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Abstract The violations of the Second Law become relevant as the length and/or
time scales become very small. The Second Law then needs to be replaced by the
fluctuation theorem and, mathematically, the irreversible entropy evolves as a sub-
martingale. Next, a framework thermomechanics relying on stochastic functionals of
energy and entropy is outlined. This allows a study of diffusion-type problems with
random field constitutive coefficients not required to satisfy the positive definite-
ness everywhere. Finally, a formulation of stochastic micropolar fluid mechanics is
developed, accounting for the lack of symmetry of stress tensor on molecular scales.
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1 Motivation

The theory, simulations, and experiments of statistical mechanics over the past two
decades indicate that violations of the Second Law of thermodynamics are relevant
where/when the length and/or time scales become very small [5, 7, 9, 17, 19]. The
Second Law must then be replaced by the fluctuation theorem or, strictly speaking,
a group of such theorems. In effect, the Second Law holds on average, be it an en-
semble average, or a spatial average over a sufficiently large domain, or a temporal
average over a sufficiently large time interval. Interestingly, the Second Law viola-
tions may occur for up to 3 s (!) in cholesteric liquids. While the focus in statistical
mechanics has been on stochastic thermodynamics, our interest is in introducing
these results into continuum mechanics, i.e. in formulating stochastic continuum
thermomechanics with spontaneous violations of the Second Law [12–14].
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So far, we have obtained these results:

• entropy evolution over time is a submartingale;
• classification of thermomechanical processes into four types depending onwhether
they are conservative or not and/or conventional continuum mechanical;

• stochastic generalizations of thermomechanics in the vein of either thermody-
namic orthogonality [20] or primitive thermodynamics [4]; with explicit models
formulated for Newtonian fluids with, respectively, parabolic or hyperbolic heat
conduction;

• random field models of the martingale component, possibly including spatial frac-
tal and Hurst effects;

• evolution of an acceleration wavefront randomly encountering regions with neg-
ative viscosity coefficient;

• Lyapunov function of a diffusion phenomenon where the random field coefficients
do not satisfy the positive definiteness everywhere;

• spontaneous random fluctuations of themicrorotation field in a viscousmicropolar
fluid model in the absence of random (turbulence-like) fluctuations of the classical
(Cauchy) velocity field.

In this paper, following a brief account of the fluctuation theorem, we review some
of the above results.

2 Background: Fluctuation Theorem

It has been established in statistical physics over the past two decades that the entropy
production may be negative on short time and space scales, see reviews in [8, 15].
This is described by a so-called fluctuation theorem giving, in its basic form, an
estimate of the relative probability of observing processes that have positive and
negative total dissipation in non-equilibrium systems

P (φt = A)

P (φt = −A)
= eAt . (1)

Here t is the time, while φt is the dissipation function quantifying the thermodynamic
reversibility of a trajectory taken by a thermodynamic system, and A is the value of
φt . To help explain it, in Fig. 1 we reproduce Fig. 1.1 from [8] giving the probability
density histogram of fluctuations of the time-averaged shear stress σxy in Couette
flow. Note that (i) the fluctuations are not confined to the negative values of σxy , and
(ii) for any pair of two points symmetrically distributed about 0.00 on the σxy axis
consistent with (1) the probability of a negative fluctuation [P (φt = A)] is greater
than the probability of a positive fluctuation [P (φt = −A)].

That is, the fluctuation theorem compares the probability P (φt = A ± d A) of
observing an arbitrary system trajectory having a dissipation total infinitesimally
close to A with that of the time reverse of that trajectory (its conjugate anti-trajectory)
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Fig. 1 A histogram showing
fluctuations in the
time-averaged shear stress
for a system undergoing
Couette flow; figure taken
from [8]

in the ensemble of trajectories:

φt (Γ (0)) = ln
P (Γ (0), 0)

P (Γ ∗(t), 0)
(2)

More specifically, with Γ = (q1, p1, ...qN , pN ) being the phase space vector of the
system which corresponds to a system trajectory and Γ ∗(t) being the result of a
time reversal map applied to Γ (0), φt (Γ (0)) is the total dissipation for a trajectory
originating at 0 and evolving for a time t :

φt (Γ (0)) =
∫ t

0
φ (Γ (s)) ds. (3)

This integration involves an instantaneous dissipation function:

φ (Γ (0)) = dφt (Γ (0))

dt
. (4)

The fluctuation theorem as expressed by (1) states that (i) positive dissipation
is exponentially more likely to be observed than negative dissipation, and (ii) upon
ensemble averaging of φt (withE denoting the mathematical expectation), leading to

E [φt |Ft ] ≥ 0. (5)

Here |Fn indicates the conditioning on the past history and is discussed below.
Considering that the time-integrated dissipation function φt equals the irreversible
entropy production in continuum thermomechanics with internal variables (TIV), the
inequality (5) is seen as a generalization of the Second Law of thermodynamics (i.e.,
the entropy production rate is non-negative). Note that φ in (3) and (4) is recognized
as the irreversible entropy production rate.
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3 Entropy Is a Submartingale

In view of the random fluctuations, φt is a stochastic process with a specific type of
memory effect to be examined as follows. First, every stochastic process is defined
with reference to a probability space (�,F ,P), where� is the sample space,F is
the σ -field, andP the probability measure, the argument ω ∈ � being employed to
indicate an elementary event as well as the random character of φt . We now switch
from a continuous (t) to a discrete (n) time parametrization

φn := φt=n, (6)

The point is that the analytical aspects of discrete-time stochastic processes are
simpler than those of continuous-time processes; the integral in (3) is replaced by a
summation, while the derivative in (4) is understood in a finite-difference sense.

Our growing knowledge of the process φn at the successive times (i.e., its history)
is represented by a so-called filtration on Ω: a sequence {Fn : n = 0, 1, 2, . . .} of
sub-sigma fields ofF such that for all time instants tn ,Fn ⊂ Fn+1. In view of (5),
we observe that this inequality is satisfied

E{φn+1|Fn} ≤ φn, (7)

which indicates that φn is a submartingale. On the technical side dictated by
the probability theory, (7) has to be accompanied by two more conditions: (i)
{Fn; n = 0, 1, 2, . . .} is a filtration and φn is adapted to Fn; (ii) for each n, φn

is integrable.
If the ≤ sign in (7) were replaced by an equality sign, we would have a so-called

martingale. In fact, this observation acquires more light in view of the so-called
Doob decomposition [3] saying that any submartingale is the sum of a martingale
(M) and an increasing process (G): Let φ = {φn; n ≥ 0} be a submartingale relative
to the filtration (Fn). Then there exists a martingale M = {Mn; n ≥ 0} and a process
G = {Gn; n ≥ 0} such that

(i) M is a martingale relative toFn;
(ii) G is an increasing process: Gn ≤ Gn+1 almost everywhere;
(iii) Gn isFn−1-measurable ∀n;
(iv) φn = Mn + Gn .

In [12] we have employed an analogous (Doob–Meyer decomposition) theorem
in continuous time, also giving a unique decomposition of a submartingale into a
martingale and a “drift” process. The discrete time case should be sufficient for most
continuum physics applications, while allowing a simpler analytical treatment.
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4 Violations of Second Law in Diffusion Problems

The partial differential equation of diffusion hinges on a coarse scale and a deter-
ministic continuum approximation of a random medium. If we consider a very fine
scale resolution where the violations of the Second Law relative to heat conduction
occur [16], we must replace the deterministic picture by a stochastic one. Thus, the
internal energy density u (per unit volume) and the entropy s (per unit volume) are
random fields over the material (D) and time (T ) domains:

u : D × T × Ω → R, s : D × T × Ω → R, (8)

where we consider the heat conduction problem in a rigid (undeformable) conductor.
With reference to Sect. 2, the Second Law of thermodynamics takes the ensemble
averaged Clausius–Duhem form

E {φ|Fn} ≥ 0, φ = T ṡ(i) = −qk
T,k

T
≡ −q·∇T

T
. (9)

Here we recognize the pair of affinities: vector of velocity T,k conjugate to the vector
of dissipative force −qk/T and introduce a dissipation function φ (qk). Given the
medium’s randomness, φ is a random field

φ : D × T × Ω → R. (10)

At any given continuum point x inD , φ is a random functional φ(q, ω), ω ∈ Ω . The
randomness of φ disappears as the time and/or spatial scales become large and then
φ reverts to a deterministic functional of a homogeneous continuum. According to
the model outlined in Sect. 2,

φ(q, ω) = Ġ(q) + Ṁ(q, ω), (11)

which for the linear Fourier-type conductivity becomes more explicit with

Ġ(q) = qiλi j q j Ṁ(q, ω) = qiMi j (ω) q j . (12)

Here Ġ(q) involves the thermal resistivity λi j which is positive definite, and
Ṁ(q, ω) = d M(q, ω)/dt , with M being the martingale modeling the random fluc-
tuation according to (4). Clearly, the randomness residing in M(d, ω) allows the total
resistivity (and, hence, the total conductivity κi j = (

λi j + Mi j
)−1

) to become neg-
ative since Mi j is not required to be positive definite, thus signifying the violations
of the Second Law. More specifically, the second-rank tensorMi j : V → V (where
V is a linear vector space) also is a second-order random field [12], such that

Mi j : D × Ω → V 2 (13)
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In view of the Gaussian character of fluctuations in Fig. 1,Mi j is a Gaussian random
field.

Next, consider the evolution of energy in a spatial domain D ∈ R
n (n = 2 or 3)

having a boundary ∂D = ∂Dq ∪ ∂DT with both parts disjoint and such that ∂Dq is
insulated and ∂DT has a constant temperature prescribed on it:

qi ni = 0 on ∂Dq ,

T = T0 on ∂DT .
(14)

Following [2], we observe from the energy balance that u = −qi ,i , and from
the decomposition of entropy rate ṡ = ṡ(r) + ṡ(i) (having the reversible part
ṡ(r) = − (qi/T ) ,i and the irreversible part ṡ(r) = −qi T,i /T 2) that ṡ = −qi ,i /T .
Therefore,

d
dt

∫
D (u − T0s) dv = T0

∫
D

qi T,i

T 2 dv, (15)

where the boundary conditions (14) have been employed. Noting, according to spon-
taneous violations of the Second Law mentioned in (11) and (12), that the scalar
product qi T,i takes random and possibly negative values, we cannot conclude that
this is a Lyapunov function just like in diffusion systems obeying the Second Law
considered in the aforementioned reference. It is upon taking the ensemble average
of (15) that

E
{

d

dt

∫
D

(u − T0s) dv

}
= E

{
T0

∫
D

qi T,i

T 2
dv

}
≤ 0 (16)

which yields the Lyapunov function.
Interestingly, the result (17) does not depend on the heat conduction being linear.

But, if that actually is the case (with c being the specific heat capacity), the equation
governing the temperature field is a stochastic partial differential one

∂T

∂t
= 1

c

(
κi j (x, ω) T, j

)
,i . (17)

Next, upon ensemble averaging, the Clausius-Duhem inequality reduces to the con-
dition of positive definiteness of the conductivity tensor κi j = λ−1

i j (withMi j → 0),
the second-order random field κi j becomes a constant tensor field, and the diffusion
equations for anisotropic and then isotropic homogeneous medium are obtained:

∂T

∂t
= 1

c
κi j T, j i →

κi j →κδi j

κ

c
∇2T . (18)
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5 Micropolar Fluid Model

5.1 Dissipation Functions

As noted in [6], the Cauchy stress tensor (i.e., the negative of the pressure tensor)
generally lacks symmetry on length scales where the Second Law violations occur
and this is the case with the molecular fluids. Indeed, the complete description of the
hydrodynamics ofmolecular liquidsmust include angularmomentum considerations
and this challenge can naturally be met by using, instead of the classical (Cauchy)
continuum, a micropolar continuum, Fig. 2a, b.

To have a micropolar model, a couple traction m(n)
i = μ j i n j is introduced in

addition to the Cauchy traction t (n)
i = τ j i n j on a unit surface of the outer normal

ni ; the body force and body torque as being unimportant to our considerations.
The kinematics of the continuum point is described by the displacement ui and the
microrotation ϕi ; their time rates, respectively, are vi and wi . Also, the intrinsic
angular momentum per unit mass is li = Iikwk , where Iik is the microinertia; for an
isotropic micropolar fluid Iik = I δik , where I is the microintertia of a continuum
fluid particle. The balance equations are:

the conservation of mass
Dρ

Dt
= −ρvi ,i , (19)

the conservation of linear momentum

ρ
Dvi

Dt
= τ j i , j , (20)

Fig. 2 a Molecular fluid in which the stress tensor of continuum approximation is not symmetric;
b dV element of a micropolar continuum (with the velocity v and microrotation ϕ degrees of
freedom) having spatial (and temporal) random field fluctuations. This is the basis for a study of
Couette- or Poiseuille-type stochastic flow of a micropolar fluid in a channel
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the conservation of angular momentum

ρ
Dli

Dt
= μ j i , j +ei jkτ jk, (21)

the conservation of internal energy

ρ
Du

Dt
= −qi ,i +τ j i

(
vi , j −ek ji wk

) + μ j i wi , j +ρgi . (22)

For an isotropic micropolar fluid Iik = I δik , where I is the microintertia of a contin-
uum fluid particle. The special case of classical continuum mechanics is recovered
when μ j i = 0, and wk = gk = 0.

In the presence of micropolar effects the constitutive equations are [11]

τi j = (−p + λvk,k ) δi j + μ
(
v j ,i +vi , j

) + μr
(
v j ,i −vi , j

) − 2μr emi j wm

μi j = c0wk,k δi j + cd
(
w j ,i +wi , j

) + ca
(
w j ,i −wi , j

)
,

(23)

where λ and μ are the usual viscosity coefficients, μr is the dynamic microrotation
viscosity, while c0, cd , and ca are the micropolar viscosity coefficients. Now, the
governing equations (20)–(22) become

ρ
Dvi

Dt
= −p,i + (λ + μ − μr ) v j , j i + (μ + μr ) vi ,kk +2μr ei jkwk, j , (24)

ρ I
Dwi

Dt
= 2μr

(
emi j v j ,i −2wi

) + (c0 + cd − ca) w j , j i + (cd + ca) wi ,kk , (25)

ρ
Du

Dt
= −qi ,i −pvi ,i +ρφint , (26)

where φint is the intrinsic (i.e., fluid mechanical part of) dissipation function per unit
mass, such that

ρφint = λ
(
vi,i

)2 + 2μi j di j + 4μr

(
1

2
emi j v j,i − wi

)2

+ c0
(
wi,i

)2 + (cd + ca) wi,kwi,k + (cd − ca) wi,kwk,i ,

(27)

where di j is the deformation rate tensor. As discussed in [12], the intrinsicmechanical
dissipation (φint ) is superposed with the thermal (φth) dissipation

φ = φint
[(

vi , j −ek ji wk
)
, wi , j , ω

] + φth(qi , ω). (28)

Here the first two arguments of φint indicate its dependence on kinematic fields and
its randomness and, similarly, the first argument of φth indicates its dependence on
the heat flux. Furthermore, in the vein of probability theory, the ω parametrization
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(i.e. the third argument of φint and the second argument of φth) indicate the stochastic
character of these functionals. Thus

φ (V, ω) = φint [V1, V2, ω] + φth(V3, ω), (29)

in which the velocity vector V has three components

V1 = ∇v − e j×ei · w, V2 = ∇w, V3 = q. (30)

Corresponding to V there is the dissipative force Y:

Y1 = τ, Y2 = μ, Y3 = −∇T

T
. (31)

Given the randomly occurring violations of the Second Law, just like in (4), the
time integral ofφ evolves as a submartingale: the entropy production inequality holds
on average

E{ρ φ(V, ω)} ≥ 0. (32)

By the Doob decomposition theorem, the submartingale is split into an increasing
process and a martingale ∫ t

0
φdt ′ = G + M (33)

or, instantaneously,
φ = Ġ + Ṁ . (34)

Clearly, Ṁ represents themicroscale fluctuation, whileG represents the conventional
(well-known) entropy growth. Thus, Ġ ≡ dG/dt is identified with the average of
the irreversible entropy rate (E{s∗(i)}) and Ṁ ≡ d M/dt with its zero-mean random
fluctuations. In terms of the irreversible entropy production, we have

E{s∗(i)} = Ġ, s∗(i) − E{s∗(i)} = Ṁ . (35)

The fluid mechanics (intrinsic) part φint [V1, V2, ω] of the random functional
φ(V, ω) is a superposition of two parts:

φint (d, ω) = Ġ(d) + Ṁ(d, ω), (36)

with the randomness residing in M(d, ω), and the viscosity coefficients assuring the
positive-definiteness of G:

μ ≥ 0, 3λ + 2μ ≥ 0,
cd + ca ≥ 0, cd + ca ≥ 0, 2cd + 3c0 ≥ 0,

− (cd + ca) ≤ cd − ca ≤ (cd + ca) , μr ≥ 0.
(37)
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In general, the motion on microscale is turbulent. The micropolar fluid mechanics
accounts for turbulence in terms of zero-mean perturbations about the means of both
degrees of freedom (v, w) and pressure (p):

v = v + v′, v′ = 0,
w = w + w′, w′ = 0,
p = p + p′, p′ = 0.

(38)

With reference to the analysis of Couette- and Poiseuille-type flows conducted in
[10], we ask: Are non-zero microrotational disturbances w′ possible for vanishing
classical flow disturbances v′? According to the analysis of steady parallel flows,
assuming the conventional Second Law of thermodynamics holds, the answer is in
the negative. However, given the spontaneous violations of the Second Law, non-
zero fluctuationsw′ will also spontaneously appear (!) under imposed zero fluctuation
field (v′ = 0) of the velocity field v [14].

5.2 Upscaling from Stochastic to Deterministic Media

As the spatial scale increases, the micropolar effects tend to vanish, and the fluid
becomes classical Newtonian, so that only the first line of these inequalities remains
relevant. As is well known, for incompressible response, the Newtonian fluid sim-
plifies to a Navier–Stokes fluid in the special case of a vanishing bulk viscosity:
λ + 2

3μ → 0. The upscaling from the molecular level to stochastic and then deter-
ministic continua involves the gradual replacement of field equations (20)–(22) by the
equations of conventional continuummechanics,wherebyμ j i = 0 andwk = gk = 0,
so that

conservation of linear momentum ρ
Dvi

Dt
= σ j i , j ,

conservation of angular momentum ei jkσ jk = 0,

conservation of internal energy ρ
Du

Dt
= −qi ,i +σ j i d ji .

(39)

Note that, since dV is a statistical volume element (SVE), not a representative vol-
ume element (RVE), the response depends on the type of loading. To this end, guided
by the analogy to upscaling of a spatially randommicropolar elastic continuum [18],
we set up a homogenization condition of Hill-Mandel type for a micropolar fluid
medium [a generalization of the Hill-Mandel condition]:

σi j di j + βi jαi j + μi j κ̇i j = σ i j di j + β i j αi j + μi j κ i j , (40)

where f ≡ 1
V f dV denotes the volume average. The quantities appearing here are

defined by first introducing decompositions of the generally non-symmetric velocity
gradient li j and the generally non-symmetric Cauchy stress τi j according to
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li j = di j + αi j , τi j = σi j + βi j , (41)

where di j is the deformation rate and σi j is the symmetric Cauchy stress.

di j = 1
2 (vi , j +v j ,i ), α j i = 1

2 (vi , j −v j ,i ) − eki j ϕ̇k,

σi j = 1
2 (τi j + τ j i ), β j i = 1

2 (τi j − τ j i )
(42)

Similar to the aforementioned reference, a computational study using molecular
dynamics, under boundary conditions consistentwith (40),will reveal the quantitative
scaling of classical andmicropolar viscosities in terms of the SVE size n

√
dV in either

n = 2 or 3 dimensions.

6 Conclusions

That “the Second Law is of the nature of strong probability … not an absolute
certainty” was already recognized by J.C. Maxwell. However, it is only in the past
two decades that statistical physics has come out in support of that statement. The
fundamental fact is that there is a non-zero probability of negative entropy production
rate on very small scales and (very) short times. To this end, the fluctuation theorem
replaces the Second Law of thermodynamics (and Clausius-Duhem inequality) as a
weaker (and stochastic) restriction to be placed on the dependent fields and material
properties. In turn, this leads to a generalization of continuum (thermo)mechanics.
Next, given the lack of symmetry of stress tensor on molecular scales, a stochastic
micropolar fluid is proposed a more appropriate model of hydrodynamics on very
small levels; consequences relating to fine scale turbulent motions and upscaling to
a deterministic continuous medium are then reviewed. On the history of mechanics
side, while finalizing this paper, the author became aware of the study [1], where a
microcrack density function was modeled as a submartingale.
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