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Abstract Thermoelastic wave propagation suggests a coupling between elastic
deformation and heat conduction in a body.Microstructure of the body influences the
both processes. Since energy is conserved in elastic deformation and heat conduction
is always dissipative, the generalization of classical elasticity theory and classical
heat conduction is performed differently. It is shown in the paper that a hyperbolic
evolution equation for microtemperature can be obtained in the framework of the
dual internal variables approach keeping the parabolic equation for the macrotem-
perature. The microtemperature is considered as a macrotemperature fluctuation.
Numerical simulations demonstrate the formation and propagation of thermoelastic
waves in microstructured solids under thermal loading.

1 Introduction

Microstructure of a body influences both wave propagation and heat conduction.
Microstructure-oriented theories of generalized continua [1–4] are, as a rule, isother-
mal, whereas the generalization of heat conduction to non-Fourier laws [5–8] is
usually restricted by the consideration of homogeneous and even rigid conductors.
The main problem is, therefore, to elaborate a conjoint framework for the descrip-
tion of coupled conservative and dissipative processes. As shown recently, such an
unification is possible on the basis of the dual internal variables approach [9, 10].

In the conventional thermoelasticity, the free energy density is a function of the
deformation gradient and temperature only and cannot depend on the temperature
gradient. However, the temperature gradient influence on the thermomechanical
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response of a microstructured material is expected in the presence of varying tem-
perature fields at the microstructure level [11]. This means that a weakly non-local
description should be applied [12]. As a result of the application of the dual inter-
nal variables theory, it is possible to obtain a hyperbolic evolution equation for
microtemperature keeping the parabolic equation for the macrotemperature [10].
The microtemperature is considered as a macrotemperature fluctuation. Effects of
microtemperature gradients exhibit themselves on themacrolevel due to the coupling
of equations of macromotion and evolution equations for macro- and microtemper-
atures. The overall description of thermomechanical processes in microstructured
solids includes both direct and indirect couplings of equations ofmotion and heat con-
duction at the macrolevel. In addition to the conventional direct coupling, there exists
the coupling betweenmacromotion andmicrotemperature evolution. Thismeans that
the macrodeformation induces microtemperature fluctuations due to the heterogene-
ity in the presence of a microstructure. These fluctuations, propagating with a finite
speed, can induce, in turn, corresponding changes in the macrotemperature. Then the
appeared changes in the macrotemperature affect macrodeformations again. Numer-
ical simulations demonstrate the formation and propagation of thermoelastic waves
in microstructured solids under thermal loading [13].

The purpose of the paper is twofold. First, the difference between the standard
single internal variable theory and the dual internal variable approach is empha-
sized. Next, it is demonstrated how thermal gradients produced by an appropriate
microstructure are able to generate fluctuations propagating with a finite speed with-
out introducing a hyperbolic heat conduction equation for the macrotemperature.

2 Internal Variables Formalism

Before the application of the dual internal variable approach to the description of
dynamic response of solids with microstructure, it is worth to explain the difference
between the single internal variable theory and the dual internal variables approach.
We start with the remainder of the single internal variable technique.

2.1 Single Internal Variable in One Dimension

We consider the simplest possible situation, i.e. a “body” or a “system” in one dimen-
sion. Suppose that all thermodynamic quantities like temperature, energy, entropy,
etc. are defined. Then we assume that the free energy density W is specified as a
function of temperature θ and an internal variable ϕ and its space derivative

W = W(θ, ϕ, ϕx). (1)
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Constitutive assumption (1) allows us to write down so-called “equations of state”
(just definition of additional quantities)

S := −∂W

∂θ
, τ := −∂W

∂ϕ
, η := −∂W

∂ϕx
, (2)

where S is the entropy density per unit reference volume.
The balance of internal energy in this case can be represented as

Et + Qx = 0, (3)

where E is the internal energy density and Q is the heat flux, indices denote time and
space derivatives. Remembering the connection between internal energy and free
energy, i.e., W = E − Sθ , we arrive at another form of the energy balance

(Sθ)t + Qx = hint, hint := −Wt, (4)

where the right-hand side of Eq. (4)1 is formally an internal heat source [14].
The energy balance should be accompanied by the second law of thermodynamics

here written as
St + (Q/θ + K)x ≥ 0, (5)

where K is the “extra” entropy flux that vanishes in most cases, but this is not a basic
requirement [14].

Multiplying the second law (5) by θ

θSt + θ(Q/θ + K)x ≥ 0, (6)

and taking into account Eq. (4), we obtain

− (Wt + Sθt) + (θK)x − (Q/θ + K)θx ≥ 0. (7)

The internal heat source hint is calculated as follows:

hint = −Wt = −∂W

∂θ
θt − ∂W

∂ϕ
ϕt − ∂W

∂ϕx
ϕxt = Sθt + τϕt + ηϕxt = hth + hintr . (8)

Accounting for Eq. (8), dissipation inequality (7) can be rewritten as

Φ = τϕt + ηϕxt − (Q/θ + K)θx + (θK)x ≥ 0. (9)

To rearrange the dissipation inequality, we add and subtract the same term ηxϕt

Φ = τϕt + ηϕ̇x − ηxϕt + ηxϕt − (Q/θ + K)θx + (θK)x ≥ 0, (10)
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which leads to

Φ = (τ − ηx)ϕt − (Q/θ + K)θx + (ηϕt + θK)x ≥ 0. (11)

Following [15], we select the “extra” entropy flux in such a way that the divergence
term in Eq. (11) will be eliminated

K = −θ−1ηϕt . (12)

Then dissipation inequality (11) reduces to

Φ = (τ − ηx)ϕt − (Q/θ + K)θx ≥ 0. (13)

It is remarkable that in the isothermal case (θx = 0) the dissipation is determined by
the internal variable only.

The simplest choice to satisfy the dissipation inequality (13) in the isothermal case

Φ = (τ − ηx)ϕt ≥ 0, (14)

is the following one:
ϕt = k(τ − ηx), k ≥ 0, (15)

since dissipation inequality (14) is satisfied automatically in this case

Φ = kϕ2
t ≥ 0, if k ≥ 0. (16)

It is easy to see that the dissipation is the product of the thermodynamic fluxϕt and the
thermodynamic force (τ −ηx). The proportionality between the thermodynamic flux
and the conjugated force is the standard choice to satisfy the dissipation inequality.

To see how the obtained evolution equation looks like, we specialize free energy
dependence (1) in the isothermal case to a quadratic one

W = 1

2
Bϕ2 + 1

2
Cϕ2

x , (17)

where B and C are material parameters. It follows from equations of state (2) that

τ := −∂W

∂ϕ
= −Bϕ, η := −∂W

∂ϕx
= −Cϕx, (18)

and evolution equation (15) is an equation of reaction-diffusion type

ϕt = k(Cϕxx − Bϕ), k ≥ 0. (19)
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The given standard formalism of internal variables of state is sufficient for many
cases [16].

2.2 Dual Internal Variables

The dual internal variables approach is the extension of the technique described
above. We suppose that the free energy density depends on internal variables ϕ,ψ

and their space derivatives

W = W(θ, ϕ, ϕx, ψ,ψx). (20)

The equations of state in the case of two internal variables read

S = −∂W

∂θ
, τ := −∂W

∂ϕ
, η := −∂W

∂ϕx
, ξ := −∂W

∂ψ
, ζ := − ∂W

∂ψx
. (21)

We introduce the non-zero extra entropy flux following the case of a single internal
variable and set

K = −θ−1ηϕt − θ−1ζψt . (22)

It can be checked that the intrinsic heat source is determined in the considered case
as follows

˜hintr := (τ − ηx)ϕt + (ξ − ζx)ψt . (23)

The latter means that the dissipation inequality in the isothermal case reduces to

Φ = (τ − ηx)ϕt + (ξ − ζx)ψt ≥ 0. (24)

The solution of the dissipation inequality can be represented as [17]

(

ϕt

ψt

)

= L
(

(τ − ηx)

(ξ − ζx)

)

, or

(

ϕt

ψt

)

=
(

L11 L12

L21 L22

) (

(τ − ηx)

(ξ − ζx)

)

. (25)

The non-negativity of the entropy production (24) results in the positive semidefi-
niteness of the conductivity matrix L, which requires

L11 ≥ 0, L22 ≥ 0, L11L22 − (L12 + L21)
2

4
≥ 0. (26)

To be more specific, we keep a quadratic free energy density in the isothermal case

W = 1

2
Bϕ2 + 1

2
Cϕ2

x + 1

2
Dψ2 + 1

2
Fψ2

x . (27)
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Calculating quantities defined by equations of state

τ := −∂W

∂ϕ
= −Bϕ, η := −∂W

∂ϕx
= −Cϕx, (28)

ξ := −∂W

∂ψ
= −Dψ, ζ := − ∂W

∂ψx
= −Fψx, (29)

we can represent system of Eqs. (25) in the form

ϕt = L11(−Bϕ + Cϕxx) + L12(−Dψ + Fψxx), (30)

ψt = L21(−Bϕ + Cϕxx) + L22(−Dψ + Fψxx). (31)

Now we will derive a single equation for the internal variable ϕ. For this purpose,
Eq. (30) is differentiated with respect to time

ϕtt = L11(−Bϕt + Cϕxxt) + L12(−Dψt + Fψxxt). (32)

Time derivatives of the internal variable ψ follow from Eq. (31)

ψt = L21(−Bϕ + Cϕxx) + L22(−Dψ + Fψxx), (33)

ψtxx = L21(−Bϕxx + Cϕxxxx) + L22(−Dψxx + Fψxxxx). (34)

At last, the internal variable ψ can be eliminated using again Eq. (30)

(−Dψ + Fψxx) = 1

L12
ϕt − L11

L12
(−Bϕ + Cϕxx), (35)

(−Dψxx + Fψxxxx) = 1

L12
ϕtxx − L11

L12
(−Bϕxx + Cϕxxxx). (36)

As a result, time derivatives of the internal variable ψ can be represented in terms of
the internal variable ϕ

ψt = L21(−Bϕ + Cϕxx) + L22

(

1

L12
ϕt − L11

L12
(−Bϕ + Cϕxx)

)

= L22

L12
ϕt + L12L21 − L11L22

L12
(−Bϕ + Cϕxx), (37)

ψtxx = L21(−Bϕxx + Cϕxxxx) + L22

(

1

L12
ϕtxx − L11

L12
(−Bϕxx + Cϕxxxx)

)

= L22

L12
ϕtxx + L12L21 − L11L22

L12
(−Bϕxx + Cϕxxxx), (38)
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and the evolution equation for the internal variable ϕ has the form

ϕtt = L11(−Bϕt + Cϕxxt) + L12(−Dψt + Fψxxt)

= L11(−Bϕt + Cϕxxt) − DL22ϕt − D(L12L21 − L11L22)(−Bϕ + Cϕxx)

+FL22ϕtxx + F(L12L21 − L11L22)(−Bϕxx + Cϕxxxx). (39)

After rearranging, we have finally

ϕtt = (CD + BF)(L11L22 − L12L21)ϕxx + (L12L21 − L11L22)(BDϕ + CFϕxxxx)

−(BL11 + DL22)ϕt + (CL11 + FL22)ϕtxx. (40)

The free energy density W is non-negative by default, which results in non-
negativity of material parameters B, C, D, and F. This means that Eq. (40) is the
hyperbolic wave equation with dispersion and dissipation.

Thus, extending the state space of our thermodynamic system by an additional
internal variable and keeping the quadratic form for the free energy density, we arrive
at the hyperbolic evolution equation for the primary internal variable.

3 One-dimensional Thermoelasticity in Solids with
Microstructure

Nowwe are ready to apply the dual internal variables approach to thermoelasticity in
solids with microstructure. We will keep the one-dimensional setting to be as simple
as possible. The 3D tensorial representation of the application of the dual internal
variables approach is given in [18, 19].

3.1 Reminder: Classical Linear Thermoelasticity

The one-dimensional motion of the thermoelastic conductors of heat is governed by
local balance laws for linear momentum and energy (no body forces)

ρvt − σx = 0, (41)

Et − σεt + Qx = 0, (42)

and by the second law of thermodynamics

St + Jx ≥ 0. (43)
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Here σ is the one-dimensional stress, v is the particle velocity, J is the entropy flux,
subscripts denote derivatives.

The constitutive relations include the Hooke law

σ = (λ + 2μ)ε, (44)

and the Fourier law
Q = −κ2θx, (45)

where λ and μ are Lamé coefficients, κ2 is the thermal conductivity. The entropy
flux is proportional to the heat flux

J = Q

θ
. (46)

The combined constitutive relation known as the Duhamel-Neumann equation has
the form

W(ε, θ) = 1

2
(λ + 2μ) u2

x − ρcp

2θ0
(θ − θ0)

2 + m (θ − θ0) ux, (47)

where u is the displacement, cp is the heat capacity, the thermoelastic coefficient
m is related to the dilatation coefficient a and the Lamé coefficients λ and μ by
m = −a(3λ + 2μ), θ0 is the reference temperature.

Correspondingly, the time derivative of internal energy

Et = θSt + σεt, (48)

and entropy definition

S =: −∂W

∂θ
= ρcp

θ0
(θ − θ0) − mux, (49)

yield in the balance of energy

Stθ − (kθx)x =
(

ρcp

θ0
θt − muxt

)

θ − (kθx)x = 0, (50)

which can be reduced for small deviations from the reference temperature to

ρcpθt − (κ2θx)x = mθ0uxt . (51)

The latter equation together with the balance of linear momentum

ρutt = (λ + 2μ) uxx + mθx, (52)

form the coupled system of equations for linear thermoelasticity.
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3.2 Microstructure Influence: Dual Internal Variables

Now we suppose that the free energy density depends on internal variables ϕ,ψ and
their space derivatives W = W(ux, θ, ϕ, ϕx, ψ,ψx). We use a quadratic free energy
function [9]

W = 1

2
(λ + 2μ) u2

x − ρ0cp

2θ0
(θ − θ0)

2 + m (θ − θ0) ux

+Aϕxux + 1

2
Cϕ2

x + 1

2
Dψ2. (53)

Here A, C, and D are material parameters. This means that state variables include
strain, temperature, and two internal variables (and their gradients). For simplicity,
only a contribution of the second internal variable itself and the gradient of the
primary internal variable are included here. The corresponding equations of state
determine macrostress σ

σ := ∂W

∂ux
= (λ + 2μ) ux + m (θ − θ0) + Aϕx, (54)

microstress η

η := −∂W

∂ϕx
= −Cϕx − Aux, (55)

zero interactive internal force τ

τ := −∂W

∂ϕ
= 0, (56)

and auxilary quantities related to the second internal variable

ζ = − ∂W

∂ψx
= 0, ξ = −∂W

∂ψ
= −Dψ. (57)

Accounting for the time derivative of internal energy

Et = θSt + σεt − τϕt − ηϕxt − ξψt − ζψxt, (58)

results in the energy balance in the form

θSt − τϕt − ηϕxt − ξψt − ζψxt + Qx = 0, (59)

which together with the second law of thermodynamics

θSt + θJx ≥ 0, (60)
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determines the dissipation inequality

(τ − ηx)ϕt + (ξ − ζx)ψt + (θJ + ηϕt + ζψt − Q)x − Jθx ≥ 0. (61)

Including into consideration the non-zero extra entropy flux according to Eq. (22)

K = −θ−1ηϕt − θ−1ζψt . (62)

we reduce the dissipation inequality to the sum of intrinsic and thermal parts

Φ = (τ − ηx)ϕt + (ξ − ζx)ψt −
(

Q − ηϕt − ζψt

θ

)

θx ≥ 0. (63)

Assuming that the intrinsic dissipation is independent of the temperature gradient,
we are forced to modify the Fourier law as follows

Q − ηϕt − ζψt = −κ2θx, (64)

to satisfy the thermal part of the dissipation inequality.
The remaining intrinsic part of dissipation inequality (63) is satisfied by a choice of

evolution equations for internal variables. As it is shown in [9], the thermal influence
of a microstructure can be taken into account by the following choice

ϕt = R(ξ − ζx), ψt = −R(τ − ηx) + R2(ξ − ζx), (65)

whereR andR2 are certain appropriate constants. This choice means that the intrinsic
dissipation is partly canceled and its remaining part is the square with a positive
coefficient.

It follows from Eqs. (65) and (57) that

ϕt = −RDψ, (66)

i.e., the dual internal variable ψ is proportional to the time derivative of the primary
internal variable ϕt . Then the evolution equation for the internal variable ψ

ψt = −R(τ − ηx) + R2(ξ − ζx), (67)

can be represented as

− 1

RD
ϕtt = −R(Cϕxx + Auxx) + R2

R
ϕt, (68)

or in the following form (I = 1/R2D)
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Iϕtt + R2

R2
ϕt = Cϕxx + Auxx, (69)

which is a Cattaneo-Vernotte-type hyperbolic equation [5] for the internal variable
ϕ.

Correspondingly, energy balance (59) in this case has the form

ρ0cp θt − (

κ2θx
)

x = mθ0uxt + R2

R2
ϕ2

t . (70)

Equation for macrotemperature (70) is influenced by a source termwhich depends on
the internal variable ϕ. This equation, as well as evolution equation for the internal
variable ϕ (69) is coupled with the equation of motion [9]

ρ0utt = (λ + 2μ) uxx + mθx + Aϕxx, (71)

which means that the internal variable ϕ possesses a wave-like behavior induced by
the macrodeformation. Identifying the internal variable ϕ with the microtemperature
[9], we see that themicrotemperaturemay induce awave-like propagation also for the
macrotemperature due to the corresponding source term in heat conduction equation
(70). Physically, the introduced microtemperature describes fluctuations about the
mean temperature due to the presence of a microstructure.

4 Numerical Simulations

Now we will check the influence of microstructure on the thermoelastic wave prop-
agation numerically. The solution of equations (69)–(71) in the case of plane wave
motion in a thermoelastic half-space is obtained by means of the wave propagation
algorithm explained in detail in [13]. We consider the matrix material as silicon
and the microstructure is represented by copper particles embedded randomly in
the matrix. Material parameters for silicon are the following [20]: the macroscopic
density, ρ0, is equal to 2390kg/m3, the Lamé coefficients λ = 48.3 GPa, and μ =
61.5 GPa, the heat capacity, cp = 800 J/(kg K), the reference temperature, θ0 = 300
K, the thermal conductivity, k = 149 W/(m K), the thermal expansion coefficient,
α = 2.6 × 10−6 1/K. Correspondingly, material parameters of copper are [21]: the
macroscopic density, ρ0, is equal to 8960kg/m3, the Lamé coefficients λ = 101.5
GPa, andμ = 47.75 GPa, the heat capacity, cp = 386 J/(kg K), the reference temper-
ature, θ0 = 300K, the thermal conductivity, k = 401W/(mK), the thermal expansion
coefficient, α = 16.5 × 10−6 1/K.

The problem under consideration is the thermoelastic wave propagation induced
by a thermal excitation at the boundary of the half-space. It is assumed that the
material is initially at rest. Two consecutive heat pulses are generated at the traction
free boundary plane for the first 120 time steps following the rule
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θ(0, t) = 1

2

(

1 + cos

(

π(t − 30Δt)

30

))

. (72)

The scale of excitation, U0, is chosen as 6% of the length of the computational
domain, L, so that U0/L = 0.06. The scale of the microstructure, l, is supposed to
be even less l/L = 0.002. Following [22] coupling parameters used in calculations
are chosen as follows:

R22

R2
12

= ρ0c0
l

, A = 0.02ρ0c20, C = ρ0c20. (73)

To exclude the direct influence of stress field on the macrotemperature, it was
assumed that the velocity gradient in Eq. (70) is negligible.

All calculations were performed by means of the finite-volume numerical scheme
[13] using the value of the Courant number 0.98. This scheme is a modification of
the previously reported conservative finite-volume algorithm [23, 24] adapted for
microstructure modeling. It belongs to a broad class of finite-volume methods for
thermomechanical problems [25, 26].

Results of calculations are presented in Fig. 1. This Figure demonstrates explic-
itly how the coupling in mathematical model (69)–(71) works. In the case of pure
silicon we see only thermal diffusion in the vicinity of the boundary. The dou-
ble pulse thermal excitation generates the corresponding stress pulses propagating
through the material. If microstructure is taken into account, this stress pulses induce
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Fig. 1 Normalized temperature, stress, and microtemperature distribution at 350 time steps
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the microtemperature waves. The microtemperature affects the macrotemperature
resulting in the oscillations of the macrotemperature hump with a fading thermal
wake.

It should be noted that the scales for all quantities in Fig. 1 are different and
chosen artificially to show all quantities in a single picture. The real effect of the
microstructure is sufficiently small and can be made visible only by means of a
corresponding zooming.

5 Conclusions

The dual internal variables approach leads naturally to a hyperbolic evolution equa-
tion for the primary internal variable. In the case of thermoelasticity, this internal
variable can be interpreted as a microtemperature or, in other words, as a temperature
fluctuation due to the microstructure. Coupling of the governing equations results in
the wave-like temperature behavior.

Although the observed effect of the microstructure is small, it exists in the case
of realistic values of material parameters. This effect can be amplified by a choice
of suitable materials or even by a design of corresponding artificial materials.

It is remarkable that the governing equation for the macrotemperature remains
parabolic. The wave-like temperature behavior appears only due to the influence of
microstructure.
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