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includes the cost of the exploration of the reduced margin. Moreover, when using
non-nested points we also take into account the system solves related to the points
that have been included and then excluded from the sparse grid, cf. Eq. (12). As for
the quasi-optimal sparse grids, their construction requires some additional solves to
estimate the parameters g1; : : : ; gN in (19), cf. [4, 24]. More precisely, the n-th rate is
estimated by fixing all variables but yn to their expected value, computing the value
of the QoI increasing the number of collocation points along yn and then fitting the
resulting interpolation error: in practice, this amounts to solving 25 linear systems
per random variable, which are included in the work count.

We start our discussion from Fig. 2, where we show the convergence results
obtained with the dimension-adaptive Algorithm 2 varying the choice of profit
indicators (cf. Algorithm 1) and the choice of interpolation points, i.e. Genz–Keister
versus Gauss–Hermite points, the latter denoted by a suffix NN in the plot, as per
“non nested” (cf. Table 1); in this test, we have set the buffer size to Nb D 10. More
specifically, we used the “deltaint-based” profit indicators in Fig. 2a (D and D/NP
in the plots, where NP stands for “divided by number of points”) and “weighted
L1-based” profit indicators in Fig. 2b (WLinf and WLinf/NP in the plots). In both
cases we observe that there is not much difference between the profit indicators that
take into account the number of points and the ones which do not; also the choice
of nested or non nested nodes does not seems to affect the convergence.

The numbers next to each point give information about the shape of the multi-
index sets I.w/ generated by the adaptive algorithm, and consequently on the
distribution of the sparse grid points on the eN-dimensional parameter space. The
first number (out of the brackets) indicates the number of active directions, while
the second number (in the brackets) denotes the maximum number of directions
that have been activated at the same time, i.e. the highest dimensionality among all
the tensor grids composing the sparse grid, cf. Eq. (4). Here and in the following,
green labels refer to grids with nested points, while red labels to grids with non-
nested points: we show only two series of labels per plot, due to the fact that

Fig. 2 Case  D 2:5, adaptive sparse grids error. (a) Profit indicators: deltaint (AD-D and
ADNN-D), deltaint/new points (AD-D/NP and ADNN-D/NP). (b) Profit indicator: Weighted
Linf (AD-WLinf and ADNN-WLinf), Weighted Linf/new points (AD-WLinf/NP and ADNN-
WLinf/NP)
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accounting for the work contributions in the profit definition does not seem to play
a role in this test and, consequently, the sequences of sets I.w/ generated by AD-D
and AD-D/NP are essentially identical (and the same for ADNN-D and ADNN-
D/NP). Observe that after 	20 problem solves the algorithm has activated “only” 1
variable due to the fact the at the beginning of the algorithm Nb variables must be
explored, requiring 1 C 2Nb D 21 solver calls, in order to decide which variable
should be activated as second; moreover the number of “active” variables is always
smaller than N D 45, which is the number of “active” variables for the reference
solution. In Fig. 2a, b we have also added the convergence curve for a plain MC
approximation. This has been generated as

p
Var.u/=M.w/, with Var.u/ estimated

as Var.u/ 	 Qm
I.wref /

Œu2� � .Qm
I.wref /

Œu�/2.
In Fig. 3a we show instead the errors obtained by using quasi-optimal sparse grid

approximations of the QoI built on Genz–Keister and Gauss–Hermite knots (labeled
OPT and OPT NN respectively). Observe that since we build the sets I.w/ in (27)
again with a “buffered” procedure analogous to the one described in Sect. 4.1, the
rate gn is computed only at the level w for which yn enters the buffer of random
variables, and such work is thus accounted for at level w; this explains the initial
plateau that can be seen in the convergence. Observe also that the Lebesgue constant
M

m.in/
n , introduced in Sect. 3.1 and needed for computations, has been proven in

[24] to be identically equal to one in the case of Gauss-Hermite abscissas, while
can be numerically estimated in the case of Genz–Keister points. Again, the labels
next to each point represent the number of active variables (outside the brackets)
and the number of variables activated at the same time (in the brackets). These
numbers suggest that, for the same work, the adaptive sparse grids seem to activate
a slightly smaller number of variables than the quasi-optimal ones, while the tensor
grids dimensionality seems to be comparable. Also for the quasi-optimal sparse
grids the number of “active” variables is always smaller than N D 45.

Figure 3b shows a comparison between the quasi-optimal and the adaptive
schemes; among the adaptive schemes presented we take into account for this
comparison the profit indicators deltaint and Weighted Linf/new points. We can

Fig. 3 Case  D 2:5, quasi-optimal sparse grids error (left) and a comparison between
adaptive and quasi-optimal schemes (right). (a) Quasi-optimal sparse grids error. (b) Comparison
adaptive/quasi-optimal
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observe that, except for small values of work for which the cost needed to compute
the parameters gi in Eq. (19) largely dominates the cost needed to actually compute
the quasi-optimal sparse grid approximation, the quasi-optimal and the adaptive
schemes behave similarly.

Finally, we test numerically the pointwise approximation properties of the sparse
grids methodology. In an unbounded domain context, the main difficulty encoun-
tered in performing pointwise approximation is that the Lagrangian polynomials on
which the sparse grid construction is based are not uniformely bounded (regardless
of the choice of collocation points). On the other hand, the solution of the Darcy
problem is unbounded as well, and indeed it can only be shown that p 2 C0

� .�;V/
with an exponentially decaying weight, as we have discussed earlier: it would be
therefore only reasonable to measure the convergence with respect to such proper
weighting function. Thus, we will verify numerically the behaviour of the quantity��u � Sm

I Œu�
��

C0� .�/
both for the exponential weight � and the gaussian weight %, by

sampling the difference between the exact value of the Quantity of Interest u and
its sparse grid approximation over a set of 10,000 points randomly sampled from a
multivariate standard gaussian distribution:

ku � Sm
I Œu�kC0� .�/

	 max
y2R

ˇ̌
ˇ
�

u.y/� Sm
I Œu�.y/

�
�.y/

ˇ̌
ˇ:

Observe that the number of random variables considered by Sm
I Œu� is increasing

as the sparse grids algorithm keeps running; thus, we choose R � R
N�

, with
N
 sufficiently larger than the number of random variables activated by the most
refined sparse grids. The results are shown in Fig. 4, and indicate that the sparse
grid pointwise weighted approximation error is indeed decreasing. The results
suggest again that the various sparse grid construction techniques considered in this
work behave similarly, and in particular “weighted L1” based sparse grids do not

Fig. 4 Case  D 2:5. Interpolation error with different weight functions for the Quasi Op-
timal (OPT) and Adaptive (profit indicators Deltaint (AD-D) and Weighted Linf/new points
(AD-WLNP)) cases. work D WI;m, N� D 60, card.R/ D 10;000. Dashed lines repre-

sent the slopes �0:5 (black) and �1 (orange). (a) %.y/ D QN?

nD1 exp.� y2n
2
/. (b) �.y/ D

QN?

nD1 exp.�jynjp�n k nkL1.D//
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show particular gains with respect to the “deltaint”-based ones. The sparse grids
considered in this test are the same ones used to obtain the results shown in Figs. 2
and 3; again we remark that the number of active variables remains significantly
smaller than the number of variables N
 D 60 used to compute our approximated
sample space R. We actually observe convergence in the norms k�kC0%.�/

and

k�kC0� .�/
; moreover the “weighted L1” norms of the differences between the exact

sample u and its sparse grid reconstruction Sm
I Œu� converge with a similar rate when

using the exponential weight � and the gaussian one %.

5.2 Rough Case: � D 0:5

In this case we deal with a rough input random field a that has realizations which
are not even differentiable: thus, the slow decay of the eigenvalues of the Karhunen–
Loève expansion may render unfavorable a sparse grid approach, even considering
advanced techniques like the adaptive or the quasi-optimal schemes. Therefore we
now solve the problem by the MCCV approach introduced in Sect. 4.2, using 	 D
2�5 as smoothing parameter.

At each sparse grid approximation level w we use M.w/ D WI.w/;m samples in
the MCCV estimator, i.e. we balance the work of the sparse grid and that of the MC
sampling so that the total work is 2WI.w/;m; other work splitting, e.g. balancing the
two error contributions of the method detailed in Proposition 1, could be considered
as well.

To obtain an error convergence curve, we will approximate the sparse grid
component of the error by considering a reference solution obtained with a quasi-
optimal sparse grid built with approximately 86,500 nodes based on Gauss–Hermite
abscissas with N D 163 active random variables, that takes into account 99.99 % of
the total variability of the smoothed field, and the sampling component by estimating

Var.QuCV/ 	 bu2MCCV
M.w/ �.OuMCCV

M.w/ /
2; as mentioned in Sect. 4.2, the sampling component

is based on a Fourier expansion of the non-smoothed field � , that has been truncated
after 129 
 129 D 16;641 random variables. To summarize, we have

err.w/ 	

vuutbu2MCCV
M.w/ � .OuMCCV

M.w/ /
2

M.w/
C
ˇ̌
ˇQm

I.w/Œu
	� � Qm

I.wref /
Œu	�

ˇ̌
ˇ:

In Fig. 5 we show the performance of the MCCV algorithm with adaptive sparse
grids. Since we are running a sampling method, we also add to the plot error bars
indicating the interval spanning ˙3 standard deviations of the error from its average
value, assessed over 4 runs of the method. The considerations that can be made by
looking at these plots are similar to the ones we did in the case  D 2:5, i.e. there
is basically no difference between the profit indicators that take into account the
number of points and those which do not; also changing the family of nodes does



Adaptive Sparse Grids for Elliptic PDES with Lognormal Coefficients 217

Fig. 5 Case  D 0:5, MCCV-adaptive sparse grid mean error. Bars represent 3 standard deviation
of the sampling error. (a) Profit indicators: deltaint (AD-D and ADNN-D), deltaint/new points
(AD-D/NP and ADNN-D/NP). (b) Profit indicator: Weighted Linf (AD-WLinf and ADNN-
WLinf), Weighted Linf/new points (AD-WLinf/NP and ADNN-WLinf/NP)

Fig. 6 Case  D 0:5. Left: comparison between MCCV-adaptive and MCCV-quasi-optimal
schemes Right: Quasi-optimal sparse grid error for different values of 	. (a) Comparison MCCV-
adaptive/MCCV-quasi-optimal sparse grid mean error. (b) Quasi-optimal sparse grid error for
different values of 	

not seem to have a substantial impact on the quality of the approximation. Observe
that since we are balancing the works of the Monte Carlo sampling and of the sparse
grid, the observed convergence rate is larger than the MC rate 1/2 for little values
of work, where the sparse grid error dominates the sampling error and converges
with a faster rate than 1/2 (remember that the sparse grid is applied to a smoothed
problem). For large w, the sampling error dominates the sparse grid error and one
essentially recovers the MC rate 1/2, however with a much smaller constant than
MC due to the presence of the control variate.

Figure 6a shows the convergence of the MCCV method combined with quasi-
optimal sparse grids and compares the results obtained with the adaptive sparse
grids procedures. Again, among the adaptive schemes presented we consider the
profit indicators deltaint and Weighted Linf/new points. For both quasi-optimal
and adaptive schemes we only plot the average error of the Quantity of Interest
over four runs. As in the smooth case, for sufficiently large values of work, all the
schemes perform similarly. Note that in the quasi-optimal case, the quantities gn are
actually computed for the first 50 random variables only, after which we instead set
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gn D p
�n, cf. Eq. (18), i.e. we approximate gn with the value of the corresponding

coefficient of the KL expansion. Indeed, these random variables have a moderate
impact on the solution and numerical cancellations effects may significantly affect
the results of the fitting procedure.

Finally, Fig. 6b shows the convergence of the quasi-optimal sparse grid error
jQm

I.w/Œu
	� � Qm

I.wref /
Œu	�j for different values of 	. It is clearly visible that the

convergence rate deteriorates as 	 decreases, thus motivating the introduction of
the MCCV approach. Observe that for the sake of comparison, in this plot the work
needed to determine the rates (that would cause an initial plateau in the convergence
plot) has been neglected. We also observe that in this case there is a significant
difference between the number of random variables activated by the quasi-optimal
and adaptive sparse grid schemes. In fact, the latter tends to activate less variables
than the former, adding conversely more points on the activated ones.

As a last remark, we mention here that the Control Variate technique is inherently
a quadrature procedure, and extending it to the interpolation context goes beyond the
scope of the current work.

6 Conclusions

In this work we have proposed an improved version of the classical adaptive
sparse grid algorithm, that can handle non-nested collocation points and unbounded
domains, and can be used for an arbitrary large number of random variables,
assuming that a “rough ordering” of the variables according to their importance
is available. We have also implemented several indicators to drive the adaptation
process.

We have then used this algorithm to solve a Darcy equation with random log-
normal permeability, and compared the results obtained by changing collocation
points and adaptivity indicators against those obtained by the quasi-optimal sparse
grids algorithm. The computational analysis has been performed first on a case
with smooth permeability realizations, and then in the case of rough realizations:
in the latter case, we have actually considered the sparse grid in a Monte Carlo
Control Variate approach, in which the sparse grids are applied to a smoothed
problem and the results serve as control variate for a Monte Carlo sampling for the
rough problem. In the case of the smooth permeability realizations, we have also
tested numerically the convergence of the sparse grid approximation in weighted
maximum norm. The numerical results seem to suggest that

1. using non-nested points in an adaptive sparse grid framework yields results that
are comparable to those obtained by nested points, at least in the log-normal
context;

2. changing the indicator driving the adaptivity process does not have a dramatic
impact on the quality of the solution; this however may be due to the specific
choice of the QoI considered here, and more testing should be performed;
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3. the sparse grid approximation will also converge with respect to suitably
weighted maximum norms;

4. the adaptive and the quasi-optimal sparse grids perform similarly on lognormal
problems, in agreement with our previous findings on uniform random variables;

5. in the case of smooth log-permeability fields the adaptive and the quasi-optimal
sparse grids give quite satisfactory results;

6. in the case of rough fields the adaptive/quasi-optimal sparse grids alone have
a performance asymptotically similar to a standard MC (with just a slight
improvement on the constant) and we do not advocate their use in such a case; on
the other hand the results are satisfactory if the sparse grids are used as control
variate in a MC sampling.
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A New Subspace-Based Algorithm for Efficient
Spatially Adaptive Sparse Grid Regression,
Classification and Multi-evaluation

David Pfander, Alexander Heinecke, and Dirk Pflüger

Abstract As data has become easier to collect and precise sensors have become
ubiquitous, data mining with large data sets has become an important problem.
Because sparse grid data mining scales only linearly in the number of data points,
large data mining problems have been successfully addressed with this method.
Still, highly efficient algorithms are required to process very large problems within
a reasonable amount of time.

In this paper, we introduce a new algorithm that can be used to solve regression
and classification problems on spatially adaptive sparse grids. Additionally, our
approach can be used to efficiently evaluate a spatially adaptive sparse grid
function at multiple points in the domain. In contrast to other algorithms for these
applications, our algorithm fits well to modern hardware and performs only few
unnecessary basis function evaluations.

We evaluated our algorithm by comparing it to a highly efficient implementation
of a streaming algorithm for sparse grid regression. In our experiments, we observed
speedups of up to 7
, being faster in all experiments that we performed.

1 Introduction

A well-known problem in the area of data mining is regression. Regression deals
with the representation of an unknown function based on given data points that are
interpreted as evaluations of that unknown function. The data points that are given
to learn the function form the training data set.

For regression problems many approaches exist [2]. Most of the algorithms have
the property that their complexity is at least O.m2/where m is the number of training
instances. In contrast, the sparse grid approach is linear in the number of training
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instances. Because the sparse grid approach is build upon spatial discretization, it
can only be used for problems of moderate dimension.

To address higher-dimensional problems successfully and to increase efficiency
for lower-dimensional problems, spatial adaptivity can be used. With spatial
adaptivity enabled, sparse grids were successfully applied to problems with up to
166 dimensions [4, 14]. In this paper, we differentiate between adaptive and non-
adaptive sparse grids. Non-adaptive sparse grids are called regular sparse grids.

Sparse grid data mining has been used in high performance computing in
the past. Highly efficient algorithms have been developed and implemented for
large shared-memory machines, clusters, and for accelerator cards [9–11]. An
algorithm that was shown to be well-suited for high-performance data mining is the
streaming algorithm for sparse grid data mining. This algorithm can be implemented
highly efficiently. But to achieve perfect streaming properties, it is doing a lot
of unnecessary work. Because of its overall high performance, we used a highly
efficient implementation of the streaming algorithm [10] as a reference in our
experiments. The streaming algorithm is targeted at spatially adaptive sparse grids.
For grids that make further assumptions about the distribution of the grid points,
even faster algorithms exist [5, 13].

In this paper, we present a new algorithm to perform data mining on spatially
adaptive sparse grids. Our algorithm is able to avoid most unnecessary computations
that are performed by the streaming algorithm. To map our basic algorithm to
modern processors, new algorithmic ideas were required. We introduce a subspace-
skipping scheme to avoid unnecessary computations. Furthermore, we propose a
data point blocking scheme that was developed to improve the data locality of our
algorithm. As memory is an important issue for this approach, we present data
structures for spatially adaptive sparse grids that reduce the required storage space.

Our algorithm assumes that the hierarchical predecessors of each grid point are
also part of the grid. To this end, we use regular grids, for which this property
is fulfilled, and an adaptivity criterion that adds the hierarchical predecessors of
each new grid point. This assumption could be dropped in exchange for a lower
performance.

The paper is structured as follows. In Sect. 2, we give a brief introduction to data
mining on sparse grids. We continue in Sect. 3 with a presentation of the streaming
algorithm and a comparison of different approaches. Then we describe our new
algorithm in Sect. 4. The optimizations that are required to map our algorithm to
modern processors are introduced in Sect. 5. In Sect. 6, we explain our experimental
setup and present the results of our experiments. There, we will also discuss the
memory requirements of the algorithm. Section 7 finally concludes the paper.
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2 Sparse Grids and Regression

In this section, we present a very condensed introduction to sparse grids and
regression on sparse grids. For sparse grids in general, we recommend the paper by
Bungartz and Griebel [3]. More thorough presentations of sparse grid data mining
are given by Garcke [7] and Pflüger [14].

2.1 Sparse Grids

A sparse grid is a grid in the hypercube Œ0; 1�d that is hierarchically constructed
based on subgrids�l that are anisotropic grids with a discretization level l. The grid
points on a subgrid are enumerated by an index set Il,

Il WD f.i1; : : : ; id/ W 0 < ik < 2
lk ; ik oddg: (1)

We use this definition to further define the subgrids�l as

�l WD fxl;i D .i12
�l1 ; : : : ; id2

�ld/ W i 2 Ilg: (2)

Now, we can define the hierarchical subspaces used to construct the sparse grid
function space. For a level l and a basis function �l;i for each grid point, a subspace
Wl is defined as

Wl WD spanf�l;i W i 2 Ilg: (3)

We note that for basis functions with pairwise disjoint interior of the support, the
correct evaluation of a function g 2 Wl involves only the evaluation of the basis
function that belongs to a single grid points xl;i 2 �l.

Based on these definitions, we can now formally define a sparse grid V.1/
n with

an overall discretization level n,

V.1/
n WD

M

jlj1�nCd�1
Wl: (4)

For our basis functions, we employ a tensor-product approach with
d-dimensional hat functions. With this well-known approach, the basis functions
�l;i are given by

�l;i.x/ WD
dY

jD1
�lj;ij.xj/; (5)
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with the scaled and translated 1-dimensional hat functions

�l;i.x/ WD max.0; 1 � j2lx � ij/: (6)

A sparse grid function f 2 V.1/
n can now be written as

f .x/ D
X

jlj1�nCd�1

X

i2Il

˛l;i�l;i.x/ D
NX

iD1
˛i�i.x/

„ ƒ‚ …
shorthand

: (7)

The coefficients ˛ of the sparse grid functions are called surpluses. Additionally, we
denote the total number of grid points by N.

2.2 Regression on Sparse Grids

We assume that a normalized training data set

T WD f.xi; yi/ W xi 2 Œ0; 1�d; yi 2 Rgm
iD1 (8)

is given. It consists of m data points that can be interpreted as function evaluations
of an unknown function f W Œ0; 1�d ! R. The goal of the regression problem is to
construct an approximation f 
 	 f so that for every tuple in the data set is holds
that f 
.xi/ 	 yi [2].

Such an approximation f 
 2 V.1/
n of the function f can be constructed with a

penalized least-squares approach [7, 8, 14],

f 
 WD arg min
g2V

.1/
n

0

@ 1
m

mX

iD1
.yi � g.xi//

2 C �

NX

jD1
˛2j

1

A : (9)

We use a weight decay regularizer [2] to enforce a certain degree of smoothness in
the obtained sparse grid function [7].

The minimum f 
 can be calculated by setting the gradient of the term to minimize
to zero. This leads to a system of linear equations for the surpluses ˛ of the sparse
grid function [2, 14],

�
1

m
BBT C �I

�
˛ D 1

m
By; (10)

Bij D �i.xj/: (11)

Here, I denotes the identity matrix.
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To solve this system of linear equations, we have used the conjugate gradient
algorithm [16]. We note that the computational effort is concentrated in calculating
the two matrix-vector-products v WD BT˛ and v0 WD Bv in each iteration. Therefore,
to improve the overall performance of this sparse grid regression approach, efficient
algorithms for these matrix-vector-products are required.

2.3 Closely Related Problems

The new algorithm for sparse grid regression proposed in this paper also addresses
two further problems. In a binary classification problem, we assume that a normal-
ized training data set

T D f.xi; ci/ W xi 2 Œ0; 1�d; ci 2 Kgm
iD1 (12)

is given. Here, the data points x are associated with a class label from a set of labels
K D fk0; k1g. The goal is to construct a classification function f 
 that can classify
unseen data points correctly [7, 14].

This binary classification problem can be reduced to a regression problem by
replacing the two class labels k0 and k1 with the values �1 and 1. This modified
data set is now treated as a regression problem. By solving this regression problem,
we obtain a sparse grid function f 
. To classify a data point x, we first evaluate the
function f 
 at the data point x. This value is then used to select the class that fits
best:

c.x/ D
(

k0 if f 
.x/ < 0;
k1 if f 
.x/ � 0:

(13)

This approach can be easily extended to work with non-binary classification
problems [14].

A second closely related problem is the evaluation of a sparse grid function at
many points in the domain. This operation is called multi-evaluation. When the
system of linear equations of the regression algorithm is solved, the matrix-vector-
product BT˛ is calculated. With the definition of B this leads to the sums

.BT˛/i D
NX

jD1
�j.xi/˛j; i 2 f1; : : : ;mg: (14)

This is just an evaluation for m given data points. In this paper, we therefore address
multi-evaluation by providing efficient algorithms for the transposed operator BT˛.
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3 Relationship to Previous Approaches

In this section, we describe the streaming algorithm for regression and the recur-
sive algorithm for multi-evaluation. Both algorithms are well-suited for spatially
adaptive sparse grids. Because the streaming algorithm treats both matrix-vector-
products v WD BT˛ and v0 WD Bv similarly, we only describe the multi-evaluation
operation v WD BT˛.

The streaming algorithm for regression on sparse grids performs the most direct
approach to sparse grid function evaluation. For each data point, it evaluates every
basis function and accumulates the result [10]. For this algorithm, the grid can be
represented as a list of tuples with one tuple for each grid point. Each tuple consists
of the level l, the index i, and the surplus value ˛l;i. This algorithm is shown in
pseudo code in Algorithm 1.

This brute-force approach has several properties that can be exploited on modern
processors. First, each evaluation of a data point is completely independent from
every other evaluation. Additionally, as the algorithm simply iterates through the
grid points for each evaluation, the operations are exactly the same for each
data point. This enables a straightforward and highly efficient parallelization and
vectorization of the algorithm. Thus, the streaming algorithm maps to modern
processors very well.

On the other hand, the streaming algorithm performs many unnecessary basis
function evaluations. The support of the basis functions on each subspace partitions
the domain. Therefore, only one basis function per subspace has to be evaluated for
each data point. However, the streaming approach evaluates all basis functions on a
subspace.

A different approach to calculate the multi-evaluation operation v WD BT˛ is the
recursive algorithm. For this algorithm, the grid is stored as a tree that represents
the hierarchical relationship between the grid points so that every grid point can
be reached by exactly one parent grid point, if a parent grid point exists [15]. An
example for such a tree in 2 dimensions is shown in Fig. 1. The algorithm traverses
the tree from the root to the leaf nodes. It evaluates the basis function associated
with the current node and then performs a recursive call for each child grid point

Algorithm 1: The streaming algorithm for the operator v WD BT˛ performs a
separate evaluation for each data point. To evaluate a data point, it evaluates
every basis function. Due to the support of the basis functions, many zero-
evaluations of basis functions happen

for xj 2 T do
vj  0;
for .l; i; ˛l;i/ 2 gridPoints do

vj vjC�l;i(xj)˛l;i;
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Fig. 1 A tree that represents
a sparse grid for the recursive
algorithm. The grid point
marked in red is the root node
of the tree

Algorithm 2: The recursive algorithm for the operation BT˛

Function eval(x; node)
l; i; ˛l;i extractFromNode(node);
result �l;i(x)˛l;i;
successors successorsWithSupport(node);
for successor 2 successors do

result resultCeval(x; successor);

return result;

for xj 2 T do
vj  eval(xj; root);

the data point has support on. Therefore, it only evaluates one basis function per
subspace. The algorithm is shown in pseudo code in Algorithm 2.

For an implementation of this algorithm that uses a pointer-based data structure,
the memory accesses are expensive. Furthermore, the recursive structure makes it
more difficult to vectorize and parallelize the algorithm which has become important
on modern processors with wide vector registers. For these reasons, the recursive
algorithm was evaluated to be significantly slower than the streaming algorithm for
large data sets [10].

The algorithm that we present in this paper is related to the recursive approach
as it also evaluates at most one basis function per subspace. At the same time, our
approach maps well to modern processors. Thus, we realize the optimal complexity
of the recursive approach while retaining the good hardware utilization of the
streaming algorithm.

4 The Subspace-Based Approach

In this section, we introduce a new subspace-based algorithm for spatially adaptive
sparse grids. However, before turning to spatially adaptive sparse grids, we will first
introduce a simpler subspace-based algorithm for regular sparse grids (Fig. 2).



228 D. Pfander et al.

Fig. 2 A regular sparse grid is evaluated at a data point (red dot) with the subspace-based
algorithm for regular sparse grids. We display the hierarchical components of the grid by showing
the subgrids with the support of the corresponding basis functions. The corresponding subspaces
can be processed in arbitrary order

4.1 A Subspace-Based Algorithm for Regular Sparse Grids

Like the recursive algorithm, the subspace-based algorithm for regular sparse grids
processes the data points individually. For every data point, it iterates the list of
subspaces. The subspaces are modeled as a tuple consisting of the level l and
an array that holds the surpluses for the basis functions. On each subspace, the
algorithm calculates the index of the basis function on which the data point has
support. Then it fetches the corresponding surplus value ˛l;i from the surplus array.
Finally, the basis function is evaluated and the algorithm proceeds with the next
subspace. This approach is outlined in Algorithm 3. An explanatory evaluation of a
single data point is shown in Fig. 2.

In comparison to the streaming algorithm, the evaluation of a single grid point is
more expensive. Both the index calculation and the surplus fetch operation have to
be efficiently performed to be competitive.

First, we explain how to efficiently calculate the index of the relevant basis
function on a single subspace for a given data point. To this end, we look at the
formula

xj D ij2
�lj (15)
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Algorithm 3: The subspace-based algorithm for the operation v WD BT˛ for
regular sparse grids

for xj 2 T do
vj  0;
for .l; surplusArray/ 2 subspaces do

i calculateIndex(l; xj);
˛l;i fetchSurplus(surplusArray; l; i);
vj vjC�l;i(xj)˛l;i;

that describes the relationship between level l, index i, and location xl;i of a grid
point in the individual dimensions. By solving this equation by the index ij, we get
the formula

ij D xj2
lj : (16)

We can now infer the relevant index i0 for a data point x0 by replacing the
component xj of the grid point with the components x0j of the data point and then
rounding to the nearest odd number in each dimension,

i0j D nearestOdd.x0j2lj/: (17)

Thereby, we get the index of the closest grid point. Due to the support of the
1-dimensional hat functions, the closest grid point always belongs to a basis function
the data point has support on. Additionally, data points that are exactly in the middle
between two grid points in at least one dimension will evaluate to zero for any basis
function and we therefore obtain the correct value for these data points, too.

For this algorithm, the surpluses can be stored efficiently in a d-dimensional
array for each subgrid as all subgrids are d-dimensional anisotropic grids. Usually,
a d-dimensional array is implemented using a 1-dimensional array and an address
calculation scheme. This approach was used for our algorithms as well. The index
in a linear array for a d-dimensional level-index-vector can be calculated with the
formula

linearIndex.l; i/ WD
����

i1
2

�
2l2�1 C

�
i2
2

��
2l3�1 C

�
i3
2

��
� � � C

�
id
2

��
:

(18)

The divisions and rounding operations are required to skip the even indices correctly.
With this formula, the calculation of the linear index that is used to access the

array surpluses can be done in O.d/ operations. We note that this index calculation
scheme is efficient as only multiplications, additions, and shift operations are
required. Because this algorithm deals with regular grids, each array component
represents a grid point and all array components are used. Therefore, there is no
memory overhead for the storage of the grid.
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Algorithm 4: Basic spatially adaptive algorithm for the operator v WD BT˛

for xj 2 T do
vj  0;
for .l; surplusArray/ 2 subspaces do

i calculateIndex(l; xj);
˛l;i fetchSurplus(l; i; surplusArray);
if :isNaN(˛l;i) then

vj vjC�l;i(xj)˛l;i;

4.2 Towards Spatially Adaptive Sparse Grids

The algorithm for regular grids introduced in Sect. 4.1 can be extended easily to
work with spatially adaptive sparse grids. We can use the same data structure and
store the surpluses as if the grid were a regular sparse grid. Because the algorithm
for regular sparse grids does not make any assumptions about the specific subspaces
involved, a modification is only required to treat some of the grid points correctly.
For a spatially adaptive sparse grid, a subgrid does not necessarily contain all grid
points that it could contain. We mark these missing grid points with a Not-A-
Number (NaN) value from the IEEE 754 floating point standard in the surplus array
of the subgrid.

The basic algorithm for spatially adaptive sparse grids is shown in Algorithm 4.
With the described way of storing the surpluses, the only difference to Algorithm 3
is the special treatment of the missing grid points. Here, the NaN values are used to
skip a specific evaluation.

As a potential optimization, non-existing grid points could be encoded with the
value zero. As a result, the conditional statement in the algorithm could be omitted.
But if zero would be used instead of NaN, it would be impossible to differentiate
between an existing grid point with a surplus value of zero and a non-existing one.
However, this information will be important when the algorithm is further improved
in Sect. 5.1. Therefore, the value NaN was chosen.

Filling up the non-empty subspaces wastes a lot of memory. This problem is
addressed in Sect. 5.5 as we first focus on improving the performance of the basic
algorithm and then discuss the memory usage.

Similar to the streaming algorithm, the parallelization of this algorithm is
straightforward. Because all evaluations are independent, the algorithm can be
parallelized by assigning a data point to a thread. This is an efficient kind of
parallelization when dealing with large data sets as the degree of parallelism easily
exceeds what is required by modern shared-memory systems.
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4.3 The Operator v0 WD Bv

To iteratively solve the system of linear equations, an efficient algorithm for the
second operator v0 WD Bv is required as well. Unfortunately, the operation v0 WD Bv
is not a function evaluation. Without an evaluation-like structure, we can no longer
avoid the unnecessary basis function evaluations easily.

To make use of the subspace structure again, we first observe that an evaluation-
like structure is still present in the columns of B. We therefore run through the
columns instead of the rows. But as the values in the columns all belong to different
components in the result vector v0, the results cannot be simply accumulated.
Instead, after each basis function evaluation, the corresponding component of v0
is updated.

As we still want to evaluate only a single basis function per subspace, we have to
find the entry in the result vector that is associated with the currently processed basis
function. Fortunately, a data structure that efficiently fetches a value associated with
a basis function was introduced to store the surpluses for the operation v WD BT˛.
We use this data structure again, but this time to store the result vector v0. To this
end, a preprocessing and a postprocessing step are required.

In the preprocessing step, the surplus data structure is initialized by setting the
values to zero for existing grid points and to NaN for missing grid points. Now,
the surplus data structure can be used to accumulate the results. Furthermore, a
differentiation between existing and missing grid points is possible as well. After
the computation, the grid has to be traversed again to write the results from the
surplus data structure back into a vector. Because pre- and postprocessing require
only a single iteration through the grid, these operations are cheap compared to the
actual matrix-vector-product calculation. The algorithm for this operator is shown
in pseudo code in Algorithm 5.

Algorithm 5: Basic spatially adaptive algorithm for the operator v0 WD Bv with
pre- and postprocessing only indicated. The data structure for the surpluses
now holds the partial results instead of actual surplus values. We use the same
concepts that we used for the operator v WD BT˛ to make it explicit that the
data structure and the operations are identical

initSurpluses(subspaces);
for j 1I j � jTjI j jC 1 do

x TŒj�;
for .l; surplusArray/ 2 subspaces do

i calculateIndex(l; x);
partial fetchSurplus(l; i; surplusArray);
if :isNaN(partial) then

partial partialC�l;i(x)vj;
setSurplus(partial; l; i; surplusArray);

v0 toVector(subspaces)
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Similar to the operation v WD BT˛, this algorithm can be easily parallelized by
assigning a data point to a thread and the thread then performs the evaluation-like
operation for the data point. While the calculation of v0 WD Bv is still more expensive
than v WD BT˛, its runtime is only about 10% larger. Additionally, because we can
treat both operators in a very similar way, all optimizations that were developed
were integrated in both operators. For these reasons, we do not specifically address
the operator v0 WD Bv in the presentation of our improved algorithm.

5 An Improved Subspace-Based Algorithm

In this section, we present improvements for the basic subspace-based algorithm to
obtain an algorithm that is competitive with a highly efficient implementation of
the streaming algorithm. We will introduce two major algorithmic improvements:
subspace-skipping to further reduce the number of grid point evaluations and a data
point blocking scheme to improve the data locality of the algorithm. At the end of
the section, we discuss some implementation details and present additional smaller
improvements.

5.1 Subspace-Skipping

A subspace-based approach already reduces the number of required evaluations
significantly by evaluating only one basis function per subspace. But there are still
unnecessary evaluations performed. This is best illustrated with an example.

Figure 3 shows the evaluation of a 1-dimensional grid at a point x. The grid point
on level 1 exists and has already been evaluated. The next subspace evaluated is
the subspace with level 2. Here, a matching grid point does not exist. The original
algorithm would proceed with the evaluation of the subspace with level 3. Due to
the hierarchical structure of the grid and by employing a refinement criterion that
ensures that all predecessors of a grid point are part of the grid, we know that there

Fig. 3 A data point x is
evaluated with a sparse grid
function. Only the black grid
points are part of the grid.
The gray grid points are the
grid points that are
considered for evaluation. As
the grid point on level 2 is
missing, the subspace with
level 3 can be skipped
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cannot be a non-zero evaluation for x on the subspace with level 3. We can therefore
skip this subspace.

In one dimension the skipping process is straightforward. We iterate the sub-
spaces with ascending level and stop the iteration as soon as we encounter the first
subspace in which we cannot find a matching grid point. This is more complicated
in higher dimensions.

To deal with higher dimensions, we first define a reflexive parent-child relation
between subspaces. A subspace with level l is a child of another subspace with level
l0 if

.l; l0/ 2 IsChild , lj � l0j;8j 2 f1; : : : ; dg: (19)

As all predecessors of a grid point are part of the grid, it holds for higher dimensional
cases that all child subspaces can be skipped. However, as each subspace has up to
d direct successors, the algorithm cannot stop at the first encounter of a non-existent
grid point as in the 1-dimensional case.

To get to a subspace-skipping algorithm for higher dimensions, we order the
subspaces lexicographically according to their level. This preprocessing step is
cheap as the number of subspaces is usually much smaller than the number of
grid points and data points. In principle, if a grid point does not exist on a specific
subspace, all child subspaces of that subspace can be skipped. However, it would
require additional effort to track which child subspaces should be skipped. To avoid
this, we skip only the child subspaces that immediately follow the current subspace
in the iteration. An example for the algorithm with subspace-skipping enabled is
shown in Fig. 4.

5.2 Data Point Blocking to Improve Cache-Efficiency

Modern processors depend on efficient memory access patterns as the gap between
the computational resources and the bandwidth as well as the latency of the memory
has widened. Caches are implemented to mitigate this problem to some extent. But
in the case of sparse grid regression, the data set and the grid can be large and
typically do not fit completely into the last level cache of the processor.

As the surpluses are stored in one array per subspace, the basic algorithm utilizes
the cache of the processor very inefficiently. During the evaluation of a data point,
there is only one access per array as only one basis function per subspace is
evaluated. The next access to the same array happens only when the next data point
is evaluated and even then it is not guaranteed that a surplus in the same cache-line
is accessed. We therefore conclude that this algorithm has bad spatial and temporal
data locality.

The algorithm can be improved significantly by subscribing multiple data points
to a single thread. Thereby, a single thread evaluates a batch of data points with
one pass through the subspaces, instead of evaluating only a single data point. An
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Fig. 4 A 2-dimensional sparse grid function is evaluated at a point (red) in the domain. The
connections between the subspaces show the order in which the subspaces are iterated (dashed),
the iteration starts with the subspace with level .1; 1/. The black line shows the actually processed
subspaces. As no matching grid point exists on the second subspace, the third subspace is skipped.
One additional zero-evaluation is still performed as only immediately following child subspaces
are skipped

Fig. 5 A set of data points (red) is processed on some subspaces of a grid. On some subspaces
they reside on the support of the same grid point and share the surplus value

evaluation of multiple data points which partially share the same surpluses is shown
in Fig. 5. This approach is a data blocking scheme with a corresponding block size.

The benefit of this scheme is that if the subgrid of a subspace is small compared
to the block size, there is a good chance that memory accesses to the same cache line
occur. This enables a reusage of some data that was already loaded into the cache.
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Therefore, the spatial and temporal data locality of the algorithm is improved for
smaller subgrids.

5.3 Caching Intermediate Values

As a further optimization, some intermediate results throughout the evaluation
process are cached. If the evaluation of a subspace is followed by the evaluation
of a subspace whose level l changed only in one component, only one component
in the index i will change. For example, the basis function with the index .1; 1; 1/
on the subspace with level .2; 2; 2/ is evaluated and the next subspace has the level
.2; 2; 3/. Then, there are only two possible values for the index vector. Either the
next grid point has the index .1; 1; 1/ or the index .1; 1; 3/. In general, only the
index components have to be recalculated for which the level vector of the subspace
changed.

The same idea can be applied to the basis function evaluation and the calculation
of the linear index. Due to the tensor-product approach, only those 1-dimensional
basis functions will yield different results for which the index changed. For the linear
index calculation, caching can be enabled slightly differently. As the linear index
calculation is done with a formula similar to a Horner scheme, the linear index has
to be recomputed starting with the first component that changed. For an efficient
implementation, all caching was implemented so that the values were recalculated
starting with the first component that changed.

5.4 Vectorization

The implementation of our algorithm uses the Advanced Vector Instructions (AVX)
and the Streaming SIMD Extensions (SSE) for a better utilization of our hardware
resources [12]. These are vector instruction sets that are available on most recent
processors. Vectorization was relatively straightforward as it was combined with the
data point blocking scheme discussed in Sect. 5.2. The set of data points introduced
to improve the data locality can be used to enable parallel evaluations by combining
groups of 4 data points and perform the calculations with vector instruction.

Both instruction sets had to be combined as AVX does not contain integer
operations and SSE offers instructions for packed groups of four 32-bit integers.
The integer instructions are used to speed up the calculation of the index i and the
linear index used to access the surpluses.

While there was a benefit of about 20% in performance, the gain through
vectorization was relatively small compared to the maximum factor of 4 as some
non-continuous memory accesses are required and AVX and SSE have no gather
and no scatter support.
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5.5 Representation in Memory

The basic subspace-based algorithm stores all subgrids as if a regular grid was
processed. It therefore allocates memory for all grid points that could exist on the
subgrids. However, through spatially adaptive refinement, very large subgrids can
be reached after some refinement steps while the grid actually contains only few
grid points. This results in a large memory overhead.

This issue can be mitigated by representing different subgrids in different ways.
We differentiate between two types of subgrids:

A subgrid�l is a list subgrid , existingGridPoints.�l/

j�lj � trepr: (20)

A subgrid�l is an array subgrid , existingGridPoints.�l/

j�lj > trepr: (21)

Here, the value trepr 2 Œ0; 1� is the threshold used to determine how a subgrid is
represented. In our implementation trepr was set to 0:2.

Surpluses of array subgrids are stored using d-dimensional arrays as if the
subgrid would contain all possible grid points, i.e., the same way the basic algorithm
stores the surpluses. For the array subgrids, the algorithm does not have to be
modified.

Surpluses of list subgrids are stored as a list of pairs. We use the linear index of
the corresponding grid point as the first component of the pair. The surplus value
of the corresponding grid point is used as the second component of the pair. When
a list subgrid is processed, the tuples are used to temporarily construct an array
representation. With this representation, list subgrids with few existing grid points
can be stored efficiently.

A limitation of our algorithm is introduced by the temporary array that is
required to unpack the list representation. To accommodate all possible subgrids,
the temporary array has to be of the size of the largest list subgrid. Furthermore, for
an efficient parallel implementation, we use a temporary array for each thread.

The maximum number of existing grid points of a subgrid�l is given by

dY

iD1
2li�1 D 2.

Pd
iD1 li/�d: (22)

We define the value

sl WD .

dX

iD1
li/� d (23)

to discuss the memory usage independent from the dimensionality of the problem.
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If it holds for the largest subgrid that sl D 30, then 230 � 8 Bytes D 8GB
of memory per thread are required. Therefore, the practical limit for this kind of
approach will be around sl D 30 for current hardware. There are ways to avoid this
limitation, e.g., by falling back to a streaming algorithm for subgrids with sl greater
than a threshold value.

A further potential limitation is the cost associated with the construction of the
temporary array representation. However, the cost required to set up a temporary
array is usually low compared the cost of the evaluations on the subspace.
Additionally, after the temporary arrays are set up, the surpluses are now in the
cache and can be cheaply accessed in the following evaluations. In our experiments,
we did not measure any significant overhead for the construction of the temporary
arrays.

6 Results

Experiments were performed to evaluate the presented subspace-based algorithms.
In this section, we introduce the data sets used for our comparisons and the
computational environment. We then compare the basic subspace-based algorithm
and the improved subspace-based algorithm to the streaming algorithm. In the
end, we evaluate some improvements in detail and discuss the measured memory
requirements.

6.1 Data Sets and Experimental Setup

We used four data sets in our experiments with 90;000 to almost 400;000 data points.
These are the same data sets that were used to evaluate the streaming algorithm [10].
The most important properties of these data sets are summarized in Table 1.

The DR5 data set is based on the fifth data release of the Sloan Digital Sky
Survey and enables the prediction of the redshift estimation of galaxies based on
photometric data [1]. It is a real-world 5-dimensional data set that results in a
grid with a very irregular structure. This is the most interesting data set for our

Table 1 The data sets used in the experiments and a description of the grids at the end of the
regression experiments

Name Dim Data points Grid Grid points

DR5 5 371;907 Very irregular 57;159

Friedman 4d 4 90;000 Somewhat irregular 25;915

Friedman 10d 10 90;000 More regular 37;838

Chess 5d 5 262;143 Very regular 42;896
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experiments as we especially want to achieve a high performance for spatially
adaptive grids and this data set produces a very irregular grid,

The two Friedman data sets [6] are synthetic data sets that model intermediate
cases. The Friedman 4d data set is a 4-dimensional data set that is based on the
function

fried4.x/ D �
x21 C .x2x3 � .x2x4/

�1/2
�1=2 C 	: (24)

The additional noise 	 is normally distributed, N.0; 125/.
The Friedman 10d data set results in a more regular grid and was included as a

higher dimensional data set. It is based on the function

fried10.x/ D 10 sin.�x1x2/C 20.x3 � 0:5/2 C 10x4 C 5x5 C 	: (25)

There are five additional dimensions that contain normally distributed noise,
N.0; 1/.

The Chess 5d data set is a 5-dimensional data set and results in a very regular
grid. This data sets is used to model a near best-case scenario for our algorithm. It
was constructed using the function

chess.x/ D
5Y

kD1

(
�1 1=3 < x � 2=3;

1 otherwise;
(26)

with data points drawn uniformly from Œ0; 1�5. This data set does not contain any
additional noise. However, it has 35 different regions to detect [10].

The Friedman 4d, Friedman 10d, and Chess 5d data sets were obtained by
sampling the underlying function and then normalizing the results to Œ0; 1�d in case
of the Friedman data sets. For the DR5 data set, a subset of the data included in
the fifth data release of the Sloan Digital Sky Survey was used. This data set had to
be normalized as well. Details on the construction of the data sets are given in the
literature [14].

All experiments were conducted on a dual-socket platform. This machine was
equipped with two Intel R� Xeon R� E5-2650v2 processors with 8 cores each that are
clocked at 2:6GHz. As the processors support Hyper-Threading and as this feature
was enabled, there are 32 threads overall. The Turbo-Boost feature of the processor
was enabled as well. While 128GB of RAM were installed, we required only a
small fraction of the available memory in all of our experiments.

The data mining process was always started with a regular grid of level 2 and
then 20 refinement steps were performed. After creating the initial grid and after
each refinement step, the regression problem was solved with 120 iterations of a
conjugate gradient solver. The parameter � for the regularization operator was set
to 10�5 in all experiments. It was shown in prior work that sparse grids are well
suited to learn these data sets [14] and this work focuses on the performance of the
data mining algorithms rather than accuracy. We therefore designed our experiments
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to be similar to real world data mining scenarios while keeping the runtime low.
Furthermore, we started with a grid of a low level and performed many refinement
steps to study the performance for spatially adaptive sparse grids. To ensure the
correctness of our algorithm, we compared the data mining results to a well-tested
implementation of the streaming algorithm.

In the refinement steps, a surplus-based refinement criterion was used. The
algorithm first orders the grid points according to the absolute value of their
surpluses. Already refined grid points are excluded from this list. Additionally, an
upper limit for the number of grid points in the list has to be specified. The grid
points in the list are then refined by adding all hierarchical successors of these
grid points to the grid. Furthermore, the hierarchical predecessors of the newly
added grid points are added as well. Thereby, the predecessors of all grid points are
always part of the grid. This is a commonly used refinement strategy that has been
successfully used in data mining in the past [14]. In our experiments, the criterion
was configured so that up to 80 grid points were refined in each refinement step.

The size of the sparse grids at the end of the experiments is shown in Table 1. The
experiments were designed to ensure that the number of grid points did not exceed
the number of data points in the data set.

We compared our algorithms against an implementation of the streaming algo-
rithm described in [10]. This highly efficient implementation is parallelized with
OpenMP and vectorized for AVX. Furthermore, it makes use of manual loop-
unrolling to improve the pipeline utilization.

6.2 The Performance of the Basic Subspace-Based Approach

We performed our data mining experiments with the basic subspace-based algorithm
and compared the runtime to the streaming algorithm. The results of these experi-
ments are listed in Table 2. While the performance is acceptable for the Chess 5d
data set, the basic algorithm shows a much lower performance than the streaming
algorithm for the other data sets. Several reasons contribute to these results.

The streaming algorithm accesses the memory in a very efficient way. It reads
sequentially through lists utilizing all data it reads. In contrast, the basic subspace-

Table 2 Overall runtime for the experiments with the basic subspace-based algorithm and the
streaming algorithm as comparison. Based on the runtime, the speedup of the basic subspace-
based algorithm is calculated. Additionally, the speedup for learning after the last refinement step
is provided

Data set Duration (s) Duration streaming (s) Speedup overall Speedup last step

Chess 5d 2379.46 3530:26 1:48 1:81

Friedman 4d 1966.09 339:19 0:17 0:13

Friedman 10d 5746.21 1679:68 0:29 0:33

DR5 13,515.8 3002:22 0:22 0:24
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Fig. 6 The development of
the average number of grid
points per subgrid throughout
the refinement process
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based approach accesses a single surplus value while processing each subspace. This
results in bad data locality, as was explained in Sect. 5.2. Additionally, the evaluation
of a single grid point is more expensive due to the calculation of the index i and the
linear index used to access the surplus array.

The possible speedup of the basic subspace-based algorithm compared to the
streaming algorithm depends on the structure of the grid. As we deal with spatially
adaptive sparse grids, the number of grid points on a subgrid can be low. Therefore,
the additional work that the streaming algorithm performs can be low as well. We
conducted experiments to estimate the possible speedup.

The graph in Fig. 6 shows the average number of grid points per subgrid
throughout the refinement process. To calculate this measure, the initial grid and the
grids after each refinement step were used. For a sparse grid g, the average number
of grid points per subgrid is given by the subgrid utilization of a sparse grid,

countGridPoints.g/

countSubgrids.g/
: (27)

The basic subspace-based approach always evaluates one grid point per subgrid
while the streaming algorithm evaluates all grid points on a subgrid. Therefore,
the subgrid utilization describes the possible speedup of the basic subspace-based
approach compared to the streaming algorithm.

In our experiments, the subgrid utilization varied widely for different data sets
and different refinement steps. For the Chess 5d data set a subgrid utilization of 40:6
was calculated after the last refinement step. That means that in the last refinement
step a subspace-based approach could be 40:6 times faster than the streaming
algorithm. However, the Friedman 10d data set has only a subgrid utilization of
5:57 after the last refinement step which limits the possible speedup to 5:57
.
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Table 3 Overall runtime for the experiments with the improved subspace-based algorithm and the
streaming algorithm as comparison. Based on the runtime, the speedup of the improved subspace-
based algorithm is calculated. Additionally, the speedup for learning after the last refinement step
is provided

Data set Duration (s) Duration streaming (s) Speedup overall Speedup last step

Chess 5d 465:99 3309:05 7:1 10:25

Friedman 4d 112:05 340:43 3:04 3:16

Friedman 10d 806:15 1683:09 2:09 2:47

DR5 1657:79 3002:56 1:81 2:31

6.3 The Performance of the Improved Subspace-Based
Approach

To evaluate the improved subspace-based approach, we compared the runtime of
the improved subspace-based algorithm to the streaming algorithm. The speedups
calculated from these experiments are shown in Table 3.

These results show that the improved subspace-based algorithm is significantly
faster than the streaming algorithm for all data sets. However, the magnitude of the
speedup significantly depends on the data set and the resulting structure of the grid.
A speedup of 7:1
 was observed for the Chess 5d data set with its very regular grid.
For the data sets with less regular grids, the Friedman 4d and Friedman 10d data sets,
speedups of 3:04
 and 2:09
 were observed. The data set with the most irregular
grid is the DR5 data set. Still, the improved subspace-based approach is faster than
the streaming algorithm for the DR5 data set with a speedup of 1:81–2:31
.

Throughout our experiments, we observed a tendency for the performance of
our algorithm to improve with larger grids. Figure 7 shows the development of the
speedup throughout the refinement process. This graph suggests that the speedup
is not yet saturated and even higher speedups would be observed after further
refinement steps. This was tested for the DR5 data set in an additional experiment
where the number of refinement steps was increased to 30. In this experiment, the
overall speedup increased to 2
. But as the subspace-based algorithm depends on
the structure of the grid, the performance can also decrease with further refinement
steps. This was observed in the experiments with the Friedman 4d data set. Here,
the performance started to decrease after 16 refinement steps.

6.4 Important Improvements in Detail

To quantify the benefit of the individual improvements of the improved subspace-
based approach, we implemented the individual improvements so that they can be
turned off by setting a compiler option. That way we were able to use our fastest
implementation and to compare it to the same implementation with a single feature
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Fig. 7 The performance of
the improved subspace-based
algorithm after each
refinement step for three of
the four data sets
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Table 4 Contribution of subspace-skipping to the final algorithm. The speedups were calculated
by using the same algorithm with subspace-skipping turned off as a baseline

Experiment Speedup

DR5 1:79

Friedman 4d 1:50

Friedman 10d 0:98

Chess 5d 1:17

turned off. However, as some code fragments of the improvements could not be
temporarily removed, a small bias in the baseline performance is possible.

6.4.1 Subspace-Skipping

Subspace-skipping is designed to improve the performance of the evaluation process
for more irregular grids. The results in Table 4 reflect this intention. Because the
DR5 data set results in the most irregular grid, the highest benefit was measured for
this data set. The other data sets also showed benefits, except for the Friedman 10d
data set which showed basically no change in runtime.

6.4.2 Data Point Blocking

In Sect. 5.2, a blocked evaluation scheme was introduced. Because a good choice for
the block size has to be made, we varied the block size to calculate the benefit of this
improvement. As our algorithm makes use of vectorization with a vector width of
4, we set the minimum block size to 4 to disable the blocking scheme, but still have
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Fig. 8 Speedup of the
blocking scheme depending
on the size of the set of data
points that are evaluated by a
single thread. The baseline
for this comparison is the
same algorithm with a set size
of four
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Table 5 Memory usage after the last refinement step. The memory estimate includes the grid
points and temporary array of each thread. It does not include the data set itself

Data set Grid points Array only With list Memory estimate (MB)

DR5 52;294 114;949;887 60;255 256:46

Friedman 4d 25;915 117;181;057 28;342 256:22

Friedman 10d 37;838 442;449 66;731 0:57

Chess 5d 42;896 194;271 63;545 0:73

vectorization enabled. The algorithm with a block size of 4 was used as a baseline
for our comparisons. The results of these experiments are shown in Fig. 8.

A significantly improved performance was observed for all data sets, with
speedups ranging from 3:8
 for the Chess 5d data set to 6:6
 for the Friedman
4d data set. Based on these results, the size of the data point set was set to 256
elements.

The curve displays saturation for values larger than 256 and the speedup even
decreases for the Friedman 10d data set. In general, we want to hold as many data
points and surpluses as possible in the cache. But there is a trade-off. If the size of
the set for the blocking scheme is too high, fewer surpluses can be held in the cache.
But if the value is too low, the data locality for the surplus access is not improved.
Therefore, an intermediate value for the set size maximizes the performance.

6.5 Evaluating the Memory Usage

The introduction of the list representation led to a significant reduction in the
number of grid points that are stored. Table 5 shows the stored grid points and
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memory usage for the different data sets. The table lists the number of grid points
that are part of the grid, the number of grid points that were stored with only the
array representation, and the number of grid points with the list representation
added.

The Friedman 4d data set is of special interest here. After the last refinement step,
	 108 grid points had to be stored without the list representation, even though the
grid contained only 25;915 grid points. With the list representation enabled, 28;342
grid points had to be stored. Even if we consider that we have to store the linear
index in addition to the surplus value for the list representation, this is a reduction
in stored grid points by four orders of magnitude. A similar reduction in stored grid
points could be observed for the DR5 data set.

To estimate the impact of the temporary arrays, we calculated the memory usage
at the end of the refinement process for the DR5 data set. We required 256MB to
store the temporary arrays for our 32 thread system, which amounts to 8MB per
thread. While we think that better data structures should be constructed that deal
with large subgrids more efficiently, we expect that the storage requirements of our
algorithm can be met even for large problems with irregular grids.

7 Conclusions

We presented algorithms for two matrix-vector-product operations to improve the
performance of data mining on spatially adaptive sparse grids. Furthermore, we
presented an efficient multi-evaluation algorithm, as this operation is one of the
matrix-vector-products in our data mining algorithm.

Our subspace-based algorithm avoids many unnecessary computations compared
to the frequently used streaming algorithm. Because mapping a subspace-based
approach to modern processors architectures is more difficult, we had to develop ad-
ditional algorithmic improvements. Subspace-skipping further reduced the amount
of basis functions that are evaluated. The data point blocking improved the temporal
and spatial data locality of our algorithm. Overall, we obtained a highly efficient
algorithm that showed a higher performance than the streaming algorithm in all
experiments.

Achieving this result was more difficult than we assumed based on the number
of basis function evaluations. There are two main reasons for this. First, we used
a highly efficient implementation of the streaming approach in our experiments as
a challenging baseline. Second, in three of four of our experiments, we observed
grids with a subgrid utilization that was lower than we expected. It is clear that
a streaming approach is highly efficient if a subgrid contains only very few grid
points. Moreover, if a subgrid contains all possible grid points, a subspace-based
approach is most efficient except for very small subgrids.

Optimization Notice: Software and workloads used in performance tests may
have been optimized for performance only on Intel microprocessors. Performance
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tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For
more information go to http://www.intel.com/performance. Intel, Xeon, and Intel
Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
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High-Dimensional Stochastic Design
Optimization by Adaptive-Sparse Polynomial
Dimensional Decomposition

Sharif Rahman, Xuchun Ren, and Vaibhav Yadav

Abstract This paper presents a novel adaptive-sparse polynomial dimensional de-
composition (PDD) method for stochastic design optimization of complex systems.
The method entails an adaptive-sparse PDD approximation of a high-dimensional
stochastic response for statistical moment and reliability analyses; a novel integra-
tion of the adaptive-sparse PDD approximation and score functions for estimating
the first-order design sensitivities of the statistical moments and failure probability;
and standard gradient-based optimization algorithms. New analytical formulae are
presented for the design sensitivities that are simultaneously determined along with
the moments or the failure probability. Numerical results stemming from mathemat-
ical functions indicate that the new method provides more computationally efficient
design solutions than the existing methods. Finally, stochastic shape optimization of
a jet engine bracket with 79 variables was performed, demonstrating the power of
the new method to tackle practical engineering problems.

1 Introduction

Uncertainty quantification of complex systems, whether natural or man-made,
is an important ingredient in numerous fields of science and engineering. For
practical applications, encountering hundreds of input variables or more is not
uncommon, where an output function of interest, often defined algorithmically
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via finite-element analysis (FEA), is all too often expensive to evaluate. Mod-
ern surrogate methods, comprising stochastic collocation [1], polynomial chaos
expansion [13], and sparse-grid quadrature [3], are known to offer significant
computational advantages over crude Monte Carlo simulation (MCS). However,
for truly high-dimensional systems, they require astronomically large numbers
of terms or coefficients, succumbing to the curse of dimensionality. Therefore,
alternative computational methods capable of exploiting low effective dimensions
of multivariate functions, such as the polynomial dimensional decomposition (PDD)
methods [7, 9], including a recently developed adaptive-sparse PDD method, are
desirable [15]. Although PDD and PCE contain the same measure-consistent
orthogonal polynomials, a recent work reveals that the error committed by the PDD
approximation cannot be worse than that perpetrated by the PCE approximation for
identical expansion orders [9].

An important application of uncertainty quantification is stochastic design
optimization, which can be grouped in two principal classes: (1) design optimization
for robustness [10], which minimizes the propagation of input uncertainty to
output responses of interest, leading to an insensitive design; and (2) design
optimization for reliability [11], which concentrates on attaining an optimal design
by ensuring sufficiently low risk of failure. Depending on the objective set forth
by a designer, uncertainty can be effectively mitigated by either class of design
optimization. Indeed, with new formulations and methods appearing almost every
year, stochastic design optimization in conjunction with FEA are becoming increas-
ingly relevant and perhaps necessary for realistic design of complex structures and
systems.

This paper presents an adaptive-sparse PDD method for stochastic design
optimization of complex systems. The method is based on (1) an adaptive-
sparse PDD approximation of a high-dimensional stochastic response for statistical
moment and reliability analyses; (2) a novel integration of the adaptive-sparse PDD
approximation and score functions for calculating the first-order sensitivities of
the statistical moments and failure probability with respect to the design variables;
and (3) standard gradient-based optimization algorithms. Section 2 formally defines
two general variants of stochastic design optimization, including their concomitant
mathematical statements. Section 3 starts with a brief exposition of the adaptive-
sparse PDD approximation, leading to statistical moment and reliability analyses.
Exploiting score functions, the section explains how the effort required to perform
stochastic analyses also delivers the design sensitivities, sustaining no additional
cost. The section also describes a coupling between stochastic analyses and design
sensitivity analysis, resulting in an efficient optimization algorithm for solving both
variants of the design optimization problem. Section 4 presents two numerical
examples, including solving a large-scale shape design optimization problem.
Finally, the conclusions are drawn in Sect. 5.
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2 Stochastic Design Optimization

Consider a measurable space .�d;Fd/, where �d is a sample space and Fd is a �-
field on�d. Defined over .�d;Fd/, let fPd W Fd ! Œ0; 1�g be a family of probability
measures, where for M 2 N WD f1; 2; � � � g and N 2 N, d D .d1; � � � ; dM/ 2 D
is an R

M-valued design vector with non-empty closed set D � R
M and let X WD

.X1; � � � ;XN/ W .�d;Fd/ ! .RN ;BN/ be an R
N-valued input random vector with

BN representing the Borel �-field on R
N , describing the statistical uncertainties in

input variables of a complex system. The probability law of X is completely defined
by a family of the joint probability density functions ffX.xI d/; x 2 R

N ; d 2 Dg
that are associated with probability measures fPd; d 2 Dg, so that the probability
triple .�d;Fd;Pd/ of X depends on d. A design variable dk can be any distribution
parameter or a statistic—for instance, the mean or standard deviation—of Xi.

Let yl.X/, l D 0; 1; � � � ;K, be a collection of KC1 real-valued, square-integrable,
measurable transformations on .�d;Fd/, describing performance functions of a
complex system. It is assumed that yl W .RN ;BN/ ! .R;B/ is not an explicit
function of d, although yl implicitly depends on d via the probability law of X.
This is not a major limitation, as most design optimization problems involve means
and/or standard deviations of random variables as design variables. There exist two
prominent variants of design optimization under uncertainty: (1) design optimiza-
tion for robustness and (2) design optimization for reliability. Their mathematical
formulations, comprising an objective function c0 W R

M ! R and constraint
functions cl W R

M ! R, l D 1; � � � ;K, 1 � K < 1, entail finding an optimal
design solution d
 as follows.

• Design for Robustness [10]

d
 D arg min
d2D�RM

c0.d/ WD w1
Ed Œy0.X/�

�
0
C w2

p
vard Œy0.X/�
�
0

;

subject to cl.d/ WD ˛l

p
vard Œyl.X/� � Ed Œyl.X/� � 0; l D 1; � � � ;K;

(1)

where EdŒyl.X/� WD R
RN yl.x/fX.xI d/dx is the mean of yl.X/ with Ed denoting

the expectation operator with respect to the probability measure Pd;d 2 D,
vardŒyl.X/� WD EdŒfyl.X/ � EdŒyl.X/�g2� is the variance of yl.X/, w1 2 R

C
0 WD

Œ0;1/ and w2 2 R
C
0 are two non-negative, real-valued weights, satisfying

w1 C w2 D 1, �
0 2 R n f0g and �
0 2 R
C
0 n f0g are two non-zero, real-valued

scaling factors, and ˛l 2 R
C
0 , l D 0; 1; � � � ;K, are non-negative, real-valued

constants associated with the probabilities of constraint satisfaction. For most
applications, equal weights are chosen, but they can be distinct and biased,
depending on the objective set forth by a designer. By contrast, the scaling
factors are relatively arbitrary and chosen to better condition, such as normalize,
the objective function. In (1), c0.d/ describes the objective robustness, whereas
cl.d/, l D 1; � � � ;K, describe the feasibility robustness of a given design. The
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evaluations of both robustness measures involve the first two moments of various
stochastic responses, consequently demanding statistical moment analysis.

• Design for Reliability [11]

d
 D arg min
d2D�RM

c0.d/;

subject to cl.d/ WD Pd ŒX 2 �F;l.d/� � pl � 0; l D 1; � � � ;K;
(2)

where �F;l is the lth failure domain, 0 � pl � 1 is the lth target failure proba-
bility. In (2), the objective function c0 is commonly prescribed as a deterministic
function of d, describing relevant system geometry, such as area, volume, and
mass. In contrast, the constraint functions cl, l D 1; � � � ;K, depending on the
failure domain �F;l, require component or system reliability analyses. For a
component reliability analysis, the failure domain is often adequately described
by a single performance function yl.X/, for instance, �F;l WD fx W yl.x/ < 0g,
whereas multiple, interdependent performance functions yl;i.x/; i D 1; 2; � � � ;
are required for a system reliability analysis, leading, for example, to �F;l WD
fx W [iyl;i.x/ < 0g and�F;l WD fx W \iyl;i.x/ < 0g for series and parallel systems,
respectively.

The solution of a stochastic design optimization problem, whether in conjunction
with robustness or reliability, mandates not only statistical moment and reliability
analyses, but also the evaluations of gradients of moments and failure probability
with respect to the design variables. The focus of this work is to solve a general
high-dimensional design optimization problem described by (1) or (2) for arbitrary
square-integrable functions yl.X/, l D 1; 2; � � � ;K, and for an arbitrary probability
density fX.xI d/ of X, provided that a few regularity conditions are met.

3 Adaptive-Sparse Polynomial Dimensional Decomposition
Method

Let y.X/ WD y.X1; � � � ;XN/ represent any one of the random functions yl, l D
0; 1; � � � ;K, introduced in Sect. 2 and let L2.�d;Fd;Pd/ represent a Hilbert space
of square-integrable functions y with respect to the probability measure fX.xI d/dx
supported on R

N . Assuming independent coordinates, the joint probability density
function of X is expressed by the product, fX.xI d/ D QiDN

iD1 fXi.xiI d/, of marginal
probability density functions fXi W R ! R

C
0 of Xi, each defined on its probability

triple .�i;d;Fi;d;Pi;d/ with a bounded or an unbounded support on R, i D 1; � � � ;N.
Then, for a given subset u � f1; � � � ;Ng, fXu.xuI d/ WD Qjuj

pD1fXip
.xip I d/ defines the

marginal density function of the subvector Xu D fXi1 ; � � � ;Xijuj
gT of X.

Let f ij.XiI d/I j D 0; 1; � � � g be a set of univariate orthonormal polynomial
basis functions in the Hilbert space L2.�i;d;Fi;d;Pi;d/ that is consistent with the
probability measure Pi;d of Xi for a given design d, where i D 1; � � � ;N. For a given
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u D fi1; � � � ; ijujg � f1; � � � ;Ng, 1 � juj � N, 1 � i1 < � � � < ijuj � N, denote by

.
pDjuj
pD1 �ip;d;
pDjuj

pD1 Fip;d;
pDjuj
pD1 Pip;d/ the product probability triple of the subvector

Xu. Since the probability density function of Xu is separable (independent), the
product polynomial  ujjuj

.XuI d/ WD Qjuj
pD1  ipjp.Xip I d/, where jjuj D .j1; � � � ; jjuj/ 2

N
juj
0 , N0 WD N [ f0g, is a juj-dimensional multi-index, constitutes an orthonormal

basis in L2.
pDjuj
pD1 �ip;d;
pDjuj

pD1 Fip;d;
pDjuj
pD1 Pip;d/.

The PDD of a square-integrable function y represents a hierarchical expansion
[7, 9]

y.X/ D y;.d/C
X

;¤u�f1;			 ;Ng

X

jjuj2Njuj

0

j1;			 ;jjuj¤0

Cujjuj
.d/ ujjuj

.XuI d/ (3)

in terms of random multivariate orthonormal polynomials, where

y;.d/ D
Z

RN
y.x/fX.xI d/dx (4)

and

Cujjuj
.d/ WD

Z

RN
y.x/ ujjuj

.xuI d/fX.xI d/dx; ; ¤ u � f1; � � � ;Ng; jjuj 2 N
juj
0

(5)
are various expansion coefficients. The condition j1; � � � ; jjuj ¤ 0 used in (3) and
equations throughout the remainder of this paper implies that jk ¤ 0 for all k D
1; � � � ; juj. Derived from the ANOVA dimensional decomposition [4], (3) provides
an exact representation because it includes all main and interactive effects of input
variables. For instance, juj D 0 corresponds to the constant component function
y;, representing the mean effect of y; juj D 1 leads to the univariate component
functions, describing the main effects of input variables, and juj D S, 1 < S � N,
results in the S-variate component functions, facilitating the interaction among at
most S input variables Xi1 ; � � � ;XiS , 1 � i1 < � � � < iS � N. Further details of PDD
are available elsewhere [7, 9].

Equation (3) contains an infinite number of coefficients, emanating from infinite
numbers of orthonormal polynomials. In practice, the number of coefficients must
be finite, say, by retaining finite-order polynomials and reduced-degree interaction
among input variables. For instance, an S-variate, mth-order PDD approximation
[7, 9]

QyS;m.X/ D y;.d/C
X

;¤u�f1;			 ;Ng
1�juj�S

X

jjuj2Njuj

0 ;jjjjuj jj1�m
j1;			 ;jjuj¤0

Cujjuj
.d/ ujjuj

.XuI d/ (6)

is generated, where jjjjujjj1 WD max.j1; � � � ; jjuj/ defines the 1-norm and the
integers 0 � S � N and 1 � m < 1 represent the largest degree of interactions
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among input variables and the largest order of orthogonal polynomials retained
in a concomitant truncation of the sum in (3). It is important to clarify that the
right side of (6) contains sums of at most S-dimensional PDD component functions
of y. Therefore, the term “S-variate” used for the PDD approximation should
be interpreted in the context of including at most S-degree interaction of input
variables, even though QyS;m is strictly an N-variate function. When S ! N and
m ! 1, QyS;m converges to y in the mean-square sense, generating a hierarchical
and convergent sequence of approximations [7, 9].

3.1 Adaptive-Sparse PDD Approximation

For practical applications, the dimensional hierarchy or nonlinearity of a stochastic
response, in general, is not known a priori. Therefore, indiscriminately assigning
values of the truncation parameters S and m is not desirable. Nor is it possible to
do so when a stochastic solution is obtained via complex numerical algorithms.
In which case, one must perform these truncations automatically by progressively
drawing in higher-variate or higher-order contributions as appropriate. Based on
the authors’ past experience, an S-variate PDD approximation, where S � N, is
adequate, when solving real-world engineering problems, with the computational
cost varying polynomially (S-order) with respect to the number of variables [7, 9].
As an example, consider the selection of S D 2 for solving a stochastic problem
in 100 dimensions by a bivariate PDD approximation, comprising 100 
 99=2 D
4950 bivariate component functions. If all such component functions are included,
then the computational effort for even a full bivariate PDD approximation may
exceed the computational budget allocated to solving this problem. But many
of these component functions contribute little to the probabilistic characteristics
sought and can be safely ignored. Similar conditions may prevail for higher-variate
component functions. Henceforth, define an S-variate, partially adaptive-sparse
PDD approximation [15]

NyS.X/ WD y;.d/C
X

;¤u�f1;			 ;Ng
1�juj�S

1X

muD1

X

kjjujk
1
Dmu; j1;			 ;jjuj¤0

QGu;mu>	1;� QGu;mu>	2

Cujjuj
.d/ ujjuj

.XuI d/ (7)

of y.X/, where

QGu;mu WD 1

�2.d/

X

jjuj2Njuj

0 ;kjjujk
1
�mu

j1;			 ;jjuj¤0

C2
ujjuj

.d/; mu 2 N; 0 < �2.d/ < 1;
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defines the approximate muth-order approximation of the global sensitivity index of
y.X/ for a subvector Xu, ; ¤ u � f1; � � � ;Ng, of input variables X and

� QGu;mu WD

8
ˆ̂̂
<

ˆ̂̂
:

1 if mu D 1 or .mu � 2; QGu;mu�1 D 0; QGu;mu ¤ 0/;

0 if mu � 2; QGu;mu�1 D 0; QGu;mu D 0;
QGu;mu � QGu;mu�1

QGu;mu�1
if mu � 2; QGu;mu�1 ¤ 0

defines the relative change in the approximate global sensitivity index when the
largest polynomial order increases from mu � 1 to mu. The non-trivial definition
applies when mu � 2 and QGu;mu�1 ¤ 0. When mu D 1 or mu D 1 or .mu �
2; QGu;mu�1 D 0; QGu;mu ¤ 0/, the infinite value of � QGu;mu guarantees that the muth-
order contribution of yu to y is preserved in the adaptive-sparse approximation.
When mu � 2, QGu;mu�1 D 0, and QGu;mu D 0, the zero value of � QGu;mu implies
that there is no contribution of the muth-order contribution of yu to y. Here,

�2.d/ D
X

;¤u�f1;			 ;Ng

X

jjuj2Njuj

0

j1;			 ;jjuj¤0

C2
ujjuj

.d/ (8)

is the variance of y.X/. Then the sensitivity indices QGu;mu and � QGu;mu provide an
effective means to truncate the PDD in (3) both adaptively and sparsely. Equation (7)
is attained by subsuming at most S-variate component functions, but fulfilling two
inclusion criteria: (1) QGu;mu > 	1 for 1 � juj � S � N, and (2) � QGu;mu > 	2
for 1 � juj � S � N, where 	1 � 0 and 	2 � 0 are two user-defined
tolerances. The resulting approximation is partially adaptive because the truncations
are restricted to at most S-variate component functions of y. When S D N, (7)
becomes the fully adaptive-sparse PDD approximation [15]. The algorithmic details
of numerical implementation associated with either fully or partially adaptive-sparse
PDD approximation are available elsewhere [15].

The determination of PDD expansion coefficients y;.d/ and Cujjuj
.d/ is vitally

important for statistical moment and reliability analyses, including design sensitivi-
ties. As defined in (4) and (5), the coefficients involve N-dimensional integrals over
R

N . For large N, a multivariate numerical integration employing an N-dimensional
tensor product of a univariate quadrature formula is computationally prohibitive
and is, therefore, ruled out. An attractive alternative approach entails dimension-
reduction integration [14], where the N-variate function y in (4) and (5) is replaced
by an R-variate (1 � R � N) referential dimension decomposition at a chosen
reference point. For instance, given a reference point c D .c1; � � � ; cN/ 2 R

N , the
expansion coefficients Cujjuj

are approximated by [14]

Cujjuj
.d/ Š

RX

iD0

.�1/i
 

N � R C i � 1

i

!
X

v�f1;��� ;Ng

jvjDR�i;u�v

Z

Rjvj

y.xv; c�v/ ujjuj
.xuI d/fXv .xv I d/dxv ;

(9)
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requiring evaluations of at most R-dimensional integrals. The estimation of y;.d/
is similar. The reduced integration facilitates calculation of the coefficients ap-
proaching their exact values as R ! N, and is significantly more efficient than
performing one N-dimensional integration, particularly when R � N. Hence,
the computational effort is significantly lowered using the dimension-reduction
integration. For instance, when R D 1 or 2, (9) involves one-, or at most, two-
dimensional integrations, respectively. Nonetheless, numerical integrations are still
required for performing various jvj-dimensional integrals over R

jvj, where 0 �
jvj � R. When R > 1, the multivariate integrals involved can be subsequently
approximated by a sparse-grid quadrature, such as the fully symmetric interpolatory
rule [5], as implemented by Yadav and Rahman [15].

3.2 Stochastic Analysis

3.2.1 Statistical Moments

Applying the expectation operator on NyS.X/ and recognizing the zero-mean and
orthogonal properties of PDD component functions, the mean

Ed ŒNyS.X/� D y;.d/ (10)

of the partially adaptive-sparse PDD approximation agrees with the exact mean
Ed Œy.X/� D y; for any 	1, 	2, and S [15]. However, the variance, obtained by
applying the expectation operator on .NyS.X/ � y;/2, varies according to [15]

N�2S .d/ WD Ed

h
.NyS.X/� E ŒNyS.X/�/

2
i

D
X

;¤u�f1;			 ;Ng
1�juj�S

1X

muD1

X

kjjujk1
Dmu; j1;			 ;jjuj¤0

QGu;mu>	1;� QGu;mu>	2

C2
ujjuj

.d/;

(11)
where the squares of the expansion coefficients are summed following the same
two pruning criteria discussed in the preceding subsection. Equation (11) provides
a closed-form expression of the approximate second-moment properties of any
square-integrable function y in terms of the PDD expansion coefficients. When
S D N and 	1 D 	2 D 0, the right side of (11) coincides with that of (8). In
consequence, the variance from the partially adaptive-sparse PDD approximation
NyS.X/ converges to the exact variance of y.X/ as S ! N, 	1 ! 0, and 	2 ! 0.
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3.2.2 Failure Probability

A fundamental problem in reliability analysis entails calculation of the failure
probability

PF.d/ WD Pd ŒX 2 �F� D
Z

RN
I�F.x/fX.xI d/dx DW Ed ŒI�F.X/� ;

where I�F.x/ is the indicator function associated with the failure domain�F , which
is equal to one when x 2 �F and zero otherwise. Depending on component or
system reliability analysis, let N�F;S WD fx W NyS.x/ < 0g or N�F;S WD fx W [i Nyi;S.x/ <
0g or N�F;S WD fx W \i Nyi;S.x/ < 0g be an approximate failure set as a result of
S-variate, adaptive-sparse PDD approximations NyS.X/ of y.X/ or Nyi;S.X/ of yi.X/.
Then the adaptive-sparse PDD estimate of the failure probability PF.d/ is

NPF;S.d/ D Ed

h
I N�F;S

.X/
i

D lim
L!1

1

L

LX

lD1
I N�F;S

.x.l//; (12)

where L is the sample size, x.l/ is the lth realization of X, and I N�F;S
.x/ is another

indicator function, which is equal to one when x 2 N�F;S and zero otherwise.
Note that the simulation of the PDD approximation in (12) should not be

confused with crude MCS commonly used for producing benchmark results. The
crude MCS, which requires numerical calculations of y.x.l// or yi.x.l// for input
samples x.l/, l D 1; � � � ;L, can be expensive or even prohibitive, particularly when
the sample size L needs to be very large for estimating small failure probabilities. In
contrast, the MCS embedded in the adaptive-sparse PDD approximation requires
evaluations of simple polynomial functions that describe NyS.x.l// or Nyi;S.x.l//.
Therefore, a relatively large sample size can be accommodated in the adaptive-
sparse PDD method even when y or yi is expensive to evaluate.

3.3 Design Sensitivity Analysis

When solving design optimization problems employing gradient-based optimization
algorithms, at least the first-order derivatives of the first two moments and failure
probability with respect to each design variable are required. In this subsection,
the adaptive-sparse PDD method for statistical moment and reliability analyses is
expanded for design sensitivity analysis. For such sensitivity analysis, the following
regularity conditions are assumed: (1) The domains of design variables dk 2
Dk � R, k D 1; � � � ;M, are open intervals of R; (2) the probability density
function fX.xI d/ of X is continuous. In addition, the partial derivative @fX.xI d/=@dk,
k D 1; � � � ;M, exists and is finite for all x 2 R

N and dk 2 Dk. Furthermore,
the statistical moments of y and failure probability are differentiable functions of
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d 2 D � R
M; and (3) there exists a Lebesgue integrable dominating function

z.x/ such that jyr.x/@fX.xI d/=@dkj � z.x/ and jI�F.x/@fX.xI d/=@dkj � z.x/, where
r D 1; 2, and k D 1; � � � ;M.

3.3.1 Score Function

Let

h.d/ WD EdŒg.X/� WD
Z

RN
g.x/fX.xI d/dx (13)

be a generic probabilistic response, where h.d/ and g.x/ are either the rth-order raw
moment m.r/.d/ WD EdŒyr

S.X/� (r D 1; 2) and yr.x/ for statistical moment analysis
or PF.d/ and I�F.x/ for reliability analysis. Suppose that the first-order derivative of
h.d/ with respect to a design variable dk, 1 � k � M, is sought. Taking the partial
derivative of h.d/ with respect to dk and then applying the Lebesgue dominated
convergence theorem [2], which permits the differential and integral operators to be
interchanged, yields the first-order sensitivity

@h.d/
@dk

WD @Ed Œg.X/�
@dk

D @

@dk

Z

RN
g.x/fX.xI d/dx

D
Z

RN
g.x/

@ ln fX.xI d/
@dk

fX.xI d/dx

DW Ed

h
g.X/s.1/dk

.XI d/
i
;

(14)

provided that fX.xI d/ > 0 and the derivative @ ln fX.xI d/=@dk exists. In the last line
of (14), s.1/dk

.XI d/ WD @ ln fX.XI d/=@dk is known as the first-order score function for
the design variable dk [8, 12]. According to (13) and (14), the generic probabilistic
response and its sensitivities have both been formulated as expectations of stochastic
quantities with respect to the same probability measure, facilitating their concurrent
evaluations in a single stochastic simulation or analysis.

3.3.2 Sensitivity of Statistical Moments

Selecting h.d/ and g.x/ to be m.r/.d/ and yr.x/, respectively, and then replacing y.x/
with its S-variate adaptive-sparse PDD approximation NyS.x/ in the last line of (14),
the resultant approximation of the sensitivities of the rth-order moment is obtained
as

Ed

h
Nyr

S.X/s
.1/
dk
.XI d/

i
D
Z

RN
Nyr

S.x/s
.1/
dk
.xI d/fX.xI d/dx: (15)
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The N-dimensional integral in (15) can be estimated by the same or similar
dimension-reduction integration as employed for estimating the PDD expansion
coefficients. Furthermore, if s.1/dk

is square-integrable, then it can be expanded with
respect to the same orthogonal polynomial basis functions, resulting in a closed-
form expression of the design sensitivity [8]. Finally, setting r D 1 or 2 in (15)
delivers the approximate sensitivity of the first or second moment.

3.3.3 Sensitivity of Failure Probability

Selecting h.d/ and g.x/ to be PF.d/ and I�F.x/, respectively, and then replacing y.x/
with its S-variate adaptive-sparse PDD approximation NyS.x/ in the last line of (14),
the resultant approximation of the sensitivities of the failure probability is obtained
as

Ed

h
I N�F;S

.X/s.1/dk
.XI d/

i
D lim

L!1
1

L

LX

lD1

h
I N�F;S

.x.l//s.1/dk
.x.l/I d/

i
; (16)

where L is the sample size, x.l/ is the lth realization of X, and I N�F;S
.x/ is the adaptive-

sparse PDD-generated indicator function. Again, the sensitivity in (16) is easily
and inexpensively determined by sampling elementary polynomial functions that
describe NyS and s.1/dk

.

Remark 1 The PDD expansion coefficients depend on the design vector d. Nat-
urally, a PDD approximation, whether obtained by truncating arbitrarily or adap-
tively, is also dependent on d, unless the approximation exactly reproduces the
function y.X/. It is important to clarify that the approximate sensitivities in (15)
and (16) are obtained not by taking partial derivatives of the approximate moments
in (10) and (11) and approximate failure probability in (12) with respect to dk.
Instead, they result from replacing y.x/ with NyS.x/ in the expectation describing
the last line of (14).

Remark 2 The score function method has the nice property that it requires differ-
entiating only the underlying probability density function fX.xI d/. The resulting
score functions can be easily and, in most cases, analytically determined. If the
performance function is not differentiable or discontinuous—for example, the
indicator function that comes from reliability analysis—the proposed method still
allows evaluation of the sensitivity if the density function is differentiable. In reality,
the density function is often smoother than the performance function, and therefore
the proposed sensitivity methods are able to calculate sensitivities for a wide variety
of complex mechanical systems.
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Algorithm 1: Proposed adaptive-sparse PDD for stochastic design optimization
Input: an initial design d0, S, 	 > 0, 	1 > 0, 	2 > 0, q D 0

Output: an approximation d�

S of optimal design d�

d.q/  d0;
repeat

d d.q/;
Generate adaptive-sparse PDD approximations Nyl;S.X/ at current design d of all yl.X/

in (1) or (2), l D 0; 1; 	 	 	 ;K ;
if design for robustness then

compute moments EdŒNyl;S.X/� and N�2l;S.d/ of Nyl;S.X/ ;
; /* from (10) and (11) */
estimate design sensitivity of moments ;
; /* from (15) */

else if design for reliability then
compute failure probability NPF;S.d/ for Nyl;S.X/ ;
; /* from (12) */
;
estimate design sensitivity of failure probability ;
; /* from (16) */

endif;
Evaluate objective and constraint functions in (1) or (2) and their sensitivities at d ;
Using a gradient-based algorithm, obtain the next design d.qC1/;
Set q D qC 1;

until jjd.q/ � d.q�1/jj2 < 	;
d�

S  d.q/

3.4 Optimization Algorithm

The adaptive-sparse PDD approximations described in the preceding subsections
provide a means to evaluate the objective and constraint functions, including
their design sensitivities, from a single stochastic analysis. An integration of
statistical moment analysis, reliability analysis, design sensitivity analysis, and a
suitable optimization algorithm should render a convergent solution of the design
optimization problems in (1) or (2). Algorithm 1 describes the computational flow
of the adaptive-sparse PDD method for stochastic design optimization.

4 Numerical Examples

Two examples are presented to illustrate the adaptive-sparse PDD method for
design optimization under uncertainty, where the objective and constraint functions
are either elementary mathematical constructs or relate to complex engineering
problems. Orthonormal polynomials consistent with the probability distributions
of input random variables were used as bases. The PDD expansion coefficients
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were estimated using dimension-reduction integration and sparse-grid quadrature
entailing an extended fully symmetric interpolatory rule [5, 15]. The sensitivities of
moments and failure probability were evaluated using dimension-reduction integra-
tion and embedded MCS of the adaptive-sparse PDD approximation, respectively.
The optimization algorithm selected is sequential quadratic programming in both
examples.

4.1 Example 1: Mathematical Functions

The first example entails design optimization for robustness, which calls for finding

d
 D arg min
d2D�RM

c0.d/ WD 0:5
Ed Œy0.X/�

10
C 0:5

p
vard Œy0.X/�

2
;

subject to c1.d/ WD 3
p

vard Œy1.X/� � Ed Œy1.X/� � 0;

c2.d/ WD 3
p

vard Œy2.X/� � Ed Œy2.X/� � 0;

where d 2 D D Œ0:00002; 0:002�
 Œ0:1; 1:6� and

y0.X/ D X3X1
q
1C X22

and

yl.X/ D 1 �
5X4

q
1C X22p
65X5

�
8

X1
C .�1/lC1 1

X1X2

�
; l D 1; 2;

are three random response functions of five independent random variables. The
first two variables X1 and X2 follow Gaussian distributions with respective means
d1 D EdŒX1� and d2 D EdŒX2� and coefficients of variations both equal to 0.02. The
remaining variables, X3, X4, and X4, follow Beta, Gumbel, and Lognormal distribu-
tions with respective means of 10,000, 0.8, and 1050 and respective coefficients of
variations of 0.2, 0.25 and 0.238. The initial design vector is d0 D .0:001; 1/. In this
example, N D 5, M D 2, and K D 2.

Table 1 presents detailed optimization results from two distinct adaptive-sparse
PDD approximations, entailing univariate (S D 1) and bivariate (S D 2) truncations,
employed to solve this optimization problem. The optimal solutions by these two
approximations are close to each other, both indicating that the first constraint is
nearly active (c1 Š 0). The results of the bivariate approximations confirm that the
univariate solution is adequate. However, the total numbers of function evaluations
step up for the bivariate approximation, as expected.

Since this problem can also be solved by the non-adaptively truncated PDD
[10] and tensor product quadrature (TPQ) [6] methods, comparing their solutions,
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Table 1 Optimization results for Example 1

Adaptive-sparse PDD Truncated PDD [10]
Results Univariate Bivariate Univariate Bivariate TPQ [6]

d�

1 .�10�4/ 11.3902 11.5753 11.3921 11.5695 11.6476

d�

2 0.3822 0.3780 0.3817 0.3791 0.3767

c0.d�/ 1.2226 1.2408 1.2227 1.2406 1.2480

c1.d�/ 0.0234 0.0084 0.0233 0.0084 0.0025

c2.d�/ �0.4810 �0.4928 �0.4816 �0.4917 �0.4970

No. of iterations 12 13 12 14 10

Total no. of function evaluations 465 2374 696 6062 17,521

listed in the last three columns of Table 1, with the adaptive-sparse PDD solutions
should be intriguing. It appears that the existing PDD truncated at the largest
polynomial order of the adaptive-sparse PDD approximation, which is four, and
TPQ methods are also capable of producing a similar optimal solution, but by
incurring computational cost far more than the adaptive-sparse PDD methods.
For instance, comparing the total numbers of function evaluations, the univariate
adaptive-sparse PDD method is more economical than the existing univariate PDD
and TPQ methods by factors of 1.5 and 37.7, respectively. The new bivariate
adaptive-sparse PDD is more than twice as efficient as the existing non-adaptively
truncated bivariate PDD.

4.2 Example 2: Shape Optimization of a Jet Engine Bracket

The final example demonstrates the usefulness of the adaptive-sparse PDD method
in designing for reliability an industrial-scale mechanical component, known as jet
engine bracket, as shown in Fig. 1a. Seventy-nine random shape parameters, Xi,
i D 1; � � � ; 79, resulting from manufacturing variability, describe the shape of a jet
engine bracket in three dimensions, including two quadrilateral holes introduced to
reduce the mass of the jet engine bracket as much as possible. The design variables,
di D EdŒXi�, i D 1; � � � ; 79, are the means of these 79 independent random variables,
with Fig. 1b–d depicting the initial design of the jet engine bracket geometry at
mean values of the shape parameters. The centers of the four bottom circular holes
are fixed; a deterministic force, F D 43:091 kN, was applied at the center of the
top circular hole with a 48ı angle from the horizontal line, as shown in Fig. 1c,
and a deterministic torque, T D 0:1152 kN-m, was applied at the center of the top
circular hole, as shown in Fig. 1d. The jet engine bracket is made of Titanium Alloy
Ti-6Al-4V with deterministic material properties described elsewhere [11]. Due to
their finite bounds, the random variables Xi, i D 1; � � � ; 79, were assumed to follow
truncated Gaussian distributions [11].

The objective of this example is to minimize the mass of the engine bracket
by changing the shape of the geometry such that the fatigue life y.u.�I X/; � .�I X//



Adaptive-Sparse Polynomial Dimensional Decomposition 261

Fig. 1 A jet engine bracket; (a) a jet engine; (b) isometric view; (c) lateral view; (d) top view

exceeds a million loading cycles with 99:865% probability. The underlying stochas-
tic differential equations call for finding the displacement u.�I X/ and stress � .�I X/
solutions at a spatial coordinate � D .�1; �2; �3/ 2 � � R

3, satisfying Pd-almost
surely

r � � .�I X/C b.�I X/ D 0 in � � R
3;

� .�I X/ � n.�I X/ D Nt.�I X/ on @�t;

u.�I X/ D Nu.�I X/ on @�u;

(17)

such that @�t [ @�u D @� and @�t \ @�u D ; with r WD .@=@�1; @=@�2; @=@�3/

and b.�I X/, Nt.�I X/, Nu.�I X/, and n.�I X/ representing the body force, prescribed
traction on @�t, prescribed displacement on @�u, and unit outward normal vector,
respectively. Mathematically, the problem entails finding an optimal design solution

d
 D arg min
d2D�R79

c0.d/ WD 

R
�.d/ d�

subject to c.d/ WD Pd
	
ymin.u.�cI X/; � .�cI X// � 106


 � 1 � 0:99865;
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where the objective function c0.d/, with 
 representing the mass density of the
material, describes the overall mass of the bracket; on the other hand, the constraint
function c.d/ quantifies the probability of minimum fatigue crack-initiation life ymin,
attained at a critical spatial point �c, failing to exceed a million loading cycles to be
less than .1 � 0:99865/. Here, ymin depends on displacement and stress responses
u.�cI X/ and � .�cI X/, which satisfy (17). An FEA comprising 341,112 nodes and
212,716 ten-noded, quadratic, tetrahedral elements, was performed to solve the
variational weak form of (17). Further details are available elsewhere [11].

The univariate (S D 1) adaptive-sparse PDD method was applied to solve this
shape optimization problem. Figure 2a–d show the contour plots of the logarithm
of fatigue life at mean shapes of several design iterations, including the initial
design, throughout the optimization process. Due to a conservative initial design,
with fatigue life contour depicted in Fig. 2a, the minimum fatigue crack-initiation
life of 6:65 
 109 cycles is much larger than the required fatigue crack-initiation
life of a million cycles. For the tolerance and subregion size parameters selected, 14
iterations and 2808 FEA led to a final optimal design with the corresponding mean
shape presented in Fig. 2d. The total run time, including performing all 2808 FEA
in a desktop personal computer (8 cores, 2.3 GHz, 16 GB RAM), was about 165 h.
Most design variables have undergone significant changes from their initial values,
prompting substantial modifications of the shapes or sizes of the outer boundaries,

Fig. 2 Contours of logarithmic fatigue life at mean shapes of the jet engine bracket by the
adaptive-sparse PDD method; (a) initial design; (b) iteration 3; (c) iteration 6; (d) iteration 14
(optimum)
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quadrilateral holes, and bottom surfaces of the engine bracket. The mean optimal
mass of the engine bracket is 0.48 kg—an almost 84 % reduction from the mean
initial mass of 3.02 kg. At optimum, the constraint function c.d/ is practically zero
and is, therefore, close to being active.

This example shows some promise of the adaptive-sparse PDD methods in
solving industrial-scale engineering design problems with an affordable com-
putational cost. However, an important drawback persists: given the computer
resources available at the time of this work, only the univariate adaptive-sparse PDD
approximation is feasible. The univariate result has yet to be verified with those
obtained from bivariate or higher-variate adaptive-sparse PDD approximations.
Therefore, the univariate “optimal” solution reported here should be guardedly
interpreted.

Finally, it is natural to ask how much the bivariate adaptive-sparse PDD ap-
proximation will cost to solve this design problem. Due to quadratic computational
complexity, the full bivariate PDD approximation using current computer resources
of this study is prohibitive. However, a bivariate adaptive-sparse PDD approxima-
tion with a cost scaling markedly less than quadratic, if it can be developed, should
be encouraging. In which case, a designer should exploit the univariate solution
as the initial design to seek a better design using the bivariate adaptive-sparse PDD
method, possibly, in fewer design iterations. The process can be repeated for higher-
variate PDD methods if feasible. Clearly, additional research on stochastic design
optimization, including more efficient implementation of the adaptive-sparse PDD
methods, is required.

5 Conclusion

A new adaptive-sparse PDD method was developed for stochastic design opti-
mization of high-dimensional complex systems commonly encountered in applied
sciences and engineering. The method is based on an adaptive-sparse PDD ap-
proximation of a high-dimensional stochastic response for statistical moment and
reliability analyses; a novel integration of the adaptive-sparse PDD approximation
and score functions for estimating the first-order sensitivities of the statistical
moments and failure probability with respect to the design variables; and standard
gradient-based optimization algorithms, encompassing a computationally efficient
design process. When blended with score functions, the adaptive-sparse PDD
approximation leads to analytical formulae for calculating the design sensitivities.
More importantly, the statistical moments, failure probability, and their respective
design sensitivities are all determined concurrently from a single stochastic analysis
or simulation. Numerical results stemming from a mathematical example indicate
that the new method provides more computationally efficient design solutions than
the existing methods. Finally, stochastic shape optimization of a jet engine bracket
with 79 variables was performed, demonstrating the power of the new methods to
tackle practical engineering problems.
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Efficient Spectral-Element Methods
for the Electronic Schrödinger Equation

Jie Shen, Yingwei Wang, and Haijun Yu

Abstract Two efficient spectral-element methods, based on Legendre and Laguerre
polynomials respectively, are derived for direct approximation of the electronic
Schrödinger equation in one spatial dimension. Compared to existing literatures,
a spectral-element approach is used to treat the singularity in nucleus-electron
Coulomb potential, and with the help of Slater determinant, special basis functions
are constructed to obey the antisymmetric property of the fermionic wavefunctions.
Numerical tests are presented to show the efficiency and accuracy of the proposed
methods.

1 Introduction

In this article we consider the electronic Schrödinger equation (ESE) in one spatial
dimension

H‰.x/ D E‰.x/; (1)

with the Hamiltonian operator

H D T C Vne C Vee; (2)
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where the kinetic energy T, nucleus-electron potential Vne and electron-electron
potential Vee operators are

T D �1
2

NX

iD1
@2xi
; Vne D N

NX

iD1
jxij; Vee D �

NX

iD1

X

j>i

jxi � xjj: (3)

Here N denotes the number of electrons in this system, xi 2 R the position of the i-th
electron, and the solution‰.x/, with x D .x1; � � � ; xN/, describes the wave function
associated to the total energy E, and satisfies the boundary condition

‰.x1; x2; � � � ; xN/ ! 0; as jxjj ! 1; j D 1; � � � ;N: (4)

The electronic Schrödinger equation, in three spatial dimension, results from
Born-Oppenheimer approximation to the general Schrödinger equation for a system
of electrons and nuclei, which is one of the core problems in computational
quantum chemistry [5, 13, 23]. However, except for very simple cases, there is no
analytical solution available. Hence, it is essential to develop efficient and accurate
numerical algorithms for this problem. While most applications of the ESE are in
three spatial dimension, the one-dimensional formulation above does inherits some
essential features, such as high-dimensionality and singular behavior, of the three
dimensional case. Hence, developing a solver in one dimension is an important
preliminary and calibrating step that serves as a prototype for solving the ESE in
two or three spatial dimensions.

There are several major difficulties for solving the ESE (1). We summarize them
below and describe our strategies.

(i) It is an N dimensional problem so it suffers from the so-called curse of di-
mensionality if classical numerical methods are employed. Therefore, various
model approximations have been developed in quantum chemistry to reduced
the computational complexity. We intend to discretize the ESE directly using
sparse grids [3] which have proven to be useful for a class of high-dimensional
problems, including in particular the ESE [25, 26]. For example, M. Griebel
and J. Hamaekers proposed sparse grid methods for ESE based on Meyer
wavelets [7], Fourier functions [8], adaptive Gaussian type orbitals basis sets
[9]. On the other hand, we propose to use spectral sparse grid methods based
on hyperbolic cross approximations [19–22] .

(ii) The singularities of the Coulomb potentials shown in (3), called “Coulomb
singularity” or “Kato cusp condition” [6, 12], deteriorate the convergence
rates of global spectral methods. In order to treat the singularity in Vne more
effectively, we propose a spectral element framework to design basis functions
which provide better approximations to the singularity.

(iii) The wave function ‰.x/ has the additional constraint that it must be antisym-
metric under exchange of variables, according to Pauli exclusion principle.
We shall construct, using the antisymmetrizer and Slater determinant, basis
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functions which obey the antisymmetric property. We also propose an efficient
implementation of inner products with respect to antisymmetric functions.

In our previous attempt for solving ESE [22], we used a global spectral method
whose convergence rate is severely affected by the Coulomb singularity, and we did
not enforce the antisymmetry so it resulted in a much larger number of unknowns
than actually needed by the physical problem. The main purpose of this paper is to
develop efficient procedures to address these two issues.

The rest of the paper is organized as follows. In Sects. 2 and 3, we propose
two kinds of efficient spectral Galerkin methods based on Legendre and Laguerre
polynomials respectively, including the basis functions for one or many electrons,
full or sparse grids, and with or without the antisymmetric property. In Sect. 4,
we present numerical results to illustrate the convergence of our methods for ESE
calculations. Finally, conclusions and discussion of possible directions for future
research are presented in Sect. 5.

2 A Spectral-Element Method for ESE

In this and next sections, we develop a spectral-element framework to discretize
the ESE (1). First, we focus on the set of basis functions for one electron case.
Then, we demonstrate the strategies for dealing with high dimensional problems
and antisymmetric functions. In addition, we also briefly show how to generate
the matrices required in Galerkin methods efficiently, involving mass, stiffness and
various potential matrices.

2.1 One Electron Case

As a starting point, let us focus on the case with N D 1 in Eq. (1),

8
<̂

:̂

� 1

2
‰00.x/C jxj‰.x/ D E‰.x/; x 2 R;

lim
x!˙1‰.x/ D 0:

(5)

Let � be a truncation parameter. After a truncation from the unbounded interval
.�1;C1/ to bounded one Œ�2�; 2��; � > 0; and further a linear map from general
interval Œ�2�; 2�� to standard one Œ�2; 2�, we arrive at

8
<̂

:̂

� 1

2�2
Q‰00.x/C �jxj Q‰.x/ D E Q‰.x/; x 2 Œ�2; 2�;

Q‰.˙2/ D 0:

(6)
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2.1.1 Galerkin Formulation

Let Xn be an approximation space and ! be the weight function. The spectral
Galerkin method for the problems (5) or (6) can all be casted in the following form:
Find un 2 Xn such that

c1 h@xun; @x.�n!/i C c2 hjxjun; �ni! D � hun; �ni! ; 8�n 2 Xn: (7)

Note that c1 D 1
2
; c2 D 1 for problem (5), c1 D 1

2�2
; c2 D � for problem (6), and

� is the numerical estimate of E.
Let f�kgn

kD�n be a set of basis functions for Xn. We denote

un.x/ D
nX

kD�n

Ouk�k.x/; u D .Ou�n; � � � ; Oun/
T ; (8)

slk D h�0k; .�l!/
0i; S D .slk/�n�l;k�n; (9)

mlk D h�k; �li!; M D .mlk/�n�l;k�n; (10)

pne
lk D hjxj�l; �ki!; Pne D .pne

lk /�n�l;k�n: (11)

Thus, the Galerkin formulation (7) yields the following generalized eigenvalue
problem

.c1S C c2Pne/u D �Mu; (12)

where � is the eigenvalue and u is the corresponding eigenvector.

2.1.2 Basis Functions

In classical spectral-Galerkin approach, Hermite functions are often served as the
basis functions for the problem defined on the whole line [10, 18] while Legendre
or Chebyshev polynomials are frequently used for the problem in bounded intervals
[14, 15]. However, the nucleus-electron potential Vne D jxj in Eqs. (5) and (6) is
not differentiable at the origin. Thus, the convergence rates are rather limited if
classical spectral methods are employed here. Therefore, we split the interval at the
origin into two subintervals, and use a spectral-element method [4] to deal with the
singularity at the origin. The basis functions for the (two-elements) spectral-element
methods are as follows:

(i) For the problem (6) in bounded domain Œ�2; 2�, the function space Xb
n D

span f�b
k W k D �n; � � � ; ng, the weight ! D 1, and the basis functions f�b

k gn
kD�n
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for one electron are chosen as

�b
k .x/ D

8
ˆ̂<

ˆ̂:

Lk�1.x � 1/� LkC1.x � 1/; k > 0; x 2 Œ0; 2�;
2 � jxj; k D 0; x 2 Œ�2; 2�;
Ljkj�1.jxj � 1/� LjkjC1.jxj � 1/; k < 0; x 2 Œ�2; 0�;

(13)

where Lk.x/; x 2 Œ�1; 1�, is the Legendre polynomial of degree k. For the
functions defined in (13), �b

k .x/ D 0 on unspecified intervals, i.e. k > 0; x 2
Œ�2; 0/ and k < 0; x 2 .0; 2�. Those parts with zero values are not plotted in
Fig. 1. By the property of Legendre polynomials, we know that

�b
k .0/ D �b

k .2/ D 0; k > 0;

�b
0.0/ D 1; �b

0.˙2/ D 0; k D 0;

�b
k .�2/ D �b

k .0/ D 0; k < 0:

If the basis functions f�kg in Eq. (7) are chosen as �k.x/ D �b
k .x/, then

by using the properties of Legendre polynomials [17], the stiffness, mass and
potential matrices defined in (9), (10) and (11) are diagonal, penta-diagonal and
seven-diagonal matrices, respectively, and can be computed explicitly.

(ii) For the problem (5) in unbounded domain .�1;C1/, the function space Xu
n D

span f�u
k W k D �n; � � � ; ng, the weight ! D 1, and the basis functions f�u

k gn
kD�n

for one electron are chosen as

�u
k .x/ D

8
ˆ̂̂
<

ˆ̂̂
:

OLk.x/� OLk�1.x/; k > 0; x 2 Œ0;C1/;

e�jxj=2; k D 0; x 2 .�1;C1/;

OLjkj.jxj/� OLjkj�1.jxj/; k < 0; x 2 .�1; 0�;

(14)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

φ
0
b

φ
1
bφ

−1
b

φ
2
bφ

−2
b φ

3
bφ

−3
b

−25 −20 −15 −10 −5 0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

1.5

φ
0
u

φ
1
uφ

−1
u

φ
2
uφ

−2
u

φ
3
uφ

−3
u

a b 

Fig. 1 First few basis functions for one electron case: Legendre and Laguerre basis sets. (a)
Legendre basis in bounded domain. (b) Laguerre basis in unbounded domain
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where OLk.x/; x 2 Œ0;C1/, is the Laguerre function of degree k. In Eq. (14),
�u

k .x/ D 0 on unspecified intervals, i.e. k > 0; x 2 .�1; 0/ and k < 0; x 2
.0;C1/. By the property of the Laguerre functions, we know that

�u
k .0/ D 0; k ¤ 0;

�u
0.0/ D 1; k D 0;

lim
x!1�

u
k .x/ D lim

x!�1�
u
k .x/ D 0; 8k:

If the basis functions f�kg in Eq. (7) are chosen as �k.x/ D �u
k .x/, then

by using the properties of Laguerre polynomials [17], the stiffness, mass and
potential matrices defined in (9), (10) and (11) are tri-diagonal, tri-diagonal and
penta-diagonal matrices, respectively, and can be computed explicitly.

A few basis functions f�b
k .x/g and f�u

k .x/g for k D �3;�2;�1; 0; 1; 2; 3 defined
above are illustrated in Fig. 1.

2.2 N-Electron Case

We first introduce some notations:

• For N 2 N, we use boldface lowercase letters to denote N-dimensional multi-
indices and vectors, e.g., k D .k1; � � � ; kN/ 2 Z

N . Besides, we need following
norms: jkj1 D PN

jD1 jkjj, jkj1 D max1�j�N jkjj, jkjmix D QN
jD1 maxf1; jkjjg.

Note that jkjmix � 1 for all k 2 Z
N .

• ƒ � Z
N is the set of indices and jƒj means its cardinality.

Now let us consider the ESE for the system with N electrons.

8
ˆ̂̂
<

ˆ̂̂
:

� 1

2

NX

iD1
@2xi
‰ C N

NX

iD1
jxij‰ �

NX

iD1

X

j>i

jxi � xjj‰ D E‰; x 2 R
N ;

lim
xj!˙1

‰.x/ D 0; 8j D 1; 2; � � � N:

(15)

Similarly as in the one electron case, after truncation and linear mapping, the
problem in the unbounded domain is equivalent to the following in a bounded
domain:

8
ˆ̂<

ˆ̂:

� 1

2�2

NX

iD1

@2xi
‰ C N�

NX

iD1

jxij‰ � �
NX

iD1

X

j>i

jxi � xjj D E‰; x 2 �;

‰.x/j@� D 0;

(16)

where� D Œ�2; 2�N .
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2.2.1 Galerkin Formulation

Similarly as in previous subsection, let Xn be the approximation space. The spectral
Galerkin method for the problems (15) or (16) can all be casted in the following
form: Find un 2 Xn such that 8ˆn 2 Xn,

c1

NX

jD1

˝
@xj un; @xjˆn

˛C c2

*
NX

jD1

jxjjun; ˆn

+
C c3

*
NX

iD1

X

j>i

jxi � xjjun; ˆn

+
D

� hun; ˆni :
(17)

Note that for problem (15), c1 D 1
2
; c2 D N; c3 D �1 while for problem (16),

c1 D 1
2�2
; c2 D N�; c3 D ��. �, to be solved, is an approximation of E in Xn.

Let fˆkgk2ƒ be a set of basis functions for Xn, whereƒ is the set of indices to be
determined. We denote

uk.x/ D
X

k2ƒ
Oukˆk.x/; u D vec .Ouk/k2ƒ ; (18)

sOl;Ok D
NX

jD1
h@jˆk; @jˆli; S D .sOl;Ok/; (19)

mOl;Ok D hˆk; ˆli; M D .mOl;Ok/; (20)

pne
Ol;Ok D h

NX

jD1
jxjjˆk; ˆli; Pne D .pne

Ol;Ok/; (21)

pee
Ol;Ok D h

NX

iD1

X

j>i

jxi � xjjˆk; ˆli; Pee D .pee
Ol;Ok/: (22)

where Ok is the corresponding order of k D .k1; � � � ; kN/ in the set ƒ and u D
vec .Ouk/k2ƒ is a column vector with entries fOukgk2ƒ. Suppose the cardinality of the
set ƒ be jƒj, then u defined in (18) is a jƒj-by-1 column vector and the matrices
defined in (19), (20), (21) and (22) are jƒj-by-jƒj square matrices.

Thus, the Galerkin formulation (17) gives the following generalized eigenvalue
problem

.c1S C c2Pne C c3Pee/u D �Mu; (23)

where � is the eigenvalue and u is the corresponding eigenvector.
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2.2.2 Full Grid and Sparse Grid

The classical tensor-product basis function in N-dimensional space is

ˆk.x/ D
NY

jD1
�kj.xj/; (24)

where k D .k1; k2; � � � ; kN/ 2 Z
N ; x D .x1; x2; � � � ; xN/ 2 R

N , and �kj.xj/ is the one-
dimensional basis function considered in previous subsection, e.g. f�b

k .x/g defined
in (13) or f�u

k .x/g defined in (14).
The approximation space in N-dimensional space is

XN
n D span fˆk.x/ W k 2 ƒng; n 2 N:

For different set of indicesƒn, we have different space.

• The set of indices for full grid is

ƒF
n D fk 2 Z

N W jkj1 � ng; n 2 N: (25)

• The set of indices for sparse grid of hyperbolic cross type is

ƒS
n D fk 2 Z

N W jkjmix � ng; n 2 N: (26)

Here are several remarks on the spectral-element basis function sets we use.

• The electronic eigenfunctions are proved to decay exponentially as the spatial
variable goes to infinity in the sense that there exist positive constants A and
B for which j�.x/j � Ae�Bkxk. (see Ref [1].) Hence, in the Legendre spectral
method, the error caused by restriction from unbounded domain to bounded
one would also be exponentially convergent as the parameter L goes to the
infinity.

• The idea of spectral-element method to treat the nuclei-electron cusps could
be easily generalized to the case with several nuclei. See Fig. 2 for two nuclei
case.

• For ESE in three spatial dimension, it is known that the sparse grids based on
hyperbolic cross fit the smoothness property of the eigenfunctions [3, 25, 26].
However, for the ESE in one spatial dimension considered in this paper, there are
no theoretical results available in the literature. In Sect. 4, we will compare the
numerical results obtained from full grids (25) and sparse grids (26).
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Fig. 2 Legendre and Laguerre basis sets for two nuclei case. (a) Legendre basis in bounded
domain. (b) Laguerre basis in unbounded domain

3 Antisymmetry and Antisymmetric Inner Product

The electronic wavefunction ‰.x/ for many body system must be antisymmetric
with respect to electron positions x D .x1; � � � ; xN/, i.e.

‰.x1; � � � ; xi; � � � ; xj; � � � ; xN/ D �‰.x1; � � � ; xj; � � � ; xi; � � � ; xN/: (27)

It is obvious thatˆk.x/ defined in (24) does not obey the antisymmetric property. A
main difficulty is how to construct basis functions which satisfy the antisymmetry,
and how to efficiently compute the inner products between them.

3.1 Antisymmetrizer and Slater Determinant

In order to enforce antisymmetry, we introduce a linear operator called antisym-
metrizer [11], also called skew symmetrization or alternation, which is defined by

A D 1

NŠ

X

p2SN

.�1/pP; (28)

where SN is the permutation group on N elements. For the element p 2 SN , the
operator P acts on a function by permuting its variables, as P‰.�1; �2; � � � / D
‰.�p.1/; �p.2/; � � � /. The sign .�1/p is �1 if p is an odd permutation and 1 if it is
even. Applying A to the function ˆk.x/ defined in (24) leads to the antisymmetric
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basis ˆA
k.x/ expressed as a Slater determinant:

ˆA
k.x/ WDAˆk.x/

D 1

NŠ

ˇ̌
ˇ̌
ˇ̌
ˇ̌

�k1 .x1/ �k1 .x2/ � � � � � � �k1.xN/

�k2 .x1/ �k2 .x2/ � � � � � � �k2.xN/

� � � � � � � � � � � � � � �
�kN .x1/ �kN .x2/ � � � � � � �kN .xN/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
: (29)

It is easy to check that the basis functionˆA
k.x/ satisfies the antisymmetric property

(27). Besides, if ki D kj, then the determinant in Eq. (29) would be zero. Thus, the
set of indices for antisymmetric basis fˆA

k.x/gk2ƒA
n

should be

ƒA
n D fk 2 Z

N W jkj1 � n; k1 < k2 < � � � < kNg; n 2 N: (30)

It implies that the cardinality of antisymmetric basis set is about 1
NŠ times of the

regular one.
Now we have four kinds of grids, namely full grid (‘F’), sparse grid (‘S’),

full grid with antisymmetric property (‘FA’) and sparse grid with antisymmetric
property (‘SA’ ). The cardinality of them are shown in the Table 1 and sketch for
two dimensional case are shown Fig. 3.

3.2 Antisymmetric Inner Product and Löwdin’s Rule

One of the main difficulties in implementation of spectral type methods based on
antisymmetric grids (‘FA’ and ‘SA’) is the calculation of inner products between
two Slater determinants. In this subsection, we briefly show how to compute the
entries in the matrices S;M;Pne and Pee defined in (19), (20), (21), and (22) with
respect to the antisymmetric basis functions fˆA

k.x/gk2ƒA
n
.

Table 1 Four kinds of grids
for N-dimensional problems Grids Set of indices Cardinalitya

‘F’ ƒF
n O

�
.2nC 1/N�

‘FA’ ƒF
n \ƒA

n O
�
.2nC1/N

NŠ

�

‘S’ ƒS
n O

�
.2nC 1/ logN�1.2nC 1/�

‘SA’ ƒS
n \ƒA

n O
�
.2nC1/ logN�1.2nC1/

NŠ

�

a The cardinality of hyperbolic cross sparse grids can be
found in [19]
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Fig. 3 Full/sparse grids without/with antisymmetric property: two dimensional case

• For the mass matrix M, we need to construct the following auxiliary matrix

QMk;l D

0

B@
h�k1 ; �l1i � � � h�k1 ; �lN i

:::
: : :

:::

h�kN ; �l1i � � � h�kN ; �lN i

1

CA 8 k; l 2 ƒA
n : (31)

Then each entry of M can be computed as

hˆA
k ; ˆ

A
l i D 1

NŠ
det. QMk;l/; (32)
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which is the so called Löwdin’s rule [11]. Note that the matrix QMk;l defined above
is a submatrix of the one-dimensional mass matrix M defined in (10), either
tri-diagonal one in Laguerre case or penta-diagonal one in Legendre case, so
its determinant can be computed efficiently. The denominator NŠ need never be
computed, since it will occur in every term in our equations and so cancels.

• For the stiffness matrix S and nucleus-electron potential matrix Pne, we need to
construct the following auxiliary matrices

QSk;l;i D

0

B@
h�k1 ; �l1i � � � h�0k1 ; �0lii � � � h�k1 ; �lN i

::: � � � ::: � � � :::

h�kN ; �l1i � � � h�0kN
; �0lii � � � h�kN ; �lN i

1

CA ;

QPne
k;l;i D

0
B@

h�k1 ; �l1i � � � hjxj�k1 ; �lii � � � h�k1 ; �lN i
::: � � � ::: � � � :::

h�kN ; �l1i � � � hjxj�kN ; �lii � � � h�kN ; �lN i

1
CA :

for each k; l 2 ƒA
n . Then each entry of S and Pne can be computed as

NX

iD1
h@x1ˆ

A
k ; @xiˆ

A
l i D 1

NŠ

NX

iD1
det. QSk;l;i/; (33)

NX

iD1
hjxijˆA

k ; ˆ
A
l i D 1

NŠ

NX

iD1
det. QPne

k;l;i/: (34)

• For the electron-electron interaction potential matrix Pee, we use the methodol-
ogy proposed by G.Beylkin [2]. To show the idea, we need more notations.

ˆk.x/ D
NY

iD1
�ki.xi/; ˆk.x/ D

0

BB@

�k1 .x1/
�k2 .x2/

� � �
�kN .xN/

1

CCA ; (35)

ˆl.x/ D
NY

iD1
�li.xi/; ˆl.x/ D

0

BB@

�l1 .x1/
�l2 .x2/

� � �
�lN .xN/

1

CCA ; (36)

‚k;l D QM�1k;lˆk WD

0
BB@

�1.x1/
�2.x2/

� � �
�N.xN/

1
CCA : (37)
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Then the electron-electron inner products can be computed by

h
NX

iD1

X

j>i

W.xi; xj/ˆ
A
k ; ˆ

A
l i D

det. QMk;l/

2NŠ

X

i¤j

Z
W.xi; xj/ˆli.xi/ˆlj .xj/ det.‚i;j

k;l/dxidxj;

(38)

where the weight W.xi; xj/ D jxi � xjj and

‚
i;j
k;l D

�
�i.xi/ �i.xj/

�j.xi/ �j.xj/

�
:

The formula (38) should be very efficient for large N. However, for many cases,
the matrix QM is singular, that is to say we need to redefine the ‚k;l in (37) and
det. QM/. The detailed discussion can be found in [2]. We omit the details here for
simplicity.

The mass and stiffness and matrices M;S based on antisymmetric Legendre and
Laguerre bases for 4 electrons with n D 8 are shown in Figs. 4 and 5. All of this
matrices are symmetric and positive definite.

4 Numerical Results

It is well known that the performance of spectral methods in unbounded domains
can be significantly enhanced by choosing a proper truncation or scaling parameter
such that the extreme collocation points are at or close to the endpoints of the
effective interval (outside of which the solution is essentially zero). For the mapped
Legendre method, the scaling parameter is the parameter � in Eq. (6). For the
Laguerre method, one usually needs to determine a suitable scaling parameter �
[16, 24] and then make a coordinate transform y D x=�. That is to say the basis
function for problem (5) should be chosen as

�u
k;�.x/ WD �u

k .x=�/; � > 0; (39)

where �u
k is defined in (14).

We apply the efficient spectral methods proposed in the previous section to the
ESE (1). More precisely, the methods used in this section are

• Antisymmetric full grids based on Legendre basis (‘Leg-FA’) with parameters �
and Laguerre basis (‘Lag-FA’) with parameters �;

• Antisymmetric sparse grids based on Legendre basis (‘Leg-SA’) with parameters
� and Laguerre basis (‘Lag-SA’) with parameters �.
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Fig. 4 Mass/stiffness matrices for Legendre basis in full/sparse antisymmetric grids: N D 4;

n D 8

Besides, we make the following notations: DoF means the total number of
degrees of freedom; E is the numerical estimates of first eigenvalue and�E denotes
the relative difference between the two successive values of E. Moreover, the
number with footnote in the following tables means the number with negative
exponent, e.g., 4:4904 D 4:49 
 10�04.

The numerical results for N D 1 are shown in Tables 2 and 3. The exponential
rates of convergence could be observed both in Legendre and Laguerre basis,
since the singularity in the Vne has been taken care of (However, this exponential
convergence does not extend to the more electron cases, see below). Further, the
best choice for parameters is � D 4 and � D 0:1 for N D 1. Note that the Legendre
method with � D 2 has a faster convergence rate than Legendre methods with
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Fig. 5 Mass/stiffness matrices for Laguerre basis in full/sparse antisymmetric grids: N D 4;

n D 8

larger � values, but it converges to an energy that is too far from the exact one.
In Fig. 6, we plot the convergence curves of our Legendre and Laguerre methods
together with the results of ‘Fourier’ method (hyperbolic cross sparse grid method
based on Fourier basis, proposed in [8]). The significant advantages of the bases
proposed here over the Fourier bases demonstrates the importance of handling the
nucleus-electron singularity. From Fig. 6, we also see that the Laguerre method is
more sensitive to the scaling parameter than the Legendre method, although that an
optimal scaled Laguerre method seems gives better solution than Legendre method.

The numerical results of ‘Leg-FA’, ‘Lag-FA’, ‘Leg-SA’ and ‘Lag-SA’ for
N D 2; 4; 6; 8 are shown in Tables 4, 5, 6, and 7 respectively. We see that the
advantages of sparse grids over full grids is not significant for small N (N � 4). The
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Table 2 First eigenvalues: Legendre basis for N D 1. Note that 4:4904 D 4:49 � 10�04

� D 2 � D 4 � D 6 � D 8

DoF E �E E �E E �E E �E

9 0:80898847 0:85120259 0:88298404 0:88823511

17 0:80862555 4:4904 0:80875522 4:2402 0:80937787 9:0902 0:82066506 6:7602

25 0:80862554 8:1909 0:80861663 1:3904 0:80863141 9:2304 0:80885868 1:1802

33 0:80862554 6:9713 0:80861652 1:1707 0:80861657 1:8405 0:80861710 2:4204

41 0:80862554 2:0615 0:80861652 3:5711 0:80861652 6:6108 0:80861652 5:8207

49 0:80862554 2:7516 0:80861652 3:4415 0:80861652 7:9011 0:80861652 2:4809

57 0:80862554 1:3716 0:80861652 5:5516 0:80861652 4:3914 0:80861652 1:6911

65 0:80862554 1:5115 0:80861652 1:1116 0:80861652 5:4916 0:80861652 3:4214

73 0:80862554 1:5115 0:80861652 4:4416 0:80861652 6:8616 0:80861652 3:3315

81 0:80862554 8:2416 0:80861652 5:5516 0:80861652 1:7815 0:80861652 1:1116

Table 3 First eigenvalues: Laguerre basis for N D 1

� D 0:05 � D 0:1 � D 0:5 � D 1

DoF E �E E �E E �E E �E

9 1:53707272 0:83910765 0:81007589 0:85464218

17 0:87424212 7:5801 0:80862774 3:0502 0:80862429 1:8003 0:80943446 4:5202

25 0:81259311 7:5902 0:80861652 1:1205 0:80861676 9:3106 0:80898253 4:5204

33 0:80873830 4:7703 0:80861652 1:3011 0:80861653 2:8307 0:80862929 3:5304

41 0:80861843 1:4804 0:80861652 2:2218 0:80861652 1:6708 0:80861978 9:5106

49 0:80861653 2:3506 0:80861652 3:3316 0:80861652 1:5110 0:80861711 2:6706

57 0:80861652 2:0108 0:80861652 2:2216 0:80861652 8:0512 0:80861654 5:7407

65 0:80861652 9:6511 0:80861652 4:4416 0:80861652 4:2013 0:80861653 8:0209

73 0:80861652 2:6313 0:80861652 4:4416 0:80861652 4:3915 0:80861652 9:2009

81 0:80861652 1:1015 0:80861652 1:1116 0:80861652 4:1216 0:80861652 1:8809
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Fig. 6 Convergence rates for different scaling parameters � and � (one electron case). (a) Legendre
basis. (b) Laguerre basis
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Table 8 Best results of first eigenvalues achieved by various methods for N D 2; 4; 6; 8

N D 2 N D 4 N D 6 N D 8

Methods DoF E DoF E DoF E DoF E

‘Leg-FA’ 9316 2:75852512 12;650 11:0020105 12;376 26:872086 24;310 51:83345874

‘Leg-SA’ 2288 2:75852531 18;070 11:0018297 18;232 26:867514 11;641 51:78818166

‘Lag-FA’ 9316 2:75852512 12;650 11:0013445 12;376 26:787917 24;310 52:65395877

‘Lag-SA’ 2288 2:75852512 18;070 11:0013648 18;232 26:602859 11;641 50:95865047

‘Fourier’ 3409 2:758536 79;498 11:011562 297;605 27:571226 215;864 60:838970

reason might be that the sparse grids based on hyperbolic cross allow to treat the
nucleus-electron cusps properly which are aligned to the particle coordinate axes
of the system while does not fit well to the “diagonal” directions of the electron-
electron cusps. However the sparse grids based on hyperbolic cross for six and eight
dimensional case do give better results than the full grid cases. We observe also that
carefully choice of parameters � and � is needed to obtain a decent accuracy for E.
As showed in the one-dimensional case, the Legendre method is not very sensitive
to the scaling parameter comparing to the Laguerre method. The results show that
all our numerical methods have monotonic convergence property, which might be
used to determine optimal scaling in practice through multiple runs.

As a comparison with published results using a Fourier method in [8], we list in
Table 8 our results with the “best” parameters and the corresponding results in [8].
We observe that our method gives much better results with significant less number
of unknowns.

5 Concluding Remarks

We developed in this paper efficient spectral-element methods with Legendre
and Laguerre basis sets for ESE in one spatial dimension. To achieve high-order
approximation to the nucleus-electron cusps, we construct the basis sets in spectral-
element type. For the system with N electrons, we proposed to use sparse grids of
hyperbolic cross type to deal with high dimensionality.

We also presented efficient procedure to enforce the antisymmetry using Slater
determinants which reflect the Pauli principle, and lead to antisymmetric basis
sets for full/sparse grid spaces with a substantially reduced amount of degree of
freedoms. We performed numerical experiments which showed that our methods
enjoy exponential convergence rate for the one electron case, and for multi-electron
cases, can lead to a target accuracy with significantly fewer number of unknowns
than other approaches.

We only presented some preliminary numerical results with one-dimensional
particles here. We believe that these preliminary results are very encouraging, and
many techniques developed in this paper can be extended to solving ESE in two
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and three spatial dimensions. For example, we can construct special basis functions
of spectral-element type that take care of the nuclei-electron singularities like 1=jxj
in R

3 and log.jxj/ in R
2. Such consideration and other issues are currently under

investigation.
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A Sparse Grid Method for Bayesian Uncertainty
Quantification with Application to Large Eddy
Simulation Turbulence Models

Hoang Tran, Clayton G. Webster, and Guannan Zhang

Abstract There is wide agreement that the accuracy of turbulence models suffer
from their sensitivity with respect to physical input data, the uncertainties of user-
elected parameters, as well as the model inadequacy. However, the application
of Bayesian inference to systematically quantify the uncertainties in parameters,
by means of exploring posterior probability density functions (PPDFs), has been
hindered by the prohibitively daunting computational cost associated with the
large number of model executions, in addition to daunting computation time per
one turbulence simulation. In this effort, we perform in this paper an adaptive
hierarchical sparse grid surrogate modeling approach to Bayesian inference of large
eddy simulation (LES). First, an adaptive hierarchical sparse grid surrogate for the
output of forward models is constructed using a relatively small number of model
executions. Using such surrogate, the likelihood function can be rapidly evaluated at
any point in the parameter space without simulating the computationally expensive
LES model. This method is essentially similar to those developed in Zhang et al.
(Water Resour Res 49:6871–6892, 2013) for geophysical and groundwater models,
but is adjusted and applied here for a much more challenging problem of uncertainty
quantification of turbulence models. Through a numerical demonstration of the
Smagorinsky model of two-dimensional flow around a cylinder at sub-critical
Reynolds number, our approach is proven to significantly reduce the number of
costly LES executions without losing much accuracy in the posterior probability
estimation. Here, the model parameters are calibrated against synthetic data related
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to the mean flow velocity and Reynolds stresses at different locations in the flow
wake. The influence of the user-elected LES parameters on the quality of output
data will be discussed.

1 Introduction

For most turbulent flows encountered in industrial applications, the cost of direct
numerical simulation (DNS) would exceed the capacity of current computational
resource (and possibly continue to do so for the foreseeable future). As a re-
sult, many important decisions affecting our daily lives (such as climate policy,
biomedical device design, pollution dispersal and energy efficiency improvement)
are informed from simulations of turbulent flows by various models of turbulence.
The accuracy of estimated quantities of interest (QoIs) by such models, however,
frequently suffers from the uncertainties on the physical input data, user-chosen
model parameters and the subgrid model. It is ideal to be able to incorporate these
uncertainties in the predictions of QoIs.

The basic approach used for approximating turbulent flows has been to compute
the time- and space-filtered velocity and pressure, which are less computationally
demanding and of main technical interest, instead of solving for the pointwise ve-
locity and pressure prescribed by the standard Navier-Stokes equations. The use of
turbulence models leads to a level of uncertainty in the performance and inaccuracy
in the simulation results, due to user-chosen model parameters whose true or optimal
values are not well-known (parametric uncertainty), or the inherent inability of the
model to reproduce reality (structural uncertainty). With the fast growth in available
computational power, the literature on uncertainty quantification for fluid mechanics
modeling has grown extensively recently. Many stochastic numerical methods have
been developed, analyzed and tested for simulations of fluid flows with uncertain
physical and model parameters, see, e.g., [18, 20, 53, 57, 61, 62]. Sensitivity analysis
of LES to parametric uncertainty was conducted in [35]. Statistical methods to
capture structural uncertainties in turbulence models were presented in [17, 23, 24].
For inverse uncertainty quantification, we refer to [13, 45] (Bayesian inference for
Reynolds-averaged Navier Stokes (RANS) models) and [16] (adjoint based inverse
modeling).

Bayesian inference has become a valuable tool for estimation of parametric and
structural uncertainties of physical systems constrained by differential equations.
Sampling techniques, such as Markov chain Monte Carlo (MCMC), have frequently
been employed in Bayesian inference [19, 33, 50]. However, MCMC methods
[28, 59, 60] are, in general, computationally expensive, because a large number
of forward model simulations is needed to estimate the PPDF and sample from
it. Given the fact that one solution of turbulence models easily takes thousands
of computing hours, MCMC simulations in many CFD applications would require
prohibitively large computational budgets. Perhaps due to this demand, efforts on
model calibration up until now have been limited on the least expensive turbulence
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model � RANS equations [13, 45]. To make Bayesian inference tractable for other
types of closure models, including LES, it is essential to perform the MCMC
sampling in a time and cost effective manner.

A strategy to improve the efficiency of MCMC simulations is surrogate mod-
eling, which has been developed in a wide variety of contexts and disciplines, see
[49] and the reference therein. Surrogate modeling practice seeks to approximate
the response of an original function (model outputs or the PPDF in this work),
which is typically computationally expensive, by a cheaper-to-run surrogate. The
PPDF can then be evaluated by sampling the surrogate directly without forward
model executions. Compared to conventional MCMC algorithms, this approach is
advantageous that it significantly reduces the number of forward model executions
at a desired accuracy and allows sampling the PPDF in parallel. Several methods
can be employed to construct the surrogate systems, including polynomial chaos
expansion [22], stochastic Galerkin [3], stochastic collocation [2], and polynomial
dimensional decomposition [48], to list a few. For problems where the quantities
of interest have irregular dependence with respect to the random parameters, such
as those studied herein, it should be noted that approximation approaches that
use global polynomials are generally less effective than those allowing for multi-
level, multi-scale decomposition. In this direction, one can develop multi-level
hierarchical subspaces and employ adaptive grid refinement to concentrate grid
points on the subdomains with a locally high variation of solutions, resulting in
a significant reduction in the number of grid points.

In this paper, we present an adaptive hierarchical sparse grid (AHSG) surrogate
modeling approach to Bayesian inference of turbulence models, in particularly
LES. The key idea is to place a grid in the parameter space with sparse parameter
samples, and the forward model is solved only for these samples. Compared to the
regular full grid approach, sparse grid preserves the high level of accuracy with
less computational work, see [4, 20, 26, 27, 42, 43]. As sparse grid methods require
the bounded mixed derivative property, which is open for the solutions of Navier-
Stokes equations and turbulence models in general, a locally adaptive refinement
method, guided by hierarchical surpluses, is employed to extend sparse grid ap-
proach to possible non-smooth solutions. This refinement strategy is different from
dimension-adaptive refinement [21], which puts more points in dimensions of higher
relevance and more in line with those in [25, 34, 46]. Although similar surrogate
methods has been studied in [36, 63] for geophysical and groundwater models, we
tackle here a more challenging problem of uncertainty quantification of turbulence
models. Indeed, turbulent flows are notorious for their extremely complex nature and
the non-smoothness of the surface of LES output data may weaken the accuracy of
the surrogate. The applicability of surrogate modeling techniques to LES therefore
needs thorough investigation. In this work, we will demonstrate the accuracy and
efficiency of the surrogate model through a numerical example of the classical
Smagorinsky closure model of turbulent flow around a circular cylinder at a sub-
critical Reynolds number (Re D 500), which is a benchmark test case for LES.
The computation will be conducted for the two-dimensional flow, whose outputs
have similar patterns as three-dimensional simulation, but which is significantly
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less demanding in computing budget. The synthetic data of velocity and Reynolds
stresses at different locations in the flow wake are utilized for the calibration.

This work is only one piece in the complete process of calibration and validation
of LES models to issue predictions of QoIs with quantified uncertainties, and
many open questions remain. We do not attempt to fit the numerical solutions
with physical data herein, as the two-dimensional model has been known to show
remarkable discrepancy with the experiment results. Applying our framework to
the three-dimensional simulation for parameter calibration against real-world data
would be the next logical step. Another important problem is to evaluate and
compare the performance of our AHSG with other surrogate methods (including
some listed above) in this process. This would be conducted in future research. Also,
characterization and quantification of the structural inadequacy and comparison of
different competing LES models are beyond the scope of this study.

The rest of the paper is organized as follows. The Bayesian framework and the
adaptive hierarchical sparse grid method of constructing the surrogate system are
described in Sect. 2. In Sect. 3, we give a detailed description of the Smagorinsky
model of sub-critical flow around a cylinder. The performance of surrogate modeling
approach and results of the Bayesian analysis are presented in Sect. 3.4. Finally,
discussions and conclusions appear in Sect. 4.

2 Adaptive Hierarchical Sparse Grid Methods for Surrogate
Modeling in Bayesian Inference

2.1 Bayesian Inference

Consider the Bayesian inference problem for a turbulence model

d D f .�/C "; (1)

where d D .d1; : : : ; dNd/ is a vector of Nd reference data, � D .�1; : : : ; �N� / is
a vector of N� model parameters, f .�/ is the forward model, e.g., Smagorinsky
model (see Sect. 3), with N� inputs and Nd outputs, and " is a vector of residuals,
including measurement, model parametric and structural errors. (Nonlinear model
d D „.f ;�; "/ can be considered as well, but leads to more complicated likelihood
functions, as " D „�1.f ;�/.d/).

The posterior distribution P.�jd/ of the model parameters � , given the data d,
can be estimated using the Bayes’ theorem [10] via

P.�jd/ D L.� jd/P.�/R
L.�jd/P.�/d�

; (2)
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where P.�/ is the prior distribution and L.� jd/ is the likelihood function that
measure “goodness-of-fit” between model simulations and observations. In para-
metric uncertainty quantification, the denominator of the Bayes’ formula in Eq. (2)
is a normalization constant that does not affect the shape of the PPDF. As such,
in the hereafter discussion concerning building surrogate systems, the notation
P.�jd/ or the terminology PPDF will only refer to the product L.�jd/P.�/. The
prior distribution represents knowledge of the parameter values before the data d
is available. When prior information is lacking, a common practice is to assume
uniform distributions with parameter ranges large enough to contain all plausible
values of parameters.

Selection of appropriate likelihood functions for a specific turbulence simulation
is an open question. A commonly used formal likelihood function is based on the
simplistic assumption that the residual term " in (1) follows a multivariate Gaussian
distribution with mean zero and prescribed standard deviations, which leads to the
Gaussian likelihood function:

L.� jd/ D exp

�
�1
2
.d � f .�//>†�1.d � f .�//

�
: (MVN)

In this paper, we assume that the residual errors are independent, i.e., the covariance
matrix † is diagonal. To describe the correlation of the errors or the inadequacy
of turbulence models, other covariance matrices can also be used (and lead to
inconsistent results) [13, 45]. In general, the formal approach has been criticized
for relying heavily on residual error assumptions that do not hold. Alternatively,
informal likelihood functions are proposed as a pragmatic approach to implicitly
account for errors in measurements, model inputs and model structure and to avoid
over-fitting to reference data [8]. Definition of informal likelihood functions is
problem specific in nature, and there has been no consensus on which informal
likelihood functions outperforms others. For the sake of illustration, in Sect. 3.4, the
exponential informal likelihood function is used for the numerical example (together
with (MVN)). It reads:

L.�jd/ D exp

 
�� �

PNd
iD1

�
.di � fi/ � .d � f /

�2
PNd

iD1
�
di � d

�2

!
; (EXP)

where d is the mean of observations, f is the mean of the outputs of forward
model, and � is a scaling constant. For some other widely used informal likelihood
functions, see [55].
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2.2 Adaptive Hierarchical Sparse Grid Methods
for Construction of the Surrogate PPDF

The central task of Bayesian inference is to estimate the posterior distribution
P.�jd/. It is often difficult to draw samples from the PPDF directly, so the MCMC
methods, such as the Metropolis-Hastings (M-H) algorithm [19] and its variants,
are normally used for the sampling process. In practice, the convergence of MCMC
methods is often slow, leading to a large number of model simulations. To tackle this
challenge, surrogate modeling approaches seek to build an approximation (called
the surrogate system) for P.�jd/, then the MCMC algorithm draws samples from
it directly without executing the forward model. With this approach, the main
computational cost for evaluating the PPDF is now transferred to the surrogate
construction step. Naturally, an approximation method which requires minimal
number of grid points in the parameter space, while not surrendering much accuracy
is desired. The methodology we utilize to construct the surrogate system, presented
in this subsection, is similar to the method introduced in [63]. Since the method
can be applied to functions governed by partial differential equations, not limited to
P.�jd/ or f .�/, a generic notation �.�/ W � ! R is used for the description. Recall
the following assumptions are generally needed for sparse grid methods:

(a) The domain � is a rectangle, i.e., � D �1 
 : : : 
 �N� ; where �n � R; n D
1; : : : ;N� :

(b) The joint probability density function 
.�/ is of product-type:


.�/ D
N�Y

nD1

n.�n/;

where 
n W �n ! R are univariate density functions.
(c) The univariate domains and density functions are identical:

�1 D : : : D �N� I 
1 D : : : D 
N� ;

yielding the same i-level univariate quadrature rules

Q.1/
i Œ�� D : : : D Q.N� /

i Œ�� DW QiŒ��:

(d) The univariate quadrature rules are nested.

In this setting, we can treat � as a parametric variable and the probability density
function 
.�/, consequently, as uniform. Assumptions (c) and (d) will be imposed
via our construction of quadrature points. It is possible that the plausible domain
for � (corresponding to positive P.�jd/) is far from rectangle. In these cases, the
domain can be enclosed in a rectangle and as we shall see, the adaptive procedure
will generate the grid points only on the plausible regions, with the exception of the



A Sparse Grid Method for Bayesian Inference of LES Turbulence Models 297

starting level. Isoprobabilistic transformations to map the function into a unit cube,
such as Rosenblatt transformation [52], can also be considered.

2.2.1 Adaptive Sparse Grid Interpolation

The basis of constructing the sparse grid approximation in the multi-dimensional
setting is the one-dimensional (1-D) hierarchical interpolation. Consider a function
�.�/ W Œ0; 1� ! R. The 1-D hierarchical Lagrange interpolation formula is
defined by

UK Œ��.�/ WD
KX

iD0
�UiŒ��.�/; (3)

where K is the resolution level, and the incremental interpolation operator�UiŒ�� is
given as

�UiŒ��.�/ WD
miX

jD1
ci;j�i;j.�/; i D 0; : : : ;K: (4)

For j D 1; : : : ;mi, � i
j.�/ and ci;j in (4) are the piecewise hierarchical basis functions

[12, 63] and the interpolation coefficients for�UiŒ��, respectively. For i D 0; : : : ;K,
the integer mi in (4) is the number of interpolation points involved in �UiŒ��, which
is defined by

m0 D 1; m1 D 2; and mi D 2i�1 for i � 2:

A uniform grid, denoted by �Xi D f�i;jgmi
jD1, can be utilized for the incremental

interpolant�UiŒ��. The abscissas of �Xi are defined by

�0;1 D 0:5; �1;1 D 0; �1;2 D 1; and �i;j D 2j � 1
Pi

kD0 mk � 1
for j D 1 : : : ;mi; i � 2:

Then, the hierarchical grid for UK Œ��.�/ is defined by XK D [K
iD0�Xi:

Based on the one-dimensional hierarchical interpolation, we can construct an
approximation for a multivariate function �.�/ W Œ0; 1�N� ! R, where � D
.�1; : : : ; �N� /, by hierarchical interpolation formula as

IK Œ��.�/ WD
X

jij�K

�iŒ��.�/ (5)
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and the multi-dimensional incremental interpolation operator�iŒ�� is defined by

�iŒ��.�/ WD �Ui1 ˝ � � � ˝�UiN�
Œ��.�/ D

X

j2Bi

ci;j	i;j.�/;

where i WD .i1; : : : ; iN� / is a multi-index indicating the resolution level of �iŒ��,
jij D i1 C � � � C iN� , 	i;j.�/ WD QN�

nD1 �in ;jn.�n/, and the multi-index set Bi is defined
by Bi D ˚

j 2 N
N�
ˇ̌
jn D 1; : : : ;min ; n D 1; : : : ;N�


. As such, the grids for�iŒ�� and

IK Œ�� are defined by �Hi WD �Xi1 
 � � � 
�XiN�
and HK WD [jij�K�Hi.

In this paper, we employ the piecewise linear hierarchical basis [12, 63] and the
surplus ci;j can be explicitly computed as

c0;1 D �0Œ��.�0;1/ D I0Œ��.�0;1/ D �.�0;1/;

ci;j D �iŒ��.� i;j/ D �.� i;j/ � IK�1Œ��.� i;j/ for jij D K > 0;

as the supports of basis functions are mutually disjoint on each subspace. As
discussed in [12], when the function �.�/ is smooth with respect to � , the magnitude
of the surplus ci;j will approach to zero as the resolution level K increases. Therefore,
the surplus can be used as an error indicator for the interpolant IK Œ�� in order to
detect the smoothness of the target function and guide the sparse grid refinement.
In particular, each point � i;j of the isotropic level-K sparse grid HK is assigned two
children in each n-th direction, represented by

Cn
1.� i;j/ D

�
�i1;j1 ; : : : ; �in�1;jn�1 ; �inC1;2jn�1; �inC1;jnC1

; : : : ; �iN� ;jN�

�
;

Cn
2.� i;j/ D

�
�i1;j1 ; : : : ; �in�1;jn�1 ; �inC1;2jn ; �inC1;jnC1

; : : : ; �iN� ;jN�

�
;

(6)

for n D 1; : : : ;N� . Note that the children of each sparse grid point on level jij
belong to the sparse grid point set of level jij C 1. The basic idea of adaptivity is as
follows: for each point whose magnitude of the surplus is larger than the prescribed
error tolerance, we refine the grid by adding its children on the next level. More
rigorously, for an error tolerance ˛, the adaptive sparse grid interpolant is defined
on each successive interpolation level as

IK;˛ Œ��.�/ WD
X

jij�K

X

j2B˛i

ci;j	i;j.�/; (7)

where the multi-index set B˛i is defined by modifying the multi-index set Bi, i.e.,
B˛i D fj 2 Bijjci

jj > ˛g. The corresponding adaptive sparse grid is a sub-grid of the
level-K isotropic sparse grid HK , with the grid points becoming concentrated in the
non-smooth region. In the region where �.�/ is very smooth, this approach saves a
significant number of grid points but still achieves the prescribed accuracy.
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2.2.2 Algorithm for Constructing the Surrogate PPDF

In the forthcoming numerical illustration, a surrogate PPDF will be constructed
based on the sparse grid method, discussed above, with the use of the following
procedure.

Algorithm 2.1

• STEP 1: Determine the maximum allowable resolution K of the sparse grid by
analyzing the trade off between the interpolation error and computational cost.
Determine the error tolerance ˛.

• STEP 2: Generate the isotropic sparse grid at some starting coarse level `. Until
the maximum level K is reached or the magnitudes of all surpluses on the last
level are smaller than ˛, do the following iteratively:

– Step 2.1: Simulate the turbulence model f .�/ at each grid point � i;j 2 H`.
– Step 2.2: Construct the sparse grid interpolant I`;˛ Œf �.�/ based on for-

mula (7).
– Step 2.3: Generate the adaptive sparse grid for the next level based on the

obtained surpluses. Set ` WD `C 1 and go back to Step 2.1.

• STEP 3: Construct an approximate likelihood function, denoted by QL.�jd/, by
substituting I`;˛ Œf � for f into the likelihood formula using, e.g., (MVN) or (EXP).

• STEP 4: Construct the surrogate PPDF QP.�jd/ via

QP.�jd/ / QL.�jd/P.�/:

After the surrogate is constructed, an MCMC simulation is used to explore
QP.�jd/. Using our approach, drawing the parameter samples does not require
any model executions but negligible computational time for polynomial evaluation
using the surrogate system. The improvement of computational efficiency by using
surrogate PPDF is more impressive when increased samples are drawn in the
MCMC simulation.

Finally, it is worth discussing the flexibility of grid adaptive refinement strategies.
It is known that in calibration problems of turbulence models, different likelihood
models could lead to conflicting posterior distributions [13, 45]. Moreover, for a flow
problem, experimental data given by different authors is sometimes inconsistent.
There is also a wide variation of the physical quantities to be measured and recorded.
Naturally, one would desire a surrogate modeling method that allows for the use of a
variety of likelihood functions and data sets, at little cost, once the surrogate system
has been built. An adaptive refinement strategy based on the smoothness of the
likelihood functions [63] is obviously the least flexible, since the grid is likelihood-
function-specific. The approach we apply in this work, i.e., an adaptive method that
is guided by the smoothness of output interpolant, allows the use of an universal
surrogate of the output, for different choices of likelihood functions and data of the
same physical quantities. The surrogate for the output is, however, more expensive
than that built directly for the likelihood function in the former approach, since
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grid points may be generated in the low density region of the likelihood where
the forward simulations are wasteful. The most versatile method is certainly the
non-adaptive, full sparse grid method, but the surrogate is also constructed with
highest cost in this case. To this end, one has to sacrifice the flexibility of the sparse
grid surrogate to improve the efficiency. The demand of investigating posterior
distribution over different likelihood functions and data sets and the computational
budget need to be balanced before an adaptive refinement strategy is determined.

3 Application to Large Eddy Simulation of Sub-critical Flow
Around a Circular Cylinder

3.1 Parametric Uncertainty of Smagorinsky Model

In LES practice, the time dependent, incompressible Navier-Stokes equations are
filtered by, e.g., box filter, Gaussian filter, differential filter and the governing
equations are given by

ut C r � .u u/ � �u C rp � r � .2Trsu/ D f ;

r � u D 0;
(8)

where u is the velocity at the resolved scales, p is the corresponding pressure, T � 0

is the eddy viscosity and rs is the symmetric part of r operator, see [7].
The most common choice for T , which is studied herein, is known in LES as the

Smagorinsky model [41, 54] in which

T D `2Sjrsuj; (9)

where `S D CSı and j � j D p
2.�/ij.�/ij, `S is called the Smagorinsky lengthscale.

There are two model calibration parameters in this term – the Smagorinsky constant
CS and the filter width ı. The pioneering analysis of Lilly [32], under some
optimistic assumptions, proposed that CS has a universal value 0:17 and is not a
“tuning” constant. This universal value has been found later not the best choice for
most LES computations and various different values ranging from 0:1 to 0:25 are
usually selected leading to improved results, see, e.g., [1, 9, 14, 15, 37–40]. The
optimal choice for CS depends on the flow problems considered and even may be
different for different regions in a flow field. Indeed, this poses a major drawback of
the Smagorinsky model.

The second calibration parameter – the filter width ı-characterizes the short
lengthscale fluctuations to be removed from the flow fields. Ideally, the filter width
should be put at the smallest persistent, energetically significant scale (the flow
microscale), which demarcates the deterministic large eddies and isotropic small
eddies, [47]. Unfortunately, such a choice is infeasible, since the flow microscale is
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seldom estimated. Instead, due to the fact that LES requires the spatial resolution
h to be proportional to ı, the usual practice is to specify the grid to be used in
the computation, and then take the filter width according to the grid size. The
specification of grid and filter without knowledge of the microscale could lead to
poor simulation.

An additional calibration parameter involves in near wall treatment. The correct
behavior of Smagorinsky eddy viscosity T near the wall is T ' 0, since there is no
turbulent fluctuation there. In contrast, the formulation (9) is nonzero and introduces
large amounts of dissipation in the boundary layer. One approach to overcome this
deficiency is to damp `S as the boundary is approached by the van Driest damping
function [58]. The van Driest scaling reads:

`S D CSı
�
1 � e�yC

n
=AC

n�p
; (10)

where yC is the distance from wall in wall units, AC is van Driest constant ascribed
the value AC D 25. Various different values of .n; p/ have been used – the most
commonly chosen are .1; 1/ and .3; 0:5/, [51]. For simplicity, in this work, we fix
n D 1 and treat p only as a calibration parameter. The variation of p alone can
capture the full spectrum of near wall scaling: p D 0 means no damping function is
applied, while a large p associates with fast damping. We call p van Driest damping
parameter.

3.2 Sub-critical Flow Around a Circular Cylinder

The flow concerned in this study corresponds to a time-dependent flow through
a channel around a cylinder. External flows past objects have been the subject of
numerous theoretical, experimental and numerical investigations because of their
many practical applications, see [5, 6, 44] and the reference therein. In the sub-
critical Reynolds number range (300 < Re < 2
105), these flows are characterized
by turbulent vortex streets and transitioning free shear layers.

We consider the two-dimensional flow around a cylinder of diameter D D 0:1 in
rectangular domain of size 2:2 
 1:4, consisting a 5D upstream, 17D downstream
and 7D in lateral directions. We employ the finite element method with second
order Taylor-Hood finite element and polygonal boundary approximation. Our
computation is carried out on triangular meshes generated based on Delaunay-
Voronoi algorithm and refined around the cylinder. The ratio of number of mesh
points on the top/bottom boundaries, left/right boundaries and cylinder boundary is
fixed at 3:2:4 (Fig. 1). As common practice, the filter width is chosen locally at each
triangle as the size of the current triangle. Its value therefore varies throughout the
domain, and is roughly 10 times smaller near the cylinder than that in the far field.
Since the synthetic data will be taken in the near wake region, for simplicity, we
characterize ı by the value of the filter width on the cylinder surface.
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Fig. 1 A computational grid used in our study on LES of turbulent flow past a cylinder with
ı D �=480

The Smagorinsky model with van Driest damping (8), (9) and (10) is considered
with  D 2 
 10�4, f D 0, T D 12 and �t D 0:01. The statistics are compiled
over the last 7 time units, equivalent to a period of 	15 vortex shedding cycles. The
inflow and outflow velocity is . 6

1:42
y.1:4 � y/; 0/. The mean velocity at the inlet is

U0 D 1. No-slip boundary conditions are prescribed along the top and bottom walls.
Based on U0 and the diameter of the cylinder D, the Reynolds number for this flow
is Re D 500, in the sub-critical range. The temporal discretization applied in the
computation is the Crank-Nicolson scheme. Denoting quantities at time level tk by
a subscript k, the time stepping scheme has the form:

uk � uk�1
�t

� �
uk C uk�1

2
C 1

2
.uk � ruk C uk�1 � ruk�1/C rpk

� .r � .T.uk/rsuk/C r � .T.uk�1/rsuk�1// D 0;

r � uk D 0:

(11)

System (11) is reformulated as a nonlinear variational problem in time step tk. This
problem is solved iteratively by a fixed point iteration. Let .u0k ; p

0
k/ be an initial

guess. Given .um
k ; p

m
k /, the iterate .umC1

k ; pmC1
k / is computed by solving

umC1
k � uk�1

�t
� �

umC1
k C uk�1

2
C 1

2
.um

k � rumC1
k C uk�1 � ruk�1/C rpmC1

k

� .r � .T.u
m
k /rsumC1

k /C r � .T.uk�1/rsuk�1// D 0;

r � umC1
k D 0:

(12)
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The fixed point iteration in each time step is stopped if the Euclidean norm of
the residual vector is less than 10�10. The spatial and temporal discretizations we
use herein are similar to [30, 31], in which they were applied to direct numerical
simulations of flow around a cylinder at Reynolds number Re D 100.

3.3 The Prior PDF and Calibration Data

We will exploit Bayesian calibration for three model parameters CS, p and ı.
The uniform prior PDF of the uncertain parameters is assumed. The searching
domains for CS and p are Œ0; 0:2� and Œ0; 2� respectively, covering their plausible
and commonly selected values. The range of the prior PDF of ı, on the other
hand, would significantly affect the computational cost; since the filter width is
proportional to the spatial resolution. Thus, to reduce the cost of flow simulations,
the searching domain for ı is set to be Œ�=600; �=200�, corresponding to relatively
coarse resolutions where the grid spacing on the cylinder surface ranges from 	 2 to
6 wall units. As we shall see, the response surfaces tend to be more complicated for
the low-resolution simulation, possibly due to the non-physical oscillations in the
underresolved solutions reflecting in the probability space. As a result, coarse grids
pose a greater challenge for the surrogates to precisely describe the true outputs
and are suitable for our purpose of verifying the accuracy of the surrogate modeling
approach. Figure 2 shows the distribution of instantaneous vorticity at t D 20 in the
near wake region for two different choices of turbulence parameters. We can see that
the simulated flows display laminar vortex shedding, as expected for LES of flows
past bluff bodies. The difference in phase of vortex shedding in two simulations is
recognizable.

The synthetic data are generated by solving Smagorinsky model (8), (9) and (10)
with CS D 0:15; p D 0:05 and ı D �=480. The data sets used for calibration
process are taken at 11 stations in a distance of 	 1D downstream. Specifically,
these points locate equidistantly on the vertical line x D 0:65 between y D 0:6 and
y D 0:8. For each point, the data of average streamwise and vertical velocities,

Fig. 2 Intantaneous vorticity at t D 20 generated by two different choices of model parameters.
Left: Cs D 0:2; p D 0; ı D �=480. Right: Cs D 0:05; p D 0; ı D �=720
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Table 1 The true parameter
values and the initial
searching regions for model
calibration

True value �

Smagorinsky constant CS 0:15 Œ0; 0:2�

van Driest parameter p 0:5 Œ0; 2�

Filter width ı �=480 Œ�=600; �=200�

Fig. 3 Total resolved Reynolds stresses and average velocities along the vertical line at 1D
downstream for some Smagorinsky models

denoted by U and V , as well as total streamwise, vertical and shear Reynolds
stresses, i.e., hu0u0i, hv0v0i and hu0v0i, are selected, giving a total of 55 reference
data. For clarity, the bounds of uniform prior PDFs and the true values of calibration
parameters are listed in Table 1. In Fig. 3, the measurements of interested velocities
and Reynolds stresses along x D 0:65 are plotted for some typical simulations.
We observe that except for ı D �=200, the approximated quantities are quite
smooth and have expected patterns, see [5]. Certainly, the plots show significant
differences among different models. In practice, LES models which give distinctly
poor results such as those at ı D �=200 could be immediately ruled out from the
calibration process, informed by the fact that the wall-adjacent grid points lie outside
the viscous sublayer. However, it is useful here to examine the response surfaces and
the accuracy of the surrogate systems in these cases, and we choose to include these
large filter widths in the surrogate domain instead.

Finally, it is worth mentioning that Smagorinsky model coefficients are not the
only parameters that influence the quality of LES solutions. Indeed, other numerical
parameters such as time step size and averaging time also have significant impacts,
see, e.g., [11, 51]. While an estimation of their influence is not conducted here, we
need to ensure that the errors caused by them do not dominate the uncertainties
in the calibration parameters. A simple validation test is carried out on the flow
statistics generated by Smagorinsky model of CS D 0; p D 0 and ı D �=480. The
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Table 2 The maximum change in average velocity and Reynold stress profiles under the modifi-
cations of time step, averaging period and outflow BC

Component modified U V hu0u0i hv0v0i hu0v0i
Time step 0.0148 0.0213 0.0202 0.0371 0.0186

Averaging period 0.0048 0.0025 0.0014 0.0011 0.0045

Outflow BC 0.0022 0.0029 0.0016 0.0061 0.0020

flow simulation is replicated first with the temporal resolution refined by a factor
of two, i.e., �t D 0:005, and then with a doubled averaging period, i.e., by setting
T D 19. We also conduct another simulation in which the zero gradient replaces
Dirichlet outflow boundary condition to justify that the numerical oscillation at the
downstream boundary does not disturb the inner domain. The maximum change
in five velocity and Reynold stress profiles of interest in these modified models is
presented in Table 2. We see that among three investigated source of numerical
errors, the temporal resolution is the most prominent, as it makes up approximately
80% of the change in all data. More importantly, Table 2 reveals that the total
maximum change is approximately 0:05 in the vertical Reynolds stress data and
0:025 for other quantities. Numerical errors of the synthetic calibration data, as well
as model outputs, are expected to be around these values. In the uncertainty analysis
following, for the (MVN) likelihood model, we will assume that the reference data
are corrupted with Gaussian random noise of 0:1.

3.4 Results and Discussions

This section justifies the accuracy and efficiency of the surrogate modeling method
described in Sect. 2, when applied to the numerical example of two-dimensional
flow around a cylinder specified in Sect. 3. We utilize the software package
FreeFem++ [29] in solving the Smagorinsky discretization scheme. The adaptive
sparse grid interpolation and integration schemes are generated using functions in
the TASMANIAN toolkit [56]. The DRAM algorithm [28] is chosen for MCMC
sampling of the surrogate PPDF.

The surrogate system for outputs is constructed using the linear basis functions,
first on the standard sparse grid of level 5, then the grids are refined adaptively up to
level 8. The total numbers of model executions needed for the four interpolants are
177; 439; 1002 and 2190, respectively, which are also the number of points of the
four corresponding adaptive sparse grids.

The accuracy of a surrogate modeling approach based on the AHSG method is
largely determined by the smoothness of the surrogate system, so it is worth exam-
ining the surface of the output data in the parameter space. For brevity, we only plot
here the vertical Reynolds stress data at the centerline, i.e., hv0v0i.0:65; 0:7/, which
is among the most fluctuating (See Fig. 3). Figure 4 represents some surfaces for
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Fig. 4 Surfaces of the predicted vertical Reynolds stress data at .0:65; 0:7/ generated by the
AHSG method at level 8. CS and p are normalized such that their searching regions are Œ�1; 1�

typical values of filter width generated on level 8 grid. We observe that the surface
according to ı D �=200 differs from two other cases (ı D �=600; ı D �=300) that
are remarkably rougher. This, together with Fig. 3, confirms the connection between
the complexity of the output function in both the physical and parameter spaces. In
Fig. 5, the scatter plots for the predicted outputs obtained with the surrogate system
at level 7 are presented. The approximations show clear improvement in accuracy
with ı 2 Œ�=600; �=300�, compared to those at larger values. While not considered
herein, it is reasonable to expect that the surrogate outputs at least maintain the same
accuracy for ı � �=600, since more grid refinement will remove extra non-physical
wiggles. In the next part, we justify that this level of accuracy is sufficient for our
surrogate-based MCMC method. Although the surrogate systems show remarkable
discrepancy for large ı, as previously mentioned, these values, leading to visibly
inadequate outputs, should be excluded in practical calibration processes. While the
original domain of ı is Œ�=600; �=200�, by choosing its true value as �=480, the
effective searching region of ı is restricted to Œ�=600; �=300�.

To evaluate the accuracy and efficiency of our surrogate modeling approach, the
DRAM-based MCMC simulations using the surrogate PPDF QP.� jd/ constructed
in Algorithm 2.1 are conducted. Each MCMC simulation draws 60,000 parameter
samples, the first 10,000 of which are discarded and the remaining 50,000 samples
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Fig. 5 Scatter plots for the prediction of the output data given by the surrogate system on level 7
sparse grid
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Fig. 6 Marginal posterior probability density functions of three Smagorinsky model parameters
with (MVN) likelihood model estimated using the linear surrogate systems on level 5–8 adaptive
sparse grids

are used for estimating the PPDF. For the first experiment, (MVN) likelihood
function is employed; the data are corrupted by 10% Gaussian random noise, treated
as numerical errors. Figure 6 plots the marginal PPDFs where the three parameters
are normalized such that the searching region is Œ�1; 1�3. The black vertical lines
represent the true values listed in Table 1. The red solid lines are the marginal PPDFs
estimated by MCMC simulations based on the surrogate systems on level 8 grid, and
the dashed lines represent those based on the surrogate systems on lower levels. The
figure indicates that the MCMC results according to level 7 and level 8 sparse grids,
which require 1002 and 2190 model executions correspondingly, are already close
to each other. Thus, the surrogate PPDF on level 8 is accurate enough for MCMC
simulations.

We proceed to compare the accuracy of the surrogate-based with the conventional
MCMC with equal computational effort, i.e., same number of model executions.
Due to the high computational cost, a proper conventional MCMC simulation is not
conducted in this work. However, given the accuracy of the surrogate system, we
expect that marginal PPDFs obtained from conventional MCMC are very close with
those from surrogate-based MCMC on high-level grid and therefore, run the MCMC
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Fig. 7 Marginal posterior probability density functions of model parameters with (MVN) likeli-
hood function estimated using the linear surrogate systems on level 8 adaptive sparse grids with
1002, 2190 and 50,000 samples (excluding 10,000 samples for burn-in period). These are the
numbers of model executions that the conventional MCMC requires to obtain similar results
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Fig. 8 Marginal posterior probability density functions of three Smagorinsky model parameters
with (EXP) likelihood model estimated using the linear surrogate systems on level 5–8 adaptive
sparse grids

simulation with samples drawn from level 8 surrogate. The first 10,000 samples
are discarded to minimize the effect of initial values on the posterior inference.
Figure 7 depicts the marginal PPDFs for model parameters obtained with 1002,
2190 and 50,000 samples after burn-in period. Let us remark that if conventional
MCMC is employed, these are the numbers of model executions required to obtain
similar results. Comparing Figs. 6 and 7 indicates that with the same number of
model executions, the approximations using surrogate system are more accurate
than those using conventional MCMC, highlighting the efficiency of our surrogate
modeling method.

In order to demonstrate that our adaptive refinement strategy based on the
smoothness of output data in probability space allows the change of likelihood
models with minimal computational cost, we perform the above experiment with
(EXP) likelihood function and � D 500 using the same surrogate of outputs. The
marginal PPDFs of model parameters estimated using the linear surrogate systems
are shown in Fig. 8. Again, they can be compared with marginal PPDFs estimated
using conventional MCMC with the same number of model executions in Fig. 9.
The plots confirm the accuracy of the surrogate PPDF for MCMC simulations
and that surrogate-based MCMC requires less forward model executions than the
conventional approach. On the other hand, it should be noted that some likelihood
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Fig. 9 Marginal posterior probability density functions of model parameters with (EXP) likeli-
hood function estimated using the linear surrogate systems on level 8 adaptive sparse grids with
1002, 2190 and 50,000 samples (excluding 10,000 samples for burn-in period). These are the
numbers of model executions that the conventional MCMC requires to obtain similar results
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Fig. 10 Two-dimensional marginal posterior probability density function of CS and p with (MVN)
likelihood model. The MCMC samples are obtained using the linear surrogate system on level 8
sparse grid

models, especially those resulting in peaky PPDFs, may require a surrogate system
more accurate than that on level 8 sparse grid. In those cases, the surrogate needs to
be constructed on a grid of higher level.

The calibration results for both likelihood models show that the Smagorinsky
constant CS and van Driest damping parameter p have posterior maximizers near
their true values, while smaller values are somewhat preferred for the filter width ı.
Meanwhile, the posterior distribution of ı is peaky, indicating that the data depend
on ı and the Smagorinsky models with our selections of filter width (and spatial
resolution) are incomplete. Indeed, finer grids are needed to sufficiently resolve
the energy. The plots also reveal that the data are significantly more sensitive with
respect to ı than to other parameters. This elucidates why finding the optimal value
for ı, i.e., determining the ideal place to truncate scale, is a very important issue in
LES practice. Finally, the positive correlation between CS and p can be observed in
Fig. 10, in which the posterior samples projected on the .CS; p/-plane are plotted.
Given that our calibration data are extracted in near wake region, this correlation is
expected. As larger value of CS increases the Smagorinsky lengthscale `S, larger p
would be needed for a stronger damping of `S near the boundary.
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4 Conclusion and Future Works

In this paper, we present a surrogate modeling approach based on the AHSG method
for Bayesian inference, with application to quantification of parametric uncertainty
of LES turbulence models. The method is based on those developed in [62] for
less complex geophysical and groundwater models, is model independent and can
be flexibly used together with any MCMC algorithm and likelihood function. The
accuracy and efficiency of our approach is illustrated by virtue of the numerical
example consisting of the Smagorinsky model of two-dimensional flow around a
cylinder. We combine the hierarchical linear basis and the local adaptive sparse
grid technique to construct surrogate systems with a small number of model
executions. Although the forward model investigated herein is highly nonlinear
and more complicated than those in previous studies, our analysis indicates that
the surrogate system is accurate for reasonable specifications of search regions.
Compared to the conventional MCMC simulation, our surrogate-based approach
requires significantly less model executions for estimating the parameter distribution
and quantifying predictive uncertainty. Given the extremely high cost of turbulence
simulations, this computational efficiency is critical for the feasibility of Bayesian
inference in turbulence modeling.

While the performance of surrogate modeling method is evaluated in this
work for a synthetic cylinder flow model on relatively coarse grids, we expect
comparable results for practical, more complicated calibration and prediction
problems using real-world data; since three-dimensional, more refined simulations
and real experiments of these flows are known to produce similar patterns to the
investigated physical outputs in this study. Still, a three-dimensional demonstration
of our surrogate-based approach for these problems is irreplaceable and would be
the next logical step. The framework presented here could be directly applied to
other engineering flow models, as well as to the tasks of quantifying the structural
uncertainties and comparing competing turbulence closure models. The accuracy of
surrogate-based MCMC in these cases needs to be tested, but the verification, which
is much less computational demanding than running the conventional MCMC, is
possibly worthwhile. Finally, besides our AHSG, several other methods can be
employed to construct the surrogate system. A thorough comparative assessment
with those methods is essential to fully justify the efficiency of our approach in
turbulence uncertainty quantification problems and would be considered in the
future.

Concerning sparse grid interpolation methods, additional research in accelerating
the convergence rate of the surrogate is necessary. One direction is high-order sparse
grid methods, which utilize high-order (instead of linear) hierarchical polynomial
basis and whose superior efficiency has been justified for uncertainty quantification
of groundwater models [63]. On the other hand, given that the outputs and PPDFs
do not experience same level of sensitivity to different calibration parameters,
combining locally grid refinement strategy with dimension-adaptive sparse grid
methods to further reduce the number of interpolation points is worth studying.
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Hierarchical Gradient-Based Optimization
with B-Splines on Sparse Grids

Julian Valentin and Dirk Pflüger

Abstract Optimization algorithms typically perform a series of function evalu-
ations to find an approximation of an optimal point of the objective function.
Evaluations can be expensive, e.g., if they depend on the results of a complex simu-
lation. When dealing with higher-dimensional functions, the curse of dimensionality
increases the difficulty of the problem rapidly and prohibits a regular sampling.
Instead of directly optimizing the objective function, we replace it with a sparse
grid interpolant, saving valuable function evaluations. We generalize the standard
piecewise linear basis to hierarchical B-splines, making the sparse grid surrogate
smooth enough to enable gradient-based optimization methods. Also, we use an
uncommon refinement criterion due to Novak and Ritter to generate an appropriate
sparse grid adaptively. Finally, we evaluate the new method for various artificial and
real-world examples.

1 Introduction

In this work, we want to solve optimization problems of the following form: Assume
we are given a continuous function f W Œ0; 1�d ! R (objective function). Our goal is
to find a minimal point

xopt D arg min
x2Œ0;1�d

f .x/ ; (1)

i.e., we want to solve a general, bound-constrained optimization problem. Opti-
mization algorithms, whether gradient-free or gradient-based, usually perform a
series of evaluations of f , its gradient, or its Hessian (if available) to find an
approximation x
opt of xopt. As each evaluation can be expensive, e.g. by triggering
a cascade of nested simulations, we want to use as few evaluations as possible. Of

J. Valentin (�) • D. Pflüger
Institute for Parallel and Distributed Systems (IPVS), Universität Stuttgart, Universitätsstr. 38,
70569 Stuttgart, Germany
e-mail: julian.valentin@ipvs.uni-stuttgart.de; dirk.pflueger@ipvs.uni-stuttgart.de

© Springer International Publishing Switzerland 2016
J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Stuttgart 2014,
Lecture Notes in Computational Science and Engineering 109,
DOI 10.1007/978-3-319-28262-6_13

315

mailto:julian.valentin@ipvs.uni-stuttgart.de
mailto:dirk.pflueger@ipvs.uni-stuttgart.de


316 J. Valentin and D. Pflüger

course, for increasing d, the problem suffers from the curse of dimensionality, which
obviously suggests the employment of sparse grids for the solution. Optimization
with the aid of sparse grids was studied before, e.g. with additional constraints and
piecewise linear functions [11] or with sparse grid surrogates defined via Lagrange
polynomials on Chebyshev points [9, 10]. However, 1D Lagrange polynomials are
asymmetrical, have global support Œ0; 1�, and their degree 2n is not tunable. In
addition, polynomial interpolation prevents us from using equidistant grid points.
We want to use B-splines as basis functions instead, as they do not have these
drawbacks, but additionally feature many nice properties. B-splines have already
been used in the context of sparse grids, e.g. for the purpose of data mining [27, 28]
or quasi-interpolation [19]. The sufficient smoothness of B-splines allows us to
use gradient-based optimization methods on the sparse grid interpolant efficiently,
even if the gradient or Hessian of f are not available or costly to evaluate. Our
optimization approach will be as follows:

1. Generate a spatially adaptive sparse grid X D fxkgk adapting to the peculiarities
of f .

2. Interpolate f at X by an interpolant Qf defined by a linear combination of B-splines
on sparse grids.

3. Apply gradient-based optimization techniques to Qf to get x
opt.

In Sect. 2, we will define hierarchical B-splines and prove their linear indepen-
dence in the univariate case, which generalizes to higher dimensionalities d. The
B-splines will be modified to allow good approximations near the boundary of
the domain Œ0; 1�d. We will explain in Sect. 3 the refinement criterion by Novak
and Ritter [26] we use to construct spatially adaptive sparse grids. A description
of implementational details follows in Sect. 4. Finally, we evaluate our algorithm
and compare it to established methods by studying various artificial and real-world
examples in Sect. 5.

2 B-Splines on Sparse Grids

Conventional basis functions for sparse grids, including the piecewise polynomial
functions by Bungartz [3], all share the shortcoming of not having globally
continuous derivatives, hindering the use of gradient-based optimization. B-splines,
which generalize the well-known hat functions, can tackle this problem. They
were first studied by Schoenberg [34], who claimed that they were already known
to Laplace [8]. But it was not until the 1960s when Schoenberg’s results were
rediscovered and the potential of B-splines for the emerging finite element method
(FEM) was recognized. Important work was done by de Boor, who found simple
B-spline algorithms [7]. B-splines have found application in a number of fields,
e.g., for the aforementioned FEM [14], as non-uniform rational B-splines (NURBS)
for geometric modeling [4, 15], for atomic and molecular physics [1, 23], and for
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financial mathematics [28], to name just a few examples. We will now repeat the
definition of hierarchical B-Splines [28] and then prove their linear independence.

2.1 Cardinal B-Splines

The cardinal B-spline bpWR ! R of degree p 2 N0 is defined by

b0.x/ D �Œ0;1/.x/ ;

bp.x/ D
Z 1

0

bp�1.x � y/dy ; p � 1 ; (2)

with the indicator function �A of A � R, i.e., bp is the convolution of bp�1 and b0.
This definition implies the following simple properties [15] (see Fig. 1, left). The
support of bp is Œ0; p C 1�. On every interval Œk; k C 1/, k D 0; : : : ; p (knot interval),
bp is a non-negative polynomial of degree p. The B-spline is bounded by 1 and
symmetric with respect to x D pC1

2
. bp is .p � 1/ times continuously differentiable

at x D 0; : : : ; p C 1 (knots). By differentiation of (2) we get the simple identity

d

dx
bp.x/ D bp�1.x/ � bp�1.x � 1/ : (3)

Fig. 1 Left: cardinal B-splines of degree p D 0; 1; 2; 3. Right: hierarchical B-splines of degree
p D 3 and level l D 1; 2; 3
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2.2 Hierarchical B-Splines

The hierarchical B-spline 'p
l;iW Œ0; 1� ! R of level l 2 N and index i 2 Il WD

f1; 3; 5; : : : ; 2l � 1g is defined by an affine parameter transformation [28],

'
p
l;i.x/ WD bp

�
x

hl
C p C 1

2
� i

�
; hl WD 2�l :

'
p
l;i.x/ has support Œ0; 1�\.hl �Œi˙.pC1/=2�/ (see Fig. 1, right). For p D 1, we obtain

the well-known piecewise linear hierarchical basis (hat functions). To simplify the
next considerations, we only consider odd degree p, as the knots (where the B-spline
is not infinitely many times differentiable) of 'p

l;i then coincide with the grid points

xl;i�.pC1/=2 ; : : : ; xl;i ; : : : ; xl;iC.pC1/=2

with xl;i WD ihl. For even degree, the knots lie between the grid points, i.e.

xl;i�p=2 � hl

2
; : : : ; xl;i � hl

2
; xl;i C hl

2
; : : : ; xl;iCp=2 C hl

2
;

leading to slightly different, but related arguments. We can define the nodal B-spline
space Vp

l and the hierarchical B-spline subspace Wp
l of level l by

Vp
l WD spanf'p

l;i j i D 1; : : : ; 2l � 1g ; Wp
l WD spanf'p

l;i j i 2 Ilg :

2.3 Linear Independence of Hierarchical B-Splines

In the piecewise linear case (p D 1), the relationship V1
n D Ln

lD1 W1
l can be seen

easily. We prove that a similar relationship also holds for higher B-spline degrees.
To this end, we first show the linear independence of the union f'p

l;i j l � n; i 2 Ilg
of the hierarchical functions up to level n with the aid of B-splines on general knots.

Let m; p 2 N0 and � D .�0; : : : ; �mCp/ be an increasing sequence of real numbers
(knot sequence). Then for k D 0; : : : ;m�1 the B-splines bp

k;� of degree p with knots
� are defined by the Cox-de Boor recurrence [5, 7, 15]

b0k;� WD �Œ�k ;�kC1/ ;

bp
k;� WD �

p
k;�bp�1

k;� C .1 � �
p
kC1;�/b

p�1
kC1;� ; �

p
k;�.x/ WD x � �k

�kCp � �k
; p � 1 :

For the special case of � D .0; 1; : : : ; p C 1/ and k D 0, we obtain the cardinal
B-spline bp.x/.
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Proposition 1 Let � D .�0; : : : ; �mCp/ be a knot sequence. Then the B-splines bp
k;� ,

k D 0; : : : ;m � 1, form a basis of the spline space

Sp
� WD spanfbp

k;� j k D 0; : : : ;m � 1g: (4)

Sp
� contains exactly those functions which are continuous on D WD Œ�p; �m�,

polynomials of degree � p on every knot interval Œ�k; �kC1� in D and at least .p � 1/
times continuously differentiable at every knot �k in the interior of D.

The proposition, a proof of which can be found in [15], implies linear indepen-
dence of the nodal B-splines f'p

n;i j i D 1; : : : ; 2n � 1g of level n 2 N by choosing

�k WD
�

k C 1 � p C 1

2

�
hn ; k D 0; : : : ;m C p ; m WD 2n � 1 ; (5)

which leads to 'p
n;i D bp

i�1;� for i D 1; : : : ;m, i.e. Sp
� D Vp

n when restricting all
B-splines to D D Œ�p; �m�. In particular, this means f'p

n;i j i 2 Ing is a basis of Wp
n .

Proposition 2 For every n 2 N, the hierarchical B-splines f'p
l;i j l � n; i 2 Ilg are

linearly independent, i.e., the sum
Ln

lD1 Wp
l is indeed direct.

Proof We prove the assertion by induction over n for the most common degrees
p 2 f1; 3; 5; 7g. For rather uncommon higher degrees, the proof can be viewed as
a sketch. For n D 1, only one function exists. To proceed from n � 1 to n, we
assume that f'p

l;i j l � n � 1; i 2 Ilg is linearly independent, so its span
Ln�1

lD1 Wp
l

is a direct sum of hierarchical subspaces. Because both sets f'p
n;i j i 2 Ing and

f'p
l;i j l � n � 1; i 2 Ilg are linearly independent, it is necessary and sufficient to

show that spanf'p
n;i j i 2 Ing \ Ln�1

lD1 Wp
l D f0g. Let f1 2 spanf'p

n;i j i 2 Ing and

f2 2 Ln�1
lD1 Wp

l with f1 D f2. Then coefficients cn;i; cl;i 2 R exist such that

X

i2In

cn;i'
p
n;i D f1 D f2 D

n�1X

lD1

X

i2Il

cl;i'
p
l;i :

The right-hand side is smooth in every grid point xn;j, j 2 In, of level n, as these
grid points are not knots of the B-splines of level < n. So the left-hand side must be
smooth there as well, i.e.

@p�f1.xn;j/ D @
p
Cf1.xn;j/ ; (6)

denoting with @p� and @p
C the left and right derivative of order p, respectively. Now

we use the combinatorial identity

@
p
Cbp.k/ D .�1/k

 
p

k

!
D @p�bp.k C 1/ ; k 2 Z ;



320 J. Valentin and D. Pflüger

setting
�p

k

� WD 0 for k < 0 or k > p. The identity stems from the repeated application
of relation (3) (cf. [15]). Calculating the left and the right derivative in xn;j of each
summand of f1 respectively, we obtain from (6)

X

i2In

cn;i.�1/k�1
 

p

k � 1

!
D
X

i2In

cn;i.�1/k
 

p

k

!
; k WD k.i; j/ D j � i C p C 1

2
;

due to 'p
n;i.xn;j/ D bp.k/. The inner derivative 1=hp

l canceled out from both sides.

Using the relation
� p

k�1
�C �p

k

� D �pC1
k

�
, we get

X

i2In

cn;i.�1/k
 

p C 1

k

!
D 0 ; j 2 In : (7)

As k is always odd or always even (for fixed j), we get

X

i2In

cn;i

 
p C 1

j � i C pC1
2

!
D 0 ; j 2 In ;

by multiplying (7) by �1 if k is odd. This is a linear system with variables cn;i,
whose sparsity pattern depends on p. The corresponding matrix A D A.p/ is a
symmetric .2n�1 
 2n�1/ Toeplitz matrix with bandwidth d p�1

4
e. For example, we

obtain tridiagonal matrices for p D 3 or p D 5:

A.3/ D

0

BBBB@

6 1

1
: : :

: : :

: : :
: : : 1

1 6

1

CCCCA
; A.5/ D

0

BBBB@

20 6

6
: : :

: : :

: : :
: : : 6

6 20

1

CCCCA
:

A.p/ is strictly diagonally dominant for p D 1; 3; 5; 7 and therefore invertible. For
higher degrees, the regularity of A.p/ must be shown differently. If A.p/ is regular,
we infer cn;i D 0 for all i 2 In, implying f2 D f1 D 0, which completes the proof for
the common cases p 2 f1; 3; 5; 7g. ut
Proposition 3 Let n 2 N. If we choose � as in (5) and restrict all functions involved
to D D Œ�p; �m�, then

Ln
lD1 Wp

l D Sp
� D Vp

n .

Proof We already mentioned that Wp
n � Sp

� D Vp
n holds. When restricting all of the

basis functions 'p
l;i to D D Œ�p; �m�, Wp

l � Sp
� also holds for smaller levels l < n:

Each basis function 'p
l;i, i 2 Il, is continuous on D, a polynomial of degree � p on

every knot interval of � (due to p odd) and at the knots themselves at least .p � 1/

times continuously differentiable. From proposition 1 it follows 'p
l;i 2 Sp

� and hence
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Wp
l � Sp

� for l � n. Consequently,
Ln

lD1 Wp
l � Sp

� and with a dimension argument,

dim
nM

lD1
Wp

l D
nX

lD1
jIlj D

nX

lD1
2l�1 D 2n � 1 D m D dim Sp

� ;

we obtain
Ln

lD1 Wp
l D Sp

� D Vp
n , which proves the proposition. ut

2.4 Modified and Multivariate Hierarchical B-Splines

In Œ0; 1� n D, linear combinations of hierarchical B-splines experience an unnatural
decay towards the boundary of Œ0; 1�. As a side effect, this can result in overshoots
of the linear combinations even when interpolating simple polynomials (see Fig. 2,
left). Note that Fig. 2 does not contradict Prop. 3, as the .p � 1/=2 leftmost and the
.p � 1/=2 rightmost grid points, where compliance with the interpolation condition
is enforced, do not lie in D D Œ�p; �m�.

Grids with boundary points can help, but they spend proportionally too few points
in the interior, most notably in higher dimensions. To overcome this difficulty,

Fig. 2 Left: interpolation of the parabola y D 4.x � 0:5/2 (dotted line) with unmodified (solid)
and modified B-splines (dashed) for p D 3. Right: modified hierarchical B-splines of degree p D 3

and level l D 1; 2; 3
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we modified the B-spline of level 1 and the first and last B-splines of higher
levels [28],

'
p;mod
l;i .x/ WD

8
ˆ̂̂
<̂

ˆ̂̂
:̂

1 if l D 1, i D 1,

 
p
l .x/ if l > 1, i D 1,

 
p
l .1 � x/ if l > 1, i D 2l � 1,

'
p
l;i.x/ otherwise,

 
p
l WD
d.pC1/=2eX

kD0
.k C 1/'

p
l;1�k ;

adding B-splines which have their maximum outside of Œ0; 1� (see Fig. 2, right). Due
to the relation

x D
X

k2Z

�
k C p C 1

2

�
bp.x � k/ ; x 2 R ;

which can be proven with Marsden’s identity [15], we infer for degree 1 �
p � 4

 
p
l .x/ D 2 � x

hl
; x 2

�
0;
5 � p

2
hl

�
:

In other words, modified B-splines with index i 2 f1; 2l � 1g extrapolate linearly
towards the boundary of Œ0; 1�, providing meaningful values for linear combi-
nations near the boundary. For higher degrees p > 4, the deviation from 2 �
x=hl is hardly visible, as the second derivative at the boundary is numerically
small.

Hierarchical B-splines of one dimension are generalized to the d-dimensional
case as usual by a tensor product approach,

'
p
l;i.x/ WD

dY

tD1
'

pt
lt ;it
.xt/ ; xl;i WD .xl1;i1 ; : : : ; xld ;id / ;

using multi-indices l; i 2 N
d, p 2 N

d
0, and x 2 Œ0; 1�d. We define d-variate nodal and

hierarchical subspaces by

Vp
l WD spanf'p

l;i j 8tD1;:::;dW it D 1; : : : ; 2lt � 1g ;
Wp

l WD spanf'p
l;i j i 2 Ilg ; Il WD Il1 
 � � � 
 Ild ;

Tensor products of linearly independent functions are linearly independent, i.e. the
generating sets of Vp

l and Wp
l are their bases, respectively. By using an analogous
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d-variate formulation of Prop. 1 (defining Sp
� appropriately), it follows as above

that

Vp
n D Sp

� D
M

l�n

Wp
l ;

if we choose the d knot sequences � D .�1; : : : ; �d/, �t D .�t;0; : : : ; �t;mtCpt /,
accordingly to (5) and restrict all functions to D D Œ�1;p1 ; �1;m1 � 
 � � � 
 Œ�d;pd ; �d;md �.
The sparse grid space Vp;s

n of level n can now be constructed as usual by

Vp;s
n WD

M

klk1�nCd�1
Wp

l :

We get the familiar piecewise linear sparse grid space with p D 1 WD .1; : : : ; 1/.
Sparse grid spaces consisting of modified B-splines are defined similarly.

3 Adaptive Grid Generation

The surrogate, which replaces the objective function f to be minimized, is defined as
the interpolant on an adaptively generated sparse grid. The most widespread method
is the refinement of the grid points whose hierarchical surpluses ˛l;i (in the piecewise
linear basis) have the highest absolute value [29]. However, this approach does not
generate more points close to minima than elsewhere. Instead we want to use a
slightly modified version of the Novak-Ritter refinement criterion [11, 16, 26] which
was specifically made for optimization (initially for hyperbolic cross points, which
are closely related to sparse grids).

The method works iteratively: We start with an initial regular sparse grid, e.g.
of level 3. Let X D fxk WD xlk;ik j k D 1; : : : ;Ng � R

d be the current sparse
grid at the beginning of an iteration. The Novak-Ritter criterion selects one point
xk� of X, which is then refined by inserting the 2d neighbors into the grid. The
neighbors of xl;i in the t-th dimension have level lt C 1 and index 2it ˙ 1 in
dimension t and the same level and index in all other dimensions. If one of the
neighbors already exists in X, then the first higher-order neighbor, which is not
in X, is inserted instead. The neighbor of order m has level lt C m and index
2mit ˙ 1 in the t-th dimension. Therefore, in each iteration exactly 2d points
are inserted. The grid generation is completed when a specific number N 2 N

of grid points, which is due to the overall effort that can be invested, has been
reached.

The Novak-Ritter criterion determines xk� as follows: Associate with each grid
point xk D xlk;ik three scalars klkk1, dk and rk. klkk1 is the sum of the levels, as
usual. dk represents the degree of xk, the number of times the point was already
selected (initially 0). rk is the rank of xk defined by rk WD jfk0 j f .xk0/ � f .xk/gj,
i.e., the point with the smallest objective function value gets rank 1, the next bigger
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Fig. 3 Adaptive grid generation of N D 500 points with Novak-Ritter’s refinement criterion for
the Schwefel 2D test function with � D 0:6 (left), � D 0:8 (center), and � D 0:95 (right). The
global minimum lies in the upper right corner

one gets rank 2 etc. Now, k
 is selected as the index for which the quality ˇk� is
minimal:

ˇk WD .klkk1 C dk C 1/� � r1��k :

We added 1 to the base of the first factor to prevent ambiguities if levels and degree
sum up to zero (possible when working with boundary grids). � 2 Œ0; 1� is the
adaptivity parameter with � D 0 meaning pure adaptivity and � D 1 leading
to an unadaptive algorithm with the function values being irrelevant. � must be
chosen carefully to allow the algorithm to explore the whole domain Œ0; 1�d, while
refining in promising regions sufficiently well to increase the accuracy of the sparse
grid interpolant (see Fig. 3 for an example). Its best choice depends a lot on the
characteristics of the objective function at hand. As a compromise, we choose a
priori � D 0:85 for all applications. Note that for � large enough, the set X of
generated grid points gets dense in Œ0; 1�d in the limit N ! 1, implying that for
arbitrary objective functions f , a global optimum will be found eventually (if N and
� are chosen large enough).

4 Implementation

After adaptively generating the grid as the first step, we replace the objective
function f by the sparse grid interpolant Qf and then apply existing optimization
algorithms to Qf . In this section, we want to elaborate on the two remaining
steps.
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4.1 Hierarchization

The interpolant Qf on the sparse grid X D fx1; : : : ; xNg � R
d is defined by the linear

combination of the basis functions 'k WD '
p
lk;ik

(either modified or not) interpolating
f in the grid points xk WD xlk;ik . This leads to a linear system with the variables
˛1; : : : ; ˛N 2 R (hierarchical surpluses):

Qf .x/ WD
NX

kD1
˛k'k.x/ ; Qf .xj/ D fj WD f .xj/ ; j D 1; : : : ;N : (8)

The basis transform f 7! ˛ is usually called hierarchization. For p D 1, the
linear system can efficiently be solved via the unidirectional principle [28]: It
suffices to apply one-dimensional hierarchization operators to all one-dimensional
subgrids (so-called poles) of X in each dimension, working with updated values.
However, the principle only works if every pole is a proper 1D sparse grid: Every
hierarchical ancestor of a grid point of X must be in X, too. This requirement has
severe effects, because every grid point insertion by Novak-Ritter’s algorithm in the
grid generation phase implies the recursive insertion of all (indirect) hierarchical
ancestors. The number of the ancestors to be inserted grows rapidly with the number
d of dimensions. For example, performing Novak-Ritter’s grid generation for the
well-known Rosenbrock function and � D 0:8 leads to 1128, 223, 61, 33, 16
refinement iterations for d D 2, 3, 4, 5, 10 respectively, stopping when N D 10;000

points have been generated. As a result, for d D 2 only 45 % of the maximum
possible number N=.2d/ of iterations has been exploited, for d D 3 only 13 % and
for d � 4 less than 5 %. The ancestors often lie at uninteresting places, wasting
valuable evaluations of the objective function.

For higher B-spline degrees p > 1, the unidirectional principle is in general
not applicable anyway. This is due to the fact that in this case basis functions
do not vanish at all grid points of coarser levels (unlike in the piecewise linear
case). For our purposes with limited overall effort N, it is sufficient to solve the
linear system (8) directly or iteratively. We thus do not have to generate additional
hierarchical ancestors, allowing to exhaust the full number N=.2d/ of iterations in
the grid generation phase. In general, the linear system is asymmetric and its sparsity
structure depends on how many grid points are contained in the supports of the basis
functions. For lower numbers d of dimensions and lower B-spline degrees p, the
system is sparse, which allows a solution by adequate solvers in reasonable time.1

1We used Gmm++ ([31], GMRES) and UMFPACK ([6], LU factorization) for sparse systems
and Armadillo ([33], LU factorization) and Eigen ([13], QR Householder factorization) for full
systems.
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4.2 Global Optimization

The constructed sparse grid B-spline interpolant Qf is .pt � 1/ times partially
continuously differentiable in dimension t D 1; : : : ; d. For pt > 1, we can
apply gradient-based optimization methods to Qf without having to evaluate f
additional times. We used local gradient-based algorithms [25], particularly the
gradient descent method, the nonlinear conjugate gradient method with Polak-
Ribière coefficients (NLCG, [30]), Newton’s method, BFGS, and Rprop [32], in
addition to the local gradient-free Nelder-Mead algorithm (NM, [24]). We also used
Storn’s and Price’s Differential Evolution (DE, [35]), using a population size of
10d, as a non-local gradient-free method. To prevent being stuck in local minima,
we globalized all mentioned local algorithms by using a multi-start approach with
m WD min.10d; 100/ uniformly random starting points (i.e. m parallel calls of the
local algorithm, each with 1=m of the permitted function evaluations). The gradient-
free techniques NM and DE are not only used for the global optimization of the
surrogate Qf , but also to directly optimize the objective function and the standard
piecewise linear interpolant (case of p D 1), as we will explain later.

Our optimization algorithm to solve problem (1) for a given objective function
f W Œ0; 1�d ! R works as follows, assuming that the adaptivity parameter � 2 Œ0; 1� of
the grid generation and the maximal number N 2 N of evaluations of f is given:

1. Generate the grid X D fx1; : : : ; xng, n � N, using the adaptive Novak-Ritter
method. This requires to evaluate the objective function n times, obtaining fj D
f .xj/.

2. Solve the linear system (8) to get the interpolant Qf W Œ0; 1�d ! R.
3. Optimize the interpolant: First, find y0 WD xj� with j
 WD arg minj fj. Then apply

all gradient-based methods to Qf with y0 as starting point. Let y1 be the resulting
point with the minimal objective function value. Now use the globalized local
algorithms and DE applied to Qf ; let y2 be the best (i.e. in terms of the f value)
point of the results. Take the point of fy0; y1; y2g with the smallest f value as
approximation x
opt to the optimum xopt of f .

The third step requires (beyond the n evaluations during grid generation) some,
say c, additional evaluations of f . Thus, a total of up to N C c evaluations have to
be performed during the algorithm. To keep the overall effort to at most N one can
enforce n � N � c in step 1. Because y0 is taken into account when determining
x
opt, the returned optimum is the point with the smallest objective function value of
all points where f was evaluated during the algorithm.

We compared our optimization algorithm to the following common optimization
techniques:

• Optimization of the piecewise linear sparse grid interpolant. Therefore we
proceed as above with B-spline degree p D 1, using only the gradient-free
methods NM (globalized) and DE to optimize Qf . The best of the two results is
called x0opt.
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• Direct optimization of the objective function f (with globalized NM) without
using sparse grids, but with only N evaluations permitted. The resulting optimum
is called x00opt.

5 Numerical Results and Applications

In this section, we want to review our optimization method with the aid of
artificial test functions and real-world applications. As standard parameters, we used
modified B-splines of degree p D 5 as basis functions and � D 0:85 as adaptivity.

5.1 Test Functions

We studied a wide variety of test functions for different dimensionalities [36]. In
the following, we present three functions for two dimensions and three functions
defined in arbitrary dimensions. The domain of each function is transformed to
the unit hypercube Œ0; 1�d by an affine transformation. Additionally, some of the
domains were translated and/or scaled first (when compared to the literature) to
make sure that the optimum does not lie at the center of the domain. Otherwise
sparse grid approaches would have been in advantage, because they spend pro-
portionally few points near the corners of Œ0; 1�d. In Table 1 we give the domains,
minimal points, and corresponding function values (all before parameter scaling and
translation). The two-dimensional test functions are shown in Fig. 4. All functions
were perturbed in the parameter domain by a small pseudo-random normally
distributed translation (standard deviation 0:01), while making sure that the optima
of the perturbed functions still lie in the original domains. To increase the validity of
our results, all results shown are the mean of five passes with different perturbations.

The plots depicted in Figs. 5, 6, and 8 show the difference between approximated
and true minimal value of the objective function over the number N of evaluations
of f . Each test function is associated with three lines: The solid lines represent the

Table 1 Employed test functions in two and arbitrary dimensions with abbreviations in bold

Name Domain xopt f .xopt/ Reference

Branin Œ�5; 10� � Œ0; 15� .��; 12:275/, .�; 2:275/,
.9:42478; 2:475/

0.397887 [18, Branin RCOS]

Eggholder Œ�512; 512�2 .512; 404:2319/ �959.6407 [37, F101]

Rosenbrock Œ�5; 10�2 .1; 1/ 0 [38]

Ackley Œ�1; 9�d 0 0 [38]

Rastrigin Œ�2; 8�d 0 0 [38]

Schwefel Œ�500; 500�d 420:9687 	 1 �418.9829d [38]
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Fig. 4 Bivariate test functions with location of the minimal points (after normalization of the
domain to Œ0; 1�2)

102 103 104
10−15

10−10

10−5

100

N

appr. error

Br Egg Ro

102 103 104
10−15

10−10

10−5

100

N

appr. error

Ack Ra Sch

Fig. 5 Approximation errors f .x�

opt/� f .xopt/ (solid lines), f .x0

opt/� f .xopt/ (dotted), and f .x00

opt/�
f .xopt/ (dashed) over the number N of evaluations for different test functions with d D 2 variables

performance of our optimization algorithm with result x
opt, the dotted lines display
the performance of the optimization of the piecewise linear sparse grid interpolant
with Nelder-Mead (NM) and Differential Evolution with result x0opt, and the dashed
lines show the optimization of the objective function using globalized NM with
result x00opt. Note that in the notation of the last section, we have f .x0opt/ � f .y0/,
implying that the gain of our method compared to the best Ritter-Novak grid point
y0 is at least f .x0opt/ � f .x
opt/ (difference between solid and dotted lines).

As can be seen in Fig. 5, functions like Branin and Rosenbrock are generally
easier to optimize since they feature few local minima and few oscillations. Such
functions can be approximated by B-spline linear combinations very well, which
leads to a considerable advantage for the B-splines compared to the standard
piecewise linear basis. Our method even beats the globalized NM method (dashed
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Fig. 6 Approximation errors f .x�

opt/� f .xopt/ (solid lines), f .x0

opt/� f .xopt/ (dotted), and f .x00

opt/�
f .xopt/ (dashed) over the number N of evaluations for different test functions with d D 3, d D 4,
d D 6, and d D 10 variables (from top left to bottom right)

lines) for most of the test functions. For the Eggholder function, fast convergence
of all methods is impeded not only by high oscillations and many local minima, but
also by the fact that the global optimum lies on the boundary of the domain (before
perturbing).

Figure 6 shows that for higher-dimensional functions, the problem of optimiza-
tion rapidly becomes very difficult. With increasing d, the rate of convergence
becomes substantially slower. We note that for moderate dimensions d 2 f3; 4g, B-
splines can provide a significant boost in the performance compared to the piecewise
linear basis. For higher dimensions d � 6, both sparse grid approaches (B-splines
and piecewise linear) perform better in general in comparison to the globalized NM
optimization technique. It can be seen that Rastrigin is a very tough function as
it exhibits numerous local minima in a neighborhood of the global minimum, all
with a similar function value. This can lead to a non-monotonous error decay of
our method as seen in the plots for d 2 f3; 4; 6g, since the global minimum x
opt
of the interpolant occasionally does not match with the actual optimum xopt of the
objective function.
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5.2 Model of a DC Motor

As an example application we study an inverse problem of a simple DC (direct
current) motor. If we denote with � and ! the angular position and velocity in rad
and rad/s, respectively, then an idealized model (with zero disturbance and torque)
of the motor can be deduced [22], obtaining the linear state-space representation

P�.t/ D !.t/ ; P!.t/ D �1
�
!.t/C k

�
U.t/ ; �.0/ D �0 ; !.0/ D !0 ; (9)

with .�; !/ as both state and output, input voltage U, and motor-dependent constants
� (time constant) and k (steady-state gain). It can easily be seen that for constant
inputs U � U0, ! then satisfies !.t/ D .!0 � kU0/e�t=� C kU0.

We have generated artificial data for the motor sampled at tj with 10 Hz over a
time span of 60 s (see Fig. 7). The sampled data .�j; !j/ was generated by adding an
artificial Gaussian noise with standard deviation 0.1 rad and 0.1 rad/s to the solution
.�; !/ of (9) for the generated voltage data Uj, respectively. Our goal is now to
determine .�; k; �0; !0/ so that the resulting solution .�; !/ of (9) minimizes the `2

norm .
P

j.!.tj/ � !j/
2/1=2 of the difference of experimental and simulated angular

velocity. The error functional does not need to take � into account, as P� D ! should
imply a good match of � and �j and including � in the error functional would lead
to worse results due to overfitting. In total, this leads to a 4D optimization problem.

Before we can start optimizing, we need to determine reasonable parameter inter-
vals. Looking at the data, we guess �0 2 Œ�2 rad; 2 rad� and !0 2 Œ�2 rad/s; 0 rad/s�.
We guess � by looking at the half-life period � ln 2 of the transient response after
a change in input voltage polarity. This period roughly equals 0.3 s which would
imply � 	 0:43 s, justifying the assumption of � 2 Œ0:2 s; 0:6 s�. For the interval of
k, we look at the steady-state angular velocity kU0, which is around 1 rad/s, leading
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Fig. 7 Input voltage U (solid black line), artificial motor data .�j; !j/ (solid gray), and simulated
data .�; !/ of optimal model (dashed)
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Fig. 8 Approximation errors
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with U0 D 5V to k 	 0:2 rad/(Vs). Therefore, we generously set the interval to
k 2 Œ0:1 rad/(Vs); 0:4 rad/(Vs)�.

Figure 8 (log-log plot as above) shows the performance of our optimization
method as well as the performance of the piecewise linear basis and the direct
optimization of the objective function with the globalized Nelder-Mead method
(NM). We see that the objective function is sufficiently smooth to allow good B-
spline interpolation, leading to a faster convergence compared to the piecewise
linear basis and to the classical NM technique, with convergence beginning at
N D 100 grid points. Our method exactly finds the optimal parameters �opt D
0:496 s, kopt D 0:214 rad/(Vs), �0;opt D �0:198 rad, !0;opt D �0:411 rad/s with
error functional value 2:693 using just N D 1000 evaluations.

5.3 Shape Optimization with Homogenization

As another application, we have also employed B-splines on sparse grids in a two-
scale shape optimization setting [17]. Classical approaches in shape optimization
share the drawback of severely restricting the set of feasible topologies before
starting to optimize, which leads to homeomorphic results. However, one often does
not know the topology of the optimal shape beforehand. For example, if we take
the cantilever in Fig. 9 (left), which is fixed at one side and deformed by a force
F at the other side, and want to determine the cantilever shape which minimizes
displacement, we do not know if we should use one, two, or even more crossbars, if
the cantilever is only allowed to take up a specific volume.

In the homogenization approach [2], the whole domain ˝ is potentially filled
with material with varying density %.x/ 2 Œ0; 1�. For a fixed force F, we want % to
minimize the compliance function J.u%/ with a volume constraint,

min
%

J.u%/ s.t.
1

j˝j
Z

˝

%.x/dx � %max ; J.u%/ WD
Z

˝

F � u%.x/dx ; (10)
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F

Fig. 9 Left: shape optimization of a 2D cantilever fixed at the left side with force F resulting in a
deformation. Right: optimized model consisting of macro cells (compounds of micro cells)

where %max 2 Œ0; 1� is the maximal total density and u%.x/ is the displacement
in x 2 ˝ (depending on the density %), which can be determined by the finite
element method (FEM, [14, 17]). In the following, we restrict ourselves to the two-
dimensional case, but the 3D case could also be handled in an analogous way.

We choose a two-scale approach as Hübner [17]: First, we discretize the domain
in .N1 
 N2/ macro cells. Each macro cell k is a compound of tiny periodic and
identical micro cells (see Fig. 9), which are formed by shearing an axis-parallel cross
with thicknesses ak; bk by an angle 'k 2 .��=2; �=2/, resulting in parallelogram-
shaped micro cells. If ak; bk; 'k are known, one can compute the symmetrical
elasticity tensor Ek D .Ek;i;j/1�i;j�3 2 R

3�3 of macro cell k by the FEM (micro
problem). When we know all the Ek, we can compute u% with the density % given by
the 3N1N2 parameters ak; bk; 'k, k D 1; : : : ;N1N2, again by solving a FEM problem
(macro problem). Our goal is finding a combination of the 3N1N2 parameters which
solves (10). Because every evaluation of J.up/ triggers the solution of a macro
problem (which depends on N1N2 micro problems), a single evaluation is very
expensive. As in [17], we use the FEM solver CFS++ [20] which provides interfaces
to established optimizers like SNOPT [12], requiring gradients that have to be
approximated by finite differences, since they are not available explicitly.

To increase performance, Hübner [17] precomputes values of the elasticity tensor
EW Œ0; 1�3 ! R

3�3 for different combinations of normalized parameters a; b; ' and
replaces the task of solving micro problems by the evaluation of an interpolant
QEW Œ0; 1�3 ! R

3�3 of E. Full grid interpolation approaches are possible, but more
complex micro cell models (e.g. in 3D) will feature more parameters, which would
imply a prohibitively large precomputational effort in terms of both computing
time and storage space. In [17], also the suitability of sparse grid interpolation
with piecewise linear functions was studied. However, these lead to problems
because of the discontinuous derivatives calculated by the gradient-based optimizer.
It seems natural to employ B-spline basis functions instead, as the function E to
be interpolated is supposedly relatively smooth. Additionally, the optimizer can use
exact derivatives of the interpolant.
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As an example, we consider the cantilever in Fig. 9 (“example A” in [17]), where
the domain consists of 40 � 26 macro cells. The emerging optimization problem
with 3 � 40 � 26 D 3120 variables is solved by CFS++/SNOPT and visualized as in
Fig. 9 (right), where each macro cell is represented by a single micro cell cross. We
compare the performance of B-splines to the piecewise linear basis and to piecewise
tricubic interpolation [21] on the full grid of level 6.

First, we examine the B-spline sparse grid interpolation method when all 'k D 0

are fixed and only ak and bk are optimized. In this case, four elasticity tensor entries
E1;3 D E2;3 D 0 D E3;2 D E3;1 vanish. This makes a significant difference
in complexity as there are only four non-trivial entries of E left and only two
variables per interpolant, resulting in an optimization problem of 2 � 40 � 26 D 2080

variables. If we look at the results in Table 2 (top half), we observe that sparse grid
interpolation produces similar objective function values as tricubic interpolation on
the full grid. However, using a full grid interpolant leads to better convergence
and faster termination. With sparse grid B-splines (see Fig. 10, left) we even get
a smaller compliance function value than the full grid interpolation.

Second, we look at the general case where all 3N1N2 are to be optimized.
The optimization now takes much more time since there are more tensor entries
to be interpolated, more partial derivatives to be evaluated, and more unknown

Table 2 Results for the two-parameter case (where 'k D 0 is fixed) and the three-parameter case
with optimal compliance function value, number of iterations, and time needed by SNOPT for
optimization without precomputation of the elasticity tensors (
max D 0:5)

#Param. Grid Basis Obj. Fcn. #Iter. Time

2 Full, level 6 Piecewise tricubic interpolation 42:85 170 128 s

2 Sparse, level 7 Modified piecewise linear 43:00 704 546 s

2 Sparse, level 7 Modified cubic B-splines 42:80 377 299 s

3 Full, level 6 Piecewise tricubic interpolation 41:86 1307 27 min

3 Sparse, level 8 Modified piecewise linear 41:95 4203 163 min

3 Sparse, level 8 Modified cubic B-splines 41:26 1483 139 min

Fig. 10 Results with modified B-splines of degree p D 3 and a material fraction of 
max D 0:5

for fixed 'k D 0 with a regular sparse grid of level 7 with 2815 points (left) and optimized 'k with
a refined sparse grid with 4439 points (right)
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optimization parameters. But as we have more degrees of freedom, the obtained
objective function values (cf. Table 2, bottom half) are slightly better than in the
case of 'k D 0. If we compare the visualizations in Fig. 10, we note the exploitation
of the additional degrees of freedom as the incline of the crossbar is more gentle in
the case of three parameters per micro cell.

For the trivariate sparse grid interpolants, it is not sufficient to discretize Œ0; 1�3

with a regular sparse grid of level 7 due to too many oscillations of the resulting
QE. Even for a regular sparse grid of level 8 and piecewise linear functions, the
optimizer terminates early because of numerical difficulties, showing the problems
introduced by approximating discontinuous derivatives by difference quotients.
Again, B-splines perform quite well since they find the best parameter combination
in terms of compliance function values compared to full tricubic or sparse piecewise
linear interpolation, spending a multiple of the computational time of the full grid
interpolation, though. This will, however, change as soon as we consider a more
complicated micro cell model (e.g. in three dimensions), where we will not be able
to employ full grid interpolation anymore.

Starting from the regular sparse grid of level 7, we also generated a spatially
adaptive sparse grid, specifically tailored for this interpolation problem [36]. With
only 4439 points (cf. 2815 and 7423 points of the regular grids of level 7 and 8,
respectively), we get moderately worse results (objective function value of 42.14)
for the modified cubic B-splines than for the regular sparse grid of level 8, but
the optimization then only takes 84 min. Additionally, we have not taken into
account the precomputation time to create the elasticity tensor data at the sparse grid
interpolation points, which, accordingly to the smaller number of grid points, would
be smaller, too (compared to the level 8 regular grid). Of course, the precomputation
effort for the full grid of level 6 is much larger as it needs 258,048 data points.

6 Conclusion

We constructed a surrogate-based optimization approach using B-splines on sparse
grids. After proving their linear independence and studying the direct sum of
hierarchical subspaces, we used an adaptive grid generation method by Novak-
Ritter to generate spatially adaptive sparse grids with adjustable adaptivity � 2
Œ0; 1�. Finally, we successfully employed our new optimization method to various
artificial test functions and real-world examples. The new method works well
for smooth, moderately dimensioned objective functions without high-frequency
oscillations. We would like to mention we have applied our method to a lot more test
functions (e.g. Beale, Goldstein-Price, Griewank) [36], and we picked a somewhat
representative subset for this work. We also studied other sparse grid types like grids
with boundary points or Clenshaw-Curtis grids with non-uniform Chebyshev points.
However, the modified B-splines on the standard grid without boundary points seem
to exhibit the best performance for a given number of grid points.
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Certainly, there is room for improvement, as we used the same fixed B-spline
degree p D p � 1 for all of the dimensions. We could start to use different degrees
pt depending on the dimensions t. Going one step further, we could even choose p
adaptively depending on the objective function f , to adapt to discontinuities of f or
its derivatives.
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