
Some Remarks to Higher Order Frames
Occurring in Continuum Mechanics

Miroslav Kureš

Abstract Frame bundles are described with respect to their role in continuum
mechanics, the structure jet groups are studied and some expressions in local coordi-
nates are derived. It is introduced the general (r-th order)microstructure configuration
and it is suggested what needs to be investigated in subsequent research.

1 Introduction

Samuel Forest published in [4] the following nice table representing a hierarchy of
higher order continua.

Name No. of d.o.f. d.o.f. References
Cauchy 3 u Cauchy (1822)
Microdilatation 4 u, χ Goodman and Cowin (1972); Steeb and Diebels (2003)
Cosserat 6 u, R Kafadar and Eringen (1971)
Microstretch 7 u, χ , R Eringen (1990)
Microstrain 9 u, C� Forest and Sievert (2006)
Micromorphic 12 u, χ Eringen and Suhubi (1964); Mindlin (1964)

The meaning of the symbols is as follows: u is the displacement field, χ is the
microdeformation tensor field, C� is the right Cauchy-Green tensor, R is the special
microdeformation, namely the rotation.

Certainly, it would be beneficial to have a unified and effective theoretical descrip-
tion of all such cases. In this paper, we show that a very elegant way is to use dif-
ferential geometry. Using it, a lot of successful and understandable interpretations
have already been created, for an example in the book Material Inhomogeneities and
their Evolution: A Geometric Approach [3] of authors Marcelo Epstein and Marek
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Elżanowski, in the lecture notes Introduction to Continuum Mechanics [7] of Panayi-
otis Papadopoulos or a number of scientific papers as e.g. Continuum dynamics on
a vector bundle for a directed medium [8] by Yamaoka and Adachi. Here, we are
trying to unify the geometric approach and use a truly modern language of fibered
bundles which is systematically developed in the monograph Natural Operations in
Differential Geometry [6] of Kolář et al.

Besides this unifying language there are also some of our calculations (principal
morphisms between frame bundles with different structure groups, the form of ele-
ments of Toupin subgroups) completely new in terms of the explicit expression. We
are convinced that local coordinate expressions are necessary to be truly effective in
applications. Nevertheless, the paper is much more something else: an outline of the
program. The program of an investigation in special higher order principal bundle
morphisms—it is shown here that it is a powerful theoretical background.

2 The Configuration

Let B and S be two smooth manifolds (dim B = b, dim S = s, b ≤ s) and

κ : B → S

a smooth embedding (i.e. an injective smooth mapping such that κ(B) is a submani-
fold of S and the (co)restricted mapping B → κ(B) is a diffeomorphism, see [6]). We
will call B the body, S the space and κ the configuration. As B and S are manifolds,
they are endowed with local maps ϕB

ι : Uι → R
b (Uι ⊆ B, ι ∈ I) and ϕS

ῑ : Vῑ → R
s

(Vῑ ⊆ S, ῑ ∈ Ī).1 The maps provide local coordinates: let points P ∈ B have coor-
dinates (ξ j), j = 1, . . . , b and points p ∈ S have coordinates (xi), i = 1, . . . , s. The
local coordinate expression of the configuration κ is a map

κ̄ : Rb → R
s

such that
κ̄ ◦ ϕB

ι = ϕS
ῑ ◦ κ

and it is expressed by
xi = κ i(ξ j).

1In classical situations, we meet the case dim B ≤ 3 and S = R
3 where B can be covered by a single

map, so both index set I and Ī are singleton. Let us mention as a curiosity that some authors, cf.
[5], consider local maps inversely—as mappings from the real space to a manifold, which is not a
problem.
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Of course, it is an infinite number of configurations in general. One of them is
labeled as significant, so called reference configuration

κ0 : B → S.

Wewill now assume that different configurations are smoothly parameterized. Let
us consider one-dimensional manifold T (with local maps ϕT

ι̃
: Wι̃ → R, Wι̃ ⊆ T ,

ι̃ ∈ Ĩ giving a local coordinate t to a point of T ) and a smooth map

χ : B × T → S

endowed with the property that its restrictions to specific t are configurations, in
particular

χ|t=t0
= κ0.

Usually, t is interpreted as time and the map χ is called the motion. Its local
coordinate expression is

xi = χ i(ξ j, t).

The velocity and acceleration vectors are expressed by

vi = dχ i

dt
and ai = d2χ i

dt2
.

Let us consider the position vector r with respect to the reference configuration
κ0, as r : B × T → S,

ri(Xj, t) = χ i(ξ j, t) − Xi where Xi = χ i(ξ j, t0);

such a position vector is called the deformation of B with respect to the reference
configuration κ0 in time t. Then the deformation gradient of B is

Fi
ī
= dri

dXī
.

Now we will add to the body its microstructure. Classically, the microstruc-
ture is expressed by k linearly independent vectors, k ≤ s, called directors (cf.
e.g. [8]) assigned to points p ∈ κ(B) ⊆ S. Thus, we consider frames over points
of κ(B) ⊆ S, in particular we do not exclude the case k > b. It seems well-
reasoned, because, for example, two-dimensional plate materials are placed in three-
dimensional space, their thickness is neglected, but a rotation of their particles is
required three-dimensional. This is illustrated in the Fig. 1. In this situation, we
introduce frames by a strictly geometric way in Sect. 2.
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Fig. 1 Three directors (blue,
red and black) determining
rotations of particles of a
two-dimensional body in the
three-dimensional space

3 Frame Bundles (of the First Order)

Let us consider smoothmappings fromR
b (b = dim B) toB such that the rank of their

tangent maps in 0 = (0, . . . , 0) equals b, i.e. we consider immersions. We define the
first order frame bundle P1B over B as the space of 1-jets of such immersions from
R

b into B, i.e.

P1B = imm J1
0

(
R

b, B
)
.

1-jets in question, i.e. elements of P1B, form a principal bundle over the base
manifold B. Analogously, we have the bundle P1S over S. These bundles disposes of
right actions by general linear groups GL (b,R) and GL (s,R), respectively. Now,
we take principal bundle morphism (a fiber bundle morphism which interwines with
group actions)

K : P1B → P1S

over the base map κ . This morphism will be called the Cosserat configuration. In
local coordinates, P1B has induced local coordinates ξ j, ξ j

j̄
, j, j̄ = 1, . . . , b, P1S has

induced local coordinates xi, xi
ī
, i, ī = 1, . . . , s and the morphism K is expressed by

xi = κ i(ξ j)

xi
ī
= Ki

ī
(ξ j, ξ

j
j̄
).

Let us express K . First, we take a fixed homomorphism Hϕ : GL (b,R) →
GL (s,R) by the following way. The element β ∈ GL (b,R) will be embedded to
GL (s,R) and multiplied by a fixed ϕ ∈ GL (s,R) from right. The result will be
denoted by σ ∈ GL (s,R). It means σ i

ī
= Hϕ

i
ī
(β) = β i

kϕ
k
ī
for i ≤ b and σ i

ī
=

Hϕ
i
ī
(β) = ϕi

ī
for b < i ≤ s.
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Hence K needs to satisfy

Ki
ī
(ξ j, ξ

j
kβ

k
j̄
) = Ki

k(ξ
j, ξ

j
j̄
)σ k

ī
= Ki

p(ξ
j, ξ

j
j̄
)β

p
l ϕl

ī
+ Ki

q(ξ
j, ξ

j
j̄
)ϕ

q
ī

(p ≤ b, b < q ≤ s).

If ϕ is the identity, we have ϕk
ī

= δk
ī
(Kronecker delta) and the formula transforms

into

Ki
ī
(ξ j, ξ

j
kβ

k
j̄
) = Ki

p(ξ
j, ξ

j
j̄
)β

p
ī

(ī ≤ b)

Ki
ī
(ξ j, ξ

j
kβ

k
j̄
) = Ki

ī
(ξ j, ξ

j
j̄
) (b < ī ≤ s).

We recognize Ki
ī
as linear in ξ

j
j̄
for ī ≤ b and as constant in ξ

j
j̄
for b < ī ≤ s.2

4 Jet Groups: Toupin Subgroups

A group G is called a split extension of a group N by a group H̄ 1if N is a normal
subgroup of G and G contains a subgroup H such that H ∼= H̄, N ∩ H = {e} and
NH = G. Alternatively one says that G is a semidirect product of N by H̄. The
notation is G = N × | H̄ [2].

Alternatively, given any two arbitrary groups N̄ and H̄ and a group homomor-
phism3 τ : H̄ → Aut N̄ , we can construct a new group G = N̄ × | τ H̄ through its
operation ∗ defined by

(n̄1, H̄1) ∗ (n̄2, H̄2) = (
n̄1τ(H̄1) (n̄2) , H̄1H̄2

)

Then pairs (n̄, eH̄) form a normal subgroup N of G isomorphic to N̄ , while pairs
(eN̄ , H̄) form a subgroup H of G isomorphic to H̄. This semidirect product is con-
sistent with the definition above, namely N̄ × | τ H̄ = N × | H̄.

r-jets of smooth maps R
n → R

n with non-zero Jacobian determinant in 0 =
(0, . . . , 0) and sending 0 to 0 together with the jet composition form a group which
is called the r-th jet group and denoted by Gr

n, for details see [6]. Moreover, for
0 ≤ s < r, we have a canonical epimorphism π r→s

n : Gr
n → Gs

n. (We consider G0
n as

the trivial group.) Let us write Br→s
n = ker π r→s. Groups Br→s

n are normal subgroups
of Gr

n, see [6], Proposition 13.11.
Thus, in the sense discussed above, we have Gr

n = Br→1
n × | G1

n.

2thus not depending on ξ
j
j̄
.

3such a group homomorphisms can be induced by an action (left or right) of H̄ on N̄ , for details
see [6].
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We remark that G1
n is nothing but the general linear group GL (n,R) for which

a structure of subgroups is extensively studied for many years and includes i.a.
triangular and diagonal subgroups, orthogonal and symplectic subgroups, etc. So, let
M be a subgroup of (eBr→1

n
, G1

n) (e.g. induced from classical groups just mentioned),
m ∈ M and let b ∈ Br→1

n . Then elements bmb−1 generates the conjugate subgroup
T = bMb−1 of Gr

n which is called the Toupin subgroup of Gr
n associated with M

and b.
For a subgroup K of Gr

n, let π
r→1
K denote the restriction of π r→1 to K . Then, for

a ∈ G1
n, we will examine the fiber

(
π r→1

K

)−1
(a).

First, for a Toupin subgroup T , we observe
(
π r→1

T

)−1
(idG1

n
) = idT . This leads to

the following definition. We say that a subgroup K of Gr
n is the generalized Toupin

subgroup of Gr
n if it has the property that

(
π r→1

K

)−1
(idG1

n
) is singleton.

In [3], authors proved for r = 2 that exist

• generalized Toupin subgroups of Gr
n which are not Toupin subgroup;

• one-parameter subgroups in Gr
n which are not generalized Toupin subgroup.

Now, we present the form of Toupin subgroup in local coordinates. First, we recall
that for a = (ai

j, ai
jk), b = (bi

j, bi
jk) ∈ G2

n, the composition c = ba = b ◦ a is given by

c = (ci
j, ci

jk) = (bi
kak

j , bi
lmal

ja
m
k + bi

la
l
jk). We easily find that for b = (δi

j , bi
jk) ∈ B2→1

n

its inverse b−1 = (δi
j ,−bi

jk). Then for h = (hi
j, 0), where (hi

j) represents a subgroup
of G1

n,

bhb−1 = (hi
j, bi

lmhl
jh

m
k − hi

lb
l
jk).

We immediately see that for hi
j = δi

j we obtain the identity as required.

5 Frame Bundles (of a General Order)

Wedefine the r-th order frame bundle PrB overB as the space of r-jets of immersions
from R

b into B, i.e.

PrB = imm Jr
0

(
R

b, B
)
.

1-jets in question, i.e. elements of P1B, form a principal bundle over the base
manifold B. The structure group of PrB is Gr

b which acts smoothly on PrB on the
right by the jet composition, i.e. PrB is a principal Gr

b-bundle. We generalize the
Cosserat configuration by the following way. A principal bundle morphism

K : PrB → PrS
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over the base map κ will be called the general (r-th order) microstructure configu-
ration.

We note that PrB has induced local coordinates ξ j, ξ
j
j̄1
, …, ξ

j
j̄1...j̄r

, j, j̄1, . . . , j̄r =
1, . . . , b and P1S has induced local coordinates xi, xi

ī1
, …, xi

ī1...īr
i, ī1, . . . , īr =

1, . . . , s.
For the expression ofK , we take (analogously as for the Cosserat configuration),

a fixed homomorphismHϕ : Gr
b → Gr

s , again, first by the embedding of the element
of Gr

b to Gr
s and then by the right multiplying by an element ϕ form Gr

s . We are
leaving to readers to calculate the coordinate expression of K now.

6 Higher Order Deformation Bundles and Reductions
of Jet Groups—Interesting Challenges

In the Sect. 1, we introduce the deformation gradient for the configuration κ . Evi-
dently, deformation gradients are 1-jets.

Analogously, deformation gradients for the case of the Cosserat configuration
K are represented by nonholonomic 2-jets and the question whether these jets are
semiholonomic or even holonomic can be (and is) discussed. In general, deformation
gradients of the general microstructure configurationK form certain nonholonomic
(r + 1)-jets and emerging challenges are similar: what represent jets of special types
(semiholonomic, holonomic, but not only), in particular, due to the constitutive equa-
tions of the material?

Fig. 2 There are numerous
applications of Cosserat
theory concerning
rectangular structure of
blocks; this figure is taken
from the paper [1] of Dieter
Besdo
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Different, but no less important issue is a research of subgroups of jet groups Gr
n,

similarly as it has been done in the case of Toupin subgroups. Of course, it leads
to the phenomenon of material symmetry. Even an uninformed layman anticipates,
when he had looked at Fig. 2, that there are situations when a total freedom in all
possible ways of the motion is not the best to study; when the whole linear or jet
group does not act, but operates only some suitable subgroup. We recall that if we
have a principal G-bundle Y and an inclusion of a subgroup H into G, a reduction of
the structure group (from G to H) is a principal H-bundle Z such that the pushout
Z ×H G is isomorphic to Y . Note that these do not always exist, nor if they exist
are they unique. Despite the complexity of the problem of reductions of jet groups,
it is hopeful that it will not just pure mathematics, but also interesting results for
continuum mechanics.
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