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The 2nd conference on Continuous Media
with Microstructure (CMwM2015) was held
on March 2–5, 2015 in Łagów, Poland,
in memory of

Professor Krzysztof Wilmański

who regrettably passed away on 26/08/2012.

We dedicate this book of CMwM2015
contributions to him.



Preface

This book is a collection of papers dedicated to the memory of Prof. Dr. Krzysztof
Wilmański. It contains the written form of many contributions to the 2nd
International Conference on Continuous Media with Microstructure held in Łagów,
Poland, March 2–5, 2015 (Fig. 1).

CMwM2015, also announced as an ECCOMAS Special Interest Conference, was
organized by the Polish Academy of Sciences, Poznan University of Technology,
Berlin University of Technology, and the Polish Association for Computational
Mechanics. Many friends and colleagues of Prof. Krzysztof Wilmański eagerly
accepted the invitation of the conference chairpersons Bettina Albers (at that time:
TU Berlin) and Mieczysław Kuczma (Poznan UT). Professor Krzysztof Wilmański
regrettably passed away on August 26, 2012 but would have celebrated his
75th birthday on March 1, 2015. The 1st conference CMwM took place in Zielona
Góra, Poland, in 2010 to celebrate the 70th birthday of Prof. Wilmański. At this
occasion he received the first part of the book Continuous Media with
Microstructure. That book contains further information about him, especially a
photo, his curriculum, and his publication list (Reference: Albers, B. (ed.):

Fig. 1 Participants of the 2nd International Conference on Continuous Media with Microstructure
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Continuous Media with Microstructure. Collection in Honor of Krzysztof
Wilmanski, Springer, Berlin, Heidelberg, 2010, ISBN 978-3-642-11444-1).

CMwM2015 was a conference with an intimate atmosphere, attended by nearly
40 scientists from Brazil, Czech Republic, Estonia, Georgia, Germany, Italy,
Poland, Russia, and the USA, who gave 35 presentations.

The general lectures were delivered by

• Tadeusz Burczyński on Intelligent optimization of media with microstructure,
• Carlo Giovanni Lai on Measurement of damping ratio spectra in soils from the

exact solution of Kramers-Krönig equations of linear viscoelasticity,
• I-Shih Liu on A mixture theory of porous media and some problems of

poroelasticity,
• Martin Ostoja-Starzewski on Continuum mechanics beyond the second law

of thermodynamics,
• Jörg Schröder on A FE2-homogenization scheme for the analysis of product

properties of two-phase magnetoelectric composites, and
• David M.J. Smeulders on Electrokinetic experiments in porous media for energy

applications.

The contributions to the book concern various aspects of extension of classical
continuum models and of engineering applications of continuum theories. In par-
ticular, the contributions deal with the following subjects:

• continuum mechanics,
• thermodynamics,
• porous and granular media,
• engineering applications.

We would like to kindly thank both the participants of CMwM2015 and the
contributors to the current book for the nice cooperation and for their commitment.
Furthermore, we are grateful for technical work, especially the transformation of
some contributions into LaTeX, by Benedikt Preugschat. Last but not least we
appreciate very much the pleasant collaboration with Springer, especially with
Christoph Baumann who accepted the publication of this book.

Essen Bettina Albers
Poznań Mieczysław Kuczma
October 2015
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Krzysztof Wilmanski (1940–2012)

Ingo Müller

When I first met Krzysztof Wilmanski in 1977 he was one of the bright young
scientists in the Institute of Fundamental Technological Research of the Polish Acad-
emy of Sciences. This was the time of the cold war and it was not altogether easy
for us westerners to meet colleagues from beyond the iron curtain. But among all
people from the east it was still easiest to meet Polish scientists. Because, indeed,
the wise elder scientists at the helm of the Polish Academy—among them Professors
Nowacki, Olszak, Fiszdon, and Sawczuk—held some influence in political circles.
And they knew that good science requires free and easy communication between sci-
entists. Also they believed in mechanics as an essential part of the natural sciences.

Therefore they sent their young mechanicians abroad, to the east and to the west.
Still, it was easier for them go east. Thus, long before I met him, Krzyszt of Wilman-
ski had been in Moscow, where he tried to join Professor Sedov’s research group.
Somehow that did notwork outwell. Hewas disappointed and left after a fewmonths.
Next he went to Baltimore where at the time—in the late 1960s—Professors Trues-
dell and Ericksen conducted a lively group of graduate student and post-doctoral
fellows at the Johns Hopkins University. He was well received there and worked
successfully. Thus in a manner of speaking he finished his scientific education there,
an education which had started in civil engineering.

Strangely, although I had been at Johns Hopkins before Krzysztof and again after
he had left, we never met there. However, we had been exposed to the same unique
scientific atmosphere, created by professors Ericksen and Truesdell at the height of
Rational thermodynamics; and so, —even without actually meeting—, we became
members of a loosely knit group which, much later, some unfriendly person dubbed
the “Johns Hopkins gang”.

I. Müller (B)

Technische Universität Berlin, Straße des 17. Juni, 10623 Berlin, Germany
e-mail: ingo.mueller@alumni.tu-berlin.de

© Springer International Publishing Switzerland 2016
B. Albers and M. Kuczma (eds.), Continuous Media with Microstructure 2,
DOI 10.1007/978-3-319-28241-1_1
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2 I. Müller

After Johns Hopkins Krzysztof went to Iraq. There was a program, haggled out
between the Polish government and some oil-rich left-leaning Arabian states in the
near east, by which Polish professors could obtain a well-paid teaching job—in
Iraq, or Syria, or Libya—for 1 or 2years. So, Krzysztof went to Iraq for 2years.
Scientifically that stay was little fruitful, later he would complain that he met a mix
of ignorance and arrogance in his host faculty. But the jobwas profitablemoney-wise.
And so on a side trip to Saudi Arabia Krzysztof acquired a nice new red BMW.

All of this was before Krzysztof and I met.
When we did meet I was a young professor in Paderborn, Germany, recently

returned from the United States. The occasion was the founding of ISIMM, the
International Society for the Interaction of Mechanics and Mathematics which took
place in Kozubnik in the south of Poland. That society was to further facilitate
scientific relations between the East and the West and many of the grand old men
of mechanics were there. Well, with the exception of the Russians; they feared a
conflict of interest with IUTAM, the International Union of Theoretical and Applied
Mechanics which was the forum for east-west interaction officially recognized by
the Soviet government. But everybody else who was somebody in mechanics and
applied mathematics was present in Kozubnik: Sneddon, Chadwick and Spencer
from Great Britain, Fichera, Graffi and Grioli from Italy, Kirchgässner and Kröner
from Germany, i.e. West Germany. And of course all the Polish tycoons of science
were there. Krzysztof Wilmanski and myself were in the junior crowd, along with
Robin Knops, Costas Dafermos, Carlo Cercignani and many others. Little did we
think at the time that we should in the future become officers of the Society; and yet
that happened: Between the years 2000 and 2004 Krzysztof and I were president and
secretary of ISIMM.

On the last day of the meeting, a Saturday morning, a decrepit Russian-built
bus was to carry the participants back toWarsaw airport. However, the technological
decline of the Eastwas already far advanced and so the buswouldn’t start; an essential
part of the ignition system was broken. Henryk Zorski, Krzysztof Wilmanski and
I myself were watching when the driver gave up his efforts and announced a 3-h
delay, because he had to send to Kattowitz for a spare part. Naively I asked Zorski
whether he thought that the needed part would be available in Kattowitz. “Oh, no”,
said Henryk, always the cynic, “nowhere in Poland but there will be a spare bus.”

Imyselfwas spared the bus ride, becauseKrzysztof offered to takeme in hisBMW.
Looking back I now realize that the long ride in close companionship was to soften
me up, so that I should support Krzysztof’s application for a Humboldt scholarship
which hewas preparing. Really that effort on his part was quite unneccessary. I would
have supported that application anyhow, after all: One member of the Johns Hopkins
gang and the other. But the trip as such was not uneventful. Indeed, the pot holes
of Southern Poland yanked a shock absorber clean out of the body of the BMW.
There was a tremendous noise in the back and when we reached Krakow it became
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imperative to find a workshop—at noon on a Saturday in a socialist economy! I
considered that hopeless. However, Krzysztof was unfazed and thus he proved not
only a keen scientist but also an ingenious organizer of an everyday calamity. He
developed a train of thought by which the dairies of the town of necessity are on
a 24h schedule, —including Saturdays—, that they need lorries for the collection
and distribution of milk and that the lorries, given their state of repair, need a dairy-
owned workshop for repairs. So, we inquired about dairies, found the appertaining
workshop and there was a young mechanic who welded the shock absorber back into
the place where it belonged.

Time had been lost, though, and so Krzysztof regretted that he could not show
me the tomb of Marshall Pilsudski whom he admired very much for having chased
out the Russians from some small eastern part of Poland in 1918, or so, and for a
short while. Krzysztof was a fervent Polish patriot and remained that throughout
his life, even after—much later—he became a German citizen. In fact sometimes
he surprised me with his Polish view of events in German history. Actually, if the
truth were known there seem to be few events in the histories of the two countries
which are viewed in the same light from the two sides of the Polish-German border;
excepting only, of course, Russian attempts for domination.

Anyway, the application for the Humboldt scholarship was successful and so,
early in 1979, Krzysztof showed up in Paderborn. This started a year of intensive
and successful collaboration between the two of us, mostly on shape memory alloys.
And thatwas before anybody else in continuummechanics recognized the importance
of these materials for the understanding of large deformations in solids. So, when I
moved to Berlin in that same year, Krzysztof came with me and we continued our
work. For me and, I believe, for Krzysztof as well this was a highly satisfactory
period of joint learning and research, which we would have liked to continue. But
politics intervened, cold war politics.

As some of you may know, the Humboldt foundation gives stipends for no more
than 1year. But, upon application this period can be extended for up to another year.
So, naturally Krzysztof and I applied and we got the extension. But cold war tactics
was against us. Krzysztof was in trouble with the Polish authorities when he applied
for keeping his passport. At that time the official communist doctrine about Germany,
dictated by the Russians, was that there were three Germanies: West Germany, DDR
andWestberlin. So Krzysztof in joining me in Berlin had violated the rules laid down
in his passport which allowed him to visitWest Germany only. He had to be punished
and he was not allowed to stay on in Berlin. Friends back in Paderborn offered him
an office but, although they meant well, they worked on different subjects. So our
collaboration suffered; all of this was in the days before e-mail which might have
helped us a lot.

And so began Krzysztof’s veritable scientific odyssey in Germany and between
Germany and Poland: Paderborn, Berlin, Warsaw, Berlin, Hamburg, Berlin, Essen.
This odyssey lasted 14years instead of the requisite ten. During his Warsaw period
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the two of us organized a Euromech conference on shape memory in Jabłonna near
Warsaw. InHamburgKrzysztof became an expert on plasticity, in Essen he developed
an improved theory of porous and granular media and in the end in Berlin, at the
Weierstrass Institute, he concentrated his research efforts on wave propagation in
soils, in close collaborationwith civil engineers:Wet soils for off-shorewind turbines
and dry soils for tunneling.

Ahigh point in his itinerant life, perhaps,wasKrzysztof’s invitation to a year’s stay
at theWissenschaftskolleg Berlin. That august institution—the Institute of Advanced
Studies—had heretofore never invited natural scientists—it thrives on political and
social “sciences”. However, in 1984 I got the unexpected possibility to invite two per-
sons from the natural sciences and theywereRonaldRivlin andKrzysztofWilmanski.
The three of us spent at least 1day a week together in intensive discussion.

This was the timewhen a disaster concerning the stability of rheological fluids had
overwhelmedRationalThermodynamics, the theory ofColemanandNoll:According
to that theory the free energy should have amaximum in equilibriumwhen everybody
in thermodynamics knew for a century that it has to have a minimum. Rivlin was
overjoyed, because he disliked Coleman and Noll for their close association with
Truesdell. I myself did not care much, since I worked on Extended Thermodynamics
which was untouched by the disaster. And Krzysztof suggested that we look into the
problem and perhaps understand its reason. So we studied the papers by Dunn and
Fosdick and by Joseph on fluids of nth grade and we came to the conclusion that it
is not legitimate to approximate the constitutive functional of the history of some
field by a few time derivatives of the field at the present time. The procedure leads to
instability. Rivlin did not appreciate the result since it cast doubt on the usefulness of
the Rivlin-Ericksen tensors, with which he was strongly associated. And Fosdick—
when asked—was also unenthusiastic, because he maintained that stability would
miraculously reappear far from equilibrium; a clear case of wishful thinking. So
Krzysztof and I were frustrated; we did write a paper and published it in Rheologica
Acta to show that the free energy indeed has a minimum in equilibrium as it should
be. And there was some interest, —at least we received a lot of reprint requests. But
the paper did not really catch on. And, if the truth were known, our arguments lacked
the systematic clarity necessary to be convincing. Indeed the problem of a proper
thermodynamic theory of non-Newtonian fluids remains unsolved to this day.

Years later, when Roger Fosdick celebrated his 60th birthday, Krzysztof and I
addressed the problemagain from thepoint of viewof the kinetic theoryof rheological
fluids. Somewhat maliciously we offered that study for Roger’s Festschrift. But then
it turned out that neither of us could attend the anniversary meeting and so our paper
remained unpublished except as a preprint report of the Weierstrass Institute.

So let me pull our main conclusion out of oblivion in this present eulogy for
Krzysztof: Considering a solution of Hookean dumbells—a standard model of
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rheology—we derived a differential equation between the deviatoric stress and the
deviatoric velocity gradient, viz.1

(
1 + 1

2

ζ

λ

δ

δt

)
t<pq> = η0

(
1 + ηs

η0

1

2

ζ

λ

δ

δt

)
∂u<p

∂xq>

(1)

λ is the elastic constant of the dumbell spring. ζ is the Stokes friction coefficient of
a dumbell mass in the solvent and ηs is the viscosity of the solvent. η0 is defined as
ηs + 5

6nkT ζ

λ
with n as the number density of dumbells. The equation is known as the

Giesekus equation in rheology, but our derivation was marginally more systematic
than Giesekus’s so that there was a tiny little bit of originality.

All the coefficients are positive so that in regard to stability the equation is fine:
If the velocity gradient vanishes, the stress will exponentially approach zero and if
the stress vanishes, the velocity gradient relaxes to zero.

So far so good. The argument, —based on reliable molecular considerations—,
shows us what the constitutive relation between the stress and the velocity gradient
should look like in a rheological fluid. And this does not have the form assumed by
Rational thermodynamics. Indeed, in Rational Thermodynamics the stress should be
alone on the left-hand-side and it should be given by the velocity gradient and its
time derivatives. Such a form may be obtained by shifting the operator 1 + 1

2
ζ

λ
δ
δt

from the numerator on the left-hand-side to the denominator of the right-hand-side
and then approximating it—rather daringly—as follows

1

1 + 1
2

ζ

λ
δ
δt

≈ 1 − 1

2

ζ

λ

δ

δt
. (2)

In this manner we obtain

t<i j> ≈ η0

(
1 +

(
ηs

η0
− 1

)
1

2

ζ

λ

δ

δt

)
∂u<i

∂x j>
. (3)

Now, however, this equation leads to instability. Indeed, if the stress vanishes, the
velocity gradient grows exponentially (!) which makes no sense. Thus Krzysztof
and I showed in our paper where the instability comes from and how it should be
avoided. The fallacy lies in the daring approximation which is inherent in the a priori
assumption that the stress should be determined by the velocity gradient and its rate
of change.

1The complicated time derivatives are Oldroyt derivatives. But for the present brief review we may
consider it as just an ordinary time derivative.
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Later, —due to the demands of subsequent jobs—Krzysztof left that interesting
field and turned to more practical tasks, primarily in wave propagation in porous
media as mentioned before. The primary objective was diagnostic, viz. the diagnosis
of hidden irregularities in soils. For thiswork hefinally found a secure and stimulating
environment in theWeierstrass Institute in Berlin, where he spent the 10years before
his retirement in 2005.
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But that was by no means the end of his scientific career. Krzysztof’s passion for
science and academia did not allow him to stay idle. So he accepted an appointment
at the newly founded University of Zielona Góra in Poland where he spent the last
years of his life in scientific research, teaching and administration. The faculty in
Zielona Góra was lucky to have him, a man of vast experience gathered in many
countries in a lifetime devoted to science.

At the end—still working and publishing and full of enthusiasm and energy—he
had to succumb to the perfidious sudden attack of the disease that threatens all of us.

I have mourned him, and I am sure we all did, those of us who knew him.

Berlin, 05.05.2015 Ingo Müller
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Virtual Power and Pseudobalance
Equations for Generalized Continua

Gianpietro Del Piero

Abstract In this paper the balance equations of linear and angular momentum are
deduced from some regularity properties of the systemof contact actions and from the
law of action and reaction. This approach provides a simple and unifying formulation
of the theories of non polar and polar continua. It also allows for a direct deduction
of the classical plate and beam theories as special Cosserat continua, obtained by
dimensional reduction induced by appropriate geometrical constraints.

Deduction of Balance Equations

1. The traditional, generally accepted approach to Continuum Mechanics is based
on Euler’s balance laws of linear and angular momentum. During the second half
of the past century, this approach was revisited a number of times. In 1963, W.
Noll showed that the Euler laws are in fact a consequence of the postulate of the
indifference of power [12]. Later, Gurtin and Martins [9] and S̆ilhavý [14, 15]
came to the conclusion that the same laws, until then regarded as balance equations
between distance and contact actions, are in fact regularity assumptions on the
system of the contact actions alone.
This conclusion also originated from an idea of Noll. In [13] he showed that, if a
system of contact actions is skew-symmetric,1 it is also additive on the boundaries
of disjoint sets.2 If this is the case, the contact action over the boundary of a part
Π of the body, which may also be seen as a volume action,

1This assumption corresponds to Newton’s law of action and reaction.
2That is, if Π and Π ′ are disjoint sets with a portion S of boundary in common and if Q(S) =
−Q(−S) is the contact action interchanged across S, the contact action on ∂(Π ∪ Π ′) is the sum
of the contact actions on ∂Π and on ∂Π ′.
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12 G. Del Piero

F(Π) = −Q(∂Π), (1)

is additive on disjoint sets.3 In the presence of sufficient regularity, a surface
density s can be associated with Q and a volume density b† can be associated
with F , and the preceding equation can be given the form

∫
Π

b†(x) dV = −
∫

∂Π

s(x, ∂Π) dA. (2)

A system of contact actions which admits both surface and volume densities is
called a Cauchy flux, and Eq. (2) is called a pseudobalance equation. The reason
for the name is that, though it looks like a balance equation, this is not a balance
equation, but only an identity between two different representations of the same
contact action.
The pseudobalance equation is all what is needed to prove the dependence of
s(x, ∂Π) on the normal n to ∂Π at x ,4 and the linearity of this dependence.5 That
is, to prove that there is a linear transformation on the vectors, the Cauchy stress
tensor T , such that

s = T n. (3)

Thus, rather than a consequence of the balance of linear momentum, the exis-
tence of the Cauchy tensor is a property enjoyed by all sufficiently regular skew-
symmetric systems of contact actions. This reduces the importance of the role
played by the Euler balance laws, which are usually considered as a fundamental
postulate of mechanics. Indeed, to define a classical continuum it becomes con-
venient to take as primitive the concept of external power, which is an integral
involving the inner products of the external actions of contact s and at distance b
by a field v of virtual velocities6

Pext (Π, v) =
∫

Π

b · v dV +
∫

∂Π

s · v dA. (4)

In particular, a rigid virtual velocity field is a vector field of the form

v(x) = a + � × x, (5)

3The minus sign on the right is just matter of convenience.
4The dependence of s on the normal was conjectured by Cauchy, and was currently called the
Cauchy postulate. Only in 1959 Noll proved that this conjecture is true, under the assumption that
the internal actions have a local character [11]. Since then, the Cauchy postulate has become the
Noll theorem.
5This is the tetrahedron theorem of Cauchy.
6Alternatively, one can take as primitives the concept of virtual velocity and the existence of two
types of actions, distance and contact.
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with a and� arbitrary constant vector fields. Assuming the indifference of power
under rigid virtual velocity fields,

Pext (Π, a) = 0, Pext (Π,� × x) = 0, (6)

the balance laws of Euler
∫

Π

b dV +
∫

∂Π

s dA = 0,
∫

Π

x × b dV +
∫

∂Π

x × s dA = 0, (7)

easily follow. With the aid of the relation (3) and of the divergence theorem,
the surface integral in (4) can be transformed into a volume integral, called the
internal power

Pint (Π, v) =
∫

Π

(
(b + div T ) · v + T · ∇v

)
dV . (8)

The indifference conditions (6) applied to this integral yield the local forms of
the balance equations

divT + b = 0, T = T T . (9)

Equating the two expressions (4), (8) of the power, the equation of virtual power

Pext (Π, v) = Pint (Π, v) (10)

is obtained.This is not an equationbetween twodifferent powers, as it is frequently
asserted,7 but only an identity between two different expressions of the same
power.
Substituting the local forms (9) into the internal power (8), a reduced form for
the power is obtained

Pred(Π, v) =
∫

Π

T · ∇vS dV . (11)

This reduced form characterizes T as the unique active internal action present
in a classical continuum, and ∇vS as the corresponding generalized deformation
velocity.

2. The framework introduced above is easily extended to the generalized continua. A
generalized continuum is a continuum whose description involves a finite array
{ξα} of primary variables (state variables), which can be scalar, vectorial, or
tensorial. Coupled with dual variables βα, σα of the same tensorial nature (bulk
and surface external actions), they determine the external power8

7In fact, on this assumption is based of the “method of virtual power” developed by Germain [7, 8]
and others.
8Here and in the following, repeated indices are summed.



14 G. Del Piero

Pext (Π, v, να) =
∫

Π

(b · v + βα · να) dV +
∫

∂Π

(s · v + σα · να) dA, (12)

in which the να are the virtual velocities of the state variables. If the contact
actions σα are Cauchy fluxes, each of them has its own pseudobalance equation

∫
∂Π

σα(x, ∂Π) dA = −
∫

Ω

βα†(x) dV, (13)

and from it, with the aid of Noll’s and Cauchy’s theorems, follows the existence
of a linear transformation Σα such that

σα = Σαn. (14)

The divergence theorem then allows the passage from the external to the internal
power

Pint (Π, v, να) =
∫

Π

(
(b + div T ) · v + T · ∇v + (βα + divΣα) · να + Σα · ∇να

)
dV,

(15)

from which the balance equations are deduced imposing the indifference to rigid
virtual velocity fields. But, unlike in classical continua, the rigid virtual velocities
are not uniquely defined, since their definition depends on the physical nature
of the state variables. In what follows, we consider two classes of generalized
continua, polar and non-polar, with different definitions of rigid virtual velocities.
In a non-polar continuum, the state variables describe rearrangements of matter
at the microscopic level. A rigid virtual velocity involves no rearrangements, that
is, the corresponding virtual velocities να are zero. Therefore, the indifference
conditions are

Pext (Π, a, 0) = 0, Pext (Π, W x, 0) = 0, (16)

where W is the skew-symmetric tensor associated with the rotation vector � ,
defined by the relation

Wa = � × a, (17)

for all vectors a. In a polar continuum, the state variables introduce further degrees
of freedom for the deformation. Then a rigid rotation is a simultaneous rotation of
themacroscopic deformation and of the state variable. In the case of tensorial vari-
ables,9 the virtual velocities να are tensor fields, and the appropriate indifference
conditions are

Pext (Π, a, 0) = 0, Pext (Π, W x, W ) = 0. (18)

9This case includes the micromorphic continua [6] and, in particular, the micropolar continua, also
called Cosserat continua.
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Thus, the polar and non-polar continua have the same translational indifference
condition, but different rotational indifference conditions.

3. An example of a non-polar continuum is met in the theory of gradient plasticity.
This theory is based on the Kröner-Lee decomposition

∇ f = Fe F p, (19)

according to which the macroscopic deformation gradient ∇ f is supposed to be
the composition of a microscopic rearrangement F p and of the local deformation
Fe necessary to restore the macroscopic deformation ∇ f . This decomposition
defines a generalized continuum described by a single state variable, the tensor
F p. For it, the relation (14) has the form

S = Tn, (20)

where the second-order tensor S is the contact action associated with F p and
the third-order tensor T is the corresponding internal action. Denoting by L p the
virtual velocity of F p, the external and internal powers take the form

Pext (Π, v, L p) =
∫

Π

(b · v + B · L p) dV +
∫

∂Π

(s · v + S · L p) dA,

Pint (Π, v, L p) =
∫

Π

(
(b + divT ) · v + T · ∇v

+(B + divT) · L p + T · ∇L p
)
dV . (21)

The indifference conditions (16) yield the same restrictions (9) of the classical
continuum, and therefore the reduced form of the internal power is

Pred(Π, v, L p) =
∫

Π

(
T · ∇vS + (B + divT) · L p + T · ∇L p

)
dV . (22)

In plasticity it assumed that the Cauchy stress T is a function of the elastic part
Fe of the decomposition (19). From this decomposition follows the relation

∇v = Le + L p (23)

between the corresponding virtual velocities. Thus, the reduced power takes the
form

Pred(Π, v, L p) =
∫

Π

(
T · De + T p · L p + T · ∇L p

)
dV, (24)

where De is the symmetric part of Le and T p is the plastic stress

T p = T + B + divT. (25)
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The last equation and the balance equation (9)1 are the differential equations of
the equilibrium problem of gradient plasticity.10 The formulation of the prob-
lem is completed by a set of constitutive equations between the internal actions
T, T p, T and the corresponding generalized deformations, and by appropriate
boundary conditions.

4. In a polar continuum, quite frequently the state variables are supposed to be
vectorial, and in this case they are called the directors. The number of the directors
depends on the nature of the continuum. For example, the liquid crystals have
just one director, in crystal plasticity the number of the directors coincides with
the number of the slip planes, and a micromorphic continuuum is characterized
by a triple of linearly independent directors. Just as the macroscopic deformation
of the body is described locally by the deformation gradient ∇ f , the microscopic
deformation of amicromorphic continuuum is described by a second-order tensor
Fm , the microscopic deformation gradient. Thus, at each point of the continuum
the microdeformation has the same geometric structure of the macrodeformation
undergone by the whole body.11

In the microdeformation, the directors dα are mapped into the vectors Fmdα .
Denoting by

να = Lmdα (26)

the corresponding virtual velocity, substituting into (12), and setting

B = βα ⊗ dα, S = σα ⊗ dα, (27)

the external and internal powers (21) are re-obtained, with Lm in place of L p.
With the indifference conditions (18), the balance laws are

divT + b = 0, T + T m = (T + T m)T , T m = B + divT. (28)

That is, the symmetry of the Cauchy stress T required by the balance laws (9) of
the non-polar continua is now replaced by the symmetry of the tensor T + T m .
As a consequence, in the integrand function of (21)2 one has

T · ∇v + (B + divT) · Lm = T S · ∇vS + T W · ∇vW + T m · Lm

= T S · ∇vS − T mW · ∇vW + T m · Lm = T S · ∇vS + T m · Lm ,

(29)

10We emphasize that (25) is a consequence of the pseudobalance equation (13) and not a new
balance equation. In the literature, it is named balance of micromomentum, microforce balance,
equilibrium equation for the macrostress tensor, and is presented, at least tacitly, as a new axiom
of mechanics.
11Ericksen and Truesdell [5], Mindlin [10] and Eringen [6].
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where
Lm = Lm − ∇vW (30)

is the virtual velocity of the directors with respect to the body already deformed
by the macroscopic deformation. The reduced power then takes the form

Pred(Π, v, Lm) =
∫

Π

(
T S · ∇vS + T m · Lm + T · ∇Lm

)
dV . (31)

For amicromorphic continuum, the differential equations of the equilibriumprob-
lem are (9)1 and (28)3, and the constitutive equations are relations between the
internal actions T S, T m,T and the generalized deformations∇vS,Lm,∇Lm . The
Cauchy stress is not symmetric, and its skew-symmetric part T W does not appear
in the expression of the power. It plays the role of a reaction, determined by the
relation (28)2, T W = −T mW .

5. 12In amicromorphic continuum, the deformation of the directorsmay be subject to
geometrical constraints. For example, the micropolar continua are micromorphic
continua for which the only deformation allowed to the orthonormal triple of
directors is a rigid rotation, variable from point to point. Thus, if RmU m is the
polar decomposition of Fm , the constraint acting on a micropolar continuum is

Fm = Rm, U m = I. (32)

In this case the virtual velocity Lm reduces to its skew-symmetric part W m , and
in the external power we have

B · Lm = BW · W m = c · ω, S · Lm = SW · W m = m · ω, (33)

with ω, c/2 and m/2 the vectors associated with W m , BW and SW by the relation
(17)

W ma = ω × a, BW a = 1

2
c × a, SW a = 1

2
m × a. (34)

The external power then takes the form

Pext (Π, v, ω) =
∫

Π

(
b · v + c · ω

)
dV +

∫
∂Π

(
s · v + m · ω

)
dA, (35)

with ω the vectorial measure of the virtual rotation of the directors, and c and
m the volume couple and the surface couple. If s and m are Cauchy fluxes, they
have the representations

12For reasons of brevity, from here on most of the statements are given without comments and
proofs. More detailed treatments can be found in the paper [2] and in the forthcoming lecture notes
[4]. For plate and beam theories, see [3].
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s = T n, m = Mn, (36)

with T the Cauchy stress and M the couple stress tensor. With the aid of the
divergence theorem one obtains the internal power

Pint (Π, v, ω) =
∫

Π

(
(b +divT ) · v+ T · ∇v+ (c +divM) · ω+ M · ∇ω

)
dV .

(37)
The indifference conditions now give

divT + b = 0, divM + c + 2t = 0, (38)

with t the vector associated with the skew-symmetric part of T . Substitution into
Eq. (37) yields the reduced form

Pred(Π, v, ω) =
∫

Π

(
T S · ∇vS − 2 t · ϕ + M · ∇ω

)
dV, (39)

where

ϕ = ω − 1

2
curl v (40)

is the vector measure of the relative rotation W m −∇vW . The equilibrium problem
now consists of the differential equations (38), of constitutive equations relating
the internal actions T S, t and M with the generalized deformations ∇vS, ϕ and
∇ω, and of a set of boundary conditions.
The constrained Cosserat continua are obtained by imposing the supplementary
constraint

ω = 1

2
curl v, (41)

which requires that the relative rotation ϕ be zero.13 For such continua the indif-
ference conditions still have the form (38), and the reduced power is

Pred(Π, v) =
∫

Π

(
T S · ∇vS + 1

2
M · ∇curl v

)
dV . (42)

Here, T S and M are the only active internal actions. The rotation ω formally dis-
appears from the list of the geometric variables, though its effects are still present
in the product M ·∇curl v.14 As a consequence, t is not anymore an active internal
action, and therefore it is not anymore determined by a constitutive equation. In

13This constraint corresponds to the Cauchy-Born hypothesis, according to which the directors
follow the macroscopic deformation.
14The presence of a microstructure which does not appear explicitly in the expression of the power
characterizes this continuum as a continuum with latent microstructure [1].
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the equilibrium problem, t is eliminated from the differential equations (38) with
the aid of the identity

divT W = −curl t, (43)

thanks to which the two equations merge in the single, higher-order equation

divT S + 1

2
curl (divM + c) + b = 0. (44)

Of course, the boundary conditions must be re-formulated accordingly.

6. Other geometrical constraints lead to dimensional reduction, providing thereby
the classical theories of plates and beams, viewed as two- and one-dimensional
Cosserat continua. Assume that the body in its reference configuration has a cylin-
drical shape, and let {e, eα} be an orthonormal triple of vectors, with e directed
as the axis of the cylinder. The constraint

v(x) = v3(x1, x2) e, ω(x) = ωα(x1, x2) eα, α ∈ {1, 2}, (45)

allows for a virtual velocity v parallel to e and for a virtual rotation ω about an
axis orthogonal to e. It also requires that both v and ω be constant in the direction
e. Under these constraints, the external power (35) reduces to

Pext (Γ, v3, ωα) =
∫

Γ

(b3v3 + cαωα) dA +
∫

∂Γ

(s3v3 + mαωα) d�, (46)

where the volume element Π is replaced by its perpendicular projection Γ in the
direction e, and d� is the line element on the boundary line ∂Γ .
In the relations (36), by effect of the constraints, the stress tensor Ti j degenerates
into the vector of the internal shearing forces Qα , and the couple-stress tensor
Mi j degenerates into the 2 × 2 tensor of the internal moments Mαβ

s3 = Qαnα, mα = Mαβnβ. (47)

Then the internal power becomes

Pint (Γ, v3, ωα) =
∫

Γ

(
(q + Qα,α)v3 + Qαv3,α

+(cα + Mαβ,β)ωα + Mαβωα,β

)
dA, (48)

with the component b3 of the body force now viewed as a transverse load q. The
indifference conditions (18) provide the balance equations

Qα,α + q = 0, Mαβ,β + cα + eαβ Qβ = 0, (49)
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which, in turn, lead to the reduced power

Pred(Γ, v, ω) =
∫

Γ

(Qαϕα + Mαβωα,β) dA, (50)

where
ϕα = v3,α + eαβωβ (51)

are the rotations of the directors relative to the deformed surface Γ . Thus, the
active internal actions are Qα and Mαβ , and ϕα and ωα,β are the correspond-
ing generalized deformations. The equations (49) are the equilibrium equations
of the Reissner-Mindlin plate theory. Here, this theory has been deduced from
that of the three-dimensional micropolar continuum, simply by imposing the
constraint (45).
Moreover, the Kirchhoff-Love plate theory is obtained by imposing the additional
constraint

ϕα = 0. (52)

Indeed, with this constraint, in the reduced power (50) the first term cancels, and
ωα,β is replaced by eαγ v3,γβ . Introducing the modified moment tensor

M∗
γβ = eγα Mαβ, (53)

which is the one currently used in the constrained plate theory, the reduced power
takes the form

Pred(Γ, v) = −
∫

Γ

M∗
γβv3,γβ dA. (54)

The active internal forces are reduced to the tensor M∗
γβ , and the associated

generalized deformation is the curvature tensor −v3,γβ . As a consequence, the
vector Qα must be eliminated from the balance equations (49). This gives rise to
the unique, higher order equation

M∗
γβ,γβ + c∗

γ,γ + q = 0, (55)

where c∗
γ = eγαcα is the modified external couple. This is the equilibrium equa-

tion of the Kirchhoff-Love plate theory.

7. In a quite similar way, it can be shown that the constraints

v(x) = v(x3), ω(x) = ω(x3) (56)

provide the Timoshenko beam theory, and that the additional constraint

ωα = −eαβv′β (57)
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leads to the Euler-Bernoulli beam theory. For a detailed treatment, the interested
reader is addressed to the paper [3].
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Hypocontinua

Gianfranco Capriz and Pasquale Giovine

Abstract Earlier proposals for a theory of continuous bodies for which the tacit
axiom of enduring permanence of material elements fails to apply (continua called
appropriately ephemeral) are briefly reviewed and, in some detail, corrected. The
consequent derivation of a simpler class echoing that of hypoelastic bodies introduced
by Truesdell is preened and put on surer footing for possible progress.

1 Preamble

We pursue here the same topics of a paper with selfsame title [6], but the emphasis
is on some critical issues within the theory of ephemeral continua [5, 8] (issues of
relevance for the derivation of balance equations here) and on consequences of the
latter on energy balances. For the reader who did not chance on those earlier papers
meant to pacify some acid controversies [11, 12, 14, 24, 25] their essential traits are
briefly recalled below.

The term ‘ephemeral continua’ was proposed by one of us to designate sparsely
granular ormolecular bodies (such as are gases) forwhich, when they aremodelled as
continua, the tacit axiomof permanence ofmaterial elements fails to apply.Of course,
the scales involved in the two instances, referred to above, are hugely different;
nevertheless, the same mathematical structures are convenient in the analysis of
some issues when dealing with either. Consequently we happen to use some words
(for instance, the termmolecule) ambiguously. Then, more fields are needed to report
events, as occurs when dealing with non-simple bodies; the peculiarity here is the
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involvement of a symmetric non-negative definite tensor, theReynolds’ tensor, which
could be interpreted as a density of rebounds due to molecular collisions.

Hypocontinua are a very special class of ephemera, for which the evolution equa-
tions have formal analogy with those of Truesdell’s hypoelastic media (to which one
chapter is dedicated in each of two treatises of the Encyclopedia of Physics, volumes
III/1 and III/3 [22, 23]), hence the name. True, the sources of the two proposals
may seem to be foreign rather than akin, as we remark more clearly in the following
Sect. 3. Hypocontinua may even seem to imply a repudiation of the main inducement
for the introduction of ephemerality, as a decisive constraint seems to restore oblig-
ations ensuing from the tacit axiom, in the standard theory, of perpetuity of material
elements, an axiom refuted at the outset in that introduction. However, the collateral
structure implied by the Reynolds’ tensor is safeguarded, so that, in the end, links
are found to be stricter than expected.

We start by recalling the essential introductory moves one takes when staging
ephemerality.Actually this preamble contains also, by theway, a number of clarifying
remarks for a better understanding of some details of the proposal; so its length
exceeds that required by a bare summary.

The spacewhere bodies aremodeled coarsely is still the three-dimensional Euclid-
ean space E of places x; the coarse image of a body at an instant τ is still a fit region
Bτ in E [19]. But, when aspiring to a more circumstantial local view, one imagines
the whole physical space split into minute cubic boxes c, briefly called loculi, of edge
δ (conventionally as in molecular dynamics) and asserts to be able to explore with
an appropriate enlarging device the matter in each box. The partition is irrelevant at
the coarse scale; fading sight narrows each loculus to a pinpoint so that any c can be
designated by the image x in E of the latter: c(x). The imagined magnification of any
c must be, in principle, so great as to trace granules or even molecules in it. At the
same time δ must be large enough for the loculus to contain a sufficiently populous
cluster of molecules: meaning and avail must be ensured for statistical estimates
beyond averages; in fact, the cluster in each box and at each instant τ , is declared to
form a grand canonical ensemble.

A heavy restriction is accepted here: molecules are, under all magnifications,
modeled as points, not otherwisemarked but for their instantaneous placementwithin
each c(x) and for the velocity of each. That restriction, unfortunately but for initial
simplicity, excludes the use of the model for important physical objects such as
mixtures, even only binary when they must be separated into two different clusters.

The coarse view of events is modeled within E and is narrated via the geometric
and analytical tools adopted in the standard theory of simple continua. Loculi do not
find leeway within E ; each one is asserted to expand within its own local euclidean
space Ex, occupying there the cubic box of edge δ. Any sub-place in c(x) is identified
by a vector y issued from the center of mass of the cluster, center mirrored by x
within E .

Finally, the context which themodel inhabits is the Cartesian product of Euclidean
spaces:E ×Ex. Of course, onemust always have inmind that thewhole physical space
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is one, though mathematical convenience leads us to imagine it split into separate
minute fragments placed into distinct spaces. Thus also the viewer of the two scenes
is the same: when independence of the observer is rightly imposed on some quantity,
be it macro or micro or nano, the rotation tensor entering the requirement is unique.

Some delicate issuesmust still be sorted out.Moleculesmay exit or enter a loculus
not to disappear into or appear from the exterior of the boxwithin its local space. They
must, somehow, be pictured to enter in or emigrate from boxes placed in adjoining
spaces. To bypass such hurdle, one avoids to pursue cross-boundary paths; rather, one
restricts oneself to measuring rates of trespass, a process which may be performed
remaining within the box.

Aswe havementioned already, a sharp view is presumed to allow us to distinguish
sub-places y within c(x). We may then imagine further that, by an even sharper view,
we could explore a neighborhood of each y, as one does in standard kinetic theory,
but now at one remove down. That exploration should let us measure the velocities w
of all molecules in each neighborhood and determine their distribution Θ(τ, x; y, w)

within the vectorial space V of velocities; i.e., the number of molecules per unit
volume Θ dV , having velocities within the infinitesimal ball (w + dw) around w.

Remark that, as in the kinetic theory but now within the neighborhood of y, we
disregard knowledge of the sub-place of each molecule, but keep note of its velocity
w, to decide finally about the frequency Θ .

Actually, reference to Θ is mainly of introductory value here and would only
be relevant to establish eventually later possible links with thermodynamics via an
adapted Boltzmann equation. Here, one needs only refer to number density θ at y:

θ(τ, x; y) =
∫
V

Θ(τ, x; y, w) dV (1)

and to the average velocity w∗ at y

w∗(τ, x; y) = θ−1
∫
V

w Θ(τ, x; y, w) dV ; (2)

we may assume that our exploration around y has given us them directly.
Thus, in particular, the numerosityω(τ, x) of all molecules in c(x) at time τ would

be

ω(τ, x) =
∫
c(x)

θ(τ, x; y) dvol (3)

and we are led to the first step in the invention of a continuum to be associated with
the molecular (or the minutely and sparsely granular) cluster of specks, each of mass
μ. The continuum would have a density

ρ(τ, x) = μδ−3 ω(τ, x). (4)
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For the same time and place, the obvious choice for a gross velocity v is the filtered
velocity:

v(τ, x) = δ−3
∫
c(x)

w∗dvol. (5)

Such artificially created fields were called aeolian, i.e. of the wind produced by
the molecular flow, because they could, eventually, be read experimentally by an
appropriate anemometer.

The support of the field v(τ, x) belongs to the four dimensional space-timeT ×E
(T the axis of time), say, and it is a cylinder withBτ an instantaneous cross-section
at time τ , within the interval of interest, say [0, τ̄ ]. For any x̄ ∈ Bτ̄ , we can feign
a streak line x = x̂(τ, x̄) within the cylinder by integration backwards (i.e., by a
retrogression similar to one described in Chap.3 (iv) of [10], but here in space-time)
from τ = τ̄ to τ = 0 of the differential equation

∂ x̂(τ, x̄)

∂τ
= v(τ, x̂), x̂(τ, x̄) = x̄; (6)

where we have used the sign of partial derivation (although x̄ has only the rôle of a
parameter here) to avoid confusion with later total derivatives.

Thuswehave achieved thedescriptionof a grossmotionof a ‘fictitious’ continuous
body, non material but based nevertheless on the collective properties of the motion
of the molecules. It is not preposterous to assume that the field v be so smooth as to
lead to smooth streak lines and to a one-to-one, also smooth, correspondence between
the present place x̂(τ ) along one of those lines and the initial place xo = x̂(0, x̄) on it.
Finally, we have created the premises for the adoption of the axiom of permanence
(here of ‘fictitious’ rather than ‘material’ elements) quoted in the beginning paragraph
of this section. Hence, we are allowed (within obvious provisos) to import concepts
and results from the standard theory; such as the placement gradient F:

F(τ, x) = ∂x(τ, xo)

∂xo
, (7)

(where, from now on, x(τ, xo) := x̂(τ, x̂(0, x̄))) and the equation valid for it

Ḟ(τ, x) := ∂F

∂τ
+

(
∂F

∂x

)
v = LF, (8)

where

L = ∂v

∂x
, (9)

and the superimposed dot signifies total time derivation along the streak-lines.
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The availability of the field of filtered velocities v allows us to introduce the
peculiar velocities c∗ of agitation within each loculus

c∗(τ, x; y) := w∗(τ, x; y) − v(τ, x). (10)

It has the disadvantage of being observer dependent: for two observers rotating one
with reference to the other at a rotational velocity q, the peculiar velocities would
differ by (eq)y (e being the third order Ricci’s tensor). True, here |y| is extremely
small, being of an order just above that of molecular distances; thus, |q| should be
extremely large to cause trouble. Biscari and Cercignani have studied the apparent
effect of observer rotation on Fourier law of heat flow [2].

Nevertheless, we strive here to avoid the blight. Success is assured because, con-
trary to the restricted presumptions in the kinetic theory, we are supposed here to
know, by (1), the number density θ at any sub-place y in each loculus. Therefore we
can calculate:

(i) the instantaneous Euler’s inertia tensor for unit mass Y for all molecules in c(x):

Y(τ, x) := ω−1
∫
c(x)

θ y ⊗ y dvol, (11)

(ii) the instantaneous tensor moment of momentum for unit mass K again for all
molecules in c(x):

K(τ, x) := ω−1
∫
c(x)

θ y ⊗ c∗ dvol. (12)

We have already chosen to issue the vectors y from the center ofmass ofmolecules
in c(x) and their total momentum per unit mass is simply ωv so that:

∫
c(x)

θ y dvol = 0,
∫
c(x)

θc∗ dvol = 0. (13)

Now, with an effort of fantasy, let us imagine a fictitious element of a continuum,
not strictly material but nonetheless characterized by the concrete behavior of local
molecules. An element which: (i) occupies, at time τ , the place x; (ii) has density
ρ as per (4); (iii) translates with velocity v(τ, x); (iv) moves along the streak-lines
obtained via integration of (6); (v) has a distribution of mass leading to a tensor
moment of inertia Y(τ, x) with positive determinant; (vi) suffers a rate of change
of that distribution conditioned by a tensor moment of momentum per unit mass
K(τ, x).

In our analysis we do not ask finally for information deeper than the one deriving
from the list above, except for a last quantity summarizing consequences of local agi-
tation. That agitation apart, the local motion of molecules are intended as described,
at a middle scale, by a distortion of affine type at a rate B (a kinetic tensor) as familiar
from the theory of pseudo-rigid bodies [10], a rate which links Y and K :
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K = YBT (14)

(a superimposed T meaning transposed).
As Y is supposed to be invertible, B(τ, x) becomes also available. Then one may

split w∗ into three addenda by the introduction of a new peculiar velocity c:

c(τ, x; y) := w∗(τ, x; y) − v(τ, x) − [B(τ, x)]y, (15)

which, contrary to c∗, is observer independent.
At first, we do not pursue a detailed knowledge of the fields c; but, rather, as

announced, we introduce a new tensor H based on c:

H(τ, x) := ω−1
∫
c(x)

θ c ⊗ c dvol, (16)

which, multiplied by ρ, leads to Reynolds’ tensor measuring, as declared in [10], ‘the
apparent stress due to change of moment of momentum’; in fact ρH has the physical
dimension of a stress (also of an energy density, of course), but, in our opinion and
in accordance with the declaration just mentioned, it is a kinetic quantity gauging a
contribution to the time-rate of change of K. Hencewe are led later to suggest for it an
evolution equation to replace, in a sense, one proposed in the theory of hypoelasticity
for the tensor of Cauchy’s stress [21].

Because c may be interpreted as the average relative velocity of the molecules
belonging to the bunch in the immediate neighbourhood of y within c(x), it could be
imagined also to be the relative velocity of a fictitious sub-element presently at y.
Consequently, onemust account for a sub-local relativemomentum and an associated
kinetic energy not yet accounted for at the mesolevel. The adjective ‘relative’ is
there to insist that the value is measured by an observer translating at the rate v and
deforming at the rate B or, rather, by an observer who has already discounted those
kinetic circumstances. So, the instantaneous total relative momentum over c(x) and
the associated tensor moment vanish:

∫
c(x)

θ c dvol = 0,
∫
c(x)

θ y ⊗ c dvol = 0. (17)

In contrast to (17), the relative kinetic energy tensor per unit mass (16) vanishes
only exceptionally. Our efforts above assure us that such energy, often transmogrified
as of thermal gender, be observer independent.

As our aim, at the moment, is only the simplest continuum model of partly disor-
derly flow, all we need, essentially, from the deeper analysis, is the evaluation of the
so far hidden contribution of the inertia associated with irregular motions inside each
c(x), inertia which needs to be added to the time-rate of change of K yet to be mea-
sured mesoscopically as mentioned above. To achieve that aim, the variable y under
integral sign in (12), must not be simply taken as the mark of a free place in c(x), but,
rather, as the mark of a place occupied instantaneously by a fictitious sub-element,
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hence, as such, subject to time change. Its time-derivative equals the relative velocity
c of the sub-element. The result is that the term to be added is exactly H.

It isworth to evidence the independence repeatedly quoted in an evenmore explicit
guise by mimicking, for the affine middle picture, results already recalled, for the
gross view. Precisely, we may seek a double vector G(τ, x) having the rôle which the
placement gradient F has; i.e., by compounding an orthogonal double vector and a
symmetric positive definite tensor (for F, they would be an orthogonal tensor Q, say,
and the square root of the left Cauchy-Green tensor C̃ such that F = C̃1/2 Q).

The principal axes of Y could offer the middle scale ghost reference, the eigenval-
ues could be measure the main changes in length and the orthogonal double vector
R could specify the rotation of axes from an initial frame:

Y = δ2GGT , G = δ−1Y 1/2R. (18)

The velocities c aremeasured by an observer sitting on a framemoving as specified
by R; hence unrelated with other observers moving or otherwise.

A final remark should have been inserted even earlier, really: the analogy with
well-known gross results is so strict than an equivalent form of (8), i.e. L = ḞF−1, is
mirrored at the middle scale by a direct relationship between B and Ġ; but for detail
we refer to [3] and remarks within the next section.

2 Balances

We continue our digest of essential traits of earlier essays, adding some clarifying
remarks. The proposed model is an apparently standard continuum with additional
or alternative entities: (i) streak lines, rather than trajectories of material elements;
(ii) aeolian, or wind, velocity v, tracing those lines; (iii) corresponding displacements
and displacement gradient F, strictly akin to standard but differently significant; (iv)
time-dependent fields of distinct local affine deformation embodied by the field of
the double vector G, in a vague analogy of those required in theories of elastic-
plastic behavior; (v) fields of moment of inertia Y and moment of momentum K ,
as in many theories of multi-polar or pseudo-rigid bodies; (vi) fields of a kinetic
tensor H, analogous to one representing anisotropic kinetic energy within theories
of granular bodies and in certain theories of turbulent flows; (vii) the field c(τ, x; y)
describing a sort of sub-locally averaged agitation of molecules within each loculus.

One point needs to be evidenced: the fields Y and K (leading to consequent fields
B and G) are defined at each instant τ through totals over loculi of fixed location and
size. The time-derivatives used to measure inertia must be evaluated following the
contrived aeolian motion. Moreover, the molecules which instantaneously occupy
one loculus tend to invade, in reality, an irregular, ill-defined set which, in approxi-
mation, we take to be obtained from the original loculus by deforming it at the rate B,
with a volume change rate trB. At the same time, the fictitious wind elements change
shape at the rate L, hence change volume at the rate trL, with an incongruence

σ = trL − trB. (19)
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To meet the two challenges one must:

(i) involve tensors of Piola type YP, KP instead of Y , K ; for instance

YP = (detX̃)G−1YG−T , (20)

with
X̃ = FG−1, so that (detX̃)·(detX̃)−1 = σ ; (21)

(ii) take over an adapted Oldroyd derivative [20], marked here by a superimposed
little circle:

Y̊ := (detX̃)−1GẎPGT , where Ẏ P = ∂YP

∂τ
+ (gradxYP)v. (22)

Explicitly
Y̊ = Ẏ − BY − YBT + σY . (23)

Such rate could be called retrovected, in contrast to the convected rate used by
Truesdell in [22] (see (99.10)).

To come to the effective time-rate of change of K , the decisive remarks preceding
and following (17), regarding the influence of deep irregularmotions inside c(x),must
be brought to bear: we must add to K̊ the tensor H. This presence of H, modeling,
as already remarked, deeper effects on the value of inertia, is critical when deriving
corollaries; for instance in a new approach to the theory of α-β Navier-Stokes fluids
[7]. Because preconditions and aims are different, the addendum is absent in all
theories of continua with affine microstructure; that absence makes those theories
inadequate, in our opinion, to cover aspects of turbulence [13].

There is a crucial difference from formal analogy in the expression of the time-rate
of H. Strictly, as in the reasoning above that led us to add H to the Oldroyd derivative
of K , we should have conceived the velocities c appearing in the definition of H
as the sub-velocities of fictitious sub-elements and, consequently, we should add
terms containing the time-derivatives of c. Arbitrarily we evade the consequences of
these circumstances and thus achieve closure of an otherwise infinite set of fields and
corresponding balances. The problem and its gratuitous evasion is common with the
very successful theory of extended thermodynamics and we recommend to accept
the evasion, pending a check on how plausible appear, nevertheless, corollaries.

A finer point, in the time-derivation ofH, which escaped our earlier analysis, must
be brought to bear. The rate of change of the bunch of molecules belonging at an
instant to a loculus influences the rate of change H only in sofar its expanse changes
not its shape. So that rate reduces to

(detX̃)−1[(detX̃)H]· = Ḣ + σH. (24)
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Actually a surprising circumstance is met later when evaluating the density of
kinetic energy rate associated with themotion of our complex body: the terms involv-
ing H in the expression of tensorial moment of inertia contribute exactly the addenda
missing above to complete the full Oldroyd derivative of H:

H̊ = Ḣ + σH − BH − HBT , (25)

as we shall see.
There remains the question of which time-derivative is appropriate for the vector

v and the scalar ρ, also originally defined via totals over loculi, hence affected by
volume changes but not by meso-affine distortion. If we substitute v⊗v for Y in (23)
and cancel terms containing B, as G is now effective only through its determinant,
the cogent conclusion is that

v̊ = v̇ + 1

2
σv (26)

(contrary to v̊ = v̇ + σv adopted in earlier papers [5, 6] by a forced analogy with the
simplest theory of bodies with variable mass, but wrongly).

The same rule applies to the bivector G, for which, in an indicial notation, only
the first index connects with the aeolian referral:

G̊ = Ġ + 1

2
σ G. (27)

The result is transferred to the affillation between B and the time-rate of G
announced at the end of Sect. 1:

B̊ = G̊G−1 = ĠG−1 + 1

2
σ I, (28)

where I is the identity tensor.
An important corollary is the identity which is usually named balance of moment

of inertia:
Y̊ = 0 or Ẏ − BY − YBT + σY = 0, (29)

because

Y̊ = ˚(
GGT

) = 2sym

[(
ĠG−1 + 1

2
σ I − B

)
GGT

]
= 0. (30)

Similarly, if we substitute ρI for Y in (23), cancel again terms containing B, but
substitute (detG) for (det X̃), we obtain

ρ̊ = ρ̇ + ρ trB. (31)

The balance equations require now fundamental decisions on the general math-
ematical structure which is adeguate to express totals and densities of molecular
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compulsions (both internal and at a frontier). The details of such decisions (i.e.,
the expression of constitutive laws for volume densities and stress and compulsive
hyperstresses) are, justly, deferred to later specific studies; the generalities (e.g., the
choice of volume and area densities only and the dependence of the latter on geo-
metric properties of the frontier) will, however, open the ground for, and condition
radically, each successive particular theory.

For momentum, the formal validity of Cauchy’s structural proposal is accepted
here. To an ample extent that proposal was proved right, in the present context, by
Noll in [18], when he was seeking, as we are here, a continuum theory on the basis
of a statistical approach.

An extension of Noll’s analysis to cover, at least largely, the requirements for the
balance of tensor moments was provided in [3].

The balance equation for H is written in formal analogy with the previous two.
But the choice of terms expressing production is delicate and risky. We are groping
here in the no-man’s land near the border between mechanics and thermodynamics
and there hazards abound: there may be the need, disregarded here, to involve energy
distributions directly, not buried within averages and variances.

In conclusion the set of proposed balance equations reads:

• conservation of mass:
∂ρ

∂τ
+ div (ρv) − σρ = 0; (32)

• balance of momentum

ρ

(
∂v

∂τ
+ (grad v) v + 1

2
σv

)
= ρb + div T; (33)

• balance of moment of momentum

ρ

[(
∂K

∂τ
+ (gradK)v

)
− BK − KBT + σK + H

]
= ρM − A + divm (34)

or

ρ

[
δ2GGT

(
∂B

∂τ
+ (gradB)v

)T

+ H

]
= ρM − A + divm; (35)

• balance of agitation

ρ

[
∂H

∂τ
+ (gradH)v + σH

]
= ρJ − Z + div j. (36)

The equation of conservation of moment of inertia (29), sometimes added to the
set, is not listed above because, in our context, it is an identity, as mentioned already.

As we have remarked before (24), there was a misconception in earlier papers
in the choice of the time-rate of H. The strict analogy pursued then with the option
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appropriate forK does not seem tofit physical circumstances andwould lead, anyway,
to unacceptable corollaries (for instance when deriving the kinetic energy theorem).
So (36) above must substitute the lame laws earlier proposed (5.7) of [8] and (17) of
[3].

As for the right-hand sides, the meaning of b and T in (33) is the standard one. ρM
and the third-order tensor m express, in (34), respectively, bulk and contact external
compulsions, whereas A is intimate bulk self compulsion. Formally, the right hand
side of (34) is identical to one accepted for bodies with affine microstructure and for
multipolar continua [15].

The right hand side of (36) is suggested in analogy of the former right-hand
sides without specific justification, temporarily, with obvious presumptions regard-
ing ρJ, Z and third-order tensor j to account, respectively, for external or intimate
bulk compulsions and contact compulsion. However, the suggestion would merit
reservations or, at least, qualifications; perhaps even downright changes with the
involvement of the distribution Θ .

The sign affecting A and Z is formally irrelevant; it is a conventional choice that
gives them here the stamp of pressures rather than tractions. The choice must be
borne in mind when explicit constitutive laws need be set forth.

It is not straightforward to compare the set of 19 balance equations above with
anyone of the numerous suggestions promoted to bridge the gap existing between
standard continuum mechanics and the dynamics (eventually thermodynamics) of
granular media, including the theories inspired by the kinetic theory of gases. Some
differences are easily discounted: for instance, a number of Authors adopt a so-called
14 moment set where only the trace of H appears and (36) is substituted by its scalar
version.

The main obstacles are found in:

• our separation of macro and meso motions with the consequent crucial role
assigned to the tensor meso moment of momentum;

• the entry of H as an essential ingredient in the associated inertia plus the possible
effects of suffusion;

• our favouring the interpretationofReynolds’ tensor as a kinetic rather thandynamic
field and our exclusion of temperature in view of its uncertain status in an approach
based fundamentally on densities rather than distributions.

The contrast is obvious with extended thermodynamics (see [17], for instance);
its 20 moment set contains, besides a set of 10 equations mirroring our (32), (33),
(36), constitutive choices apart, an evolution equation for temperature, while the
remaining nine equations are moments, but foreign to K .

Vice versa, the strictest link for (36) iswith the so-calledReynolds’ stress equation,
where explicit constitutive rules forZ and j are also displayed. They involve, however,
beyond variance H, also third-order moments (or skewness) which we declared
explicitly to exclude, as to insure full closure. Finally, the entrainment inertia is
ruled by −L, rather than B as in (36), the meso-scopic motions asseverated by us
being ignored.
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In any case some useful notions introduced over the years by many Authors for
the closure problem in turbulence modeling (essential references are in the tract [9]
available on the web) could be borrowed here to specify, more readily, constitutive
casts, in particular for our Z .

Actually the main attention, at first, was addressed in the literature to special
steady incompressible streams and hence to a direct link of H with the gross wind
motion; for instance, Boussinesq already recommended that the deviator of H be
taken proportional to D = sym L by a constant eddy (kinematical) viscosity. A
vaguely similar outcome would arise in a skeletal version of (36) canceling some
terms (including J and j) and assuming Z linear in D.

A prompting by Truesdell (see (99.11) of [22]) involving, if brashly interpreted,
a time-rate of H and therefore nearer to our (36), could be construed, in our present
parlance, for the eddy viscosity to be, rather then a constant scalar, a fourth-order
tensor operating on D.

A significant outcome of the set of balance equations is the associated kinetic
energy theorem. But, before we proceed to recall that theorem, we must muse upon
a remark in Sect. 3 of [5] which evidences the fact that the kinetic energy W of the
cluster of molecules in each c(x),

W = 1

2ω

∫
c(x)

dvol
∫
V

w ⊗ w Θ dV = 1

2ω

∫
V

w ⊗ w θ̂ dV , (37)

with θ̂ =
∫
c(x)

Θ dvol,

cannot be determined in terms of filtered variables based on number densities alone:
the distribution Θ has a direct rôle. Besides, the enormous body of results from the
kinetic theory, stemming from the Boltzmann equation, proves, by implication, that
Θ might be essential also to specify compulsion densities, be they volumetric or
tactile.

Roughly, a parting of the ways occurs: either one restricts ambitions to what a sort
of extendedmechanics can offer by widening the range of descriptive parameters (as,
here, where G and H are added) or one faces thermodynamic complexities, where
the account of each local setting involves distribution functions directly not only
through their filtered versions.

We take here the first way out and hence refer to (32)–(36); the consequent reduced
kinetic energy tensor W̃ per unit mass (already mentioned in [5]) is introduced as
follows:

W̃ = 1

2ω

∫
c(x)

θ̃ w̃ ⊗ w̃ dvol, (38)

and found to be equal to

W̃ = 1

2
(v ⊗ v + BYBT + H) (39)
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whereas its Oldroyd derivative is equal to

˚̃W = 1

2
˙

(v ⊗ v + H) + 1

2
˚

(BYBT ) + 1

2
σ (v ⊗ v + H). (40)

By multiplying both members of (33) on the left by v and taking the symmetric
component of the resulting tensors. Acting with B on both sides of (35) and again
taking the symmetric component. Adding term by term the two results plus (36) mul-
tiplied on each side by 1/2 and integrating the result over any fit region b belonging
toBτ , the theorem of tensor kinetic energy follows

∫
b

ρ ˚̃W dvol =
∫
b

ρ

[
sym(v ⊗ b + BM + 1

2
J

]
dvol

+
∫

∂b

{
sym[v ⊗ Tn + m(Bn)] + 1

2
j n

}
darea (41)

−
∫
b

[
sym(LTT + BA + bmt) + 1

2
Z

]
dvol,

where n is the unit vector normal to ∂b, the exponent t meansminor right transposition
(for a third-order tensor) and b := gradB (see Eq. (11) of [6]).

The usual interpretation applies of the three terms of the right-hand side; external
bodily compulsions, the first; external compulsions across the boundary, the second.
Finally the last term is figured to measure the tensor power of internal compulsions;
its density is then

− sym(LTT + BA + bmt + 2−1Z). (42)

Now, our mathematical model of events must mirror rigorously the physical fact
that, per se, any kinetic behavior of the frame, on which the observers sit, must have
no influence whatsoever on their evaluation of the power density expressed either by
its tensorial form (42) or, at least, by the trace of (42)

− (L · T + B · AT + b · tm + 2−1trZ). (43)

But their reading of L and B are both changed by the addition of the same skew
tensor as a consequence of a rigid rotation of their frame, a rotation which leaves,
instead, b unscathed. Additional effects may ensue from certain choices of consti-
tutive laws for T , A, m, Z and j. Vice versa a cute constitutive rule might correct
other unwanted influences. Thus, we must delimit somehow the choices open to the
mathematical modeller of constitutive laws for T , A, m and Z , specifically regarding
the variables involved in these laws.

For instance, if U(U) and H(H) are fourth-order tensor functions only of the
variables indicated with U := e[(FTgradG)T ] a density of dislocations (see Sect. 4
of [5]); then both

Z = [U(U)] U and Z = [H(H)] D (44)
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are acceptable constitutive laws for Z as they are both indifferent to observer motion.
The first was suggested in Sect. 8 of [5]; the second is an interpretation of Truesdell’s
proposal for hypo elastic bodies. There is a radical difference between the two choices
(44), of relevance later: ifH does not reduce to a constant tensor (i.e., if its dependence
onH is excluded), the power may end up by depending non-linearly on time rates. Of
course such event may occur also, for instance, if Cauchy’s stress contains a viscous
term (i.e., a term proportional toD by a constant viscosity). Another remark regarding
H must be premised. It has the physical dimensions of a stress. Its semitrace str H
(i.e., the second order tensor obtained from H by contracting the first two indices)
acts in the way that T and A do. We may expect it to show up similar behaviour
throughout.

To simplify discussions wewill deal below only to conditions where the following
axiom applies:

Constitutive Axiom C1. Constitutive laws are each, separately, observer indepen-
dent. The variables involved may only be F and G, L, B, b and H and their gradi-
ents, in appropriate groupings, each observer independent such as FT F, GT G, FT G,
D = symL, symB, skw(L − B), FTgradG.

Such axiom is insufficient to make the power (43) observer independent due to
separate presence ofL andB. The decisive additional axiomwhich ensures the desired
property is

Axiom A1. The constitutive laws for T and A satisfy identically the condition

skwT = skwA, or (TT + A) ∈ Sym. (45)

Artificial counterexamples would assert for T , A and m the properties above, but
would relax the constitutive law for Z to read

Z = [H(H)] L or Z = [H(H)] B. (46)

Then it would still be possible to achieve the asked for property of (43) by requir-
ing, instead of (45) (

TT + A + 1

2
strH

)
∈ Sym. (47)

No restriction ever ensues for the semi-deviator tensor,

sdevH := H − 1

3
I ⊗ strH, (48)

neither here nor later when, within the next section, we introduce a specific constraint
with the consequence, then, that no reactive component arise.

Because of the importance, for ephemeral continua, of tensor powers, one is led
to propose, more severely, that independence from the observer be asserted even
for the full tensorial version, though always accepting constitutive Axiom C1. As
already remarked, definition implies that a rigid rotation would not affect b. Also
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the sought tensorial property would necessarily imply the restricted scalar one and
hence (43) which may be then presumed. Then the only obligation which remains to
be satisfied is

sym[W (T T + A)] = 0, ∀ W ∈ Skw. (49)

Acceptance of (49) implies, as already remarked, that of (43); therefore TT + A
is symmetric. Then (49) can be rewritten as

W (TT + A) + (T + AT )W T = 0 (50)

or
W (TT + A) − (TT + A)W = 0. (51)

The definition itself of skew matrix assures us that the only symmetric tensor
which commutes with a skew tensor is a spherical tensor, say αI . We conclude with

Axiom A2: the constitutive laws for T and A satisfy identically the condition

T + AT = αI, (52)

with α a scalar function. The requisite advanced sometimes that T coincides with
−AT is a sufficient, but not necessary, condition to satisfy (49).

3 Hypocontinua

The matter we comment on in this section was already treated specifically in [6]
and, by the way, in Sect. 9 of [5]. Briefly the term hypocontinuum was introduced
for bodies the evolution of which is ruled by balance equations obtained from (32)–
(36) when a perfect constraint is introduced to force B to coincide with L. The
adjective ‘perfect’ meaning, as customary, that the internal compulsions T , A, m, H
are each the sum of an active addendum (Ta, Aa, ma, strHa) and of one reactive to
the constraint (Tr, Ar, mr, strHr) and the latter satisfy (45) separately; furthermore
their power is identically null for any motion allowed by the constraint:

D ·
[

Tr + (Ar)T + 1

2
strHr

]
+ grad L · tmr = 0, ∀ D, H, grad L. (53)

The constraint cancels the primary freedom attributed to ephemeral continua as the
wind streak lines end up by coinciding with paths of material elements; however, a
‘tensorial pressure’ ρH due to agitation within each element remains and it is this
latter phenomenon embedded in the model which allows the link with hypoelasticity.

The detais are given in the papers quoted above presuming, we repeat, that con-
dition (45) be transferred separately to active and reactive stresses under an axiom
stronger than Axiom C1:
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Constitutive Axiom C2. The second choice (44) is excluded. The variables
involved may be F and G and their gradients (thus L, B and H are disallowed).

Consequently, in particular, conspicuous viscous effects are left out. The resulting
system is as follows:

∂ρ

∂τ
+ div (ρv) = 0, (54)

ρ

(
∂v

∂τ
+ Lv

)
− div

{
ρδ2

[
∂L

∂τ
+ (grad L)v

]
FFT

}
(55)

= ρb − div
(
ρMT

) + div
[
sym(Ta + Aa) + ρH − (divma)T

]
,

ρ

[
∂H

∂τ
+ (gradH) v

]
= ρJ − Z + div j. (56)

A comment on (55) is weighty: the term ρH is placed in it on the right-hand side
within the square brackets as though it were an addendum to stress, whereas, in our
delivery, physical dimensions apart, it is of kinetic origin and essence. The reason
for the choice of placing is later uniformity with Truesdell proposal; however, the
choice evidences, in our opinion, an ambiguity inherent in that proposal.

The complexity of this system, even if largely reduced when compared with the
general one, is staggering: (55) involves up to third-order mixed derivatives of v,
together with the left strain tensor FFT . We have also already remarked in [6] that
boundary conditions associated with (55) are outlandish as inertial effects may be
expected to be relevant at the frontier. However, most terms added to the standard
equation of Cauchy are forced, by the constraint, to be, generally, very small: |y|
is of the order of δ, whereas |c| may be of order of |v|. Thus terms containing Y ,
those relating to moment of momentum and the corresponding compulsions may be
disregarded; they would become significant only if |c|were of the order of δ−1. Thus,
one may be content with the much simpler equation:

ρ

(
∂v

∂τ
+ Lv

)
− div(ρH) = ρb + div

[
sym(Ta + Aa)

]
. (57)

If Axiom A2 is allowed instead of A1 and hence the condition (52) ensues and
is transferred to the active stresses, then (Ta + Aa) recedes to a spherical tensor αI
and (57), (56) become formally similar to the set valid for hypo elastic materials (see
(99.11) of [22]), except that here the kinetic quantityρH+αI takes,more agreeably in
our opinion, the place that straight stress has in (55); in fact, the significance attributed
to the field ruled by the second balance equation is the fundamental discrepancy
between the two approaches.

Thus, the partial formal concurrence appears to be more incidental than essential.
Truesdell’s goal could be interpreted as an attempt to model a self-mutant simple
continuum (i.e., a body constitutively mutant via the history of its own deformations
as specified by the first placement gradient). Instead our results issues of a non-simple
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continuum the behaviour of which is influenced to a large extent, (in the end, here,
exclusively, through constraints) by a tensor −ρH with the dimension of a stress but
generated by a deeper disorderly behaviour of a cluster of specks.

However, Truesdell constitutive choice conflicts with the acceptance of Axiom
C2, an assumption which is imperative to obtain (55). The contrast might be framed
within a, so far, sidestepped issue: how do we configure the cogency to induce a
mutated response; does it imply a contribution to intimate power, additional to that
generated by microstress (and, possibly, by meso-iperstress), thus appearing in the
kinetic energy theorem or is it due to a powerless kinetic urgency.

In our presentation of hypocontinua the answer is affirmative for the first choice in
the dilemma and one may wonder how much different our results would be, having
accepted a linear dependence of Z on D (our interpretation of Truesdell proposal
rendered explicit by the second of (44)) with the fourth-order tensor H symmetric in
the first two indices and in the last two, that is: Hijlm = Hjilm = Hijml (so that H is an
operator of anisotropic eddy viscosity).

The scalar internal power density of compulsion can be easily obtained from (42)
introducing the constitutive law (44)2 together with the constraint L = B:

−
(
1

2
tr (HD) + L · (T + AT ) + grad L · tm

)
. (58)

The sums of active and reactive compulsions are introduced in the system (33),
(34), (36) and an appropriate combination is sought (but, as we shall see, without
success) to achieve again a format where only active compulsions appear. Because j
and the semideviator sdevH of H do not enter (43), we exclude that they may react
to constraints, so they are fully active. Finally, the arbitrariness of D requires

Tr + Ar + 1

2
strHr = 0. (59)

By substituting these results in balances (33), (35) and (36) the resulting field
equations are:

ρ

(
∂v

∂τ
+ Lv

)
− div

{
ρδ2

[
∂L

∂τ
+ (gradL)v

]
FFT

}
(60)

= ρb − div
(
ρMT

) + div
[
sym(Ta + Aa) + ρH − (divma)T − strHr

]
,

ρ

[
∂H

∂τ
+ (gradH) v

]
= ρJ + div ja − HaD − 1

3
(I ⊗ strHr) D. (61)

Thus it is not possible, under the circumstances, to obtain a set of balance equations
which are ‘pure’, in the sense that no reactive compulsion appears in them. Such
failure should not surprise as it was alreadymet when incompressibility was imposed
on a linearly viscous fluid (see Sect. 4.6.2 of [16]).
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Such obnoxious analytical conclusion could be understood as the consequence of
some shortcomings of the mathematical model. Each model requires qualifications,
obviously, and we have already remarked above that our evaluation of kinetic energy
of the cluster of molecules within a loculus in terms of filtered variables alone is
deficient; also the closure of the set of statistical entities beyond H is an arbitrary
restriction. However, the main obstacle here appears to be, in both cases quoted, the
presence, in the expression of power of internal compulsions, of a term quadratic in
the disfigurement rates (D and H). Compounded with the constraint, that available
powermust imply deeper physical effects whichmight escape chronicle via the fields
directly involved here so far. For instance, the distribution Θ is supplanted here by
less specific number densities and the surrender may be prejudicial.

4 Extended Mechanics

We list, in this concluding section, a number of advances which we attribute to the
field of continuum mechanics (with the canon: geometric setting and consequent
kinetics; dynamic balances; constitutive laws with attendant analytic discipline of
initial and boundary conditions) in the territory of thermodynamics still afflicted
by doubts and disputes (see, typically, [1]) even if, nevertheless, vastly successful.
The list is open-ended and merely suggestive of topics which seem to us to merit
attention, as already predicated, for instance, in [4].

A significant outcome of the set of balance equations (33), (35) and (36) is the
associated kinetic energy theorem (41). It could be imagined as due to the conjoining
of two theorems, one merely issuing from (33) and formally involving only standard
quantities

1

2

∫
�
[ρ(v ⊗ v)· + σ v ⊗ v] dvol =

∫
�
ρ sym(v ⊗ b) dvol (62)

+
∫

∂�
sym(v ⊗ Tn) darea −

∫
�
sym(LTT ) dvol

and the other counting contributions due to the new fields entering our extended
mechanics

1

2

∫
b

ρ
˚(

BYBT + H
)

dvol =
∫
b

ρ

{
sym[B(M − H)] + 1

2
J

}
dvol (63)

+
∫

∂b

{
sym[m(Bn)] + 1

2
j n

}
darea −

∫
b

[
sym(BA + bmt) + 1

2
Z

]
dvol,

both valid separately.
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Under becoming assumptions of smoothness and in view of its validity for any
choice of b, (63) may be replaced by a prerequisite on densities

ρ
˚(

BYBT + H
) + 2 sym(BA + bmt) + Z (64)

= ρ {2 sym[B(M − H)] + J} + div
[
(m + tm) � B + j

]
,

where the tensor product � between tensors of the third and the second order is so
defined: (m � B)ijl := mijkBkl.

Then we could interpret (64) as the balance equation for the whole meso energy:
i.e., comprising also the affine (in particular the vorticose) contribution beyond the
sole energy of agitation H. In fact, nominally, (64) could substitute (36) within the
set of balance equations.

Such perspective would become particularly suggestive if the medium were per-
fect in the sense that a potential energy exists from which all compulsions can be
derived so that the whole left-hand side of (64) may be written as the time-rate of
an internal meso energy. The matter is discussed in some detail in [5], see especially
the final part of Sect. 8. There are already precise hints in the literature regarding A
and m; a suggestion for Z advanced in [5], Sect. 8, was already quoted; clearly the
presence of viscous effects as specified by (44)2 must instead be excluded. Finally
(64) would mimic outwardly the first principle of thermodynamics, and a class of
‘thermal’ phenomena could be dealt with within our extended mechanics.

The mimicry would become much more striking if one descends to the special
case of hypocontinua and simplifies (64) accordingly or starts again but from (55),
(56) rather than the general set:

∫
b

ρ ˚̃W dvol =
∫
b

ρ

[
sym(v ⊗ b + BM) + 1

2
J

]
dvol +

∫
∂b

{
1

2
j n (65)

+ sym
{
v ⊗ [

sym(Ta + Aa) + ρ(H + δ2L̇FFT ) − (divma)T
]

n
}}

darea

−
∫
b

{
1

2
Z + sym

[
L (sym(T a + Aa) − divma)

]}
dvol.

Then, receding to traces of all tensors involved and again assuming perfection of
the material involved, the equation would appear strikingly similar to that expressing
the first principle of thermodynamics. The kinship should not surprise: we caused
meso energies to emerge beyond those measured along the gross flow, though still
in terms of explicit additional geometric and kinetic parameters.

Of course the power of hyperstress would involve the introduction of hyperstrains
and their time rates. Precisely:

• the third-order tensor of wryness W

Wijk := GiK,J F−1
Ji G−1

Kk (66)

and of torsion h
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〈:= 1

2
(W − W t); (67)

• plus the second-order tensor of density of dislocations u

uAB := eACD FiB GiD,C (68)

(see Sect. 4 of [5]).

These variables, together with the standard choice C = FT F and some kindred
ones such as GT G and GT F, would be invoked to construct a promising extended
hyperelasticity via an internal energy specified in terms of them in elaborate analogy
of Chap.2 and, in particular, of paragraph 82 of [22]. The last integrand in (65)
expresses the rate of change of internal energy density.

Within the latter, some kinetic quantities have an important role, such as

• the deranging (L − B), the symmetric part of which measures the slippage of
Eckart-Truesdell, whereas the skew part gives the difference between vorticities

• an intensity of microvorticity,
both observer-independent. For details we refer again to Sect. 5 of [5].

Themost critical handicap in the proposals above is the acceptance of Constitutive
AxiomC2 and consequent endorsement of balance laws (54), (55), (56). For instance,
even the alternative laws (60), (61) involve the sofar unspecified reactive term Hr;
we might guess that the escape from the dilemma will impose the introduction of
new fields necessarily exiting from the field of mechanics proper.

We attempt below a, perhaps whimsical, route which seems to lead us near to a
scale measuring intensity of deeper energies.

To begin we must promote the acceptance of a pseudo distribution α∗ based on
the field, within c(x), of meso kinetic energy

θ∗ = 1

κ∗
tr(BYBT + H), with κ∗ =

∫
c(x)

tr (BYBT + H) dvol, (69)

the integral of which over c(x) is unity.
Then, proceed to find the subset cξ of cwhere the quantity (69) above is less than ξ

(0 < ξ < 1). The derivativeα∗(ξ) of
(
κ−1∗

∫
cξ

θ∗ dvol
)
is such thatα∗(ξ)dξ gives the

value of the fraction of molecules with energy within the interval [ξκ∗, (ξ + dξ)κ∗];
thus a connection is established with standard developments and with the challenges
on the road to a definition of temperature.

These matters touch onmany hotly debated controversies and are left for a length-
ier future essay.
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Some Remarks to Higher Order Frames
Occurring in Continuum Mechanics

Miroslav Kureš

Abstract Frame bundles are described with respect to their role in continuum
mechanics, the structure jet groups are studied and some expressions in local coordi-
nates are derived. It is introduced the general (r-th order)microstructure configuration
and it is suggested what needs to be investigated in subsequent research.

1 Introduction

Samuel Forest published in [4] the following nice table representing a hierarchy of
higher order continua.

Name No. of d.o.f. d.o.f. References
Cauchy 3 u Cauchy (1822)
Microdilatation 4 u, χ Goodman and Cowin (1972); Steeb and Diebels (2003)
Cosserat 6 u, R Kafadar and Eringen (1971)
Microstretch 7 u, χ , R Eringen (1990)
Microstrain 9 u, C� Forest and Sievert (2006)
Micromorphic 12 u, χ Eringen and Suhubi (1964); Mindlin (1964)

The meaning of the symbols is as follows: u is the displacement field, χ is the
microdeformation tensor field, C� is the right Cauchy-Green tensor, R is the special
microdeformation, namely the rotation.

Certainly, it would be beneficial to have a unified and effective theoretical descrip-
tion of all such cases. In this paper, we show that a very elegant way is to use dif-
ferential geometry. Using it, a lot of successful and understandable interpretations
have already been created, for an example in the book Material Inhomogeneities and
their Evolution: A Geometric Approach [3] of authors Marcelo Epstein and Marek

M. Kureš (B)
Institute of Mathematics, Brno University of Technology, Technická 2,
61669 Brno, Czech Republic
e-mail: kures@fme.vutbr.cz

© Springer International Publishing Switzerland 2016
B. Albers and M. Kuczma (eds.), Continuous Media with Microstructure 2,
DOI 10.1007/978-3-319-28241-1_4

45



46 M. Kureš

Elżanowski, in the lecture notes Introduction to Continuum Mechanics [7] of Panayi-
otis Papadopoulos or a number of scientific papers as e.g. Continuum dynamics on
a vector bundle for a directed medium [8] by Yamaoka and Adachi. Here, we are
trying to unify the geometric approach and use a truly modern language of fibered
bundles which is systematically developed in the monograph Natural Operations in
Differential Geometry [6] of Kolář et al.

Besides this unifying language there are also some of our calculations (principal
morphisms between frame bundles with different structure groups, the form of ele-
ments of Toupin subgroups) completely new in terms of the explicit expression. We
are convinced that local coordinate expressions are necessary to be truly effective in
applications. Nevertheless, the paper is much more something else: an outline of the
program. The program of an investigation in special higher order principal bundle
morphisms—it is shown here that it is a powerful theoretical background.

2 The Configuration

Let B and S be two smooth manifolds (dim B = b, dim S = s, b ≤ s) and

κ : B → S

a smooth embedding (i.e. an injective smooth mapping such that κ(B) is a submani-
fold of S and the (co)restricted mapping B → κ(B) is a diffeomorphism, see [6]). We
will call B the body, S the space and κ the configuration. As B and S are manifolds,
they are endowed with local maps ϕB

ι : Uι → R
b (Uι ⊆ B, ι ∈ I) and ϕS

ῑ : Vῑ → R
s

(Vῑ ⊆ S, ῑ ∈ Ī).1 The maps provide local coordinates: let points P ∈ B have coor-
dinates (ξ j), j = 1, . . . , b and points p ∈ S have coordinates (xi), i = 1, . . . , s. The
local coordinate expression of the configuration κ is a map

κ̄ : Rb → R
s

such that
κ̄ ◦ ϕB

ι = ϕS
ῑ ◦ κ

and it is expressed by
xi = κ i(ξ j).

1In classical situations, we meet the case dim B ≤ 3 and S = R
3 where B can be covered by a single

map, so both index set I and Ī are singleton. Let us mention as a curiosity that some authors, cf.
[5], consider local maps inversely—as mappings from the real space to a manifold, which is not a
problem.
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Of course, it is an infinite number of configurations in general. One of them is
labeled as significant, so called reference configuration

κ0 : B → S.

Wewill now assume that different configurations are smoothly parameterized. Let
us consider one-dimensional manifold T (with local maps ϕT

ι̃
: Wι̃ → R, Wι̃ ⊆ T ,

ι̃ ∈ Ĩ giving a local coordinate t to a point of T ) and a smooth map

χ : B × T → S

endowed with the property that its restrictions to specific t are configurations, in
particular

χ|t=t0
= κ0.

Usually, t is interpreted as time and the map χ is called the motion. Its local
coordinate expression is

xi = χ i(ξ j, t).

The velocity and acceleration vectors are expressed by

vi = dχ i

dt
and ai = d2χ i

dt2
.

Let us consider the position vector r with respect to the reference configuration
κ0, as r : B × T → S,

ri(Xj, t) = χ i(ξ j, t) − Xi where Xi = χ i(ξ j, t0);

such a position vector is called the deformation of B with respect to the reference
configuration κ0 in time t. Then the deformation gradient of B is

Fi
ī
= dri

dXī
.

Now we will add to the body its microstructure. Classically, the microstruc-
ture is expressed by k linearly independent vectors, k ≤ s, called directors (cf.
e.g. [8]) assigned to points p ∈ κ(B) ⊆ S. Thus, we consider frames over points
of κ(B) ⊆ S, in particular we do not exclude the case k > b. It seems well-
reasoned, because, for example, two-dimensional plate materials are placed in three-
dimensional space, their thickness is neglected, but a rotation of their particles is
required three-dimensional. This is illustrated in the Fig. 1. In this situation, we
introduce frames by a strictly geometric way in Sect. 2.



48 M. Kureš

Fig. 1 Three directors (blue,
red and black) determining
rotations of particles of a
two-dimensional body in the
three-dimensional space

3 Frame Bundles (of the First Order)

Let us consider smoothmappings fromR
b (b = dim B) toB such that the rank of their

tangent maps in 0 = (0, . . . , 0) equals b, i.e. we consider immersions. We define the
first order frame bundle P1B over B as the space of 1-jets of such immersions from
R

b into B, i.e.

P1B = imm J1
0

(
R

b, B
)
.

1-jets in question, i.e. elements of P1B, form a principal bundle over the base
manifold B. Analogously, we have the bundle P1S over S. These bundles disposes of
right actions by general linear groups GL (b,R) and GL (s,R), respectively. Now,
we take principal bundle morphism (a fiber bundle morphism which interwines with
group actions)

K : P1B → P1S

over the base map κ . This morphism will be called the Cosserat configuration. In
local coordinates, P1B has induced local coordinates ξ j, ξ j

j̄
, j, j̄ = 1, . . . , b, P1S has

induced local coordinates xi, xi
ī
, i, ī = 1, . . . , s and the morphism K is expressed by

xi = κ i(ξ j)

xi
ī
= Ki

ī
(ξ j, ξ

j
j̄
).

Let us express K . First, we take a fixed homomorphism Hϕ : GL (b,R) →
GL (s,R) by the following way. The element β ∈ GL (b,R) will be embedded to
GL (s,R) and multiplied by a fixed ϕ ∈ GL (s,R) from right. The result will be
denoted by σ ∈ GL (s,R). It means σ i

ī
= Hϕ

i
ī
(β) = β i

kϕ
k
ī
for i ≤ b and σ i

ī
=

Hϕ
i
ī
(β) = ϕi

ī
for b < i ≤ s.
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Hence K needs to satisfy

Ki
ī
(ξ j, ξ

j
kβ

k
j̄
) = Ki

k(ξ
j, ξ

j
j̄
)σ k

ī
= Ki

p(ξ
j, ξ

j
j̄
)β

p
l ϕl

ī
+ Ki

q(ξ
j, ξ

j
j̄
)ϕ

q
ī

(p ≤ b, b < q ≤ s).

If ϕ is the identity, we have ϕk
ī

= δk
ī
(Kronecker delta) and the formula transforms

into

Ki
ī
(ξ j, ξ

j
kβ

k
j̄
) = Ki

p(ξ
j, ξ

j
j̄
)β

p
ī

(ī ≤ b)

Ki
ī
(ξ j, ξ

j
kβ

k
j̄
) = Ki

ī
(ξ j, ξ

j
j̄
) (b < ī ≤ s).

We recognize Ki
ī
as linear in ξ

j
j̄
for ī ≤ b and as constant in ξ

j
j̄
for b < ī ≤ s.2

4 Jet Groups: Toupin Subgroups

A group G is called a split extension of a group N by a group H̄ 1if N is a normal
subgroup of G and G contains a subgroup H such that H ∼= H̄, N ∩ H = {e} and
NH = G. Alternatively one says that G is a semidirect product of N by H̄. The
notation is G = N × | H̄ [2].

Alternatively, given any two arbitrary groups N̄ and H̄ and a group homomor-
phism3 τ : H̄ → Aut N̄ , we can construct a new group G = N̄ × | τ H̄ through its
operation ∗ defined by

(n̄1, H̄1) ∗ (n̄2, H̄2) = (
n̄1τ(H̄1) (n̄2) , H̄1H̄2

)

Then pairs (n̄, eH̄) form a normal subgroup N of G isomorphic to N̄ , while pairs
(eN̄ , H̄) form a subgroup H of G isomorphic to H̄. This semidirect product is con-
sistent with the definition above, namely N̄ × | τ H̄ = N × | H̄.

r-jets of smooth maps R
n → R

n with non-zero Jacobian determinant in 0 =
(0, . . . , 0) and sending 0 to 0 together with the jet composition form a group which
is called the r-th jet group and denoted by Gr

n, for details see [6]. Moreover, for
0 ≤ s < r, we have a canonical epimorphism π r→s

n : Gr
n → Gs

n. (We consider G0
n as

the trivial group.) Let us write Br→s
n = ker π r→s. Groups Br→s

n are normal subgroups
of Gr

n, see [6], Proposition 13.11.
Thus, in the sense discussed above, we have Gr

n = Br→1
n × | G1

n.

2thus not depending on ξ
j
j̄
.

3such a group homomorphisms can be induced by an action (left or right) of H̄ on N̄ , for details
see [6].
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We remark that G1
n is nothing but the general linear group GL (n,R) for which

a structure of subgroups is extensively studied for many years and includes i.a.
triangular and diagonal subgroups, orthogonal and symplectic subgroups, etc. So, let
M be a subgroup of (eBr→1

n
, G1

n) (e.g. induced from classical groups just mentioned),
m ∈ M and let b ∈ Br→1

n . Then elements bmb−1 generates the conjugate subgroup
T = bMb−1 of Gr

n which is called the Toupin subgroup of Gr
n associated with M

and b.
For a subgroup K of Gr

n, let π
r→1
K denote the restriction of π r→1 to K . Then, for

a ∈ G1
n, we will examine the fiber

(
π r→1

K

)−1
(a).

First, for a Toupin subgroup T , we observe
(
π r→1

T

)−1
(idG1

n
) = idT . This leads to

the following definition. We say that a subgroup K of Gr
n is the generalized Toupin

subgroup of Gr
n if it has the property that

(
π r→1

K

)−1
(idG1

n
) is singleton.

In [3], authors proved for r = 2 that exist

• generalized Toupin subgroups of Gr
n which are not Toupin subgroup;

• one-parameter subgroups in Gr
n which are not generalized Toupin subgroup.

Now, we present the form of Toupin subgroup in local coordinates. First, we recall
that for a = (ai

j, ai
jk), b = (bi

j, bi
jk) ∈ G2

n, the composition c = ba = b ◦ a is given by

c = (ci
j, ci

jk) = (bi
kak

j , bi
lmal

ja
m
k + bi

la
l
jk). We easily find that for b = (δi

j , bi
jk) ∈ B2→1

n

its inverse b−1 = (δi
j ,−bi

jk). Then for h = (hi
j, 0), where (hi

j) represents a subgroup
of G1

n,

bhb−1 = (hi
j, bi

lmhl
jh

m
k − hi

lb
l
jk).

We immediately see that for hi
j = δi

j we obtain the identity as required.

5 Frame Bundles (of a General Order)

Wedefine the r-th order frame bundle PrB overB as the space of r-jets of immersions
from R

b into B, i.e.

PrB = imm Jr
0

(
R

b, B
)
.

1-jets in question, i.e. elements of P1B, form a principal bundle over the base
manifold B. The structure group of PrB is Gr

b which acts smoothly on PrB on the
right by the jet composition, i.e. PrB is a principal Gr

b-bundle. We generalize the
Cosserat configuration by the following way. A principal bundle morphism

K : PrB → PrS
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over the base map κ will be called the general (r-th order) microstructure configu-
ration.

We note that PrB has induced local coordinates ξ j, ξ
j
j̄1
, …, ξ

j
j̄1...j̄r

, j, j̄1, . . . , j̄r =
1, . . . , b and P1S has induced local coordinates xi, xi

ī1
, …, xi

ī1...īr
i, ī1, . . . , īr =

1, . . . , s.
For the expression ofK , we take (analogously as for the Cosserat configuration),

a fixed homomorphismHϕ : Gr
b → Gr

s , again, first by the embedding of the element
of Gr

b to Gr
s and then by the right multiplying by an element ϕ form Gr

s . We are
leaving to readers to calculate the coordinate expression of K now.

6 Higher Order Deformation Bundles and Reductions
of Jet Groups—Interesting Challenges

In the Sect. 1, we introduce the deformation gradient for the configuration κ . Evi-
dently, deformation gradients are 1-jets.

Analogously, deformation gradients for the case of the Cosserat configuration
K are represented by nonholonomic 2-jets and the question whether these jets are
semiholonomic or even holonomic can be (and is) discussed. In general, deformation
gradients of the general microstructure configurationK form certain nonholonomic
(r + 1)-jets and emerging challenges are similar: what represent jets of special types
(semiholonomic, holonomic, but not only), in particular, due to the constitutive equa-
tions of the material?

Fig. 2 There are numerous
applications of Cosserat
theory concerning
rectangular structure of
blocks; this figure is taken
from the paper [1] of Dieter
Besdo
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Different, but no less important issue is a research of subgroups of jet groups Gr
n,

similarly as it has been done in the case of Toupin subgroups. Of course, it leads
to the phenomenon of material symmetry. Even an uninformed layman anticipates,
when he had looked at Fig. 2, that there are situations when a total freedom in all
possible ways of the motion is not the best to study; when the whole linear or jet
group does not act, but operates only some suitable subgroup. We recall that if we
have a principal G-bundle Y and an inclusion of a subgroup H into G, a reduction of
the structure group (from G to H) is a principal H-bundle Z such that the pushout
Z ×H G is isomorphic to Y . Note that these do not always exist, nor if they exist
are they unique. Despite the complexity of the problem of reductions of jet groups,
it is hopeful that it will not just pure mathematics, but also interesting results for
continuum mechanics.
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On the Origin of Balance Equations
in Simple and Complex Continua:
Unified View

Paolo Maria Mariano

Abstract Here I discuss the way we can derive balance equations for continua with
active microstructure, furnishing a unified view on available models and a tool for
constructing new ones. I indicate how the requirement of invariance under isometry-
based changes in observers of the power of the external actions alone over a generic
part of the body is a tool to derive standard and non-standard action-reaction prin-
ciples, the representation of contact actions in terms of stresses, the possibility of
nonzero microstructural self-actions, the balance equations, demanding a very lim-
ited number of assumptions. In presence of material mutations, which suggest to
take into account multiple reference shapes for a body, we need to extend the proce-
dure by introducing the notion of relative power. Its invariance under isometry-based
changes in observers furnishes once again the results listed above and in addition
the balances of configurational actions. Finally, I indicate how we can consider the
covariance of the second law of thermodynamics and summarize what we can derive
from this concept, and how.

1 Preamble

Here I copy down (changing the title) the talk I delivered in the 2015 meeting ded-
icated to Krzysztof Wilmanski in Łagów, Poland. The occasion notwithstanding,
however, I do not have significant personal recollections of him, for I met him just
once in Hungary. The contribution of his memory is then just cultural, for I discuss
topics in continuum mechanics, the field of his interest, and is free of anecdotal and
emotional issues. Independently of these aspects, however, I think that a concrete
way of remembering a scholar several researchers in his field considered as a refer-
ence is to continue seriously our work, having as a guide a positive and constructive
ethics, an ethics of respect for people, ourselves, the work itself.
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2 Reasons for Thinking of the Origins of the Balance
Equations

A conceptual hierarchy in the skeleton of models in continuum mechanics emerges
from fundamental treatises on the matter and is perhaps the primary legacy of the
Truesdellian school (see [1, 36, 42, 44–46]). Such a hierarchy involves the descrip-
tion of the (geometric) shape of a body and its changes as a first step, followed by
the representation of the actions and the pertinent balance equations, with the final
assignment of the constitutive structures, restricted a priori by the need of not violat-
ing an expression of the second law of thermodynamics, which we commonly call
Clausius-Duhem inequality, although neither Clausius nor Duhem never wrote it in
the way we shape it nowadays, at least as far as I know. Each step in the hierarchy
is independent of what follows it, while it depends on what preceeds it. The second
part of such a statement requires some specifications, above all when we refer it
to the balance equations. At a first glance the declared need of clarification would
appear even superfluous for one could think instinctively just of reproducing directly
in terms of fields the balances of momentum and moment of momentum met in the
mechanics of discrete mass points, imagining this way to exhaust the problem. The
choice is related to the way we describe the shape of a body and is successful in
the traditional setting where we just indicate the place in space the body occupies.
We can justify such a statement by thinking of the notion of force that we have in
mechanics. A force is a model of what alters the state of a body motion (this way
we include the rest state). Its action is measured by the power needed to generate
such an alteration. Consider a mass point. Its shape is described by a point in space
and the variation of its shape by the velocity. We measure the velocity and the power
needed to move the mass point. The power evaluated over a specific velocity is a
number. As a functional, it is linear in the velocity, which is a vector. In this setting
a natural model of a force is something that gives us a number, once evaluated on
the velocity, and is linear in the velocity itself: a covector, indeed, that we identify
commonly with a vector when we refer to Cartesian frames. When we represent
the shape of a continuous body only through the region in space it occupies, each
point–now a material point–is endowed with three degrees of freedom only. Then
the velocity field alone describes the instantaneous (incoming) changes in shape. At
each point the velocity is a vector: the related interaction between a mass point and
a “neighboring” one, along a prescribed direction, is then naturally described by a
force: what we call tension. This is a way of understanding Cauchy’s hypothesis of
absence of local couples exchanged between neighboring material points of a con-
tinuous body. In other words, we are thinking of a body as a cluster of infinitely many
indistinct material points, connected by bonds not transmitting couples. And this is
the traditional approach to the continuum mechanics of deformable bodies.

To describe adequately–the adverb referring to the level of accuracy in our mod-
elling activity we want to reach–some mechanical phenomena, however, we need
to go beyond (even far away) the traditional format of continuum mechanics. An
example is that of liquid crystals. Consider the nematic phase: we have a material
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composed by stick molecules endowed with end-to-tail symmetry. Describing the
shape of the body just in terms of the place in space it occupies does not allow us
to account for the way such molecules are organized from place to place. We can
consider the local molecular arrangement by attributing to every point the preva-
lent direction of molecules in a small neighborhood of it (see [11, 12]). In this way
we endow every point of the region in space occupied by the body with additional
degrees of freedom (those describing the local arrangement of the molecules), which
are collected at each point in an element of the projective plane, a direction indeed.
We can opt for considering a second-rank tensor, precisely a dyad between two unit
vectors, instead of a direction alone, to give amore refined approximation of the local
distribution of molecular orientations (see [9]). And the list of possibilities for the
sole nematic phase does not end here [13]. The examples also are not limited to the
realm of liquid crystals: vectors may describe the local polarization in ferroelectrics
o magnetoelastic crystals (see, e.g., [3]), or collect the degrees of freedom exploited
by the atoms in quasicrystals to assure the intrinsic long-range quasi-periodicity of
the atomic clusters (see [20, 41]); the structure of the normal superfluid Helium
requires the introduction of a complex field, while its isotope can be described by
using elements of a manifold with dimension five; second-rank tensors are useful to
depict the independent micro-deformations in polymers [10]; triads of unit vectors
can be used in the dimension-reduced models of rods–here I use the word rod in a
wide sense also for beam, shaft, column, etc.—and shells, as shown first by J. L.
Ericksen and C. A. Truesdell [14]. The list can be extended but the present examples
suffice to illustrate the scenario, which finds a unified format when we affirm that we
describe the shape of a body by selecting the place it occupies in space and adding to
each point descriptors of its microstructure selected in a differentiable manifold M
(chosen without boundary as a matter of convenience), which we call the manifold
of microstructural shapes. This view has been proposed first in solid-state physics to
account for structural material complexity [27, 28]. First, G. Capriz coupled it with
finite strains [4].

The rate of change in shape of the body is then given by the velocity field and the
rates of the material morphology descriptors (a section of the tangent bundle ofM ,
if we think in geometrical terms). Standard tensions appear as entities developing
power in the velocity, i.e. the rate of relative change of place between neighboring
material elements, while other actions are power-conjugated (in the sense explained
for tensions) with the time rates of the material morphology descriptors and their
spatial variations. In other words, when we affirm that a material element of a con-
tinuous body is placed at x and its microstructure is described by ν ∈ M , we are
impliciting considering the material element as a system, a sort of box with an inner
structure described coarsely by ν. This is a step forward the traditional approach
in continuum mechanics: there the use of the sole placement x as a descriptor of
a material element implies considering it as an indistinct mass point, the simplest
possible structure for a system. It is in energetic contact with its neighbors, and
the circumstance generates the standard tension. In the extended view, we include
additional mechanisms. Consider two material elements at x and x + dx along a
certain direction. If we freeze the microstructure and move far away the material
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elements (two in this view) one another, we generate the common tension as in
the standard format–this is the sole mechanism appearing there. However, we can
imagine (1) to vary the microstructure of each material element in the same way or
(2) to determine its inhomogeneous changes in space. In the first case a local inner
action (microstructural self-action) appearswithin eachmaterial element; when eval-
uated over the rate of ν it furnishes the power needed to develop the relevant mecha-
nism. Its geometric nature depends on the nature of ν. In the second case an additional
contact action appears: it is of first-neighbor-type.

In all special cases, so in the unified theory, we face the problem of establishing
appropriate balance equations, which involves all the actions just mentioned. Not
always we find evident how the balance equations should be. Or better, we are not
sure that acting by analogy with well-established practice in the traditional format of
continuummechanics or themechanics ofmass points could lead us to correct results.
Correctness refers to the way we are able to describe the interaction mechanisms
implied in our initial choices in the description of phenomena pertaining a given class
of bodies. For these reasons it appears useful to discuss in terms of a model of models
about the origin of the balance equations in continuum schemes, for we would like
to have some first principle to derive such equations, according to Ockham’s razor,
i.e. with the best economy of hypotheses.

This is what I discuss in this article. What I essentially claim appears in the list
below.

(a) When a body does not undergo structural mutations that alter the one-to-one
correspondence between any current configuration and the reference one (an
alteration occurring when fractures appear along a motion, e.g.) the requirement
of invariance of the external power alone with respect to changes in observers
that are isometric in the three-dimensional point space and with a certain general
formspecified later onM is awayof deducingbalance equationswith a restricted
number of assumptions. The result is not new: it dates back 2002 [21], it has
been anticipated in [6], with a restricted view on changes in observers onM , and
is an extension of what has been proposed in 1959/1963 [35] in the traditional
format of continuum mechanics.

(b) In presence of structural mutations such as fractures or evolution of volumetric
defects, imagining possiblemultiple reference shapes (differing each other by the
defect pattern) and introducing the pertinent notion of relative power (as defined
in general in [23] and proposed in conservative setting first in [8]), we find that
the requirement of invariance of such a power under changes in observers of the
type occurring in item 1 above furnishes the balance equations of standard and
microstructural actions, supplemented by the configurational balances. Such a
procedure requires a restricted number of assumptions and can be adequately–the
adverb intended in Ockham’s sense–accepted as a first principle.

(c) For stronger requirements of invariance, involving a larger class of changes in
observers (those not necessarily based on rotations and translations of the frames
in the ambient space), another way applies for a first principle to derive from a
unique source all the ingredients of a continuum model. In fact, the mechanical



On the Origin of Balance Equations … 57

dissipation inequality (the isothermal version of the Clausius-Duhem inequality,
a way of expressing the second law of thermodynamics) is not only a direct
source of a priori constitutive restrictions and the expression of the mechanical
dissipation, but also it can furnish from a unique invariance requirement

(i) the existence of the stress (and that of the microstress describing the
microstructural contact interactions),

(ii) the existence (and the need, indeed) of bulk inner microstructural self-
actions,

(iii) pointwise standard, microstructural, and configurational balance equations.

3 Remarks on the Geometric Language

If we chooseM to be a differentiable manifold with finite dimension, we may con-
struct a model of models unifying all special proposals we know, with the exception
of the varifold-based description of crack nucleation proposed first in [18], in which
at each point we add through measures information on the possible defect pattern
crossing the point itself. In this last case, in fact, we select descriptors of the material
morphology belonging to infinite-dimensional spaces. In contrast, once we accept
the finite-dimensional choice (it suffices in the majority of cases and can be also cou-
pled with the infinite-dimensional choice, as in [17], although we can’t do much in
the latter case), we could naively think of embeddingM into a linear space, asWhit-
ney’s theorem [47] permits to do for all finite-dimensional manifolds. We could even
selectM to be a linear space, adding geometric constraints when they are suggested
by the physics at hands. This choice is the one pursued by P. Germain in proposing
the principle of virtual powers as a primary source for deriving balance equations
[16]. We could comply with it for it does not require knowledge in geometry more
extended that the elementary tensor calculus in Cartesian (or Euclidean if you want)
frames, identifying this way covariant and contravariant tensor components, so not
distinguishing from vectors and covectors as I do here. In this way we would reduce
the effort just to the replica of standard integral balances, dressing slyly them with
new names such as pseudobalances or something similar, and affirming that what
distinguishes one case from another is just the algebraic choice of the descriptor of
the material morphology, besides the assignment of constitutive structures, and for-
getting that the geometric structure ofM plays a non-trivial role in both the unified
theory and its special cases.

Such a choice offers itself to immediate criticisms:

• Although a finite-dimensional differentiable manifold M can be always embed-
ded into a linear space by Whitney’s theorem, already mentioned, the embedding
is not unique. If M is Riemannian, its embedding can be even isometric but
it remains not unique. Moreover, the dimension of the target space depends on
the regularity of the emebbedding itself (the pertinent theorems are in [31, 32]).
Consequently, the resulting model would depend on the embedding, which is not
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addressed by stringent physical instances. Also, if we would choose the manifold
of microstructural shapes itself as a linear space, we would exclude from the ten-
tative of constructing a unified scheme the cases in which the descriptor of the
microstructural morphology belongs naturally to a non-linear manifold (examples
are among those mentioned above and we can add the case of continua with dis-
tributed spins, when we describe them by resorting to unit vectors, for the unit
sphere is a nonlinear manifold).

• As we shall see in the subsequent sections, even in the case in whichM is a linear
space, the assignment a priori of an integral balance of microstructural actions,
although possible, is superfluous, as we shall see in the first theorem below.

Mechanics is geometry (see, e.g., [39, 43]). Mechanics is also analysis on the
geometric structures (see, e.g., [19]). We have not to be afraid of the mathematical
formalism for it is just a language both qualitative and quantitative, the sole language
of this type, which may light up the inmost aspects of the mechanical behavior of
materials, provided we have the appropriate care in clearly linking mathematical
objects to the image we have of the physical phenomena. In fact, the only thing we
have to be afraid of is a feeble attention to the conceptual connection between the
physical significance and the mathematical tools used. This is matter of intuition
level and deepmess of analysis, and we cannot buy such aspects if we do not have
them by instinct and do not cultivate them. The rest we can learn having at disposal
time and appropriate treatises.

4 Balance Equations: Ways to Get Them

4.1 A Summary of Possibilities

We list here various manners at our disposal to get balance equations in continuum
models of the material behavior. They are divided in two groups.

In the first group no list of state variables comes into play.

1. We can assign directly pointwise balances.
2. We can assume the form of integral balances, deriving by localization–i.e. by

presuming that they hold for any subset of the body with non-vanishing volume
and appropriate regularity (it is the Euler principle)–their pointwise counterparts.

3. We can presume the validity of the principle of the virtual power, after the
assumption of the structure of external and internal (or inner) powers.

4. We can presume the expression of the external power alone and require its
invariance under rigid-body-type changes in observers.

5. In presence of material mutations–in the sense mentioned above–the notion
of external power requires an extension to that of relative power for which
we require the invariance with respect to a class of rigid-body-type changes in
observers, including alteration of the reference space.
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6. We can get balance equations from discrete schemes through homogenization
procedures (see, e.g., [37, 38])–a fruitful and challenging sector here is the
evaluation of the continuum limit of the Boltzmann equation (see [40]).

The second group of possible paths involves the choice of the list of state variables,
so that we put on the same conceptual level the derivation of the balance equations
and the (at least preliminary) assignment of the constitutive equations.

7. We can evaluate, in fact, the first variation of some energy, even including
dissipation potentials.

8. We can impose a balance of energy and require its covariance in the case bulk
forces can be dissipative.

9. We can assume an appropriate version of the Poisson brackets, even including
dissipative brackets (they are connected with a dissipation potential).

10. We can decide a version of the second law of thermodynamics (even including
the relative power) and require its covariance.

4.2 Remarks on the List Above

When we choose to follow one path, among those listed above, to determine balance
equations in a setting extended with respect to the traditional format of continuum
mechanics, we should not forget some aspects related with the nature of the proce-
dures in the list.

#1 Pointwise balances are the final target of the discussion about balance equations.
Prescribing them in analogy with the standard instances is a direct jump to the
end. In doing it, beyond the structure of the equations, we presume also the
representation of the microstructural contact actions in terms of microstresses
and self-actions, without having proven the analogous of Cauchy’s theorem for
the standard tension, a theorembased also on the boundedness of the bulk actions,
the knowledge of the integral balance of forces, the action-reaction principle. In
some cases it is hard to do better–meaning with less assumptions–but if we
choose this way, we have to remind that we are not sure about the effectiveness
of the result: analogy, in fact, is not always a secure path.

#2 The assignment of integral balances demands less assumptions, indeed, and
allows to try to prove Cauchy’s type theorems. If we consider M as a non-
linear manifold–the general unifying choice, indeed–prescribing an independent
integral balance of microactions would be highly questionable mathematically.
We would write, in fact, integrals involving integrands taking values on the
cotangent bundle of M , which is a non-linear space (unless M coincides with
a linear space) and is the target space of the integrand, so the definition of
the integral itself would be questionable. Moreover, if we consider M to be
coincidentwith a linear space,we can see that such a balancewould be essentially
superfluous, as I show in the first theorem below.
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#3 When we adopt the principle of virtual power, we are prescribing the weak form
of the pointwise balance equations, the form used in computational procedures.
The choice implies also the presumption of the expression of the contact actions
in terms of stress. The proof of a Cauchy’s type theoremwould require the use of
the integral balances, rendering superfluous the virtual power principle. In other
words, in the principle of virtual power we presume a priori all the ingredients
appearing in the balance equations without proving the existence of the standard
and microstructural stresses and the possible self-actions. There is also a subtle
connection between integral balances and the principle of virtual power, or virtual
work, depending on whether we use the velocity or the displacement, as shown
in 1979 by Antman and Osborn [2].

#4 In 1963, W. Noll suggested to impose the invariance of the power of all external
actions (the external power then) on a generic part of a bodywith respect to rigid-
body changes in observers in the ambient space as a natural source of the balance
equations [35], promoting to the level of principle a previous result by G. Piola.
Among the possibilities in the first group of the list above, this one demands
least assumptions and can be used when the reference place is fixed once and for
all. Such a procedure can be extended to the multi-field setting sketched above
and is a tool for deriving clearly balance equations in both integral and pointwise
form, as I explain below. The extension of such a procedure to complex continua,
which requires to think non-trivially of the notion of observer and its changes,
has been proposed first by G. Capriz and G. Mazzini in 1998 [6] considering,
however, the sole case in which the special orthogonal group SO (3) acts on
M . In tackling later the question and discussing further the notion of observer
in such a setting, in 2002 P.M. Mariano has overcame that restriction [21]. A
significant special case is the application of such a procedure to the dimension
reduced models (i.e. the direct models) of rods and shells (see for details the
pertinent long chapter in [24]).

#5 The idea of the relative power is an extension of the previous procedure when
macroscopic structural changes in the body suggest to adopt multiple reference
shapes (see [23] and for its introduction in conservative setting [8]).

#6 In the second set of possibilities listed above, the word covariance appears
repeatedly. It is structure invariance with respect to diffeomorphism-based
changes in observers.1 In conservative setting, covariance appears in the Nöther
theorem. Consider finite-strain elastodynamics of simple bodies. The Nöther
theorem is based on the invariance of the Lagrangian density with respect to the
action of families of diffeomorphisms on both spatial and referential coordinates.
In the last case, the one involving the referential shape, the diffeomorphisms
considered must be isocoric: two different observers must perceive the same
type of material. To satisfy such a requirement, transformations of the reference
shape must be material isomorphisms and as such, according to Noll’s definition

1A diffeomorphism is a one-to-one differentiable map with differentiable inverse. A rotation fol-
lowed or preceded by a translation is a special diffeomorphism. A homogeneous deformation is
another special diffeomorphism. And so on ...
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[34], they have to preserve locally the mass, i.e. they must be isocoric. And this
aspect does not depend on whether we are thinking of solids or fluids. Classes
of changes in observers and those of admissible motions are not necessarily
coincident, in fact, as it is well known from elementary courses. The result of
the Nöther theorem in finite-strain elastodynamics of simple bodies is that the
required invariance of the Lagrangian density implies an equation involving the
energy-momentum tensor and including standard and configurational balances
as special cases. Standard balances are associated with the actions of diffeo-
morphisms over the ambient space where we place the current configurations.
Configurational balances are determined by the changes of the reference shape
(the material manifold, precisely) induced by diffeomorphisms, which have to
be also material isomorphisms.

#7 In conservative setting, we can describe motions in terms of the Hamiltonian,
either through the Hamilton equations or to their weak form represented by the
Poisson brackets, which can be supplemented by appropriate dissipative brackets
where there are effects that can be associated with a dissipation potential (see
[29]).

#8 In presence of dissipative bulk external actions, not necessarily associated with a
dissipation potential, covariance appears in the Marsden-Hughes theorem [26].
In its original version it is referred to the finite-strain elastodynamics of simple
bodies. The attention focuses on the expression of the first principle of thermo-
dynamics in isothermal conditions: the balance of mechanical energy. A require-
ment of covariance for it–here intended as structural invariance of the principle
with respect to diffeomorphisms acting on the ambient space–implies the rep-
resentation of the standard tension in terms of the stress tensor (i.e. Cauchy’s
theorem), the pointwise balances, the a priori constitutive restrictions on the
stress.

#9 A immediate question arises: What about the presence of dissipative parts of
the contact actions? In other words, since the Marsden-Hughes theorem is a
variation of the Nöther theorem and a step toward the presence of dissipative
structures, what should we imagine for phenomena involving irreversible strain
(as in plasticity) or dissipative stress components (as in viscoelasticity)? For
finite-strain plasticity, a 2013 theorem furnishes the answer (see [22]). Versions
of it apt for traditional viscoelasticity and the multi-field setting for materials
with complex microstructure, sketched above, are possible and I summarize at
the end of these pages the essential steps leading to the expression pertaining to
the multi-field setting discussed here.

5 Multi-field Setting for Continua with Active
Microstructure

In the title of this section, I use the word active to underline a distinction. Every
material, in fact, has its microstructure, which is the way molecules are entangled or
atoms are arranged in some ordered clusters. When in traditional linear elasticity we
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specify the symmetries of the constitutive elastic tensor, we are furnishing informa-
tion on the material microstructure, in fact. Homogenization procedures allow us to
account for even complicated arrangements of the matter, without going far beyond
the traditional setting of continuum mechanics [30]. I have already mentioned, how-
ever, examples in which microstructural events have macroscopic influence in a way
that we can barely or about nothing describe in the terms of the traditional format
of continuum mechanics. These bodies are those that we can consider with active
microstructure, and we can call them complex bodies in short. I have also described
in words the way we can tackle the problem of representing their mechanics in a way
that unifies, among other things, existing models. Some (standard) formal structures
render more concrete the ideas presented so far.

The geometric environments we need to introduce are a differentiable manifold2

M , whichwe consider finite-dimensional andwithout boundary, and two isomorphic
copies of the three-dimensional Euclidean point space, namely E 3 and Ẽ 3. These
two last spaces differ at most by a translation and a rotation. We select in E 3 a fit

2Consider a setM endowedwith a topology,which isHausdorff, i.e. for any pair of distinct elements
ofM , say ν1 and ν2, wemayfind non-intersecting open neighborhoodsI (ν1) andI (ν2) containing
ν1 and ν2, respectively. We affirm that M is a topological manifold when it is locally Euclidean,
i.e. every ν ∈ M has an open subset ofM ,U (ν), containing it, which is homeomorphic to an open
subset V of Rn, meaning that it is possible to define a one-to-one mapping ϕ : U −→ V of U
onto V . We call coordinate chart (simply chart) the pair (U , ϕ) and atlas the set F := {(Ui, ϕi)}
of charts such that ∪i Ui = M , for i ∈ Ĩ , with Ĩ some index set. In other words, F determines a
covering of coordinate systems over the whole M . In particular, we affirm that M has dimension
n when all Ui are mapped onto sets V ⊆ R

n with dimension n. If for all i, j ∈ Ī , the change of
coordinates between charts is of class Ck , i.e. ϕi ◦ϕ−1

j : Ui ∩Uj −→ Vi ∩Vj ⊆ R
n, with ◦ indicating

map composition, is Ck with 1 ≤ k ≤ +∞, and for any chart (U , ϕ) such that ϕ ◦ϕ−1
i and ϕi ◦ϕ−1

are Ck , for all i ∈ Ī , we get (U , ϕ) ∈ F, we affirm that M is a differentiable manifold of class Ck ,
simply a differentiable manifold when k = +∞. A function f : I −→ M , with I some interval in
R, defines a curve over M . We affirm that it is differentiable near s ∈ Iwhen, with (U , ϕ) a chart
around ν(s), the map ϕ ◦ f is differentiable in the common sense. The derivative of the function f
at s is what is called the tangent vector to ν atM . Infinitely many smooth curves crossing ν can be
defined overM . The derivative of each of them defines a tangent vector toM at ν. Infinitely many
smooth curves may have the same tangent vector at ν. If so, they agree near ν. The circumstance
allows us to think of tangent vectors in terms of equivalence classes of functions. More precisely,
we affirm that functions h and h̃, smooth curves on open sets containing ν, have the same germ
when they agree in some neighborhood of ν. In particular, if h and h̃ are smooth, the set Hν of
the equivalence classes hν , defined by the condition to have the same germ, and called themselves
germs in short, is naturally endowed with the structure of an algebra over R by the operations of
addition, scalar multiplication and multiplication of functions. In this setting a tangent vector υ at
ν ∈ M can be defined to be a linear derivation of the algebra Hν , i.e., for all h, h̃ ∈ Hν and α ∈ R,
we have υ(h +αh̃) = υ(h)+λυ(h̃) and υ(h · h̃) = h(ν)υ(h̃)+ h̃(ν)υ(h). Such properties point out
that the set of all tangent vectors toM at ν, indicated by TνM , and called the tangent space ofM
at ν, is a linear space. The union, varying ν in M , of all tangent spaces of M is called the tangent
bundle of M and in general is not a linear space. For any TνM , the set of all linear functions over
it, a set indicated by T∗

ν M is called the cotangent space of M at ν (its elements are commonly
called covectors). The union of all cotangent spaces ofM is the so-called cotangent bundle of such
a manifold and in general is not a linear space.
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regionB (itself a connected manifold in E 3) as a macroscopic reference shape for a
body. From B we define macroscopic body shapes that we consider deformed with
respect toB by means of differentiable orientation preserving maps (deformations)
x �−→ y := u (x) ∈ Ẽ 3, with x a generic point inB. The distinction between E 3 and
Ẽ 3 renders significant the standard requirement that isometric changes in observers
in the ambient space leave invariant the reference place B, although they alter the
frames assigned to the whole space. It can be also accepted for B is just a geo-
metric environment where we measure how lengths, volumes and surfaces change
under deformations, and we use it to make the comparisons defining what we can
call defects, at least at macroscopic scale. Consequently, physics does not force us
to consider B occupied by the body at any instant of any motion. We have just to
require that it could be occupied by the body; no more. This choice renders more
precise–for the reasons just discussed–the traditional distinction between Lagrangian
(referential) and Eulerian (actual) representations of fields–adjectives attributed to
maps defined over B and u(B), respectively–because in the standard format refer-
ential and actual places of the body are included in the same space, although they are
endowed with different coordinate systems. My insistence on such an aspect aims
to prepare the ground to the discussion on the notion of observer in the next section.
We commonly indicate by F the spatial derivative Du (x) of u, evaluated at x ∈ B,
and call it deformation gradient, according to the traditional jargon. Consider three
linearly independent vectors {e1, e2, e3} at x. They constitute a vector basis in the tan-
gent space (see footnote 2 for the definition) ofB at x. The dual counterpart of such a
basis is made of other three vectors

{
e1, e2, e3

}
defined to be such that eH · eK = δH

K ,
with δH

K the Kronecker symbol. At y = u(x) consider other three linearly indepen-
dent vectors {ẽ1, ẽ2, ẽ3}. They constitute a vector basis in the tangent space of u(B)

at y = u(x). With respect to these bases, we have F = Fi
Aẽi ⊗ eA = ∂ui(x)

∂xA ẽi ⊗ eA.
Lower case indexes refer to coordinates on u(B), while capital indexes label coor-
dinates overB. From a geometric viewpoint, F maps tangent vectors toB at x onto
tangent vectors to u(B) at y = u(x). To summarize this standard statement we write
F ∈ Hom(TxB, Tyu(B)). The proof is elementary. Consider a curve onB given by
a smooth map s �−→ x(s) ∈ B, with s a parameter ranging in [−s̄, s̄], s̄ > 0. The
tangent vector at s = 0 is t := dx(s)

ds |s=0. The deformation determines another curve
s �−→ u(x(s)) ∈ u(B) over the deformed shape of the body. The tangent vector to
the deformed curve at s = 0 is given by l := du(x(s))

ds |s=0 = Du(x(0)) dx
ds |s=0 = Ft.

Notice that Du(x) is in principle different from the gradient �u(x) = (
∂yi

∂x )Aẽi ⊗ eA.
The relation between the two is established by the metric in B, once we assign
it. Let g be such a metric. We have �u(x) = Du(x)g−1. �u(x) and Du(x) can be
identified when we refer to Cartesian frames so that the metric is the second-rank
unit tensor. By F∗ we indicate the formal adjoint of F. By definition F∗ belongs to
Hom(T∗

y u(B), T∗
x B). Its relation with the transpose of F, namely FT , is defined by

the metric g in the reference place B and the one, call it g̃, in the ambient space.
Formally, we have FT = g−1F∗g (see [24] for the proof).

A differentiable field x �−→ ν := ν̃(x) ∈ M furnishes geometric information
on the structure of the matter at finer spatial scales, translating them at macroscopic
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scale.We call it morphological descriptor map.WewriteN for its spatial derivative
Dν̃(x), so we have N ∈ Hom(TxB, TνM ). N∗ indicates the formal adjoint of N and
it is N∗ ∈ Hom(T∗

ν M , T∗
x B).

In this setting, motions are pairs of time parameterized families of deformations
and morphological descriptor maps:

(x, t) �−→ y := u(x, t),

(x, t) �−→ ν := ν̃(x, t),

with t the time, ranging in some interval of the real line. We assume that such maps
are differentiable in time, at least with piecewise differentiable first time derivative
(the assumption can be relaxed for the morphological descriptor map if we do not
consider the possibility of microstructural inertia). We write then

ẏ := du(x, t)

dt

and

ν̇ := dν̃(x, t)

dt

for the pertinent time rates in Lagrangian representation. ẏ is the macroscopic veloc-
ity, while ν̇ indicates the time rate of the microscopic features represented by ν. We
presume time differentiability for the first spatial derivatives of u and ν̃ and write Ḟ
and Ṅ for the pertinent rates.

6 Observers and Their Changes

Definition 1 An observer is a collection of coordinate systems (atlas, in short) over
all the geometrical environments necessary to describe the morphology of a body
and its motion.

In the multi-field setting considered here an observer is then the collection of
(i) an atlas in the physical space, (ii) an atlas on the manifold of microstructural
shapes, (iii) an atlas in the reference space, (iv) a time scale. Changes in observers
are then transformations of one ormore among these coordinate systems. The physics
at hands addresses choices.

An axiom implicitly adopted in standard treatments is that two different observers
must perceive the same type of material. Consequently, changes of the atlas in the
reference spacemust be alsomaterial isomorphisms–the traditional notion introduced
by Noll in [34] requires to be extended to such a setting but, in any case, the condition
requiring the conservation of the referential mass density persists, so that, according
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to the axiom just mentioned, changes of frames in the reference space must be
isocoric, independently of the circumstance that we analyze solids or fluids, as I have
already recalled. Commonly, such an axiom of permanence of the material typology
under changes in observers is not rendered explicit but it is implicitly used in the
Nöther theorem, the Marsden-Hughes theorem and, above all, when we compute the
horizontal variation of the elastic energy in finite-strain elasticity.

6.1 Synchronous Isometry-Based Changes of Observers
in Multi-field Setting

Consider smooth maps t �−→ a (t) ∈ R
3 and t �−→ Q (t) ∈ SO (3) and define a

change in observer in the physical ambient space Ẽ 3 by

y �−→ y′ := a (t) + Q (t) (y − y0) ,

where y0 is an arbitrary fixed point. Then y and y′ are the places of the same material
point evaluated respectively by the two observers, sayO andO ′, differing one another
by rigid-body changes of place defined, at the instant t, by the translation a (t) and
the rotation Q (t). Being an element of SO (3), in fact, Q is orthogonal and with
determinant equal to +1; it describes finite rotations in the three-dimensional point
space. By computing the time derivative of y′ and pulling back from O ′ to O the
velocity ẏ′, we define a new velocity ẏ∗ to be

ẏ∗ := QT ẏ′ = c (t) + q (t) × (y − y0) + ẏ, (1)

a standard relation in which c := QT ȧ and q is the axial vector of the skew-symmetric
tensor QT Q̇.

Changing coordinates in the physical space alters also the perception of the
microstructures. They are, in fact, in the physical space. Their separate representa-
tion on the manifoldM is just a model choice, a matter of convenience. To account
for such a circumstance, in order to establish classes of changes in observers com-
patible with the physics at hands, we define a link between changes in observers in
the physical space, determined in general by elements of Diff(Ẽ 3, Ẽ 3), the space of
diffeomorphisms of Ẽ 3 onto itself–rotations and translations are special cases (see
footnote 1)–and transformations of the atlas on the manifoldM , given by elements
of Diff (M ,M ), the group of diffeomorphism mapping M onto itself. Formally,
we introduce a family of differentiable homomorphisms

{
λ : Diff(Ẽ 3, Ẽ 3) −→ Diff (M ,M )

}
.
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When the change in observer in the physical ambient space is of rigid-body type,
as above, the set just defined reduces to

{λ : SO (3) −→ Diff (M ,M )} .

In this case, the counterpart of ẏ∗ is given by

ν̇∗ = ν̇ + A (ν) q, (2)

with A (ν) ∈ Hom
(
R

3, TνM
)
. When SO (3) is not included in Diff (M ,M ) and

the set {λ} is not empty, by indicating by νλ(Q) the value of ν after the action of
λ (Q) ∈ Diff (M ,M ) (once again the explicit expression of νλ(Q) depends on the
tensorial nature of ν and λ (Q)), A (ν) is given by

A (ν) = dνλ(Q)

dλ

dλ (Q)

dq

∣∣
q=0 ,

withq (t) ∈ R
3 the valueof a smoothmap t �−→ q (t) such thatQ (t) = exp (−eq (t)),

e Ricci’s symbol. Otherwise we get

A (ν) = dνq

dq

∣∣
q=0 .

For example,whenM coincideswithR3,wefindA = ν×. The choice of the relation
(2) points out that the microstructural descriptor is insensitive to rigid translations in
space of the whole body. In fact, ν at a point describes what is inside the material
element placed there: it brings information about the inner structure, which translates
with the point and changes independently of the translation itself. The relation (2)
is also compatible with the basic structure of the unifying scheme for the models of
continua with microstructure, which requires to maintainM as general as possible,
i.e. not necessarily coinciding with a linear space and being endowed with a metric
structure.

Isometry-based changes in observers pertain also to the space where we select the
reference configuration. Let w the value at x and t of a vector field over the reference
space. An observer in this space is a frame of reference.When we rotate and translate
such a frame (remind: it pertains to the whole space), in the new frame we evaluate
a new field with values w′. The pull-back of w′ in the first frame (the first observer)
gives a transformation rule analogous to (1), a rule defining w∗, namely

w∗ := c̄ (t) + q̄ (t) × (x − x0) + w, (3)

where x0 is another arbitrary fixed point and the translation c̄ and q̄ do not coincide
with c and q selected in the ambient physical space.

We do not consider here changes in the time scale.
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6.2 Extending the Setting: Diffeomorphism-Based Changes
in Observers

Time invariance is maintained even in the subsequent more general class of changes
in observers: the one based on diffeomorphisms, which alter the ambient space, the
reference one and the manifold.

• Over the ambient space we may consider the action of a time-parameterized class
of elements of Diff(Ẽ 3, Ẽ 3). Precisely we define smooth maps t �−→ ht : Ẽ 3 −→
Ẽ 3, with ht ∈ Diff(Ẽ 3, Ẽ 3) and h0 = identity. The smoothness of ht in time
defines a velocity field y �−→ v̄ := d

dt ht |t=0 and the relation (1), i.e. the change
ẏ −→ ẏ∗, becomes

ẏ −→ ẏ# := ẏ + v̄.

• The class of differentiable homomorphisms λ generate over M maps λ (ht) :
M −→ M . However, nothing excludes in such a general setting the additional
action of a time-parameterized family of elements of Diff (M ,M ), say t �−→ h̃t :
M −→ M , with h̃0 = identity, smooth with respect to time, an action excluded
by definition in the class of changes in observers discussed in the previous section.
Let us write υ for the velocity d

dt h̃t |t=0 . The relation (2), i.e. the change ν̇ −→ ν̇∗,
becomes

ν̇ −→ ν̇# := ν̇ + υ + 1

2
A (ν) curlv̄,

where 1
2 curlv̄ is the spin of the velocity v̄ ; it plays the role of q in (2).

• Finally, over the reference space we may consider the action of a time-
parameterized class of elements of Diff(E 3,E 3). Then we define smooth maps
t �−→ ĥt : E 3 −→ E 3, with ĥt ∈ Diff(E 3,E 3) and h0 = identity and write w̄ for
the velocity d

dt ĥt |t=0 . The relation (3), i.e. the change w −→ w∗, becomes

w −→ w# := w + w̄.

7 External Power: Consequence of the Invariance Under
Isometry-Based Changes in Observers

According to standard instances, even in the generalized setting discussed here we
can assume that actions determined by microstructural changes are subdivided into
bulk and contact families as it happens for the standard macroscopic ones.

Let us call part of the body in its reference place any subset of B with non-
vanishing volume and the same (geometric) regularity ofB itself.

We define the power of external actions on a generic part ofB (external power
in short) as the functionalPext

b , linear on the rates ẏ and ν̇ and additive over disjoint
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parts, given by

Pext
b (ẏ, ν̇) :=

∫
b

(
b‡ · ẏ + β‡ · ν̇

)
dx +

∫
∂b

(t · ẏ + τ · ν̇) dH 2,

where b‡ (x) ∈ T∗
u(x)Ba represents body forces (the sum of inertial and non-

inertial components) and t (x) ∈ T∗
u(x)Ba is the traction through the boundary of

b; τ (x) ∈ T∗
ν̃(x)M indicates microstructural contact actions, while β‡ (x) ∈ T∗

ν̃(x)M

their external bulk counterparts over the microstructure alone. dH 2 is the “surface”
measure over ∂b.

By assumption t and τ depend on both x and n at every instant t.
When we write such an expression of the power, we presume that the reference

shape is fixed once and for all. We then subordinatePext
b to an axiom of invariance.

Axiom of power invariance [21]: The external power on a generic part b or the
whole B is invariant under isometry-based changes in observers, i.e.

Pext
b (ẏ, ν̇) = Pext

b

(
ẏ∗, ν̇∗)

for any choice of c and q.
The axiom has stringent consequences.

Theorem 1 The invariance of the external power under isometry-based changes in
observers implies the following statements:

1. The integral balances

∫
b

b‡dx +
∫

∂b

tdH 2 = 0,
∫
b

(
(y − y0) × b‡ + A ∗β‡

)
dx +

∫
∂b

(
(y − y0) × t + A ∗τ

)
dH 2 = 0,

where A ∗ is the formal adjoint of A , i.e. A ∗ (ν) ∈ Hom
(
TνM ,R3

)
, hold [21].

2. The standard traction (here expressed in Lagrangian representation) satisfies the
action-reaction principle:

t (x, n) = −t (x,−n) .

3. The microstructural contact actions satisfy a non-standard action-reaction prin-
ciple [23]:

A ∗ (τ (x, n) + τ (x,−n)) = 0.

4. If t (·, n) is a continuous function of x and the standard bulk actions are bounded
over the body t (x, ·), a function of n, is homogeneous and additive, i.e. there exists
a second-rank tensor field x �−→ P (x) such that (Cauchy’s theorem in referential
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form)

t (x, n) = P (x) n (x) ,

where

P (x) =
3∑

K=1

t (x, eK) ⊗ eK ∈ Hom(T∗
x B, T∗

u(x)u (B))

is the first Piola-Kirchhoff stress and eK is the kth vector of a basis in a neigh-
borhood of x.

5. If τ (·, n) is a continuous function of x andA ∗β‡ is bounded overB, together with
the standard bulk actions, τ (x, ·), a function of n, is homogeneous and additive,
i.e. there exists a second-rank tensor field x �−→ S (x) such that

τ (x, n) = S (x) n (x) ,

where

S (x) =
3∑

K=1

τ (x, eK) ⊗ eK ∈ Hom(T∗
x B, T∗

ν M )

is the so-called microstress [23].
6. If the fields x �−→ P and x �−→ S are in C1 (B)∩C

(
B̄

)
and the fields x �−→ b,

x �−→ β‡ are continuous over B, the pointwise balance of forces

DivP + b‡ = 0

holds and there exists a field x �−→ z (x) ∈ T∗
ν M such that

DivS + β‡ − z = 0

and

SkwPF∗ = 1

2
e

(
A ∗z + (

DA ∗)S )

[21].
7. The equation

Pext
b (ẏ, ν̇) =

∫
b

(
P · Ḟ + z · ν̇ + S · Ṅ

)
dx

holds and we call internal (or inner) power the right-hand side term.
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• z is a local action, the one of the microstructure “inside” the material element at
x over itself. S measures the first-neighbor interactions due to inhomogeneous
microstructural changes among neighboring material elements.

• If wewould start from the relation in the item 7 of the theorem as a first principle–it
would correspond to a principle of virtual power, when we allow the rates to be
even virtual–we would impose the existence of the self-action and the stresses, in
other words, we would presume a priori the structure of the balance equations.

• Item 1 in the theorem indicates that the assumption a priori of the existence of
an independent integral balance of microstructural actions is superfluous. The
circumstance that such actions appear in the (generalized) balance of torques does
not imply at all that they are couples for the presence of the linear operatorA ∗. In
other words, per se the microstructural actions are not necessarily couples, while
their projection through A ∗ into the ambient physical space generates couples.

• In the local balance of microstructural actions there is an intrinsic indetermination.
In fact, the balance can be augmented by an arbitrary element of the kernel of
A ∗. Such an ambiguity disappears when we impose covariance, along any path
summarized in the second part of the list already discussed.

• In the finite-strain elastic case and in statics there are existence theorems in the
unified theory. A general existence result appears in [25]; its proof requires the
embedding of the manifold M into a linear space. However, notwithstanding the
lack of uniqueness of the embedding already remarked, we find existence for any
embedding. A previous result is in [33] and deals with the micromorphic case in
which M is identified with a linear space. The coercivity assumption is weaker
then the one adopted in [25]. However, the energy considered in reference [33] has
just a decomposed structure (it is less general than the energy analyzed in [25]),
which allows the weaker coercivity assumption. A more general existence result,
obtained without embedding M in any linear space, but taking it as a complete
Riemannian manifold and considering multi-valued microstructural descriptor
maps (values defined to within a permutation), included in Ginzburg-Landau-type
energies, appears in [15]. When we include inertia effects, existence theorems are
available for special theories, such as liquid crystals (see, e.g., [7]).

• We may extend the traditional assumption that the bulk action b‡ admits an addi-
tive decomposition into inertial, bin, and noninertial, b, components to the bulk
microstructural actions, presuming an analogous decomposition β‡ = β + β in,
identifying then the inertial components bin and β in by postulating that their power
equals the negative of the kinetic energy time derivative for any choice of the rates
involved. In the present multi-field setting, we commonly assume that the kinetic
energy is the sum of standard and microstructural contributions (see results and
discussions in [4, 5, 21]). I do not add here further details.
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8 Presence of Macroscopic Material Mutations:
The Relative Power

Let us relax the idea that the reference place is fixed once and for all. This choice
becomes physically weighty when we consider structural irreversible changes in
the material structure, which frustrate even partially the one-to-one correspondence
between the reference shape and the actual one at each instant. Examples are nucle-
ation and/or evolution relative to the rest of the body of fractures or bulk inhomo-
geneities along a motion. At a given instant the actual shape of a body is not in
one-to-one correspondence with the initially chosen reference shape but with a copy
of it differing by the (virtual) pre-image of the defect.

A way of describing such circumstances is to make use of multiple reference
shapes. However, instead of considering a family of infinitely many possible refer-
ence shapes for the body under scrutiny, it suffices to introduce a sort of infinitesimal
generator of the family itself: a (not necessarily integrable) vector field

x �−→ w := w̃ (x) ∈ R
3

over the reference shape. Then we define a power relative to the virtual rate w. The
definition considers three key aspects: (1) the velocities ẏ and w are not in the same
space so we have to push forward w in the ambient space or to pull back ẏ into
the reference space to compare them; (2) an effect of the mutation is the rupture
and reformation of the material bonds so that we may include configurational forces
and couples, the latter ones determined also by possible changes in the material
symmetry; (3) a mutation alters the energetic landscape.

To define what I call relative power [23] we need then to consider the following
ingredients:

(a) the free energy ψ that we presume to be a differentiable function of x, t, and a list
ς of state variables that we leave here undetermined–no constitutive equations
enter into play–and

(b) bulk configurational forces f with dissipative nature and couples μ, which have,
in contrast, both dissipative and conservative components.

We then define relative power the functional Prel
b defined by

Prel
b (ẏ, ν̇, w) := Prel−a

b (ẏ, ν̇, w) + Pdis
b (w)

with

Prel
b (ẏ, ν̇, w) :=

∫
b

b‡ · (ẏ − Fw) dx +
∫

∂b

t · (ẏ − Fw) dH 2

+
∫
b

β‡ · (ν̇ − Nw) dx +
∫

∂b

τ · (ν̇ − Nw) dH 2,
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and

Pdis
b (w) :=

∫
∂b

(n · w) ψ dH 2 −
∫
b

(∂xψ + f ) · w dx +
∫
b

μ · curlw dx.

Above, ∂xψ is the explicit derivative ofψ = ψ̃ (x, t, ς) with respect to x, holding
fixed ς . It accounts for the inhomogeneity in the energy landscape, altered by the
mutation. The term (n · w) ψ is the flux energy density across the boundary ∂b, due
to the mutation itself.

As for the external power, we subordinate Prel
b to an axiom of invariance.

Axiom of invariance for the relative power [23]: The relative power is invariant
under isometry-based changes in observers, i.e.

Prel
b (ẏ, ν̇, w) = Prel

b

(
ẏ∗, ν̇∗, w∗)

for any choice of c, q, c̄, q̄, and any part b
Even in this case we have stringent consequences.

Theorem 2 The assumed invariance of the relative power under isometry-based
changes in observers implies the validity of the results 1-to-6 in Theorem 1 and the
following additional statements [23]:

(i) The integral configurational balances

∫
∂b

PndH 2 −
∫
b

(
F∗b‡ + N∗β‡

)
dx −

∫
b

(∂xψ + f ) dx = 0,
∫

∂b

(x − x0) × PndH 2 −
∫
b

(x − x0) × (
F∗b‡ + N∗β‡

)
dx

−
∫
b

(x − x0) × (∂xψ + f ) dx +
∫
b

2μdx = 0,

where P := ψI − F∗P − N∗S , with I the second-rank unit tensor, hold.
(ii) If the field x �−→ P is in C1 (B)∩ C

(
B̄

)
and x �−→ F∗b, x �−→ f , x �−→ ∂xψ

are continuous over B, the pointwise configurational balances

DivP − F∗b‡ − N∗β‡ + ∂xψ = f ,

Skw(g−1
P) = −2ēμ,

with ē Ricci’s symbol with all contravariant components, namely ēABC, hold.
(iii) The equation

Prel
b (ẏ, ν̇, w) =

∫
b

(
P · Ḟ + z · ν̇ + S · Ṅ + P · Dw + μ · curlw)

dx

holds and we call extended internal (or inner) power the right-hand side term.
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9 Covariance of the Second Law

We have already discussed the notion of covariance and the way we can use it to
derive balance equations. Traditionally it is called upon in conservative setting. First
time it has been adopted in dissipative setting in a 2013 theorem [22], which deals
with multiplicative finite-strain plasticity. That theorem can be extended to the multi-
field setting discussed here. I show below in short the path to be followed. Details
are yet unpublished.

9.1 Covariance Principle in Dissipative Setting

LetB ≤ 0 be in short an expression of the second law for a given observerO . Another
observer, O ′, evaluate an inequality of the type B′ ≤ 0, with B �= B′ in general. By
pulling back or pushing forward the expression of one observer into the frame(s) of
the other, we get inequalities like B + B† ≤ 0 or B + B‡ ≤ 0.

The principle: In any diffeomorphism-based change in observer, when we project
the mechanical dissipation inequality evaluated by an observer into the frame defin-
ing the other, the additional term arising along the process is always non-positive.

9.2 An Extended Expression of the Mechanical Dissipation
Inequality

A key point is the explicit expression of the inequality B ≤ 0. What I suggest here is
restricted to the isothermal setting and is an extended expression of the mechanical
dissipation inequality. It reads

B (ẏ, ν̇, w;ψ, b) := d

dt

∫
b

ψdx − Prel
b (ẏ, ν̇, w) ≤ 0. (4)

The procedure to evaluate its structural covariance follows the steps below.

• Select the list of state variables appearing as entries of the energy–so far they
have been left not specified in the expression of the relative power–restricting
them by the help of objectivity assumptions (see [26, 42, 44–46] for the pertinent
techniques). In particular, besides the presence of the spatial and material metrics,
in the list of state variables the metric on M may appear when we consider M
endowed with a metric structure as in the case it is Riemannian.

• Assume covariance (tensoriality) of the free energy. Formally, it means that we
impose at every instant t the identity

ψ = ψ ◦ (ĥt × ht × (λ (ht) × h̃t)),
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where the symbol ◦ indicates as above standard map composition and (ĥt × ht ×
(λ (ht) × h̃t)) summarizes the combined action of ĥt , ht , (λ (ht) , h̃t), those of
diffeomorphism-based changes in observers over reference and ambient spaces,
and the manifold M of microstructural shapes, respectively. In particular, it is
useful to express in terms of the time derivative of ψ , adapting to the setting
discussed here the pertinent expression introduced in [22].

• Impose the covariance principle in dissipative setting to themechanical dissipation
inequality (4), written in terms of relative power.

The results that we find are

(1) the existence of the stress and the microstress, the latter one obtained without
embedding the manifold of microstructural shapes into a linear space;

(2) the need of a bulk inner microstructural self-action to assure local balances;
(3) pointwise balances of standard, microstructural and configurational balance

equations;
(4) a priori constitutive restrictions.

They all emerge from a unique invariance requirement.
Notice that, in general, under diffeomorphism-based changes of frames, as

described above, since ψ is a density with respect to the volume measure, we should
have

ψ = det(Dĥt)ψ ◦ (ĥt × ht × (λ (ht) × h̃t)).

The assumed covariance implies

det(Dĥt) = 1,

i.e. that ĥt must be isocoric, independently of the material nature of the body. Such a
restriction on the changes in observers, that is exactly the one adopted in computing
the horizontal variation of the energy in calculus of variations (see results in finite-
strain elasticity in the treatise [19]), agrees also with the axiom of permanence of the
material typology under changes in observers.
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A Refined Theory of the Layered Medium
with the Slip at the Interface

Ilia S. Nikitin and Nikolay G. Burago

Abstract The equations for layered medium with slippage are obtained using the
asymptotic method of homogenisation. The terms of second order respectively the
small parameter of layer thickness are taken into account. The linear slip condition
defines the dependence between the tangential jumps of displacements at the con-
tact boundary and the shear stresses. The derived equations introduce asymptotically
complete generalization of some models of layered media, which are based on the
engineering approach or approximate hypotheses about the nature of the inter-layer
deformation. Such generalized models are needed in the study of static and dynamic
deformations of layered rock media. The wave properties of the resulting system
of equations and dispersion relations for harmonic waves are described. The prop-
agation of Rayleigh surface waves along the elastic layered half-plane boundary is
investigated.

1 Introduction

The interest to the problem of propagation and transformation of waves in layered
media is initiated by the seismology and engineering geophysics. As a rule the seis-
micity is observed in rock regions. Often these rocks contain regular grid of cracks
which can be considered as layered structures. Classical studies of wave fields in such
media usually are based on assumption of continuity of displacement fields. But for
rather strong seismic actions the possibility of tangential displacement jumps at the
inter-layer boundaries should be taken in to account. For long time actions it needs to
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use the “averaged” models of structured continuum media because of impossibility
to trace deformations of each structural layer.

In our study by using asymptotic method [1, 6] the refined equations of layered
medium with slippage are derived. The second order terms relatively small para-
meter of layer thickness are taken in to account. The linear slip relation between
tangential displacement jumps at inter-layer boundaries and shear stresses is used.
The zero order approximate equations for such media has been derived earlier in [3,
4]. The proposed here new equations represent complete generalization of layered
media models [5, 7], which are based on engineering approaches or on approxi-
mate hypothesizes about layer deformations. Such generalized models are required
for static and dynamic problems of rock media deformations and for dynamic wave
propagation problems in geophysics. It should be noted also that the theory of layered
media is suitable for description of composite materials with soft (rubber) sublayers
between major more rigid (metallic) layers.

The properties of proposed refined system of equations are studied. The propa-
gation of longitudinal, transversal and surface Rayleigh waves in layered media is
investigated in refined settings.

2 Refined Equations

Consider infinite layered medium using Cartesian rectangular coordinate system
(x1, x2, x3). The axis x3 is perpendicular to the planes of parallel flat boundaries
between layers. Let the inter-layer boundaries have coordinates x3 = x (s) = sε
(s = 0,±1,±2, ...), where constant layer thickness ε � 1 is a small parameter.
To say more exactly, the relation ε/ l � 1 should be valid, here l is the size of
distributed load application range, for instance, wave length in the processes under
consideration. In such case all spatial values should be made dimensionless using
this value l.

Assume that layer boundaries are always compressed and the following conditions
are valid

σ33 < 0, [u3] = [σγ 3] = [σ33] = 0

Here σγ 3 = k∗[uγ ] is linear slippage of Winkler type, k∗ε = k = O(1). Square
brackets [ f ] = f |x (s)+0 − f |x (s)−0 designate the jump of a value f at inter-layer
boundary. Such conditions are valid approximately if the soft sublayers of thickness
δ (δ/ε � 1) with small shear modulus μδ are present between layers. In this case
we have

σγ 3 = k[uγ ]/ε = kδ

ε

[uγ ]
δ

= μδ

[uγ ]
δ
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Here [uγ ]/δ is shear deformation of soft sublayer. In this case μδ = kδ/ε or vise
versa k = μδε/δ. It is possible to say that is inter-layer shear connection coefficient.
The layers themselves are elastic isotropic and subjected to Hooke’s law

x3 �= x (s) : σi j, j − ρui,t t = 0, σi j = Ci jkluk,l

Here the elastic moduli tensor is

Ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk)

According to the method of asymptotic homogenisation [1] let’s introduce fast
variable ξ = x3/ε. According to [1] assume that uk = uk(xl, ξ, t) is a function,
which is smooth regarding slow variables xl and continuous regarding fast variable ξ ,
excluding points ξ (s) = x (s)/ε, where it may have jumps of first kind. Besides, along
ξ the displacement is 1-periodic [[ui ]] = ui |ξ (s)+1/2 − ui |ξ (s)−1/2 = 0. Accounting
such choice of variables and the differentiation rule for complex functions, the system
of equations for cell of periodicity x (s) − 1/2 ≤ x3 ≤ x (s) + 1/2, −1/2 ≤ ξ ≤ 1/2
may be rewritten as

ε−2Ci3k3uk,ξξ + ε−1(Ci jk3uk, jξ + Ci3kluk,lξ ) + Ci jkluk,l j − ρui,t t = 0

where x3 �= x (s), ξ �= 0. At x3 = x (s), ξ = 0 we use the contact conditions

ε−1C33k3uk,ξ + C33kluk,l < 0

[u3] = 0, [ε−1Ci3k3uk,ξ + Ci3kluk,l ] = 0, ε−1Cγ 3k3uk,ξ + Cγ 3kluk,l = k∗[uγ ]

The conditions of 1-periodicity are

[[ui ]] = ui |ξ+1/2 − ui |ξ−1/2 = 0

Here and farther greek indices (β,γ ) take values 1 and 2, latine indices take values
1, 2, 3. The displacements are represented as asymptotic series regarding small
parameter ε:

ui = u(0)
i (xk, ξ, t) + εu(1)

i (xk, ξ, t) + ε2u(2)
i (xk, ξ, t) + ε3u(3)

i (xk, ξ, t) + · · ·

Introduce the operation of averaging 〈 f 〉 for the function of fast variable ξ , which
will be often used farther: 〈 f 〉 = ∫ 1/2

−1/2 f dξ . Displacement approximations should

satisfy the additional condition
〈
u(n)

k

〉
= 0 [1].

Substitute this representation into the theory of elasticity equations. Equating
to zero the term with negative power ε−2 we get that zero approximation u(0)

i is
independent on the fast variable ξ and u(0)

i = wi (xk, t). Equating to zero the term
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with negative power ε−1 we get that first approximation u(1)
i satisfies the equation

Ci3k3u(1)
k,ξξ = 0. The resulting system of differential equations is:

Ci jklwk, jl + Ci jk3u
(1)
k, jξ + (Ci3klu

(1)
k,l + Ci3k3u

(2)
k,ξ ),ξ

+ ε
[
Ci jklu

(1)
k, jl + Ci jk3u

(2)
k, jξ + (Ci3klu

(2)
k,l + Ci3k3u(3)

k,ξ ),ξ

]

+ ε2
[
Ci jklu

(2)
k, jl + Ci jk3u(3)

k, jξ + (Ci3klu
(3)
k,l + Ci3k3u(4)

k,ξ ),ξ

]
+ · · ·

= ρwi,t t + ερu(1)
i,t t + ε2ρu(2)

i,t t + · · ·

A similar representation for stress tensor components is:

σi j = σ
(0)
i j + εσ

(1)
i j + ε2σ

(2)
i j + · · ·

where σ
(n)
i j = Ci jklu

(n)
k,l + Ci jk3u

(n+1)
k,ξ .

All approximations for stresses are 1-periodic functions of ξ . In particular, the
relation σ

(n)
i3 = Ci3klu

(n)
k,l + Ci3k3u

(n+1)
k,ξ and conditions [σ (n)

i3 ] = 0, [[σ (n)
i3 ]] = 0 are

valid. It is easy to see that
〈
σ

(n),ξ

i3

〉
= 0.

Accounting the terms of definite order of ε, applying the averaging operation 〈 f 〉
and excluding the dependence on fast variable ξ , we get the model of a homogenised
layered medium with slippage of Winkler type.

Let’s derive the refined theory of second order. For this in the system of equations
we keep the terms of order ε2. Applying averaging operation 〈〉 for periodicity cell
to the system of equations we get the following:

Ci jklwk, jl + Ci jk3

〈
u(1)

k,ξ

〉
, j

+ εCi jk3

〈
u(2)

k,ξ

〉
, j

+ ε2Ci jk3

〈
u(3)

k,ξ

〉
, j

= ρwi,t t

It is the final refined system of equations for layered medium with slippage. For

complete formulations it needs to find the functions
〈
u(n)

k,ξ

〉
(n = 1, 2, 3), which par-

ticipate in the system. Every function u(n)
i (xk, ξ, t) (n = 1, 2, 3) is found from the

appropriate task in periodicity cell (−1/2 ≤ ξ ≤ 1/2) [1], which is formulated by
equating to zero the sum of terms of definite order εn−1 in asymptotic system of
equations. Additional conditions for these functions can be received by reformulat-
ing the contact inter-layer conditions for each function: conditions of 1-periodicity

[[u(n)
i ]] = 0 and conditions

〈
u(n)

i

〉
= 0. Let’s formulate these three tasks for the cell

(−1/2 ≤ ξ ≤ 1/2).
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2.1 Task in Cell for n = 1

At |ξ | < 1/2: Ci3k3u(1)
k,ξξ = 0.

At ξ = 0: [Ci3k3u(1)
k,ξ ] = 0, [u(1)

3 ] = 0, k[u(1)
γ ] = Cγ 3klwk,l + Cγ 3k3u(1)

k,ξ .

Additional conditions are: [[u(1)
i ]] = 0,

〈
u(1)

i

〉
= 0.

Dropping details, published in [2], write the solution of task 1 on the periodicity
cell:

u(1)
γ = φγ (ξ−signξ/2),u(1)

3 = 0,whereφγ = −τγ /(k+μ), τγ = μ(wγ,3+w3,γ ).
The derivatives needed for averaging are:

u(1)
3,ξ = 0, u(1)

γ,ξ = φγ ,〈
u(1)
3,ξ

〉
= 0,

〈
u(1)

γ,ξ

〉
= φγ

2.2 Task in Cell for n = 2

At |ξ | < 1/2 have

Ci jklwk, jl + Ci jk3u
(1)
k, jξ + (Ci3klu

(1)
k,l + Ci3k3u(2)

k,ξ ),ξ = ρwi,t t

Averaging this differential equation and accounting that

〈
(Ci3klu

(1)
k,l + Ci3k3u

(2)
k,ξ ),ξ

〉
= 0

and that the rest terms of this equation do not depend on ξ , we get its simple conse-
quence:

Ci3k3u(2)
k,ξξ = −Ci3klu

(1)
k,ξ l

At ξ = 0 have

[Ci3k3u(2)
k,ξ ] = −[Ci3klu

(1)
k,l ], [u(2)

3 ] = 0, k[u(2)
γ ] = Cγ 3klu

(1)
k,l + Cγ 3k3u(2)

k,ξ

Additional conditions are [[u(2)
i ]] = 0,

〈
u(2)

i

〉
= 0.

Dropping details (see in [2]), write the solution of task 2 on periodicity cell

u(2)
γ = −ψγ (ξ 2 − ξsignξ + 1/6)/2, u(2)

3 = −ψ3(ξ
2 − ξsignξ + 1/6)/2

where ψγ = φγ,3, ψ3 = λφβ,β/(λ + 2μ)
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Derivatives needed for averaging are

u(2)
γ,ξ = −ψγ (ξ − signξ/2), u(2)

3,ξ = −ψ3(ξ − signξ/2),
〈
u(2)
3,ξ

〉
= 0,

〈
u(2)

γ,ξ

〉
= 0

Hence second approximations for displacements are absent in refined system of
equations.

2.3 Task in Cell for n = 3

At |ξ | < 1/2 have

Ci3k3u
(3)
k,ξξ = −Ci jklu

(1)
k, jl − Ci3klu

(2)
k,ξ l − Ci jk3u(2)

k,ξ j + ρu(1)
i,t t

At ξ = 0 have

[Ci3k3u
(3)
k,ξ ] = −[Ci3klu

(2)
k,l ], [u(3)

3 ] = 0, k[u(3)
γ ] = Cγ 3klu

(2)
k,l + Cγ 3k3u

(3)
k,ξ .

Additional conditions are [[u(3)
i ]] = 0,

〈
u(3)

i

〉
= 0

Consider solution for cases i = γ . The elasticity moduli tensor is

Ci jklu
(1)
k, jl = Cγ jβlu

(1)
β, jl

= (λδγ jδβl + μδγβδ jl + μδγ lδ jβ)u(1)
β, jl = (λ + μ)u(1)

β,βγ + μu(1)
γ,ll

(Cγ 3kl + Cγ lk3)u
(2)
k,ξ l = (

(λ + μ)δγ lδ3k + 2μδγ kδ3l
)

u(2)
k,ξ l = (λ + μ)u(2)

3,ξγ + 2μu(2)
γ,ξ3

Task equation for |ξ | < 1/2 is

u(3)
γ,ξξ = u(1)

γ,ll − (λ + μ)u(1)
β,βγ /μ − 2u(2)

γ,ξ3 − (λ + μ)u(2)
3,ξγ /μ + ρu(1)

i,t t/μ

At ξ = 0 have following conditions

[u(3)
γ,ξ ] = −[u(2)

γ,3 + u(2)
3,γ ] = 0

k[u(3)
γ ] = μ(u(2)

γ,3 + u(2)
3,γ + u(3)

γ,ξ )

[[u(3)
γ ]] = 0,

〈
u(3)

γ

〉 = 0

The equation may be rewritten as

u(3)
γ,ξξ = χγ (ξ − signξ/2)
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where χγ = −φγ,ll − (λ + μ)φβ,βγ /μ + 2ψγ,3 + (λ + μ)ψ3,γ /μ + ρφγ,t t/μ.
Integrating and accounting conditions for ξ = 0, we get [2]

u(3)
γ,ξ = χγ

(
ξ 2 − ξsignξ

)
/2 + (

kχγ + μψγ,3 + μψ3,γ
)
/(k + μ)/12

Finally the expression for refined derivative is

〈
u(3)

γ,ξ

〉
= μ

(
φγ,ββ + (3λ + 2μ)φβ,βγ /(λ + 2μ) − ρφγ,t t/μ

)
/(k + μ)/12

Now consider solution for case i = 3. The elasticity moduli tensor is

C3 jklu
(1)
k, jl = C3 jβlu

(1)
β, jl = (λδ3 jδβl + μδ3βδ jl + μδ3lδ jβ)u(1)

β, jl = (λ + μ)u(1)
β,β3

(C33kl + C3lk3)u
(2)
k,ξ l = ((λ + 3μ)δ3lδ3k + (λ + μ)δkl) u(2)

k,ξ l

= 2(λ + 2μ)u(2)
3,ξ3 + (λ + μ)u(2)

β,ξβ

Task equation for |ξ | < 1/2 is

u(3)
3,ξξ = −(λ + μ)u(1)

β,β3/(λ + 2μ) − 2u(2)
3,ξ3 − (λ + μ)u(2)

β,ξβ/(λ + 2μ)

ξ = 0: [u(3)
3,ξ ] = −[u(2)

3,3] − λ[u(2)
β,β]/(λ + 2μ) = 0

u(2)
3 = 0, [[u(3)

3 ]] = 0,
〈
u(3)
3

〉
= 0.

The equation may be rewritten as:

u(3)
3,ξξ = χ3 (ξ − signξ/2)

Here χ3 = (λ + μ)ψβ,β/(λ + 2μ) + 2ψ3,3 − (λ + μ)φβ,β3/(λ + 2μ).
Integrating and accounting conditions for ξ = 0 we get [2]

u(3)
3,ξ = χ3(ξ

2 − ξsignξ + 1/6)/2,
〈
u(3)
3,ξ

〉
= 0.

Finally the expressions for refined derivatives are

〈
u(3)

γ,ξ

〉
= 1

12

μ

(k + μ)

(
φγ,ββ + 3λ + 2μ

λ + 2μ
φβ,βγ − ρ

μ
φγ,t t

)
,
〈
u(3)
3,ξ

〉
= 0.

3 Variants of Averaged System of Equations

Now we can formulate the refined system of equations for layered medium with
slippage (latine indices i, j, k, l = 1, 2, 3; greek indices β, γ = 1, 2):
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Cγ jklwk, jl + Cγ jk3

〈
u(1)

k,ξ

〉
, j

+ ε2Cγ jk3

〈
u(3)

k,ξ

〉
, j

= ρwγ,t t

C3 jklwk, jl + C3 jk3

〈
u(1)

k,ξ

〉
, j

+ ε2C3 jk3

〈
u(3)

k,ξ

〉
, j

= ρw3,t t

Accounting the elastic moduli tensor the terms of this system of equations are
written as

Cγ jklwk, jl = (λ + μ)wk,kγ + μwγ,kk, C3 jklwk, jl = (λ + μ)wk,k3 + μw3,kk

Cγ jk3

〈
u(1)

k,ξ

〉
, j

= Cγ jβ3

〈
u(1)

β,ξ

〉
, j

= μφγ,3

C3 jk3

〈
u(1)

k,ξ

〉
, j

= C3 jβ3

〈
u(1)

β,ξ

〉
, j

= μφβ,β

Cγ jk3

〈
u(3)

k,ξ

〉
, j

= μ
〈
u(3)

γ,ξ

〉
,3

= μ2
(
φγ,ββ3 + (3λ + 2μ)φβ,βγ 3/(λ + 2μ) − ρφγ,t t3/μ

)
/(k + μ)/12

C3 jk3

〈
u(3)

k,ξ

〉
, j

=
〈
u(3)

β,ξ

〉
,β

= μ2
(
4(λ + μ)φβ,βαα/(λ + 2μ) − ρφβ,βt t/μ

)
/(k + μ)/12

Finally refined system of equations is

(λ + μ)wk,kγ + μwγ,kk + μφγ,3

+ ε2μ2 (
φγ,ββ3 + (3λ + 2μ)φβ,βγ 3/(λ + 2μ) − ρφγ,t t3/μ

)
/(k + μ)/12 = ρwγ,t t

(λ + μ)wk,k3 + μw3,kk + μφβ,β

+ ε2μ2 (
4(λ + μ)φβ,βαα/(λ + 2μ) − ρφβ,βt t/μ

)
/(k + μ)/12 = ρw3,t t

Remind thatφγ = −μ(wγ,3+w3,γ )/(k+μ). In general equations the expressions
for φγ are not substituted to avoid the unnecessary complexity of formulas. It is seen
that regarding spatial variables this is the system of forth order for the displacements
wk and it contains mixed time derivatives.

The systemof equations is simplified for the case of ideal slipping contact between
layers k = 0.

(λ + μ)wk,kγ + μwγ,kk + μφγ,3

+ ε2μ
(
φγ,ββ3 + (3λ + 2μ)φβ,βγ 3/(λ + 2μ) − ρφγ,t t3/μ

)
/12 = ρwγ,t t

(λ + μ)wk,k3 + μw3,kk + μφβ,β

+ ε2μ
(
4(λ + μ)φβ,βαα/(λ + 2μ) − ρφβ,βt t/μ

)
/12 = ρw3,t t

φγ = −(wγ,3 + w3,γ )
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Separately we formulate plane (2D) dynamic system of equations

(λ + 2μ)w1,11 +
(

λ + kμ

k + μ

)
w3,13 + kμ

k + μ
w1,33

− ε2μ3

3(k + μ)2

(λ + μ)

(λ + 2μ)

(
w1,1133 + w3,3111

)

+ ρε2μ2

12(k + μ)2

(
w1,33t t + w3,31t t

) = ρw1,t t

(λ + 2μ)w3,33 +
(

λ + kμ

k + μ

)
w1,13 + kμ

k + μ
w3,11

− ε2μ3

3(k + μ)2

(λ + μ)

(λ + 2μ)

(
w1,1113 + w3,1111

)

+ ρ
ε2μ2

12(k + μ)2

(
w1,13t t + w3,11t t

) = ρw3,t t

and quasi-static 2D system of equations

(λ + 2μ)w1,11 +
(

λ + kμ

k + μ

)
w3,13 + kμ

k + μ
w1,33

− ε2μ3

3(k + μ)2

(λ + μ)

(λ + 2μ)

(
w1,1133 + w3,3111

) = 0

(λ + 2μ)w3,33 +
(

λ + kμ

k + μ

)
w1,13 + kμ

k + μ
w3,11

− ε2μ3

3(k + μ)2

(λ + μ)

(λ + 2μ)

(
w1,1113 + w3,1111

) = 0

Finally 1D dynamic or quasi-static system of equations for bending of layered
massive (case w1 = 0,w3 = w3(x1, t)) takes the view

ε2μ3

3(k + μ)2

(λ + μ)

(λ + 2μ)
w3,1111 − kμ

k + μ
w3,11 − ρ

ε2μ2

12(k + μ)2
w3,11t t + ρw3,t t = 0

for dynamics, and

ε2μ3

3(k + μ)2

(λ + μ)

(λ + 2μ)
w3,1111 − kμ

k + μ
w3,11 = 0

for quasi-statics. Formulas for stress tensor components are

σ
(0)
i j = Ci jklwk,l + Ci jk3u

(1)
k,ξ

σ
(0)
i j = λδi j wk,k + μ(wi, j + w j.i ) + μ(φiδ j3 + φ jδi3)
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σ
(1)
i j = Ci jklu

(1)
k,l + Ci jk3u

(2)
k,ξ

σ
(1)
i j = (

λδi jφk,k + μ(φi, j + φ j.i ) − λδi jψ3 − μ(ψiδ j3 + ψ jδi3)
)
(ξ − signξ/2)

where φ3 = 0, φγ = −μ(wγ,3 + w3,γ )/(k + μ), ψγ = φγ,3, ψ3 = λφβ,β/(λ + 2μ).
Boundary conditions for loaded surface are

σ
(0)
i j · n j = Pi , σ

(1)
i j · n j = 0

In someproblems for definite orientations of boundary normal vector the boundary
condition of first order converts into identity. In such cases the boundary condition
of second order should be used: σ

(2)
i j · n j = 0.

4 Wave Properties of Layered Medium with Slippage at
Inter-layer Boundaries

Below the propagation of plane harmonic and surface Rayleigh waves in layered
media is considered.

4.1 Plane Harmonic Waves

Let’s define the properties of harmonic waves propagating in arbitrary direction
regarding layer orientation at arbitrary inter-layer connection coefficient k. 2D
dynamic system of equations for the medium under consideration is

(λ + 2μ)w1,11 +
(

λ + kμ

k + μ

)
w3,13 + kμ

k + μ
w1,33

− ε2μ3

3(k + μ)2

(λ + μ)

(λ + 2μ)

(
w1,1133 + w3,3111

)

+ ρ
ε2μ2

12(k + μ)2

(
w1,33t t + w3,31t t

) = ρw1,t t

(λ + 2μ)w3,33 +
(

λ + kμ

k + μ

)
w1,13 + kμ

k + μ
w3,11

− ε2μ3

3(k + μ)2

(λ + μ)

(λ + 2μ)

(
w1,1113 + w3,1111

)

+ ρ
ε2μ2

12(k + μ)2

(
w1,13t t + w3,11t t

) = ρw3,t t
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These equations may be rewritten as

(λ + 2μ)w1,11 + λw3,13 + μ̃(w1,3 + w3,1),3 − ε2μβ1
(
w1,3 + w3,1

)
,113

+ ρε2β2
(
w1,3 + w3,1

)
,3t t = ρw1,t t

(λ + 2μ)w3,33 + λw1,13 + μ̃(w1,3 + w3,1),1 − ε2μβ1
(
w1,3 + w3,1

)
,111

+ ρε2β2
(
w1,3 + w3,1

)
,1t t = ρw3,t t

Introduce the additional variables

U = w1,3 + w3,1

V = μ̃U − ε2μβ1U,11 + ρε2β2U,t t

The system of equations takes the following view

(
(λ + 2μ)w1,11 − ρw1,t t

) + λw3,13 + V,3 = 0

λw1,13 + (
(λ + 2μ)w3,33 − ρw3,t t

) + V,1 = 0

w1,3 + w3,1 − U = 0

μ̃u − ε2β2(μ∗u,11 + ρu,t t ) − V = 0

Here the following designations are introduced

μ̃ = μ
k

k + μ
, β = μ

k + μ
, β1 = λ + μ

λ + 2μ
β2/3, β2 = β2/12, μ∗ = μβ1/β2

We seek the solution of this system of equations as harmonic waves propagating
in the direction n = (n1, n3)with frequency ω and wave number κ = κn = (κ1, κ3)

w1 = Aei(κ1x1+κ3x3−ωt), w3 = Bei(κ1x1+κ3x3−ωt)

U = Cei(κ1x1+κ3x3−ωt), V = Dei(κ1x1+κ3x3−ωt)

where κ1 = κn1, κ3 = κn3, |κ| = κ , |n| = 1, k = 2π/ l is the wave number, l is
harmonic wave length, εk = 2πε/ l, ε2k2 = 4π2(ε/ l)2. The value ε/ l � 1 is a
small parameter. In result we get the system of homogeneous algebraic equations

(
(λ + 2μ)κ2

1 + μεκ
2
3 − ρω2

)
A + (λ + με)κ1κ3B = 0

(λ + με)κ1κ3A + (
(λ + 2μ)κ2

3 + μεκ
2
1 − ρω2

)
B = 0

Here με = μ̃ + ε2β2(μ∗κ2
1 − ρω2). Condition of the solvability for this alge-

braic system gives the equation for propagation velocities of harmonic waves in the
medium under consideration:

ζ 4 −
(
1 + με

(λ + 2μ)

)
ζ 2 + με

(λ + 2μ)
+ 4

(λ + μ)

(λ + 2μ)

(μ − με)

(λ + 2μ)
n2
1n2

3 = 0
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Here ζ 2 = ρc2/(λ + 2μ) = c2/c21, c = ω/κ is the phase velocity of wave
propagation in layered medium, c1 = √

(λ + 2μ)/ρ and c2 = √
μ/ρ are velocities

of elastic longitudinal and transverse waves in a homogeneous elastic medium.
Let α (n1 = sin α) is the angle of wave propagation direction. For some values of

α the biquadratic equation has exact solution.

At α = 0 have ζ1 = 1 and ζ2 = √
μ̃

/√
(λ + 2μ)(1 + ε2κ2β2) for quasi-

longitudinal wave and for quasi-transversal wave respectively.

At α = π/4 have ζ1 = √
(λ + μ + μ̃ + ε2κ2β2μ∗/2)

/√
(λ + 2μ)(1 + ε2κ2β2)

and ζ2 = √
μ

/√
(λ + 2μ) for quasi-longitudinal wave and for quasi-transversal

wave respectively.

At α = π/2 have ζ1 = 1 and ζ2 = √
(μ̃ + ε2κ2β2μ∗)/

/√
(λ + 2μ)(1 + ε2κ2β2)

for quasi-longitudinal wave and for quasi-transversal wave respectively.
At arbitrary α the solution of this equation may be sought in assumed approxi-

mation ∼ ε2 as ζ 2 = ζ 2
0 + ζ 2∗ ε2 + o(ε2).

Zero approximation ζ = ζ 2
0 is found from equation:

ζ 4
0 −

(
1 + μ̃

(λ + 2μ)

)
ζ 2
0 + μ̃

(λ + 2μ)

+ (λ + μ)

(λ + 2μ)

(μ − μ̃)

(λ + 2μ)
sin2 2α = 0

Values ζ 2
0 which correspond to quasi-longitudinal and quasi-transversal waves in

layered medium are:
ζ 2
0 = 0.5 (1 + μ̃/(λ + 2μ) ± D0)

where

D0 =
√

(λ + μ)2

(λ + 2μ)2
+ 2

(λ + μ)

(λ + 2μ)

(μ − μ̃)

(λ + 2μ)
cos 4α + (μ − μ̃)2

(λ + 2μ)2

The correction coefficient ζ 2∗ is:

ζ 2
∗ = β2κ

2(ζ 2
0 − cos2 2α)

(
μ∗

(λ + 2μ)
sin2 α − ζ 2

0

) (
2ζ 2

0 −
(
1 + μ̃

(λ + 2μ)

))−1

Approximate values of phase velocities with accuracy ε2 are

ζ ≈ ζ0

(
1 + κ2ε2β2(ζ

2
0 − cos2 2α)

(
ζ 2
0 − μ∗

(λ + 2μ)
sin2 α

)
/2ζ 2

0 D0

)
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From these formulas it is seen that the velocities of harmonic waves have small
dispersion (∼ κ2ε2) and depend on the wave direction parameter α.

Now investigate the limit cases of these formulas at ε → 0 (με → μ̃). Firstly it
is the limit case of ideal inter-layer contact (case of homogeneous elastic medium):
k → ∞ (μ̃ → μ), and secondly it is the limit case of ideal inter-layer slipping
k → 0 (μ̃ → 0).

Quasi-longitudinal waves (sign plus in formulas for ζ0 andζ ).
In this case for ε → 0: ζ → ζ0.
For k → ∞: ζ0 → 1 (c → c1), (elastic longitudinal wave in isotropic medium).
For k → 0 : ζ 2

0 → 0.5 (1 + D1)

Here

D1 =
√

(λ + μ)2

(λ + 2μ)2
+ 2(λ + μ)μ

(λ + 2μ)2
cos 4α + μ2

(λ + 2μ)2

For α = 0, π/2: ζ0 → 1,c → c1, (waves along and cross layers).
For α = π/4:ζ0 → √

(λ + μ)/(λ + 2μ) (waves propagated under an angle to
the layer boundary direction, minimal propagation velocity).

Quasi-transversal waves (sign minus in formulas for ζ0 and ζ ).
In this case for ε → 0: ζ → ζ0.
For k → ∞: ζ → c2/c1 (c → c2), (elastic transversal wave in isotropicmedium).
For k → 0: ζ 2

0 → 0.5 (1 − D1).
For α = 0, π/2: ζ0 → 0, c → 0, (waves along and cross layers).
For α = π/4 : ζ0 → c2/c1, c → c2, (waves propagated under an angle to the

layer boundary direction, maximal propagation velocity).
The dependence of propagation velocities for quasi-longitudinal and quasi-trans-

versal waves on coefficients of inter-layer connection k are shown in Fig. 1. Upper
graphs correspond to quasi-longitudinal waves, lower graphs correspond to quasi-
transversal waves at various values of small parameter ε/ l = 0.5, 0.3, 0.1. Dimen-
sionless elastic moduli are defined as λ/(λ + 2μ) = μ/(λ + 2μ) = 1/3.

Above each graph the value of wave direction angle = 0, 30◦, 60◦, 90◦ is shown.
For = 0, 90◦ the solutions are described by exact formulas given above and shown
in Fig. 1a, d. For other values of the solution of biquadratic equation for ζ = c/c1 is
calculated numerically and shown in Fig. 1b, c.

From these graphs the level of plane wave dispersion can be seen (for small
values of the coefficient of inter-layer connection) for various wave directions. The
dependence of dispersion on the layer thickness parameter ε/ l can also be seen
there. It is possible to conclude that the dispersion plays role only for dimensionless
coefficients of inter-layer connection k/(λ + 2μ) < 0.7. It is mostly significant
for directions = 90◦ (along layers) of quasi-transversal waves (see Fig. 1d, lower
graphs).
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Fig. 1 The dependence of dimensionless velocities for quasi-longitudinal and quasi-transversal
waves on coefficients of inter-layer connection k

4.2 Surface Rayleigh Waves

Consider surface waves on the boundary of layered half-plane − ∞ < x3 ≤ 0,
−∞ < x1 < ∞ (plane task). The system of equations for displacements of layered
medium with slippage at inter-layer boundaries is written earlier

(
(λ + 2μ)w1,11 − ρw1,t t

) + λw3,13 + V,3 = 0

λw1,13 + (
(λ + 2μ)w3,33 − ρw3,t t

) + V,1 = 0

w1,3 + w3,1 − U = 0, μ̃U − ε2β2(μ∗U,11 + ρU,t t ) − V = 0

Boundary conditions at x3 = 0

σ33 = (λ + 2μ)w3,3 + λw1,1 = 0, σ13 = μ(w1,3 + w3,1) = 0
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At x3 → −∞ have w1 → 0, w3 → 0.
Represent the solutions of this task as surface wave (γ > 0)

w1 = Aeγ x3ei(κ1x1−ωt), w3 = Beγ x3ei(κ1x1−ωt)

Substituting this representation in to the system of differential equations we get
the algebraic homogeneous system of equations

(
μεγ

2 − κ2
1Δ1

)
A + (λ + με)γ iκ1B = 0

− κ2
1 (λ + με)γ A + (

(λ + 2μ)γ 2 − κ2
1�2ε

)
iκ1B = 0

Here the following designations are used: με = μ̃ + ε2β2κ
2
1Δ∗, Δ∗ = μ∗ − ρc2,

Δ1 = λ + 2μ − ρc2, Δ2ε = Δ2 + ε2β2κ
2
1Δ∗, Δ2 = μ̃ − ρc2.

Phase velocity of surface wave is c = ω/κ1. The solvability condition gives the
biquadratic equation for γ

(λ + 2μ)μεγ
4 − κ2

1γ
2D2 + κ4

1Δ1Δ2ε = 0

where D2 = μεΔ2ε + (λ + 2μ)Δ1 − (λ + με)
2.

From this equation we find two positive solutionsγ1,2 > 0

γ 2
1,2 =

κ2
1

{
D2 ±

√
D2

2 − 4(λ + 2μ)μεΔ1Δ2ε

}

2(λ + 2μ)με

Then the solutions of task are

w1 = A1eγ1x3ei(κ1x1−ωt) + A2eγ2x3ei(κ1x1−ωt)

w3 = B1e
γ1x3ei(κ1x1−ωt) + B2eγ2x3ei(κ1x1−ωt)

where iκ1B1,2 = κ2
1 (λ + με)γ1,2 A1,2

(
(λ + 2μ)γ 2

1,2 − κ2
1�2ε

)−1

Substituting these solutions into boundary conditions at x3 = 0 get the system of
equations

γ1A1 + γ2 A2 + iκ1B1 + iκ1B2 = 0

− λκ2
1 A1 − λκ2

1 A2 + (λ + 2μ)γ1iκ1B1 + (λ + 2μ)γ2iκ1B2 = 0

From this system of equations the amplitudes B1 and B2 may be excluded. Then we
have twohomogeneous equations regarding amplitudes A1 and A2. For simplification
of expressions instead of γ1,2 > 0 introduce values η1,2 from relations η1,2 = γ1,2/κ1.
These values are defined by formulas

η2
1,2 =

D2 ±
√

D2
2 − 4(λ + 2μ)με�1�2ε

2(λ + 2μ)με
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Homogeneous system of equations for amplitudes A1 and A2 is

η1

(
1 + (λ + με)(

(λ + 2μ)η2
1 − �2ε

)
)

A1 + η2

(
1 + (λ + με)(

(λ + 2μ)η2
2 − �2ε

)
)

A2 = 0

(
(λ + 2μ)(λ + με)η

2
1(

(λ + 2μ)η2
1 − �2ε

) − λ

)
A1 +

(
(λ + 2μ)(λ + με)η

2
2(

(λ + 2μ)η2
2 − �2ε

) − λ

)
A2 = 0

For solvability the determinant of this system should be equal to zero. It gives the
equation for unknown phase velocity of surface wave c = ω/κ1

4(λ + μ)η1η
2
2 − η2(1 + η2

2)
(
(λ + 2μ)η2

1 + λη2
2

)
−�με

μ

{
η1

(
(λ + 2μ)η2

2 + λ
) + η2(1 + η2

2)
(
(λ + 2μ)η2

1 + λ
)} = 0

Here we denote �με = μ − με. Again investigate the limit cases of this formula
at ε → 0 (με → μ̃). In these cases

η2
1,2 =

D̃3 ±
√

D̃2
3 − 4(λ + 2μ)μ̃�1�2

2(λ + 2μ)μ̃

where D̃3 = μ̃�2 + (λ + 2μ)�1 − (λ + μ̃)2.
The equation for surface wave propagation velocity is

4(λ + μ)η1η
2
2 − η2(1 + η2

2)
(
(λ + 2μ)η2

1 + λη2
2

)
− μ

(k + μ)

{
η1

(
(λ + 2μ)η2

2 + λ
) + η2(1 + η2

2)
(
(λ + 2μ)η2

1 + λ
)} = 0

Case of ideal contact (ideal elastic medium)
In this case at k → ∞ (μ̃ → μ):

η2
1 = 1−c2/c21, η

2
2 = 1−c2/c22, 4(λ+μ)η1η2 − (1+η2

2)
(
(λ + 2μ)η2

1 + λη2
2

) = 0

After short transformation we come to classic Rayleigh wave:

4
√
1 − c2/c21

√
1 − c2/c22 − (2 − c2/c22)

2 = 0

Case of ideal inter-layer slipping
In this case at k → 0 (μ̃ → 0) treating με as small parameter we get:

η2
1 ∼ 4μ(λ + μ) − (λ + 2μ)ρc2

(λ + 2μ)με

, η2
2 ∼ (λ + 2μ − ρc2)(με − ρc2)

4μ(λ + μ) − (λ + 2μ)ρc2

(3λ + 2μ)η1η
2
2 − 2(λ + 2μ)η2

1η2(1 + η2
2) − λη2(1 + η2

2)
2 − λη1 = 0
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The graphs for dependence of dimensionless surface wave velocity c/c1 on inter-
layer connection coefficient k is shown in Fig. 2 for various values of layer thickness
parameter ε/ l = 0.5, 0.3, 0.1. As in previous case the wave number is κ1 = 2π/ l,
where l is the length of harmonic surface wave. The asymptotic of classic Rayleigh
root takes place for k/(λ+2μ) > 1.5÷2. These graphs are very similar to the lower
graphs in Fig. 1d (quasi-transversal waves) for waves propagating along layers (=
90◦) and very close to them. For classic Rayleigh waves, as it is known, cR/c2 ≈ 0.9,
the same relation is valid and in the case under consideration for ratio of velocity of
surface waves to the velocity of quasi-transversal waves.

Remark that the applicability boundary of proposed asymptotic theory is not
defined exactly. The upper boundary for small parameter ε/ l = 0.5 is assumed quite
approximately. Nevertheless, for inter-layer connection coefficients starting from
values k/(λ + 2μ) > 0.7, the calculations give very close meanings for propagation
velocity of quasi-longitudinal, quasi-transversal and surface waves for the whole
range of wave lengths ε/ l < 0.5.

It should be noted that proposed refined theory may be used for investigation
of transformation seismic waves exiting to the day surface in rock massifs with
regular parallel crack grids accounting slippage at contact boundaries. Also this
theory may be useful for description of composite materials with additional soft
sublayers between more rigid layers.

Fig. 2 The dependence of dimensionless surface wave velocity on inter-layer connection
coefficient k
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5 Conclusion

Using the asymptotic method of homogenisation the continuum theory of layered
medium is built taking into account terms of second order accuracy regarding the
small parameter of layer thickness. The linear slip contact condition is used to
describe the relation between tangential displacement jumps and shear stresses. The
wave properties of the proposed refined equations are studied, the dispersion relations
are derived and the propagation of harmonic waves is investigated. The problem of
surface Rayleigh like waves is solved.
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lations. The work is supported by the Russian Foundation of Basic Research (project No. 15-08-
02392).
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Affinely Rigid Body and Affine Invariance
in Physics

Jan Jerzy Sławianowski and Ewa Eliza Rożko

Abstract Discussed is the dynamics of affinely rigid body, i.e. of a mechanical
system the configuration space of which is, roughly speaking, identical with the
affine group. So, it is a system placed between two kinds of Euler equations: the
rigid body and the ideal incompressible fluids. An essential novelty is our stress on
models with the affinely-invariant kinetic energy. It turns out, it may be a toy model
towards discussing the problem of affine, non-metrical invariance in fundamental
physics, quantum theory and gravitation, and even the nuclear and cosmic physics.
Quite independently of that, it may be shown that the affine geodetic model is able to
describe the bounded vibrations of classical continua without any help of the external
potential energy.

1 Introduction

It is well-known that very often some important and new mathematical and physical
concepts and solutions appear in a consequence of unification of even quite different
and mutually remote mathematical theories. Let us mention, e.g., the ergodic theory
or probabilistic theories on algebraic structures [2–4, 16, 21]. Another example is
the theory of dynamical systems defined on Lie groups or their homogeneous spaces.
The algebraic structure of groups gives rise to the theory and classification of left-
invariant and right-invariant dynamical systems. Let us mention, e.g., two important
historical examples known as Euler equations [2, 3]. There are two kinds of them: the
ordinary Euler equations of the rigid body motion, and the partial Euler equations
for the ideal incompressible fluid. It is interesting that both of them were created
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by the same person, just the famous mathematician Leonhard Euler. The rigid body
kinetic energy and the corresponding equations of geodetic motion are invariant
under the rotation group acting on itself through the left regular translations. When
the rigid body is spherical then they are also right-invariant. And similarly, the Euler
equations of the ideal incompressible fluid are right-invariant under the group of
volume-preserving diffeomorphisms. Although this group is not a Lie group because
of its infinite dimension, the general procedures of invariant systems on Lie groups
may be at least formally used. This enabled one to guess some general expressions
and hypotheses concerning the general solution and its properties. Once guessed in
this way, they were later proved on an independent basis.

2 Lie Groups as Configuration Spaces

Let us now review some general principles of analytical mechanics on Lie groups.
So, we assume that the configuration space Q is not any longer a general differ-
ential manifold, but rather a Lie group G, or perhaps some its infinite-dimensional
analogue [3]. For simplicity we assume that it is linear, i.e., that it does possess a
faithful finite-dimensional matrix representation. Let us mention, this restriction is
not so academic as it might seem. Namely, for any n > 2, the universal covering
groups SL(n,R), GL(n,R) fail to be linear. This has some influence on the concept
of spinors, or rather on the attempts of affine generalization of the usual concept of
spinors [34–38]. Being linear, G is a subgroup of some finite-dimensional matrix
group, so G ⊂ GL(N ,R) or G ⊂ GL(N ,C), N < ∞. From now on, we restrict
ourselves to the linear groups. This is sufficient and in any case simplifies the nota-
tion. Lie algebra of G and its dual are denoted respectively by g = TeG and g∗. The
global or almost global relationship between G and g is given by the exponential
formula:

g(t1, . . . , t k) = exp
(
taea

)
, (1)

where e1, . . . , ek is a basis in g, the summation convention is used and obviously the
matrix exponential is given by the power series:

exp(A) =
∞∑

r=0

1

r ! Ar . (2)

Lie algebra g is closed under the commutator operation, so

[ea, eb] = Cc
ab ec, (3)

where Cc
ab are structure constants in the base e1, . . . , ek . The dual basis in g∗ is

denoted by e1, . . . , ek , where
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ea(eb) = 〈
ea, eb

〉 = δa
b. (4)

G = exp(g) or at least it is finitely-generated by exponents exp(A). The dual g∗
consists of linear functions on g. However, very often it may be identified with g
itself via the trace formula:

〈 f, x〉 = Tr( f x). (5)

When dealing with systems on Lie groups one uses the following Lie-algebraic
velocities [32, 33]:

�(t) = ġ(t)g(t)−1, �̂ = g(t)−1ġ(t). (6)

They are non-holonomic when G is non-Abelian.
Tangent and cotangent bundles overG (i.e., bundles of contravariant and covariant

vectors) are trivial [20]:

T G � G × g, T ∗G � G × g∗. (7)

Therefore, the mechanical states may be interpreted as pairs (g,�), or (g, �̂). Let
us observe that

� = g �̂g−1, �̂ = g−1�g. (8)

Using more sophisticated language we would write:

�(t) = Adg(t) �̂, Adg(u) = g u g−1. (9)

Similarly, in the canonical language of cotangent bundles mechanical states in T ∗G
are represented by pairs: (g, �), (g, �̂). In analytical terms we can write:

� = �a ea , �̂ = �̂a ea (10)

� = �a ea , �̂ = �̂a ea, (11)

where

�a = �a
i (q)

dqi

dt
, �̂a = �̂a

i (q)
dqi

dt
(12)

�a = pi �i
a(q)pi , �̂a = pi �̂i

a(q). (13)

Obviously, the following equations are satisfied [36–38]:

�a�
a = �̂a�̂

a = pi q̇
i (14)

�i
a�

a
j = δi

j , �̂
i
a�̂

a
j = δi

j (15)

�a
i�

i
b = δa

b, �̂
a

i �̂
i
b = δa

b. (16)
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Left regular translations Lg : x �→ gx act on those quantities as follows:

� �→ g�g−1 = Adg �, �̂ �→ �̂ (17)

� �→ g�g−1 = Ad∗−1
g �, �̂ �→ �̂, (18)

Let us notice that �̂, �̂ are invariant. Similarly, the right regular translations Rg : x �→
xg act in the following way:

� �→ �, �̂ �→ g−1�̂g = Ad−1
g �̂ (19)

� �→ �, �̂ �→ g−1�̂g = Ad∗
g�̂. (20)

It is seen that the left and right transformation properties are completely opposite to
each other.

The left- and right-invariant models of the kinetic energy are respectively given
by:

T [left] = 1

2
γab�

a�b = 1

2
γ (�,�) (21)

T [right] = 1

2
γab�̂

a�̂b = 1

2
γ (�̂, �̂) (22)

where the coefficients γab are constant.
Non-holonomic description of Legendre transformation is given by the formulas:

�a = ∂T

∂�a
, �̂a = ∂T

∂�̂a
. (23)

The resulting canonical representation of the above left- and right-invariant kinetic
energies is given by:

T [left] = 1

2
γ̃ ab�a�b, T [right] = 1

2
γ̃ ab�̂a�̂b. (24)

Here the tilde—symbol γ̃ ab denotes the inverse contravariant metric tensor, so that

γ̃ acγcb = δa
b. (25)

The quantities�a , �̂a aremomentummappings corresponding to the group of left
and right acting regular translations in G. Their Poisson brackets may be expressed
through the structure constants as follows [10]:

{
�i , � j

} = Cm
i j�m,

{
�̂i , �̂ j

} = −Cm
i j �̂m,

{
�i , �̂ j

} = 0. (26)

Poisson brackets between “sigmas” and quantities f depending only on configuration
variables qi are given by:
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{�a, f (q)} = −�i
a(q)

∂ f

∂qi
,

{
�̂a, f (q)

} = −�̂i
a(q)

∂ f

∂qi
. (27)

Obviously, any pair of functions depending only on configurations is Poisson-
commuting:

{g(q), f (q)} = 0. (28)

Any other Poisson brackets may be obtained from the above ones on the basis of the
general structure properties of those operations.

For any interaction potential V (q) equations of motion have the form [2, 3, 21]:

d f

dt
= { f, H} , H = T + V (q). (29)

Therefore, for the left-invariant kinetic energy we obtain:

d�̂a

dt
= −γ̃ cdCb

ac�̂d�̂b + N̂a . (30)

To be honest, this formula is generally valid for any, ever dissipative forces N̂a . In
the potential case we have obviously

N̂a = −�̂i
a(q)

∂V

∂qi
. (31)

The above equations of motionmay be written alternatively in terms of �̂ or inmixed
�̂, �̂ -terms as follows:

γab
d�̂b

dt
= −γbdCb

ac�̂
c�̂d + N̂a (32)

d�̂a

dt
= −Cb

ac�̂
c�̂b + N̂a . (33)

Whenwe deal with geodetic system, i.e., when N̂a = 0, these equations are explicitly
solvable in terms of the time dependence of �̂a or �̂a . And finally, the motion in
configuration space may be solved by integrating the defining equations:

dq

dt
= q(t)�̂, (34)

after substituting the previously (in principle) found the time dependence of �̂.
For the right-invariant models of T we obtain:

d�b

dt
= γ̃ cdCb

ac�d�b + Na . (35)
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When the system is moving under the influence of V —potential forces, then Na is
linear in the differential of V :

Na = −�i
a(q)

∂V

∂qi
. (36)

It is interesting that for the geodetic left-invariant models the following conser-
vation law holds:

d�a

dt
= 0. (37)

For the general, i.e., not necessarily geodetic models with the left-invariant T the
above conservation law is replaced by the balance law for �a:

d�a

dt
= Na . (38)

Let us observe that the last two equations are free of the algebraic terms quadratic in
“sigmas”. They occur only in equations expressed in terms of �̂a .

Of special interest are obviously doubly-invariant, i.e., left- and right-invariant
models of the kinetic energy. On semi-simple groups they may be based on the
Killing metric tensors

γab = Ck
laCl

kb = γba . (39)

If there is no potential energy or any kind of forces the general solution of equations
of motion is then given simply by

q(t) = exp(�t)q(0) = q(0) exp(�̂t), (40)

where obviously �, �̂ are constant and related to each other as follows:

�̂ = q(0)−1�q(0). (41)

When the metric γab is not Killing, then something similar holds when G is the
Cartesian product of simple groups G K

G = ×N
K=1G K , (42)

and the following combination of Killing metrics is used as γ :

γ = ⊕N
K=1 CK π∗

K γK . (43)

In this formula γK is theKillingmetric on groupG K ,CK are constants andπK : G →
G K is the natural projection of G onto the K th factor G K .

Let us summarize those remarks with the mentioned examples, i.e., rigid body
and the ideal incompressible fluid.
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When dealing with the rigid body in the three-dimensional Euclidean space, and
neglecting the translational motion, the configuration space is identical with the
three-dimensional rotation group SO(3,R). Non-holonomic velocities�, �̂ are then
simply the spatial and co-moving representations of angular velocity. They are skew-
symmetric tensors, therefore in the three-dimensional space one can identify them
with the spatial andmaterial axial vectorswith components�a , �̂A given respectively
by:

�a
b = −εa

bc�
c, �̂A

B = −εA
BC�̂C . (44)

Here εabc is the totally antisymmetric symbol, ε123 = 0 and the shift of indices is
meant in the sense of the Kronecker delta metrics δab, δAB . Reciprocal relationships
are given by:

�a = −1

2
εa

b
c�b

c = 1

2
εa

b
c�c

b. (45)

Similarly, for the relationship between �a
b and its pseudo-covector representation

�a we obtain the following two possible conventions:

1. If we assume in the rule for covector the summation over the skew-symmetric
elements, then

�a = 1

2
εae

f �e
f , �e

f = εe
f

g�g, (46)

and

〈�,�〉 = �a�
a = 1

2
�a

b�
b

a . (47)

2. It we assume the summation over all possible elements, then obviously:

�a�
a = �a

b�
b

a, (48)

and

�a = εae
f �e

f , �e
f = 1

2
εe

f
g�g. (49)

Rotational kinetic energy is given by the formula:

T = 1

2
IAB �̂A�̂B =

3∑
A=1

IA

2

(
�̂A

)2
, (50)

where IAB is the tensor of inertia and IA are its eigenvalues, i.e., solution of the
equation

det [IAB − ληAB] = 0. (51)

Obviously, IAB , IA are constants because they are referred to the material space. For
any matrix U ∈ SO(3,R) T is left-invariant. It is right invariant when I1 = I2 = I3.
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When the problem is once degenerated, i.e., Ia = Ib �= Ic, a �= b �= c, T is right
invariant under SO(2,R)—the group of rotations with respect to the c-axis.

Equation of motion have the following form:

I1
d�̂1

dt
= (I2 − I3) �̂2�̂3 + N̂1 (52)

I2
d�̂2

dt
= (I3 − I1) �̂3�̂1 + N̂2 (53)

I3
d�̂3

dt
= (I1 − I2) �̂1�̂2 + N̂3 (54)

where N̂a are co-moving components of torque. Let us observe that this form of
equations is valid only in the physical three-dimensional case. These equations are
autonomous in the geodetic case, when N̂a = 0 (and N = ϕ N̂ = 0), or when N̂a

depend on mechanical state only through �̂. They are so as well when N̂a depend
only on �̂a . Geodetic equations are left-invariant.

Co-moving components of spin and its spatial components are respectively given
by:

�̂A = ∂T

∂�̂A
= IA�A = IAB�B (55)

and kinetic Hamiltonian is then expressed as:

T =
3∑

A=1

1

2IA
�̂2

A = 1

2
I AB�̂A�̂B, (56)

where, obviously, I AB is reciprocal to IAB ,

I AC IC B = δA
B . (57)

Poisson brackets are given by:

{�a, �b} = εab
c�c,

{
�̂a, �̂b

} = −εab
c�̂c,

{
�a, �̂b

} = 0. (58)

Euler equations in spin terms are given by:

d�̂1

dt
=

(
1

I3
− 1

I2

)
�̂2�̂3 + N̂1 (59)

d�̂2

dt
=

(
1

I1
− 1

I3

)
�̂3�̂1 + N̂2 (60)

d�̂3

dt
=

(
1

I2
− 1

I1

)
�̂1�̂2 + N̂3. (61)
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Please, be careful with the difference in sign in Poisson brackets for �a and �̂a .
When the rigid body is spherical (I1 = I2 = I3), then the above balance laws

become the usual balance law:
d�̂a

dt
= N̂a, (62)

in particular conservation laws for �̂a when N̂a = 0.
In the spherical case the general solutions are given by exponents:

ϕ(t) = exp(tω)ϕ(0) (63)

with the skew-symmetricω. Therefore, they are one-parameter groups or their cosets.
In the anisotropic case the only exponent solutions are rotations about the main axes
of inertia. Only rotations about the extreme axes are stable. We see that everything
is but a simple special case of the above general group-theoretical systems.

Let us now review the Euler equations of the ideal incompressible fluids. The
basic equation has the form:

ρ
dv
dt

= ρ

(
∂v
∂t

+ (v · ∇)v
)

= −∇ p + ρg. (64)

Iso-entropic motion has the form:

ds

dt
= ∂s

∂t
+ vgrads = 0 (65)

∂ρs

∂t
+ div(ρsv) = 0 (66)

∂

∂t
ρvi = −∂Π ik

∂xk
, Π ik = pgik + ρvivk (67)

where obviously ρ is the density and v is the velocity field. The scalar product of
two velocity fields is given by:

〈v1, v1〉 =
∫

D
v1 · v1dx . (68)

Here D is the region filled by fluid, incompressibility is described by:

divv = 0 (69)

and v is assumed to be tangent to the boundary ∂ D of the region. Kinetic energy is
given by:

T = ρ

2
〈v, v〉 = ρ

2

∫
D

gi jv
iv j dx, (70)

where dx is the element of the Riemann volume.
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At the time instant t the configuration is gt ∈ SDiffD, i.e., it belongs to the group
of volume-preserving diffeomorphisms of D. At the instant t + τ , the configuration
is exp(vτ)gt , where τ is assumed to be small. Velocity field is obtained from ġ
tangent at g to the group SDiffD of volume-preserving diffeomorphisms of D. As
mentioned, being infinite-dimensional, SDiffD is not a Lie group, but the formal
procedures of invariant systems are applicable to it and are very helpful in finding
the solutions.

3 Affinely Rigid Body as a Mechanical System
on the Homogeneous Space

Now we shall consider the deformable system with a finite number of degrees of
freedom. This is the affinely-rigid body, i.e., roughly speaking, a system the con-
figuration space of which is the affine or linear group. This is of course the natural
generalization of the usual, i.e., metrically-rigid body. But deformations also occur,
namely finite-dimensional homogeneous deformations. It turns out that even the
usual, i.e., metrically rigid body becomes better described when one assumes it to be
affinely-rigid, and only later one assumes the metrical constraints. Themodel may be
also used in vibration of molecules, in micromorphic continuum, in nuclear models
and even in the theory of cosmic bodies [8, 9, 11–15, 22–31, 33, 39].

It is more convenient to use the language of homogeneous spaces than that of
Lie groups as configuration spaces. So, let (N , U,→, η) be the material affine space
and (M, V,→, g)—the physical space. U , V are linear translation spaces and η ∈
U ∗ ⊗ U ∗, g ∈ V ∗ ⊗ V ∗—the metric tensors [18]. Later on we shall see they are not
necessary for the very formulation of affine degrees of freedom. The configuration
space may be identified with

Q = M × L I (U, V ), (71)

where L I (U, V ) ⊂ L(U, V ) is the manifold of linear isomorphisms of U onto V . It
describes internal (relative) degrees of freedom and M has to dowith the translational
motion of the center of mass. For any φ ∈ Q we have:

Φ(t, a)i = xi (t) + ϕi
K (t)aK . (72)

In affine motion there are two measures of inertia: the total mass and the internal
mas quadrupole [5–7, 32, 33],

m =
∫

N
dμ(a), J K L =

∫
aK aLdμ(a). (73)
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Higher multipoles are non-essential and the dipole vanishes when aK are material
components of the radius vector with respect to the center of mass:

J K =
∫

aK dμ(a) = 0. (74)

Kinetic energy may be shown to be:

T = Ttr + Tint = m

2
gi j

dxi

dt

dx j

dt
+ 1

2
gi j

dϕi
A

dt

dϕ j
B

dt
J AB . (75)

Legendre transformation is given by:

pi = mgi j
dx j

dt
, pA

i = gi j
dϕ j

B

dt
J B A. (76)

Cauchy and Green deformation tensors are given by:

Ci j = ηAB(ϕ−1)A
i (ϕ

−1)B
j , Ci j = ϕi

Aϕ j
BηAB (77)

G AB = gi jϕ
i

Aϕ j
B, G AB = (ϕ−1)A

i (ϕ
−1)B

j g
i j (78)

The kinetic Hamiltonian is given by:

T = Ttr + Tint = 1

2m
gi j pi p j + 1

2
J̃AB pA

i pB
j g

i j . (79)

Thismight seem a natural generalization of the usual rigid bodymechanics. However,
it is not the case. First of all the above kinetic energy is not invariant either on the left
or the right regular translations. The reason is that it depends explicitly on the metric
tensors gi j , ηAB . In a consequence it is not invariant either on the left or on the right
regular translations. Let us try to improve this, initially without discussing its deeper
motivation, just on the aesthetical basis. The left and right affine invariance enable
one to save the Lie group structure and the possibility to find solutions on the basis
of special functions.

First let us introduce the necessary affine concepts. The first of them are non-
holonomic affine velocities

� = ϕ̇ϕ−1 , �i
j = ϕ̇i

Aϕ−1A
j (80)

�̂ = ϕ−1ϕ̇ , �̂A
B = ϕ−1A

i ϕ̇
i

B . (81)

Eringen used the term gyration for them. Obviously,

�i
j = ϕi

A�̂A
Bϕ−1B

j , �̂A
B = ϕ−1A

i�
i

jϕ
j

B . (82)
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Non-holonomic angular velocities are given by skew-symmetric parts

ωi
j = �i

j − � j
i = �i

j − g jk�
k

m gmi (83)

ω̂A
B = �̂A

B − �̂B
A = �̂A

B − ηBC�̂C
DηD A. (84)

The affine spins (hyperspins) conjugate to �, �̂ are given by [17, 33]:

� = ϕπ, �̂ = πϕ, (85)

i.e.,
�i

j = ϕi
Aπ A

j , �̂A
B = π A

iϕ
i

B . (86)

They are Hamiltonian generators, i.e., momentum mappings of the left and right
affine transformations

ϕ �→ AϕB, A ∈ GL(V ), B ∈ GL(U ). (87)

Rotational generators, i.e., metrical spin and vorticity are given by:

Si
j = �i

j − � j
i , V A

B = �̂A
B − �̂B

A. (88)

Remark: they are not ϕ-transforms of each other. Poisson brackets are given by:

{
�i

j , �
k

l
} = δi

l�
k

j − δk
j�

i
l (89){

�̂A
B, �̂C

D
} = δC

B�̂A
D − δA

D�̂C
B (90){

�i
j , �̂

A
B
} = 0 (91){

�̂A
B, p̂C

} = δA
C p̂B (92){

I i
j , pk

} = {
Λi

j , pk
} = δi

k p j (93)

where

v̂A = ϕ−1A
iv

i , p̂A = piϕ
i

A (94)

Λi
j = xi p j , I i

j = Λi
j + �i

j . (95)

Obviously, Λi
j is the center of mass affine momentum and I i

j is the total affine
momentum with respect to the fixed point of the space M [10].

Transformation properties of “sigmas” and “omegas” are reciprocal to those with
the roof symbol:

A ∈ GL(V ) : � �→ A� A−1, �̂ �→ �̂, � �→ A�A−1, �̂ �→ �̂ (96)

B ∈ GL(U ) : � �→ �, �̂ �→ B−1�̂B, � �→ �, �̂ �→ B−1�̂B. (97)
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Obviously, for any function depending only on the configuration variables we
have [10]:

{
F, �i

j
} = ϕi

A
∂ F

∂ϕ j
A
,

{
F, �̂A

B
} = ϕi

B
∂ F

∂ϕi
A
,

{
F,Λi

j
} = xi ∂ F

∂x j
. (98)

Kinematical representations of the affine spin and affine torques are given by:

K i j =
∫ (

yi − xi
) (

ẏ j − ẋ j
)

dμ(a) = ϕi
A
dϕ j

B

dt
J AB (99)

N i j =
∫ (

yi − xi
)
F j (y)dμ(a), (100)

where F is the material density of forces.
The total system of equations of motion may be written in the following balance

form:

dki

dt
= Fi , ki = gi j p j = ϕi

Ak̂ A (101)

dK i j

dt
= dϕi

A

dt

dϕ j
B

dt
J AB + N i j (102)

where

Fi =
∫

F i (y(a))dμ(a) (103)

is the total force acting on the center of mass.
In the case of potential forces

N i j = −ϕi
A

∂V

∂ϕk
A

gk j . (104)

The power of forces is given by:

P = Ptr + Pint = Fiv
i + N i j� j i . (105)

Let us observe that equation of internal motion may be simply written as follows:

ϕi
A
d2ϕ j

B

dt2
J AB = N i j . (106)

Therefore, the equations of additionally constrained affinemotion are easily obtained
on the basis of the d’Alembert principle.

For example, the metrically rigid motion is described by the skew-symmetric part
of the last equation:
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ϕi
A
d2ϕ j

B

dt2
J AB − ϕ j

A
d2ϕi

B

dt2
= N i j − N ji = N i j , (107)

whereN i j , the doubled skew-symmetric part of the affine torque is the usualmetrical
torque.

Similarly, the incompressible motion is ruled by the trace-less part of the primary
equation:

ϕi
A
d2ϕ j

B

dt2
J AB − 1

n
gabϕ

a
A
d2ϕb

B

dt2
J AB gi j = N i j − 1

n
gab N abgi j . (108)

And finally let us quote something really new: equations of rotationless motion. In
contrast to the rigid body motion, those equations are given by the symmetric part:

ϕi
A
d2ϕ j

B

dt2
J AB + ϕ j

A
d2ϕi

B

dt2
= N i j + N ji , (109)

But symmetric matrices do not form either Lie group or Lie algebra. Because of this
the constraints

�i
j − � j

i = 0 (110)

are essentially nonholonomic in contrast to those given by the antisymmetric part
(rigid motion)

�i
j + � j

i = 0 (111)

It is seen that ka , K i j , pa , �i
j are proper quantities corresponding to the balance

laws. Nevertheless, in the theory based on the d’Alembert principle, none of the
balance law reduces to the conservation laws in the interaction-free case. This is the
main drawback of this principle and of the use of metric tensors. Let us summarize
with the balance laws in co-moving representation:

dk̂ A

dt
= −k̂ B J̃BC K̂ C A + F̂ A (112)

dK̂ AB

dt
= −K̂ AC J̃C D K̂ DB + N̂ AB (113)

In velocity representation they become:

m
dv̂A

dt
= −m�̂A

B v̂B + F̂ A (114)

J AC d�̂B
C

dt
= −�̂B

D�̂D
C J̃ C A + N̂ AB (115)

It is clear that in the interaction-free case they never become conservation laws.
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4 Towards Affine Dynamical Models

It follows from the transformation rule that the most general internal kinetic energy
invariant on the left is given by:

Tint = 1

2
L B

A
D

C�̂A
B�̂C

D. (116)

The equations of internal motion are then given by:

d�i
j

dt
= N i

j . (117)

Similarly, for the right invariant model we have

Tint = 1

2
R j

i
l
k�

i
j�

k
l ,

d�̂A
B

dt
= N̂ A

B, (118)

i.e., conservation laws just like in the general models on group theory. Observe that
L B

A
D

C , R j
i
l
k are constant and satisfy the obvious symmetry relationship. Let us

observe that in the d’Alembert model we had:

Tint = gi j J K L dϕ
i

K

dt

dϕ j
L

dt
. (119)

The full affine invariance with translational degrees of freedom is impossible. The
left-invariant and right-invariant kinetic energies are given respectively as follows:

Ttr = m

2
Ci j

dxi

dt

dx j

dt
= m

2
ηAB v̂Av̂B (120)

Ttr = m

2
gi j

dxi

dt

dx j

dt
= m

2
G AB v̂Av̂B . (121)

For the left-invariant models the explicit form of the balance equations of motion
reads:

dpi

dt
= Qi ,

d�i
j

dt
= − 1

m
C̃ik pk p j + Qi

j , (122)

where the generalized forces are given by:

Qi = −∂V

∂xi
, Qi

j = −ϕi
A

∂V

∂ϕ j
A

(123)

when forces are derived from the potential. For the total quantities the form is much
more suggestive:
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dpi

dt
= Qi ,

dI (O)i
j

dt
= Qtot

i
j , (124)

where the following natural definition of the total quantities are accepted:

I (O)i
j = Λ(O)i

j + �i
j = xi p j + �i

j (125)

Qtot(O)i
j = Qtr(O)i

j + Qi
j = xi Q j + Qi

j . (126)

Similarly for the right-invariant models we obtain:

d p̂A

dt
= Q̂ A, i.e.,

dpi

dt
= Qi ,

d�̂A
B

dt
= Q̂ A

B . (127)

Obviously, here we have

Q̂ A = Qiϕ
i

A, Q̂ A
B = ϕ−1A

i�
i

jϕ
j

B . (128)

Asmentioned, the total kinetic energy cannot be doubly affine-invariant, just because
the affine group fails to be semisimple in a rather unpleasant way. There are however
models with the doubly affinely invariant internal kinetic energy. The translational
model may be at most one-side affinely invariant, on the left or on the right. The
resulting total kinetic energy will be also left-affinely invariant and right affinely-
invariant. The opposite invariances will be purely metrical, i.e., orthogonal-invariant.
They are respectively given by:

T aff−metr = m

2
ηK L v̂K v̂L + I

2
ηK L�̂K

M�̂L
N ηM N

+ A

2
�̂K

L�̂L
K + B

2
�̂K

K �̂L
L (129)

T metr−aff = m

2
gi jv

iv j + I

2
gi j�

i
k�

j
l g

kl

+ A

2
�i

j�
j
i + B

2
�i

i�
j

j (130)

where m, I , A, B are constants. This expressions are implied by the assumed invari-
ance principles. The two last expressions are identical, although written in a different
way. Let us notice that the expression

m

2
Ci j (ϕ)viv j = m

2
ηK L v̂K v̂L (131)

resembles the tensor of effectivemass in physics of the solid state [19, 36]. Because of
this pi = Ci j (ϕ)v j is a constant of motion, but vi = C̃ i j p j fails to be so. Obviously,
in T metr−aff it is constant and the corresponding expression predicts the constant
value of the velocity in appropriately chosen potential term. In a sense, T metr−aff may
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be used as a finite-dimensional counterpart of the Arnold description of ideal fluid,
obviously in the isochoric motion.

The above models of the kinetic energy are very special and because of this they
admit solutions given by exponentials. For example, for the doubly-invariant model
without translational motion and without translational force, we have simply:

ϕ(t) = exp(Et)ϕ0 = ϕ0 exp(Ê t), Ê = ϕ0
−1Eϕ0, (132)

where ϕ0, E and Ê are quite arbitrary. If we consider the geodetic motion with T
left affinely-invariant and T right metrically invariant, then ϕ(t) is given by:

ϕ(t) = ϕ0 exp(Ft), (133)

where ϕ0 is arbitrary, and F is η-normal,

[
F, FηT

] = F FηT − FηT F = 0,
(
FηT

)AB = ηB D F D
CηC A, (134)

in particular when
FηT = −F, or FηT = F. (135)

And conversely, if T is left metrically invariant and right affinely invariant, then

ϕ(t) = exp(Et)ϕ0, (136)

for arbitrary ϕ0 and arbitrary g-normal E ,

[
E, EgT

] = E EgT − EgT E = 0,
(
EgT

)i
j = g jl El

k gki . (137)

Those “stationary” solutions are similar to the stationary rotations of the anisotropic
rigid body. The question appears however concerning the role and the necessity of
using the metric tensor. However, let us notice that even the parts of expressions for
affinely invariant T are based on some metric tensors in Q, however different then
the gi j , ηAB and non-derivable from them. One can show that after performing the
Legendre transformation the metric Tint may be expressed as follows:

T aff−metr
int = 1

2α
Tr

(
�̂2

) + 1

2β

(
Tr�̂

)2 − 1

4μ
Tr(V 2) (138)

T metr−aff
int = 1

2α
Tr

(
�2) + 1

2β
(Tr�)2 − 1

4μ
Tr(S2) (139)

The constants α, β, μ are given by:

α = I + A, β = − 1

B
(I + A)(I + A + nB), μ = 1

I
(I 2 − A2). (140)
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Expressing this by Casimir invariants of V , S, � we obtain:

T aff−metr
int = 1

2α
C(2) + 1

2β
C(1)2 + 1

2μ
‖V ‖2 (141)

T metr−aff
int = 1

2α
C(2) + 1

2β
C(1)2 + 1

2μ
‖S‖2 (142)

where ‖V ‖2 = − 1
2Tr(V 2), ‖S‖2 = − 1

2Tr(S2), and obviously, the Casimir invariants
of �, �̂ are given by:

C(k) = Tr(�̂k) = Tr(�k). (143)

Thefirst twoexpressions inT aff−metr
int ,T metr−aff

int are identical, the difference is only
in the third terms. It is clear that the combination of first two terms is not positively
definite. This is in the consequence of the lack of compactness ofGL(n,R), SL(n,R).
The same is true in general for the general forms of Tint based on coefficients L and R.
Nevertheless in some range of coefficients I , A, B (equivalently α, β, μ) the kinetic
energy is positive. Nevertheless, the main terms C(2) of T aff−metr

int , T metr−aff
int are

non-definite. This fact may make us reluctant to affinely-invariant models of kinetic
energy. Nevertheless, it turns out that such models may be useful. First of all, affine
models may be considered as approximation to the d’Alembert ones, and at the same
time they are endowed with all computational and qualitative advantages of those
usual models, even in geodetic, i.e., potential-free dynamical equations. Besides,
they are interesting from the point of view of the dynamics of integrable lattices in
one dimension. Let us observe also that there are approximately affinely rigid bodies
the deformations of which do not have anything to do with the d’Alembert principle.
Their kinetic energies seem to be implied by the metric tensors suggested rather by
affine invariance then by fixed spatial or material metrics. Let us mention e.g., such
objects as atomic nuclei, neutron stars, soap bubbles or fluid droplet inclusions in
fluid matrices [17, 22, 23, 29–31].

Let us describe this in terms of two-polar and polar decompositions of linear
mappings. Namely, any ϕ ∈ L I (U, V ) may be described as follows:

ϕ = L DR−1 (144)

where L : Rn → V , R : Rn → V are orthogonal mappings acting respectively
between Riemann spaces (Rn, δ), (V, g) and (Rn, δ), (U, η). The matrix D is a
diagonal mapping of Rn onto itself. The inverse mappings are linear orthonormal
co-frames L−1 : V → R

n , R−1 : U → R
n . Analytically this is the decomposition

of the matrix ϕi
A into the product of two orthogonal matrices L , R and the diagonal

matrix D. Similarly as the polar coordinates of Rn , the elements L , D, R are not
unique, nevertheless they may be effectively used when some care is applied. They
are given by the following eigenequations

Ĝ Ra = λa Ra = exp(2qa)Ra, Ĉ La = exp(−2qa)La, (145)
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where La , Ra are bases in V , U and qa are real. Let as notice that La , Ra are basis
vectors in V , U . The parameters qa are logarithmic deformation invariants, and

Daa = exp(qa) (146)

are the usual eigenvalues deformation invariants.
Let us notice that the usual polar decompositions are given by pairs (U [ϕ], L[ϕ]),

or (U [ϕ],Λ[ϕ]) = (U [ϕ], U [ϕ]L[ϕ]U [ϕ]−1) where U [ϕ] is an isometry of (U, η)

onto (V, g), and L[ϕ] : U → U , Λ[ϕ] : V → V are respectively η-symmetric and
V -symmetric and positive mappings of U onto U and V onto V . Then

ϕ = U [ϕ]L[ϕ] = Λ[ϕ]U [ϕ]. (147)

Unlike the two-polar decomposition, the polar ones are unique. From this point of
view the polar decomposition is natural, nevertheless the two-polar is more natural
and easy in calculations. From the formal point of view the internal configuration
ϕ ∈ L I (U, V ) is represented as a triple of mutually interacting systems: metrically
rigid bodies L and R in V and U and N fictitious material points in the real line R
with positions q1, . . . , qn . Their “center of mass” is given by:

q = 1

n

(
q1 + · · · + qn

)
, (148)

and the corresponding “canonical momentum”

p = p1 + · · · + pn (149)

As usual there are two kinds of angular velocities and spin: χ̂a
b, ϑ̂a

b and χ i
j ,

ϑ i
j in the case of angular velocities and ρ̂a

b, τ̂ a
b and ρi

j , τ i
j , as measures of spin

and vorticity. Let us stress that in our system of notation the first letters of alphabet
are used to denote the “internal” components in Rn and the middle letters denote the
“physical” components in V and U . Therefore:

χ̂a
b = La

i
dLi

b

dt
, ϑ̂a

b = Ra
K
dRK

b

dt
(150)

χ i
j = dLi

b

dt
Lb

j , ϑ K
L = dRK

i

dt
Ri

L (151)

Similarly for the spin and vorticity variables: ρ̂a
b, τ̂ a

b, ρi
j , τ K

L . Let us observe
that ρi

j = Si
j , τ K

L = V K
L are the usual spin and vorticity in terms of V , U ,

whereas ρ̂a
b, τ̂ a

b are their Rn-comoving representations. Let us repeat that ρ̂a
b, τ̂ a

b

are Hamiltonian-conjugate to χ̂a
b, ϑ̂a

b, while ρi
j , τ K

L are Hamiltonian-conjugate
to χ i

j , ϑ K
L . The advantage of using χ̂a

b, ϑ̂a
b, ρ̂a

b, τ̂ a
b is that from the point of

view of the kinetic energy the configuration variables of the L- and R-gyroscopes
are cyclic coordinates. Let us introduce the quantities:
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Ma
b = −ρ̂a

b − τ̂ a
b, N a

b = ρ̂a
b − τ̂ a

b. (152)

One can show that indeed:

C(2) =
∑

a

p2
a + 1

16

∑
a,b

(Ma
b)

2

sinh2 qa−qb

2

− 1

16

∑
a,b

(N a
b)

2

cosh2 qa−qb

2

. (153)

Therefore, the main part of the kinetic energy when I = 0, B = 0, i.e., one based
on C(2) is given by:

Tlatt = 1

2α

∑
a

p2
a + 1

32α

∑
a,b

(Ma
b)

2

sinh2 qa−qb

2

− 1

32α

∑
a,b

(N a
b)

2

cosh2 qa−qb

2

. (154)

Formally, from the point of view of the dynamics of deformation invariants, this is
a kind of the Sutherland lattice. It is interesting that the spin-like variables lead to
the terms of the kind of singular centrifugal repulsion (the Ma

b-term) but also to the
rather strange centrifugal attraction at large distances.

Let us quote an interesting reformulation of the last formula for Tint, expressing
the model T aff−aff

int in binary terms:

T aff−aff
int = 1

4An

∑
a,b

(pa − pb)
2 + 1

32A

∑
a,b

(Ma
b)

2

sinh2 qa−qb

2

+

− 1

32A

∑
a,b

(N a
b)

2

cosh2 qa−qb

2

+ 1

2n(A + nB)
p2. (155)

When in addition the I -term inT is allowed, the corresponding affine-metric expres-
sions become:

T aff−metr
int = T aff−aff

int [A → I + A] + I

2
(
I 2 − A2

)‖V ‖2 (156)

T metr−aff
int = T aff−aff

int [A → I + A] + I

2
(
I 2 − A2

)‖S‖2. (157)

In any case it is seen that even without assuming any potential energy, there is a
dissociation threshold and if the isochoric constraints are introduced, the body may
perform bounded elastic vibrations. Therefore, just like in the mechanical Mauper-
tuis principle, the dynamics, even in the non-compact configuration space may be
described by the appropriately chosen, let us add geometrically motivated way, in
purely geodetic terms. This enables one to use special functions of mathematical
physics, both on the classical and quantum level.

When speaking about integrable lattices, one should mention also some corre-
spondence with the usual Sutherland lattice. Applying the reasoning similar to the
above one, let us mention that replacing the straight line by the circle, we obtain:
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Tint = 1

2A

∑
a

p2
a + 1

32A

∑
a,b

(Ma
b)

2

sin2 qa−qb

2

+ 1

32A

∑
a,b

(N a
b)

2

cos2 qa−qb

2

− B

2A(A + nB)
p2. (158)

This is obtained from the previous expression by the unitary substitution: Daa =
exp(iqa). Let us observe, there is no problem with the absence of the minus sign in
T , because in the compact circular case there is no difference between repulsion and
attraction.

Let us also observe the relationship between usual the d’Alembert model and the
traditional Calogero–Moser lattice. Namely, the Calogero-like expression is obtained
from the d’Alembert model of T by the substitution

Qa = exp(qa), Pa = exp(−qa)pa, pa = exp(iqa)Pa (159)

to the d’Alembert expression for T :

Tint = 1

2I

∑
a

P2
a + 1

8I

∑
a,b

(Ma
b)

2

(
Qa − Qb

)2 + 1

8I

∑
a,b

(N a
b)

2

(
Qa − Qb

)2 . (160)

But now the two expressions depending on Qa are repulsive, and the model may be
realistic in the sense of admitting bounded vibrations only with the explicit use of
some potential term or some boundary conditions restricting the behavior of Qa .

Let us go back to the affinely invariant model of T . For simplicity let us consider
the “Flathland” model n = 2 [1]. Then the part of the effective interaction between
deformation invariants qa is ruled by M1

2 = M , N 1
2 = N , and the Hamiltonian

becomes:

H eff
M,N = 1

2m

(
p2
1 + p2

2

) + U centr
M,N

(
q1, q2

) + V
(
q1, q2

)
. (161)

Here, as in the case of general n, we have

U centr
M,N = M2

16m sinh2 qa−qb

2

− N 2

16m cosh2 qa−qb

2

(162)

for the “centrifugal” effective potential. V
(
q1, q2

)
is a possibly existing additional

potential. Now it is clear that M , N are constants of motion and there is a dissociation
threshold for the motion of q1, q2. To be more precise, forT aff−aff

int after introducing
the new variables

x = q2 − q1, q = 1

2
(q1 + q2) (163)

px = 1

2
(p2 − p1), p = p1 + p2 (164)
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we obtain

T aff−aff
int = T aff−aff

int [x] + U centr
M,N (x)

= p2
x

A
+ M2

16A sinh2 x
2

− N 2

16A cosh2 x
2

+ p2

4(A + 2B)
(165)

The external potential V
(
q1, q2

)
is assumed in the form

V
(
q1, q2

) = V (x) + W (q), (166)

so finally we obtain the following splitting of the Hamiltonian:

H = p2
x

A
+ U centr

M,N (x) + V (x) + p2

4(A + 2B)
+ W (q). (167)

The first three terms describe the SL(2,R)-ruled part of the dynamics, whenever
the last two separate the purely dilatational motion. This Hamiltonian part describes
the dilatational motion, in particular restricting it to small vibrations when W has
the form of strongly concentrated in q potential well, e.g., of the oscillatory form,
or just the usual rectangular well of very large depth. This will be realization of
the approximately isochoric motion on SL(2,R). Even if V (x) ≡ 0, there is a
dissociation threshold below which the motion is bounded, and above which it is
scattering. The perspective of such bounded motions on the non-compact SL(2,R),
just following from the curvature of SL(2,R) itself, without the attractive external
potential V is very interesting in itself. Apparently it has to do with the fact that M ,
N are constants of motion when n = 2. Nevertheless, even for n > 2 this fact is still
valid, in spite that M , N are then also variable. This is a consequence of the structure
of commutation relations. Of course, again the dilatational motion must be restricted
or just constrained by the shape of W . The quantities (qa , pb, Ma

b, N a
b) are also

then “Funktionengruppe” in the sense of Caratheodory.

{ξμ, ξν} = Cμν(ξ). (168)

Their dynamics is given by Poisson brackets

dξμ

dt
= {ξμ, H} . (169)

This enables one to express the functions χ̂(t), ϑ̂(t) in terms of special functions
and then perhaps to find the vibrating motion of L and R by integrating the time-
dependent ordinary differential equations:

dL

dt
= Lχ̂ ,

dR

dt
= Rϑ̂ . (170)
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The explicit time-dependence is one of χ̂ (t), ϑ̂(t).
This study belongs to the general idea of replacing the metrical invariance in

physics by the affine invariance. Themetrical concepts are to appear as some byprod-
ucts of affine geometry.We remain here on the level of classical elasticity, but similar
ideas appeared in gravitation theory and quantum mechanics. Let us mention in par-
ticular the papers by Hehl [17], Sijacki [29–31] and Ne’emann [22, 23].

Acknowledgments We are very grateful to Professor KrzysztofWilmański, the late, for his interest
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An Alternative to the Allen-Cahn
Phase Field Model for Interfaces
in Solids—Numerical Efficiency

Hans-Dieter Alber

Abstract The derivation of the Allen-Cahn and Cahn-Hilliard equations is based
on the Clausius-Duhem inequality. This is not a derivation in the strict sense of the
word, since other phase field equations can be fomulated satisfying this inequality.
Motivated by the form of sharp interface problems, we formulate such an alternative
equation and compare the properties of the models for the evolution of phase inter-
faces in solids, which consist of the elasticity equations and the Allen-Cahn equation
or the alternative equation. We find that numerical simulations of phase interfaces
with small interface energy based on the alternative model are more effective then
simulations based on the Allen-Cahn model.

1 Introduction

The phase field approach is used to model the evolution of phase interfaces in many
different materials and accordingly the resulting models differ widely. However, in
spite of all the differences the evolution equations for the order parameter S in the
models is almost always formulatedby the standard approach to set the timederivative
of the order parameter equal to a suitable function of the functional derivative of
the Ginzburg-Landau free energy with respect to S, which leads to an Allen-Cahn
type equation, or equal to the divergence of a suitable function of the gradient of
this functional derivative, which leads to a Cahn-Hilliard type equation. Often this
function is chosen to be linear. For a thorough discussion of this approach to formulate
material models with the Allen-Cahn und Cahn-Hilliard equation we refer to [8].

The leading idea behind these approaches to formulate the evolution equation is
that in both cases for the resultingmodel theClausius-Duhem inequality is guaranteed
to hold. Yet, there are other possibilities to choose the evolution equation such that
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this inequality holds. Therefore the question arises whether the standard approach is
always the best or whether there are situations where other choices of the evolution
equation for the order parameter lead to better results.

Of course, this question can only be discussed at a concrete example of an alter-
native phase field equation in a concrete mathematical material model. We consider
here the prototypic model for the evolution of phase interfaces in solids, neglecting
temperature effects, which consists of the elasticity equations coupled to an evolu-
tion equation for S. For this evolution equation one usually inserts the Allen-Cahn
equation. We formulate here an alternative phase field equation and compare the
mathematical properties of the two different models, which are obtained when we
use theAllen-Cahn equation or the alternative equation as the evolution equation.Our
main result is that simulations of phase interfaces in solids, which have small or van-
ishing interface energy density, are numerically more effective when the alternative
equation is used instead of the Allen-Cahn equation.

We stress that the alternative phase field equation can replace the Allen-Cahn
equation in other models. The properties of the resulting models have as yet to be
investigated.

This paper is based on our investigations of phase field equations in the articles
[1–7]. It summarizes in particular the results obtained in [6, 7], but adds also some
new considerations.

2 The Clausius-Duhem Inequality and the Allen-Cahn
Equation

To formulate the alternative phase field equation, we must know the form of the
Ginzburg-Landau free energy, which appears in the Clausius-Duhem inequality.
Therefore we first introduce the physical situation and the elasticity equations, from
which the form of the Ginzburg-Landau free energy results.

Let Ω ⊆ R
3 be an open bounded set, which represents a solid body. We assume

that the atoms of the material can be arranged in crystal lattices of two different
types. The crystal type present at a material point x ∈ Ω at time t is indicated by the
order parameter. The value S(t, x) = 0 means that type one is present, S(t, x) = 1
indicates that type two is present. The sets of points

γ (t) = {x ∈ Ω | S(t, x) = 0}, γ ′(t) = {x ∈ Ω | S(t, x) = 1},

where crystal type one or crystal type two is present, respectively, are called phase 1
or phase 2 of the material at time t , respectively. Let u(t, x) ∈ R

3 denote the dis-
placement of the material point x at time t and let

ε(∇x u) = 1

2

(∇x u + (∇x u)T
) ∈ S 3
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be the linear strain tensor, where S 3 denotes the set of symmetric 3 × 3–matrices.
We assume that only small displacements occur and we consider a quasistatic model.
This means that for every given time t the displacement x �→ u(t, x) and the Cauchy
stress tensor x �→ T (t, x) ∈ S 3 must solve the boundary value problem of linear
elasticity posed in the domain Ω , which is given by

− divx T = b, (1)

T = D
(
ε(∇x u) − εS

)
, (2)

u(t, x) = U(t, x), x ∈ ∂Ω, (3)

where ε ∈ S 3 is the given transformation strain, where D : S → S is the elasticity
tensor, a linear, symmetric, positive definite mapping, and where b(t, x), U(t, x) ∈
R

3 denote the given volume force and boundary displacement. By (2), the material
is stree free in phase one if ε(∇x u) is equal to zero, and in phase two if ε(∇x u) is
equal to the transformation strain ε.

To close the system of model equations, we need an evolution equation for S. To
formulate it, note that according to (2), the stored elastic energy is

W
(
ε(∇x u), S

) = 1

2

(
D

(
ε(∇x u) − εS

)) : (
ε(∇x u) − εS

)
, (4)

which leads to the Ginzburg-Landau free energy

ψ∗(ε(∇x u), S,∇x S
) = W

(
ε(∇x u), S

) + ψ̂(S) + 1

2
|∇x S|2. (5)

where ψ̂ : R → R is a double well potential satisfying

ψ̂(0) = ψ̂(1) = 0, ψ̂(r) > 0, for 0 < r < 1. (6)

The second law of thermodynamics requires that there is a flow of the free energy
q
(
u, ut , ε(∇x u), S, St ,∇x S

)
, such that the Clausius-Duhem inequality

∂

∂t
ψ∗ + divx q ≤ b · ut (7)

holds for all solutions (u, T, S) of the model equations. We use the flow

q = −T ut − St∇x S. (8)

If we insert (5) and (8) into (7) and note (1) and the equation ∂(∇x u)W = T , which
follows from (4), (2), then we obtain by a short computation that
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0 ≥ ∂

∂t
ψ∗ + divx q − b · ut = ∂(∇x u)W : ∇x ut + (

∂SW + ψ̂ ′(S)
)
St + ∇x S · ∇x St

− divx (T ut ) − divx (St∇x S) − b · ut = (∂SW + ψ̂ ′(S) − Δx S)St .

(9)

TheClausius-Duhem inequality (7) is therefore satisfied, if the evolution equation for
S guarantees that the right hand side of (9) is non-positive. The simplest possibility
to obtain this is to set

∂t S = − f
(
∂SW

(
ε(∇x u), S

) + ψ̂ ′(S) − Δx S
)
, (10)

with a function f : R → R satisfying r · f (r) ≥ 0. If for f the linear function f (r) =
cr is chosen with a positive constant c, then the Allen-Cahn equation results.

Equations (1), (2), (10) form a closed system of partial differential equations.
The standard phase field model for the evolution of phase interfaces consists of this
system, combined with the boundary condition (3) and an initial condition for S.

3 Formulation of an Alternative Phase Field Equation

By the inequality (9), the expression

F = ∂SW + ψ̂ ′(S) − Δx S (11)

and the time derivative St must have opposite signs, which means that the value of
St at (t, x) cannot be independent of the value F (t, x). Instead, there must be a
functional relation between both values. Of course, this does not mean that St must
depend on F alone as in the ansatz (10), it can depend on additional variables as
well. The question arises, on which other variables St should depend.

To discuss this question we start from the usual physical interpretation of the
observation, that there must be a functional relation between St and F . The inter-
pretation is thatF is a configurational force, which drives the time evolution of the
order parameter S. This interpretation is used as an additional justification for the
Eq. (10), which we write in the short form

St (t, x) = − f
(
F (t, x)

)
. (12)

What one wants to have is that the variation of the order parameter S is confined
to a narrow diffuse interface, which moves with a propagation speed, which is a
linear or nonlinear function of the configurational force F . In fact, standard sharp
interface models contain an equation, which prescribes the propagation speed of the
interface as a function of the configurational driving force. This equation is called
kinetic relation. We extend the meaning of this notation also to phase field models.
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In a standard sharp interface model the kinetic relation can therefore be explicitly
read off from the model equations. It would be of interest to have a phase field model,
where the kinetic relation can also be read off directly from the form of the model
equations. For the phase field Eq. (12) this is not possible. Instead, the kinetic relation
is a hidden property of this equation, which must be determined by a very technical
asymptotic analysis of this equation.

Our goal is therefore to formulate a phase field equation, for which the Clausisus-
Duhem inequality (7) is satisfied, and which allows to read off the kinetic relation
directly from the form of the equation. To formulate such an equation, assume that S
is an order parameter, whose transition from 0 to 1 defines a diffuse phase interface
moving in time. We say that the speed of the diffuse interface at (t, x0) is equal
to the normal speed s(t, x0) of the level set Γc(t) = {x ∈ Ω | S(t, x) = c}, which
contains x0. The normal speed of Γc(t) at x ∈ Γc(t) can be defined as follows:
If t̃ �→ x(t̃) ∈ R

3 is a function defined for all t̃ from a neighborhood of t and if
x(t̃) ∈ Γc(t̃) holds for all t̃ , then the normal speed s(t, x) ofΓc(t) at x = x(t) ∈ Γc(t)
is the component of the velocoity x ′(t) in the direction of the unit normal vector
n(t, x) to Γc(t) at x . Since n(t, x) = ∇x S(t,x)

|∇x S(t,x)| , we obtain

s(t, x(t)) = dx(t)

dt
· ∇x S(t, x(t))

|∇x S(t, x(t))| . (13)

The function t �→ x(t) satisfies x(t) ∈ Γc(t) if and only if t �→ S
(
t, x(t)

) = c holds,
and this last equation holds if and only if for a fixed time t0 the function x(t) satisfies
the initial value problem

0 = d

dt
S
(
t, x(t)

) = St
(
t, x(t)

) + dx(t)

dt
· ∇x S

(
t, x(t)

)
= St

(
t, x(t)

) + s
(
t, x(t)

)|∇x S
(
t, x(t)

)|, x(t0) ∈ Γc(t0),

with s defined by (13). From this we conclude that if t1 < t2 are given times and
if s : [t1, t2] × Ω → R is a given function, then S satisfies the partial differential
equation

St + s|∇x S| = 0 (14)

in the domain [t1, t2] × Ω , if and only if every level set Γc(t) moves with normal
speed s(t, x) at x ∈ Γc(t).

This suggests to combine the Eqs. (1)–(3) with the evolution equation

St (t, x) = − f
(
F (t, x)

)|∇x S(t, x)|, (15)

with the driving forceF defined by (11) andwith a given linear or nonlinear function
f : R → R. If we compare (14) and (15), then we see that the propagation speed of
the diffuse interface defined by (15) is equal to s = f

(
F (t, x)

)
, whence the kinetic

relation is given by f and can be read off directly from the evolution equation (15).
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From (9) we immediately see that every solution (u, T, S) of the Eqs. (1), (2), (15)
satisfies the Clausius-Duhem inequality (7) if f satisfies r · f (r) ≥ 0 for all r ∈ R.
The evolution equation (15) has therefore the desired properties.

Equation (15) has the form of a Hamilton-Jacobi equation. However, if one inserts
the definition (11) of F into (15), one obtains the phase field equation

St = − f
(
∂SW + ψ̂ ′(S) − Δx S

)|∇x S|, (16)

which is degenerate parabolic. Equation (16) has therefore mixed hyperbolic–
parabolic properties. This is why we call (16) hybrid phase field equation.

4 The Allen-Cahn and the Hybrid Models

We have now two different phase field models for the evolution of phase interfaces
in solids: If we combine the Eqs. (1), (2) with the phase field Eq. (10) of Allen-Cahn
type we obtain the system

− divx T = b, (17)

T = D
(
ε(∇x u) − εS

)
, (18)

∂t S = − c

(μλ)1/2

(
∂SW

(
ε(∇x u), S

) + 1

μ1/2
ψ̂ ′(S) − μ1/2λΔx S

)
, (19)

which must be solved in the domain [0,∞) × Ω . As boundary and initial conditions
we choose, for example,

u(t, x) = U(t, x), (t, x) ∈ [0,∞) × ∂Ω, (20)

∂n∂Ω
S(t, x) = 0, (t, x) ∈ [0,∞) × ∂Ω, (21)

S(0, x) = S(x), x ∈ Ω. (22)

To obtain (19) from (10) we specialized the function f in (10) to be f (r) = cr with
a positive constant c and we introduced two scaling parameters μ > 0 and λ > 0,
whose meaning will become clear later. To have a short name, we call the system
(17)–(19) the Allen-Cahn phase field model.

The second model is obtained by combination of (1), (2) with the hybrid phase
field Eq. (16). If we specialize the function f in (16) to be f (r) = cr with a constant
c > 0 and introduce a scaling parameter ν > 0, the resulting system is

− divx T = b, (23)

T = D
(
ε(∇x u) − εS

)
, (24)

∂t S = −c
(
∂SW

(
ε(∇x u), S

) + ψ̂ ′(S) − νΔx S
)
|∇x S|. (25)
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These equations must be solved in the domain [0,∞) × Ω . For the boundary and
initial conditions we can again take (20)–(22). We call the system (23)–(25) the
hybrid phase field model.

Several questions arise immediately. Equation (25) is a quasilinear, degenerate
parabolic equation. Little is knownabout equations of the form (25). Thefirst question
therefore concerns existence and uniqueness of solutions to the system (23)–(25).
Moreover, if solutions (u, T, S) exist, does the function S have the properties required
from an order parameter? If both questions can be answered positively, what is then
the difference between theAllen-Cahnmodel and the hybridmodel?We have studied
these questions in recent years. To the first two questions only partial answers can
be given, whereas the answer to the third question is quite well known.

In [3] it is proved that weak solutions of the hybrid model (20)–(25) exist in the
case of one space dimension. The proof is based on the observation that the one-
dimensional version of the evolution equation (25) has some monotonicity proper-
ties. In higher space dimensions no rigorous existence proof is available. We must
therefore rely on extensive numerical tests and on formal asymptotic analysis. The
numerical test computations seem to indicate quite clearly, that solutions (u, T, S)

exist and that the function S in these solutions has the properties required from an
order parameter. In fact, the test computations converge in higher space dimensions
better then in one space dimension. A part of the test computations is documented
in [6].

The last question on the difference of the models is answered in the remainder
of this paper. Of course, to answer the question we need to have more information
on the properties of the models. This information is collected in Sects. 5 and 6. The
information is obtained by asymptotic analysis of the models, more precisely by
construction of approximate solutions to the Allen-Cahn and the hybrid models. The
answer to the comparison question is finally given in Sect. 7.

5 Model Error and Asymptotics

To compare the models we need to define what we understand under the model error.
In this section we first give this definition and subsequently state in Theorems 1 and 2
some results on approximate solutions, which have been obtained in [6, 7].

To define the model error we must first specify the type of material interfaces,
which we want to model. Of great current interest are phase interfaces in functional
materials. Very often such interfaces are thin and consist only of a few atomic layers.
A large number of phase fieldmodels to simulate the time evolution of such interfaces
have been devised and more are developed. It is therefore of interest to study how
well the Allen-Cahn and the hybrid models are adapted to the simulation of thin
interfaces in solids. More precisely, it is of interest to study how large the difference
between the propagation speed of a thin phase interface in the real material and of
the interface in the respective phase field model is. This difference is the model error.
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To give a precise definition of the model error, we must approximately know the
propagation speed of the real phase interface. For very thin interfaces mathematical
models with sharp interface are appropriate. We therefore base the following con-
siderations on the hypothesis that the propagation speed of the interface in the sharp
interface model is a good approximation to the propagation speed of the interface
in the real material. The model error of a phase field model is then the difference of
the propagation speed of the sharp interface and the propagation speed of the diffuse
interface in the phase field model.

To formulate the sharp interface model to be used we must introduce some nota-
tions. The asymptotic solution is constructed in the bounded domain

Q = [t1, t2] × Ω,

where 0 ≤ t1 < t2 < ∞ are given times. Γ (t) denotes the sharp interface at time t .
We assume that the phase sets γ (t), γ ′(t) introduced in Sect. 2 are open, disjoint
subsets ofΩ , whose common boundary is Γ (t), such thatΩ = γ (t) ∪ γ ′(t) ∪ Γ (t).
We set

Γ = {(t, x) ∈ Q | x ∈ Γ (t), t1 ≤ t ≤ t2},
γ = {(t, x) ∈ Q | x ∈ γ (t), t1 ≤ t ≤ t2},
γ ′ = {(t, x) ∈ Q | x ∈ γ ′(t), t1 ≤ t ≤ t2}.

Let
n : Γ → R

3

be the continuous vector field, for which n(t, x) is the unit normal vector to Γ (t)
at x ∈ Γ (t), which points into the domain γ ′(t). For a function w defined in a
neighborhood of Γ and (t, x) ∈ Γ we set

w(±)(t, x) = lim
ξ↘0

w
(
t, x ± n(t, x)ξ

)
,

[w](t, x) = w(+)(t, x) − w(−)(t, x),

〈w〉(t, x) = 1

2

(
w(+)(t, x) + w(−)(t, x)

)
.

Now we can formulate the sharp interface model. Let Ŝ : Q → {0, 1} be a piecewise
constant function, which only takes the values 0 and 1 with a jump across Γ , such
that

γ (t) = {x ∈ Ω | Ŝ(t, x) = 0}, γ ′(t) = {x ∈ Ω | Ŝ(t, x) = 1}.

The sharp interface model consists of a transmission problem for the elasticity equa-
tions and of a kinetic relation. The transmission problem is given by
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− divx T̂ = b, (26)

T̂ = D
(
ε(∇x û) − ε Ŝ

)
, (27)

[û] = 0, (28)

[T̂ ]n = 0, (29)

û(t)|∂Ω = U(t). (30)

Todetermine the kinetic relationweproceed as inSect. 2.Weuse theClausius-Duhem
inequality

∂tψsharp + divx qsharp ≤ ût · b, (31)

with the free enery and the flux

ψsharp
(
ε(∇x û), Ŝ

) = W
(
ε(∇x û), Ŝ

) + λ1/2c1

∫
Γ (t)

dσ, (32)

qsharp(T̂ , Ŝ) = −T̂ · ût ,

where c1 ≥ 0 is an arbitrarily chosen constant. The last term on the right hand side
of (32) is the interface energy, hence λ1/2c1 is the interface energy density. It is well
known that if (û, T̂ ) is a solution of the transmission problem (26)–(30) and if the
interface Γ (t) in this problem moves with the normal speed ssharp(t, x) at x ∈ Γ (t),
then the Clausius-Duhem inequality (31) holds if and only if the inequality

ssharp(t, x) ·
(

− ε : 〈T̂ 〉(t, x) + λ1/2c1κΓ (t, x)
)

≥ 0 (33)

is satisfied at every point x ∈ Γ (t). Here κΓ (t, x) denotes twice the mean curvature
of the surface Γ (t) at x ∈ Γ (t).

A proof of this well known result is given in [1], however only for the case where
c1 = 0 in (32). The proof can be readily generalized to the case c1 > 0.

A simple linear kinetic relation, for which (33) obviously holds, is

ssharp = ĉ
( − ε : 〈T̂ 〉 + λ1/2c1κΓ

)
, (34)

with a positive constant ĉ. The sharp interface problem thus consists of the transmis-
sion problem (26)–(30) combined with the kinetic relation (34).

We can now define the model error. To this end note that solutions of the Allen-
Cahn model depend on the parameters μ and λ, whereas solutions of the hybrid
model depend on the parameter ν. Therefore we record these parameters in the nota-
tion. For a solution (u(μλ)

AC , T (μλ)
AC , S(μλ)

AC ) of the Allen-Cahn model and for a solution
(u(ν)

hyb, T (ν)
hyb, S(ν)

hyb) of the hybrid model consider the level sets

Γ
(μλ)
AC =

{
(t, x) ∈ Q

∣∣∣ S(μλ)
AC (t, x) = 1

2

}
. Γ

(ν)
hyb =

{
(t, x) ∈ Q

∣∣∣ S(ν)
hyb(t, x) = 1

2

}
.
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Let s(μλ)
AC (t, x) denote the normal speed of Γ

(μλ)
AC (t) at x ∈ Γ

(μλ)
AC (t), and let s(ν)

hyb(t, x)

denote the normal speed of Γ (ν)
hyb(t) at x ∈ Γ

(ν)
hyb(t). These normal speeds are approxi-

mately equal to the propagation speeds of the diffuse phase interfaces defined by the
solutions of the Allen-Cahn and hybrid models.

Let t ∈ [t1, t2] be a given, fixed number.As initial conditions for the sharp interface
problem we can choose

Γ (t) = Γ
(μλ)
AC (t), or Γ (t) = Γ

(ν)
hyb(t).

Definition 1 We call the functions E (μλ)(t) : Γ (t) → R and E (ν)(t) : Γ (t) → R,
respectively, which are defined by

E (μλ)(t) = s(μλ)
AC (t) − ssharp(t), if Γ (t) = Γ

(μλ)
AC (t), (35)

E (ν)(t) = s(ν)
hyb(t) − ssharp(t), if Γ (t) = Γ

(ν)
hyb(t), (36)

the error of the Allen-Cahn model or the error of the hybrid model at time t , respec-
tively.

We next state some results for the Allen-Cahn and hybridmodels obtained by asymp-
totic analysis.

By B(μλ)
AC > 0 and B(ν)

hyb > 0 we denote the widths of the diffuse interfaces defined
by the order parameter in solutions of the Allen-Cahn model and by the order
parameter in solutions of the hybrid model. Here we do not define the interface
width precisely. If S is an order parameter, one could define the interface width
to be the maximal distance between the level surfaces {x ∈ Ω | S(t, x) = 0.1} and
{x ∈ Ω | S(t, x) = 0.9}, for example.We are interested in the limitsμ → 0, λ → 0,
ν → 0 and assume therefore that μ ∈ (0, μ0], λ ∈ (0, λ0], ν ∈ (0, ν0], with suitably
chosen fixed constants μ0, λ0, ν0 > 0.

Theorem 1 Let
(

u(μλ)
AC , T (μλ)

AC , S(μλ)
AC

)
be a solution of the Allen-Cahn model (17)–

(21), let t ∈ [t1, t2] be a given time, and let (û(t), T̂ (t)) be the solution of the trans-
mission problem (26)–(30) with the interface given by Γ (t) = Γ

(μλ)
AC (t). Then

s(μλ)
AC (t, x) = s0(t, x) + μ1/2

(
s10(t, x) + λ1/2s11(t, x)

) + μ1/2RAC(μ, λ, t, x),

(37)
where s0 = s0

(
Γ

(μλ)
AC (t)

)
, s10 = s10

(
Γ

(μλ)
AC (t)

)
and s11

(
Γ

(μλ)
AC (t)

)
are nonlocal func-

tions of Γ
(μλ)
AC (t). In particular, we have

s0(t, x) = c

c1

( − ε : 〈T̂ 〉(t, x) + λ1/2c1κΓ (t, x)
)
, (38)

with the constant

c1 =
∫ 1

0

√
2ψ̂(r)dr. (39)
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For the remainder term RAC(μ, λ, t, x) there is a function μ → CE (μ) with the
property that limμ→0 CE (μ) = 0, such that for all 0 < μ ≤ μ0, 0 < λ ≤ λ0 and all
(t, x) ∈ Γ

(μλ)
AC the inequality

|RAC (μ, λ, t, x)| ≤ CE (μ) (40)

holds. Moreover, there is a constant C1 > 0 such that for all 0 < μ ≤ μ0, 0 < λ ≤ λ0

B(μλ)
AC ≤ C1(μλ)1/2. (41)

These results are contained in [7].We stress here the fact, that the results are obtained
by formal asymptotic analysis. No rigorous mathematical proof of these statements
is given in [7]. The asymptotic analysis with respect to μ → 0 uses mathematical
methods, which are standard in the analysis of phase field models. This is different
for the estimate (40), which says that the remainder term RAC tends to zero for
μ → 0, uniformlywith respect to λ. This uniformity estimate is obtained by a second
asymptotic analysis with respect to λ → 0. The formal derivation of this estimate is
a novelty introduced in [7].

Theorem 2 Let
(

u(ν)
hyb, T (ν)

hyb, S(ν)
hyb

)
be a solution of the hybrid model (20), (21), (23)–

(25), let t ∈ [t1, t2] be a given time, and let (û(t), T̂ (t)) be the solution of the trans-
mission problem (26)–(30) with the interface given by Γ (t) = Γ

(ν)
hyb(t). Then

s(ν)
hyb(t, x) = c

(
− ε : 〈T̂ 〉(t, x) + ν1/2Rhyb(ν, t, x)

)
, (42)

where c > 0 is the constant from (25). For the remainder term Rhyb(ν, t, x) there is
a constant C2 such that for all 0 < ν ≤ ν0 and all (t, x) ∈ Γ

(ν)
hyb the inequality

|Rhyb(ν, t, x)| ≤ C2 (43)

holds. Moreover, there is a constant C3 > 0 such that for all 0 < ν ≤ ν0

B(ν)
hyb ≤ C3ν

1/2. (44)

These results are obtained in [6], again by formal asymptotic analysis.

6 Characteristic Equations

From the results on the asymptotic behavior of the models stated in Theorems 1
and 2 we derive in this section for both models some relations between parameters
of the models. We call these relations the characteristic relations of the models. The
comparison of the models in Sect. 7 is based on these relations.
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We first consider the Allen-Cahn model. For c1 in the free energy (32) we choose
the value given by (39), With this value we adapt the interface energy density λ1/2c1
to the value in the real material by varying λ. In (19) we choose c = ĉc1. By (34)
and (38) we then have

s0 = ssharp ,

hence (35) and (37) together imply

E (μλ) = s(μλ)
AC − s0 = μ1/2(s10 + λ1/2s11) + μ1/2RAC . (45)

This equation and (40) together yield

|E (μλ)| ≤ Cμ1/2, (46)

with a constant C , which can be chosen independently of λ. By this inequality, μ1/2

controls themodel error. Thereforewewrite F = μ1/2 and call F the error parameter.
Moreover, since λ1/2c1 is the interface energy density, we call E = λ1/2 the interface
energy parameter. Also, since by (41) the interface width is bounded by a constant,
which is proportional to (μλ)1/2, we callW = (μλ)1/2 the interfacewidth parameter.
These three parameters and the propagation speed sAC = s(μλ)

AC are connected by the
fundamental relations

W = E F, (47)

sAC = ĉ (−ε : 〈T̂ 〉 + c1κΓ E) + E [E, F], (48)

|E [E, F]| ≤ C F, (49)

where we use the notation E [E, F] = E (μλ). The first equation is an immediate
consequence of the definition of the parameters, the second is obtained by insertion
of (34) into (35), and the last inequality is just a restatement of (46).

Now assume that we want to use a phase field model to numerically simulate the
propagation of a phase interface. In such a simulation the numerical effort is propor-
tional to h−p, where h denotes the grid spacing and where the power p > 1 depends
on whether we want to simulate a problem in 2–d or in 3–d and it depends on the
numerical scheme we use. In order for the simulation to be precise, we must guar-
antee that the model error and the numerical error are small. To make the numerical
error small, we must choose the grid spacing h small enough to resolve the transi-
tion of the order parameter across the interface, which means that we must choose
h < W , hence we have h−p > W −p. Therefore we see that the numerical effort of
a simulation based on a phase field model is measured by the numberW −p. We call
the number

enum = W −p

the parameter of numerical effort. For a simulation based on the Allen-Cahn model
we see from (47) that the numerical effort is
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enum = (E F)−p. (50)

We call the relations (47)–(50) characteristic relations for the Allen-Cahn model.
Next we derive the characteristic relations for the hybrid model. In the free energy

(32) we choose c1 = 0, and in (25) we set c = ĉ. By (34) and (42) we then have

s(ν)
hyb = ssharp + ν1/2ĉ Rhyb. (51)

We insert this equation into (36) and obtain for the model error

E (ν) = ĉRhyb ν1/2. (52)

From this equation and from (43) we infer that

|E (ν)| = ĉ|Rhyb|ν1/2 ≤ Cν1/2. (53)

By this equation, ν1/2 controls the model error. In the case of the hybrid model we
therefore choose F = ν1/2 as the error parameter. By (44), the interface width is
bounded by a constant, which is proportional to ν1/2, whence the interface width
parameter is W = ν1/2. For the hybrid model we therefore have the characteristic
relations

W = F, (54)

shyb = −ĉ ε : 〈T̂ 〉 + E [F], (55)

|E [F]| ≤ C F, (56)

enum = F−p, (57)

where we used the notations shyb = s(ν)
hyb and E [F] = E (ν). The first of these relations

follows from the definitions of F andW , the second one is obtained by combination
of (51) and (52), noting (34), the third one is just a restatement of (53), and the last
one follows from the definition enum = W −p of the parameter of numerical effort
and from (54).

7 Comparison of the Models, Numerical Efficiency

From (48) we see that the Allen-Cahn model can describe the evolution of a phase
interface with propagation speed ĉ (−ε : 〈T̂ 〉 + c1κΓ E), which by (34) is the propa-
gation speed of an interfacewith interface energy density c1λ1/2 = c1E . The interface
energy density is always positive, since we cannot set λ = 0 in the Allen-Cahn equa-
tion (19). Varying of the parameter E to adjust the interface energy density does
not change the model error; this error can be adjusted to a desired value by choos-
ing the parameter F = μ1/2 suitably. Varying of F does not change the interface
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energy density. From (50) we see that if the interface energy density parameter E is
fixed, then the effort of a numerical simulation grows with F−p, where the power
p > 1 depends on the numerical method employed and on the space dimension of
the problem, which we want to simulate.

From (55) we see that the hybrid model, on the other hand, can describe the
evolution of a phase interface with propagation speed −ĉ ε : 〈T̂ 〉, which by (34) is
the propagation speed of an interface with interface energy density c1λ1/2 = 0. The
model error can be adjusted to a desired value by choosing the parameter F = ν1/2

suitably. By (57), also for this model the effort of a numerical simulation grows with
F−p, where the power p > 1 depends on the numerical method employed and on
the space dimension of the problem, which we want to simulate.

These observations suggest the following rule:

Simulations of phase interfaces with positive interface energy density should be based on
the Allen-Cahn model, simulations of interfaces with zero or small interface energy density
should be based on the hybrid model.

One can object to this rule by arguing that the Allen-Cahn model can also be used
to simulate interfaces with zero interface energy density by choosing the interface
energy density parameter positive, but very small. However, because of the presence
of the factor E−p in the formula (50) the numerical effort will become very large.

To be more specific, we consider an interface with vanishing interface energy
density, hence c1λ1/2 = 0, which by (34) means that the propagation speed of the
sharp interface is

ssharp = −ĉ ε : 〈T̂ 〉.

For the Allen-Cahn model it follows from this equation and from (48) that in this
case the total model error, which we denote by Etotal, is

Etotal = sAC − ssharp = ĉc1κΓ E + E [E, F].

This means that the term ĉc1κΓ E is now part of the total model error.
If we prescribe the maximal value Emax of the total model error |Etotal|, we must

therefore choose the parameters E and F such that

ĉc1(max
Γ

|κΓ |)E + max
Γ

|E [E, F]| ≤ Emax, (58)

E F
!= max, (59)

where the second condition is imposed by the requirement to make the numerical
effort enum = (E F)−p as small as possible. To discuss this optimization problem,
we assume first that the term s10 in the asymptotic expansion (37) of the propagation
speed s(μλ)

AC is not identically equal to zero. In this case we conclude from (45) and
(40) that for sufficiently small λ1/2 = E and for sufficiently smallμ1/2 = F the error
E [E, F] = E (μλ) satisfies
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max
Γ

|E [E, F]| ≥ 1

2
(max

Γ
|s10|)μ1/2 = 1

2
(max

Γ
|s10|)F.

This inequality and (58) imply that the solution (E, F) of the optimization problem
(58), (59) satisfies

F ≤ 2

max
Γ

|s10| max
Γ

|E [E, F]| ≤ 2

max
Γ

|s10| Emax and E ≤ 1

ĉc1 max
Γ

|κΓ | Emax.

From this result we obtain

Corollary 1 Let Emax denote the total model error of the Allen-Cahn model in the
simulation of an interface without interface energy. If the term s10 in the asymptotic
expansion (37) of the propagation speed s(μλ)

AC is not identically equal to zero, then
the interface width BAC satisfies

BAC ≤ C1E F ≤ 2C1

ĉc1(max
Γ

|s10|)(max
Γ

|κΓ |) E
2
max . (60)

In a numerical simulation of an interface without interface energy based on the
Allen-Cahn model the parameter of numerical effort satisfies

enum ≥
( ĉc1(max

Γ
|s10|)(max

Γ
|κΓ |)

2 E 2
max

)p

, (61)

with a power p > 1 depending on the space dimension and the numerical method
used.

For the hybrid model we have by (55) and (56) that Emax = maxΓ |E [F]| ≤ C F .
From (57) and from (61) we thus see that in a simulation of an interface without
interface energy or with small interface energy the numerical efforts behave like

ehybnum ≤ CE −p
max , eACnum ≥ CE −2p

max . (62)

Since the time step in a simulation must be decreased when the grid spacing h in
x–direction is decreased, the number p can be larger than 4 in a three dimensional
simulation. From (62) we thus see that the numerical effort for the Allen-Cahnmodel
grows much faster for the Allen-Cahn model than for the hybrid model when the
required accuracy is increased. This confirms the rule stated above for the usage of
both models in simulations.

This picture does not change essentially when the term s10 vanishes identi-
cally. In this case the same considerations show that instead of (60) and (61) we

would have BAC = O(E 3/2
max) and eACnum ≥ CE

− 3
2 p

max , hence the numerical effort for the
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Allen-Cahn model would still grow faster than for the hybrid model. However, a
close investigation of the terms, which constitute s10 and which are computed in
[7], shows that only in very exceptional situations one can expect that s10 vanishes
identically.
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Thermoelastic Waves in Microstructured
Solids

Arkadi Berezovski and Mihhail Berezovski

Abstract Thermoelastic wave propagation suggests a coupling between elastic
deformation and heat conduction in a body.Microstructure of the body influences the
both processes. Since energy is conserved in elastic deformation and heat conduction
is always dissipative, the generalization of classical elasticity theory and classical
heat conduction is performed differently. It is shown in the paper that a hyperbolic
evolution equation for microtemperature can be obtained in the framework of the
dual internal variables approach keeping the parabolic equation for the macrotem-
perature. The microtemperature is considered as a macrotemperature fluctuation.
Numerical simulations demonstrate the formation and propagation of thermoelastic
waves in microstructured solids under thermal loading.

1 Introduction

Microstructure of a body influences both wave propagation and heat conduction.
Microstructure-oriented theories of generalized continua [1–4] are, as a rule, isother-
mal, whereas the generalization of heat conduction to non-Fourier laws [5–8] is
usually restricted by the consideration of homogeneous and even rigid conductors.
The main problem is, therefore, to elaborate a conjoint framework for the descrip-
tion of coupled conservative and dissipative processes. As shown recently, such an
unification is possible on the basis of the dual internal variables approach [9, 10].

In the conventional thermoelasticity, the free energy density is a function of the
deformation gradient and temperature only and cannot depend on the temperature
gradient. However, the temperature gradient influence on the thermomechanical
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response of a microstructured material is expected in the presence of varying tem-
perature fields at the microstructure level [11]. This means that a weakly non-local
description should be applied [12]. As a result of the application of the dual inter-
nal variables theory, it is possible to obtain a hyperbolic evolution equation for
microtemperature keeping the parabolic equation for the macrotemperature [10].
The microtemperature is considered as a macrotemperature fluctuation. Effects of
microtemperature gradients exhibit themselves on themacrolevel due to the coupling
of equations of macromotion and evolution equations for macro- and microtemper-
atures. The overall description of thermomechanical processes in microstructured
solids includes both direct and indirect couplings of equations ofmotion and heat con-
duction at the macrolevel. In addition to the conventional direct coupling, there exists
the coupling betweenmacromotion andmicrotemperature evolution. Thismeans that
the macrodeformation induces microtemperature fluctuations due to the heterogene-
ity in the presence of a microstructure. These fluctuations, propagating with a finite
speed, can induce, in turn, corresponding changes in the macrotemperature. Then the
appeared changes in the macrotemperature affect macrodeformations again. Numer-
ical simulations demonstrate the formation and propagation of thermoelastic waves
in microstructured solids under thermal loading [13].

The purpose of the paper is twofold. First, the difference between the standard
single internal variable theory and the dual internal variable approach is empha-
sized. Next, it is demonstrated how thermal gradients produced by an appropriate
microstructure are able to generate fluctuations propagating with a finite speed with-
out introducing a hyperbolic heat conduction equation for the macrotemperature.

2 Internal Variables Formalism

Before the application of the dual internal variable approach to the description of
dynamic response of solids with microstructure, it is worth to explain the difference
between the single internal variable theory and the dual internal variables approach.
We start with the remainder of the single internal variable technique.

2.1 Single Internal Variable in One Dimension

We consider the simplest possible situation, i.e. a “body” or a “system” in one dimen-
sion. Suppose that all thermodynamic quantities like temperature, energy, entropy,
etc. are defined. Then we assume that the free energy density W is specified as a
function of temperature θ and an internal variable ϕ and its space derivative

W = W(θ, ϕ, ϕx). (1)
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Constitutive assumption (1) allows us to write down so-called “equations of state”
(just definition of additional quantities)

S := −∂W

∂θ
, τ := −∂W

∂ϕ
, η := −∂W

∂ϕx
, (2)

where S is the entropy density per unit reference volume.
The balance of internal energy in this case can be represented as

Et + Qx = 0, (3)

where E is the internal energy density and Q is the heat flux, indices denote time and
space derivatives. Remembering the connection between internal energy and free
energy, i.e., W = E − Sθ , we arrive at another form of the energy balance

(Sθ)t + Qx = hint, hint := −Wt, (4)

where the right-hand side of Eq. (4)1 is formally an internal heat source [14].
The energy balance should be accompanied by the second law of thermodynamics

here written as
St + (Q/θ + K)x ≥ 0, (5)

where K is the “extra” entropy flux that vanishes in most cases, but this is not a basic
requirement [14].

Multiplying the second law (5) by θ

θSt + θ(Q/θ + K)x ≥ 0, (6)

and taking into account Eq. (4), we obtain

− (Wt + Sθt) + (θK)x − (Q/θ + K)θx ≥ 0. (7)

The internal heat source hint is calculated as follows:

hint = −Wt = −∂W

∂θ
θt − ∂W

∂ϕ
ϕt − ∂W

∂ϕx
ϕxt = Sθt + τϕt + ηϕxt = hth + hintr . (8)

Accounting for Eq. (8), dissipation inequality (7) can be rewritten as

Φ = τϕt + ηϕxt − (Q/θ + K)θx + (θK)x ≥ 0. (9)

To rearrange the dissipation inequality, we add and subtract the same term ηxϕt

Φ = τϕt + ηϕ̇x − ηxϕt + ηxϕt − (Q/θ + K)θx + (θK)x ≥ 0, (10)
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which leads to

Φ = (τ − ηx)ϕt − (Q/θ + K)θx + (ηϕt + θK)x ≥ 0. (11)

Following [15], we select the “extra” entropy flux in such a way that the divergence
term in Eq. (11) will be eliminated

K = −θ−1ηϕt . (12)

Then dissipation inequality (11) reduces to

Φ = (τ − ηx)ϕt − (Q/θ + K)θx ≥ 0. (13)

It is remarkable that in the isothermal case (θx = 0) the dissipation is determined by
the internal variable only.

The simplest choice to satisfy the dissipation inequality (13) in the isothermal case

Φ = (τ − ηx)ϕt ≥ 0, (14)

is the following one:
ϕt = k(τ − ηx), k ≥ 0, (15)

since dissipation inequality (14) is satisfied automatically in this case

Φ = kϕ2
t ≥ 0, if k ≥ 0. (16)

It is easy to see that the dissipation is the product of the thermodynamic fluxϕt and the
thermodynamic force (τ −ηx). The proportionality between the thermodynamic flux
and the conjugated force is the standard choice to satisfy the dissipation inequality.

To see how the obtained evolution equation looks like, we specialize free energy
dependence (1) in the isothermal case to a quadratic one

W = 1

2
Bϕ2 + 1

2
Cϕ2

x , (17)

where B and C are material parameters. It follows from equations of state (2) that

τ := −∂W

∂ϕ
= −Bϕ, η := −∂W

∂ϕx
= −Cϕx, (18)

and evolution equation (15) is an equation of reaction-diffusion type

ϕt = k(Cϕxx − Bϕ), k ≥ 0. (19)
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The given standard formalism of internal variables of state is sufficient for many
cases [16].

2.2 Dual Internal Variables

The dual internal variables approach is the extension of the technique described
above. We suppose that the free energy density depends on internal variables ϕ,ψ

and their space derivatives

W = W(θ, ϕ, ϕx, ψ,ψx). (20)

The equations of state in the case of two internal variables read

S = −∂W

∂θ
, τ := −∂W

∂ϕ
, η := −∂W

∂ϕx
, ξ := −∂W

∂ψ
, ζ := − ∂W

∂ψx
. (21)

We introduce the non-zero extra entropy flux following the case of a single internal
variable and set

K = −θ−1ηϕt − θ−1ζψt . (22)

It can be checked that the intrinsic heat source is determined in the considered case
as follows

h̃intr := (τ − ηx)ϕt + (ξ − ζx)ψt . (23)

The latter means that the dissipation inequality in the isothermal case reduces to

Φ = (τ − ηx)ϕt + (ξ − ζx)ψt ≥ 0. (24)

The solution of the dissipation inequality can be represented as [17]

(
ϕt

ψt

)
= L

(
(τ − ηx)

(ξ − ζx)

)
, or

(
ϕt

ψt

)
=

(
L11 L12

L21 L22

) (
(τ − ηx)

(ξ − ζx)

)
. (25)

The non-negativity of the entropy production (24) results in the positive semidefi-
niteness of the conductivity matrix L, which requires

L11 ≥ 0, L22 ≥ 0, L11L22 − (L12 + L21)
2

4
≥ 0. (26)

To be more specific, we keep a quadratic free energy density in the isothermal case

W = 1

2
Bϕ2 + 1

2
Cϕ2

x + 1

2
Dψ2 + 1

2
Fψ2

x . (27)
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Calculating quantities defined by equations of state

τ := −∂W

∂ϕ
= −Bϕ, η := −∂W

∂ϕx
= −Cϕx, (28)

ξ := −∂W

∂ψ
= −Dψ, ζ := − ∂W

∂ψx
= −Fψx, (29)

we can represent system of Eqs. (25) in the form

ϕt = L11(−Bϕ + Cϕxx) + L12(−Dψ + Fψxx), (30)

ψt = L21(−Bϕ + Cϕxx) + L22(−Dψ + Fψxx). (31)

Now we will derive a single equation for the internal variable ϕ. For this purpose,
Eq. (30) is differentiated with respect to time

ϕtt = L11(−Bϕt + Cϕxxt) + L12(−Dψt + Fψxxt). (32)

Time derivatives of the internal variable ψ follow from Eq. (31)

ψt = L21(−Bϕ + Cϕxx) + L22(−Dψ + Fψxx), (33)

ψtxx = L21(−Bϕxx + Cϕxxxx) + L22(−Dψxx + Fψxxxx). (34)

At last, the internal variable ψ can be eliminated using again Eq. (30)

(−Dψ + Fψxx) = 1

L12
ϕt − L11

L12
(−Bϕ + Cϕxx), (35)

(−Dψxx + Fψxxxx) = 1

L12
ϕtxx − L11

L12
(−Bϕxx + Cϕxxxx). (36)

As a result, time derivatives of the internal variable ψ can be represented in terms of
the internal variable ϕ

ψt = L21(−Bϕ + Cϕxx) + L22

(
1

L12
ϕt − L11

L12
(−Bϕ + Cϕxx)

)

= L22

L12
ϕt + L12L21 − L11L22

L12
(−Bϕ + Cϕxx), (37)

ψtxx = L21(−Bϕxx + Cϕxxxx) + L22

(
1

L12
ϕtxx − L11

L12
(−Bϕxx + Cϕxxxx)

)

= L22

L12
ϕtxx + L12L21 − L11L22

L12
(−Bϕxx + Cϕxxxx), (38)
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and the evolution equation for the internal variable ϕ has the form

ϕtt = L11(−Bϕt + Cϕxxt) + L12(−Dψt + Fψxxt)

= L11(−Bϕt + Cϕxxt) − DL22ϕt − D(L12L21 − L11L22)(−Bϕ + Cϕxx)

+FL22ϕtxx + F(L12L21 − L11L22)(−Bϕxx + Cϕxxxx). (39)

After rearranging, we have finally

ϕtt = (CD + BF)(L11L22 − L12L21)ϕxx + (L12L21 − L11L22)(BDϕ + CFϕxxxx)

−(BL11 + DL22)ϕt + (CL11 + FL22)ϕtxx. (40)

The free energy density W is non-negative by default, which results in non-
negativity of material parameters B, C, D, and F. This means that Eq. (40) is the
hyperbolic wave equation with dispersion and dissipation.

Thus, extending the state space of our thermodynamic system by an additional
internal variable and keeping the quadratic form for the free energy density, we arrive
at the hyperbolic evolution equation for the primary internal variable.

3 One-dimensional Thermoelasticity in Solids with
Microstructure

Nowwe are ready to apply the dual internal variables approach to thermoelasticity in
solids with microstructure. We will keep the one-dimensional setting to be as simple
as possible. The 3D tensorial representation of the application of the dual internal
variables approach is given in [18, 19].

3.1 Reminder: Classical Linear Thermoelasticity

The one-dimensional motion of the thermoelastic conductors of heat is governed by
local balance laws for linear momentum and energy (no body forces)

ρvt − σx = 0, (41)

Et − σεt + Qx = 0, (42)

and by the second law of thermodynamics

St + Jx ≥ 0. (43)
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Here σ is the one-dimensional stress, v is the particle velocity, J is the entropy flux,
subscripts denote derivatives.

The constitutive relations include the Hooke law

σ = (λ + 2μ)ε, (44)

and the Fourier law
Q = −κ2θx, (45)

where λ and μ are Lamé coefficients, κ2 is the thermal conductivity. The entropy
flux is proportional to the heat flux

J = Q

θ
. (46)

The combined constitutive relation known as the Duhamel-Neumann equation has
the form

W(ε, θ) = 1

2
(λ + 2μ) u2

x − ρcp

2θ0
(θ − θ0)

2 + m (θ − θ0) ux, (47)

where u is the displacement, cp is the heat capacity, the thermoelastic coefficient
m is related to the dilatation coefficient a and the Lamé coefficients λ and μ by
m = −a(3λ + 2μ), θ0 is the reference temperature.

Correspondingly, the time derivative of internal energy

Et = θSt + σεt, (48)

and entropy definition

S =: −∂W

∂θ
= ρcp

θ0
(θ − θ0) − mux, (49)

yield in the balance of energy

Stθ − (kθx)x =
(

ρcp

θ0
θt − muxt

)
θ − (kθx)x = 0, (50)

which can be reduced for small deviations from the reference temperature to

ρcpθt − (κ2θx)x = mθ0uxt . (51)

The latter equation together with the balance of linear momentum

ρutt = (λ + 2μ) uxx + mθx, (52)

form the coupled system of equations for linear thermoelasticity.
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3.2 Microstructure Influence: Dual Internal Variables

Now we suppose that the free energy density depends on internal variables ϕ,ψ and
their space derivatives W = W(ux, θ, ϕ, ϕx, ψ,ψx). We use a quadratic free energy
function [9]

W = 1

2
(λ + 2μ) u2

x − ρ0cp

2θ0
(θ − θ0)

2 + m (θ − θ0) ux

+Aϕxux + 1

2
Cϕ2

x + 1

2
Dψ2. (53)

Here A, C, and D are material parameters. This means that state variables include
strain, temperature, and two internal variables (and their gradients). For simplicity,
only a contribution of the second internal variable itself and the gradient of the
primary internal variable are included here. The corresponding equations of state
determine macrostress σ

σ := ∂W

∂ux
= (λ + 2μ) ux + m (θ − θ0) + Aϕx, (54)

microstress η

η := −∂W

∂ϕx
= −Cϕx − Aux, (55)

zero interactive internal force τ

τ := −∂W

∂ϕ
= 0, (56)

and auxilary quantities related to the second internal variable

ζ = − ∂W

∂ψx
= 0, ξ = −∂W

∂ψ
= −Dψ. (57)

Accounting for the time derivative of internal energy

Et = θSt + σεt − τϕt − ηϕxt − ξψt − ζψxt, (58)

results in the energy balance in the form

θSt − τϕt − ηϕxt − ξψt − ζψxt + Qx = 0, (59)

which together with the second law of thermodynamics

θSt + θJx ≥ 0, (60)
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determines the dissipation inequality

(τ − ηx)ϕt + (ξ − ζx)ψt + (θJ + ηϕt + ζψt − Q)x − Jθx ≥ 0. (61)

Including into consideration the non-zero extra entropy flux according to Eq. (22)

K = −θ−1ηϕt − θ−1ζψt . (62)

we reduce the dissipation inequality to the sum of intrinsic and thermal parts

Φ = (τ − ηx)ϕt + (ξ − ζx)ψt −
(

Q − ηϕt − ζψt

θ

)
θx ≥ 0. (63)

Assuming that the intrinsic dissipation is independent of the temperature gradient,
we are forced to modify the Fourier law as follows

Q − ηϕt − ζψt = −κ2θx, (64)

to satisfy the thermal part of the dissipation inequality.
The remaining intrinsic part of dissipation inequality (63) is satisfied by a choice of

evolution equations for internal variables. As it is shown in [9], the thermal influence
of a microstructure can be taken into account by the following choice

ϕt = R(ξ − ζx), ψt = −R(τ − ηx) + R2(ξ − ζx), (65)

whereR andR2 are certain appropriate constants. This choice means that the intrinsic
dissipation is partly canceled and its remaining part is the square with a positive
coefficient.

It follows from Eqs. (65) and (57) that

ϕt = −RDψ, (66)

i.e., the dual internal variable ψ is proportional to the time derivative of the primary
internal variable ϕt . Then the evolution equation for the internal variable ψ

ψt = −R(τ − ηx) + R2(ξ − ζx), (67)

can be represented as

− 1

RD
ϕtt = −R(Cϕxx + Auxx) + R2

R
ϕt, (68)

or in the following form (I = 1/R2D)
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Iϕtt + R2

R2
ϕt = Cϕxx + Auxx, (69)

which is a Cattaneo-Vernotte-type hyperbolic equation [5] for the internal variable
ϕ.

Correspondingly, energy balance (59) in this case has the form

ρ0cp θt − (
κ2θx

)
x = mθ0uxt + R2

R2
ϕ2

t . (70)

Equation for macrotemperature (70) is influenced by a source termwhich depends on
the internal variable ϕ. This equation, as well as evolution equation for the internal
variable ϕ (69) is coupled with the equation of motion [9]

ρ0utt = (λ + 2μ) uxx + mθx + Aϕxx, (71)

which means that the internal variable ϕ possesses a wave-like behavior induced by
the macrodeformation. Identifying the internal variable ϕ with the microtemperature
[9], we see that themicrotemperaturemay induce awave-like propagation also for the
macrotemperature due to the corresponding source term in heat conduction equation
(70). Physically, the introduced microtemperature describes fluctuations about the
mean temperature due to the presence of a microstructure.

4 Numerical Simulations

Now we will check the influence of microstructure on the thermoelastic wave prop-
agation numerically. The solution of equations (69)–(71) in the case of plane wave
motion in a thermoelastic half-space is obtained by means of the wave propagation
algorithm explained in detail in [13]. We consider the matrix material as silicon
and the microstructure is represented by copper particles embedded randomly in
the matrix. Material parameters for silicon are the following [20]: the macroscopic
density, ρ0, is equal to 2390kg/m3, the Lamé coefficients λ = 48.3 GPa, and μ =
61.5 GPa, the heat capacity, cp = 800 J/(kg K), the reference temperature, θ0 = 300
K, the thermal conductivity, k = 149 W/(m K), the thermal expansion coefficient,
α = 2.6 × 10−6 1/K. Correspondingly, material parameters of copper are [21]: the
macroscopic density, ρ0, is equal to 8960kg/m3, the Lamé coefficients λ = 101.5
GPa, andμ = 47.75 GPa, the heat capacity, cp = 386 J/(kg K), the reference temper-
ature, θ0 = 300K, the thermal conductivity, k = 401W/(mK), the thermal expansion
coefficient, α = 16.5 × 10−6 1/K.

The problem under consideration is the thermoelastic wave propagation induced
by a thermal excitation at the boundary of the half-space. It is assumed that the
material is initially at rest. Two consecutive heat pulses are generated at the traction
free boundary plane for the first 120 time steps following the rule
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θ(0, t) = 1

2

(
1 + cos

(
π(t − 30Δt)

30

))
. (72)

The scale of excitation, U0, is chosen as 6% of the length of the computational
domain, L, so that U0/L = 0.06. The scale of the microstructure, l, is supposed to
be even less l/L = 0.002. Following [22] coupling parameters used in calculations
are chosen as follows:

R22

R2
12

= ρ0c0
l

, A = 0.02ρ0c20, C = ρ0c20. (73)

To exclude the direct influence of stress field on the macrotemperature, it was
assumed that the velocity gradient in Eq. (70) is negligible.

All calculations were performed by means of the finite-volume numerical scheme
[13] using the value of the Courant number 0.98. This scheme is a modification of
the previously reported conservative finite-volume algorithm [23, 24] adapted for
microstructure modeling. It belongs to a broad class of finite-volume methods for
thermomechanical problems [25, 26].

Results of calculations are presented in Fig. 1. This Figure demonstrates explic-
itly how the coupling in mathematical model (69)–(71) works. In the case of pure
silicon we see only thermal diffusion in the vicinity of the boundary. The dou-
ble pulse thermal excitation generates the corresponding stress pulses propagating
through the material. If microstructure is taken into account, this stress pulses induce
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Fig. 1 Normalized temperature, stress, and microtemperature distribution at 350 time steps
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the microtemperature waves. The microtemperature affects the macrotemperature
resulting in the oscillations of the macrotemperature hump with a fading thermal
wake.

It should be noted that the scales for all quantities in Fig. 1 are different and
chosen artificially to show all quantities in a single picture. The real effect of the
microstructure is sufficiently small and can be made visible only by means of a
corresponding zooming.

5 Conclusions

The dual internal variables approach leads naturally to a hyperbolic evolution equa-
tion for the primary internal variable. In the case of thermoelasticity, this internal
variable can be interpreted as a microtemperature or, in other words, as a temperature
fluctuation due to the microstructure. Coupling of the governing equations results in
the wave-like temperature behavior.

Although the observed effect of the microstructure is small, it exists in the case
of realistic values of material parameters. This effect can be amplified by a choice
of suitable materials or even by a design of corresponding artificial materials.

It is remarkable that the governing equation for the macrotemperature remains
parabolic. The wave-like temperature behavior appears only due to the influence of
microstructure.
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Unconventional Thermodynamical Model
of Processes in Material Structures

Bogdan T. Maruszewski

Abstract Fast development of applied sciences, particularly of the technical ones
has resulted in the creation of a complex situation in which independently develop-
ing scientific branches such as mathematics, mechanics, physics, chemistry, Earth
sciences and even biology began to cover each other. So, a new area called the cou-
pled field theory in mono- and multiphase materials of various internal structures has
been created. One of the best ways to model real processes and interactions occuring
in any continuous material region within the phenomenological manner taking into
consideration a reasonably wide range of effects is the so-called thermomechanics.
The paper deals with an abbreviated form of this extremely broad area concerning a
concise description of physical reality.

Keywords Thermomechanical modelling · Coupled field theory · Materials of
internal structure

1 Introduction

Thermomechanical modelling (cf. [1–3]) is able to concern simultaneously many
phenomena and interactions thanks its deep fixing in physics (mechanics, thermo-
dynamics, electrodynamics, quantummechanics, and the like) and necessary mathe-
matical branches (differential and integral equations, group theory, operator calculus,
algebra and others). Several parts can be distinguished creating such amodel of inter-
actions. But the main condition that should be put on any thermomechanical model
is such that it has to be admissible by nonequilibrium irreversible thermodynamics.
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2 General Structure of Thermomechanical Modelling

THE FIRST PART should concern the set and properties ofmaterials, structures and
other elements creating the system, its geometry, scale and fields interacting there,
and also properties of physical processes running during transferring the system
through a set of states. As a result it is necessary to formulate a vector of the state
(the set of independent variables) [4–15]:

C = {
Aβ, aγ , αδ

∣∣Dλ, bx , ξμ
∣∣ Bε, jη

}
. (1)

This set consists of three parts: the controllable state variables (tensor, vector and
scalar), the noncontrollable state variables (the internal or hidden variables also
called order parameters [4] also tensor, vector and scalar) and the fluxes of the fields
described by variables from the first and second ones [16] (only of tensor and vector
characters). The upper greek letters count particular variables. Each field from (1)
reads:

C = C(xk, t). (2)

Moreover set (1) can be extended to gradients

C = {
C, C,i , C,i j , . . . , C,i j...s

}
, (3)

and/or time derivatives of (2)

C =
{

C, Ċ, C̈, . . . ,
(n)

C

}
(4)

Example 1 Thermoelastic paramagnet in an applied magnetic field [7]

The vector of state reads
C = {ε, B, T,∇T } (5)

ε is the strain tensor, B is the magnetic induction and T is the temperature. All the
variables are controllable.

Example 2 Magnetothermoelastic n-type semiconductor defective by dislocations
and irradiated by neutrons [5, 8, 13, 17]

The vector of state can be chosen in the form:

C = {ε, E, B, T,∇T |α, μ̃, n,∇α,∇μ,∇n } . (6)

E is the electric field intensity. But α is the dislocation density tensor, μ̃ is the
magnetic moment density vector of neutrons and n is the electron density—they are
the internal variables.
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Example 3 Thermoelastic body with temperature relaxation [9, 16]

This time the vector of state is the following:

C = {ε, T,∇T |q } . (7)

q is the heat flux density.

Example 4 Thermo-magneto-visco-elastic field of the magnetic vortices in II-type
superconductor with the time relaxation of the thermal and magnetic vortex fields
[14]

This time the vector of state is as follows:

C = {
ε, φ, A, T,∇T

∣∣Ψ,Ψ ∗,∇Ψ,∇Ψ ∗, σ, q, js
}
. (8)

φ andA are scalar and vector electromagnetic potentials,Ψ is thewave function of the
Cooper pairs (internal variable—order parameter), σ is the stress tensor (momentum
flux)—its presence indicates the viscosity of the vortex field (elastic relaxation) and
js is the supercurrent density.

SECOND PART deals, naturally, with the formulation of laws necessary to deter-
mine space-time distributions of fields from the state vector. Such a set can be pro-
posed in the form of:

• the balances of [1–3]

– mass
– momentum
– moment of momentum
– internal energy (the I principle of thermodynamics)

• the evolution equations of electromagnetic field (Maxwell’s equations) [3]
• the evolution equations of internal variables [4]
• the evolution equations of nonequilibrium fluxes [16].

To ensure the physical meaning of the solutions of the above set

• the entropy inequality (the II principle of thermodynamics) has to be formulated
[2].

THE THIRD PART consists of a creation of the constitutive theory. It should be
started from the definition of the so-called constitutive vector (set of dependent vari-
ables). Then using the Lagrange multipliers method and Liu’s theorem [18] to the
entropy inequality with the laws formulated within the previous part we arrive at:

• the laws of state
• the affinities
• the laws of the processes
• the residual inequality.
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Introducing the scalar and vector thermodynamical potentials the detailed constitu-
tive theory can be formulated. Then the particular analysis of the entropy inequality
with the help of the Onsager-Casimir theory [1] leads to the kinetic part of the
modelled processes. But sometimes the use of the representation theory of the ten-
sor, vector and scalar functions of the tensor, vector and scalar variables allows to
describe all the above considerations in a reasonably more general manner [3, 19].
To complete the created model the solutions of the laws introduced in the previous
parts for a particular case need to be obtained. So in THE FOURTH PART we
have to determine such laws at singular surfaces, lines and other geometrical objects
which characterize the considered multiphase physical system [20]. So, to find exact
solutions of the field equations resulting from balances, external field evolution equa-
tions (electromagnetic, for instance), evolution equations of internal variables and
evolution equations of nonequilibrium fluxes in material systems of finite extent,
the formulation of the suitable jump conditions of variables forming the vector of
state (1) across singular surfaces is necessary. If we deal with a surface whose points
move with the same velocities as the material points appearing there, we deal with
the so-called material surface.

2.1 Jump Conditions Across a Singular Surface for Balances

• The balance of mass
ni

[[
ρ(vi − vs

i )
]] = f ρ(ρs). (9)

vs
i is the velocity of a point at the singular surface, f ρ is a function of the surface
mass concentration, ni is the unit normal vector positive outward and [[a]] =
a+ − a− denotes the jump of quantity a across the singular surface. If vi = vs

i we
deal with the material surface.

• The balance of momentum

[[
σi j

]]
n j = f ρ

i (ρs,�σ s) + [[
ρ(vk − vs

k)nkvi
]]

. (10)

f ρ

i is a function of ρs and the surface tension�σ s . The surface momentum source
in (10) is very often omitted.

• The balance of moment of momentum
We skip here the problem of the jump of the balance of moment of momentum
across a singular surface because we deal in the paper only with physical interac-
tions in thermomechanical media of symmetric elastic properties (we exclude
Cosserat and other skew-symmetric—like media from the considerations; see
Conclusions).

• The balance of energy

[[qi − vkσki ]] ni = f E (es,�σ s) +
[[

ρ

(
e − v2

2

)
(vk − vs

k)nk

]]
− [[

Ec
]]

vi ni .

(11)
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In (11) the lack of the surface energy flux and the surface sources of mass, momen-
tum and energy has been already assumed. f E is a function of the surface internal
energy es and the surface tension. e denotes the internal energy density and Ec

deals with other kinds of energies coming from various external fields.

2.2 Jump Conditions for External Fields Influencing
the Material System

These conditions depend on a kind of a problem which is taken into considerations.
So, it is difficult or almost impossible to present them in any general form. If the
external field is an electromagnetic one, such jump conditions come from classical
discontinuity conditions for electric and magnetic fields across a singular surface
(cf. [3]).

2.3 Jump Conditions for Evolution Equations of Tensor,
Vector and Scalar Fields

Based on the ojective Zaremba-Jaumann time derivative definition we have for:

• the arbitrary rank tensor field evolution equation

∂

∂t
[[Wk...m]] + vs

i ni

(
n j [[Wk...m]], j −

[[
nk

∂Wk...m

∂xk

]])
+ vi

[[
Wk...m,i

]]

− wkq
[[

Wq...m
]] − · · · − wmq

[[
Wk...q

]] = [[Wk...m]] (12)

where wkl = 1
2 (vk,l − vl,k)

• the vector field evolution equation

∂

∂t
[[Wi ]] + vs

knk

(
n j [[Wi ]], j −

[[
nk

∂Wi

∂xk

]])

+ vk
[[

Wi,k
]] − wik [[Wk]] = [[Wi ]] (13)

• the scalar field evolution equation

∂

∂t
[[W ]] + vs

knk

(
n j [[W ]], j −

[[
nk

∂W

∂xk

]])
+ vk

[[
W,k

]] = [[W]] . (14)

The above presented jump conditions are obviously one of the possibilities leading to
particular boundary value problems concerning physical field interactions in mono-
and multi-phase materials of finite extent.
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3 Application of the Proposed Model

The presented thermomechanical model will be now, as an illustration, applied to
describe reciprocal interactions of the mass diffusion field and dislocation field with
an elastic body [15]. The system consists of two mass components: diffusing mass
of density ρ1 and an elastic body of density ρ2 (two-component mixture of density
ρ = ρ1 + ρ2, ρ1 � ρ2). Before we use the proposed thermomechanical model let
us define the field of mass. The concentration of diffusing mass reads:

c = ρ1

ρ
. (15)

Then, following the mass conservation principle we have:

ρ̇ + ρvi,i = 0, (16)

∂ρ1

∂t
+ (ρ1v1i ),i = r1,

∂ρ2

∂t
+ (ρ2v2i ),i = r2, (we assume r1 = r2 = 0) (17)

ρvi = ρ1v1i + ρ2v2i , (barycentric velocity), (18)

so the flux of mass reads:
ji = ρ1(v1i − vi ). (19)

THE FIRST PART—the determination of the set of independent variables (the state
vector):

C = {
εi j , c, T, ai j , ji , qi , Vi jk, c, j , T,i , ai j,k

}
. (20)

Temperature, concentration and dislocation fields are also of the relaxation character
and heterogeneous. The viscosity of the body is omitted.

THE SECOND PART—the fundamental laws:

• the evolution equations of the diffusing mass field

ρċ + ji,i = 0, (21)
∗
j i − Ji (C) = 0, (22)

• the evolution equations of the elastic field

ρv̇i − σi j, j − fi = 0, (23)

∈i jk σ jk + gi = 0, (24)

fi and gi are the densities of body forces and moments;
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• the evolution equations of the temperature field

ρė − (σ j ivi, j − qi,i + ρr) = 0, (25)
∗
qi − Qi (C) = 0, (26)

e is the internal energy density and r is the heat source distribution;
• the evolution equations of the dislocation field

∗
ai j + Vi jk,k − Ai j (C) = 0, (27)
∗
V i jk − Vi jk(C) = 0, (28)

the superimposed star denotes the Zaremba-Jaumann time derivative and Qi (C),

Ai j (C) and Vi jk(C) will be determined by the constitutive theory;
• the entropy inequality (the Clausius-Duhem inequality)

ρS + Φi,i − ρr

T
≥ 0, (29)

S is the entropy density andΦi is the entropy flux, so the solutions of the evolution
equations should have now physical meaning.

THE THIRD PART—the constitutive theory:
Let us define now the set of dependent variables (the constitutive vector) and propose
the general form of the constitutive laws in the following form:

Z = {
σi j , μ

c, ηi j , gi , e, Ai j , Ji , Qi ,Vi jk, S, Φi
}
, Z = Z̃(C), (30)

Z and C are determined in the same point and time, μC is the chemical potential of
the mass concentration field and ni j plays the same role for the dislocation density
field.

The searched constitutive relations are obtained exploiting the entropy inequality
with the help of Liu’s theorem. Denoting the left hand sides of the fundamental laws
as Fc, Fv

i , Fe, Fa
i j , F I

i , F Q
i and Fw

i jk this inequality reads [18]:

ρ
∂S

∂t
+ ρvk S,k + Φk,k − (Λc Fc + Λv

i Fv
i + Λe Fe + Λa

i j Fa
i j (31)

+ΛI
i F I

i + Λ
Q
i F Q

i + Λw
i jk Fw

i jk) ≥ 0.

Λ =: Λc,Λv
i ,Λ

e,Λa
i j ,Λ

I
i ,Λ

Q
i ,Λw

i jk (32)

denotes the set of the indefinite Liu-Langrange multipliers. Introducing now the
scalar thermodynamical potential (the free energy density)

Ψ = e − T S (33)
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and the vector thermodynamical (kinetic) potential [7]

κi = ρΨ vi − T Φi , (34)

taking the multipliers in the form

Λe = 1

T
, Λc = − 1

T
μc, Λa

i j = − 1

T
ηi j , (35)

ΛI
i = − 1

T
Π I

i , Λ
Q
i = − 1

T
Π

Q
i , Λw

i jp = − 1

T
πi j p

and using the fact that the Clausius-Duhem inequality is linear with respect to higher
range derivatives of independent variables C we arrive at

• the laws of state

σi j = ρ
∂Ψ

∂εi j
, μc = ∂Ψ

∂c
,

∂Ψ

∂c,i
= 0, (36)

S = −∂Ψ

∂T
, ηi j = ∂Ψ

∂ai j
,

∂Ψ

∂T,i
= 0,

∂Ψ

∂ai j,k
= 0,

• the affinities

Π I
i ≡ ρ

∂Ψ

∂ ji
, Π

Q
i ≡ ρ

∂Ψ

∂qi
, πi j p ≡ ρ

∂Ψ

∂Vi jp
, (37)

• the laws of the processes

∂κk

∂εi j
= 0,

∂κk

∂ ji
= μCδik + vkΠ

I
i ,

∂κk

∂qi
= −δik + vkΠ

Q
i ,

∂κk

∂Vi jp
= ηi jδpk + vkπi j p, (38)

∂κk

∂c,i
= 0,

∂κk

∂T,i
= 0,

∂κk

∂ai j,p
= 0,

• the residual inequality

T
∂Φk

∂c
c,k + T

∂Φk

∂T
T,k + T

∂Φk

∂ai j
ai j,k − ηi j Ai j − Π I

i Ji − Π
Q
i Qi − πi jkVi jk ≥ 0.

(39)

Finally, the scalar and vector potentials take the form

Ψ = Ψ (εi j , c, T, ai j , ji , qi , Vi jk), (40)

κk = −qk + μc jk + ηi j Vi jk + ρvkΨ. (41)
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Then the entropy flux is the following

Φk = 1

T
(qk − μc jk − ηi j Vi jk). (42)

Using now any method which leads to the linear approximation of Ψ and applying
the Onsager-Casimir reciprocity relations to the residual inequality we arrive at the
following state and kinetic constitutive relations. We confine them to the isotropic
form as

σi j = 2μεi j + (λεkk − λcc − λaa)δi j , (43)

∂a

∂t
+ Vk,k = d1εkk + d2c + 1

τ A
a + d3 ji + d4Vi + d5c,i + d6a,i , (44)

τ c ∂ ji
∂t

= − ji + d7Vi − ρDc,i + ξ I a,i , (45)

τ a ∂Vi

∂t
= d8 ji + Vi − DV c,i + ξa,i . (46)

λ,μ, λc, λa, d1, . . . , d8, τ A, τ c, τ a, D, DV , ξ I and ξ are the characteristic coeffi-
cients of the considered physical problem that have to be determined by experiment.
Assuming now that all the processes modelled within the proposed description are
isothermal the fundamental laws can be presented as the set of field equations in the
following linear form

μuk,i i + (λ + μ)ui,ki − ρük − λcc,k − λaa,k = 0,

ρDc,kk − ρċ − τ cρc̈ − ξ I a,kk = 0, (47)

ξa,kk − ȧ − τ aä + d1uk,k + τ ad1u̇k,k .

If we deal with the system of finite extent and/or multiphase structure there is the
necessity to use THE FOURTH PART of the modelling in order to determine the
proper boundary-value problem for the final field equations if we use Eq. (47) in such
a system and structure.

4 Conclusion

The paper shows a concise routine of the thermomechanical modelling of simul-
taneous interactions of various physical fields in materials of various physical and
geometrical properties. The presented proposition should be understood and treated
as a kind of fundamental description, one among many others possible which in
particular situations may be considerably modified and developed.

Acknowledgments The paper has been supported by 02/21/DSPB/3463—2015 grant.
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A Monatomic Ideal Gas—Prototype
of a Continuous Medium with Microstructure

Ingo Müller

Abstract A complete set of equations for the description of the properties of
monatomic ideal gases is formed by the balance equations of all moments of the dis-
tribution function which satisfies the Boltzmann equation. In a manner of speaking
these balance equations describe a continuum and the elements of its microstruc-
ture are the moments. There are infinitely many moments and for rapidly changing
processes with steep gradients they are all needed. However, for slow and smooth
processes the necessary set of balance equations may be cut off at some point and
may then still be useful. The most drastic cut-off provides the Euler equations in
which no dissipation occurs, so that its applicability is limited to isentropic flows.
A less rigorous cut-off leads to the equations of Navier-Stokes and Fourier which
permit the mathematical treatment of viscous flow and heat conduction. Those cur-
tailed sets of balance equations have been studied at great length: Their study is
the subject of ordinary thermodynamics. A still less drastic cut-off leads to Grad’s
13- and 14-moment equations. These provide some improvement upon both Euler
and Navier-Stokes-Fourier. Thus they forbid rigid rotation of a gas in the presence
of heat conduction. Even so, the Grad theory is not suitable for high frequency
sound propagation and high frequency light scattering and for the study of shock
structures. The study of Grad’s equations and of the balance equations for higher
moments is the subject of extended thermodynamics. Mathematically speaking the
set of balance equations of moments in the kinetic theory of gases provides a proto-
type of the hyperbolic balance laws of continuum physics. Indeed, the equations are
hyperbolic and the entropy principle makes them symmetric hyperbolic. High fre-
quency light scattering inmonatomic gases proves the applicability and usefulness of
extended thermodynamics, because it furnishes results that are in full agreementwith
experiments at any frequency, while ordinary thermodynamics merely describes the
low-frequency limit. In hyperbolic equations there is a competition between non-
linearity and dissipation: Non-linearity attempts to steepen a field to a shock while
dissipation smoothes it out. And if dissipation is big enough, no shock singularities
will appear. In extended thermodynamics singularities can be prevented by adding
more equations, hence more dissipative terms. The study of shock structures makes
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this evident. Hyperbolic equations have as many sound modes as there are equations
and all their speeds are different from the ordinary sound speed. Extended ther-
modynamics proves that the highest sound speed increases monotonically as more
equations are added. It is when a shock structure moves more rapidly than the highest
sound speed that discontinuities appear in the theory. One may thus say that the flow
is truely supersonic only when its speed is quicker than the highest characteristic
speed. However, that will generally happen at Mach numbers well beyond Ma equal
to 1. It is a clear sign that more equations are needed.

1 Introduction

Few people will think of microstructure in the context of an ideal gas, let alone of
a monatomic ideal gas. They may well ask: Do not the five fields of mass density
ρ(xn, t), velocity vi (xn, t), energy density ρ(xn, t)e(xn, t) or temperature T (xn, t)
fully provide whatever there is to be known about monatomic gases?

Well, definitly not. To be sure these are important fields but they only form the tip
of an iceberg. Indeed, the full knowledge of the state of a monatomic gas is furnished
by the distribution of atoms of all velocities in all positions of the gas and at all times.
That knowledge is embodied in the distribution function f (xn, cn, t) defined such
that

f (xn, cn, t)dc (1)

is the density of atoms at position xn and time t with velocities between cn and
cn + dcn . ρ, ν and e are moments of the distribution function

ρ = m
∫

f d f, ρνi = m
∫

ci f dc, 2ρe =
∫

c2 f dc (2)

so that they provide only minimal knowledge about f (xn, cn, t): mean value and first
and second moment.

Full knowledge is provided by the full set of moments

Fi1i2...in = m
∫

ci1ci2...cin f dc (3)

which represent tensors of rank n (n = 1, 2,…). Knowledge of the full set of infinitely
many moments is equivalent to the knowledge of the distribution function itself.

Thus in a manner of speaking ρ, νi , and e or T define the macrostructure of a
gas while all other moments define its microstructure. It is in that sense that we may
speak of a monatomic ideal gas as a prototypical medium with microstructure.

Fortunately macrostructural phenomena—(ρ, νi , e)-phenomena—dominate in
dynamics and thermodynamics of gases. Thus in heat engines, internal combustion
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engines and jets microstructural effects may be ignored in very good approximation.
Technical thermodynamics and gas dynamics thrive on this fact.

However aerodynamics and heat transfer need to account for friction and heat
conduction, where the fluxes of momentum and energy—Fi j and Fii j—or viscous
stress and heat flux play a role and those are—by our definition—microstructural
variables. Thermodynamics of irreversible processes accounts for them. Exact solu-
tions are few and far- between but the effects of viscosity and thermal conduction
are ubiquitous and commonplace. So we may be tempted to reconsider: We may be
tempted,—in contrast to what was said before—, to count the viscous stress and the
heat flux among the macrostructural variables.

But what about all the infinitely many other moments? Surely they are truely
microstructural variables. Do they matter at all? Do they make themselves felt? If
so, where? Those are questions asked and answered by extended thermodynamics,
the truely microstructural theory of ideal gases.

2 Microstructural Effects

2.1 Coriolis Effect on the Heat Flux

The differential equation for the distribution function is the Boltzmann equation and
the Boltzmann equation implies equations of balance for the moments

∂ Fi1i2...i p

∂t
+ ∂ Fi1i2...i pn

∂xn
− pFi1...i(p−1)(gip + iν

i p) − pFn(i1...i(p−1))2Wipn︸ ︷︷ ︸
gravitational and inertial terms

(4)

= Πi1i2...i p (p = 0, 1, 2, . . . , N ).

Πi1i2...i p represents productions in these equations of balance; they are due to colli-
sions between the atoms and they are responsible for dissipation and irreversibility.
And Wi j is the matrix of angular velocity of the frame of reference; the term with W
represents the effect of the Coriolis force on the atomic motion.

The Coriolis effect is typical for a microstructural phenomenon. Therefore we
proceed to discuss its significance in a suggestiv form. For that purpose we consider
a gas between two co-axial cylinders which are kept at different temperatures T
so that a radially outward temperature gradient is created, see Fig. 1. We focus the
attention on a small element of the gas of the order or magnitude of a mean free path
of the atoms. The atoms flying inwards from the hot outer boundary of the element
carry more energy in the mean than the atoms flying outwards from the colder inner
boundary. Thus when a pair of atoms has passed the middle plane H-H—one flying
inwards and one outwards—an amount of energy has also passed, and that amount
is proportional to the gradient of T and opposite to it. At least that is the situation, if
the gas is at rest in an inertial frame. If, however, the gas is at rest in a non-inertial
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Fig. 1 The Coriolis effect on heat conduction

frame, the free paths of the atoms are bent by the Coriolis force as shown in the figure
and now, in addition to a transport of energy through H-H, there is also a transport
through the plane V-V, i.e. perpendicular to the gradient T and to the angular velocity
ω of the non-inertial frame. The kinetic theory of gases interprets such transports of
energy as a heat flux q and thus we conclude that we have

q = −κ ∂T
∂r in an inertial frame and

q = −κ
(

∂T
∂r + τω × ∂T

∂r

)
in a non-inertial frame

(5)

The time τ is of the order of magnitude of a mean free path and κ is the thermal
conductivity. Note that there is a qualitative difference between the two formulae:
In a non-inertial frame the heat flux is no longer parallel and opposite to the tem-
perature gradien, rather it has a component perpendicular to the temperature gradient.

Nor is this the only qualitative effect of the rotation of the frame. It turns out that
the velocity field is also affected. Thus a state of rest of the gas between the two
cylinders is impossible in a non-inertial frame, if heat conduction occurs.

It is true though that such phenomena depend on the extent to which the Coriolis
force can bend the mean free path. And that can happen to an appreciable extent
only if either the gas is strongly rarefied or the angular velocity is impractically
large.1 Therefore the frame dependence of the relation between the heat flux and the
temperature gradient has not been observed.

The same is true for the inertial terms of the other equations for all N . In the sequel
we shall therefore ignore those terms and concentrate the attention on the differential
parts of the equations of balance and on the productions. Thus the equations read in
the present synthetic form

1I conjecture that the effect of rotation has been observed in HeII, which may be considered—for
quantum reasons—as a degenerate ideal gas with large mean free paths. The effect may then be
responsible for the observed field of quantum vortices which mimick a rigid rotation.
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∂ Fi1i2...i p

∂t
+ ∂ Fi1i2...i pn

∂xn
= Πi1i2...i p. (p = 0, 1, 2 . . . N ) (6)

The equations of balance are not closed field equations for the moments Fi1i2...i p

because of the occurrence of the last flux Fi1i2...i pn and of the productions Πi1i2...i p.
In thermodynamics we face that situation be adopting constitutive equations for those
additional quantities. And in extended thermodynamics we consider the constitutive
equations as local and instantaneous, so that Fi1i2...i pn and Πi1i2...i p at one point and
time depend only on the values of Fi1i2...i pn at that point and time:

Fi1i2...i pn = F̂i1i2..i pn(Fi1i2...i p), Πi1i2...i p = Π̂i1i2...i p(Fi1i2...in). (7)

The entropy principle ensures that the constitutive functions F̂ and Π̂ lead to sym-
metric hyperbolic field equations,—for the proper fields. And that fact implies well-
posedness of the system, i.e. existence, uniqueness of solutions of initial value prob-
lems for small times, and finite wave speeds. For larger times though there may be
a problem with uniqueness, see below.

2.2 Explicit Form for N = 3. Navier-Stokes-Fourier
Equations and Grad 13-Moment Equations

In order to appreciate the nature of the equations of balance better we shall write
them explicitly—and in linearized form—for the case N = 3. In that case there are
20 equations and Fig. 2 exhibits them in a panel, where they are repeated four times:
Upper left, upper right, lower left, and lower right. For simplicity we have inserted
productions appropriate to Maxwellian molecules so that they are all characterized
by a single parameter τ , a time of the order of magnitude of the mean time of free
flight. Also we have introduced the conventional notation: ρ for mass density, vi for
velocity, T for temperature, t〈i j〉 for deviatoric stress, qi for heat flux. The third rank
moment ρi jk has no conventional name.We emphasize that the 20 equations are fully
explicit, except for the single unknown parameter τ which we shall identify shortly.
The purpose of the panel with four parts lies in the black frames which differ between
the parts:

Upper left: The frame embraces the Euler equations. These represent the con-
servation laws of mass, momentum and energy in a dissipation-less gas; there is no
irreversibility and ρ, vi and T are the only fields.

Upper right: The equations within the frame represent the Navier-Stokes-Fourier
equations. The deviatoric stress is proportional to the deviatoric part of the velocity
gradient and the factor of proportionality, containing τ is the viscosity; since the
viscosity can be measured, τ is known. The heat flux is proportional to the gradient
of temperature.

Lower right: The frame encloses Grad’s 13-moment equations. They represent
the prototypical equations of extended thermodynamics. Comparison of Grad’s
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Fig. 2 The twenty equations of balance for N = 3. Upper left Euler equations. Upper right Navier-
Stokes-Fourier equations. Lower left Cattaneo equations. Lower right Grad 13-moment equations

equations with the Navier-Stokes-Fourier equations shows that the latter ones ignore
the rates of change and the gradients of t〈i j〉 and qi Since rates of change aremeasured
in terms of mean times of free flight and gradients in terms of mean free paths we
conclude that the Navier-Stokes-Fourier equations represent the behaviour of dense
gases in slow processes, while extended thermodynamics describes the gases in rapid
processes and in rarefied gases.

Lower left: The frames enclose the equations of the Cattaneo theory, the earliest—
and incomplete—version of extended thermodynamics. It was invented in an ad hoc
manner so as to resolve the paradox of heat conduction, by which disturbances in
temperature propagate at an infinite speed. There is no such paradox according to
Grad’s equations.

The twenty equations of Fig. 2 are only here for illustration. It is possible to
calculate the explicit full set of balance equations for moments for any N , and this
has been done, although the result it too long to print out. So, in a manner of speaking
the full set for N = 40 (say),—where there are 12341 equations—is only known to
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the computer. However, the computer can work with them; thus it can work out the
speeds of propagation of acceleration waves implied by the system for any finite N .

2.3 Acceleration Waves

Acceleration waves are singular surfaces across which the fields themselves are
continuous, while their gradients and time derivatives are not. Their speeds and their
growth and decay can be calculated and the result can be compared with observations
at least in principle.

We go back to the synthetic form of our equations for this topic

∂ Fi1i2...i p

∂t
+ ∂ Fi1i2...i pn

∂xn
= Πi1i2...i p.

Using square brackets for the difference between front and back of the wave we can
thus write

[
∂ Fi1i2...i p

∂xn

]
= Ai1i2...i pnn and

[
∂ Fi1i2...i p

∂t

]
= −V Ai1i2...i p, (8)

where nn is the normal to the surface and V is its speed in the normal direction.
Because of the constitutive properties of extended thermodynamics we obtain

(
∂ Fi1i2...i pn

∂ Fj1 j2... j p
nn − V δi1i2...i p j1 j2... j p

)
A j1 j2... j p = 0. (9)

This is called the characteristic equation of the wave, while the υ ·υ-matrix in braces
is called the characteristic matrix.2 We conclude there are υ speeds to be calculated
as eigenvalues of the characteristic matrix, and that the jumps across the wave are
determined by the right eigenvector d j1 j2... j p:

A j1 j2... j p = Ad j1 j2... j p (10)

A is called the amplitude of the acceleration wave.
Since we know the field equations explicitly we can calculate all speeds and, in

particular we can calculate the pulse speed, the largest speed of propagation which
the gas can accommodate at the level N of extension. The table in Fig. 3 provides
some such pulse speeds for N = 3 through N = 40 referred to the “ordinary” sound

speed
√

5
3

k
m T of a monatomic ideal gas.

2υ equals 1
6 (N + 1)(N + 2)(N + 3).
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N υ Vmax/ 5
3
k
mT

3 20 1.808
10 286 4.018
20 1771 6.080
30 5456 7.663
40 12341 8.996

Fig. 3 Pulse speeds referred to the normal sound speed.CrossesCalculations.CirclesLower bound

Clearly the pulse speed grows monotonically for growing N.This conjecture is
confirmed by a lower estimate calculated by Boillat and Ruggeri according to which

the pulse speed must be greater than
√

6
5 (N − 1

2 ).
The obvious question is, of course, whether all these many sound speeds are ever

seen, or heard. The answer is obviously negative and the reason for this lies in the
fact that the acceleration waves are strongly damped before they reach our ears. So,
let us investigate the decay of acceleration waves. It turns out that the field equations
allow us to calculate the development of the amplitude A of an acceleration wave as

∂ A

∂t
− ∂V

∂ Fα

dβ︸ ︷︷ ︸
a

A2 − lα
∂Πα

∂ Fβ

dβ

︸ ︷︷ ︸
b

A = 0. (11)

Here we have introduced the multi-index a ≡ i1i2...i p and lα, dα denote the left
and right eigenvectors of the characteristic matrix. This is a Bernoulli equation with
the coefficient a determining the nonlinearity and b determining dissipation. The
nonlinearity consists of the velocity dependence on the value of the field and the
dissipation is due to collisions between atoms. The solution of the Bernoulli equation
reads

A(t) = A(0)e−bt

1 + A(0) a
b

(
e−bt − 1

) (12)

so that—without nonlinearity—there is a simple exponential decay of the initial
value A(0) due to dissipation. With nonlinearity, however, A(t) will grow and even-
tually diverge at a time when the denominator of the expression becomes zero. Thus
we have a competition between nonlinearity and dissipation. Dissipation makes for
smooth solutions and decay of disturbances and non-linearity makes for growth of
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the disturbance and the eventual generation of a shock wave from the acceleration
wave.

In a gas under normal conditions the situation is such that dissipation prevails
and that is the reason that we do not hear the multiple sound waves inherent in the
microstructure of the gas.

2.4 Shock Waves

Concerning the foregoing remark about the formation of shocks from acceleration
waves there is a basic observation to be made. Indeed, shocks do not exist in nature
as experiments have clearly shown: The microstructural nature of a gas prevents
shocks. What does exist—and what may appear as a shock—is a shock structure,a
smooth but steep transition between two relatively flat states of a gas; to be sure,
the thickness of the shock structure is of the order of magnitude of a few mean free
paths, but still it is smooth. Therefore, if a theory predicts a shock, or allows for a
shock, it is not a valid theory and it has to be improved. Extended thermodynamics
shows how this has to be done. Let us consider this:

First of all, the Navier-Stokes-Fourier theory does not allow shocks. This would
seem to recommend it as a good theory in view of the forgoing remarks. However,
the shock structure which the theory permits us to calculate is wrong, see Fig. 4.

Fig. 4 Thickness δ of a shock structure according to the Navier-Stokes-Fourier theory as a function
of the Mach number M0 of the structure. Λ0 is the mean free path of the gas before the structure
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Fig. 5 Shock structures for Grad’s 13-moment theory at M0 = 1.5 (left) and at M0 = 2 (right).
The subshock of Fig. 5 (right) begins to develop at M0 = 1.65, the pulse speed of the 13-moment
theory

Grad knew this when he first derived the 13-moment theory. He tried that theory out
on shock structures, hoping, perhaps, to do better than Navier-Stokes-Fourier.

Unfortunatly, however, his calculation came out worse,—much worse! It is true
that for M = 1.5 Grad did calculate a nice shock structure—see Fig. 5—but for
that low Mach number there was a minimal discrepancy between observation and
the Navier-Stokes Fourier theory anyhow according to Fig. 4. So that effort was not
decisive. Therefore Grad proceeded with M0 = 2 and he had a surprise: A subshock
appeared, see Fig. 5b and certainly that was worse than the discrepancy of Fig. 4.
Going up in Mach numbers one can show that the subshock is first seen slightly
above M0 = 1.65 and then it grows in size. Grad did not appreciate the significance
of this Mach number or, at least, he does not comment on it. The significance is that
M0 = 1.65 is the pulse speed according to the 13-moment theory and, if the gas
rushes forward with more than that speed, its down-stream region cannot move aside
in time and a shock must form or, in this case, a subshock. In a manner of speaking
it is for M0 > 1.65 that we must speak of a truely supersonic flow in a 13-moment
theory.
The recipe for avoiding this subshock is simple: We must abandon the 13-moment
theory and adopt an extended theorywithmore equations and, therefore, a larger pulse
speed, see the table of Fig. 3. So, if we adopt a 286-moment theory, the appearance
of the subshock is pushed upwards to M0 = 4.018, and if we adopt a 12341-moment
theory the appearance of the subshock is pushed to M0 = 8.996. Eventually, if we
prefer to have no subshock appear, we need to go to a ∞-moment theory, because
its pulse speed is infinite.

3 Light Scattering

The knowledge of the atomic microstructure of a gas makes all the above phenomena
plausible and there is no doubt that they exist, • the frame dependence of the heat
flux, • the multiple speeds, • the pulse speed, and • the shift of subshocks to high
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Mach numbers. Yet, our experimantal tools—thermal and caloric measurements—
are too rough to detect such phenomena and to quantify them. More sensitive probes
into the microstructure are needed. The measurement of light scattering spectra is
such a probe.

Indeed, light scattering is a paradigm for the usefulness and practicality of
extended thermodynamics. Let us consider this:
Incoming laser light, i.e. light of a single frequency ωi—most often green light with
the wave length λi ≈ 0.4 ·10−6 m—is scattered on the density fluctuations of a gas in
equilibrium, see Fig. 6 (top).Whilemost of the scattered light has the same frequency
as the incoming light, the scattering spectrumalso contains neighbouring frequencies.
For dense gases,—typically a gas under the pressure of 4 bar or higher—the spectrum
has three well-defined peaks, like the uppermost curve in Fig. 6 (bottom). When the
gas pressure is lowered, the peaks become less pronounced; they degenerate into
shoulders, until eventually—for pressures less than 1 bar—there is a single bump in
the center.

As long as there are peaks, i.e. for dense gases, the distance of the central and
lateral peaks determines the sound speed of the gas, or its temperature. From the
half-width of the peaks and their relative heights we may read off the viscosity and
the thermal conductivity of the gas. That should come as a surprise! Indeed, we may
well ask a question: How, if the scattering spectrum represents properties of density
fluctuations in equilibrium, can it carry information about macroscopic transport
coefficients like the viscosity?

The answer lies in theOnsager hypothesis according towhich themean regression
of fluctuations follows the same laws as themacroscopic fields which—in our case—
are the moments Fi1i2...i p. We shall not go here into a discussion of the controversial
hypothesis. Let it suffice to say that, without it, the interpretation of light scattering
spectra in terms of the moments would be impossible. We accept the hypothesis,
since it furnishes good results as we shall see.

If we compare the observed scattering spectra for a dense gas with the predictions
of the Navier-Stokes equations we obtain an excellent agreement. Moreover the
transport coefficients so determined agree well with their values obtained by more
conventional means than light scattering, or calculated from the kinetic theory of
gases.

However, for a rarefied gas the agreement is not good, if we still use the Navier-
Stokes-Fourier equations. It is true that the expected gross features do appear: For
a stronger degree of rarefaction the three peaks of the spectrum degenerate into
shoulders and, eventually, into a bump, even for Navier-Stokes. But the finer details
are all wrong.Wemaywell consider this as an opportunity to check out the validity of
the equations of extended thermodynamics,—and of the Onsager hypothesis—both
at the same time.

A prototypical case for the linearized equations is the 20-moment system shown
in Fig. 2 and used there illustratively for the identification of various special cases.
Equations like that for any specific number of moments are available, e.g. υ =
20, 35, 56, 84, and their scattering spectra are shown in Fig. 7 (left). Not two of
them agree among themselves and none of them agrees with with the measured dots.
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Fig. 6 Light scattering and scattering spectrum. Top Schematic experimental set-up,Bottom Exper-
imental curves for different pressures (see text)

Ordinarily a situation like this calls for an adjustment of parameters, but that is
impossible in the present case, because there are no free parameters, e.g. see Fig. 2.
Indeed, extended thermodynamics is a theory of theories with only one parameter:
The number of equations. So, if we push up that number to υ = 120, 165, 220, 286
and calculate the scattering spectra, we obtain convergence of results at υ = 120 in
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Fig. 7 Scattering spectra for Xenon in extended thermodynamics for a low pressure.Dots represent
measurements by Clark. Left Spectra for 20, 35, 56, 84 moments. Right Spectra for 120, 165, 220,
286 moments

the sense that more moments do not change the scattering spectrum and—what is
more—they all agree with the measured values, see Fig. 7 (right).
In other words, for a given pressure our theory of theories provides the possibility to
determine its own range of validity, something that is usually said a theory cannot
possibly do. Here, however, if we have two successive theories which provide the
same results, the lower one is good enough: and we can say that without conducting
a single experiment.

All of this is most satisfactory, but there is also disappointment. Indeed, we might
have hoped that 13 or 14 moments might bring about a great improvement over the
Navier Stokes-Fourier solution and a good representation of experimental results.
Instead we need hundreds of moments for even moderately rarefied gases. The
microstructure of the gas is deeply hidden indeed.
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From Second Law Violations to Continuum
Mechanics
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Abstract The violations of the Second Law become relevant as the length and/or
time scales become very small. The Second Law then needs to be replaced by the
fluctuation theorem and, mathematically, the irreversible entropy evolves as a sub-
martingale. Next, a framework thermomechanics relying on stochastic functionals of
energy and entropy is outlined. This allows a study of diffusion-type problems with
random field constitutive coefficients not required to satisfy the positive definite-
ness everywhere. Finally, a formulation of stochastic micropolar fluid mechanics is
developed, accounting for the lack of symmetry of stress tensor on molecular scales.
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1 Motivation

The theory, simulations, and experiments of statistical mechanics over the past two
decades indicate that violations of the Second Law of thermodynamics are relevant
where/when the length and/or time scales become very small [5, 7, 9, 17, 19]. The
Second Law must then be replaced by the fluctuation theorem or, strictly speaking,
a group of such theorems. In effect, the Second Law holds on average, be it an en-
semble average, or a spatial average over a sufficiently large domain, or a temporal
average over a sufficiently large time interval. Interestingly, the Second Law viola-
tions may occur for up to 3 s (!) in cholesteric liquids. While the focus in statistical
mechanics has been on stochastic thermodynamics, our interest is in introducing
these results into continuum mechanics, i.e. in formulating stochastic continuum
thermomechanics with spontaneous violations of the Second Law [12–14].
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So far, we have obtained these results:

• entropy evolution over time is a submartingale;
• classification of thermomechanical processes into four types depending onwhether
they are conservative or not and/or conventional continuum mechanical;

• stochastic generalizations of thermomechanics in the vein of either thermody-
namic orthogonality [20] or primitive thermodynamics [4]; with explicit models
formulated for Newtonian fluids with, respectively, parabolic or hyperbolic heat
conduction;

• random field models of the martingale component, possibly including spatial frac-
tal and Hurst effects;

• evolution of an acceleration wavefront randomly encountering regions with neg-
ative viscosity coefficient;

• Lyapunov function of a diffusion phenomenon where the random field coefficients
do not satisfy the positive definiteness everywhere;

• spontaneous random fluctuations of themicrorotation field in a viscousmicropolar
fluid model in the absence of random (turbulence-like) fluctuations of the classical
(Cauchy) velocity field.

In this paper, following a brief account of the fluctuation theorem, we review some
of the above results.

2 Background: Fluctuation Theorem

It has been established in statistical physics over the past two decades that the entropy
production may be negative on short time and space scales, see reviews in [8, 15].
This is described by a so-called fluctuation theorem giving, in its basic form, an
estimate of the relative probability of observing processes that have positive and
negative total dissipation in non-equilibrium systems

P (φt = A)

P (φt = −A)
= eAt . (1)

Here t is the time, while φt is the dissipation function quantifying the thermodynamic
reversibility of a trajectory taken by a thermodynamic system, and A is the value of
φt . To help explain it, in Fig. 1 we reproduce Fig. 1.1 from [8] giving the probability
density histogram of fluctuations of the time-averaged shear stress σxy in Couette
flow. Note that (i) the fluctuations are not confined to the negative values of σxy , and
(ii) for any pair of two points symmetrically distributed about 0.00 on the σxy axis
consistent with (1) the probability of a negative fluctuation [P (φt = A)] is greater
than the probability of a positive fluctuation [P (φt = −A)].

That is, the fluctuation theorem compares the probability P (φt = A ± d A) of
observing an arbitrary system trajectory having a dissipation total infinitesimally
close to A with that of the time reverse of that trajectory (its conjugate anti-trajectory)



From Second Law Violations to Continuum Mechanics 177

Fig. 1 A histogram showing
fluctuations in the
time-averaged shear stress
for a system undergoing
Couette flow; figure taken
from [8]

in the ensemble of trajectories:

φt (Γ (0)) = ln
P (Γ (0), 0)

P (Γ ∗(t), 0)
(2)

More specifically, with Γ = (q1, p1, ...qN , pN ) being the phase space vector of the
system which corresponds to a system trajectory and Γ ∗(t) being the result of a
time reversal map applied to Γ (0), φt (Γ (0)) is the total dissipation for a trajectory
originating at 0 and evolving for a time t :

φt (Γ (0)) =
∫ t

0
φ (Γ (s)) ds. (3)

This integration involves an instantaneous dissipation function:

φ (Γ (0)) = dφt (Γ (0))

dt
. (4)

The fluctuation theorem as expressed by (1) states that (i) positive dissipation
is exponentially more likely to be observed than negative dissipation, and (ii) upon
ensemble averaging of φt (withE denoting the mathematical expectation), leading to

E [φt |Ft ] ≥ 0. (5)

Here |Fn indicates the conditioning on the past history and is discussed below.
Considering that the time-integrated dissipation function φt equals the irreversible
entropy production in continuum thermomechanics with internal variables (TIV), the
inequality (5) is seen as a generalization of the Second Law of thermodynamics (i.e.,
the entropy production rate is non-negative). Note that φ in (3) and (4) is recognized
as the irreversible entropy production rate.
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3 Entropy Is a Submartingale

In view of the random fluctuations, φt is a stochastic process with a specific type of
memory effect to be examined as follows. First, every stochastic process is defined
with reference to a probability space (�,F ,P), where� is the sample space,F is
the σ -field, andP the probability measure, the argument ω ∈ � being employed to
indicate an elementary event as well as the random character of φt . We now switch
from a continuous (t) to a discrete (n) time parametrization

φn := φt=n, (6)

The point is that the analytical aspects of discrete-time stochastic processes are
simpler than those of continuous-time processes; the integral in (3) is replaced by a
summation, while the derivative in (4) is understood in a finite-difference sense.

Our growing knowledge of the process φn at the successive times (i.e., its history)
is represented by a so-called filtration on Ω: a sequence {Fn : n = 0, 1, 2, . . .} of
sub-sigma fields ofF such that for all time instants tn ,Fn ⊂ Fn+1. In view of (5),
we observe that this inequality is satisfied

E{φn+1|Fn} ≤ φn, (7)

which indicates that φn is a submartingale. On the technical side dictated by
the probability theory, (7) has to be accompanied by two more conditions: (i)
{Fn; n = 0, 1, 2, . . .} is a filtration and φn is adapted to Fn; (ii) for each n, φn

is integrable.
If the ≤ sign in (7) were replaced by an equality sign, we would have a so-called

martingale. In fact, this observation acquires more light in view of the so-called
Doob decomposition [3] saying that any submartingale is the sum of a martingale
(M) and an increasing process (G): Let φ = {φn; n ≥ 0} be a submartingale relative
to the filtration (Fn). Then there exists a martingale M = {Mn; n ≥ 0} and a process
G = {Gn; n ≥ 0} such that

(i) M is a martingale relative toFn;
(ii) G is an increasing process: Gn ≤ Gn+1 almost everywhere;
(iii) Gn isFn−1-measurable ∀n;
(iv) φn = Mn + Gn .

In [12] we have employed an analogous (Doob–Meyer decomposition) theorem
in continuous time, also giving a unique decomposition of a submartingale into a
martingale and a “drift” process. The discrete time case should be sufficient for most
continuum physics applications, while allowing a simpler analytical treatment.
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4 Violations of Second Law in Diffusion Problems

The partial differential equation of diffusion hinges on a coarse scale and a deter-
ministic continuum approximation of a random medium. If we consider a very fine
scale resolution where the violations of the Second Law relative to heat conduction
occur [16], we must replace the deterministic picture by a stochastic one. Thus, the
internal energy density u (per unit volume) and the entropy s (per unit volume) are
random fields over the material (D) and time (T ) domains:

u : D × T × Ω → R, s : D × T × Ω → R, (8)

where we consider the heat conduction problem in a rigid (undeformable) conductor.
With reference to Sect. 2, the Second Law of thermodynamics takes the ensemble
averaged Clausius–Duhem form

E {φ|Fn} ≥ 0, φ = T ṡ(i) = −qk
T,k

T
≡ −q·∇T

T
. (9)

Here we recognize the pair of affinities: vector of velocity T,k conjugate to the vector
of dissipative force −qk/T and introduce a dissipation function φ (qk). Given the
medium’s randomness, φ is a random field

φ : D × T × Ω → R. (10)

At any given continuum point x inD , φ is a random functional φ(q, ω), ω ∈ Ω . The
randomness of φ disappears as the time and/or spatial scales become large and then
φ reverts to a deterministic functional of a homogeneous continuum. According to
the model outlined in Sect. 2,

φ(q, ω) = Ġ(q) + Ṁ(q, ω), (11)

which for the linear Fourier-type conductivity becomes more explicit with

Ġ(q) = qiλi j q j Ṁ(q, ω) = qiMi j (ω) q j . (12)

Here Ġ(q) involves the thermal resistivity λi j which is positive definite, and
Ṁ(q, ω) = d M(q, ω)/dt , with M being the martingale modeling the random fluc-
tuation according to (4). Clearly, the randomness residing in M(d, ω) allows the total
resistivity (and, hence, the total conductivity κi j = (

λi j + Mi j
)−1

) to become neg-
ative since Mi j is not required to be positive definite, thus signifying the violations
of the Second Law. More specifically, the second-rank tensorMi j : V → V (where
V is a linear vector space) also is a second-order random field [12], such that

Mi j : D × Ω → V 2 (13)
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In view of the Gaussian character of fluctuations in Fig. 1,Mi j is a Gaussian random
field.

Next, consider the evolution of energy in a spatial domain D ∈ R
n (n = 2 or 3)

having a boundary ∂D = ∂Dq ∪ ∂DT with both parts disjoint and such that ∂Dq is
insulated and ∂DT has a constant temperature prescribed on it:

qi ni = 0 on ∂Dq ,

T = T0 on ∂DT .
(14)

Following [2], we observe from the energy balance that u = −qi ,i , and from
the decomposition of entropy rate ṡ = ṡ(r) + ṡ(i) (having the reversible part
ṡ(r) = − (qi/T ) ,i and the irreversible part ṡ(r) = −qi T,i /T 2) that ṡ = −qi ,i /T .
Therefore,

d
dt

∫
D (u − T0s) dv = T0

∫
D

qi T,i

T 2 dv, (15)

where the boundary conditions (14) have been employed. Noting, according to spon-
taneous violations of the Second Law mentioned in (11) and (12), that the scalar
product qi T,i takes random and possibly negative values, we cannot conclude that
this is a Lyapunov function just like in diffusion systems obeying the Second Law
considered in the aforementioned reference. It is upon taking the ensemble average
of (15) that

E
{

d

dt

∫
D

(u − T0s) dv

}
= E

{
T0

∫
D

qi T,i

T 2
dv

}
≤ 0 (16)

which yields the Lyapunov function.
Interestingly, the result (17) does not depend on the heat conduction being linear.

But, if that actually is the case (with c being the specific heat capacity), the equation
governing the temperature field is a stochastic partial differential one

∂T

∂t
= 1

c

(
κi j (x, ω) T, j

)
,i . (17)

Next, upon ensemble averaging, the Clausius-Duhem inequality reduces to the con-
dition of positive definiteness of the conductivity tensor κi j = λ−1

i j (withMi j → 0),
the second-order random field κi j becomes a constant tensor field, and the diffusion
equations for anisotropic and then isotropic homogeneous medium are obtained:

∂T

∂t
= 1

c
κi j T, j i →

κi j →κδi j

κ

c
∇2T . (18)
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5 Micropolar Fluid Model

5.1 Dissipation Functions

As noted in [6], the Cauchy stress tensor (i.e., the negative of the pressure tensor)
generally lacks symmetry on length scales where the Second Law violations occur
and this is the case with the molecular fluids. Indeed, the complete description of the
hydrodynamics ofmolecular liquidsmust include angularmomentum considerations
and this challenge can naturally be met by using, instead of the classical (Cauchy)
continuum, a micropolar continuum, Fig. 2a, b.

To have a micropolar model, a couple traction m(n)
i = μ j i n j is introduced in

addition to the Cauchy traction t (n)
i = τ j i n j on a unit surface of the outer normal

ni ; the body force and body torque as being unimportant to our considerations.
The kinematics of the continuum point is described by the displacement ui and the
microrotation ϕi ; their time rates, respectively, are vi and wi . Also, the intrinsic
angular momentum per unit mass is li = Iikwk , where Iik is the microinertia; for an
isotropic micropolar fluid Iik = I δik , where I is the microintertia of a continuum
fluid particle. The balance equations are:

the conservation of mass
Dρ

Dt
= −ρvi ,i , (19)

the conservation of linear momentum

ρ
Dvi

Dt
= τ j i , j , (20)

Fig. 2 a Molecular fluid in which the stress tensor of continuum approximation is not symmetric;
b dV element of a micropolar continuum (with the velocity v and microrotation ϕ degrees of
freedom) having spatial (and temporal) random field fluctuations. This is the basis for a study of
Couette- or Poiseuille-type stochastic flow of a micropolar fluid in a channel



182 M. Ostoja-Starzewski

the conservation of angular momentum

ρ
Dli

Dt
= μ j i , j +ei jkτ jk, (21)

the conservation of internal energy

ρ
Du

Dt
= −qi ,i +τ j i

(
vi , j −ek ji wk

) + μ j i wi , j +ρgi . (22)

For an isotropic micropolar fluid Iik = I δik , where I is the microintertia of a contin-
uum fluid particle. The special case of classical continuum mechanics is recovered
when μ j i = 0, and wk = gk = 0.

In the presence of micropolar effects the constitutive equations are [11]

τi j = (−p + λvk,k ) δi j + μ
(
v j ,i +vi , j

) + μr
(
v j ,i −vi , j

) − 2μr emi j wm

μi j = c0wk,k δi j + cd
(
w j ,i +wi , j

) + ca
(
w j ,i −wi , j

)
,

(23)

where λ and μ are the usual viscosity coefficients, μr is the dynamic microrotation
viscosity, while c0, cd , and ca are the micropolar viscosity coefficients. Now, the
governing equations (20)–(22) become

ρ
Dvi

Dt
= −p,i + (λ + μ − μr ) v j , j i + (μ + μr ) vi ,kk +2μr ei jkwk, j , (24)

ρ I
Dwi

Dt
= 2μr

(
emi j v j ,i −2wi

) + (c0 + cd − ca) w j , j i + (cd + ca) wi ,kk , (25)

ρ
Du

Dt
= −qi ,i −pvi ,i +ρφint , (26)

where φint is the intrinsic (i.e., fluid mechanical part of) dissipation function per unit
mass, such that

ρφint = λ
(
vi,i

)2 + 2μi j di j + 4μr

(
1

2
emi j v j,i − wi

)2

+ c0
(
wi,i

)2 + (cd + ca) wi,kwi,k + (cd − ca) wi,kwk,i ,

(27)

where di j is the deformation rate tensor. As discussed in [12], the intrinsicmechanical
dissipation (φint ) is superposed with the thermal (φth) dissipation

φ = φint
[(

vi , j −ek ji wk
)
, wi , j , ω

] + φth(qi , ω). (28)

Here the first two arguments of φint indicate its dependence on kinematic fields and
its randomness and, similarly, the first argument of φth indicates its dependence on
the heat flux. Furthermore, in the vein of probability theory, the ω parametrization
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(i.e. the third argument of φint and the second argument of φth) indicate the stochastic
character of these functionals. Thus

φ (V, ω) = φint [V1, V2, ω] + φth(V3, ω), (29)

in which the velocity vector V has three components

V1 = ∇v − e j×ei · w, V2 = ∇w, V3 = q. (30)

Corresponding to V there is the dissipative force Y:

Y1 = τ, Y2 = μ, Y3 = −∇T

T
. (31)

Given the randomly occurring violations of the Second Law, just like in (4), the
time integral ofφ evolves as a submartingale: the entropy production inequality holds
on average

E{ρ φ(V, ω)} ≥ 0. (32)

By the Doob decomposition theorem, the submartingale is split into an increasing
process and a martingale ∫ t

0
φdt ′ = G + M (33)

or, instantaneously,
φ = Ġ + Ṁ . (34)

Clearly, Ṁ represents themicroscale fluctuation, whileG represents the conventional
(well-known) entropy growth. Thus, Ġ ≡ dG/dt is identified with the average of
the irreversible entropy rate (E{s∗(i)}) and Ṁ ≡ d M/dt with its zero-mean random
fluctuations. In terms of the irreversible entropy production, we have

E{s∗(i)} = Ġ, s∗(i) − E{s∗(i)} = Ṁ . (35)

The fluid mechanics (intrinsic) part φint [V1, V2, ω] of the random functional
φ(V, ω) is a superposition of two parts:

φint (d, ω) = Ġ(d) + Ṁ(d, ω), (36)

with the randomness residing in M(d, ω), and the viscosity coefficients assuring the
positive-definiteness of G:

μ ≥ 0, 3λ + 2μ ≥ 0,
cd + ca ≥ 0, cd + ca ≥ 0, 2cd + 3c0 ≥ 0,

− (cd + ca) ≤ cd − ca ≤ (cd + ca) , μr ≥ 0.
(37)
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In general, the motion on microscale is turbulent. The micropolar fluid mechanics
accounts for turbulence in terms of zero-mean perturbations about the means of both
degrees of freedom (v, w) and pressure (p):

v = v + v′, v′ = 0,
w = w + w′, w′ = 0,
p = p + p′, p′ = 0.

(38)

With reference to the analysis of Couette- and Poiseuille-type flows conducted in
[10], we ask: Are non-zero microrotational disturbances w′ possible for vanishing
classical flow disturbances v′? According to the analysis of steady parallel flows,
assuming the conventional Second Law of thermodynamics holds, the answer is in
the negative. However, given the spontaneous violations of the Second Law, non-
zero fluctuationsw′ will also spontaneously appear (!) under imposed zero fluctuation
field (v′ = 0) of the velocity field v [14].

5.2 Upscaling from Stochastic to Deterministic Media

As the spatial scale increases, the micropolar effects tend to vanish, and the fluid
becomes classical Newtonian, so that only the first line of these inequalities remains
relevant. As is well known, for incompressible response, the Newtonian fluid sim-
plifies to a Navier–Stokes fluid in the special case of a vanishing bulk viscosity:
λ + 2

3μ → 0. The upscaling from the molecular level to stochastic and then deter-
ministic continua involves the gradual replacement of field equations (20)–(22) by the
equations of conventional continuummechanics,wherebyμ j i = 0 andwk = gk = 0,
so that

conservation of linear momentum ρ
Dvi

Dt
= σ j i , j ,

conservation of angular momentum ei jkσ jk = 0,

conservation of internal energy ρ
Du

Dt
= −qi ,i +σ j i d ji .

(39)

Note that, since dV is a statistical volume element (SVE), not a representative vol-
ume element (RVE), the response depends on the type of loading. To this end, guided
by the analogy to upscaling of a spatially randommicropolar elastic continuum [18],
we set up a homogenization condition of Hill-Mandel type for a micropolar fluid
medium [a generalization of the Hill-Mandel condition]:

σi j di j + βi jαi j + μi j κ̇i j = σ i j di j + β i j αi j + μi j κ i j , (40)

where f ≡ 1
V f dV denotes the volume average. The quantities appearing here are

defined by first introducing decompositions of the generally non-symmetric velocity
gradient li j and the generally non-symmetric Cauchy stress τi j according to
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li j = di j + αi j , τi j = σi j + βi j , (41)

where di j is the deformation rate and σi j is the symmetric Cauchy stress.

di j = 1
2 (vi , j +v j ,i ), α j i = 1

2 (vi , j −v j ,i ) − eki j ϕ̇k,

σi j = 1
2 (τi j + τ j i ), β j i = 1

2 (τi j − τ j i )
(42)

Similar to the aforementioned reference, a computational study using molecular
dynamics, under boundary conditions consistentwith (40),will reveal the quantitative
scaling of classical andmicropolar viscosities in terms of the SVE size n

√
dV in either

n = 2 or 3 dimensions.

6 Conclusions

That “the Second Law is of the nature of strong probability … not an absolute
certainty” was already recognized by J.C. Maxwell. However, it is only in the past
two decades that statistical physics has come out in support of that statement. The
fundamental fact is that there is a non-zero probability of negative entropy production
rate on very small scales and (very) short times. To this end, the fluctuation theorem
replaces the Second Law of thermodynamics (and Clausius-Duhem inequality) as a
weaker (and stochastic) restriction to be placed on the dependent fields and material
properties. In turn, this leads to a generalization of continuum (thermo)mechanics.
Next, given the lack of symmetry of stress tensor on molecular scales, a stochastic
micropolar fluid is proposed a more appropriate model of hydrodynamics on very
small levels; consequences relating to fine scale turbulent motions and upscaling to
a deterministic continuous medium are then reviewed. On the history of mechanics
side, while finalizing this paper, the author became aware of the study [1], where a
microcrack density function was modeled as a submartingale.
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Abstract Replacing the use of fossil fuels by renewables is of paramount importance
not somuch because of declining reserves (fossil fuel reserves are estimated abundant
for at least over a century) but because of increasing CO2 emissions which cause
irreversible climate changes. To overcome themismatch between supply and demand
of solar heat and electricity, smart combinations of heat pumps and heat storage are
currently investigated. A reliable method for heat storage is to use thermochemical
(TCM) and phase change materials (PCM). These materials should be tested for
energy density, temperature range, corrosion, toxicity, (dis)charge time and longevity.
A prototype TCM reactor is built and tested for hot water generation. Using zeolite
13X as TCM, it is shown that tap water temperatures of 45 ◦C can be obtained.
Using optical microscopy, the hydration and dehydration process of TCM material
can be observed, as well as the phase transitions of PCMs. It is also argued that
computational molecular modelling methods provide a powerful tool for both TCM
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1 Introduction

In Europa heat for domestic purposes constitutes 40% of the total energy demand. In
summer, the sun provides more heat than needed to warm residential houses while in
winter the heat demand cannot be met by solar energy supply. A solution is to store
excess solar energy in a so-called thermal batterywhich can be discharged tomeet the
residential heat demand in winter. A reliable method for seasonal solar heat storage is
by means of phase change materials (PCMs) or thermochemical materials (TCMs).
Bothmethods can store heatmore compactly than bymeans of the traditional sensible
heat system where a liquid (typically water) is heated and stored in an insulated tank.
The TCM process is based on a reversible adsorption-desorption reaction, which
is exothermic in hydration and endothermic in dehydration [1, 2]. Examples are
zeolites and salt hydrates. The PCM process is based on latent heat release upon
crystallization for example in sodium acetate which is used in heat packs, and sugar
alcohols. This means that for TCMs humid air has to be in contact with the storage
material, while for PCMs the material is isolated and large-scale heat transfer is
achieved through heat exchangers. In the forthcoming, we will first discuss TCM
applications and next focus on PCM computations.

2 Theory

A thermal model is developed for the packed bed during the hydration of the zeolite
[3]. Themodel includesmass and heat transfer in the gas, the packed bed and the reac-
tor wall, as well as the adsorption reaction of water vapor on the zeolite. Equilibrium
constants are modeled as a function of temperature. By comparing the temperatures
of the experimental investigation with the results of the numerical simulation model,
the kinetic parameters for the adsorption in non-isothermal and non-adiabatic con-
ditions are found. We consider constant gas flow (interstitial velocity um) through a
packed bed. The energy equation of a moving fluid in a packed bed is given by

ρ f c f

(
∂T f

∂t
+ um

∂T f

∂x

)
= −∇ · q, (1)

where T f is the fluid temperature, c f is the heat capacity of the fluid and q the heat
flux from the fluid to the bed (W/m2). Integrating over a cylindrical pore volume
Vp = φπ R2Δz (φ is the porosity) we obtain

ρ f c f

(
∂T f

∂t
+ um

∂T f

∂x

)
φπ R2Δz = −

∫
Vp

∇ · qdVp. (2)

Using Gauß’ theorem the right-hand-side of (2) can be written as − ∫
q · nd Ap,

with Ap the contact area between the fluid and the bed particles. The heat transfer
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between the fluid and the bed can be described by Newton’s ’Ansatz’ in terms of the
convective heat transfer coefficient α:

−
∫

q · nd Ap = αAp(Ts − T f ), (3)

with Ts the temperatures of the solid. Note that we assume a uniform temperature
distribution in the bed particles (lumped-parameter model), which is only true for
Biot numbers smaller than 0.1. As the solid volume Vs = π R2(1−φ)Δz, and assum-
ing spherical particles with radius b, the number of spheres is 3

4 (1 − φ)R2�z/b3.
Multiplying by the individual surface of each sphere, it is straightforward to show
that Ap = 3π R2(1 − φ)Δz/b. Combination of (2) and (3) yields that

ρ f c f

(
∂T f

∂t
+ um

∂T f

∂x

)
φπ R2 = αSp(Ts − T f ), (4)

where we have introduced the contact surface per length scale Sp = Ap/Δz. For the
bed particles, it holds that

ρscs

(
∂Ts

∂t

)
(1 − φ)π R2 = −αSp(Ts − T f ). (5)

The coupled equations (4) and (5) can be solved for temperature profiles T f (x, t)
and Ts(x, t) as was shown by e.g., [3].

3 Experiments

In order to investigate the potential for TCM applications for heat storage, a reactor
was designed and built to measure temperature and humidity profiles in a zeolite
packed bed. Moreover, on the smaller scale, optical microscopy was applied to study
hydration and dehydration in salt hydrates.

3.1 Reactor Design

Following [4], a lab-scale prototype thermochemical heat storage system was tested
(see Fig. 1). In the experimental setup, air enters a reactor vessel filled with zeolite
13X. The air can be hot and dry to charge the thermal battery, or cold and moist for
discharge. In the latter case, the idea is that the thermal battery generates heat to warm
up the air by means of an exothermic adsorption of water to the zeolite (hydration
of zeolite and dehydration of the moist air). The temperature profile is measured as
a function of time along the flow direction. Input and output temperatures, pressures
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Fig. 1 Reactor filled with
zeolite 13X beads. During
charging hot air entering
from the top dehydrates the
zeolite beads and leaves the
reactor at the bottom as cold
moist air until the zeolite is
fully dehydrated. During
discharge, moist cold air
hydrates the zeolite and
leaves the reactor at the
bottom as hot dry air.
Temperature profiles are
measured by themocouples
T1, T2, M1 and M2. The
humidity is measured at the
outflow port

and humidity are measured. In the dehydration (charging) experiment, an electric
heater is used to produce dry air of 200 ◦Cwhich is blown into the reactor. This leads
to an increase in temperature from 25 to 160 ◦C at the inlet of the reactor (T1). The
measured temperatures and humidity ratio (gram of water per 100g of dry air) in
a dehydration experiment are shown in Fig. 2. The temperature in the bed starts to
increase layer by layer. Two endothermic effects can be determined in the graph; one
is around the bed temperature of 35 ◦C and the other one is around 120 ◦C. This may
be related to the sorption characteristics of the zeolite, but to establish this, additional
DTA (Differential Thermal Analysis) measurements need to be done. After almost
2h the humidity ratio becomes zero which means that the material is dehydrated as
far as possible with this dehydration temperature and vapor pressure. The remaining
fluctuations in the humidity ratio are due to the limited accuracy of the humidity
measurement at high temperatures, since the humidity ratio is calculated from the
measured relative humidity.

Next, humid air of 25 ◦C is blown into the reactor to start the exothermic hydration
reaction. In Fig. 3, it can be seen that the temperatures M1 and M2 rapidly rise to
more than 55 ◦C. The inflow temperature T1 is more or less constant. After some
100min, the temperature M1 drops off, indicating that the reaction has ended in the
upper layer of the reactor (above M1). The temperature M2 drops off much later
(around 200min), because this temperature is a measure of the heat produced in
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Fig. 2 Dehydration results. The temperatures of the top panel are measured at the positions indi-
cated in Fig. 1. The humidity of the effluent air is indicated in the bottom panel. From [4]

Fig. 3 Hydration results. The temperatures are measured at the positions indicated in Fig. 1. The
produced heat in the reactor is used to heat a separate water vessel whose temperature W1 is also
plotted in the figure. From [4]
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a larger part of the reactor (above M2). Note that the heat is transported through
the reactor by air flow. The outflow temperature (T2) also increases suddenly after
the experiment is started to the temperature of 48 ◦Cwhich is somewhat lower than the
bed temperature due to heat losses. The outflow temperature still increases until some
4.5h after the start of the experiment due to the reaction in the lower layers of the bed.
The hot outflow is used to heat up water in a separate vessel. The water temperature
in this vessel (W1) is also plotted. We notice that a maximum water temperature
of 45 ◦C is reached. Next, for about 1h (from t= 4.5–5.5h approximately), the hot
hydrated material in the bed transfers its remaining heat to the flow while cooling
down. The water temperature (W1) starts to decrease when the outflow temperature
starts to decrease indicating that the reaction is now completely finished in the bed.

3.2 Microscopy

We also investigate the dehydration reaction on the smaller scale by means of optical
microscopy. Following [5, 6], we now use Li2SO4 · H2O as heat storage material.
The dehydration reaction is found to proceed through formation and growth of nuclei
over time (see Fig. 4). Crystals were embedded at room temperature in a liquid

Fig. 4 Surface growth sequence of the anhydrous nuclei formedduring the dehydration of aLi2SO4·
H2O crystal at 100 ◦C and under a water vapor pressure of 13 mbar. From [6]
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resin called EpoFix resin, which hardened within 10h. An important feature of this
resin is that it will maintain its transparency at 130 ◦C up to 5h, which ensures
that the phase change is visible during the entire reaction. Encapsulated crystals
were polished using abrasive paper. The resin layer was polished up to a thickness
of approximately 1mm, which is thick enough to impede gaseous product release.
There are two reasons to make the resin layer this thin. One is that the resin is a poor
thermal conductor. In order to achieve a certain reaction temperature, the resin has to
be heated up to a higher temperature if the layer would be too thick. Unfortunately,
the transparency diminishes rapidly as the temperature increases. The other reason is
that the reaction temperature profile should be close to the resin temperature profile
to establish the correct reaction kinetics [7]. Figure4 shows a typical sequence of
the nucleation and nuclei growth processes on the surface of a single crystal. The
mesh on the background provides information on the length scale (grid size 1mm).
The reaction proceeds by the conversion of the transparent phase to the opaque white
phase indicating the formation of nuclei and nuclei growth. Imperfections of a crystal
are potential nucleation sites.Hence,more nuclei are observed at the grain boundaries
such as edges and cracks. Apparently, in this case the growth process was dominant
over nucleation. It was found that the number of nuclei is more or less constant.

4 Sugar Alcohols as PCMs

Sugar alcohols are a category of organic materials derived from natural sugars. As
byproducts of the food industry, sugar alcohols are environmentally friendly and
economically competitive. For most common C4–C6 acyclic sugar alcohols, prelim-
inary studies have shown relatively high latent heat of melting ΔHm and moderate
melting points Tm for seasonal heating applications. Figure5 summarizes Tm and
ΔHm for all C4–C6 acyclic sugar alcohols (for nomenclature of sugar alcohols see
[8]). Recent studies suggest the use of eutectic mixtures of sugar alcohols to form
molecular alloys, to further increase their latent heat or decrease their melting points.
Diarce et al. [9] examined three most promising mixtures and Gunasekara et al. [10]
further designed a test protocol for xylitol–erythritol mixture. Their results are also
included in Fig. 5.

The commonly seen and produced sugar alcohols, can roughly be divided into
two groups. The lower melting point group has melting points ranging from 70
to 105 ◦C and melting enthalpies ranging from 170 to 260 kJ/kg including xylitol,
glucitol, and ribitol. The higher melting point group with melting point ranging
from 120 to 200 ◦C includes erythritol, mannitol, and glactitol. The density of sugar
alcohols are in the range of 1.3–1.5 g/cm3 with around 9% volumetric expansion
upon melting [8]. Sugar alcohols are generally poor thermal conductors. Typical
thermal conductivities of sugar alcohols are in the order of 10−1 W/(m·K) [11].
Carbon foams are investigated to boost thermal conductivity and the effect is proven
to be considerable [12].
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Fig. 5 Melting points and latent heat of C4–C6 acyclic sugar alcohols. The error bars cover the
data range from various sources. The compounds without latent heat data are plotted on top of the
figure to show their melting points only. From [8]

The stability and cycling effects of sugar alcohols are studied only for a few sugar
alcohol species. In general, sugar alcohols suffer from caramelization, oxidation,
and thermal decomposition. For example, D-mannitol reacts with oxygen, forming
a non-stable material with a lower storage capacity [13]. Erythritol decomposes at
160 ◦C [14] but below this temperature it showed good cyclability [15]. Therefore
high operating temperatures must be avoided.

Sugar alcohols have evident supercooling effect. This makes sugar alcohols suit-
able for low-loss heat storage at relatively lower temperatures. However, the shear
viscosity of sugar alcohols increases significantly with high degrees of supercooling
[16]. This makes the low melting point group of sugar alcohols hard to nucleate and
crystallize [17]. For example, the crystal front growth speed of xylitol is at max-
imum 3µm/s. Erythritol and D-mannitol have good nucleation and crystallization
kinetics. However, this reduces the degree of supercooling they can achieve without
spontaneous nucleation [17].

Sugar alcohols can grow with distinct branching morphologies under different
temperatures. Figure6 shows erythritol crystallizing at 90 ◦Cand1 ◦Cof supercooling
respectively. In general, higher degrees of supercooling encourage surface nucleation
and branching.

To summarize, sugar alcohols are a promising category of materials suitable for
seasonal heat storage applications where the evident supercooling effect can help
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Fig. 6 Microscopic images
of Erythritol supercooled
crystallization at 28 ◦C (top)
and 117 ◦C (bottom) showing
different branching
morphologies. The melting
point Tm of Erythritol is
118 ◦C. The scale bars are
200 µm, in both pictures

significantly reduce insulation costs. In seasonal storages, the cycling effects can be
neglected, given the limited number of cycles to be used in this scenario. To work
with sugar alcohols, temperatures much higher than their melting points must be
avoided. The 9% volumetric expansion upon melting could reduce applicability for
seasonal storage.

5 Molecular Modeling Method for PCMs

The sugar alcoholmolecules can bemodeled using state-of-the-art force fields, which
are derived from density functional theory calculations. Previous works have used
a generalized AMBER force field [18] to succesfully evaluate thermodynamic and
transport properties of sugar alcohols [16, 19], including enthalpy, heat capacity,
shear viscosity, and solid-liquid interfacial free energy. In this force field, all atoms
in the molecules are modeled as point masses which interact according to a set of
conservative potentials. The total potential energy is expressed as
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Ep(r1, r1, . . . , rN , ) = Ebond + Eangle + Edih + ELJ + Eel, (6)

where Ep represents the total potential energy, ri is the coordinate vector of the i th
atom. At the right-hand-side of the equation are the bond stretching energy, angle
bending energy, dihedral torsional energy, the van der Waals interaction in the so-
called 6–12 Lennard-Jones form, and the electrostatic interaction, respectively.

6 Molecular Modeling Methods for TCMs

Thermochemical heat storage materials can also be modeled using molecular sim-
ulation tools. Because of the nature of thermochemical storage, chemical reactions
and charge transfers may occur during the hydration and dehydration processes [20].
Therefore, a force field that allows bond breaking and forming is required. In the
work of Smeets et al. ReaxFF is parameterized and used in the simulations of MgCl2
hydrates [21, 22]. The dehydration of MgSO4 heptahydrate is studied by Zhang
et al. [23] based on a non-reactive force field and no charge transfer assumption [20].
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Distribution of Temperature
in Multicomponent Multilayered
Composites

Monika Wągrowska and Olga Szlachetka

Abstract The object of analysis is a heat conduction problem within the framework
of tolerance modelling in multicomponent, multilayered periodic composites. The
proposed model equations describe heat conduction in the discussed laminates by
means of partial differential equationswith constant coefficients. This paper describes
the one-dimensional, stationary problems of heat conduction in direction perpendic-
ular to layers.

1 Introduction

The object of the presented investigation is a heat conduction problem in a multi-
component, multilayered periodical material structure (Fig. 1). The problem of heat
conduction in multilayered twocomponent periodic composite and composite with
functional gradation of material properties (FGM) is well known in the literature.
We can mention here papers: [1–27, 31–33, 35–37, 40–44].

The problem of modelling of heat conduction in multicomponent composites
based on the tolerance model procedure was presented by [38, 39] and applied by
[34] and by [28–30].

By means of a formal limit transition with the length parameter tending to zero it
is possible to obtain the equation of the local homogenization model from the toler-
ance model equations [38]. The process of heat conduction will be discussed within
the frames of this model. Examples of heat conduction will be narrowed down to
the one-dimensional, stationary problems of heat conduction in direction perpendic-
ular to layers for homogeneous and isotropic components.
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Fig. 1 The scheme of
multicomponent
multilayered periodic
composite

2 Object of Analysis

Let the physical space be parameterized by an orthogonal Cartesian coordinate sys-
tem Ox1x2x3. The object of analysis is a rigid heat conductor that occupies a region
Ω ≡ (0, L1)×(0, L2)×(0, L3) in the physical space. The conductor is assumed to be
homogeneous in the Ox2 and Ox3 direction and multilayered in the Ox1 direction.

The composite is made of N identical thin layers with constant thickness λ, λ =
L1/N . Let L = max (L1; L2; L3) then λ << L (L—the characteristic dimension
of the composite). Every layer of the periodic composite is assumed to be made
of M different orthotropic, homogeneous components with known mass densities,
specific heats and thermal conductivities. These components are sublayers of the
representative layer and number of them is P , P ≥ M .

Moreover let ϕm (·), m = 1, . . . , P , be positive constant functions, such that
ϕ1

(
x1

) + · · · + ϕP
(
x1

) = 1 for all x1 ∈ [0, L1]. The thickness of the mth (m =
1, . . . , P) sublayer in every layer is equal to λm = ϕmλ.

The heat conduction problem in the discussed composite will be described by the
Fourier law:

qα(x, t) = −kαβ(x)∂βθ(x, t) (1)

and the heat balance equation in the form:

c(x)∂tθ(x, t) − ∂α

(
kαβ(x)∂βθ(x, t)

) = 0 (2)

where: x ≡ (x1, x2, x3) ∈ Ω, θ(·, ·)—temperature in the region of Ω for every
t ∈ [ 0, t∗ ), kαβ(·)—components of the thermal conductivity tensor (for orthotropic
materials kαβ(x) = 0 for α �= β and kαα(x) ≡ kα(x), c(·)—specific heat, subscripts
and superscripts α and β are equal to 1, 2 and 3 (summation convention holds).
∂α(·) ≡ ∂

∂xα , ∂β(·) ≡ ∂
∂xβ , ∂t ≡ ∂

∂t .
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Let us introduce the decomposition of the i th interval of periodicity into P subin-
tervals Δi

m which are defined as:

Δi
m ≡

(
λ(i − 1) +

m−1∑
k=1

ϕkλk,

(
λ(i − 1) +

m∑
k=1

ϕkλk

))
,

m = 1, 2, . . . , P, i = 1, 2, . . . , N
(3)

The set which is occupied by the mth component in the discussed composite can be
described as follows:

Ωm =
N⋃

i=1

Δi
m × (0, L2) × (0, L3), m = 1, 2, . . . , P (4)

Then the components of thermal conductivity tensor kαβ(·) are equal to kαβ(x) = kαβ
m ,

for x ∈ Ωm , m = 1, 2, . . . , P and the specific heat c(·) is equal c(x) = cm , for
x ∈ Ωm , m = 1, 2, . . . , P .

TheEq. (2) holds at all points of regionΩ and∀t ∈ [0, t∗). It is a partial differential
equation with discontinuous and highly oscillating coefficients kαβ(·), c(·) which
depend only on the x1 coordinate. The fact that the coefficients are discontinuous
implies that the solution of the heat conduction problem will be considered within
the frames of the tolerance modelling in which discontinuous coefficients will be
replaced by constant ones.

Themodel of heat conduction formulticomponentmultilayered composites based
on the process of tolerance modelling was proposed by [38, 39].

3 Modelling Concepts

In the process of tolerance modelling for periodic composites notion of slowly vary-
ing function, tolerance averaging approximation andoscillatingmicro-shape function
are needed.

• Slowly varying functions
Let Π stand for an arbitrary convex set in the space Rm , and let f ∈ C1 (Π) be an
arbitrary real-valued function. Let us define the tolerance parameter
d ≡ (λ, δ0, δ1) as a triplet of real positive numbers and use the notation ∂ j ≡ ∂

∂x j
,

j = 1, . . . , m.
We shall deal with two classes of slowly varying functions: weakly slowly varying
function (WSV) and slowly varying function (SV) [44].
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1. Function f ∈ C1 (Π) is weakly slowly varying function ( f ∈ WSV1
d (Π) ⊂

C1 (Π)) if the condition ||x − y|| ≤ λ implies the conditions | f (x) − f (y)| ≤
δ0 and

∣∣∂ j f (x) − ∂ j f (y)
∣∣ ≤ δ1 for j = 1, . . . , m for all (x − y) ∈ Π2.

2. Function f ∈ WSV1
d (Π) is slowly varying function ( f ∈ SV1

d (Π)) if condi-
tions λ

∣∣∂ j f (x)
∣∣ ≤ δ0 hold for j = 1, . . . , m for every x ∈ Π .

• Tolerance averaging approximation
Let us define Δ ≡ (− λ

2 ,
λ
2

)
and local interval Δ(x) ≡ (

x − λ
2 , x + λ

2

)
for every

x ∈ [
λ
2 , L − λ

2

]
. Let fx ∈ L2 ((0, L)). We shall define:

〈 f 〉 (x) ≡ 1

λ

∫
Δ(x)

fx (z) dz (5)

Let fx ∈ L2 (Δ(x)) and F ∈ WSV1
d ((0, L)). By the tolerance averaging approxi-

mation we shall mean the approximation of functions 〈 f F〉T (x), 〈 f ∂1F〉T (x) by
functions 〈 f 〉 (x)F(x) and 〈 f 〉 (x)∂1F(x), respectively.

〈 f F〉T (x) ≡ 〈 f 〉 (x)F(x)

〈 f ∂1F〉T (x) ≡ 〈 f 〉 (x)∂1F(x)
(6)

• Oscillating micro-shape function for heat conduction problems
Function γ (·) is oscillating micro-shape function (for heat conduction problems)
if [38]:

γm = γm−1 + λϕm

(
K 0

Km
− 1

)
, m = 1, 2, . . . , P,

γ (·) is piecewise linear,
〈ργ 〉 = 0.

(7)

where γm , m = 1, 2, . . . , P , are values of function γ (·) on the interfaces between
sublayers of a periodicity layer and

K 0 ≡
(

ϕ1

K1
+ · · · + ϕP

K P

)−1

(8)

where Km ≡ k11
m = k1

m .

An example of oscillating micro-shape function for twocomponent structure is pre-
sented in Fig. 2.

It is easy to calculate that if k1 = k2 then γ (x1) = 0 and θ̃ = ϑ(·). It means that
the limit passage exists from twocomponent composite to onecomponent body.
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Fig. 2 The oscillating micro-shape function for two component periodic composite where(
x1, x2, x3

) ≡ (x, y, z)

4 Modelling Procedure

The process of tolerance modelling is based on two assumptions.

4.1 First Assumption

The temperature θ (·) is approximated by θ̃ in the form [44]:

θ̃ (x, t) = ϑ(x, t) + γ (x1)Ψ (x, t), x ∈ [0, L] , t ∈ [∈ 0, t∗) . (9)

This formula is the same as micro-macro decomposition of temperature field in two
component composites. The fields ϑ (·, x2, x3) , ψ (·, x2, x3) ∈ SV 1

d ((0, L1)) are
unknown functions, which are called macro-temperature and amplitude fluctuation
of temperature, γ (·)is the oscillating micro-shape function, which is given a priori
by (7).

Before formulating the second assumption let us define the residual field of θ̃ in
the region Ω for t ∈ [0,t∗) [43]:

r(x, t) ≡ ∂α

(
kαβ(x)∂β θ̃(x, t)

)
− c∂t θ̃ (x, t) (10)

4.2 Second Assumption

The tolerance averaging approximation of the residual field and the residual field
multiplied by the oscillating micro-shape function is equal to zero:

〈r〉T = 0,
〈γ r〉T = 0.

(11)
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5 Modelling Equations

After implementation both assumptions the system of equations for unknown func-
tions θ (·), ψ (·) (

ϑ (·, x2, x3) , ψ (·, x2, x3) ∈ SV1
d ((0, L1))

)
takes the form:

〈
k j

〉
∂2

j ϑ − 〈c〉 ∂tϑ + 〈
k1∂1γ

〉
∂1ψ = 0,〈

k j (γ )2
〉
∂2

j ψ − 〈
k1 (∂1γ )2

〉
ψ − 〈

k1∂1γ
〉
∂1ϑ − 〈

c (γ )2
〉
∂tψ = 0.

j = 1, 2, 3
(12)

It has to be emphasized that the above system of partial differential equations,
obtained within the frames of tolerance modelling procedure for periodic multi-
component multilayered composites, has constant coefficients.

Subsequently coordinate x1 be denoted by x, x ≡ x1. For one-dimensional, sta-
tionary problem for isotropy, homogeneous components Eq. (12) take the form:

〈k〉 d2

dx2
ϑ +

〈
k
d

dx
γ

〉
d

dx
ψ = 0,

〈
k (γ )2

〉 d2
dx2

ψ −
〈

k

(
d

dx
γ

)2
〉

ψ −
〈
k
d

dx
γ

〉
d

dx
ϑ = 0. (13)

where k (·) is the thermal conductivity coefficient for isotropic materials.
The underlined component in the Eq. (13)2 depends on the length parameter λ.
If λ → 0 then Eq. (13)2 can be written in the form:

ψ = −
〈
k d
dx γ

〉
〈
k

(
d
dx γ

)2〉 d

dx
ϑ. (14)

Substituting relation (14) into Eq. (13)1 the equation for unknown temperature field
ϑ (·) takes the form:

K0
d2

dx2
ϑ = 0 (15)

where K0 ≡
(

ϕ1

k1
+ · · · + ϕP

kP

)−1
.

Equations (9) and (15) are the base equations for the presented examples.

6 Examples

This section presents the distribution of approximate temperature field θ̃ for some
specific cases ofmulticomponent multilayered periodic composites. All components
of the discussed composites are isotropic and homogeneous.
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6.1 Periodicity Cell Composed of an Odd Number of Layers

6.1.1 Example 1

Let us assume that composite with a thickness L = 20 cm is composed of P =
20 layers with constant thicknesses λ = 1 cm. It means that the thickness of the
periodicity layer is equal to 1cm. The periodicity layer consists of seven sublayers
made of four different materials. Thicknesses of sublayers “1”, “2”, “6” and “7” are
equal to 0.1cm, (l1 = l2 = l6 = l7 = 0.1 cm) and thicknesses of sublayers “3”, “4”
and “5” are equal to 0.2cm (l3 = l4 = l5 = 0.2 cm).

There will be considered two variants of distribution of components. In the first
variant the sublayers made of the samematerial are distributed symmetrically respect
to the midplane of the periodicity layer and in the second one the sublayers made of
the same material are not distributed symmetrically respect to this midplane.

The coefficients of thermal conductivity related to the corresponding sublayers in
both variants are shown in Table1.

The graphs of the oscillating micro-shape functions γ (·) for considered variants
are shown in Fig. 3.

It should be noted that if components are symmetrically distributed respect to
the midplane of periodicity layer the graph of the oscillating micro-shape function
is antisymmetric with respect to this midplane and that the oscillating micro-shape
function is equal 0 on the edges of periodicity layer.

For two considered variants of distribution of components in the periodicity layer,
the boundary conditions on themacro-temperature are:ϑ (0) = ϑ0 = 0 ◦C,ϑ (20) =

Table 1 Thermal conductivity coefficients (example 1)

Sublayer 1 2 3 4 5 6 7

K (W/mK) in variant 1 160 0.05 0.35 380 0.35 0.05 160

K (W/mK) in variant 2 0.35 0.05 160 380 0.05 0.35 160

Fig. 3 Graphs of the
oscillating micro-shape
functions γ (·) in periodicity
layer (example 1)
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Fig. 4 Distributions of the
approximated temperature
fields θ̃ (·) for x ∈ (0, 20)
(example 1)

Fig. 5 Distributions of the
approximated temperature
fields θ̃ (·) in periodicity
layer (example 1)

ϑL = 25 ◦C. The distribution of the approximated temperature fields θ̃ (·) for x ∈
(0, 20) and x ∈ (10, 11) are shown in Figs. 4 and 5.

6.1.2 Example 2

Let us assume that a composite with a thickness L = 20cm is composed of P = 20
layers with constant thicknesses λ = 1 cm and the periodicity layer consists of seven
sublayers made of seven different isotropic materials. Thicknesses of sublayers “1”,
“2”, “6” and “7” are equal to 0.1cm (l1 = l2 = l6 = l7 = 0.1 cm) and thicknesses of
sublayers “3”, “4” and “5” are equal to 0.2cm (l3 = l4 = l5 = 0.2 cm). The thermal
conductivity coefficients are shown in Table2.

Table 2 Thermal conductivity coefficients (example 2)

Sublayer 1 2 3 4 5 6 7

K (W/mK) in variant 1 160 0.05 380 0.035 1.7 0.004 0.2
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The graph of the oscillating micro-shape function γ (·) in periodicity layer for
considered composite is shown in Fig. 6. The distribution of the approximated tem-
perature field θ̃ (·), with boundary conditions on the macro-temperature given as
ϑ (0) = ϑ0 = 0 ◦C, ϑ (20) = ϑL = 25 ◦C, for x ∈ (0, 20) and x ∈ (10, 11), are
shown in Figs. 7 and 8.

6.2 Periodicity Cell Composed of an Even Number of Layers

6.2.1 Example 3

Let us assume that a composite with a thickness L = 20cm is composed of P = 20
layers with constant thicknesses λ = 1cm. It means that thickness of periodicity
layer is equal λ = 1cm. The periodicity layer consists of four sublayers made of
two different isotropic materials. Thicknesses of sublayers “1” and “4” are equal
to 0.3cm (l1 = l4 = 0.3 cm) and thicknesses “2” and “3” are equal to 0.2cm
(l2 = l3 = 0.2 cm).

Fig. 6 The graph of the
oscillating micro-shape
function γ (·) in
periodicitylayer (example 2)

Fig. 7 Distribution of the
approximated temperature
field θ̃ (·) for x ∈ (0, 20)
(example 2)
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Fig. 8 Distribution of the
approximated temperature
field θ̃ (·) in periodicity layer
(example 2)

Table 3 Thermal conductivity coefficients (example 3)

Sublayer 1 2 3 4

K (W/mK) in variant 1 100 20 20 100

K (W/mK) in variant 2 20 100 20 100

K (W/mK) in variant 3 100 100 20 20

K (W/mK) in variant 4 100 20 100 20

K (W/mK) in variant 5 20 20 100 100

K (W/mK) in variant 6 20 100 100 20

Six variants of distribution of components will be considered. The coefficients of
thermal conductivity related to the corresponding sublayers are shown in Table3.

In the first and the sixth variant the sublayers made of the same material are
symmetrically distributed in the periodicity layer with respect to the midplane. In the
second and the forth variant the sublayers made of the same material, are distributed
in a such way that the periodicity layer has a periodic structure.

The third and the fifth variant comes down to the case in which the periodicity
layer is composed of two sublayers of the same thickness.

Graphs of the oscillating micro-shape functions γ (·) for considered variants are
shown in Fig. 9.

Fig. 9 Graphs of the
oscillating micro-shape
functions γ (·) in periodicity
layer(example 3)
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Fig. 10 Distributions of the
approximated temperature
fields θ̃ (·) for x ∈ (0, 20)
(example 3)

Fig. 11 Distributions of the
approximated temperature
fields θ̃ (·) in periodicity
layer (example 3)

It should be noted that the oscillating micro-shape function is equal to zero on the
edges of periodicity layer only for variants 1 and 6. This is related to the fact that the
structure of the periodicity layer is symmetrical with respect to the midplane of the
periodic layer. In other variants the oscillating micro-shape functions on the edges
of periodicity layer have a value different from zero. In this three variants, for the
assumed boundary conditions on the macro-temperature ϑ0 = 0 ◦C, ϑL = 25 ◦C, the
distribution of approximate temperature field θ̃ (·) for x ∈ (0, 20) and x ∈ (10, 11)
are shown in Figs. 10 and 11.

6.2.2 Example 4

Let us assume that composite with a thickness L = 20cm is composed of P = 20
layers with constant thicknesses λ = 1cm and a periodicity layer consists of four
sublayers made of four different isotropic materials. Thicknesses of sublayers “1”
and “1” are equal to 0.3cm (l1 = l4 = 0.3 cm) and thicknesses of sublayers “2” and
“3” are equal to 0.2cm (l2 = l3 = 0.2 cm). The thermal conductivity coefficients in
the sublayers are shown in Table4.

The graph of the oscillating micro-shape function γ (·) in the periodicity layer is
shown in Fig. 12.
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Table 4 Thermal conductivity coefficients (example 4)

Sublayer 1 2 3 4

K (W/mK) in variant 1 2.8 0.35 1.7 0.05

Fig. 12 Graph of the
oscillating micro-shape
function γ (·) in periodicity
layer (example 4)

It can be observed that if the periodicity layer consists of four sublayers made
of four different materials then the graph of oscillating micro-shape function is not
symmetric with respect to midplane of the periodicity layer. The distribution of the
approximated temperature field θ̃ (·), for assumed boundary conditions on themacro-
temperature ϑ0 = 0 ◦C, ϑL = 25 ◦C, for x ∈ (0, 20) and x ∈ (10, 11) are shown in
Figs. 13 and 14.

Fig. 13 Distribution of the
approximated temperature
field θ̃ (·) for x ∈ (0, 20)
(example 4)
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Fig. 14 Distribution of
approximated temperature
field θ̃ (·) in periodicity layer
(example 4)

7 Conclusions

In the recent papers concerning the tolerance modelling only twocomponent com-
posites were considered. A shape function, occurred there, had the form which was
proper only for the structures of such type. It was not possible to limit pass to a
onecomponent body within the frames of this model. The term of oscillating micro-
shape function, introduced by [38, 39], enables to describe periodic multilayered
composites made of many components, furthermore the definition of this function
gives the possibility of the passage from a twocomponent to onecomponent body. It
results from the presented example of this function (Fig. 2). If k1 = k2 then γ = 0
and the temperature distribution does not show oscillations −θ̃ (·) = ϑ(·).

The examples presented in the paper illustrate the form of the oscillating micro-
shape function for various material distributions in periodic multicomponent multi-
layered composites.

Fig. 15 Distribution of the
approximated temperature
field θ̃ (·) = ϑ(·) for
x ∈ (0, 20)
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If the same boundary conditions for the temperature are assumed for various
multilayered composites having the same size L , then the distribution of the macro-
temperature ϑ (·) is the same linear function (Fig. 15).

The influence of structure of the composites is visible only on the approximated
temperature distribution. This is shown in the Figs. 4, 5, 7, 8, 10, 11, 13 and 14. The
calculationswere performedwith the use ofMATHEMATICA8.0 software program.
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cyjnej aproksymacji, Lodz University Press, Łódź (2011)
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36. Woźniak, Cz.: Homogenized thermoelasticity with microlocal parameters. Bull. Polish. Acad.
Tech. 35, 133–141 (1987)

37. Woźniak, Cz.: On the linearized problems of thermoelasticity with microlocal paramiters. Bull.
Pol. Ac. Tech. 35, 143–151 (1987)
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Porous Media



Hysteresis in Unsaturated Porous
Media—Two Models for Wave Propagation
and Engineering Applications

Bettina Albers and Pavel Krejčí

Abstract Two models for the description of unsaturated porous media flow are
revisited. The first is a continuum model suitable for the description of sound wave
propagation in elasticmedia. Even if themodel does not contain a hysteresis operator,
the effect of hysteresis in the capillary pressure curve is accounted for. The two
processes drainage and imbibition are investigated separately and the limit values
of material parameters and acoustic properties are determined. The second model
is a thermomechanical model capable for the description of flows in elastoplastic
porous media. It contains two independent hysteresis operators describing hysteresis
phenomena in both the solid and the pore fluids.

1 Introduction

Porous media whose pores are filled by two (or more) immiscible fluids are called
unsaturated or partially saturated. The pore fluids possess different partial pressures
and the difference is called capillary pressure. Thus, at the interface of the pore-
fluids a discontinuity appears which depends on the geometry of the pore space, on
the nature of the solids and on the degree of saturation. The latter is the ratio of the
volumes occupied by one of the pore fluids and the entire pore space.

Although it iswell known that the capillary pressure exhibits twobranches depend-
ing on the initial state of a sample—and thus hysteresis occurs—(see the left panel
of Fig. 1) often only one of them is considered. The connection between capillary
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Fig. 1 Left Two branches of the capillary pressure curve, from [11]; right capillary pressure in
dependence on the degree of saturation, calculated by (1)

pressure pc and degree of saturation S may be described e.g. by the empirical law
by van Genuchten [17]

pc = 1

αvG

[
S(−1/mvG ) − 1

]1/nvG
. (1)

This relation contains three parameters mvG , nvG and αvG . The choice of these para-
meters controls the shape of the curve (mvG and nvG) and its position in the capillary
pressure-saturation-diagram (αvG). It is used in the continuummodelwhichwas build
with the intention to investigate the wave propagation in partially saturated soils [4].
Equation (1) is exemplarily illustrated in the right panel of Fig. 1.

The continuummodel is the first model which is revisited in this work. It has been
applied to the description of thewave propagation of air-watermixtures in sandstones
[7] and other soil types [3, 6]. The aim of further investigations which led to the
second model was to find a closed-form description of the propagation of sound
waves including the the hysteresis effects of the capillary pressure curve. However,
since the continuum model is linear but models containing hysteresis operators are
nonlinear, such a model would describe other types of waves. Therefore, instead of
a new model, a more engineering approach has been used to incorporate the two
branches of the capillary pressure curve, drainage and imbibition, into the model—
even if themodel does not contain a hysteresis operator.Namely, for the twoprocesses
the corresponding values formain drying andmainwetting are inserted into themodel
separately. For two examples of soils, namely for Del Monte sand and for a silt loam
both filled by an air-water mixture the procedure is shown in [1].
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Another model containing two different hysteresis operators has been proposed
in [8]. Both for solid and fluid constituents it includes hysteresis effects, namely the
above described hysteresis of the capillary pressure curve and elastoplastic hysteresis.
In [8] it is derived from basic thermodynamic principles. In the isothermal case, we
have proved the existence of a global strong solution to the resulting system of PDEs
with two independent hysteresis operators and a degeneracy under the timederivative.
The main argument of the proof is a time discretization scheme and a variant of the
Moser iteration technique.

In the following two sections the two above mentioned models are introduced
shortly.

2 Continuum Model for Partially Saturated Soils

The linear model for three-component materials with an immiscible mixture of two
pore fluids (F and G) in the voids of a solid material (S) has been introduced e.g. in
[4]. The fields

{
vS, vF , vG, eS, εF , εG

}
, the velocities of the three components, the

macroscopic deformation tensor eS and the volume changes of fluid and gas, respec-
tively, satisfy the following field equations

ρS
0
∂vS

∂t
= div

{
λSe1 + 2μSeS + QFεF 1+QGεG1

}
+π F S

(
vF − vS

) + πGS
(
vG − vS

)
,

ρF
0

∂vF

∂t
= grad

{
ρF
0 κ FεF + QF e + QFGεG

} − π F S
(
vF − vS

)
, (2)

ρG
0

∂vG

∂t
= grad

{
ρG
0 κGεG + QGe + QFGεF

} − πGS
(
vG − vS

)
,

∂eS

∂t
= sym grad vS,

∂εF

∂t
= div vF ,

∂εG

∂t
= div vG, e ≡ tr eS.

Instead of the partial mass densities of the components, ρS, ρF , ρG, the equations
depend on the volume changes of the components e, εF , εG for which hold

e = ρS
0 − ρS

ρS
0

, εF = ρF
0 − ρF

ρF
0

, εG = ρG
0 − ρG

ρG
0

. (3)

Quantities with subindex zero are initial values of the corresponding current quantity.
QF , QG and QFG are coupling parameters between solid-fluid, solid-gas and fluid-
gas, respectively. λS and μS are Lamé parameters. The compressibilities of fluid and
gas are denoted by κ F and κG .

In principle, the porosity also is a field and satisfies an own balance equation (see
e.g. [18]). However, if we neglect memory effects, the balance equation can be solved
and its consideration is no longer necessary to solve the problem.
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Fig. 2 Macroscopic material parameters appearing in (2) in dependence on the initial saturation
for silt loam; for the parameters on the left hand side the MDC (main drying curve) data, for those
on the right hand side the MWC (main wetting curve) data have been used, respectively

The current saturation of the fluid S is not included in the series of fields. Instead,
a constitutive law of van Genuchten type is used for this quantity. With this equa-
tion, actually only one branch of the capillary pressure curve is described. In order
to incorporate the hysteresis into the model, the macroscopic material parameters{
λS + 2

3μ
S, κ F , κG, QF , QG, QFG

}
appearing in the Cauchy stress tensors in (2)

have to be specified for the drying branch and the wetting branch separately. This
is done by applying a transition from the micro- to the macro-scale (see e.g. [5]).
Consequently, the micro-macro-transition-procedure for the material parameters is
applied twice, once to find the macroscopic wetting parameters from the measured
microscopic ones for wetting and the same for the drying branch. In Fig. 2 exem-
plarily for silt loam the two sets of material parameters for drying and wetting are
illustrated. For details see [1].

Instead of permeabilities resistances of fluid and gas, π F S and πGS , appear in the
model which reflect the resistance of the flow through the channels of the skeleton.
These parameters are given by

π F S = π F

k f
, πGS = πG

kg
. (4)

The quantities π F and πG account not only for the permeability of the solid but also
for the viscosity of the pore fluid. Furthermore, k f and kg are relative permeabilities
which depend on the degree of saturation. Van Genuchten [17] not only proposed
the theoretical relationship between the capillary pressure and the saturation (1) but
also formulae for the relative permeabilities

k f = S
1
2

[
1 −

(
1 − S

1
mvG

)mvG
]2

, kg = (1 − S)
1
3

(
1 − S

1
mvG

)2mvG

. (5)
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3 Model with Two Types of Hysteresis

Consider a domain Ω ⊂ R
3 filled with a deformable solid matrix material with

pores containing a mixture of liquid and gas. We state the balance laws in referential
(Lagrangian) coordinates, assume the deformations small, and denote for x ∈ Ω and
time t ∈ [0, T ]
u(x, t) displacement vector of the referential particle x at time t ;

ε(x, t) = ∇su(x, t) linear strain tensor, (∇su)i j := 1
2

(
∂ui
∂x j

+ ∂u j

∂xi

)
;

σ(x, t) stress tensor;
p(x, t) capillary pressure;
θ(x, t) absolute temperature;
W (x, t) relative liquid content;
A(x, t) relative gas content.

To explain the meaning of W and A, consider an arbitrary control volume V0 ⊂ Ω

in the reference state, set

V (t) = {y ∈ R
3 : y = x + u(x, t) , x ∈ V0} ,

and denote by VA(t), VW (t), VS(t) the subdomains of V (t) occupied at time t by gas,
liquid, and solid, respectively. Then VA(t)∪ VW (t)∪ VS(t) = V (t), and denoting by
|V | the Lebesgue measure of a set V , we assume that the porosity

ν := |VA(t) ∪ VW (t)|
|V (t)| ∈ (0, 1) (6)

remains constant and independent of the choice of V0 and t . Let J (x, t) be the Jaco-
bian of the transformation x �→ x +u(x, t). Under the small deformation hypothesis,
we may consider J (x, t) ≈ 1 + div u(x, t), hence div u represents the relative vol-
ume increment. Indeed, we have

|V (t)| =
∫

V (t)
dy =

∫
V0

J (x, t) dx ,

so that

lim|V0|→0, x∈V0

|V (t)|
|V0| ≈ 1 + u(x, t) . (7)

We now define

W (x, t) = lim|V0|→0, x∈V0

|VW (t)|
|VA(0) ∪ VW (0)| , A(x, t) = lim|V0|→0, x∈V0

|VA(t)|
|VA(0) ∪ VW (0)| .
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Note that by (6), we have

|VA(t) ∪ VW (t)|
|VA(0) ∪ VW (0)| = |V (t)|

|V (0)| ,

so that by virtue of (7) under the hypothesis of small deformations, we have

W + A = 1 + div u

1 + div u(·, 0) ≈ 1 + div u − div u(·, 0) . (8)

3.1 Constitutive Equations

For the stress σ and gas content A we assume the empirical constitutive relations

σ = Bεt + P[ε] + (p − β(θ − θc))1 , (9)

A = G[p] , (10)

where P is a hysteresis operator describing the elastoplastic response of the solid,
see Sect. 3.4.1, B is a constant symmetric positive definite fourth order viscosity
tensor, β ∈ R is the relative solid-liquid thermal expansion coefficient, θc > 0 is a
fixed referential temperature, 1 is the Kronecker tensor, and G is of the form as on
Fig. 3. We assume that it can be decomposed into the sum G[p] = G0[p] + f (p),
where f is a bounded monotone function, and G0 is a Preisach hysteresis operator,
see Sect. 3.4.2. The use of the Preisach operator for pressure-saturation hysteresis
modeling is justified in [12].

3.2 Mass Balance

Consider an arbitrary control volume V ⊂ Ω . The liquid content in V is given by
the integral

∫
V ρL W dx , where ρL is the liquid mass density. The mass conservation

Fig. 3 Pressure-saturation
hysteresis diagram
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principle then reads

d

dt

∫
V

ρL W dx +
∫

∂V
ξ · n ds(x) = 0 , (11)

where ξ is the liquid mass flux vector and n the outward normal vector to ∂V .
We assume that there exists a proportionality factor μ(p) > 0 (the permeability
coefficient) such that

ξ = μ(p)∇ p . (12)

The assumption that the permeability depends only on p is a considerable simplifi-
cation. However, if μ is allowed to depend also on the liquid content, the problem
becomes difficult even if mechanical interaction between solid and fluid is com-
pletely neglected. Existence results have been obtained in this case only if additional
time or space regularizing operators are involved, see [9, 10].

Using Eqs. (8), (10), and (12), and the Gauss formula, we rewrite (11) as

∫
V

(
(G[p] − div u)t − 1

ρL
div (μ(p)∇ p)

)
dx = 0 (13)

for every control volume V ⊂ Ω . Hence, in differential form, we have in Ω

G[p]t − div ut − 1

ρL
div (μ(p)∇ p) = 0 . (14)

3.3 Momentum, Energy, and Entropy Balance

The momentum balance in the solid phase reads

ρSutt = div σ + g , (15)

where ρS is the solid mass density, and g = g(x, t) is a given volume force density
(e. g., gravity). Taking (9) into account, we obtain from (15) the equation

ρSutt = divBεt + div P[ε] + ∇ p − β∇θ + g , ε = ∇su . (16)

The operators P and G admit hysteresis potentials VP (clockwise) and VG (coun-
terclockwise) and dissipation operators DP , DG such that the inequalities

P[ε] : εt − VP [ε]t = ‖DP [ε]t‖∗ , G[p]t p − VG[p]t = |DG[p]t | (17)

hold a. e. for all absolutely continuous inputs, where ‖ · ‖∗ is a seminorm in R3×3
sym .
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We have to derive formulas for the densities of internal energy U and entropy S
such that the energy balance equation and the Clausius-Duhem inequality hold for
all processes. Let q be the heat flux vector, and let V ⊂ Ω be again an arbitrary
control volume. The total internal energy in V is

∫
V U dx , and the total mechanical

power Q(V ) supplied to V equals

Q(V ) =
∫

V
σ : εt dx +

∫
∂V

1

ρL
p ξ · n ds(x) ,

where ξ is the liquid mass flux (12). We thus have

d

dt

∫
V

U dx +
∫

∂V
q · n ds(x) =

∫
V

σ : εt dx +
∫

∂V

1

ρL
pμ(p)∇ p · n ds(x) . (18)

By the Gauss formula, we obtain the energy balance equation in differential form

Ut + div q = σ : εt + 1

ρL
div (pμ(p)∇ p) . (19)

The internal energy and entropy densities U and S as well as the heat flux vector q
have to be chosen in order to satisfy for all processes the Clausius-Duhem inequality

St + div
(q

θ

) ≥ 0 (20)

or, taking into account the energy balance (19),

Ut − θ St + q · ∇θ

θ
≤ σ : εt + 1

ρL
div (pμ(p)∇ p) . (21)

As a consequence of (21), two inequalities have to hold separately for all processes,
namely

q · ∇θ ≤ 0 , Ut − θ St ≤ σ : εt + 1

ρL
div (pμ(p)∇ p) . (22)

For the heat flux, we assume Fourier’s law

q = −κ∇θ (23)

with constant heat conductivity κ > 0. We further introduce the free energy F by
the formula F = U − θ S, so that in terms of F , the second inequality in (22) has
the form

Ft + θt S ≤ σ : εt + 1

ρL
div (pμ(p)∇ p) . (24)
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We claim that the right choice of F for (24) to hold is

F = VP [ε] + VG [p] − β(θ − θc) div u + F0(θ) , S = −∂ F

∂θ
= β div u − F ′

0(θ) ,

(25)

where F0(θ) is a purely caloric component of F . It remains to check that (24) holds
for all processes. This is indeed true, since by (14) and (17) we have

Ft + θt S − σ : εt − 1

ρL
div (pμ(p)∇ p)

= −‖DP [ε]t‖∗ − |DG[p]t | − Bεt : εt − 1

ρL
μ(p)|∇ p|2 ≤ 0 . (26)

We have

U = F + θ S = VP [ε] + VG[p] + βθc div u + F0(θ) − θ F ′
0(θ) . (27)

The derivative of the purely caloric component F0(θ) − θ F ′
0(θ) is the specific heat

capacity c(θ) = −θ F ′′(θ). Assuming that c(θ) = c0 is a positive constant, we obtain
F0(θ) = −c0θ log(θ/θc) up to a linear function, and

U = VP [ε] + VG[p] + βθc div u + c0θ . (28)

With q given by (23), we can write the energy balance equation (19), using again
(14) and (17), in the form

c0θt − κΔθ = ‖DP [ε]t‖∗ + |DG[p]t | + Bεt : εt + 1

ρL
μ(p)|∇ p|2 − βθ div ut .

(29)

To summarize, in terms of the unknown functions u, p, θ , our model system of
equations has the form

ρSutt = div (B∇sut + P[∇su]) + ∇ p − β∇θ + g , (30)

G[p]t = div ut + 1

ρL
div (μ(p)∇ p) , (31)

c0θt = κΔθ + ‖DP [∇su]t‖∗ + |DG[p]t | + B∇sut : ∇sut

+ 1

ρL
μ(p)|∇ p|2 − βθ div ut , (32)

which is to be complemented with boundary and initial conditions.



226 B. Albers and P. Krejčí

3.4 Hysteresis Operators

We now recall the basic concepts of hysteresis modeling that are used here.

3.4.1 The Operator P

In (9), P stands for the elastoplastic part σ ep of the stress tensor σ . We proceed as
in [15] and assume that σ ep can be represented as the sum σ ep = σ e + σ p of an
elastic component σ e and plastic component σ p. While σ e obeys the classical linear
elasticity law

σ e = Aeε (33)

with a constant symmetric positive definite fourth order elasticity tensor Ae, for the
description of the behavior of σ p, we split also the strain tensor ε into the sum
ε = εe + ε p of the elastic strain εe and plastic strain ε p, and assume

σ p = Apεe (34)

again with a constant symmetric positive definite fourth order elasticity tensor Ap,
and for a given time evolution ε(t) of the strain tensor, t ∈ [0, T ], we require σ p to
satisfy the constraint

σ p(t) ∈ Z ∀t ∈ [0, T ] , (35)

where Z ⊂ R
3×3
sym is a convex closed domain containing 0 in its interior representing

the domain of admissible stresses. Its boundary ∂ Z is the yield surface. The time
evolution of ε p is governed by the flow rule

ε
p
t : (σ p − σ̃ ) ≥ 0 ∀σ̃ ∈ Z . (36)

We can eliminate the internal variables εe, ε p and write (36) in the form

(εt − (Ap)−1σ
p

t ) : (σ p − σ̃ ) ≥ 0 ∀σ̃ ∈ Z . (37)

We now define a new scalar product 〈·, ·〉Ap in R
3×3
sym by the formula 〈ξ, η〉Ap =

(Ap)−1ξ : η, and rewrite (37) as

〈
Apεt − σ

p
t , σ p − σ̃

〉
Ap ≥ 0 ∀σ̃ ∈ Z . (38)
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We prescribe a canonical initial condition for σ p, namely

σ p(0) = ProjZ (Apε(0)) , (39)

where ProjZ is the orthogonal projectionR3×3
sym → Z with respect to the scalar product

〈·, ·〉Ap and is characterized by the variational inequality

x = ProjZ (u) ⇐⇒ x ∈ Z , 〈u − x, x − y〉Ap ≥ 0 ∀y ∈ Z . (40)

It is shown in [14] that for each given ε ∈ W 1,1(0, T ;R3×3
sym ) there exists a unique

solution σ p ∈ W 1,1(0, T ;R3×3
sym ) to (38) and (39), so that we may define the solution

operator P0 : ε �→ σ p = P0[ε]. Combining this relation with (33) we obtain

P[ε] = Aeε + P0[ε]. (41)

3.4.2 The Preisach Operator G0

Preisach introduced hismodel in [16] as aweighted superposition of non-ideal relays,
see also [13]. We use here an equivalent definition of the Preisach operator G0 as in
[14], which is also based on a variational inequality of the type (38) and (39). More
precisely, for a given input function p ∈ W 1,1(0, T ) and a memory parameter r > 0,
we define the function ξr (t) as the solution of the variational inequality

⎧⎨
⎩

|p(t) − ξr (t)| ≤ r ∀t ∈ [0, T ] ,

(ξr )t (t)(p(t) − ξr (t) − z) ≥ 0 a. e. ∀z ∈ [−r, r ] ,

ξr (0) = max{p(0) − r,min{0, p(0) + r}} .

(42)

This is indeed, for a fixed value of r , a scalar version of (38) and (39) with Z replaced
by the interval [−r, r ], ε replaced by p, and σ p replaced by p−ξr . Here, we consider
the whole continuous family of variational inequalities (42) parameterized by r > 0.

The mapping pr : W 1,1(0, T ) → W 1,1(0, T ) which with p ∈ W 1,1(0, T ) asso-
ciates the solution ξr = pr [p] ∈ W 1,1(0, T ) of (42) is called the play, see [13].

Given a nonnegative function ρ ∈ L1((0,∞) × R) (the Preisach density), we
define the Preisach operator G0 : W 1,1(0, T ) → W 1,1(0, T ) by the integral

G0[p](t) =
∫ ∞

0

∫ pr [p](t)

0
ρ(r, v) dv dr . (43)

The construction of the energy potentials VP , VG and of the dissipation operators DP ,
DG associated with the operators P , G and satisfying the energy balance equations
(17) is discussed in detail in [8].
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4 Final Remarks

Two models for the description of unsaturated porous media flow are shown. While
the first onewas introduced to describe and analyze the propagation of soundwaves in
poroelasticmedia, the second one is capable to describe flow processes in deformable
elastoplastic media. One practical application of the theoretical analysis of the first
model may be the construction of non-destructive testing methods for soils. In [2]
three different applications of the theory are described: soil characterization, surface
wave analysis and soils with anisotropic permeability. One application of the second
model may be a wall which is covered by plaster for protection against humidity,
temperature changes, etc. If water droplets penetrate into an outer layer of the plaster
by the capillary effect, the pressure difference between the wet and the dry layer
produces a deformation and eventually a detachment of the plaster from the wall.
Further applications in other branches of Civil Engineering are imaginable, e.g. such
in which also phase transitions occur (e.g. freezing and thawing processes). In a
forthcoming paper such a problem will be discussed.

Acknowledgments Supported by the Einstein Junior Fellowship of the Einstein Foundation Berlin
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Simulation of the Influence of Grain
Damage on the Evolution of Shear Strain
Localization

Erich Bauer

Abstract The influence of grain damage on shear strain localization in a lateral
infinite granular layer under monotonic plane shearing is simulated using a micro-
polar continuum description. The change of the grading of the grain sizes caused
by grain damage is taken into account in a simplified manner by a reduction of the
mean grain diameter, which is embedded in the constitutive model as an internal
length. It is assumed that a reduction of the mean grain diameter caused by grain
breakage and grain abrasion is related to an increase in the pressure, the micro-
rotation and the micro-curvature. A reduction of the grain sizes is accompanied by a
reduction of the limit void ratios and a reduction of the material against compaction.
In the constitutive model the decrease of the mean grain diameter is linked to the so-
called solid hardness, which is definedwithin a continuum description. The proposed
concept of reduction of the mean grain diameter and the solid hardness is embedded
in a micro-polar hypoplastic model. The results of the numerical simulations show
that the reduction of the mean grain diameter has a significant effect on the evolution
of the void ratio within the zone of shear strain localization.

1 Introduction

The focus of the present paper is on constitutive modeling of the influence of grain
damage on the mechanical response of cohesionless granular materials like sand,
gravel or broken rock. The results of experimental investigations reveal that the
amount of grain damage in form of grain abrasion and grain fragmentation strongly
depends on the grain strength, the morphology of the granular material and the load-
ing path [36, 37]. Grain damage causes a change of the grading of the grain sizes,
the grain shape, the limit void ratios and the critical void ratio [3, 29, 38]. It can also
be accompanied by a change of the course of force chains and a reorientation of the
grain skeleton into a denser state. Grain damage becomes dominant within the local-
ized zone while outside of the shear band the material remains almost undamaged
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under continuous shearing [2]. Moreover grain damage in shear zones can already
be detected under low pressures. Thus the occurrence of grain crushing is not only
a question of the stress level, but it is also influenced by different factors related to
the grading of the grain sizes, the angularity of the grains and the loading history.
The amount of grain damage under shearing can be rather different to the one under
predominant isotropic loading.

Only little experimental data is available in the literature, so that numerical simu-
lations are a possibility to gain deeper insight into the mechanisms of grain damage
under shearing [15, 39]. In this context the question arises as to what state quantities
are appropriate for constitutive modeling of the influence of grain damage on the
incremental stiffness. As the shear stress inside and outside the localized zone is the
same, the pronounced grain damage observed within the localized zone cannot only
be explained by an interaction between the shear stress and the evolution of grain
damage. On the other hand experiments reveal progressive grain damage under con-
stant shear stress, a non-linear displacement field and particle rotations within the
localized zone e.g. [19, 35]. Such properties of granular materials, however, cannot
be modeled appropriately using a classical continuum. The influence of the grain
size, particle rotation and a non-linear displacement field within shear zones can be
taken into account for instance with a micro-polar continuum description. Further-
more, micro-polar constitutive equations are endowed with an internal length, so that
the problem described is regularized and the thickness of zones of shear localization
predicted by finite element calculations is independent of the size of the finite ele-
ments provided that the elements are small enough. For shear strain localization in
granular bodies without grain damage the performance of micro-polar constitutive
models was demonstrated by several authors, e.g. [16, 17, 23, 26, 27, 32, 40, 41, 44].
The hypoplastic modelling of the influence of grain crushing on the change of the
mean grain size was first discussed by Tejchman [42] and Tejchman et al. [43] using
formulae from breakage mechanics described by Nguyen and Einav [33] . In a recent
paper by Bauer et al. [14] a new concept has been presented, which is embedded in
a micro-polar hypoplastic description. The micro-polar hypoplasticity of the Karl-
sruhe type is an extension of the constitutive concept originally developed within the
framework of a classical, non-polar continuum [28]. It differs fundamentally from
the concept of elasto-plasticity, as no decomposition of the rate of deformation into
reversible and irreversible parts is needed. Inelastic material properties are modeled
in hypoplasticity with inherently nonlinear evolution equations. Various extensions
and applications of the basic concept are proposed, e.g. [4–7, 10, 12, 13, 20, 22,
24, 30, 34, 45–47]. For modeling the influence of grain damage the micro-polar
hypoplastic concept by Bauer et al. [14] is based on evolution equations proposed
for the void ratio, the mean grain diameter, the solid hardness, the stress tensor and
the couple stress tensor. As a measure of the packing density of the grains the void
ratio is used, which is defined as the ratio of the volume of the voids to the volume
of the solid grains. In soil mechanics it is common to represent the gradation of the
grain sizes in the so-called grain size distribution curve. A characteristic quantity
of the grain size distribution is the mean grain diameter, d50, which is embedded
in the proposed micro-polar hypoplastic continuum model as the internal length. A
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change of the grain size distribution caused by grain damage is also reflected by a
reduction of d50. In this paper grain damage is assumed to depend mainly on the
pressure level, particle rotation and curvature. In the constitutive model the effect of
change of the grain size distribution is included by a reduction of d50. It can be noted
that with a reduction of d50 the thickness of the localized zone reduces and the effect
of the micro-polar quantities on the mechanical behavior dims, i.e. for d50 → 0 the
response of the micro-polar constitutive model tends towards the classical, non-polar
continuum description [27]. But also for pronounced grain damage the state d50 = 0
has no physical relevance for granular materials, so that only states with d50 > 0
are considered in the following. In contrast to the paper by Bauer et al. [14] a more
enhanced description of the influence of grain damage on the pressure dependent
limit void ratios and the critical void ratio is proposed in the present paper, i.e. the
maximum, minimum and critical void ratio decrease with a reduction of d50. The
reduction of d50 usually leads to a reorientation of the grain skeleton into a denser
state. The additional compaction is modeled by a reduction of the incremental stiff-
ness which is related to a change of the solid hardness, hs . The state parameter hs is
defined within a continuum description and should not be confused with the hardness
of a single grain [5]. In the constitutive model the reduction of the critical void ratio,
the limit void ratios and of hs is linked to the evolution equation for the reduction
of d50.

The present paper is organized as follows: In Sect. 2 of this paper the micro-polar
hypoplastic constitutive model with respect to grain damage is outlined. In Sect. 3
the proposed constitutive model and the finite element method is used to investigate
different mechanisms of grain damage for the case of monotonic plane shearing of
a lateral infinite granular layer under a constant vertical load. In order to illustrate
the reduction of d50 depending on particle rotation and on the curvature these two
effects are investigated separately. Particular attention is paid to the influence of the
reduction of the mean grain diameter on the evolution of the shear deformation and
the void ratio. The main results are summarized and discussed in Sect. 4.

Throughout the paper, bold letters denote vectors and tensors in symbolic notation.
Indices on vector and tensor components refer to an orthonormal Cartesian basis.
The symbol δik denotes the Kronecker delta and εi jk denotes the permutation symbol.
The summation convention over repeated indices is employed. A superimposed dot
indicates the material time derivative, and the symbol ||.|| the Euclidian norm of
a tensor, i.e. ||A|| = √

Ai j Ai j . Compressive stress and strain and their rates are
negative as in the sign convention of continuum mechanics.

2 Micro-Polar Hypoplastic Model

The kinematics of a micro-polar continuum is characterized by the
macro-displacements ui and micro-rotations ωc

i (i = 1, 2, 3) [18]. The components of
the rate of the macro-spin tensor, W, and the rate of the micro-spin tensor, Wc, are
defined as:
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Ẇi j = 1

2

(
∂ u̇i

∂x j
− ∂ u̇ j

∂xi

)
= −εki j ω̇k and Ẇ c

i j = −εki j ω̇c
k (1)

respectively, where xi (i = 1, 2, 3) denote the spatial coordinates of the state in the
current configuration. The components of the corresponding macro-spin vector, ω,
and micro-spin vector, ωc, are related to the skew tensors W and Wc according to:

ωk = −1

2
εi jk Wi j and ωc

k = −1

2
εi jk W c

i j . (2)

The components of the rate of the deformation tensor, ε̇, and the rate of curvature
tensor, κ̇ , can be written as:

ε̇i j = ∂ u̇i

∂x j
+ εki j ω̇c

k and κ̇i j = ∂ω̇c
i

∂x j
. (3)

It is obvious that the tensor of the rate of deformation is usually non-symmetric
and only becomes symmetric for cases where the macro-spin is equal to the micro-
spin [11]. For quasi-static processes and with respect to the stress tensor σ and the
couple stress tensor μ defined for the current configuration the components of the
local equilibrium equations read:

∂σi j

∂x j
+ ρ b̃i = 0, (4)

∂μi j

∂x j
− εikl σkl + ρ c̃i = 0. (5)

Here ρ denotes the bulk density of thematerial and the vectors b̃ and c̃ represent
the body force and body couple, respectively. Equation 5 indicates that the stress
tensor in a micro-polar continuum is usually non-symmetric with the exception of
states with divμ = 0 and c̃ = 0 . In order to have objective measures for the stress
rate and couple stress rate the time derivative given by Green and Naghdi [21] is
used, i.e.

σ̊i j = σ̇i j − Ωik σk j + σik Ωk j, (6)

μ̊i j = μ̇i j − Ωik μk j + μik Ωk j. (7)

Here the angular velocity tensor, Ω , is related to the rotation tensor, R, and to the
rate of the rotation tensor, Ṙ, as Ω = Ṙ RT . In order to model inelastic material
properties based on the concept of hypoplasticity the objective stress rate tensor, σ̊ ,
and couple stress tensor, μ̊, are described by incrementally non-linear tensor-valued
functions, which depend on the current void ratio e, the mean grain diameter d50,
the solid hardness hs , the non-symmetric stress tensor σ , the couple stress tensor
μ, the rate of deformation tensor ε̇, the rate of curvature tensor κ̇ and the pressure
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dependent density factor fd and stiffness factor fs . The components of these rate
type equations read [26]:

σ̊i j = fs

[
â2 ε̇i j + (σ̂kl ε̇kl + μ̂kl κ̇kl) σ̂i j + fd (σ̂i j + σ̂ d

i j )

√
â2ε̇kl ε̇kl + a2

m κ̇kl κ̇kl

]
(8)

μ̊i j = fs d50
[

a2
m κ̇ i j + μ̂i j (σ̂kl ε̇kl + μ̂kl κ̇kl + 2 fd

√
â2ε̇kl ε̇kl + a2

m κ̇kl κ̇kl )
]
.

(9)

With respect to a constant density of the solid grains the evolution equation for
the void ratio can be derived from the balance equation of mass to:

ė = (1 + e) ε̇kk. (10)

In Eqs. 8 and 9 σ̂i j , σ̂ d
i j , μ̂i j and κ̇ i j denote the components of the normalized

quantities of the stress tensor, the deviatoric part of the stress tensor, the couple stress
tensor and the rate of curvature tensor, respectively, which are defined as:

σ̂i j = σi j

σkk
, σ̂ d

i j = σ̂i j − 1

3
δi j , μ̂i j = μi j

d50 σkk
and κ̇ i j = d50 κ̇i j.

Factors â and am in Eqs. 8 and 9 are related to critical states, i.e. am is assumed to be
a constant and â is related to the limit condition given by Matsuoka and Nakai [31].
Function â depends on the so-called critical friction angle, ϕc, and the symmetric
part of the normalized stress deviator, σ̂ ds = (σ̂ d

kl +σ̂ d
lk)/2 , which can be represented

as [11]:

â = sin ϕc

3 + sin ϕc

[ √
8/3 − 3 (σ̂ ds

kl σ̂ ds
kl ) + g

√
3/2 (σ̂ ds

kl σ̂ ds
kl )3/2

1 + g
√
3/2 (σ̂ ds

kl σ̂ ds
kl )1/2

+
√

σ̂ ds
kl σ̂ ds

kl

]
(11)

with: g = −
√
6 σ̂ ds

kl σ̂ ds
lm σ̂ ds

mk

( σ̂ ds
pq σ̂ ds

pq )3/2
.

The influence of the current void ratio, e, and themean pressure on the incremental
stiffness, the peak friction angle and dilatancy behavior is modeled with the stiffness
factor fs and the density factor fd , i.e.

fs =

(ei

e

)β hs (1 + ei )

n (σ̂pq σ̂pq) ei

(
−σkk

hs

)1−n

8 sin2 ϕc

(3 + sin ϕc)2
+ 1 − 2

√
2 sin ϕc

3 + sin ϕc

(
eio − edo

eco − edo

)α
(12)
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and

fd =
(

e − ed

ec − ed

)α

. (13)

In Eqs. (12) and (13) α , β and n are constitutive constants, ei , ed and ec denote
the maximum void ratio, minimum void ratio and critical void ratio, respectively. In
order to take into account the influence of grain damage the quantities ei , ed and ec

are related to the mean pressure p = −σkk/3 , the current value of the mean grain
diameter d50 and the solid hardness hs , i.e.

ei = ei0

(
d50
d500

)be

exp

[
−

(
3p

hs

)n ]
, (14)

ed = ed0

(
d50
d500

)be

exp

[
−

(
3p

hs

)n ]
, (15)

ec = ec0

(
d50
d500

)be

exp

[
−

(
3p

hs

)n ]
, (16)

where ei0, ed0, ec0 are the corresponding initial values for σkk = 0. d500 is the
initial mean grain diameter and be is a constitutive constant. The solid hardness hs

is defined in the sense of a continuum description and it is a key parameter to reflect
the stiffness of the granular material under isotropic compression.

The influence of grain damage on the change of the grading of the grain sizes of the
granular material is taken into account by a reduction of the mean grain diameter d50.
For monotonic shearing the reduction of d50 is modeled by the following evolution
equation [14]:

ḋ50 = − d50
[

bk ||κ̇ || + bω ||ω̇c − ω̇|| + bp f p( ṗ > 0) + bη fη(η̇ , . . . )
]
. (17)

In Eq. (17) ||κ̇ || denotes the norm of the normalized rate of curvature, ||ω̇c − ω̇||
denotes the norm of the difference of the rate of the micro- and macro-rotations,
f p( ṗ) is a function depending on the rate of the mean stress and fη(η̇) is a function
depending on other state quantities not yet specified. The scalar factors bk, bω, bp

and bη can also depend on the current state variables, but are assumed to be constant
for the present paper. The rate of the solid hardness, ḣs , is linked to the rate of d50
by the differential equation:

ḣs = bs hs
ḋ50
d50

, (18)

where bs is a constitutive constant.
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3 Numerical Investigation of the Influence of Grain
Damage on Plane Shearing

Experiments with the plane simple shear apparatus of the Cambridge type show
size effects and a nonuniform evolution of stress and strain distributions within the
specimen [8], Similar size effects were also detected from numerical simulations
[27]. Thus, the simple shear deformation of a granular material does not represent
a homogeneous element test. In order to prevent size effects, shearing of a lateral
infinite granular strip under constant vertical pressure will be considered for the
present numerical simulations as illustrated in Fig. 1a. For a micro-polar continuum
and for the case of plane strain the relevant kinematic and static quantities are shown
in Fig. 1b and c, respectively.With respect to the Cartesian co-ordinate system u1 and
u2 are the two displacement degrees of freedom and ω3 is the micro-rotation degree
of freedom. The non-zero stress components are σ11, σ22, σ33, σ12 and σ21, and
the couple stress components are μ31 and μ32 . With the assumption of an initially
homogeneous specimen the evolution of any state quantity ψ(x2) is independent of
the coordinate x1 in the direction of shearing, i.e. ∂ψ(x2)/∂x1 = 0 [11]. If body
forces and body couples are neglected, i.e. in Eqs. 4 and 5 the quantities bi and ci

are set to zero, the equilibrium condition requires that the vertical stress σ22 and
the horizontal shear stress σ12 is independent of the coordinate x2. For plane strain
conditions the field quantities are also independent of the co-ordinate x3. Very rough
surfaces of the bounding structures at the bottom and top surface are assumed, so that
no relative displacements and particle rotations can take place along the interfaces.

For numerical simulation a four-node Cosserat element for plane strain conditions
is used which was implemented into the finite element program ABAQUS [1] by
Huang [25]. Linear shape functions for displacements and the micro-polar rotation
are used.With an updated Lagrange formulation large deformations can be taken into
account. The condition of a lateral infinite layer is modeled by applying constraint
conditions to the side nodes of the finite element mesh, i.e., each node on the left
boundary is controlled to have the same displacements and Cosserat rotation as the
corresponding node with the same vertical coordinate on the right boundary [9].

x3

x2

x1

σ0

h

(a)
(b)

(c)

0

ω c
3

u2

u1 σ33
σ11

σ21

μ31

σ12
μ32

σ22

Fig. 1 Modeling of plane shearing under constant vertical pressure: a Section of the lateral infinite
granular layer; b Kinematic quantities; c Stress components and couple stress components
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Particularly, a granular layer with an initial height of h0 =4cm is discretized by
Cosserat elements with an initial size of 1.25mm × 1.25mm. For the initial state, a
homogeneous distribution of the initial void ratio of e0 =0.62 is assumed. A constant
vertical stress of σ22 = −1000 kPa is applied at the top surface.With the assumption
of a constant vertical stress the height of the layer can decrease or increase as a result
of compaction or dilation of the granular material under shearing. Amonotonic shear
deformation up to 4cm is initiated at the top surface of the granular layer, i.e. same
horizontal displacements are prescribed for all nodes along the top surface. In order
to study separately the influence of the individual factors in Eq. (17) on the reduction
of the mean grain diameter, numerical simulations are carried out for three different
cases:

Case A: In Eq. (17) only the term bk ||κ̇ || is active.
Case B: In Eq. (17) only the term bω ||ω̇c − ω̇|| is active.
Case C: No grain damage is considered, i.e. d500 = const. and hs0 = const.

Because of the constant vertical stress σ0 the increase of the mean pressure in the
specimen during shearing is small, so that the influence of the third term in Eq. (17)
is neglected. For the present investigations the values assumed for the constitutive
parameters in the constitutive relations in Sect. 2 are summarized in Table1. For dif-
ferent state quantities the results obtained from the numerical simulations are shown
for Case A and Case B in Figs. 2 and 3, respectively. The dashed curves represent the
results for the Case C where no grain damage is taken into account. The evolution of
the horizontal shear stress and the distribution of the horizontal displacements across
the shear layer indicate that the influence of grain damage becomes dominant after
the stress peak. At the beginning of shearing the displacement field is almost linear
as it is in the non-polar continuum. After the stress peak the reduction of the shear
stress is more pronounced for the case of grain damage than for d50 = const . From
Figs. 2b and 3b it is clearly visible that for larger shear displacements of the top sur-
face the shear deformation localizes and the displacement filed becomes non-linear.
Because of the symmetric boundary conditions for the rough surfaces at the top and
at the bottom shear strain localization occurs in the middle of the shear layer. Within
the localized zone, called shear band, pronounced micro-rotations and an increase of
the void ratio can be observed also for the case without grain damage. The extreme
values for ωc

3 and e arise in the middle of the shear band, while the distribution of
the curvature κ32 shows extreme values at the boundary of the localized zone. With
respect to grain damage some differences can be detected between Case A and Case
B. In particular, for CaseA themaximum reduction of themean grain diameter occurs
at the boundary of the localized zone, while for Case B the reduction is dominant
in the middle of the localized zone. Similar results can also be observed under large
shearing in a ring shear device, where grain breakage is concentrated in the shear
band and almost no grain damage occurs outside the shear band. Grain damage is
accompanied with an additional compaction of the granular material which is also



Simulation of the Influence of Grain Damage on the Evolution … 239

Ta
bl

e
1

C
on

st
itu

tiv
e
pa
ra
m
et
er
s
us
ed

fo
r
th
e
nu

m
er
ic
al
si
m
ul
at
io
ns

C
as
e

ϕ
c[◦

]
e i
0

e d
0

e c
0

h
s0

[M
P

a]
n

α
β

a m
d 5

0 0
[m

m
]

b k
b ω

b s
b e

A
30

1.
02

0.
51

0.
82

10
4

0.
35

0.
14

1.
05

0.
8

0.
5

4.
0

0
5.
0

0.
15

B
30

1.
02

0.
51

0.
82

10
4

0.
35

0.
14

1.
05

0.
8

0.
5

0
4.
0

5.
0

0.
15

C
30

1.
02

0.
51

0.
82

10
4

0.
35

0.
14

1.
05

0.
8

0.
5

0
0

0
0



240 E. Bauer

0

0.16

0.32

0.48

0.64

0.80

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

-2.0 -1.5 -1.0 -0.5 0

0

0.2

0.4

0.6

0.8

1.0

0.30 0.35 0.40 0.45 0.50
0

0.2

0.4

0.6

0.8

1.0

0.60 0.64 0.68 0.72 0.76 0.80

0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.6 -0.2 0.2 0.6 1.0

σ12

σ22

h
h0 u1T /h0 = 0.08

u1T /h0 = 0.25
u1T /h0 = 0.50
u1T /h0 = 1.00

u1T /h0 u1/h0

(a) (b)

h
h0

h
h0

κ32 ω c
3

(d)(c)

h
h0

h
h0

d50 e

(f)(e)

Fig. 2 Case A: Influence of the curvature κ32 on the reduction of the mean grain diameter d50
according to Eq. (17). The solid curves and dashed curves represent the numerical results obtained
with grain damage and without grain damage, respectively. a Normalized shear stress, σ12/σ22,
versus normalized horizontal displacement, u1T /h0, of the top boundary, b evolution of the nor-
malized horizontal displacement, u1/h0, across the normalized height, h/h0, of the shear layer for
four states, c distribution of the curvature κ32, d distribution of themicro-rotation ωc

3, e distribution
of the mean grain diameter d50, f distribution of the void ratio e
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Fig. 3 Case B: Influence of the micro-rotation ωc
3 on the reduction of the mean grain diameter

d50 according to Eq. (17). The solid curves and dashed curves represent the numerical results
obtained with grain damage and without grain damage, respectively. a Normalized shear stress,
σ12/σ22, versus normalized horizontal displacement, u1T /h0, of the top boundary, b evolution of
the normalized horizontal displacement, u1/h0, across the normalized height, h/h0, of the shear
layer for four states, c distribution of the curvature κ32, d distribution of the micro-rotation ωc
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reflected by a reduction of the void ratio e. A comparison of Figs. 2f and 3f shows that
for Case A the reduction of the void ratio is more pronounced close to the boundaries
of the shear band, while for Case B the maximum reduction arises in the middle.

4 Conclusions

In this paper a new concept is proposed for the constitutive modeling of the influ-
ence of grain damage in granular materials based on the framework of micro-polar
hypoplasticity. The effect of grain abrasion and grain fragmentation on the change
of the grain size distribution is taken into account by the corresponding change of
the mean grain diameter, which is embedded in the constitutive model as an inter-
nal length. In particular, it is assumed that a decrease in the mean grain diameter is
influenced by an increase in the mean stress, the norm of the rate of the curvature
and the norm of the difference of the rate of the micro- and macro-rotations. The
reduction of the mean grain diameter is linked to the reduction of the limit void
ratios and the critical void ratio and takes into account an additional compaction
of the material as a result of grain damage. Particular attention is paid to modeling
the effect of particle rotation and curvature on the process of particle damage. It is
demonstrated that for monotonic plane shearing under constant vertical stress grain
damage becomes dominant within the localized zone. In particular, grain damage
in the middle of the localized zone is mainly related to the particle rotation while
the effect of large curvature on grain damage is pronounced close to the boundaries
of the localized zone. Under shearing grain damage also leads to a reduction of the
dilatancy behavior of the material. The proposed concept of a reduction of the mean
grain diameter and of the limit void ratios is mathematically simple, but for practical
application it needs further experimental and physical clarifications.
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Non-hydrostatic Free Surface Flows: Saint
Venant Versus Boussinesq Depth Integrated
Dynamic Equations for River and Granular
Flows

Kolumban Hutter and Oscar Castro-Orgaz

Abstract Nineteenth and early twentieth century channel flow hydraulics is
dominated by depth averaged equations. Saint Venant and Boussinesq present
approximations with and without the imposition of the shallowness approximation,
respectively. In the former approximation the verticalmomentumequation is replaced
by the so-called hydrostatic equation, in which the vertical pressure gradient and the
gravity force balance, but the vertical acceleration and the horizontal shear stress
gradients are dropped. In the classical Boussinesq-type amendments to the Saint
Venant approach the acceleration terms are accounted for, but the shear stress gra-
dients are generally ignored. For non-ideal fluids this is questionable. We derive the
unabridged depth integrated equations and demonstrate the subtleties of this problem
using as examples the potential, Navier-Stokes and granular fluid with earth-pressure
constitutive structure.

1 Introduction

Understanding granular mass flow is a basic step in the prediction and control of
natural or manmade disasters due to avalanches on Earth. Savage and Hutter [19]
pioneered the mathematical modeling of these geophysical flows; numerous follow-
up papers were subsequently published, for a summary, see Pudasaini and Hutter
[18], and are still being published to this date. Most of these papers are based on
a shallowness assumption in curvilinear coordinates following terrain, in which the
length scale tangential to the main flow directions, [L], is significantly larger than the
corresponding length scale, [H], orthogonal to this two-dimensional tangential man-
ifold, so that ε = [H/L] � 1. Thus, the shallowness parameter is small, suggesting
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approximations of the governing equations in the spirit of perturbation expansions.
Its lowest order approximation for rapid granular flows is known as Savage-Hutter
(SH)-equations. In the context of classical fluidmechanics corresponding depth aver-
aged mass and momentum balance equations are attributed to Barré de Saint-Venant
[1]; they are all characterized by the fact that the bed-normal momentum equation
reduces to a hydrostatic force balance, in which the bed-normal pressure gradient
balances the corresponding gravity force, assuming a small channel slope.

This class of governing equations is intimately related to the stretching transfor-
mation, expressed by the shallowness assumption ε � 1. Topographic variations
often occur with a spectrum of wavelengths, in which significant amplitudes arise
at wavelengths comparable to the depth of the moving avalanches, implying that
necessarily ε = O(1), if the topographic protuberances are to execute an effect in
rapid geophysical flows over such bumpy beds. In a Cartesian horizontal-vertical
coordinate system the dynamical equations of rapid granular flows were formulated
byDenlinger and Iverson [8] to essentially abandon the hydrostatic pressure assump-
tion, but they expressed it differently: In the words of Castro-Orgaz et al. [6] they
“found that vertical accelerations in granular mass flows are of the same order as
the gravity acceleration, requiring the consideration of non-hydrostatic modeling of
granular mass flows”.

Free surface water flow simulations based on non-hydrostatic depth-averaged
models are well known in hydraulic modeling ever since Boussinesq [4, 5] intro-
duced his famous equations about 140 years ago; existing literature based on the
Boussinesq-type equations is overwhelming. The derivation of these equations is
equally based on a stretch-free scaling of the hydrodynamic equations, but the cause
of the non-negligible vertical acceleration term in Cartesian coordinates is not nec-
essarily the bumpiness of the bed but rather the non-linear large amplitude of the free
surface in gravity driven surface waves and possibly undular hydraulic jumps, etc.,
on rather flat bottom topography. Denlinger and Iverson [8] did not seem to have been
aware of the connection of their non-hydrostatic granular modeling approach with
the Boussinesq approach. Moreover, they employed an unnecessary linearization of
the vertical normal stress in the depth integration, which can be amended. The equiv-
alence in the mathematical handling suggests the question, whether Boussinesq-type
gravity waves would also be formed in rapid granular mass flows, perhaps evenwhen
the topography is smooth. Furthermore, certain forms in the basal topography give
rise to enhanced or damped free surface profiles.

These questions call for answers and their positive solution is likely, given the
potential to apply the approach of theBoussinesq-type procedure to channel flowor to
undular flow of two-dimensional and three-dimensional terrain. This will be initiated
in this memoir by employing the Boussinesq-type analysis to an arbitrary granular
mass flow using the depth integrated balance equations of mass and momentum.

The simplest geometric situation of a granular avalanching mass on a flat horizon-
tal bed will be used to isolate the salient physical features. Using simple academic
test cases, it will be demonstrated that the above question can be answered in an
affirmative way. This will open a new framework for the physical and mathematical
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modeling of granular mass flow in geo- and environmental physics in a consistent
way in this simple example. However, a wealth of additional detailed problems
lie ahead of us to generalize the mathematical approach to arbitrarily curved basal
topographies.

2 Vertically Integrated Balance Laws of Mass
and Horizontal Momentum

2.1 Governing Equations

Consider a horizontal-vertical Cartesian coordinate setting in Euclidean 3-space, in
which the balance laws of mass and momentum of a density preserving continuum
take the forms
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In these equations, (x, y) are the horizontal coordinates and z is the vertical coor-
dinate; (u, v, w) are the corresponding velocity components. Moreover, the stress
tensor is introduced as a pressure tensor, the negative of the usual notation, ρ is the
constant density and g the gravity constant. The above equations are considered in
this contribution to be applied to free surface flows of water on a rigid imperme-
able bed in channels or of debris, mud or snow avalanches. The process to obtain
vertically-integrated equations is identical to that used for river flow over 3D ter-
rain in hydraulics (Fig. 1). For simplicity, boundary conditions are formulated for a
movable material bed (subscript b) and a movable material stress-free upper surface
(subscript s) (

∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y
− w

)
b,s

= 0, (5)

and the free surface is considered stress free, whilst the traction at the bed follows a
given sliding law

τ sn = 0, τ b = Cub. (6)
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Fig. 1 Definition sketch for flow over 3D terrain. a Profile, b section, c plan

C = 0 corresponds to perfect sliding and C → ∞ to the no-slip condition. In
applications C will be specified. Alternatively, a Coulomb sliding law could also be
used,

τ sns = 0, τ bnb − nb(nb · τ bnb) = ub

|u|b (nb · τ bnb)tan(φbed), (7)

in which φbed is the basal friction angle. An additive combination of the two sliding
laws corresponds to the Voellmy law.

Saint Venant [1] and Boussinesq initiated approximate transformations of equa-
tions (1)–(4) to depth integrated form. Saint Venant did this by imposing a shallow-
ness assumption, which implied reduction of the vertical momentum balance equa-
tion to the hydrostatic pressure balance. Boussinesq did not assume this, allowed
the field quantities to vary in all space directions with comparable magnitude and,
thus accounted for vertical acceleration and non-hydrostatic stress contributions in
the dynamic processes. Here this process will be performed and scrutinized by inte-
grating equations (1)–(4) in the z-direction. In this process the differentiation and
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integration operations are interchanged using the Leibniz rule, and the free and basal
surface boundary conditions are used to simplify the emerging mathematical expres-
sions. This mathematical procedure is standard, albeit somewhat complicated and
has for rapid surface flows explicitly been demonstrated by Castro-Orgaz et al. [6].
These authors also provide a detailed review of precursory literature. This justifies
to be brief here. In what follows, we shall employ the notation (pxx , pyy, pzz) =
(τxx , τyy, τzz) in order to emphasize that these normal stresses are actually pressures.

2.2 Depth Integrated Balance Law of Mass

For the balance law of mass with vanishing entrainment or deposition from above
and below, this process yields

∂h

∂t
+ ∂ Qx

∂x
+ ∂ Qy

∂x
= 0, where Qx =

∫ zs

zb

u dζ, Qy =
∫ zs

zb

v dζ. (8)

Here, Qx and Qy are the volume fluxes in the x- and y-directions, respectively. The
derivation can be found in almost any book on fluid mechanics.

2.3 Depth Integrated Momentum Equations
in the Horizontal Plane

The process of transformations, analogous to that described above for the mass
balance equation yields for the momentum equations in the horizontal plane

∂

∂t

zs∫
zb

u dζ + ∂

∂x

zs∫
zb

u2 dζ + ∂

∂y

zs∫
zb

uv dζ

= − 1

ρ

⎧⎨
⎩

∂

∂x

zs∫
zb

pxx dζ + ∂

∂y

zs∫
zb

τxy dζ

⎫⎬
⎭ + (pxx )b

∂zb

∂x
+ (τxy)b

∂zb

∂y
− (τxz)b,

(9)

∂

∂t

zs∫
zb

v dζ + ∂

∂x

zs∫
zb

v2 dζ + ∂

∂y

zs∫
zb

uv dζ

= − 1

ρ

⎧⎨
⎩

∂

∂x

zs∫
zb

τxy dζ + ∂

∂y

zs∫
zb

pyy dζ

⎫⎬
⎭ + (τxy)b

∂zb

∂x
+ (pyy)b

∂zb

∂y
− (τyz)b.

(10)
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These equations do not involve any free surface stress terms, because stress free upper
boundary conditions have been assumed. The Eqs. (8), (9) and (10) describe flows as
referred to the (x,y)-plane. They allow for several approximations to the kinematic
fields u, v, w and parameterizations of the stress tensor T (with the components τi j ,
with i, j = 1, 2, 3) to produce a family of depth-averaged equations. The local flow
depth is

h = zs − zb. (11)

3 Depth Integrated Momentum Equation in the z-Direction

The integration in the z-direction of the vertical momentum equation differs from
those in the horizontal directions by the fact that it is performed from an arbitrary z
to zs rather than from zs to zb. This is the crucial difference which led Boussinesq
to equations different from those of Saint Venant. We now apply this integration
to Eq. (4). Because the lower limit z of the vertical integral is now an independent
variable, application of the Leibniz rule only involves the upper limit z = zs , so that
the equation analogous to (9) and (10) and solved for τzz(z) takes the form

pzz(z) = ρg(h − η) − ρw2

+ ρ
∂

∂t

zs∫
z

w dζ + ρ
∂

∂x

zs∫
z

wu dζ

+ ρ
∂

∂y

zs∫
z

wv dζ + ρ

zs∫
z

(
∂τxz

∂x
+ ∂τyz

∂y

)
dζ, (12)

where the local elevation above the terrain is

η = z − zb. (13)

The above Eq. (12) is being viewed as an equation for pzz(z) as a function of the
overburden pressure (first term on the right-hand side), the vertical velocity terms (the
terms at the 2nd, 3rd, 4th and 5th position) and the integrated shear stress divergence
(last term on the right-hand side). If [H ] and [L] are vertical and horizontal length
scales and ε = [H/L] is small, only the first term on the right hand side survives—
the hydrostatic pressure equation emerges. However, for ε = O(1), Eq. (12) tells us
that more than just the vertical acceleration terms (2, 3, 4, 5) on the right-hand side
survive; the horizontal integrated stress divergence equally contributes to the vertical
overburden pressure.

Equation (12) was not presented by Denlinger and Iverson [8] or Iverson [12],
and it was first derived by Castro-Orgaz et al. [6]. Further, Denlinger and Iverson
[8] neglected to derive an evolution equation for w to complete the depth- integrated
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model, involving only u and v as variables, but not w. This was, however, done in
water wave modeling by Nwogu [16] and Kim et al. [13]. The crucial idea is to
vertically integrate the continuity equation (1) from zb to an arbitrary elevation z,
using the Leibniz rule and imposing the kinematic boundary condition at the basal
surface, Eq. (5). This process yields, if ∂zb/∂t = 0,

w(z) = −
⎧⎨
⎩

∂

∂x

z∫
zb

u dζ + ∂

∂y

z∫
zb

v dζ

⎫⎬
⎭ (14)

It states that once any functional representations for u and v are given, w(z) is
determined via the conservation of mass. Thus, w is linked to u and v; so, we may in
Eq. (14) assume that u = ū and v = v̄ , in which an overbar means depth averaging
which later will be replaced by U and V , respectively. Alternatively, if we assume
that (u, v) are independent of the z−coordinate, one easily deduces, with u = (ū, v̄),
from relation (14) that

w(z) = −Div [u(z − zb)]

=
{
(ū, v̄) ·

(
∂zb

∂x
,
∂zb

∂y

)}
−
{(

∂ ū

∂x
+ ∂ v̄

∂y

)
(z − zb)

}
. (15)

At z = zb, one deduces from this relation the kinematic boundary condition of a
rigid basal surface (the second term on the rhs in (15) vanishes in this case) and finds
at z = zs

w(zs) =
{
(ū, v̄)s ·

(
∂zb

∂x
,
∂zb

∂y

)}
− Div(u)h. (16)

The reduced equation with the first term in braces on the right-hand side of (15)
represents the influence of the kinematic boundary condition at zb on w(z); only
the basal boundary condition is involved; the second term in braces says that the
local horizontal velocity divergence reduces the basal vertical velocity by an amount
which is proportional to the local material depth. Whether this contribution leads to
growing w or decreasing w depends on the sign of Divu. A qualitatively analogous
behavior can also be inferred from (14) and (15) within the moving mass.

The plug flow assumption, for which u and v are depth independent, can also
be implemented into Eqs. (8)–(10). This was done by Savage and Hutter [19] and
many others (for a fairly complete literature review see Pudasaini and Hutter [18])
in the context of the shallow flow model, and by Iverson [12] in his more general
context, in which no stretching of the coordinates was introduced. If we denote the
depth averaged u- and v-velocity components by U and V and replace u and v
everywhere by U and V , apply in the computations the property that they have no
z-dependence, then the resulting equations can be expressed as a system of partial
differential equations in general conservative form as
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∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

= S, (17a)

U =
⎛
⎝ h

Uh
V h

⎞
⎠ , F =

⎛
⎜⎜⎜⎜⎝

Uh

U 2h + 1
ρ

zs∫
zb

pxx dζ

U V h + 1
ρ

zs∫
zb

τxy dζ

⎞
⎟⎟⎟⎟⎠ , G =

⎛
⎜⎜⎜⎜⎝

V h

V Uh + 1
ρ

zs∫
zb

τxy dζ

V 2h + 1
ρ

zs∫
zb

pyy dζ

⎞
⎟⎟⎟⎟⎠ (17b)

S = − 1

ρ

⎛
⎝

0
(τxx )b

∂zb
∂x + (τxy)b

∂zb
∂y − (τxz)b

(τyy)b
∂zb
∂y + (τxy)b

∂zb
∂x − (τyz)b

⎞
⎠ . (17c)

In these equations, U is the dependent variable vector, a column matrix with three
components; F and G are the fluxes in the x- and y-directions, respectively, and S
is a source involving only basal stress terms. We also record Eq. (12) for the special
case that the horizontal velocity components are independent of the z- coordinate

pzz = ρg (h − η) − ρw2 + ρ
∂

∂t

zs∫
z

w dζ

+ ρ
∂

∂x

⎡
⎣U

zs∫
z

w dζ

⎤
⎦ + ρ

∂

∂y

⎡
⎣V

zs∫
z

w dζ

⎤
⎦ +

zs∫
z

(
∂τzx

∂x
+ ∂τzy

∂y

)
dζ. (18)

Introducing the new quantities [13, 17]

I (z) =
zs∫

z

w(x, y, z) dζ

= −
zs∫

z

Div[u(z − zb)] dζ = −Div

⎛
⎝u

zs∫
z

(z − zb) dζ

⎞
⎠ + uh · Gradh

= −Div

(
u

h2 − η2

2

)
+ uh · Gradh = −Div(u)

h2 − η2

2
, (19)

where u = (U, V ). Equation (19) is a scalar quantity, and it may be shown with the
aid of Eq. (15) that for z-independent U, V and when the shear stress divergence
term in (18) is ignored,

pzz = ρg (h − η) + ρ
∂ I

∂t
+ ρDiv (I u) − ρw2, (20)
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in which Div and Grad are the two-dimensional horizontal divergence and gradient
operators, already used in (15) and (16). Equations (19) and (20) together determine
the overburden pressure at the vertical position z whenever the horizontal depth-
averaged velocity components are known.

4 Boussinesq-Type Development for Water Flows

4.1 Water Waves on a Horizontal Bottom Surface Treated
as an Ideal Fluid

An inviscid density preserving fluid (ρ = const.) does not support shear stresses;
consequently, the last term in Eq. (18) drops out of the equation. Moreover, with
w(z) given by (14) and I by (19), we may deduce

w(z) = Div(u)η, I (z) = −[Div(u)]h2 − η2

2
, (21)

from which we may obtain

I u = −Div(u)u
h2 − η2

2
, (22)

and

Div(I u) = −Div

[
uDiv(u)

h2 − η2

2

]

= [Div(u)]2
h2 − η2

2
− u · Div(u)hGradh − uGrad[Div(u)]h2 − η2

2
;
(23)

so, we can compute

∂ I

∂t
= −Div

(
∂u
∂t

)
h2 − η2

2
− Div(u)h

∂h

∂t

= −Div

(
∂u
∂t

)
h2 − η2

2
+ (Div(u))2 h2 + Div(u)u · hGradh, (24)

in which ∂h/∂t has been replaced by −Div(uh) via the mass balance (8).



254 K. Hutter and O. Castro-Orgaz

The vertical normal stress pzz , equivalent to the vertical pressure, can be evaluated
using Eq. (20) and relations (22)–(24). This computation yields

p

ρ
= pzz

ρ
= g(h − η) +

{
[Div(u)]2 − Div

(
∂u
∂t

)
− u · Grad [Div(u)]

}
h2 − η2

2
,

(25)

or, since Grad [Div(u)] = Div [uDiv(u)] − [Div(u)]2,

p

ρ
= g(h − η) +

{
2 [Div(u)]2 − Div

(
∂u
∂t

)
− Div [uDiv(u)]

}
h2 − η2

2
. (26)

For plane, one-dimensional waves both formulae reduce to

(
p

ρ

)
1-dim

= g(h − η) +
{(

∂U

∂x

)2

− ∂2U

∂x∂t
− U

∂2U

∂x2

}
h2 − η2

2
, (27)

given by Castro-Orgaz et al. [6], but first essentially presented by Serre [20].
To present the complete two-dimensional water wave model, let us explore equa-

tions (17) for an ideal fluid. Setting τxy = 0 in those expressions and identifying
pxx = pyy = pzz = p, where p is given either in (25) or (26), we readily find

F =
⎛
⎝ Uh

g h2

2 + U 2h + D
U V h

⎞
⎠ , G =

⎛
⎝ V h

V Uh
V 2h + g h2

2 + D

⎞
⎠ , (28)

with

D =
{
[Div(u)]2 − Div

(
∂u
∂t

)
− u · Grad [Div(u)]

}
h3

3
. (29)

D as defined in (28) and (29) describes the dispersion. For D = 0 the partial dif-
ferential equations reduce to the de Saint Venant equations. So, D �= 0 accounts for
the alterations of the Boussinesq model over the de Saint Venant model. Moreover,
the source term in (17c) does not vanish when z = zb(x, y) �= const. In addition,
basal shear tractions could be accounted for if a boundary layer friction model is
implemented. In that case one has

S = − 1

ρ

⎛
⎝

0
(p)b

∂zb
∂x + (τxy)b

∂zb
∂y − (τxz)b

(p)b
∂zb
∂y + (τxy)b

∂zb
∂x − (τyz)b

⎞
⎠ , (30)

where (τxz, τyz)b = C(U, V ), in which C is a drag coefficient. Here, the thin bound-
ary layer dynamics is replaced by a viscous sliding law. The equations, which are
based on Eqs. (28)–(30) are apt for use in estuarine and general lake dynamics. They
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can optimally be used in numerical schemes, in which shock-capturing procedures
are applied. Their one-dimensional version has originally been derived by Serre [20]
and was further explored in hydraulic engineering e.g. by Basco [2], Soares-Frazao
and Zech [21], Mohapatra and Chaudhry [15], and Chaudhry [7], among others.

4.2 Water Waves on a Horizontal Bottom Treated
as a Newtonian Fluid

In wave problems of a viscous fluid, the shear stresses in Eqs. (17) and (18) cannot be
dropped; so, strictly speaking, Eqs. (27)–(30) are invalid and the shear stress terms
in (17) and (18) need to be parameterized. For a Newtonian fluid,

τi j = ρν(ui, j + u j,i ) ⇒ τxy = τyx = ρν

(
∂u

∂y
+ ∂ν

∂x

)
. (31)

Here, ν is the viscosity. When using a viscous linear sliding law, as in Eq. (6), then

(τxz)b = Cub, (τyz)b = Cνb. (32)

C is the drag coefficient of a viscous sliding law, see (6). The flux terms in (17) are,
for a viscous fluid, chosen as

1

ρ

zb∫
zb

(pxx , pyy)(ζ ) dζ = 1

ρ

zs∫
zb

p(ζ ) dζ (33)

1

ρ

zs∫
zb

τxy dζ = ν

zs∫
zb

(
∂u

∂y
+ ∂ν

∂x

)
(ζ ) dζ = ν

⎧⎨
⎩

∂

∂y

zs∫
zb

u(ζ ) dζ + ∂

∂x

zs∫
zb

ν(ζ ) dζ

⎫⎬
⎭

−
[

us
∂zs

∂y
− νs

∂zs

∂x

]
s

+
[

ub
∂zb

∂y
− νb

∂zb

∂x

]
b

, (34a)

Txy(z) = 1

ρ

zs∫
zb

τxy dζ = ν

{
∂

∂y
(Uh) + ∂

∂x
(V h) + V

∂h

∂x
− U

∂h

∂y

}
, (34b)

in which the terms in brackets are due to the application of the Leibniz rule. For
flow along a horizontal bed, zb = 0, the last bracket in (34a) vanishes, and zs = h.
Moreover, for depth independent horizontal velocity components, (34a) takes the
form (34b). In this formula we have also set us = U and νs = V and ignored that the
velocity in the basal boundary layer varies with depth. That contribution is accounted
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for in the viscous sliding law by adjusting the drag coefficent C accordingly. New-
tonian fluids do not exhibit any stress anisotropies, so that pxx = pyy = pzz = p.
This implies that pzz is given by Eq. (18). Alternatively, this equally implies that the
computations performed in Sect. 4.1 down to Eq. (24) remain valid, except that in
the expression of p/ρ in Eq. (25) the term

zs∫
z

(
∂τzx

∂x
+ ∂τzy

∂y

)
dζ = ∂

∂x

zs∫
z

τzx dζ + ∂

∂y

zs∫
z

τzy dζ (35)

must be added to Eq. (25). In obtaining the right-hand side of Eq. (35), the Leibniz
rule was used and the zero surface traction condition was applied. Employing the
sliding law (6), one may write

τzx (0) = CU, τzy(0) = CV, (36)

where U and V are the z-independent horizontal velocity components outside the
boundary layer; Eq. (36) are used to approximatelymodel the shear stress distribution
in the basal boundary layer. This distribution is modeled as

τzx (z) = CU f (z), τzy(z) = CV f (z), (37)

in which the function f (z) satisfies the conditions

f (z = 0) = 1, f (z = δ) = 0, f ′(z = δ) = 0, and δ = αh, (38)

with 0 ≤ α < 1 and δ as the boundary layer thickness. A popular choice is α = 1 and
f (z) = z/h, but this is not in conformity with the boundary layer structure of the
shear stresses, and violates f ′(h) = 0, which is less severe, however. A better choice
is proposed below. Adequate choices for f (z) and C should deliver a model for the
boundary layer transition from the base, zb = 0, to the outer edge of the boundary
layer. For z > δ we set τzx = τzy = 0, in conformity with the z-independence of the
(x, y)-velocity. Formula (35) now yields

zs∫
z

τzx (ζ ) dζ =
⎧⎨
⎩
0, z > δ,
δ∫

z
CU f (ζ ) dζ = CU

δ∫
z

f (ζ ) dζ, 0 < z ≤ δ,
(39a)

zs∫
z

τzy(ζ ) dζ =
⎧⎨
⎩
0, z > δ,
δ∫

z
CV f (ζ ) dζ = CV

δ∫
z

f (ζ ) dζ, 0 < z ≤ δ.
(39b)
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With the notation

T = (Tx , Ty) =
zs∫

z

(τzx , τzy) dζ, (40)

Equations (39a), (39b) imply

DivT(z) =

⎧⎪⎨
⎪⎩
0, z > δ,

Div

[
Cu

δ∫
z

f (ζ ) dζ

]
, 0 ≤ z < δ.

(41)

With these results the normal stress Eq. (18) can now be composed by resort to Eqs.
(26) and (41). The result is

p(z) = pzz(z)

= ρg(h − η) +
{
2 [Div(u)]2 − Div

(
∂u
∂t

)
− 1

2
Div [uDiv(u)]

}
(h2 − η2)

+

⎧⎪⎨
⎪⎩
0, z > 0,

Div

[
Cu

δ∫
z

f (ζ )dζ

]
, 0 ≤ z < δ.

(42)

With the above results one obtains for the conservative system of partial differential
equations (17) when the bottom is flat, zb = 0,

F =
⎛
⎝ Uh

g h2

2 + U 2h + Dν

U V h + T ν
xy

⎞
⎠ , G =

⎛
⎝ V h

V Uh + T ν
xy

V 2h + g h2

2 + Dν

⎞
⎠ , S = Sν = 1

ρ

⎛
⎝ 0

CU
CV

⎞
⎠ ,

(43)

in which the source term reduces to the viscous component Sν , and the term Dν is
made of the dispersion term plus a viscous contribution

Dν = D +
zs∫

zb

[DivT(z)] dξ = D +
zs∫

0

⎛
⎝Div(Cu)

zs∫
z

f (ζ ) dζ

⎞
⎠ dξ

= D + Div(Cu)

h∫
0

δ∫
z

f (ζ ) dζ dξ, (44)

with D as given in (29).
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The first and second terms in the second row of F and the first term in the third
row of F in expression (43) (and similar terms in G but with rows interchanged) are
the x- and y-momentum fluxes of an ideal fluid in the approximation of de Saint
Venant. Dνconsists of two contributions as shown in (44). The first part, D amends
the equations to the Boussinesq equations for an ideal fluid and the second term
depends on the shear stress (boundary layer) profile f (z) and vanishes if C = 0
or/and f (z) = 0. Therefore, this term is responsible for the viscous effect of the
fluid and the frictional sliding effects as expressed in the deviation of the vertical
pressure distribution from that of an ideal fluid. Moreover, T ν

xy accounts for the
viscous in-plane shear stress τxy as given in Eq. (34b). The superscript ν is a label for
viscous effects. The above notation, therefore, clearly identifies the various sources
of the individual terms. When Dν = 0, T ν

xy = 0 and S = 0, Eq. (17) with the thus
reduced expressions (43) describe the two-dimensional Saint Venant equations for
an inviscid fluid. When Dν = 0, T ν

xy = 0 and S = 0, the emerging equations are the
two-dimensional Boussinesq-type equations for the wave-like motion of an inviscid
density preserving fluid; and the remaining terms are of Newtonian viscous origin.
To complete this mode, an explicit expression for the boundary layer function f (z)
is needed. The choice

f (z) = (1 − z/δ)n, n > 1, δ = αh (45)

satisfies the boundary conditions (38) and yields

δ∫
z

f (ζ ) dζ =
δ∫

z

(
1 − ζ

δ

)n

dζ = δ

n + 1

(
1 − z

δ

)n+1 = αh

n + 1

(
1 − z

αh

)n+1
,

(46)
h∫

0

δ∫
z

f (ζ ) dζ dz = δ2

(n + 1)(n + 2)
. (47)

Accordingly, two parameters suffice to model the boundary layer profile.

5 Boussinesq-Type Extension of the Savage-Hutter
Equations

5.1 The Savage-Hutter (S-H) Theory

The fundamental equations for a non-hydrostatic dry granular model with enhanced
gravity are Eqs. (8), (9) and (10); moreover, when the horizontal velocity components
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(u, v) = (U, V ) are z-independent, Eqs. (17) and (18) hold in that form, as long as
the basal and free surfaces are material. The decisive assumption is that the integral

zs∫
zb

τxy dζ

is ignored in the flux and source terms of equations (17b), (17c) in comparison to
the remaining terms. It then follows that closure relations have to be postulated only
for pxx and pyy . This means physically that τxy is small in comparison to pxx and
pyy . Greve et al. [9] and Koch et al. [14] demonstrate that pyy is close to a principal
stress on planes orthogonal to the basal topography. Alternatively, this says also that
the flow is nearly unidirectional in the principal flow direction. Within the context
of the Mohr-Coulomb earth pressure theory, it is customary to introduce the earth
pressure coefficients

Kx = pxx

pzz
, Ky = pyy

pzz
(48)

to account for the normal stress anisotropy, typical for soil mass behavior. The pres-
sure pzz(z)(= τzz(z)) is given by Eq. (12), in which, in a first approximation, the
shear stress integral has been ignored in the one-dimensional treatment by Denlinger
and Iverson [8] as well as the otherwise exact ensuing one- dimensional analysis by
Castro-Orgaz et al. [6].

The closure procedure of the SH-avalanche model is intimately related to an
assumed hydrostatic pressure assumption and cannot rationally be extended to a
Boussinesq-type generalization as already seen by Castro-Orgaz et al. [6]. In this
paper we shall confine attention to the spatially one-dimensional plane flow. The
idea is that the integrated shear divergence term in Eq. (12) should be accounted
for. Equation (12) expresses the fact that in a Boussinesq-type extension of the SH-
model the hydrostatic (vertical) pressure distribution pzz = ρg(h − η) is corrected
according to Eq. (12) by the z−integrated vertical acceleration plus the integrated
stress divergence, which both are considered important in such extensions.

5.2 One-Dimensional Non-hydrostatic Granular Flow Model

The difficulties outlined in the above paragraphs become already evident in steady
plane waves of a granular material. This case was analyzed by Castro-Orgaz et al.
[6]—though in an approximate manner only. These authors account in their analysis
for the vertical acceleration term, but ignore the contribution by the shear stress term
τzx . Specifically, on a flat horizontal plate, zb = 0, η = z, Eqs. (15), (19), (22) and
(20) [in (20) the last stress divergence term in (18) is not dropped] transform in
one-dimensional flow into
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w = −Ux z ⇒ w2 = U 2
x z2, from(15),

I = −Ux
h2 − z2

2
, from(19),

(49)

IU = −UUx
h2 − z2

2
, from(22),

τzz = pzz = ρg(h − z) + ρ
∂ I

∂t
+ ρ(IU )x − ρw2 +

h∫
z

∂τzx

∂x
(ζ ) dζ, from(20),

in which the subscript x, ν denotes differentiation with respect to x, ν. Applying the
Leibniz rule in the fourth of Eqs. (49) for the shear stress integral, and imposing the
zero traction condition at z = h yields

h∫
z

∂τzx

∂x
(ζ ) dζ = ∂

∂x

h∫
z

τzx (ζ ) dζ. (50)

Moreover, let us now search for a permanent (form preserving) wave in a co-moving
coordinate system (Galilei transformation!); then in this new coordinate system
we get

∂(·)
∂t

= 0,

(
∂ I

∂t
= 0

)
and q = Uh = const., (51)

so that

U = q

h
, Ux = −q

hx

h2
, Uxx = −q

{
hxx

h2
− 2h2

x

h3

}
. (52)

From the fourth of Eqs. (49) on may deduce

τzz

ρ
= pzz

ρ
= g(h − z) + (IU )x − w2 + 1

ρ

∂

∂x

⎛
⎝

h∫
z

τzx (ζ ) dζ

⎞
⎠ . (53)

With IU as given by the third of Eq. (49) and with expressions (52)

(IU )x = − [
UU 2

x + UUxx
] h2 − z2

2
− UUx hhx

= −
[

q2

h2
h2

x − q2

h

(
hxx

h2
− 2h2

x

h3

)]
h2 − z2

2
+ q2

h2
h2

x . (54)
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Substituting this and the first of Eq. (48) into Eq. (53) and integrating the resulting
expression from z = 0 to z = h merges into

h∫
0

pzz

ρ
dz =

{
gh2

2
+ q2

2

hhxx − h2
x

3

}
+ 1

ρ

∂

∂x

h∫
0

zτzx (z) dz. (55)

The last term in this expression is obtained as follows

1

ρ

h∫
z

∂

∂x

⎛
⎜⎝

h∫
z

τzx (ζ ) dζ

⎞
⎟⎠ dz = 1

ρ

∂

∂x

h∫
0

dz

h∫
z

τzx (ζ ) dζ −
⎛
⎜⎝

h∫
z

τzx (ζ ) dζ |z=h

⎞
⎟⎠ ∂h

∂x

= 1

ρ

∂

∂x

h∫
0

⎛
⎜⎝

h∫
z

τzx (ζ ) dζ

⎞
⎟⎠ dz = 1

ρ

∂

∂x

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎣z

h∫
z

τzx (ζ ) dζ

⎤
⎥⎦
∣∣∣∣∣∣∣

z=h

z=0

−
⎡
⎢⎣

h∫
0

z(−τzx (z)) dz

⎤
⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

= 1

ρ

∂

∂x

h∫
0

zτzx (z) dz. (56)

In the first line the Leibniz rule for the integration of a differentiated function is
employed and boundary conditions are then implemented, whilst in the second line
integration by parts is used. The first term of Eq. (55) in braces has also been obtained
by Castro-Orgaz et al. [6] and is due to the vertical acceleration, originally motivated
by Denlinger and Iverson [8] [but these authors have the factor 1/4 instead of 1/3 in
the second term of Eq. (55), because of an approximate parameterization of w(z),
see Castro-Orgaz et al. [6] for a more detailed discussion]. The last term on the right-
hand side of Eq. (55) is missing by both Denlinger and Iverson [8] and Castro-Orgaz
et al. [6]. It is due to the stress divergence term in Eq. (18).

The crucial statements are Eqs. (53) and (55) and the x-component of the momen-
tum equation (17), which reduces here for 1D steady flow to

∂

∂x
(U 2h) + ∂

∂x

h∫
0

pxx (z)

ρ
dz = (τzx )b

ρ
. (57)

With the Coulomb anisotropic earth pressure postulate

pxx (z) = K pzz(z), (58)

where K = const., and the Mohr-Coulomb basal sliding law of the Savage-Hutter
model

(τzx )b

ρ
= − (pzz)b

ρ
sgn(U ) tan(φbed), (59)
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in which φbed is the bed friction angle, Eq. (57) assumes the form

∂

∂x
(U 2h) + K

∂

∂x

h∫
0

pzz(z)

ρ
dz = − (pzz)b

ρ
sgn(U ) tan(φbed), (60)

or

∂

∂x
(U2h) + K

∂

∂x

⎧⎨
⎩
(

gh2

2

)
+ q2

2

hhxx − h2
x

3
+ ∂

∂x

h∫
0

z
τzx

ρ
(z) dz

⎫⎬
⎭

=
⎧⎨
⎩−gh +

[
q2

h2 h2
x − q2

h

(
hxx

h2 − 2h2
x

h3

)]
h2

2
+ q2

h2 h2
x − 1

ρ

∂

∂x

⎛
⎝

h∫
0

τzx (z) dz

⎞
⎠
⎫⎬
⎭ K sgn(U ) tan(φbed ).

(61)

Savage and Hutter [19] have shown that for plane flow

K = Kpas.act. = 2 sec2(φint )
{
1 ±

[
1 − (cos2 φint )(sec(φbed))

1
2

]}
− 1, (62)

in which φint is the constant angle of internal friction.
Equation (61) describes a steady unilateral granular flow along a horizontal bed,

when vertical accelerations and the frictional shear stresses τzx as well as basal
frictional resistance are accounted for. The shear stress τzx as a function of z and
the bed friction in the source term were omitted by Castro-Orgaz et al. [6]. Equation
(61), subjected to the condition that q = const., then implies if shear stresses are
neglected too (source term neglected)

K g
h2

2
+ q2

h

(
1 + K

hhxx − h2
x

3

)
= const, (63)

which agrees with the result of Castro-Orgaz et al., in their Eq. (56). For K = 1 this
statement reduces to the result of potential fluid cnoidal waves, see e.g. Hager and
Hutter [10, 11]. Momentum flux is not conserved in Eq. (61) as it is in Eq. (63). This
conservation is destroyed by diffusion (last term in braces on the left-hand side) and
annihilated by the source term on the right-hand side. To see whether permanent
solutions exist in this case, the vertical shear stress integrals must be evaluated by
parametrizing the shear stress τzx . In a first attempt a linear distribution with z may
be postulated

τzx (z) = (τzx )b

(
1 − z

h

)
(64)
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implying
h∫

0

τzx (z) dz = (τzx )b
h

2
,

h∫
0

zτzx (z) dz = (τzx )b
h2

6
, (65)

with (τzx )b given in (59).
An alternative closure relation for τzx can be motivated by imposing a boundary

layer profile as suggested previously.

6 Discussion and Conclusion

In this paper the simplest possible dynamic problems for ideal and viscous fluids
and rapid granular flows have been looked at, which mathematically emerge, when
channelized or avalanching flows are scrutinized with depth averaged balance laws
of mass and momentum without imposition of the shallowness assumption. This
means that horizontal and vertical length scales may be of comparable size. This
corresponds in fluid dynamics to a replacement of the De Saint Venant equations
by Boussinesq-type equations, as stated here in Eq. (17). Physically, to surrender the
shallowness assumption implies that vertical convective acceleration terms and the
horizontal divergence of the shear stresses as shown in Eq. (12) compete with
the vertical gravity gradient.

In the work of the pioneers, Barré de Saint Venant [1], Serre [20], Benjamin and
Lighthill [3], as well as Hager and Hutter [10, 11] and Castro-Orgaz et al. [6], and in
granular flow problems by Denlinger and Iverson [8], these stress divergence terms
were ignored both in situations of laminar viscous flows and in turbulent modeling
attempts where such omissions are a bit doubtful.

In this paper, the above mentioned simplification was not made ab initio. In
Sect. 4 it was demonstrated that in an inviscid potential flow the stress divergence
term is absent in the Boussinesq-type equations and Saint Venant equations would
be corrected in the Boussinesq-type extension by the vertical acceleration terms
alone. Here, the only simplifying assumption that is generally implemented is the
z-independence of the horizontal velocity components. In the emerging terms one
may—and we have done so—incorporate a basal friction law even though this is
conceptually in violation with the assumption of a potential flow.

In our attempt of applying the depth integrated dynamical equations to a New-
tonian fluid it turned out, see Eq. (43), that the contribution to the flux of the two-di-
mensional depth averaged motion is expressed in two different terms: (i) Dν , which
comprises of a contribution due to the vertical acceleration and a stress divergence of
diffusive nature due to the boundary layer close to the base and (ii) a sliding source
term at the base. The choice of our sliding law does not allow imposition of the
no-slip boundary condition. This is only approximately possible in the limit as C in
Eq. (6) becomes large.
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The implementation of the frictional stress components in the dynamical
Savage-Hutter equations is more difficult. We thus, restricted attention to the one-
dimensional case, and also were only looking at the situation of a steady state wave
situation. Its extension under inclusion of the stress divergence term culminates in the
longitudinal momentum equation (61) and shows that, when applying the Coulomb
normal stress anisotropypostulationpairedwith theMohr-Coulombbasal sliding law,
the vertical shear stress component must still be assumed in an ad-hoc assumption.
With it, a complete model for a permanent non-linear wave follows from Eqs. (58),
(59), (60) and q = const. Existence of solutions to this set of equations has so far not
been demonstrated. This demonstration is, however, important, because the reduced
model of Castro-Orgaz et al. [6] demonstrated this existence for the reduced model.

It turns out that the time dependent one-dimensional and two-dimensional Boussi-
nesq-type models are yet more difficult in terms of the complexity of their governing
equations. They will likely be the subject of a further study.
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A Mixture Theory of Porous Media
and Some Problems of Poroelasticity

I-Shih Liu

Abstract Based on the theory of an elastic solid-fluid mixture and the concept of
volume fraction, a theory of porous media can be formulated consistent with basic
characteristics in soil mechanics, such as Darcy’s law, uplift force, and the effective
stress principle. Boundary value problem for different models of poroelasticity can
be considered depending on the assumptions of incompressibility of solid or fluid
constituents. From the consideration of accelerationwaves, there are two longitudinal
waves in general, except for the model with both incompressible solid and fluid
constituents, which admit only one longitudinal wave as known in the literature.

1 An Elastic Solid-Fluid Mixture

For a continuum theory of mixture, all constituents are supposed to be able to occupy
the same region of space simultaneously. LetBα denote the constituent α and κα be
its reference configuration and denote Bα = κα(Bα). The motion ofBα is a smooth
mapping,

χα : Bα × R → E, x = χα(Xα, t), Xα ∈ Bα.

It states that for different motion of each constituent, at the instant t, there is a
material point Xα ∈ Bα in each constituent, Xα = κα(Xα), that occupies the same
spatial position x in the Euclidean spaceE. The velocity and the deformation gradient
of each constituent are defined as

vα = ∂

∂t
χα(Xα, t), Fα = ∇Xα

χα(Xα, t).
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We consider a non-reacting solid-fluid mixture (α = s,f) with the following
balance equations of the partial mass and the partial linear momentum of each con-
stituent, and the energy equation of the mixture:

ρ̀s + ρs div vs = 0,

ρ̀f + ρf div vf = 0,

ρsv̀s − div Ts + mf = ρsbs, (1)

ρf v̀f − div Tf − mf = ρf bf ,

ρε̇ + div q − tr(T grad v) = ρr,

where ρs, ρf are the partial mass densities; Ts, Tf are the partial Cauchy stresses; mf

is the interactive force on the fluid constituent; ε, q are the internal energy density and
the heat flux of the mixture. The material derivatives with respect to the constituent
and the mixture have been used,

ỳα = ∂yα

∂t
+ (grad yα)vα, ẏ = ∂y

∂t
+ (grad y)v.

Toestablishfield equations of the basicfield variables,
{
ρs, ρf , χs, χf , θ

}
, constitutive

equations for the quantities in the balance equations,

f = {
Ts, Tf , ε, q, mf

}
, (2)

must be specified. For an elastic solid-fluid mixture, we consider the constitutive
equations of the form:

f = F (θ, ρf , Fs, grad θ, grad ρf , grad Fs, V). (3)

where θ is the temperature and V = vf − vs is referred to as the relative velocity.
Thermodynamic considerations of such a mixture theory has been considered by

Bowen [1] in which consequences of the entropy principle have been analyzed with
Coleman-Noll procedure to obtain general restrictions on the constitutive equations.
These results have been confirmed from the analysis with the use of Lagrange multi-
pliers by Liu in [7], and can be summarized in the following constitutive equations:

Tf = ρf ψf I − ∂ρψI

∂ρf
ρf I + ρf

∂ψf

∂V
⊗ V ,

Ts = ρsψsI + ∂ρψI

∂Fs
FT

s + ρs
∂ψs

∂V
⊗ V ,
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ε = ψI − θ
∂ψI

∂θ
+ 1

2

ρf ρs

ρ2
V · V ,

m0
f = ∂ρsψ

0
s

∂ρf
grad ρf − ∂ρf ψ

0
f

∂Fs
· grad Fs, q0 = 0. (4)

where 0, denotes the equilibrium value at the state with V = 0 and grad θ = 0.
These constitutive equations depend solely on the constitutive functions of the

free energy,

ψf = ψf (θ, ρf , Fs, V), ψs = ψs(θ, ρf , Fs, V),

ψI = ψI(θ, ρf , Fs). (5)

Note that although the partial free energies ψf and ψs may depend on the relative
velocity V , the (inner) free energy ψI ,

ρψI = ρf ψf + ρsψs,

does not depend on V .
Moreover, from (4) and (5), the sum of partial stresses becomes

TI = ρψI I − ∂ρψI

∂ρf
ρf I + ∂ρψI

∂Fs
FT

s ,

T = TI(θ, ρf , Fs) − 1

2

ρsρf

ρ
V ⊗ V . (6)

Similarly, although the partial stresses Tf and Ts may depend on V , the sum of partial
stress, TI = Tf + Ts, does not depend on V .

If we define the equilibrium partial fluid pressure as

pf = ρf

(∂ρψI

∂ρf
− ψ0

f

)
, (7)

then the equilibrium fluid stress reduces to the pressure, T 0
f = −pf I , and

Tf = −pf I + ρf (ψf − ψ0
f )I + ρf

∂ψf

∂V
⊗ V , (8)

and from (4)4 and (7), the interaction force can be written as

m0
f = pf

ρf
grad ρf − ρf (grad ψ0

f )

∣∣∣
0
. (9)
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Note that the definition of equilibrium fluid pressure in (7) implies the usual
relation for a pure fluid,

p = ρ2 ∂ψ

∂ρ
. (10)

2 Saturated Porous Media

The solid-fluidmixture considered in the previous section can be regarded as amodel
for saturated porous media provided that the concept of porosity is introduced. For
mixture theory of porous media, a material point is regarded as a representative
volume element dV which contains pores through them fluid constituent can flow.
Physically, it is assumed that a representative volume element is large enough com-
pare to solid grains (connected or not), yet at the same time small enough compare
to the characteristic length of the material body.

Let the volume fraction of pores be denoted by φ, then for a saturated porous
medium, the volume fractions of the fluid and the solid are

dVf = φ dV , dVs = (1 − φ)dV .

Remember that in the mixture theory, the mass densities are defined relative to
the mixture volume, so that the fluid and solid mass in the representative volume
element are given by

dMf = ρf dV = df dVf , dMs = ρs dV = ds dVs,

and hence,
ρf = φ df , ρs = (1 − φ)ds, (11)

where df and ds are the truemass densities of fluid and solid constituents respectively.

2.1 Pore Fluid Pressure

We shall also regard the partial fluid pressure pf in the mixture theory as the outcome
of a “microscopic” pressure acting over the area fraction of surface actually occupied
by the fluid in the pore, i.e.,

pf dA = P dAf , hence, pf = φaP,

where P will be called the pore fluid pressure and φa = dAf /dA is the area fraction
of the pores.



A Mixture Theory of Porous Media and Some Problems of Poroelasticity 271

In general, the volume fraction φ and the area fraction φa may be different, yet
for practical applications, we shall adopt a reasonable assumption that they are the
same for simplicity, so that the pore fluid pressure is defined as

P = pf

φ
. (12)

The pore pressure is an important concept in soil mechanics [3, 6].
Let us write the stresses in the following form,

Tf = −φPI + T̄f ,

Ts = −(1 − φ)PI + T̄s. (13)

We call T̄f the extra fluid stress and T̄s the effective solid stress.

2.2 Equations of Motion

The equations of motion (1)3,4 for the fluid and the solid constituents can now be
written as

φdf v̀f = −φ grad P − P grad φ + div T̄f + mf + φdf g,

(1 − φ)dsv̀s = −(1 − φ) grad P + P grad φ + div T̄s − mf + (1 − φ)dsg, (14)

where the body force is the gravitational force g.
On the other hand, from (9), the interactive force mf in equilibrium becomes

m0
f = P grad φ − φr0, r0 = − P

df
grad df + df (grad ψ0

f )

∣∣∣
0
. (15)

By canceling out the term P grad φ in (14) from the interactive force (15) leads to
the following equations of motion for porous media,

φdf v̀f = −φ grad P + div T̄f + (mf − m0
f ) − φr0 + φdf g,

(1 − φ)dsv̀s = −(1 − φ) grad P + div T̄s − (mf − m0
f ) + φr0 + (1 − φ)dsg,

(16)

2.3 Linear Theory

Since equilibrium is characterized by the conditions, grad θ = 0 and V = 0, in a
linear theory, we shall assume that | grad θ | and |V | are small quantities, and that
o(2) stands for higher order terms in these quantities.
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From (8) and (13), the extra fluid stress,

T̄f = φdf (ψf − ψ0
f )I + φdf

∂ψf

∂V
⊗ V ≈ o(2), (17)

is a second order quantity because the free energy of fluid constituent must be a
scalar-valued isotropic function of the vector variable (V · V).

Moreover, we can define the resistive force as

r = r0 − 1

φ
(mf − m0

f ).

It is the force against the flow of the fluid through the medium. Since the non-
equilibrium part of the interactive force, (mf − m0

f ), vanishes in equilibrium, we can
represent the resistive force as

r = R V + G grad θ + r0 + o(2). (18)

The parameter R is called the resistivity tensor, and its inverse R−1 is called the
permeability tensor.

2.3.1 Darcy’s Law, Uplift, and Effective Stress Principle

The equations of motion (16) in the linear theory becomes

df v̀f = − grad P − r + df g,

(1 − φ)dsv̀s = −(1 − φ) grad P + div T̄s + φ r + (1 − φ)dsg. (19)

The Eq. (19)1 for the motion of the fluid is a generalized Darcy’s law. Indeed, for
stationary case, and only r = RV is taken into account from (18), it reduces to the
classical Darcy’s law,

vf − vs = −R−1(grad P − df g)

We can obtain an interesting equation for the solid constituent if we multiply the
Eq. (19)1 by (1 − φ) and subtract it from the Eq. (19)2,

(1 − φ)dsv̀s − div T̄s = r + (1 − φ)(ds − df )g + (1 − φ)df v̀f . (20)

From this equation, we notice that the effective stress is not affected by the pore fluid
pressure—this is known as the effective stress principle in soil mechanics (see [3]).

Note that there are three terms of forces on the right-hand side of the Eq. (20).
The first one is the usual resistive force r of diffusive motion. The second term,
(1−φ)(ds −df )g, is the weight of solid reduced by the uplift (or buoyancy) from the
fluid corresponding to the principle of Archimedes. The importance of uplift in soil
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structures had been one of the major concern in the development of soil mechanics
(see [2]).

The third term, (1 − φ)df v̀f , is the inertia force against the displacement of fluid
in the motion of the solid through it. In the theory of Biot (see [11]), the relative
acceleration was introduced as a part of interactive force between solid and fluid
constituents to account for the apparent addedmass effect he expected in the diffusive
processes. The inertia force considered here seems to correspond to such an effect.
However, from the derivation above, it is clear that it is not a part of interactive force,
since there is no inertia effect on the motion of fluid (19)1.

3 Problems in Poroelasticity

Hereafter we shall restrict our attention to mechanical problems (isothermal case) of
the theory of elastic porous media,also known as poroelasticity. The governing equa-
tions are based on the balance equations of partial mass (1)1,2 and partial momentum
of fluid and solid constituents (19):

⎧⎪⎪⎨
⎪⎪⎩

(φdf )̀ + φdf div vf = 0,
((1 − φ)ds)̀ + (1 − φ)ds div vs = 0,
φ df v̀f + φ grad P − div T̄f + φ r = φ df g,

(1 − φ)dsv̀s + (1 − φ) grad P − div T̄s − φ r = (1 − φ)dsg.

(21)

For this system of equations, from (13), (15), (17), and (18), we have the following
constitutive relations:

T̄f = φdf (ψf − ψ0
f )I + φdf

∂ψf

∂V
⊗ V ≈ o(2),

T̄s = TI + PI − T̄f = TI + PI + o(2),

r = R V − P

df
grad df + df (grad ψ0

f ) + o(2). (22)

where o(2) stands for higher order terms in |V |, and

ψf = ψf (φ, df , Fs, V), P = P(φ, df , Fs), TI = TI(φ, df , Fs).

3.1 Some Models of Porous Media

The governing system (21) consists of two scalar and two vector equations, while
besides the two vector variables of the motions of fluid and solid constituents, there
are three scalar variables, namely, the two true densities, df and ds, and the porosity
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φ. Therefore, the system is under-determinate, namely, there are less number of
equations than the number of independent variables.

Porosity is a microstructural variable of the porous media. To deal with this addi-
tional variable, without postulating an additional (evolution or balance) equation
for porosity, as proposed in some mixture theories in the literature [9, 10], there
remain some possibilities to formulate deterministic theories from the present theory
of porous media. We may consider following models:

1. Firstly,we can regard the porosity as a constitutive quantity, given by a constitutive
relation.
Independent variables: (df , ds, χf , χs).

Constitutive variables:

P = P(df , Fs), φ = φ(df , Fs),

r = r(df , Fs, V), T̄f = T̄f (df , Fs, V), T̄s = T̄s(df , Fs, V).

Secondly, we can make some assumption of incompressibility of solid or fluid
constituent to reduce the number of scalar variables.

2. Incompressible solid constituent: constant ds.
Independent variables: (φ, df , χf , χs).

Constitutive variables:

P = P(φ, df , Fs), r = r(φ, df , Fs, V),

T̄f = T̄f (φ, df , Fs, V), T̄s = T̄s(φ, df , Fs, V).

3. Incompressible fluid constituent: constant df .
Independent variables: (φ, ds, χf , χs).

Constitutive variables:

P = P(φ, Fs), r = r(φ, Fs, V), T̄f = T̄f (φ, Fs, V), T̄s = T̄s(φ, Fs, V).

4. Incompressible porous medium: constant ds and df .
Note that even composed with incompressible constituents, the porous body is
not necessarily incompressible because the porosity may vary. Moreover, we can
regard the pore pressure P as an indeterminate pressure so that the system is
deterministic.
Independent variables: (φ, P, χf , χs).

Constitutive variables:

T̄f = T̄f (φ, Fs, V), T̄s = T̄s(φ, Fs, V) r = r(φ, Fs, V).
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3.2 Boundary Conditions

Regarding the boundary as a singular surface between the porous body and the
external medium, we have the following jump conditions for the mixture as a single
body,

[
ρ(v − u∗)

] · n = 0,[
ρv ⊗ (v − u∗) − T

]
n = 0, (23)

where u∗ is the surface velocity of the boundary. Therefore, at the boundary of a
solid-fluid mixture body, we have vs = u∗ and the jump conditions (23) becomes,

[[
ρf V

]] · n = 0,[[
v ⊗ ρf V − (Tf + Ts) + 1

2

ρf ρs

ρ
V ⊗ V

]]
n = 0, (24)

Furthermore, the boundary of a porous body can also be regarded as a semipermeable
singular surface for the fluid constituent, in other words, the fluid can flow across
the boundary and the solid cannot. In a semipermeable boundary, it has been proved
that the jump condition of energy is given by (see [5]),

[[
μf + 1

2V 2 − V · ∂ψf

∂V

]]
= 0,

where μf = ∂ρψI

∂ρf
is the fluid chemical potential. From (7), pf = ρf (μf − φ0

f ), it

implies the jump condition for the pore fluid pressure in a porous body,

[[P]] + df

[[
ψ0

f + 1

2
V 2 − V · ∂ψf

∂V

]]
= 0. (25)

Based on the above jump conditions, we can formulate the boundary condition for
the system of partial differential equations. For well-posedness of the problem, two
boundary conditions are needed at any point on the boundary, in addition to the proper
initial conditions. There are two type of boundary conditions, namely, prescription
of the motion of the boundary or the force acting on the free boundary described in
the following, where the subindex w denotes the corresponding prescribed value at
the exterior side of the boundary.
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3.2.1 Dirichlet Conditions

These are displacement (velocity) boundary conditions. From (24)1, one can pre-
scribe the solid displacement uw and the fluid mass flow mw,

us = uw, φ df (vf − vs) · n = mw,

where us is the displacement vector of the solid constituent.

3.2.2 Neumann Conditions

Traction boundary conditions must be prescribed according to the relations (24)2 and
(25). Provided that the fluid mass flux is small enough, one can prescribe the total
surface traction tw,

Tn = (Ts + Tf )n = tw

If in addition, the equilibrium free energyψ0
f is a function of df only, then the second

condition implies the continuity of the pore pressure across the boundary,

Pn = pwn,

where pw is the pressure of the adjacent fluid acting on the boundary.

3.2.3 Remarks on Boundary Conditions on a Free Boundary

Since there are two equations of motion in the systems of governing equations, for
a free boundary, two traction boundary conditions are needed. However, unlike the
continuity of total traction, the continuity of pore pressure has beenmostly ignored in
the literature, and an additional boundary condition is often postulated for the closure
of the problem. It is proposed by Rajagobal and Tao [8] a “method of splitting the
total traction” into parts acting on the fluid and the solid constituents according to the
proportion of volume fraction (or surface fraction more exactly). Therefore, suppose
that the boundary separates the porous body and the external fluid with pressure pw,
then the method requires that

Tf n ≈ −pf n = −ρf

df
pwn.

Since the pore fluid pressure is defined as P = pf /φ and ρf = φdf , the proposed
splitting method is consistent with the continuity of pore fluid pressure at the semi-
permeable surface.
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Another condition was suggested byDeresiewicz and Skalak [4],Wilmanski [11];
in which an interfacial version of Darcy’s law simulates the fluid flow across the
boundary,

ρf (vf − vs) · n = α
(

pf − ρf

df
pw

)
,

where α is referred to as the interface permeability. For α = 0 the condition reduces
to vf = vs, i.e., the boundary is impermeable, while for α = ∞, it reduces to the
continuity of pore fluid pressure. For the value in between, the boundary is not an ideal
singular surface as proposed in the usual mixture theories, instead, the interface has
its physical property. To include such an effect, a more sophisticated mixture theory
containing interfacial membrane must be considered. Such a theory is beyond the
present consideration. However, with of the jump condition (25), which relates the
mass flux and the pore pressure across the boundary, it seems that the postulate of an
additional condition, such as Deresiewicz condition, is superfluous in the framework
of the usual mixture theories of porous media.

4 Acceleration Waves

It is known in a theory of binary fluid mixture, there are two longitudinal waves,
usually referred to as the first and the second sound (see [9] Appendix 5B). For
porous media, the existence of two longitudinal waves, referred to as P1 and P2
waves, was predicted in Biot’s theory [11]. From this observation, mathematically,
the existence of two longitudinal wave in a well formulated theory of two com-
ponent system seems beyond doubt in general. Nevertheless, the non- existence of
second longitudinal wave in incompressible porous media has been pointed out in
the literature (see [11]). Therefore, we would like to consider wave propagations in
the porous models formulated from the present theory under some incompressibility
assumption and show that indeed, in the model with both incompressible solid and
fluid constituents, the second longitudinal wave does not exist. In other models with
only one incompressible constituent two longitudinal waves may exist in general.

4.1 Wave Front Propagation

A propagating wave can be regarded as a moving singular surface through a material
region, across which some physical quantities may suffer jump discontinuity. Let

[[A]] = A− − A+,

be the jump of the quantity A, where A− and A+ denote its limiting value ahead and
behind of the surface respectively. Let n be the unit normal vector pointing in the
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propagating direction and U be the normal speed of the moving singular surface in
the present configuration. According to Hadamard lemma, if [[A]] = 0, we have the
following geometric and kinematic compatibility conditions:

[[
grad A

]] = [[
grad A · n

]]
n,

[[
∂A
∂t

]] = −U
[[
grad A · n

]]
. (26)

We shall consider a wave front propagating into a homogeneous region of porous
body in equilibrium, in which vf = vs = 0. For a weak discontinuity wave, i.e., on
the singular surface, we assume that

[[
vf

]] = 0, [[vs]] = 0, [[Fs]] = 0,[[
df

]] = 0, [[ds]] = 0, [[φ]] = 0,

and let

af =
[[

∂vf

∂t

]]
, as =

[[
∂vs

∂t

]]
, δf =

[[
∂df

∂t

]]
, δs =

[[
∂ds

∂t

]]
, ϕ =

[[
∂φ

∂t

]]
.

The amplitude vectors af and as are the jumps of acceleration of fluid and solid
constituents and such a weak wave is called an acceleration wave.

By repeated use of the compatibility conditions (26), the following jump condi-
tions at the wave front hold:

[[
grad vf

]] = − 1
U af ⊗ n,

[[
grad vs

]] = − 1
U as ⊗ n,[[

grad df
]] = − 1

U δf n,
[[
grad ds

]] = − 1
U δs n,[[

grad φ
]] = − 1

U ϕ n,
[[
grad Fs

]] = 1
U2 as ⊗ FT n ⊗ n.

(27)

Since the relative velocity V = vf − vs = 0 vanishes at the wave front, we can
replace the equations of motion in (21)3,4 by the equations (19)1 and (20) of the
linear theory,

df v̀f = − grad P − r + df g,

(1 − φ)(dsv̀s − df v̀f ) = div T̄s + r + (1 − φ)(ds − df )g, (28)

in the systems of the governing equations, without loss of generality.

4.2 Porous Media with Incompressible Solid Constituent

We consider the porous media model of incompressible solid constituent (ds =
constant) governed by the system (21). With the following abbreviations for partial
derivatives,
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PA = ∂P

∂A
, HA = ∂T̄s

∂A
,

and

r = RV − P

df
grad df +df grad ψ0

f = RV +Rdf grad df +Rφ grad φ+RFs · grad Fs,

the jumps of the governing equations at the wave front become

Udf ϕ + Uφ δf − φdf (af · n) = 0,

U ϕ + (1 − φ)(as · n) = 0,

U2df af − U(Pφ + Rφ)ϕ n − U(Pdf + Rdf )δf n +
(
(RFs + PFs ) · as ⊗ FT

s n
)

n = 0,

U2(1 − φ)(dsas − df af ) + U(RφI + Hφ)ϕ n

+U(Rdf I + Hdf )δf n −
(
(I ⊗ RFs + HFs ) · as ⊗ FT

s n
)

n = 0.

For clarity, the last two equations in (Cartesian) component forms are

U2df ai
f − U(Pφ + Rφ)ϕ ni − U(Pdf + Rdf )δf ni +

(
(RFs + PFs )kaak

s Fja
s nj

)
ni = 0,

U2(1 − φ)(dsai
s − df ai

f ) + U(RφI + Hφ)ijϕ nj

+U(Rdf I + Hdf )ijδf nj −
(
(δij(RFs )ka + (HFs )ijka)ak

s Fla
s nl

)
nj = 0.

If we define

Π̂ik = (RFs + PFs)kaFja
s nj ni, Q̂ik = (δij(RFs)ka + (HFs)ijka)F

la
s nlnj, (29)

then the system can be written as

Udf ϕ + Uφ δf − φdf (af · n) = 0,

U ϕ + (1 − φ)(as · n) = 0,

U(Pφ + Rφ)ϕ n + U(Pdf + Rdf )δf n − U2df af − Π̂ as = 0,

U(RφI + Hφ)ϕ n + U(Rdf I + Hdf )δf n − U2(1 − φ)(df af − dsas) − Q̂ as = 0.
(30)

4.2.1 Longitudinal Acceleration Waves

For longitudinal waves, let

af = âf n, as = âsn,
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i.e., the amplitude vectors of accelerations of fluid and solid constituents are in the
direction of the propagation direction, and let

P̂φ = Pφ + Rφ, P̂df = Pdf + Rdf , Ĥφ = Rφ + n · Hφn, Ĥdf = Rdf + n · Hdf n.

The system (30) then can be written as

⎡
⎢⎢⎣

Udf Uφ −φdf 0
U 0 0 (1 − φ)

UP̂φ UP̂df −U2df −n · Π̂n
UĤφ UĤdf −U2(1 − φ)df U2(1 − φ)ds − n · Q̂n

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ϕ

δf

âf

âs

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ .

The propagation condition requires the determinant of the coefficient matrix be van-
ish.

Obviously, if U = 0, the determinant is identically zero, as well as âf = âs = 0,
which is an uninteresting case. Therefore we are looking for moving longitudinal
wave with U 	= 0. The vanishing of the determinant can be simplified to

det

⎡
⎢⎢⎣

df φ −φ 0
1 0 0 (1 − φ)

P̂φ P̂df −U2 −n · Π̂n
Ĥφ Ĥdf −U2(1 − φ) U2(1 − φ)ds − n · Q̂n

⎤
⎥⎥⎦ = 0, (31)

which is a quadratic equation in U2, say

aU4 + bU2 + c = 0,

with the coefficients given by

a = φ(1 − φ)ds,

b = −φ(n · Q̂n) + (1 − φ)φ(n · Π̂n)

+(1 − φ)2φP̂φ − (1 − φ)(φds + (1 − φ)df )P̂df + (1 − φ)(df Ĥdf − φĤφ),

c = φP̂df (n · Q̂n) − φĤdf (n · Π̂n) − (1 − φ)φ(P̂φĤdf − P̂df Ĥφ).

In case there are two positive real roots of this quadratic equation, there will be
two longitudinal waves propagating in the porous body. Obviously, this possibility
depends on the constitutive parameters in the above coefficients.

To be more specific, we shall consider a simple case with constitutive relations,

ψ0
f = ψ0

f (df ), T̄s = T̄s(Fs), (32)

so that
Hφ = 0, Hdf = 0, Rφ = 0, RFs = 0.
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Moreover, if we assume the free energy ψ0
f (df ) is the same as that of the pure fluid

in the pore and the relation (10) holds, i.e.,

P = d2
f

∂ψ0
f

∂df
, hance Pφ = 0, PFs = 0,

and, from (22), we have

Rdf = −
( P

df
− df

∂ψ0
f

∂df

)
= 0.

In this simple case, we have, from (29),

P̂φ = 0, Π̂ = 0, Ĥφ = 0, Ĥdf = 0,

Q̂ik = (HFs)ijkaFla
s nlnj = Lijkl njnl, (33)

where, from (13),

Lijkl = ∂Tij
s

∂Fka
s

Fla
s

is the elasticity tensor of the solid constituent. It is usually assumed that the elasticity
tensor is strong elliptic and the compressibility is positive, i.e.,

Pdf = ∂P

∂df
> 0, Lijkl uivjukvl > 0 ∀ u, v 	= 0. (34)

The quadratic equation of the propagation condition can then be written as

(U2 − c21)(U
2 − c22) −

(df

ds

1 − φ

φ
c22

)
U2 = 0, (35)

where, by (34),

c1 =
√

n · Q̂n

(1 − φ)ds
, c2 =

√
∂P

∂df
,

are the well-known speeds of longitudinal wave in an elastic solid and an elastic
fluid respectively. In the present case, from the roots of (35), these two speeds are
modified by the presence of the last term in the Eq. (35).

From this simple case, it seems reasonable to expect two longitudinalwave speeds,
known as P1 and P2 wave, in the present theory of porous media with incompressible
solid constituent, from the propagation condition (31) in general.
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4.2.2 Transversal Acceleration Wave

For transversal wave, af · n = 0 and as · n = 0, from the the first three equations of
(30), it follows that

ϕ = 0, δf = 0, df af = − 1

U2
Π̂as,

and the last equation becomes

(
(Q̂ − (1 − φ)Π̂) − (1 − φ)dsU

2 I
)
as = 0 (36)

Let as = âsm where m is a unit vector normal to the propagation direction, i.e.,
m · n = 0. Then from (36), there is a transversal wave with propagation speed given
in the following relation,

(1 − φ)dsU
2 = m · (Q̂ − (1 − φ)Π̂

)
m.

In particular, for the simple case given by (32), the velocity of propagation reduces
to the well-known speed of shear wave in an elastic body,

U = cs =
√

m · Q̂m

(1 − φ)ds
.

4.3 Porous Media with Incompressible Fluid Constituent

Similarly, for themodel of incompressible fluid constituent (df = constant) governed
by the system (21), we have

U ϕ − φ(af · n) = 0,

Uds ϕ − U(1 − φ)δs + (1 − φ)ds(as · n) = 0,

UP̂φϕ n − U2df af − Π̂ as = 0,

U(RφI + Hφ)ϕ n − U2(1 − φ)(df af − dsas) − Q̂ as = 0. (37)

For longitudinal waves, we have

⎡
⎢⎢⎣

U 0 −φ 0
Uds −U(1 − φ) 0 (1 − φ)ds

UP̂φ 0 −U2df −n · Π̂n
UĤφ 0 −U2(1 − φ)df U2(1 − φ)ds − n · Q̂n

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ϕ

δs

âf

âs

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ .
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and the determinant of the coefficient matrix reduces to

det

⎡
⎣ 1 −φ 0

P̂φ −U2df −n · Π̂n
Ĥφ −U2(1 − φ)df U2(1 − φ)ds − n · Q̂n

⎤
⎦ = 0, (38)

which lead to the quadratic equation in U2,

(
U2(1 − φ)ds − n · Q̂n

)(
U2df − φP̂φ

) + (n · Π̂n)
(
U2(1 − φ)df − φĤφ

) = 0.

Therefore, there may also exist two longitudinal wave in the incompressible fluid
model.

Wemay also consider a simple case that the pore pressure and the fluid free energy
are independent of Fs, so that Π̂ = 0. In this case, there are two longitudinal waves
(P1 and P2 waves),

U1 =
√

n · Q̂n

(1 − φ)ds
, U2 =

√
φ

df
P̂φ.

The first wave is the same as the longitudinal wave in the elastic body, while the
second wave is essentially the compressive wave of pore fluid.

For transversal wave, from (37), one can easily check that the propagation con-
dition is exactly the same as the relation (36) for the incompressible solid model.

4.4 Incompressible Porous Media

For an incompressible porousmedium,we assume that both the solid and thefluid true
densities are constant. In this model the pore pressure is regarded as an indeterminate
pressure, and for acceleration waves, we have, in addition,

[[P]] = 0,
[[
grad P

]] = π n,

where π = [[
grad P · n

]]
. By taking the jump of the system of equations (21) at the

wave front, we obtain

U ϕ − φ(af · n) = 0,

U ϕ + (1 − φ)(as · n) = 0,

URφϕ n − U2π n − U2df af − Π̂ as = 0,

U(RφI + Hφ)ϕ n − U2(1 − φ)(df af − dsas) − Q̂ as = 0. (39)
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The abbreviations are the same as before except

Π̂ik = (RFs)kaFja
s njni.

For longitudinal wave, the system can be written as

⎡
⎢⎢⎣

U 0 −φ 0
U 0 0 (1 − φ)

URφ −U2π −U2df −n · Π̂n
UĤφ 0 −U2(1 − φ)df U2(1 − φ)ds − n · Q̂n

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ϕ

π

âf

âs

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ ,

and the determinant of the coefficient matrix reduces to

det

⎡
⎣ 1 −φ 0

1 0 (1 − φ)

Ĥφ −U2(1 − φ)df U2(1 − φ)ds − n · Q̂n

⎤
⎦ = 0,

which gives only one propagation speed,

U2 = φ n · Q̂n + φ(1 − φ)Ĥφ

φ(1 − φ)ds + (1 − φ)2df
.

Therefore, there is no second longitudinal wave in this model as pointed out in the
literature. As for the transversal wave, the propagation speed is the same as before.
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Plane Waves, Uniqueness Theorems
and Existence of Eigenfrequencies
in the Theory of Rigid Bodies with a Double
Porosity Structure

Merab Svanadze

Abstract The present paper concerns the linear theory of rigid bodies with a dou-
ble porosity structure. Some basic properties of plane harmonic waves are treated.
The internal boundary value problems (BVPs) of steady vibrations are formulated.
The uniqueness theorems for regular (classical) solutions of these problems are
proved. The existence and asymptotic distribution of eigenfrequencies of the inter-
nal BVPs of steady vibrations are established. Finally, the connection between plane
harmonic waves, uniqueness of solutions and existence of eigenfrequencies are pre-
sented.

1 Introduction

The mathematical models of double porosity media, as originally developed for
the mechanics of naturally fractured reservoirs, have found applications in many
branches of civil engineering, geotechnical engineering, technology and, in recent
years, biomechanics.

On the basis of Darcy’s law the general 3D theory of consolidation for mate-
rials with single porosity was formulated by Biot [4]. The mathematical model of
porous media with double porosity is proposed by Barenblatt et al. [2]. The theory
of consolidation for elastic materials with double porosity is presented by Aifantis
and coauthors [3, 21, 51]. This theory unifies the earlier proposed models for porous
media with double [2] and single porosities [4]. More general models of double
porosity materials (the cross-coupled terms are included in the equations of conser-
vation of mass for the pore and fissure fluid) are introduced by several authors [16,
17, 22–25, 52]. The linear theory of viscoelasticity for Kelvin-Voigt materials with
double porosity is presented and fundamental solution of equations of steady vibra-
tions is constructed by Svanadze [43]. The double porosity concept was extended to
media with multiple porosity by Bai et al. [1] and Moutsopoulos et al. [28].
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In the last decade there has been interest in investigation of problemsof the theories
of elasticity and thermoelasticity for solids with double porosity. In this connection,
the linear theory of elastodynamics for anisotropic nonhomogeneous materials with
double porosity is studied by Straughan [34]. The properties acceleration waves in
the nonlinear double porosity elasticity are established by Gentile and Straughan
[18]. The fundamental solutions in the theories of elasticity and thermoelasticity for
materials with double porosity are constructed by Scarpetta et al. [33], Svanadze
[37, 42], Svanadze and De Cicco [47]. The basic properties of plane harmonic waves
in the coupled linear theory of elasticity for solid with double porosity are established
by Ciarletta et al. [10] and Svanadze [41]. The three-dimensional BVPs and initial-
BVPs of the theory of elasticity for materials with double porosity are investigated
by potential method and the theory of singular integral equation by Scarpetta and
Svanadze [32] and Svanadze [39, 40, 44].

The double porosity model represents a new possibility for the study of important
problems concerning the civil engineering. The intended applications of the theories
of elasticity and thermoelasticity for materials with a double porosity structure are to
geological materials such as rocks and soils, manufactured porous materials such as
ceramics and pressed powders, and biomaterials such as bone. The double porosity
model would consider the bone fluid pressure in the vascular porosity and the bone
fluid pressure in the lacunar-canalicular porosity. The mathematical problems of
the theory of bone poroelasticity are studied by Svanadze and Scalia [48, 49]. An
extensive reviewof the results of this theory, alongwith references to various pertinent
contributions, may be found in the survey papers by Cowin [12], Cowin et al. [13]
and Rohan et al. [30].

Recently, on the basis of balance of equilibrated force the theories of elasticity
and thermoelasticity for materials with a double porosity structure are presented by
Ieşan andQuintanilla [20]. In this paper the Cowin-Nunziato theory of materials with
voids [14, 29] is generalized to derive a theory of thermoelastic solids, which have
a double porosity structure. The basic equations for elastic materials with a double
porosity structure involve the displacement vector field and the volume fraction fields
associated with the pores and the fissures. The basic three-dimensional BVPs of the
equilibrium theory of elasticity for materials with a double porosity structure are
investigated by potential method and the theory of singular integral equations by
Ieşan [19]. The uniqueness and existence theorems for external BVPs of steady
vibrations in the linear theory of rigid bodies with a double porosity structure are
proved by Svanadze [45].

In the present paper, we shall consider the 3D linear theory of rigid bodies with
a double porosity structure [20]. This work is articulated as follows. Section2 is
based on the dynamical equations for rigid bodies with a double porosity structure. In
Sect. 3 some basic properties of plane harmonic waves are treated. In Sect. 4 the basic
internal BVPs of steady vibrations are formulated. In Sect. 5 the uniqueness theorems
for regular (classical) solutions of these problems are proved, the existence and
asymptotic distribution of eigenfrequencies of the internal BVPs of steady vibrations
are established. Finally, in Sect. 6 the connection between plane harmonic waves,
uniqueness of solutions and existence of eigenfrequencies are presented.
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2 Basic Equations

Let x = (x1, x2, x3) be a point of the Euclidean three-dimensional space R3, let
t denote the time variable, t ≥ 0. In what follows we consider a rigid body with a
double porosity structure that occupies the regionΩ ofR3. ϕ̃(x, t) and ψ̃(x, t) denote
the changes of volume fractions from the reference configuration corresponding to
pores and fissures, respectively.

We assume that subscripts preceded by a commadenote partial differentiationwith
respect to the corresponding Cartesian coordinate, repeated indices are summed over
the range (1, 2, 3), and the dot denotes differentiation with respect to t.

The governing field equations in the linear dynamical theory of rigid bodies with
a double porosity structure are as follows [20]:

(1) The constitutive equations

σ̃j = αϕ̃,j + βψ̃,j, τ̃j = βϕ̃,j + γ ψ̃,j, (1)

where σ̃j and τ̃j are the components of equilibrated stress vectors, j = 1, 2.
(2) The balance of equilibrated forces

σ̃j,j + ξ̃ + F̃1 = ρ1
¨̃ϕ, τ̃j,j + ζ̃ + F̃2 = ρ2

¨̃
ψ, (2)

where

ξ̃ = −α1ϕ̃ − α3ψ̃, ζ̃ = −α3ϕ̃ − α2ψ̃, (3)

α, β, γ, α1, α2, α3 are constitutive coefficients, ξ̃ , ζ̃ and F̃1, F̃2 are the intrinsic
and extrinsic equilibrated body forces, respectively, ρ1 and ρ2 are the coefficients
of the equilibrated inertia, ρ1 > 0, ρ2 > 0.

Substituting Eqs. (1) and (3) into (2), we obtain the following system of equa-
tions of motion in the linear theory of rigid bodies with a double porosity structure
expressed in terms of the volume fraction fields ϕ̃ and ψ̃ :

α Δ ϕ̃ + β Δ ψ̃ − α1 ϕ̃ − α3 ψ̃ = ρ1
¨̃ϕ − F̃1,

β Δ ϕ̃ + γ Δ ψ̃ − α3 ϕ̃ − α2 ψ̃ = ρ2
¨̃
ψ − F̃2,

(4)

where Δ is the Laplacian operator.
Neglecting the extrinsic equilibrated body forces in (4), we obtain the following

system of homogeneous equations of motion in the considered theory:

α Δ ϕ̃ + β Δ ψ̃ − α1 ϕ̃ − α3 ψ̃ − ρ1
¨̃ϕ = 0,

β Δ ϕ̃ + γ Δ ψ̃ − α3 ϕ̃ − α2 ψ̃ − ρ2
¨̃
ψ = 0.

(5)
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We will suppose that the following assumptions on the constitutive coefficients
hold true [20]

α > 0, αγ − β2 > 0, α1 > 0, α1α2 − α2
3 > 0. (6)

3 Plane Harmonic Waves

Let us suppose that plane harmonic waves corresponding to a wave number τ and to
an angular frequency ω propagate in the x1-direction through the rigid solid with a
double porosity structure. Then

ϕ̃(x, t) = C1 ei(τx1−ωt), ψ̃(x, t) = C2 ei(τx1−ωt), (7)

where C1 and C2 are constant values, ω > 0.
It is obvious that if τ > 0, then the corresponding plane wave has the constant

amplitude, and if τ is complex with Im τ > 0, then the plane wave is attenuated as
x1 → +∞.

Keeping in mind the condition (7), from (5) it follows that

(
ατ 2 − η1

)
C1 + (

βτ 2 + α3
)

C2 = 0,(
βτ 2 + α3

)
C1 + (

γ τ 2 − η2
)

C2 = 0,
(8)

where ηj = ρjω
2 − αj, j = 1, 2.

We introduce the notation

α0 = αγ − β2, β0 = α1α2 − α2
3,

ζ0 = αη2 + γ η1 + 2βα3, η0 = η1η2 − α2
3 .

(9)

Obviously, from (6) it follows that α0 > 0, β0 > 0.
If τ is a solution of the biquadratic equation

α0τ
4 − ζ0τ

2 + η0 = 0, (10)

then (8) has non-trivial solutions (C1, C2). The relation (10) is the dispersion equation
of longitudinal plane harmonic waves. In this section, we will establish the basic
properties of solutions of (10).

It is easy to see that

η0 = ρ1ρ2ω
4 − (ρ1α2 + ρ2α1)ω

2 + β0 (11)

with the discriminant D∗ = (ρ1α2 − ρ2α1)
2 + 4ρ1ρ2α

2
3 ≥ 0. On the basis of (6) the

equation
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ρ1ρ2ω
4 − (ρ1α2 + ρ2α1)ω

2 + β0 = 0

with respect to ω has two positive roots ω1 and ω2 called the cutoff frequencies in
the considered theory. Obviously, if D∗ > 0, then ω1 �= ω2 (in this case we assume
that ω1 < ω2) and if D∗ = 0, then ω1 = ω2.

Let ω̃1 =
√

α1
ρ1

and ω̃2 =
√

α2
ρ2
. Assume without loss of generality that ω̃1 ≤ ω̃2,

that is
α1

α2
≤ ρ1

ρ2
. (12)

Clearly,

ω1 ≤ ω̃1 ≤ ω̃2 ≤ ω2. (13)

Remark 1 The cutoff frequency is the critical frequency between wave propagation
with the constant amplitude and attenuation, which corresponds to the frequency at
which the longitudinal wave number is zero. The wave propagation in the single
porosity materials is studied by Biot [5], where the existence of one cutoff frequency
(called as “the certain frequency”) is established. In addition, in [5, 6], the frequency
intervals below and above the cutoff frequency are called as “low-frequency range”
and “higher frequency range”, respectively.

Remark 2 The dispersion equation (10) is also valid below the cutoff frequency,
where the longitudinal wave number is imaginary.

Obviously, If D∗ = 0, then ω1 = ω2 and there are two frequency ranges in the
considered theory:

1. Low-frequency range LF ′ = {ω : 0 < ω < ω1},
2. Higher frequency range HF ′ = {ω : ω > ω1}.

IfD∗ > 0, then there are three frequency ranges in the linear theory of rigid bodies
with a double porosity structure:

1. Low-frequency range LF = {ω : 0 < ω < ω1},
2. Medium frequency range MF = {ω : ω1 < ω < ω2},
3. Higher frequency range HF = {ω : ω > ω2}.

The Eq. (10) may be written in the form

α0ξ
2 − ζ0ξ + η0 = 0, (14)

where ξ = τ 2. Let D = ζ 2
0 − 4α0η0.

We will consider separately the cases: (a) D∗ = 0 and (b) D∗ > 0.

(a) Let D∗ = 0. On the basis of (9), (11)–(13) we have the following results.
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Lemma 1 If D∗ = 0, then

(i)
α1

α2
= ρ1

ρ2
, α3 = 0,

(ii) ω1 = ω̃1 = ω̃2 = ω2 =
√

α1
ρ1

is the cutoff frequency,

(iii) η0 = η1η2 = ρ1ρ2
(
ω2 − ω2

1

)2
, ζ0 = (ρ1γ + ρ2α)

(
ω2 − ω2

1

)
,

(iv) the dispersion equation (10) has the form

α0ξ
2 − (ρ1γ + ρ2α)

(
ω2 − ω2

1

)
ξ + ρ1ρ2

(
ω2 − ω2

1

)2 = 0, (15)

(v)

D = [
(ρ1γ − ρ2α)2 + 4β2ρ1ρ2

] (
ω2 − ω2

1

)2 ≥ 0

and (15) has two real roots ξ1 and ξ2.

Lemma 2 If D∗ = 0, then

(i) ξj < 0 for ω ∈ LF ′,
(ii) ξj = 0 for ω = ω1,

(iii) ξj > 0 for ω ∈ HF ′,

where j = 1, 2.

Lemma 3 Let ω ∈ LF ′ ∪ HF ′ and D∗ = 0. The equation D = 0 implies:

(i)

α

γ
= ρ1

ρ2
, β = 0,

(ii) the dispersion equation (15) has the double root

ξ1 = ξ2 = ρ1

α

(
ω2 − ω2

1

)
,

(iii) the system (8) has the following form

(
τ 2 − ξ1

)
Cl = 0, l = 1, 2.

Let τj = √
ξj for ξj ≥ 0 and τj = i

√−ξj for ξj < 0, j = 1, 2, where ξ1 and ξ2
are the solutions of (14). Obviously, τ1 and τ2 be roots of (10) with respect to τ ,
i.e. τ1 and τ2 are the wave numbers of longitudinal plane harmonic waves. If τj is
represented by complex value, then the amplitude change of a decaying plane wave
can be expressed as

C′
l = Cl e−Imτj x1 , j, l = 1, 2.
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In this expression the amplitude C′
l is the reduced amplitude after the wave has

traveled a distance x1 from the initial location, Cl is the unattenuated amplitude
of the propagating wave at the same location, the quantity Im τj is the attenuation
coefficient of the wave traveling in the x1-direction.

Lemmas 1–3 lead the following theorems.

Theorem 1 If D∗ = D = 0 and ω ∈ LF ′ ∪ HF ′, then through a rigid body with
a double porosity structure one longitudinal plane wave P1 propagates with wave
number τ1. This is attenuated wave for ω ∈ LF ′ and has the constant amplitude for
ω ∈ HF ′ as x1 → +∞.

Theorem 2 If D∗ = 0, D > 0 and ω ∈ LF ′ ∪ HF ′, then through a rigid body with
a double porosity structure two longitudinal plane waves P1 and P2 propagate with
wave numbers τ1 and τ2, respectively. These are attenuated waves for ω ∈ LF ′ and
have the constant amplitudes for ω ∈ HF ′ as x1 → +∞.

(b) Let D∗ > 0. In what follows we use the following results.

Lemma 4 If D∗ > 0 and ω ∈ LF ∪ HF, then

(i) η0 > 0,
(ii) η1 < 0, η2 < 0, ζ0 < 0 for ω ∈ LF,

(iii) η1 > 0, η2 > 0, ζ0 > 0 for ω ∈ HF.

Proof (i) On the basis of relations ω ∈ LF ∪ HF and (13) from (11) we have
η0 > 0.

(ii) Let 0 < ω < ω1. Then η1 = ρ1(ω
2 − ω2

1) < 0 and η2 = ρ2(ω
2 − ω2

2) <

ρ2(ω
2 − ω2

1) < 0. However, from (6) and inequality η0 > 0 it follows that
|β| <

√
αγ and |α3| <

√
η1η2. Therefore,

|βα3| <
√

αγ
√

(−η1)(−η2) = √−αη2
√−γ η1 ≤ −1

2
(αη2 + γ η1)

and αη2 + γ η1 − 2|βα3| < 0. Hence, ζ0 < 0.
(iii) Let ω > ω2. Then η1 = ρ1(ω

2 − ω2
1) > ρ1(ω

2 − ω2
2) > 0 and η2 = ρ2(ω

2 −
ω2
2) > 0. However,

|βα3| <
√

αγ
√

η1η2 = √
αη2

√
γ η1 ≤ 1

2
(αη2 + γ η1)

and αη2 + γ η1 − 2|βα3| > 0. Hence, ζ0 > 0. �

Quite similarly we can proved the following result.

Lemma 5 If D∗ > 0 and η0 = 0, then

(i) η1 ≤ 0, η2 < 0, ζ0 < 0 for ω = ω1,
(ii) η1 > 0, η2 ≥ 0, ζ0 > 0 for ω = ω2.



294 M. Svanadze

We introduce the notation

a = η1γ − η2α, b1 = η2β + α3γ, b2 = η1γ + α3α. (16)

Obviously,
η1b1 = η2b2 + α3a. (17)

Lemma 6 If η1η2 �= 0, then

D = 1

η1η2

[
(η1b1 + η2b2)

2 + η0a2
]
. (18)

Proof Taking into account (9) and (16) we have

D = (αη2 + γ η1 + 2βα3)
2 − 4(αγ − β2)(η1η2 − α2

3) (19)

= (αη2 − γ η1)
2 + 4

[
β2η1η2 + βα3(αη2 + γ η1) + αγα2

3

] = a2 + 4b1b2.

By virtue (17) from (19) it follows that

D = a2 + 4

η1
(η2b2 + α3a)b2 = 1

η1

(
η1a2 + 4α3ab2 + 4η2b2

2

)

= 1

η1η2

(
4η2

2b2
2 + 4η2b2aα3 + α2

3a2 + η0a2)

= 1

η1η2

[
(2η2b2 + aα3)

2 + η0a2
] = 1

η1η2

[
(η1b1 + η2b2)

2 + η0a2
]
. �

Lemma 7 If D∗ > 0, then the Eq. (14) has real roots ξ1 and ξ2 with respect to ξ . In
addition

(i) ξ1 < 0 and ξ2 < 0 for ω ∈ LF,
(ii) ξ1 = 0 and ξ2 < 0 for ω = ω1,

(iii) ξ1 > 0 and ξ2 < 0 for ω ∈ MF,
(iv) ξ1 > 0 and ξ2 = 0 for ω = ω2,
(v) ξ1 > 0 and ξ2 > 0 for ω ∈ HF.

Proof If ω ∈ MF, then η0 < 0 andD = ζ 2
0 − 4α0η0 > 0. If ω is a cutoff frequency,

then η0 = 0, ζ0 �= 0 and from (18) we get D > 0. However, if ω ∈ LF ∪ HF, then
by Lemma 1 we have η0 > 0 and from (18) it follows thatD ≥ 0. Hence,D ≥ 0 for
arbitrary positive ω and consequently, the Eq. (14) has real roots with respect to ξ .

On account of Lemmas 4 and 5 it is simple to establish the sings of the roots of
Eq. (14). �

Lemma 7 leads to the following results.

Theorem 3 If D > 0,D∗ > 0 and ω is not the cutoff frequencies, then through a
rigid body with a double porosity structure two longitudinal plane waves P1 and P2

propagate with wave numbers τ1 and τ2, respectively:
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(i) these are attenuated waves as x1 → +∞ for ω ∈ LF,
(ii) P1 has the constant amplitude and P2 is attenuated wave as x1 → +∞ for

ω ∈ MF,
(iii) these waves have the constant amplitudes for ω ∈ HF.

Theorem 4 If D > 0,D∗ > 0 and ω is the cutoff frequencies, then through a rigid
body with a double porosity structure one longitudinal plane wave propagates:

(i) this is attenuated wave as x1 → +∞ for ω = ω1,
(ii) this wave has the constant amplitude for ω = ω2.

It is easy to see that the system (8) can be written as
(
α0τ

2 − a1
)

C1 + b1C2 = 0,
b2C1 + (

α0τ
2 − a2

)
C2 = 0,

(20)

where a1 = η1γ + α3β, a2 = η2α + α3β, b1 and b2 given by (16). Obviously, a1 +
a2 = ζ0 and a1 − a2 = a.

In addition, the inequality D∗ > 0 implies

α1

α2
<

ρ1

ρ2
(21)

or
α1

α2
= ρ1

ρ2
, α3 �= 0. (22)

Now we study the case D = 0 and we will establish the values of the frequency
ω from LF ∪ HF, when the Eq. (14) has a double root. Clearly, on the basis of (18),
if η0 > 0, then the Eq. (14) has a double root for some frequencies from LF ∪ HF.

We have the following results.

Lemma 8 If D = 0 and the condition (21) is satisfied, then

(i)
α

γ
∈

]
0; α1

α2

[
∪

]
ρ1

ρ2
;+∞

[
, (α1γ − α2α)(ρ1γ − ρ2α) > 0,

(ii)
ω1 = ω̃1 < ω̃2 = ω2, β = 0 for α3 = 0 and
ω1 < ω̃1 < ω̃2 < ω2, β �= 0 for α3 �= 0,

(iii)
β(α1ρ2 − α2ρ1) = α3(αρ2 − γρ1),

(iv)

ζ0 = 2α0(α1ρ2 − α2ρ1)

ρ1γ − ρ2α
,
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(v)

α3β > 0 for α
γ

∈
]
0; α1

α2

[
, α3 �= 0 and

α3β < 0 for α
γ

∈
]

ρ1

ρ2
;+∞

[
, α3 �= 0.

Lemma 9 If D = 0 and the condition (21) is satisfied, then

(i) ω = ω0, where

ω0 =
√

α1γ − α2α

ρ1γ − ρ2α
, (23)

(ii)

ξ1 = ξ2 = α1ρ2 − α2ρ1

ρ1γ − ρ2α
,

(iii)

ω0 ∈ LF, ξ1 = ξ2 < 0 for α
γ

∈
]
0; α1

α2

[
and

ω0 ∈ HF, ξ1 = ξ2 > 0 for α
γ

∈
]

ρ1

ρ2
;+∞

[
.

Lemma 10 If D = 0 and the condition (22) is satisfied, then

(i)
α

γ
= α1

α2
,

(ii)
ω1 < ω̃1 = ω̃2 < ω2, β �= 0,

(iii)
α3

β
<

α1

α
,

(iv)

ζ0 = −2α0α3

β
.

Lemma 11 If D = 0 and the condition (22) is satisfied, then

(i) ω = ω̃0, where

ω̃0 =
√

α1β − αα3

ρ1β
, (24)

(ii)

ξ1 = ξ2 = −α3

β
,
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(iii)
ω̃0 ∈ LF, ξ1 = ξ2 < 0 for 0 < α3

β
< α1

α
and

ω̃0 ∈ HF, ξ1 = ξ2 > 0 for α3
β

< 0.

Let D = 0 and ω ∈ LF ∪ HF. Then from (18) we have a = 0, η1b1 + η2b2 = 0.
By virtue of (21) we get a1 = a2, b1 = b2 = 0 and from (20) it follows that

(
α0τ

2 − a1
)

C1 = 0,
(
α0τ

2 − a1
)

C2 = 0.

Hence,
τ 2
1 = τ 2

2 = a1
α0

.

In addition, a1 = 1
2ζ0. By Lemma 4 we obtain a1 < 0 for ω ∈ LF and a1 > 0 for

ω ∈ HF.
We have thereby proved.

Theorem 5 If D = 0 and the condition (21) is satisfied, then ω = ω0 and through a
rigid body with a double porosity structure one longitudinal plane wave propagates;

(i) this is attenuated wave as x1 → +∞ for ω0 ∈ LF,
(ii) this wave has the constant amplitude for ω0 ∈ HF, where ω0 given by (23).

Theorem 6 If D = 0 and the condition (22) is satisfied, then ω = ω̃0 and through a
rigid body with a double porosity structure one longitudinal plane wave propagates;

(i) this is attenuated wave as x1 → +∞ for ω̃0 ∈ LF,
(ii) this wave has the constant amplitude for ω̃0 ∈ HF, where ω̃0 given by (24).

Remark 3 It is obvious that if plane harmonic waves propagate in an arbitrary direc-
tion d = (d1, d2, d3) through a rigid body with a double porosity structure, then we
obtain the same result given in Theorems 1–6.

4 Internal Boundary Value Problems of Steady Vibrations

If the volume fractions fields ϕ̃, ψ̃ and the extrinsic equilibrated body forces F̃1, F̃2

are postulated to have a harmonic time variation, that is,

{
ϕ̃, ψ̃, F̃1, F̃2

}
(x, t) = Re

[{ϕ,ψ, F1, F2} (x) e−iωt
]
,

then from the system of equations of motion (4) we obtain the following system of
nonhomogeneous equations of steady vibrations in the linear theory of rigid bodies
with a double porosity structure
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(α Δ + η1) ϕ + (β Δ − α3) ψ = −F1,

(β Δ − α3) ϕ + (γ Δ + η2) ψ = −F2.
(25)

The corresponding system of homogeneous equations of steady vibrations in this
theory can be written as

(α Δ + η1) ϕ + (β Δ − α3) ψ = 0,
(β Δ − α3) ϕ + (γ Δ + η2) ψ = 0.

(26)

We introduce the matrix differential operator

A(Dx) = (
Alj(Dx)

)
2×2 ,

where

A11(Dx) = α Δ + η1, A12(Dx) = A21(Dx) = β Δ − α3,

A22(Dx) = γ Δ + η2, Dx =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)
.

The system (25) can be written as

A(Dx)u(x) = F(x), (27)

where u = (ϕ, ψ) and F = (−F1,−F2) are two-component vector functions.
Let S be the closed surface surrounding the finite domain Ω+ in R3, S ∈

C1,ν , 0 < ν ≤ 1, Ω+ = Ω+ ∪ S. The scalar product of two vectors u = (u1, u2)

and v = (v1, v2) is denoted by u · v =
2∑

j=1
ujv̄j, where v̄j is the complex conjugate of

vj.

Definition 1 A vector function u = (ϕ, ψ) is called regular in Ω+ if ϕ, ψ ∈
C2(Ω+) ∩ C1(Ω+).

In the sequel, we use the matrix differential operator

P(Dx, n) = (Plj(Dx, n))2×2,

where

P11(Dx, n) = α ∂
∂n , P12(Dx, n) = P21(Dx, n) = β ∂

∂n , P22(Dx, n) = γ ∂
∂n ,

n = (n1, n2, n3) is the unit vector, ∂
∂n is the derivative along the vector n.

The basic internal BVPs of steady vibrations in the linear theory of rigid bodies
with a double porosity structure are formulated as follows.

Find inΩ+ a regular (classical) solution u = (ϕ, ψ) to system (27) satisfying the
boundary condition
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lim
Ω+x→z∈S

u(x) ≡ {u(z)}+ = f(z)

in the internal Problem (I)+F,f ,

lim
Ω+x→ z∈S

P(Dx, n(z))u(x) ≡ {P(Dz, n(z))u(z)}+ = f(z)

in the internal Problem (II)+F,f , where F and f are known two-component smooth
vector functions, n(z) is the external unit normal vector to S at z.

In the next section, the uniqueness of regular solutions of the BVPs (I)+F,f and
(II)+F,f will be studied.

5 Uniqueness Theorems

On the basis of the Green’s first identity [26, 27]

∫
Ω+

[
Δϕ(x)ψ(x) + ∇ϕ(x) · ∇ψ(x)

]
dx =

∫
S

∂ϕ(z)
∂n(z)

ψ(z)dzS

we have
∫

Ω+

[
(αΔ + η1)ϕϕ + α|∇ϕ|2 − η1|ϕ|2] dx = α

∫
S

∂ϕ

∂n
ϕdzS,

∫
Ω+

[(βΔ − α3)ψϕ + β∇ψ · ∇ϕ + α3ψϕ] dx = β

∫
S

∂ψ

∂n
ϕdzS.

(28)

Taking into account (28) we obtain

∫
Ω+

{[(αΔ + η1)ϕ + (βΔ − α3)ψ]ϕ + W1} dx =
∫

S

(
α

∂ϕ

∂n
+ β

∂ψ

∂n

)
ϕdzS,

(29)

where W1 = α|∇ϕ|2 + β∇ψ · ∇ϕ − η1|ϕ|2 + α3ψϕ.

Quite similarly we get

∫
Ω+

{[(βΔ − α3)ϕ + (γΔ + η2)ψ]ψ + W2
}

dx =
∫

S

(
β

∂ϕ

∂n
+ γ

∂ψ

∂n

)
ϕdzS,

(30)

where W2 = β∇ϕ · ∇ψ + γ |∇ψ |2 − η2|ψ |2 + α3ϕψ.

From (29) and (30) it follows that

∫
Ω+

[A(Dx)u(x) · u(x) + W(x)] dx =
∫

S
P(Dz, n(z))u(z) · u(z)dzS, (31)
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where

W = W0 + W3, W0 = α|∇ϕ|2 + 2βRe (∇ϕ · ∇ψ) + γ |∇ψ |2,

W3 = −η1|ϕ|2 + 2α3Re
(
ϕψ

) − η2|ψ |2.
(32)

Taking into account (6) from (32) we have

W0 ≥ 0. (33)

Theorem 7 If D∗ > 0 and ω ∈ LF, then the internal BVP (K)+F,f has one regular
solution, where K = I, II.

Proof Suppose that there are two regular solutions of problem (K)+F,f , where
K = I, II . Then their differenceu = (ϕ, ψ) is a regular solution of the internal homo-
geneous BVP (K)+0,0. Hence, the vector u is a regular solution of the system (26),
i.e.

A(Dx)u(x) = 0, for x ∈ Ω+ (34)

and satisfies the boundary condition

{P(Dz, n(z))u(z) · u(z)}+ = 0 for x ∈ Ω+. (35)

Taking into account (34) and (35) from the equality (31) we obtain

∫
Ω+

W(x)dx = 0. (36)

By virtue of Lemma 4 and the conditionω ∈ LF it follows that η0 > 0, η1 < 0, η2 <

0 and we have W3 ≥ 0.On the basis of (32) and (33) from (36) we get W(x)= 0, and
this relation implies W3(x) = 0. By inequality η0 > 0 from (32) we obtain u(x) = 0
for x ∈ Ω+. �

Theorem 8 If D∗ = 0 and ω ∈ LF ′, then the internal BVP (K)+F,f has one regular
solution, where K = I, II.

Theorem 8 can be proved similarly to Theorem 7.

Theorem 9 If D∗ > 0 and ω = ω1, then

(i) the internal BVP (I)+F,f has one regular solution,
(ii) any two regular solutions of the internal BVP (II)+F,f may differ only for an

additive vector u(x) = (ϕ(x), ψ(x)), where

ϕ(x) = c1 = const, ψ(x) = c2 = const for x ∈ Ω+, (37)
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c1 and c2 are arbitrary complex numbers satisfy the equation

α3c1 = η2c2. (38)

Proof Clearly, the difference u = (ϕ, ψ) of two regular solutions of the BVP (K)+F,f

is a regular solution of the homogeneous BVP (K)+0,0, where K = I, II . The vector
u satisfies the system of homogeneous equations (34) and boundary condition (35).
Hence, we have (36).

On the other hand, by Lemma 5 we have η1 ≤ 0, η2 < 0, η1η2 = α2
3 and

W3 = − 1

η2

[
α2
3 |ϕ|2 − 2α3η2Re(ϕψ̃) + η2

2|ψ |2
]

= − 1

η2
|α3ϕ − η2ψ̃ |2 ≥ 0. (39)

By virtue of (33) and (39) from (36) it follows that W0(x) = 0 and W3(x) = 0 for
x ∈ Ω+. The last two equations imply the Eqs. (37) and (38).

In the case of BVP (I)+0,0, in view of homogeneous boundary condition {u(z)}+ =
0 from (37) we get c1 = c2 = 0 and hence, u(x) = 0 for x ∈ Ω+.

In addition, in the case of BVP (II)+0,0, if α3 = 0, then from (38) it follows that
c2 = 0 and consequently, we obtain u(x) = (c1, 0). �

Theorem 10 If D∗ = 0 and ω = ω1, then

(i) the internal BVP (I)+F,f has one regular solution;
(ii) any two regular solutions of the internal BVP (II)+F,f may differ only for an

additive vector u(x) = (ϕ(x), ψ(x)), where ϕ and ψ satisfy the condition (37),
c1 and c2 are arbitrary complex numbers.

Proof Quite similarly, as in the previous theorem, the difference u = (ϕ, ψ) of two
regular solutions of the BVP (K)+F,f is a regular solution of the homogeneous BVP
(K)+0,0, where K = I, II . Hence, we have (36).

On the other hand, by Lemma 1 from equations D∗ = 0 and ω = ω1 we have
η1 = η2 = α3 = 0. These equations imply W3(x) = 0. By virtue of (32) and (33)
from (36) it follows that W0(x) = 0. From the last equation we obtain the condition
(37).

In addition, in the case of BVP (I)+0,0, in view of homogeneous boundary condition
{u(z)}+ = 0 from (37) we get c1 = c2 = 0 and hence, u(x) = 0 for x ∈ Ω+. �

Now we begin to study uniqueness of regular solution of BVP (K)+F,f for ω > ω1,
where K = I, II . Let u = (ϕ, ψ) be a regular solution of the first internal homoge-
neous BVP (I)+0,0. As in classical theory of elasticity (see [26, 27]), this problem is
reduced to the equivalent Fredholm’s homogeneous integral equation

v(x) − ω2
∫

Ω+
G(x, y)v(y)dyS = 0, (40)



302 M. Svanadze

with the symmetrical kernel G(x, y) = G�(y, x) of class L2, where G� is the trans-
pose of matrix G, v(x) = Eu(x) and

E =
(√

ρ1 0
0

√
ρ2

)
2×2

.

This is proved in the conventional manner, applying Green’s formula of the con-
sidered theory. Hence, in agreement with the Hilbert-Schmidt theorem follows the
existence of a discrete spectrum of real eigenvalues of the parameter ω2 for which
integral equation (40) has solutions different from zero. These values ω are called
the eigenfrequencies of the internal homogeneous BVP (I)+0,0.

Let
{
ω(j)

}∞
j=1 is the complete system of the eigenfrequencies of BVP (I)+0,0, where

ω(1) ≤ ω(2) ≤ · · · . On the basis of Theorems 7–10 it follows that

ω1 < ω(1) ≤ ω(2) ≤ · · · , ω(j) → +∞ for j → +∞. (41)

Therefore the following theorem is valid.

Theorem 11 The first internal homogeneous BVP (I)+0,0 has a discrete spectrum of

eigenfrequencies
{
ω(j)

}∞
j=1, where

{
ω2

(j)

}∞
j=1

is the complete system eigenvalues of

the integral equation (40). These eigenfrequencies satisfy the condition (41).

Keeping in mind Theorems 7–10 the following theorem is proved quite similarly.

Theorem 12 The second internal homogeneous BVP (II)+0,0 has a discrete spectrum

of eigenfrequencies
{
ω̃(j)

}∞
j=1, where

{
ω̃2

(j)

}∞
j=1

is the complete system eigenvalues of

Fredholm’s integral equation

v(x) − ω2
∫

Ω+
H̃(x, y)v(y)dyS = 0

with the symmetrical kernel H̃(x, y) = H̃�(y, x). These eigenfrequencies satisfy the
conditions ω1 = ω̃(1) ≤ ω̃(2) ≤ · · · and ω̃(j) → +∞ for j → +∞.

Now we establish the asymptotic distribution of eigenfrequencies
{
ω(j)

}∞
j=1 and{

ω̃(j)
}∞

j=1. Let us denote byN(r) the number of eigenvaluesω(j) (or ω̃(j)) not exceeding
r , where r > 0, j = 1, 2, . . .:

N(r) =
∑
ωj≤r

1

⎛
⎝or N(r) =

∑
ω̃j≤r

1

⎞
⎠ .
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Let v1 and v2 be the positive roots of equation (with respect to v)

ρ1ρ2v4 − (ρ1γ + ρ2α)v2 + α0 = 0,

i.e.

v1 =
√

1
2ρ1ρ2

[
ρ1γ + ρ2α − √

(ρ1γ − ρ2α)2 + 4ρ1ρ2β2
]
,

v2 =
√

1
2ρ1ρ2

[
ρ1γ + ρ2α + √

(ρ1γ − ρ2α)2 + 4ρ1ρ2β2
]
.

(42)

Obviously, v1 and v2 are the velocities of the longitudinal plane waves in the linear
theory of rigid bodieswith a double porosity structure forα1 = α2 = α3 = 0.Clearly,
if β = 0, then from (42) it follows that

v1 =
√

α

ρ1
, v2 =

√
γ

ρ2
.

Quite similarly as in the theory of elasticity of binary mixtures [35], by using the
same technique of Tauberian theorems due to Carleman [9] we obtain the following
theorem.

Theorem 13 The asymptotic behavior of eigenfrequencies of the internal homoge-
neous BVP (K)+0,0 is independent of the shape of the rigid body with a double porosity
structure, is simply proportional to its volume and expressed by formula

N(r) = |Ω+|
6π2

Mr3 + O(r2)

for r → +∞, where |Ω+| is the volume of Ω+, M = v−3
1 + v−3

2 , v1 and v2 are given
by (42), K = I, II.

Remark 4 Using the theory of integral equations, the earliest results on the asymp-
totic form of distribution of eigenfrequencies were obtained by Weyl [50] for the
case of the Laplacian Δ operator in two dimensions.

6 Connection Between Plane Waves and Uniqueness
of Solutions

By virtue of our Theorems 1–12 we have the following connection between plane
waves and the uniqueness of solutions (or existence of eigenfrequencies) of the
internal BVPs of steady vibrations in the linear theory of rigid bodies with a double
porosity structure:
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1. If ω is in the low-frequency range, then the longitudinal plane harmonic waves
propagating through a rigid body with a double porosity structure are attenuated
and the interior BVP of steady vibrations (K)+F,f has one regular solution, where
K = I, II .

2. If ω is not in the low-frequency range, then at least one longitudinal plane har-
monic wave always propagate with constant amplitude throughout a rigid body
with a double porosity structure and the internal homogeneous BVP (K)+0,0 has a
discrete spectrum of eigenfrequencies, where K = I, II .

Remark 5 The connection between plane harmonic waves and the uniqueness of
solutions (or existence of eigenfrequencies) of the internal BVPs of steady vibra-
tions in the linear theories of elasticity and thermoelasticity of binary mixtures is
established by Svanadze [36, 38], in the coupled theory of elasticity for solids with
double porosity and the theory of micropolar thermoelasticity for materials with
voids by Ciarletta et al. [10, 11].

Remark 6 On the basis of uniqueness Theorems 7–10 it is possible to prove existence
theorems in the linear theory of rigid bodies with a double porosity structure by
means of the potential method (boundary integral equations method) and the theory
of singular integral equations. This method is developed in the books [7, 26, 27] and
papers [8, 19, 31, 46]. For an extensive review of works on the potential method,
see [15].
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Seismic Response of Poroelastic Graded
Geological Region with Underground
Structures by BIEM

Frank Wuttke, Ioanna-Kleoniki Fontara and Petia Dineva

Abstract This work addresses horizontally polarized shear SH seismic wave radi-
ated from an embedded seismic source in a continuously inhomogeneous poroelastic
half-plane with cavities presenting underground structures as unlined tunnels and
pipelines. The mechanical model and corresponding computational tool are: (1) vis-
coelastic approximation (isomorphism) to Biot’s equations of dynamic poroelastic-
ity and (2) boundary integral equation method (BIEM) using frequency-dependent
fundamental solution of the governing wave equation for continuously inhomoge-
neous media. The problem is formulated under anti-plane strain conditions and
time-harmonic motions are assumed. Two different mechanical models for inho-
mogeneous in depth poroelastic half-plane are presented: (a) Model A: the density
and shear modulus vary proportionally as quadratic functions of depth, but the wave
velocity remains constant. In this case is used BIEM based on an analytically derived
Green’s function for graded half-plane; (b)Model B: thematerial properties varywith
respect to the spatial coordinates in a different manner, so that the wave velocity is
both frequency and position-dependent. The formulation of the considered problem
by boundary integral equations (BIE) is realized via fundamental solution of equation
of motion for viscoelastic full-plane with position-dependent wave speed profiles.
The parametric study reveals the dependence of the seismic signals along the free
surface and inside the geological region on the following key factors: (a) type and
properties of the material gradient; (b) characteristics of the applied load; (c) posi-
tion and number of cavities; (d) dynamic cavities interaction; (e) cavity-free surface
interaction; (f) poroelastic soil properties.
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1 Introduction

The BIEM has proven to be a most efficient and accurate numerical tool for elasto-
dynamics of infinite or semi-infinite regions, see Beskos [2], Dominguez [8]. This
method is based on a recasting of the governing partial differential equations of
a given problem in mechanics, with its prescribed boundary conditions, into inte-
gral equations defined along the problem surfaces, so that all field variables become
boundary quantities. The main reason for using the BIEM in computational geome-
chanics is the presence of the free surface of the earth, whereby large categories of
problems involve continua with a small surface to volume ratio. At the same time
this technique requires surface discretization only. Due to this BIEM feature sub-
stantial savings can be realized in terms of the size of the mesh resulting from the
discretization procedure as compared to domain-type numerical methods as finite
element methods and finite difference ones. In the evaluation of the state of the art
we will concentrate mainly on the BIEM results for seismic wave propagation in
poroelastic geological media. The key role played by the fundamental solution is to
reduce a given boundary-value problem (BVP) into a system of boundary integral
equations through the use of reciprocal theorems. For this reason the recovery of
fundamental solutions in analytical form, or at least in an easy to calculate numer-
ical form, is so important. A lot of research work has been directed towards the
derivation of fundamental solutions for the governing partial differential equations
of Biot’s poroelasticity [4–7, 17, 21, 23, 24]. These include derivations in either
the time domain or in transform domains, and under both 2D and 3D conditions.
To summarize, the comprehensive state-of-the-art reviews by Gatmiri and Kamalian
[11], Gatmiri and Nguyen [12], Seyrafian et al. [25] and Gatmiri and Eslami [10]
contain abundant information on the dynamic fundamental solutions derived for the
porous media and their subsequent incorporation within coupled integral equation
statements. 2D dynamic response of unlined and lined tunnels in poroelastic soil to
harmonic body waves is studied in Kattis and Beskos [14]. So far, BIE- based meth-
ods have seen limited application to seismicwave propagation in saturated geological
media due to difficulties in accounting for the multi-phase nature of the problem.
There is, however, amarked similarity between poroelastic and viscoelasticmaterials
in terms of their dynamic response. This fact suggests the possibility to use a single
phase model with special, augmented properties in lieu of the multiphase one. This
idea was promulgated by Bardet [1] and Morochnik and Bardet [20], who proposed
an equivalent viscoelastic solid to model saturated poroelastic materials governed
by Biot’s theory. The main conclusion from the short review of the obtained BIEM
results shows that there is a lack of models and efficient computational tools able
to consider simultaneously the geological profile as continuously inhomogeneous
(graded), heterogeneous and poroelastic for synthesis of seismic signals.

The main aim of this work is to solve 2D elastodynamic problem for graded
poroelastic by Bardet model and heterogeneous with multiple cavities geological
profile via BIEM.
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The rest of the paper is structured as follows. In Sect. 2 the problem statement is
presented, while Sect. 3 deals with its reformulation via BIEs and simulation results,
while conclusions are discussed in Sect. 4.

2 Problem Statement

Consider graded in respect to the depth viscoelastic half-plane Ω0 with free surface
Sf containing N cylindrical unlined tunnels (or pipelines) with common boundary

Γt =
N⋃

k=1
Γk , k = 1, 2, . . . N, subjected to seismic SH wave radiated from a line

seismic source acting as a time-harmonic body force with magnitude f03, frequency
ω and located at a prescribed point x0 = x0(x01, x02), see Fig. 1. For the state of
anti-plane wave motion, the only non-zero field quantities are displacement compo-
nent u3, stresses σi3 = μ(x2)u3,i, i = 1, 2, and traction t3 = σi3ni, where ni are the
components of the outward pointing normal vector, all depending on the coordinates
(x1, x2). The viscoelastic shear modulus is complex-valued with the same real part as
in its elastic counterpart, while its imaginary part is due to the dissipative processes
developed during wave propagation in soils. For a Kelvin-Voigt model the wave

number is k2S = ω2

CS(1−iωξS)
, where CS(x2) =

√
μ(x2)
ρ(x2)

is the real part of the SH wave
velocity, while ξS is the corresponding attenuation coefficient representing a small
amount of hysteretic damping. In the low frequency range, i.e. ωξS � 1, the wave
number reduces to, see [1]:

kS ≈ ω (1 + 0.5ωξS)

CS
. (1)

Fig. 1 Soil-tunnel
interaction in poroelastic
graded half-plane
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Thematerial properties of the graded half-plane are depth dependent shearmodule
μ(x2) and density ρ(x2). Assume that attenuation coefficient ξS is constant.

The governing equation of motion is as follows:

∇. {μ(x)∇u3(x, ω)} = −ρ(x)ω2u3(x, ω) − f03δ(x, x0); x ∈ Ω0. (2)

The corresponding boundary conditions are:

t3 (x1, x2, ω) = σi3 (x1, x2, ω) ni (x1, x2) = 0; (x1, x2) ∈ Γ = Sf ∪ Γt . (3)

In addition, the Sommerfeld radiation condition holds for waves at infinity. In the
above equations, ni are the components of the outward pointing normal vector, the
summation convention over repeated indices is implied, ∇ is the gradient operator
and (.) is the inner product.

Two different mechanical models for the material gradient are considered:

1. Type A, where the density and the shearmodulus vary proportionally in a quadratic
way in respect to the depth, and in this case the phase velocity is not position-
dependent:

μ(x1, x2) = μ0h(x2), ρ(x1, x2) = ρ0h(x2), h(x2) = (bx2 + 1)2, (4)

where h(x) is the inhomogeneity function, b ≤ 0 is the inhomogeneitymagnitude,
and μ0 = μ(x1, 0), ρ0 = ρ(x1, 0) are the reference viscoelastic constants.

2. Type B, where shear modulus and density vary in respect to depth in different way,
phase velocity is both frequency and position-dependent. The material profiles
follows the inhomogeneous model proposed in Manolis and Shaw [18, 19] and
in Karakostas and Manolis [13], where the shear module and density are the
following functions of depth and frequency:

μ1/2(x2) = (μ∞)1/2 + H1exp(−γ x2) + H2exp(ik∞
S x2), (5)

ρ(x2) = 1

ω2
μ1/2(x2)

[
(k∞

S )2(μ∞)1/2 + (
(k0S)

2(μ0)1/2

−(k∞
S )2(μ∞)1/2exp(−γ x2)

)]
, (6)

H1 =
(
(k0S)

2(μ0)1/2 − (k∞
S )2(μ∞)1/2

)
γ 2 + (k∞

S )2
, (7a)

H2 =
(

(μ0)1/2 − (μ∞)1/2 −
(
(k0S)

2(μ0)1/2 − (k∞
S )2(μ∞)1/2

)
γ 2 + (k∞

S )2

)
, (7b)
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where:C0
S = √

μ0/ρ0 and k0S = ω/C0
S arewave velocity andwave number respec-

tively at the free surface x2 = 0, while C∞
S = √

μ∞/ρ∞ and k∞
S = ω/C∞

S are
their counterparts at great depth x2 → ∞, where the material becomes homoge-
neous. Coefficient γ is a small number taken as equal to 0.1, see Karakostas and
Manolis [13]. Let’s define the inhomogeneity magnitude in this model as the ratio
c = C∞

S

C0
S
.

The aim of this work is to evaluate stress-strain state at any point of the graded
poroelastic half-plane with cavities of arbitrary number, shape and geometrical con-
figuration by solution of the formulated above BVP presented by Eq. (2), boundary
condition (3) and using the viscoelastic isomorphism ofBardet [1] to Biot’s equations
of dynamic poroelasticity.

First Biot [3] derived the frequency dependent equations of motion for fluid-
saturated materials considered as two-phase ones. A characteristic equation for the
wave numbers in the frame of the Biot’s model was obtained in Bardet [1] and Lin
et al. [15]. Three solutions to Biot’s wave equation have been identified, correspond-
ing to shear wave S transmitted through the solid skeleton, fast dilatational P wave
and slow dilatational P wave. The corresponding wave velocities are complex and
frequency dependent, hence they correspond to dissipative and dispersive waves.
Finally, the solid and fluid dilatations are in phase for the first arriving P wave, and in
reverse phase for the slower P wave, which damps out quickly. In a series of publica-
tions, Bardet [1] discussed the applicability of the viscoelastic behavior equivalent to
Biot’s model [3] of dynamic poroelasticity in the low frequency range. As a matter
of fact, Bardet [1] proposed a single-phase viscoelastic material representation for
saturated soils. At first, the viscoelastic material constants are complex-valued with
the same real part expressed via Biot’s coefficients P, Q, R basing on the viscoelastic
isomorphism. The same holds true for the governing viscoelastic wave equation, with
wave numbers which are complex-valued, frequency dependent functions that satisfy
causality conditions. A poroelastic-viscoelastic isomorphism proposed in Bardet [1]
is based on the equating of the wave numbers in Biot’s poroelastic model with those
in viscoelastic Kelvin-Voigt model.

We briefly will define the terminology used for description of solid-fluid con-
tinuum in poroelasticity. A representative volume V for the solid-fluid continuum
comprises an elastic, isotropic solid skeleton (matrix)with porosity n = VP/V , where
VP is the pore volume. The “dry rock” approximation is the case of an air-filled solid
skeleton, while the “solid grain” characteristics are the properties of the skeleton
material. The elastic bulk modulus and density are denoted as follows for dry rock
Kdry, ρdry = (1 − n)ρg , solid grain Kg; ρg and fluid Kf ; ρf .

The solid-fluid system density is ρsat = ρdry + nρf = (1 − n)ρg + nρf . The shear
strength of the porous material is provided by the solid skeleton and is not affected
by the fluid, since fluids sustain dilatational deformations only. Thus, both dry and
saturated soils are described by the same shear modulus, i.e. μ = μsat = μdry =
3(1−2ν)

2(1+ν)
Kdry, where ν is the Poisson’s ratio for the dry skeleton. A poroelastic-

viscoelastic isomorphism proposed in Bardet [1] is based on equating the wave
numbers in Biot’s poroelastic model with those in viscoelastic Kelvin-Voigt model.
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The following expressions were obtained for complex-valued phase velocities of
viscoelastic materials that provide the equivalence between the dynamic responses
of the poroelastic and viscoelastic solids:

CP =
√

P + 2Q + R

ρsat
; CS =

√
μ

ρsat
(8)

ξP = ρsat

b

(
Q + R

P + 2Q + R
· nρf

ρsat

)2
; ξS = ρsat

b

(
nρf

ρsat

)2
(9)

P = 3(1 − ν)

1 + ν
Kdry + Q2

R
; Q = n(1 − n − Kdry/Kg)

(1 − n − Kdry/Kg + nKg/Kf )
Kg (10)

R = n2Kg

1 − n − Kdry/Kg + nKg/Kf
; N = 3

2

1 − 2ν

1 + ν
Kdry; Kdry = 2

3

μ(1 + ν)

1 − 2ν
(11)

λsat = λdry + Q2

R
; b = n2gρf

k̂
(12)

where g is the acceleration of gravity and k̂ is the soil permeability with values in the
interval 10−10–10−2 m/sec. The above approximate expressions are correct when the
following condition is satisfied: (ωρsat/b) � 1. It is always satisfied in earthquake
engineering field since permeability values for most soils is small. Figure2 shows the
sensitivity of the SH phase velocity for dry and saturated sandstone to the porosity.
It is used the sandstone with the following characteristics:

Fig. 2 SH-wave velocity variation with porosity for homogeneous dry, saturated and pure elastic
soil by Bardet [1] model
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Fig. 3 Velocity profile along the depth for elastic and poroelastic (with porosity n = 0.2) material

Kg = 36000MPa; ρg = 2650 kg/m3; Kf = 2000MPa; ρf = 1000 kg/m3

Kdry = Kcr + (1 − n/ncr)(Kg − Kcr), ncr = 0.36; Kcr = 200MPa,

see Lin et al. [15]. All numerical results further are obtained for this type of soil.
Velocity profile along the depth for homogeneous and inhomogeneous (type A

and type B at a fixed non-dimensional frequency η = 0.25 defined below), pure
elastic, dry and saturated (with porosity n= 0.2) half-plane is given in Fig. 3. For the
inhomogeneous model of type B the velocity profile depends also on the frequency.

3 BEM Solution and Numerical Results

The defined above boundary-value problem (BVP) can be reformulated via a set
of boundary integral equations (13) along the boundary Γ based on the frequency-
dependent fundamental solution of partial differential equation (2), see
Dominguez [8]:

cu3(x, ω) =
∫

Γ

U∗
3 (x, y, ω)t3(y, ω)dΓ +

∫
Γ

P∗
3(x, y, ω)u3(y, ω) dΓ

+ f03U∗
3 (x, x0, ω); x ∈ Γ

(13)
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In the above, c is the jump term dependent on the local geometry at the colloca-
tion point x(x1, x2), U∗

ij is the displacement fundamental solution of the governing
equation (2) derived analytically in Manolis and Shaw [18, 19] for the inhomoge-
neous viscoelastic mechanical model of type B (see the Appendix), P∗

3(x, y, ω) =
μ(x2)U∗

3,i(x, y, ω)ni(x) is the corresponding traction fundamental solution. The dis-
placements and stresses at any point inside the solid can be obtained from the well-
known integral representation formulas using the solutions of Eq. (13).

The BIEM formulation of type A mechanical model is as follows:

cu3(x, ω) = −
∫

Γ

tg∗
3 (x, ξ , ω)u3(ξ, ω) dS1 +

∫
Γ

g∗
3(x, ξ , ω)t3(ξ , ω) dS1

+f03g∗
3(x, x0, ω); x ∈ Γ (14)

Here: c is the jump term depending on the surface geometry at the collocation
point, x and ξ are the vector-positions of the source and field points respectively,
g∗
3(x, ξ , ω) is the frequency-dependent Green’s function for quadratically inhomo-

geneous in depth half-plane derived analytically in Rangelov and Manolis [22],
tg∗
3 (x, ξ , ω) = σ ∗

3i(x, ξ , ω)ni(ξ) = μ(ξ)g∗
3,i(x, ξ , ω)ni(ξ) is its corresponding trac-

tion, where derivatives are in respect to the field point. For the completeness of
the text, the Green’s function and the corresponding traction are given in the
Appendix. BIEs (13) and (14) are solved numerically via discretization and col-
location techniques, see Fontara et al. [9] and Wuttke et al. [26] respectively.

To the authors’ best knowledge there are no results in the literature for even
the case of a single cavity in graded half-plane following the material profiles of
type A and B. This is the reason we verify our numerical schemes by test example
for homogeneous case, using the codes developed for inhomogeneous material. In
what follows we present a validation test that consists of a single circular cavity
with radius a and center coordinates (0,−h) located in a homogeneous half-plane
where normally incident time-harmonic SH wave is propagating, see Fig. 4. It is

introduced the non-dimensional frequency defined as η = 2a
λ0

S
, where λ0

S = 2π
ω

√
μ0

ρ0 .
Figure4 demonstrates the accuracy of the developed numerical schemes by com-
parison of the authors’ solutions with those of Luco and de Barros [16] for the

absolute values of the normalized displacements
∣∣∣ u3

u30

∣∣∣ along the free surface due to

normal incident SH wave with frequency η = 0.5 and η = 1. The following values
of cavity depth defined by the ratio h

a = 1.5 and h
a = 5, for shallow and deep burial,

respectively, are used.
For the BEM based on fundamental solution the mesh consists of 124 constant

boundary elements along the free surface and 44 constant boundary elements along
the cavity, while the size of the discretized flat free surface is ±22a. For the BEM
based on Green’s function the mesh consists of 22 constant boundary elements along
the circular cavity.

Displacement amplitudes along free surface of elastic inhomogeneous graded
poroelastic half-plane with an embedded single circular cavity subjected to concen-
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Fig. 4 Displacement amplitude variation along the free surface of an elastic homogeneous half-
plane with an embedded circular cavity of radius a under a normally incident SH wave with dimen-
sionless frequency η = 0.5 and η = 1.0

trated at point x0 (0,−15a) body force with frequency η = 0.25 are drawn in Fig. 5.
The presented results are obtained for homogeneous case and for inhomogeneous
one considering two different material profiles of type A (quadratic variation of stiff-
ness and density, but the phase velocity is constant) and B (variable velocity). The
porosity is n = 0.2, the Poisson ration is 0.25 and μ0(0)

μ∞ = 1
2 .

Figure5 demonstrates how sensitive the wave field is to the following parameters:
(i) the type of the inhomogeneity model, (ii) the type of the material gradient and
(iii) the poroelasticity of the material. The difference between the dry and saturated
case is insignificant because the porosity is not great, however the difference increases
at higher porosity values. It can be seen that the response of the Type B material
profile diverges the most from the response of the homogeneous case. The difference
in terms of displacements between Type A and the homogeneous case is smaller and
even negligible at higher frequency, because macroscopically the wave speeds are
the same for these two materials.

Figure6 draws the normalized displacement amplitude
∣∣∣ u3poroelastic

u3elastic

∣∣∣ along the free

surface of continuously inhomogeneous poroelastic half plane of type B with inho-
mogeneity coefficient in the interval c = 0.25 ÷ 4 due to SH-wave propagating from
an embedded seismic source located at (0, −15a) with frequency η = 0.25 in the
case of a single and two cavities with radius a. The obtained results are for pure
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Fig. 5 Displacement amplitude along the free surface of an elastic and poroelastic (n = 0.2)
graded half-plane with a single circular tunnel due to waves radiating from an embedded at point
(0, −15a) seismic source at frequency value η = 0.25. Comparison is between results obtained
by homogeneous and inhomogeneous models of type A (constant velocity profile) and B (variable
velocity profile)

elastic and poroelastic case with porosity n = 0.3 and n = 0.35. The normalization
is done with respect to the maximal displacement along the free surface of the same
geological profile with pure elastic material. With increasing the porosity the dis-
placement along the free surface increases significantly in respect to the displacement
in the elastic case. Additionally with increasing the inhomogeneity coefficient the
displacement also increases and attains its maximum value at inhomogeneity coef-
ficient c = 0.3. Observe that when the poroelasticity and the inhomogeneity effect
are combined the material response may lead to 30 times greater value than the pure
elastic homogeneous case.
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Fig. 6 Normalized displacement amplitude along the free surface of continuously inhomogeneous
of type B half plane with inhomogeneity coefficient c = 0.25-4 due to SH-wave propagating from
embedded seismic source located at (0, −15a) with frequency η = 0.5 in the case of a single and
two tunnels. The obtained results are for pure elastic (a) and (b) and poroelastic cases with n = 0.3
(c) and (d) and n = 0.35 (e) and (f)
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The obtained results reveal that the seismic wave field is a complex result due to
a hybrid influence of different key factors like poroelasticity and inhomogeneity of
the material, existence of multiple heterogeneities (cavities) at arbitrary geometrical
configuration. Furthermore, dynamic interactions between the heterogeneity free
surface and among heterogeneities play an important role in the kinematic field
along the free surface. Finally, the type of external load and its frequency content
are also important parameters in this mechanical problem. Note here, that although
the cavities in all numerical results are of circular shape, the developed numerical
scheme allows consideration of arbitrary geometry.

4 Conclusion

In the present work wave propagation problems in graded poroelastic half-plane
containing multiple cavities are investigated. The geological region is poroelastic,
inhomogeneous and heterogeneous. The poroelasticity is taken into consideration
by the Bardet model. The two-phase poroelastic dynamic behavior described by the
Biot’s model is approximated by the dynamic response of one-phase viscoelastic
material. The main advantage of the proposed viscoelastic isomorphism is that due
to its mechanical (one-phase instead two-phase material) and mathematical simplic-
ity (the wave equation and its fundamental solution are much simpler in this case
than in Biot’s model), it gives the possibility to obtain approximate solutions for
complex boundary-value problems related to seismic wave propagation in continu-
ously inhomogeneous with material gradient fluid-saturated geological region. The
equivalent model can deal with the changes of the stiffness and the damping mech-
anism in the poroelastic material. Two different mechanical models for material
gradient are presented and inserted in numerical simulations. Application of BIEM
to problems in elastodynamics for inhomogeneous continua runs into serious dif-
ficulties, because the method pre-supposes the existence of fundamental solutions
for the corresponding governing wave equation with variable coefficients. In gen-
eral, partial differential equations with variable coefficients do not possess explicit
fundamental solutions that can easily be implemented within existing BIEM numer-
ical codes. This in turn prevents reduction of a given BVP to a system of boundary
integral equations that can be evaluated by numerical quadrature. The authors used
frequency-dependent Green’s function for quadratically inhomogeneous half-plane
and fundamental solution for infinite domain with position dependent phase velocity.
Additionally the half-plane is heterogeneous with multiple heterogeneities like cavi-
ties. The developed computational tool is an efficient mesh-reduced BIEMnumerical
scheme. Research software is developed, verified and used for extensive parametric
studies. The numerical simulations demonstrate the potential of the BIEM to produce
highly accurate results regarding the seismic response of underground structures in
graded saturated geological regions.

Acknowledgments The authors acknowledge the support of theDFGGrant No. DFG-Wu 496/5-1.
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Appendix

Green’s Function for Quadratically Inhomogeneous
Half-plane

Green’s function g∗
3 is the solution of the following boundary value problem in

frequency domain:

σi3,i(x, ω) + ρ(x)ω2g∗
3(x, ω) = −δ(x − ξ)

t∗3 (x, ω) = μ(x)g∗
3,i(x, ξ , ω)ni(x) = 0 for x2 = 0 (A.1)

In Rangelov and Manolis [22] this Green’s function was derived in a closed form
by the usage of the smooth transformation of the type g∗

3(x, ξ , ω) = h−1/2(x)

G∗
3(x, ξ, ω) and thus reducing the boundary-value problemwith variable coefficients

presented by Eq. (2) to one with constant coefficients with respect to the transformed
Green’s function G∗

3(x, ξ , ω) available for analytical derivation by the usage of a
suitable integral, see details in Rangelov and Manolis [22].

Here for the completeness of the text we give the Green’s function and the corre-
sponding traction below:

g∗
3 (x, ξ , ω)

= h−1/2(ξ)h−1/2(x)

⎡
⎣ i

4μ0
H(1)
0 (kr) + 1

4πμ0

+∞∫
−∞

γ + b

γ (γ − b)
eγ (x2+ξ2)eiη(x1+ξ1) dη

⎤
⎦

(A.2)

where: γ = √
η2 − k2; k = k1 + ik2; k2

1 = ρ0

μ0
ω2; k21 > 0; k2 > 0,

r = √
(x1 − ξ1)2 + (x2 − ξ1)2, H(1)

0 (z) and H(1)
1 (z) is 1st Hankel function of 0 and 1

order.

Fundamental Solution of Equation of Motion
for Inhomogeneous Material of Type B

Fundamental solution is derived in Manolis and Shaw [18, 19]. It is solution of
Eq. (2) for a right-hand-side (RHS) in the form of a unit point force (i.e., Dirac
delta function). The methodology is based on an algebraic transformation of the
displacement of the type u∗

3(x, ω) = μ−1/2(x, ω)U∗
3 (x, ω), which also modifies the

RHS as μ−1/2(x, ω)δ(x − ξ), where x, ξ is the source-receiver pair. This procedure
transforms the partial differential equationwith variable coefficients for displacement
u3(x, ω) to onewith constant coefficients for the transformed displacementU3(x, ω).
Solution of the latter type of equations defined for an “equivalent” homogeneous
medium are readily available, see Dominguez [8]:
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U∗hom
3 (R, ω) = 1

2ππ∞ K0

(
iωR

C∞
S

)
; R =

√
(x1 − ξ1)2 + (x2 − ξ2)2. (A.3)

In the above, K0 is the modified Bessel function of second kind and zero order. Thus,
the fundamental solution of Eq. (2) attains the following final form:

u∗
3(x, ξ , ω) = μ∞μ−1/2(x2)μ

−1/2(ξ2)U
∗hom
3 (R, ω). (A.4)

The above form is conditional on the shear modulus and the density satisfying the
following constraint equation, which dictates acceptable depth profiles for material
parameters μ(x2), ρ(x2) and wave number k(x2):

1

4
μ−1

(
dμ

dx2

)2

− 1

2

d2μ

dx22
+ ω2ρ = μk2. (A.5)
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Determination of Foundation Coefficients
for a 2-Parameter Model on the Basis
of Railway Sleeper Deflection

Włodzimierz Andrzej Bednarek

Abstract In the paper foundation coefficients for a 2-parameter model on the basis
of the railway sleeper deflection are determined. The railway sleeper is assumed as
an Euler-Bernoulli beam of finite length resting on a two-parameter elastic founda-
tion. During the analysis two types of railway sleepers are considered (wooden and
concrete). The railway sleeper in FEM is divided into 80 elements. The parameters
connected with the railway sleeper are: the sleeper’s width, length and stiffness,
variable value of the force transferred from the rail to the railway sleeper. The foun-
dation parameters (k1 i k2) are determined based on a modified Vlasov soil model
[12, 16]. The parameters connected with the foundation are modulus of elasticity
(usually measured by a VSS plate)—Es , the Poisson’s ratio (νS) of the foundation. In
the Vlasov two-parameter foundation model, the foundation is treated as an elastic
layer, and the constraints are imposed by restricting the deflection within the founda-
tion to an appropriate mode shape described as ϕ(z). The Vlasov model accounts for
the effect of the neglected shear strain energy in the soil and shear forces that come
from the surrounding soil by introducing an arbitrary parameter γ . This parameter
characterises the vertical distribution of the deformation in the foundation. The para-
meter γ is determined as a function of the characteristic of the beam and foundation
soil using an iterative procedure (modified Vlasov foundation) [16]. Because the γ

value needs to be known before the function ϕ(z) can be solved, an iterative approach
is used to evaluate γ . The initial value of γ is first arbitrarily assumed to evaluate
the k1 and k2 parameters. Next, the value of γ is calculated from an equation using
beam displacements, which is calculated in the previous step. With a corrected value
of γ , the values of k1 and k2 are again evaluated. The iteration process is continued
until the change in γ between the two successive iterations is less than the assumed
tolerance.
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1 Introduction

The general job of a railway sleeper is to sustain rail forces and transfer them to
the ballast bed [4, 5, 7, 14]. Sleepers also preserve track gauge corresponding to
formal railway track width. Sleeper displacements under action of longitudinal and
horizontal forces are countered by ballast resistance and friction arising between
ballast and sleepers. The vertical loads transferred from the rail to the sleeper cause
ballast reaction. In order to preserve the rail on the sleeper in one plane one should
provide correct sleeper packing. A proper grain-size distribution should be within
borders shown in Fig. 1.

2 Types of Railway Sleepers

In railway tracks we distinguish concrete, wooden and steel sleepers (i.e. Ypsylon
sleepers—Y type) shown in Fig. 2. Concrete sleepers are made with reinforced con-
crete by strings or steel bars. The wooden sleepers are made by softwood (pine) and
hardwood (oak, beech, azobe). This type of sleeper is most popular around the world.
Thewooden sleepers have a beam shape at rectangular cross-section or close to them.
In order to extend their life (up to 25years) they are impregnated by creosote oil.

Fig. 1 Ballast bed specification [4, 5, 14]
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(a) (b)

(c) (d)

Fig. 2 Examples of railway sleeper types. a Wooden sleepers; b concrete sleepers; c steel sleepers;
d Y sleepers [8, 18]

Fig. 3 Dimensions of wooden sleepers produced and mainly used in Poland

Typical characteristics of wooden sleepers are shown in Fig. 3. The reinforced
concrete sleepers (further denoted as concrete sleepers) are made in beam shape
from prestressed concrete. For the railway track structure mainly concrete sleepers
(Fig. 4) PS-83 and PS-94 are used with SB fastening for 49E1 or 60E1 types of the
rails (Table1). PS-83 type concrete sleeper is delivered also with K type fastening
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Fig. 4 Schematics of concrete railway sleepers (e.g. INBK-7) and their dimensions

previously installed in a finned sole-plate or only with dowels. Nowadays in railway
tracks often steel sleepers ofYpsylon type are used. These sleepers revealed their use-
fulness, excellent properties in track stability and minimal requirements connected
with subgrade maintenance during railway operation. Adaptation of Y steel sleepers
decreases the quantity needed for 1km track from 1666 beam sleepers to 803 Ypsy-
lon steel sleepers [8]. It also decreases the height and width of the railway track and
consequently reduces the quantity of ballast by 30–40% in comparison with typical
track structures with standard beam sleepers.
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Table 1 Where a—anchors clearance; b—width between external anchors; d—length; h—height;
p—width of sleeper bottom area

Type Mass (kg) Support Dimensions (mm)

area (m2) a b d h p

1 2 3 4 5 6 7 8

INBK-3 226 0.5335 285 1803 2500 202 265

INBK-4 210 0.4466 285 1803 2300 192 286

INBK-7 250 0.6310 315 1828 2500 190 300

INBK-8 240 0.5818 285 1795 2500 195 286

PBS-1 250 0.5400 285 1795 2500 193 300

PS-83 250 0.6843 173 1687 2500 210 300

PS-93 286 0.6805 173 1687 2600 227 300

PS-94 294 0.6805 173 1687 2600 229 300

3 Influence of Dynamical Factors Due to Train Velocity
and Track State (k J

v Coefficient)

The dynamical character of the reaction of running trains on the track structure is
described by the dynamical coefficient kν (which is dependent on the velocity of
the rail-vehicle). For Polish National Railways for the calculation of this dynamical
coefficient a cubic multinomial is applied in the following form [2, 4, 5]

kv = 1 + 5 · 10−4 · V + 4 · 10−5 · V 2 − 1.3 · 10−7 · V 3, (1)

where V is the train speed (km/h). The behavior of the coefficient kv is illustrated in
Fig. 5. It does not depend only on train speed but, above all, on the track structure state
and also on the types and the state of the rail-vehicles [2]. Thus, it is recommended
to calculate it according to a synthetic indicator of the railway track quality J, using

k J
v = 1 + J

1.5
· (kv − 1) , ΨJ = k J

v · (1 + 0.2 · J · t) , (2)

where k J
v is a dynamical coefficient due to track state and motion velocity [-], kv is a

dynamical coefficient considering onlymotion velocity [-], J is a synthetic coefficient
of track quality (mm) and t a value denoting a confidence level. The parameter t
depends on the line category for which a dynamical coefficient is calculated. The
higher the category the higher the operational reliability required. Common values
of the parameter t are

t = 3.00 for 0 track class, t = 1.50 for 3 track class,
t = 2.50 for 1 track class, t = 1.00 for 4 track class,
t = 2.00 for 2 track class, t = 0.75 for 5 track class



330 W.A. Bednarek

Fig. 5 Diagram showing the dynamical coefficient depending on the speed

4 Beam on Elastic Foundation

4.1 Introduction

The problem of a beam resting on an elastic and visco-elastic foundation has been
widely investigated in the literature [1, 3, 9–11, 17]. The first soil model was pro-
posed by Winkler, in which the foundation is described by a series of closely-spaced
independent elastic springs. Furthermore, the reacting pressure at each point of the
soil surface is directly proportional to the deflection of the beam through a material
constant called the Winkler modulus. However, many alternative soil models have
been proposed to obtain more accurate descriptions of the soil-beam interaction and
to avoid the limits of the Winkler assumption:

• a model in which the soil is modelled as a homogeneous isotropic elastic half
space;

• the Wieghardt model, which proposed an integral dependence of the soil displace-
ment at a point upon the contact pressure on the whole contact region through
an exponential kernel (this model introduces a material constant kG in addition to
the typical Winkler modulus, and the model belongs to the class of two-parameter
foundations);

• the Pasternak model, which describes the foundation as an elastic spring layer
covered by an elastic incompressible membrane that is shear deformable;

• the Reissner model, a proposed generalisation of the Pasternak model that intro-
duces the second order derivative of the reacting pressure in the deflection-pressure
relationship (in this case, the soilmodel can be viewed as a reduced three-parameter
soil model consisting of an embedded shear layer between two layers of elastic
springs that have a specific ratio between the spring layer stiffness);
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• the Vlasov model, which adopted the simplified-continuum approach based on the
variational principle and derived from a two-parameter foundation model (in this
model, the foundation is treated as an elastic layer, and the constraints are imposed
by restricting the deflection within the foundation to an appropriate mode shape—
an arbitrary parameter γ );

• a model with a modified Vlasov foundation, in which the parameter γ is treated
as a function of the beam and the foundation soil (using an iterative procedure).
The unilateral nature of the beam-soil contact results in a nonlinear feature.

4.2 A BE-Beam on a Two-Parameter Vlasov Foundation
(Finite Element Formulation)

For a further analysis, in order to avoid Winkler’s assumption, here, the foundation
of a sleeper is mainly treated as a two-parameter Vlasov foundation. Therefore, an
analysis of static forces in a railway sleeper as an Euler-Bernoulli (E-B) elastic beam
resting on a two-parameter modified Vlasov foundation (defined by k1 (MPa) and
k2 (MN) coefficients) is done (shown in Fig. 6). Specifically, the concentrated static
forces causing the deflection of the railway sleeper are investigated. The differential
equation for a BE-beam resting on a two-parameter soil has the following form [16]

E I · z(x)I V + k1(x) · z(x) − k2(x) · z(x)′′ = q(x), (3)

where z is the beam deflection; k1 the first subsoil parameter (MPa), k2 the second
subsoil parameter (MN) and q(x) the distributed load on beam.

Using Galerkin’s Residual Method (GRM) for the two-parameter foundation we
obtain [16]

Fig. 6 General scheme of a
single element of a beam.
wi , θi—two degrees of
freedom: deflection and
slope; Mi , Qi—bending
moment and transverse force
of beam
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E I ·
l∫

0

Ni (x) · z I V
e (x)dx −

l∫
0

Ni (x) · k2(x) · z I I
e (x)dx

+
l∫

0

Ni (x) · k1(x) · ze(x)dx −
l∫

0

Ni (x) · q(x)dx = 0. (4)

In matrix notation: ([kE I ] + [kV ] + [kH ]) · {ue} = {Se} − {Re}, where [kE I ] is the
bending stiffness matrix of the beam element, [kV ] the matrix for the elastic foun-
dation under an the influence of its first parameter, [kH ] the matrix for the elastic
foundation under an influence of its second parameter, [Se] the vector of reaction to
concentrated forces applied to the beam (forces were applied in the beam’s nodes),
[Re] the vector of reaction to the evenly distributed load on the beam.

The solutions of Eq. (4) are given as matrices [16]

kE I = E I

l3
·

⎡
⎢⎢⎣

12 6 · l −12 6 · l
6 · l 4 · l2 −6 · l 2 · l2

−12 −6 · l 12 −6 · l
6 · l 2 · l2 −6 · l 4 · l2

⎤
⎥⎥⎦ , (5)

(6)
for k1

1 = k2
1 = k1

kV = k1 · l

420
·

⎡
⎢⎢⎣

156 22 · l 54 −13 · l
22 · l 4 · l2 13 · l −3 · l2

54 13 · l 156 −22 · l
−13 · l −3 · l2 −22 · l 4 · l2

⎤
⎥⎥⎦ , (7)

kH = 1

30 · l
·

⎡
⎢⎢⎣

3 · (
11 · k12 + k22

) −3 · l · (
k12 − 2 · k22

) −3 · (
11 · k12 + k22

)
3 · l · (

2 · k12 − k22
)

3 · l · k12 l2 · (
3 · k12 + k22

) −3 · l · k12 −l2 · k22
−3 · (k12 + 11 · k22

)
3 · l · (

k12 − 2 · k22
)

3 · (
k12 + 11 · k22

) −3 · l · (
2 · k12 − k22

)
3 · l · k22 −l2 · k12 −3 · l · k22 l2 · (

k12 + 3 · k22
)

⎤
⎥⎥⎦ ,

(8)
for k1

2 = k2
2 = k2

kH j = k2
30 · l

·

⎡
⎢⎢⎣

36 3 · l −36 3 · l
3 · l 4 · l2 −3 · l1 −l2
−36 −3 · l 36 −3 · l
3 · l −l2 −3 · l 4 · l2

⎤
⎥⎥⎦ , (9)
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where EI is the element stiffness (MNm2), l the element length (m), k1
1 and k2

1
the subsoil coefficient at the beginning and end of the element for the first subsoil
parameter (MPa), k1

2 and k2
2 the subsoil coefficient at the beginning and end of the

element for the second subsoil parameter (MN).
For q(x) = q = const. The result for the vector of reaction {Re} can be written

in a well-known form

{Re} =
{

− q·l
2 − q·l2

12 − q·l
2

q·l2
12

}T
.

4.3 Identification of the Parameters for Theoretical
Calculations

The characteristics and parameters of the track (i.e. rail and sleeper stiffness, foun-
dation parameters) in the vertical plane (Fig. 6) can be found in earlier publications
[4–7, 14].

In point Sect. 4.2 of this paper the foundation parameters for the theoretical analy-
sis were assumed “in advance”. In the Vlasov two-parameter foundation model
[12, 16], the foundation is treated as an elastic layer, and the constraints are imposed
by restricting the deflection within the foundation to an appropriate mode shape
described as ϕ(z). The method of determining these parameters is as follows. The
two-parameterVlasovmodel (shown in Fig. 7) accounts for the effect of the neglected
shear strain energy in the soil and shear forces that come from the surrounding soil
by introducing an arbitrary parameter γ . This parameter characterises the vertical
distribution of the deformation in the foundation [12]. The proper mechanism for
the calculation of γ is given in publications [12, 16]. The parameter γ is determined
as a function of the characteristic of the beam (e.g. Figs. 3 and 4) and foundation
soil using an iterative procedure (modified Vlasov foundation). Because the γ value
needs to be known before the function ϕ(z) can be solved, an iterative approach
is used to evaluate γ [12, 16]. The initial value of γ is first arbitrarily assumed to
evaluate the k1 and k2 parameters using Eqs. (11) and (12). Next, the value of γ is
calculated from Eq. (13) using beam displacements. With a corrected value of γ , the
values of k1 and k2 are again evaluated from Eqs. (11) and (12). The iteration process
is continued until the change in γ between the two successive iterations is less than
the assumed tolerance.

http://dx.doi.org/10.1007/978-3-319-28241-1_4
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Fig. 7 Form function ϕ(z) in relation to parameters γ and z/H [16]

φ(z) = sinh γ · (
1 − γ

H

)
sinh γ

γ 2 = H · 1 − 2 · νs

2 · (1 − νs)
·

∞∫
−∞

(
dv
dx

)2
dx

∞∫
−∞

v2dx
, (10)

k1 = (1 − νs) · Es · b

(1 + νs) · (1 − 2 · νs) · H
· γ ·

(
sinh γ · cosh γ + γ

2 · sinh2 γ

)
, (11)

k2 = Es · b · H

2 · (1 + νs)
· 1
γ

·
(
sinh γ · cosh γ − γ

2 · sinh2 γ

)
, (12)

( γ

H

)2 = (1 − 2 · νs)

2 · (1 − νs)
·

L∫
0

(
dv
dx

)2
dx + 0.5 ·

√
k1
k2

· v2(0) + v2(L)

L∫
0

v2(x)dx + 0.5 ·
√

k2
k1

· v2(0) + v2(L)

, (13)

where k1 and k2 are foundation parameters, νs is the Poisson ratio of the soil, Es the
modulus of elasticity (usually measured by a VSS plate), γ an arbitrary parameter,
í(z) the beam deflection, H the assumed depth of co-operated foundation, b the beam
width and φ (z) an additional parameter.

The subgrade modulus of elasticity (Es) is a product of elementary load incre-
ment proportion to deformation growth of the measured subsoil in a fixed range of
elementary loads andmultiplied by three quarters of the loading plate diameter. Then
[15],

Es = 0.75 · Δp

Δy
(MPa) · D (14)
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(a)

(c)(b)

Fig. 8 Measurement of the subgrade modulus of elasticity. a Measurement notation; b testing
equipment in track (author’s method); c support method

where Δp is the load difference (MPa), Δy the settlement increment corresponding
to the load difference (mm), D the loading plate diameter (mm).

A measurement is mainly made by VSS plates [15] at diameter D = 300 (mm),
see Fig. 8.

4.4 Numerical Investigations

Using the finite element introduced in Sect. 4.2 and the numerical iteration described
in Sect. 4.3, a computer calculation is developed and used in the identification of the
2-parameter foundation. To investigate the foundation response, a beam (sleeper)
with the following geometry (Fig. 9) and material data is used: νs from 0.20 to 0.35
[-]; Es from 40 to 80 (MPa), where νs denotes Poisson’s ratio and Es denotes the
modulus of elasticity. The force Q acting on the sleeper is taken between 100–200
(kN). Figures10, 11 and 12 show the results of the calculations.
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Fig. 9 Beam (sleeper) for numerical investigation

(a)

(b)

Fig. 10 Influence of force Q acting on the sleeper on k1 and k2-parameters
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(a)

(b)

(c)

Fig. 11 Influence of the modulus of elasticity ES on k1 and k2 parameters
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(a)

(b)

(c)

Fig. 12 Influence of Poisson’s ratio νs on k1 and k2 parameters
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4.5 Experimental Investigations for INBK-7 Sleeper

4.5.1 Details of the Author’s Field Investigation

The load was a locomotive with 4 axles at 90 kN per wheel load (180 kN/axle)—see
Fig. 13.

The force transferred from the rail to the railway sleeper and the deflections
of the railway sleeper were measured and analysed. The field investigation on an
actual CWR track is shown in Fig. 14. A static ride (speed below 10 (km/h)) of
succeeding SM-42 locomotive axles is analysed. Considering a small speed of the
moving locomotive, the problem is treated as static.

To analyse deflections, anopticalmeasurement systembyGOMmbh (Gesellschaft
für Optische Messtechnik, Technische Universität, Braunschweig) was used. The
main purpose of this system is to produce 3D digitisation (e.g., in coordinate mea-
surements). The PONTOS system is used for the dynamic analysis of deflections
in 3D, making precise (at an accuracy of 0.001mm), non-contact measurements of
position, motion and deformations at short time intervals (in the order of 0.005s).
The PONTOS Viewer version v6.3.0-5 (by GOMmbH) and catmanEasy version 2.1
(by HBM GmbH programs were used.

Fig. 13 Applied track load from locomotive during field investigation (kN)

Fig. 14 Field investigations at the Poznan-Franowo station a the locomotive acting as a load and the
measuring crew during site surveys b measured sleeper deflection of succeeding SM-42 locomotive
axles (PONTOS viewer)
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Table 2 The railway sleeper deflection zs under the 2nd axle load from Fig. 12
experimental
measurement

one-parameter foundation
k1 = 22,8362 [MPa]
and k2 = 0 [MN]

two-parameter foundation
k1 = 22,8362 [MPa]
and k2 = 2,7262 [MN]

zs = 1,4373 [mm] z1−par
s = 1,5283 [mm] z2−par

s = 1,5051 [mm]

where zs is the measured deflection (sleeper’s beginning), z1−par
s the theoretical calculation for a

1-parameter foundation and z2−par
s the theoretical calculation for a 2-parameter foundation

4.5.2 Identification of the Parameters for Theoretical Calculations

The characteristics and parameters of the track (i.e. rail and sleeper stiffness, foun-
dation parameters) in the vertical plane (Fig. 3) can be found in earlier publications
[2, 4–7, 14]. For a further analysis presented in this work, exact parameters of the
sleeper foundation were determined using results of a test-driving of the locomotive
without irregularities; the parameters were also determined by methods described in
Sect. 4.3 of this work.

A significant change in the vertical stress in the subgrade (representing an impact
on the strain) caused by loaded substructure VSS was calculated to have a vertical
range from 3.87 to 4.91 plate diameters D [13]. Therefore the assumed depth was
H =1.0 (m).

For Es = 68.3478 (MPa) and νs = 0.2 , γ = 0.57949 as determined by the iter-
ative process. The values for k1 and k1 were k1 = 22.8362 (MPa) and k2 = 2.7262
(MN) as determined by Eqs. (11) and (12), respectively.

The experimental measurement was compared to theoretical calculations (FEM),
and the experimental and theoretical results are shown in Table2. For comparison a
1-parameter foundation is considered (while the second parameter k2 is assumed to
be zero).

5 Final Remarks

To sum up:

1. In the paper a method for the determination of foundation coefficients for a 2-
parameter model on the basis of the railway sleeper deflection has been shown.

2. An influence of the parameters Q (sleeper load) (kN), ES (modulus of elasticity)
(MPa) and νs (Poisson’s ratio) [-] are considered and shown in Figs. 10, 11 and 12.

3. It is noticed that the sleeper load (Q) (kN) is of little importance on the values
of k1 (MPa) and k2 (MN). The foundation parameters are mainly connected with
subsoil properties.

4. On the other hand the foundation parameters such as Es (modulus of elasticity)
(MPa) and νs (Poisson’s ratio) [-] are of importance (as can be clearly seen in
Figs. 11 and 12).
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As can be seen from Table2 containing theoretical results, the best fit to field investi-
gations appears for the sleeper treated as BE-beam resting on the 2-parameter elastic
foundation.
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Orthotropic Parameters of PU Foam
Used in Sandwich Panels

Monika Chuda-Kowalska and Mariusz Urbaniak

Abstract Polyurethane foam used as a core material in sandwich panels is
considered in the paper. In this class of structures foam-filled material is treated
as an isotropic, elastic material very often. Then, only two independent material
parameters are needed to describe this material. Usually, they are chosen from the
Young’s modulus E, the shear modulus G or the Poisson’s ratio ν. In fact, when
the material under consideration is a porous structure like a polyurethane foam, the
identification of the mechanical properties of this material (even for the isotropic
model) is an intricate task. Additionally, as will be shown in the paper, the foam
stress-strain response is a function of the applied load. Therefore, the orthotropic
behavior of the PU foam is analyzed. To determine mechanical parameters standard
tests and a Digital Image Correlation (DIC) technique (named Aramis) are applied.
The experimental results are discussed in detail.

1 Introduction

Sandwich panels made up of two, external thin and stiff metal skins separated by a
thick, lightweight core are widely used in many areas of engineering. That is caused
mainly by their several attractive features like high load-bearing capacity coupled
with small weight, good thermal insulation, cost of production and easy assembling.
There is strong tendency to apply these panels of larger span lengths and thinner
skins. Therefore, a number of papers have been devoted to design and optimization of
sandwichplates [9, 17]. Themost commoncorematerials used in these layered panels
are different kind of cellular solids like metallic, glass, ceramic and polymer foams.
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For engineering purposes, foams represent an attractive set of features such as high
energy absorption capacity, acoustic and thermal insulating properties which make
thesematerials very popular in aircraft industry, automobile, buildings or packing [5].
On the other hand, using porous materials in structural applications, the knowledge
of their integrity andmechanical behavior on bothmicro- andmacro-scale is required
[13]. In the literature, it is possible to find papers considering different approaches for
modeling and can be roughly divided into two categories: micro-mechanical models
and phenomenological models. The first group of models is based on the analysis
of micro-cell structure [8, 10, 18]. The second group of models based on the best
fitting to experimental mechanical behavior without direct relationship to physics the
phenomenon. Such models were commonly used and developed by many authors
[1, 12] and adopted in this paper. The authors analyzed the behavior of the low
density and closed-cell foam used as a core material in sandwich panels. Common
application of this kind of panels in civil engineering implies specific computational
and testingmethods accounting for the influence of the soft core on the behavior of the
layered structure [4, 16, 19]. The assumption of isotropy and linear elasticity is very
convenient from engineering point of view and frequently used [7]. Then, the shear
modulus of the core material and establishment of reliable experimental methods
for its determination play a crucial role for structural performance of a sandwich
panel [11, 14]. Unfortunately, manufacturing process of the panel produced for civil
engineering can have vast influence on the microstructure and behavior of the core
material because steel facings limit the growth of foam in the thickness direction.
Therefore, isotropy assumption can lead to significant errors and the estimation of
the mechanical properties of porous core material needs an extra attention [2, 15].

In this paper the main aim is focused on two aspects: the determination of material
anisotropy of PU foam used in sandwich panels and accurate estimation of its elastic
parameters such as Young’s modulus E and Poisson’s ratio ν. In order to obtain
more precise results from tension and compression tests a Digital Image Correlation
system (Aramis) was used.

2 Standard Approach and Testing Procedure

The closed-cell polyurethane rigid foam used as a core material in sandwich panels
is adopted as a material to be investigated in this work. It is manufactured during
polymerization reaction from ingredients such as: polyol, isocyanates, catalysts and
blowing gases. Microstructure of this foam is presented in Fig. 1. Its relative density
R is equal 0.033 (the density of the cellular material divided by that of the solid
from which the cell walls are made: R = 40/1200 = 0.033). According to Gibson
and Ashby [8] for relative densities below 0.3, the material is classified as a cellular
structure. To identify anddeterminematerial properties of porousmaterials, standards
and experimental methods for solid homogenous materials can be applied. Foams
are specific material. Although tensile tests are the most common for other materials,
they are rarely used for foams because they are weak in tension, fracture easily and
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Fig. 1 The microstructure
of analyzed PU foam

difficulty to grip to apply tensile loads. In contrast, compressive and shear loading
are more common compared to the others.

For analyzed foam used as a core material in sandwich panels the standard expe-
rimental methods adopted to estimate material parameters of the core are described
in code EN 14509 [6]. They are based on the assumption that the materials of steel
facings and the core are isotropic, homogeneous and linearly elastic. For the PU foam
only two parameters are mentioned: GC and EC—because the relation (1) must be
obligatory hold in this classical model.

G = E

2(1 + ν)
(1)

According to EN 14509, the shear modulus of the core GC should be identified
from the four-point bending test based on the Sandwich Beam Theory. The total
displacement f of the mid-point of the span of the panel can be decomposed into
a flexural component wB due to the bending moment and a shear component wS

due to the shear force. The second one can be assessed and used to estimate of the
desired parameter GC . This parameter plays significant role in structural response of
sandwich panels and should be identified in reliable way.

The next material parameter of the core mentioned in EN 14509 is Young’s modu-
lus. It can be determined in tension/compression tests on cubic samples containing
the core material and facings. Therefore, the cross-section of the sample depends on
the thickness of the plate.

In the present case, the PU foam has a density of 40 kg/m3. The dimensions of the
samples had 100× 100× 100mm. For each tension/compression test 7 sampleswere
used. For bending test 5 samples were analyzed. Obtained mean values are shown in
Table1. In detail, these tests and results were presented by Chuda-Kowalska in [3].

Table 1 Elastic parameters of tested PU foam

ECt (tension) ECc (compression) GC (bending)

[MPa] 3.59 3.82 3.33
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It appears that when we introduce EC and GC identified from tests described
above, thenEq. (1) is not satisfied, because it provides negative values of the Poisson’s
ratio ν = −0.46. Therefore, the another series of tests were carried out in order to
determine this parameter and to study the homogeneity and anisotropy of the PU
foam.

3 Orthotropic Analysis—Experimental Setup

The main aim of this paper is to show the foam orthotropy and the discrepancy
between mechanical parameters obtained from standard tests compared to Digital
Image Correlation system, named Aramis.

The material directions adopted in the paper are chosen based on the plate’s
format and shown in Fig. 2a. So,mechanical properties shown inTable1 and available
in manufacturer’s specifications correspond to “out-of-plane” properties (thickness
direction Z). In order to assess experimentally the anisotropy uniaxial tension and
compression tests in three orthogonal directions X, Y and Z were carried out. Three
Young’s moduli Ex , Ey and Ez were calculated from Eq. (2):

Ei = F(i)

Aε
(i)
i

, (2)

where εi and A denote axial (vertical) strain according to Fig. 2b and cross-section
of the sample, respectively.

The second mentioned parameter is the negative ratio of transverse to axial strain
according to Eq. (3)

νi j = −ε j

εi
, (3)

where ε j denotes transverse (horizontal) strain and εi is axial (vertical) strain
(Fig. 2b).

Due to the porous structure of the foam the classical strain measurement using
strain gauges is incorrect because of the heterogeneity and voids of tested material.
Therefore, only contactless methods should be used.

Fig. 2 a Adopted material directions, b Index system
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Fig. 3 Experimental setup: a Aramis system, b extended sample, c compressed sample

In the present work a Digital Image Correlation technique (named Aramis) was
used. The system was prepared in 3D measurement setup where two cameras were
used with focal length 50mm and 4 MP resolution (Fig. 3a).

In order to recognize the surface of the specimen it was covered with stochastic
pattern what is shown in Fig. 3b, c. DIC system compute deformation of the speci-
men through the images by means of square image details with given size of 15× 15
pixels (facets—Fig. 4). Using photogrammetric methods system finds the same facet
on image captured by left and right camera and allocate local coordinates to image

Fig. 4 Illustration of facets
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pixels. First captured image represents undeformed specimen.During loading further
images were recorded with frequency of 4 fps for tension test and 2 fps for compres-
sion test. Then the system compares digital images and calculates displacements
and deformation of facets on the surface of specimen. Strain is computed based on
deformation of small field (3× 3 facets) for center point of this field.

According to the appropriate procedure described in [6] the quasi-static loading
velocity is controlled by the strain rate, in this case 10mm/min. The tests were carried
out in the Instron testing machine, which was modernized by Zwick/Roell with a
200 kN load cell.

4 Results and Discussion

The PU foam analyzed in this section has a density of 38 kg/m3—slightly lower
density than samples presented in Sect. 2. 18 cubic foam samples 90× 90× 90 mm
were properly cut out from the panel. In order to identify mechanical properties
in three orthogonal directions X, Y and Z steel facings were removed. Nine of the
prepared samples devoted to tension test (three samples in each direction). They
were positioned between composite handles and glued to them by a two-component
polyurethane adhesive Macroplast U.K. 8309 and Macropur U.R. 521 (hardener)—
Fig. 3b. The nine of compressed samples were placed directly between two parallel
stiff loading plates of a testing machine what is shown in Fig. 3c.

4.1 Tension Test

Tension test was carried out until the ultimate load was reached and the failure of the
sample was occurred. During these tests the analyzed PU foam presents quasi-brittle
response. The samples destroy by overall rupture of the structure for a various range
of forces what is presented in Fig. 5. The tensile strength fCt and corresponding

Fig. 5 Force/Time curves under uniaxial tension test



Orthotropic Parameters of PU Foam Used in Sandwich Panels 349

Table 2 Uniaxial tension test in X , Y and Z directions—strength parameters

fX
Ct [kPa] εX

max [%] fYCt [kPa] εY
max [%] fZ

Ct [kPa] εZ
max [%]

1 311.82 3.34 136.40 2.64 105.06 4.12

2 215.31 2.33 128.88 2.55 101.21 4.25

3 249.12 2.64 151.02 3.08 114.32 5.55

k̄∗ 258.75 2.77 138.77 2.76 106.86 4.64

δ∗ 48.97 0.52 11.26 0.28 6.74 0.79
∗k̄ and δ denote mean value and standard deviation, respectively

strain εmax obtained from these tests were presented in Table2. The behavior of
tested samples significantly depended on the stress direction. Rapid failure is usually
initiated at the weakest point of the microstructure of the sample and therefore,
large differences in ultimate load for various samples were appeared, especially in X
direction where the highest forces occurred.

The next analyzing parameter is Poisson’ ratio. The relationship between hori-
zontal (ε < 0) and vertical (ε > 0) strains is almost linear for the entire range of the
force as presented in Fig. 6. Therefore, very small discrepancy of Poisson’s ratio in
time has been observed. Table3 shows a summarization of the obtained results of
Poisson’s ratios and Young’s moduli.

In Table3 the notation was used: E S
i —Young’s modulus in i direction obtained

from standard test according to [6], E A
i —Young’s modulus in i direction obtained

from DIC system. The difference between obtained results Δ was evaluated from
Eq. (4).

δ = A − S

S
· 100 (4)

Fig. 6 Tension test—relationship between vertical/horizontal strains



350 M. Chuda-Kowalska and M. Urbaniak

Table 3 Young’s moduli and Poisson’s ratios of PU foam—tension test

ES
X EA

X νxy ES
Y EA

Y νyz ES
Z E A

Z νzx

[MPa] [−] [MPa] [−] [MPa] [−]
1 10.91 20.94 0.89 5.74 7.19 0.43 3.08 6.26 0.48

2 10.71 21.64 0.85 5.67 7.13 0.42 2.82 6.49 0.50

3 10.94 20.63 0.74 5.56 6.53 0.40 2.75 6.50 0.50

k̄ 10.85 21.07 0.83 5.66 6.95 0.42 2.88 6.43 0.49

Δ (%) 94.19 – 22.79 – 123.26 –

The Young’s moduli obtained directly from the testing machine (according to EN
14509) are much lower than the one obtained from Aramis system. It can be related
with the flexibility of the machine, experimental setup e.g. glued handles and the
effects of friction at the ends of the samples. Therefore, the properties determined
by DIC technique should be considered more accuracy.

4.2 Compression Test

In accordance with EN 14509 for specimens which do not exhibit a well-defined
ultimate load, such a polyurethane foam, compression test should be done until the
strain reach the level of 10%. The authors conducted tests far beyond of this level to
observe the behavior of analyzed material.

Under uniaxial compression loading PU foam exhibits a linear elastic phase in all
three analyzed directions. This range is very short (below 4%) as shown in Fig. 7a.
Past the yield stress, the material behaves similarly to plastic regular materials up to
a point where almost all cells have buckled in what is known as crushing due to
compression (Fig. 7b). Then, the densification process occurs. For all directions this
process begins after exceeding 50% of strain.

Fig. 7 Compression test: a σ − ε plot for X , Y and Z directions, b failure of the cell
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Table 4 The compressive strength parameters

X Y Z

f 0.02Cc [kPa] f 0.1Cc [kPa] f 0.02Cc [kPa] f 0.1Cc [kPa] f 0.02Cc [kPa] f 0.1Cc [kPa]

1 215.3 226.1 98.8 159.6 70.8 139.6

2 226.6 268.9 94.6 146.9 69.2 129.3

3 224.0 270.0 97.0 148.7 68.6 127.5

k̄∗ 222.0 255.0 96.8 151.7 69.5 132.1

δ∗ 5.9 25.0 2.1 6.9 1.1 6.5

The behavior of tested samples significantly depended on the stress direction as
for uniaxial tension test. Contrariwise, in compression test the specimens did not
exhibit a well-defined ultimate load and thus the compressive strength of the core
material shown in Table4 were calculated for the strain levels ε = 2% and 10%
( f 0.02Cc , f 0.1Cc ), respectively.

In compression tests the relationship between horizontal (ε > 0) and vertical
(ε < 0) strains is very sensitive on time and not so obvious and linear compared to
tension test what is shown in Fig. 8. All samples demonstrated rapid and irregular
distribution of the strain in the initial time range. Even the change of the sign is
observed. This phenomenon is associated with the closed-cell microstructure of the
PU foam. Therefore, the authors identified elastic parameters for the time range
between 11–14s to skip the initial irregular behavior of the microstructure and do
not exceed the elastic range (for 14 s −→ ε = 2.6%). Obtained values are presented
in Table5.

Fig. 8 Compression test: a horizontal/vertical strain/time plots, b close-up of initial

Table 5 Young’s moduli and Poisson’s ratios of PU foam—compression test

ES
X EA

X νxy ES
Y EA

Y νyz ES
Z EA

Z νzx

[MPa] [−] [MPa] [−] [MPa] [−]
1 10.57 19.32 0.52 4.34 4.83 0.18 3.08 5.46 0.23

2 11.82 20.74 0.53 4.33 4.60 0.17 2.96 5.17 0.24

3 11.81 20.06 0.54 4.43 4.71 0.16 2.95 5.16 0.25

k̄ 11.40 20.04 0.53 4.37 4.71 0.17 3.00 5.26 0.24

Δ (%) 75.79 – 7.78 – 75.33 –
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Fig. 9 Scheme of approaches to the analysis of the sandwich plates

4.3 Sandwich Plates—Approaches

In summary, the sandwich panels can be analyzed at different levels of accuracy,
what is presented in Fig. 9. The decision to use a particular approach imposes further
proceedings relating to the proper identification of mechanical parameters of all
sandwich panel and its particular materials.

Experimental procedure No. 1 is connected with standards and regulations used
by manufacturers and designers. For layered plates with soft core this procedure is
based on Sandwich Beam Model (No. 2) and assumption about isotropy. Then, the
shear modulus of the soft core plays crucial role in structural response.

On the other hand, if we want to analyze sandwich plates in more accuracy way
we have to use advanced model. Then, there is the possibility to take into account
the orthotropy of analyzed material (experimental procedure No. 3).

5 Conclusions

In case of isotropic material model of PU foam the most important parameter is shear
modulus what should be taken into account in FE analysis, where only E and ν can
be introduced.

Obtained results demonstrate that the assumption about isotropy has to be used
with limited confidence. For sandwich panels the most common failure modes
occurred in metal facings by their wrinkling. Because the Young’s modulus of the
steel is 60,000 times bigger than foam modulus the strain occurring in the PU foam
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are very small and does not exceed the elastic range. Therefore, orthotropic model
seems to be accurate in that particular case. Then, use of the Aramis system (DIC
technique) was very strategy to identify the mechanical parameters of the porous
material as demonstrated in this paper.

Future works can focus on the study of the structural sensitivity of sandwich plates
with PU foam core with respect to material models and boundary conditions.

Acknowledgments Financial support by Poznan University of Technology 01/11/DSPB/0304 is
kindly acknowledged.
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Numerical Elastic-Plastic Model of RPC
in the Plane Stress State

Arkadiusz Denisiewicz and Mieczysław Kuczma

Abstract The work is concerned with the determination of effective material
parameters of reactive powder concrete (RPC) in the range of its nonlinear response.
We have used a two-scale modelling technique and carried out a series of experimen-
tal tests which allow us to validate the proposed numerical model of the considered
RPC concrete. The behavior of a RPC concrete on a macro scale is described on
the basis of phenomena occurring in the microstructure of material. The material
microstructure is taken into account by means of a representative volume element
(RVE), the structure of which is generated in a stochastic way with data from the
designed recipes of RPC. It is assumed that the microstructure of RPC is composed
of isotropic linear elastic—(perfectly) brittle constituents and at the macro scale the
material is homogenized. This approach is a good basis for a simple modelling of
microcracks that cause the nonlinear behaviour of the material at the macro level.
The numerical analysis is carried out here for the plane stress state problem, and at
each level of analysis the finite element method is applied.

1 Introduction

Reactive powder concrete (RPC) is currently one of the most modern building mate-
rials produced on the basis of cement, and belongs to the class of Ultra-High Per-
formance Concrete (UHPC) with its strength and high ductility comparable to steel
[7]. Reactive powder concretes are also classified as cement matrix composites with
ultrahigh resistance properties and are often called the low-temperature ceramics.
Thanks to the ultra high-strength and ductility of RPC, the weight and dimensions of
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cross-sections of structures built from RPC can be significantly reduced. Owing to
its physical andmechanical properties, reactive powder concrete finds a wide interest
not only as the construction material but also as a cladding one and even as a material
for furniture.

We present here a computational method that is capable of taking into account the
influenceof the compositionofRPCconcrete on itsmacromechanical properties. The
model can be used in a structural analysis of buildings and engineering constructions
made of RPC. Concrete is a structural composite material with complex hierarchical
structure that may be analysed in a multiscale approach, starting from the molecular
dynamics simulation of hydrated cement solid nanoparticles [11]. In this paper, we
consider reactive powder concrete on two scales and make use of the numerical
homogenization technique, schematically illustrated in Fig. 1. In this method, the
response of the medium on a macroscale to external loads is determined on the
basis of structural analysis on a microscale [4–6, 8]. On the micro-scale level the
distributions of micro-strains and microstresses are determined, which by the way of
homogenization provide information about the macroquantities. The whole micro-
analysis is carried out on the so called representative volume element (RVE). This
is a volume assigned to a material point which is representative for a small vicinity
of the point. When the characteristic microscopic length is one order smaller than
characteristic macroscopic length, we are able to take into consideration only effects

Fig. 1 The idea of two-scale modelling technique applied to beamsmade of two concrete mixtures,
M1 and M2
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of the first order. In the case of the RPC concrete, this condition is fulfilled. We shall
assume that the characteristic dimension on the microscale corresponds to the size of
ground quartz sand, 0.2 mm, while on the macroscale to the size of the cross-section
of a structural element, e.g. 0.2 × 0.2 m.

2 Two-Scale Elastic-Plastic Model of RPC

Creating the RVE structure of size 10 × 10 mm consists in the random selection
of an element (from a 50 × 50 grid) and also the random assignment of the RCP
component (pores, crushed quartz, sand, cement matrix) to the selected position
(Fig. 2, [3]). The concept of the RVE is a delicate one, especially for concrete with
cracks. The issue of approximation of the random microstructures is discussed in
depth in [9]. The boundary value problem of mechanics for the specified RVE after
FEM discretization is obtained as the minimization of the energy function with
additional constraints

minuϕ(u) = 1

2
uT Ku − uT f s.t. Cu − g = 0 (1)

The problem of homogenization over the RVE of volume V is to find a displace-
ment field u(X) such that divσ = 0 in V , while satisfying the boundary conditions
on the boundary Γ so that the Hill energy criterion is fulfilled:

σ̄ · ε̄ = 〈σ · ε〉 (2)

Fig. 2 Representative volume element ofRPC: amicrostructure [12],bfinite element discretization
of RVE
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A detailed description of the solution procedure can be found in [1–3].
In solving the system of equations resulting from the optimization problem (1),

we can use one of the three types of boundary conditions:

• displacement (Dirichlet) boundary conditions

ū ≡ x · ε̄ ∀ x ∈ Γ (3)

• traction (Neumann) boundary conditions

t ≡ σ̄ · n ∀ x ∈ Γ (4)

• periodic boundary conditions

δu+ − δu− ≡ (x+ − x−) · δε̄ ∀ x ∈ Γ (5)

where the edge Γ consists of two parts Γ = Γ + ∪ Γ − of the normal vectors
n+ = −n− and points x+ ∈ Γ + and x− ∈ Γ −. An illustration of the influence of
the boundary conditions on the value of a selected constitutive parameter as a func-
tion of the size of the RVE (Fig. 2b) is shown in (Fig. 3).

The nonlinear material behaviour is modeled by taking into account degradation
of theRCPmicrostructure (RVE). Calculations between themicro- andmacro- scales
are carried out iteratively (Fig. 1). At each load increment a reduced stress condition
by the Burzyński hypothesis

Fig. 3 The influence of boundary conditions on the solution
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σred =
√

Rt

Rc
(σx + σy)2 −

(
Rt

Rs

)2

(σxσy − τ 2
xy) + Rt

(
1 − Rt

Rc

)
(σx + σy) (6)

where:
Rt—tensile strength of a microstructural component,
Rc—compressive strength of a microstructural component,
Rs—shear strength of a microstructural component,
is checked in each element of the RVE. If the reduced stress exceeds a limit value,
then the element is treated as destroyed.

It is assumed that the microstructure of RPC is composed of isotropic linear
elastic—(perfectly) brittle constituents and at the macro scale the material is homog-
enized. This approach allows for a simple modelling of microcracks that cause the
non-linear behaviour of the material at the macro level. The numerical analysis is
done here within the assumption of the plane stress state, and at each level of analy-
sis the rectangular four-noded finite element with bilinear shape functions and eight
degrees of freedom is applied.

3 Experimental Tests

During the laboratory tests a large amount of data was collected, including also a
non-linear working range of the tested beams. The gathered information will be used
to validate the proposed elastic—plastic numerical model of RPC. The tests were
conducted on beams B1-M1 ÷ B3-M1 and B1-M2 ÷ B3-M2 made from two RPC
mixtures: mixture I (M1) and mixture II (M2), see Table1. During the conducted
tests displacements and deformations of the beams were enforced and measured by
the machine Instron 8804 and also strain gauges while the destruction zone was
monitored with the system Aramis (Fig. 4). For detailed results of the tests, see [1].

Figure5 shows the field of deformation measured by the system Aramis 3D, and
Fig. 6 presents the force-displacement diagrams for the tested beams obtained from
the testing machine Instron. Failure in all the beams was caused by propagation
of cracks, but the behaviours of beams before failure were different for mixtures
M1 and M2. For the beams of a series M1 at the end of linear elastic range the
stress concentrationwas created at themost strenuous cross-section (Fig. 7), resulting
in micro-cracks which finally propagated as one macro-crack (Fig. 8). A different
scenario was observed in the case of beams made of a mixture M2, which contains
micro-fibers (length 6 mm, thickness 0.17 mm) and macro-fibers (length 38 mm,
thickness 1.0 mm). The stress concentrations were observed in the vicinity of the
most strenuous cross-section (Fig. 9) resulting in micro-cracks. After the formation
of macro-cracks the destruction process proceeded as in the case of beams of a series
M1 (Fig. 10). During the tests, there could be heard crackles caused by the pulling
out of macro fibers from the concrete matrix.
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Table 1 Recipes of RPC

Component Mixture I
M1

(
kg/m3

) Percent
amount (%)

Mixture II M2
(
kg/m3

)
Percent
amount (%)

Cement CEM I 42,5R 905 34.2 905 33.2

Silica fume 230 8.7 230 8.4

Quartz sand 0.063–0.4
mm OS 36

702 26.6 330 12.1

Quartz sand 0.04–0.125
mm OS 38

285 10.8 285 10.5

Quartz sand 0.2–0.8 mm
OS 30

– – 335 12.3

Water 260 9.8 260 9.5

Superplasticizer
Woerment FM 787
BASF®

29.6 1.1 29.6 1.1

Micro steel fibres DM
6/0.17 KrampeHarex®

233 8.8 233 8.6

Steel fibres DW 38/1.0
N KrampeHarex®

– – 117 4.3

Densities 2645 – 2725 –

Fig. 4 The test stand for testing beams B1-M1 ÷ B3-M1 and B1-M2 ÷ B3-M2, a testing machine
Instron 8804, b beam subjected to tests, c cameras of the deformation measuring system Aramis
3D, d strain gauge bridge, e cameras recording the tests
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Fig. 5 Destruction zone and measuring field of ARAMIS 3D

Fig. 6 Force-displacement diagrams for the tested beams

Analyzing the diagrams displayed in (Fig. 6), we can see that RPC made from
mixture II is stronger that that made from mixture I. In both the cases, a clearly
defined linear elastic range can be observed, followed by nonlinear softening of
the RPC material due to the development of damage leading eventually to failure
(rapture).

4 Numerical Example

This part of the paper presents the results of numerical simulations of beams of
dimensions 10 × 15 × 200 cm made from two RPC mixtures, which were subjected
to laboratory tests. For the purpose of the two-scale analysis, RVEs were generated
for each mixture by means of the stochastic generator of microstructure geometry
[1, 2] (Fig. 12a, b). The amounts of particular components precisely reflect the pro-
posed RPC recipes (Table1).
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Fig. 7 Beginning of damage phase: beam B2-M1

Fig. 8 Damage phase: beam B2-M1

The cement matrix, which consisted of: cement, silica powder, water and super-
plasticizer, was treated as a single component in numerical simulations. The material
parameters of the components were adopted from the paper [10]. The beams were
divided at the macro scale into twenty rectangular finite elements (Fig. 11).
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Fig. 9 Beginning of damage phase: beam B3-M2

Fig. 10 Damage phase: beam B3-M2

4.1 Mixture I

The followingdesignations have been adopted for components ofmixture I (Fig. 12a):

• Red colour represents the cement matrix—percent amount 49.8 %,
• Dark blue colour represents fine quartz sand—percent amount 37.4 %,
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Fig. 11 The discretization of the beam on macro level

Fig. 12 RVE for a Mixture I, b Mixture II

• Pink colour represents steel micro fibres—percent amount 8.8 %,
• Yellow colour represents air voids—percent amount 4%.

The parameters of micro-components:

• Cement matrix E = 29900 MPa, ν = 0.24,
• Fine quartz sand E = 48200 MPa, ν = 0.20,
• Steel micro fibres E = 205000 MPa, ν = 0.30,
• Air voids—empty space, no finite elements.

4.2 Mixture II

The following designations have been adopted for components of mixture II
(Fig. 12b):

• Red colour represents the cement matrix—percent amount 48.2 %,
• Sky blue colour represents thick quartz sand—percent amount 12.3 %,
• Dark blue colour represents fine quartz sand—percent amount 22.6 %,
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Fig. 13 Experimental and simulated (broken lines) responses of tested beams in the three-point
bending test

• Pink colour represents steel micro fibres—percent amount 8.6 %,
• Orange colour represents steel fibres—percent amount 4.3 %,
• Yellow colour represents air voids—percent amount 4 %.

The parameters of micro-components:

• Cement matrix E = 29900 MPa, ν = 0.24,
• Thick quartz sand E = 73200 MPa, ν = 0.20,
• Fine quartz sand E = 48200 MPa, ν = 0.20,
• Steel micro fibres E = 205000 MPa, ν = 0.30,
• Steel fibres E = 205000 MPa, ν = 0.30,
• Air voids—empty space, No finite element.

Using our own computer code, with the material deterioration process controlled
by the criterion (6) and imposed boundary conditions (3), we have simulated the
response of the RPC concrete at the macro level during the three point bending test
on beams B1_M1 ÷ B3_M1 and B1_M2 ÷ B3_M2 made from two RPC mixtures
M1 and M2 (Table1). Figure13 shows both the obtained experimental results and
results of numerical simulations (broken lines) obtainedwith the use of computational
homogenization (CH).

5 Conclusions

The results of own experimental testing and numerical simulations of beams made
of reactive powder concrete (RPC) have been presented. Some noticeable dispersion
of experimental results for both the series of beams can be observed. The proposed
numerical elastic-plastic model makes use of computational homogenization and can
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simulate effectively the elastic behaviour of RPC. The model’s predictions exhibit
lesser accuracy in the nonlinear range, and we intend to extend the model to the 3D
case and to enrich it with mechanisms of gradual softening behavior instead of brittle
fracture as well as an improved stochastic description of 3D placement of fibres.
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Causal Damping Ratio Spectra
and Dispersion Functions in Geomaterials
from the Exact Solution of Kramers-Kronig
Equations of Viscoelasticity

Carlo G. Lai and Ali G. Özcebe

Abstract The constitutive parameters controlling the response of geomaterials to
low-strain dynamic loading are important in a variety of situations in Earthquake
Geotechnical Engineering (e.g. ground response analysis) and Soil Dynamics (e.g.
propagation of ground-borne vibrations). Linear viscoelasticity is the simplest con-
stitutive theory able to satisfactory capture the mechanical response of soils and
rocks undergoing small-amplitude oscillations. An important result predicted by
this theory is the functional dependence of the speed of propagation VP and VS of
mechanical P and S waves from the corresponding material damping ratios DP and
DS . Yet, in the current practice of experimental Soil Mechanics, these parameters are
measured independently using different and inconsistent procedures. Furthermore,
the frequency-dependence of VP ,VS and DP , DS is disregarded in most practical
applications. This study thoroughly investigates the causal relationship existing in
soils between damping ratio spectra and dispersion functions by exploiting a recently
obtained, exact solution of the Kramers-Kronig equations. A number of cases asso-
ciated to realistic damping ratio spectra for geomaterials have been analyzed, from
which the corresponding dispersion functions have been rigorously calculated.

1 Introduction

When soils and in general geomaterials are strained below the linear cyclic threshold
shear strain, they tend to exhibit a linear response under both static-monotonic and
dynamic loading when the phenomenon of energy dissipation, although small in
magnitude, cannot be neglected. Despite the existence of a cyclic threshold shear
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strain has been experimentally proved only for uniaxial stress conditions [23], this
notion can in principle be generalized also to multi-axial loading by introducing the
linear cyclic threshold strain boundary surface in the principal strain space [8].

Several are the practical situations in which geomaterials exhibit a linear response
when subjected to dynamic loading. Examples from Earthquake Geotechnical Engi-
neering include ground response analysis at stable sites where the low-strain parame-
ters of soil dynamic behavior control the amplification or deamplification of ground
motion both in 1Dmodeling and when analyzing complex geological structures such
as deep valleys and alluvial basins (Fig. 1).

The transmission of ground-borne vibrations generated by the passage of a train
in an underground tunnel (the source) may bemodeled using a linear soil constitutive
model due to the low-strain level induced in themediumby the passage ofmechanical
waves (Fig. 2). An analogue situation occurs when modeling the vibrational impact
induced by a surface train or roadway traffic.

P, S waves

fault

stratigraphic
amplification

topographic
amplification

Fig. 1 Schematic illustration of site effects due to local geological and geotechnical conditions

Fig. 2 Sketch of ground-borne vibrations generated by the passage of a train in an underground
tunnel and transmission paths along the propagation chain [14]
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Fig. 3 Examples of soil-foundation-structure interaction problems. (Left) Shallow foundation of
a compressor. (Right) Degrees of freedom of a piled foundation. The dynamic response of the
soil-foundation system depends on low-strain complex shear G∗

S and bulk G∗
B moduli of the ground

Other examples where soil linear response is relevant is represented by the foun-
dations of wind turbines, radio antennas, structures exposed to sea wave motion (e.g.
wharves, off-shore platforms) and vibrating machines (e.g. compressors, turbo- gen-
erators, etc.). In the solution of these contact problems of Soil Dynamics, the response
of the soil-structural system can be evaluated by assuming a linear viscoelastic soil
constitutive model (Fig. 3).

Given the relevance of the response of geomaterials to low amplitude, multi-
axial dynamic loading, it is of interest to investigate methods to measure the low-
strain constitutive parameters of soil dynamic behavior. However to best discuss
this subject, it is useful to first review some peculiar facts of linear viscoelasticity,
the simplest formal theory able to satisfactorily capture the most salient aspects
of the mechanical response of geomaterials undergoing low-amplitude, dynamic
oscillations.

2 Some Relevant Facts on Viscoelasticity Theory

2.1 Review of Constitutive Equations

From a mechanical viewpoint, a viscoelastic material subjected to dynamic loading
or involved in phenomena of wave propagation exhibits both the ability to store strain
energy and to dissipate strain energy over a finite period of time. Now, experimental
evidence shows that soils and rocks, strained at low strain levels, below the linear
cyclic threshold shear strain, display exactly this type of behavior, which can then
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be satisfactory captured by the theory of linear viscoelasticity [2, 11]. The latter is
based on the following four assumptions:

1. validity of small strain theory, i.e. ||ε|| = max
{∣∣λ(1)

∣∣ , ∣∣λ(2)
∣∣ , ∣∣λ(3)

∣∣} � 11;
2. validity of the inheritance postulate stating that at any point of the material, the

current value of the Cauchy stress tensor σ (t) is only a function of the current
value of the strain tensor ε(t) and of its past strain history;

3. validity of the time-translation invariance postulate which states that material
response is independent of any time shift (non-aging material);

4. validity of the fading memory hypothesis, stating that the current state of stress
depends more strongly on the recent rather than on the distant strain history.

Under these assumptions, the Riesz representation theorem of functional analysis [6]
guarantee the existence of a unique relationship between the Cauchy stress tensor
σ (t) and the strain tensor function ε(t) via the following convolution integral:

σ (t) =
t∫

−∞
G(t − τ) : dε(τ )

dτ
dτ, (1)

where G(t) is a fourth order tensor-valued function named the relaxation tensor
function. In Eq. (1) the strain history tensor ε(τ ) is assumed represented by a smooth
continuous function however, discontinuities in the strain history functions may be
handled if the integral above is intended in the Stieltjes sense. Equation (1) is also
known as the Boltzmann’s equation since it can also be obtained by applying the
Boltzmann’s superposition principle [4].

The relaxation tensor function G(t) is a material function and it has 81 compo-
nents, however in a general viscoelastic anisotropic material only 21 are independent
due to the symmetry of the stress and strain history tensors and after invoking the
Onsager’s relations [5]. They represent the stress response of a material subjected
to a strain history specified as a Heaviside function. Boltzmann’s equation can be
“inverted” to give the current strain tensor ε(t) as a function of the stress history
σ (t). In this case the response of the viscoelastic material is specified by the creep
tensor function J(t) whose components represent the strain response of a material
subjected to a stress history specified as a Heaviside function.

For an isotropic, linear, viscoelastic material, the relaxation tensor function has
only two independent components. They can be the shear GS(t) and bulk G B(t)
relaxation functions. As shown by Eq. (1), in the time domain the constitutive relation
of a viscoelastic material is an integral-differential equation. Thus, the solution of a
viscoelastic initial-boundary value problem may not be trivial to obtain. However if
Eq. (1) is Fourier transformed, the viscoelastic constitutive relationship becomes:

σ̂ (ω) = G∗(ω) : ε̂(ω) (2)

1In this relation ε is the small-strain tensor and λ( j)( j = 1, 2, 3) are the principal stretches.
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where σ̂ (ω) denotes the Fourier transform of σ (t). An analogous interpretation holds
for ε̂(ω). Finally G∗(ω) is the fourth order complex-valued tensor modulus and it is
nothing but the Fourier transform of the relaxation tensor function G(t) multiplied
by iω. In isotropic viscoelastic materials, the mechanical response in the frequency
domain is completely defined by the shear G∗

S(ω) and bulk G∗
B(ω) complex moduli.

2.2 Velocity and Attenuation of Viscoelastic Waves

As Eq. (2) shows, in the frequency domain the constitutive relation of a linear vis-
coelastic material is represented by a simple algebraic equation, which resembles
Hooke’s law of linear elasticity. This resemblance ismore profound and it is the result
of the “elastic-viscoelastic correspondence principle” [19] according towhich elastic
solutions to steady state boundary-value problems can be converted into viscoelastic
solutions for identical boundary conditions by replacing the elastic shear and bulk
moduli with the corresponding complex moduli G∗

S(ω) and G∗
B(ω). An analogous

result can also be obtained by using the Laplace’s transform. Although the validity of
the correspondence principle is restricted to problems where the prescribed bound-
ary conditions (i.e. displacements and tractions prescribed along the boundary of the
domain of interest) are time-invariant, its exploitation in elastodynamics turns out to
be rather fruitful.

Application of the elastic-viscoelastic correspondence principle to the Navier’s
equations of motion of linear elasticity with no body forces coupled with the
Helmholtz’s decomposition theorem [1] yields a pair of wave equations govern-
ing the propagation of viscoelastic body waves. The speed of propagation of these
waves is linked to the constitutive parametersG∗

S(ω) andG∗
B(ω) of the homogeneous,

isotropic medium by the following relations:

V ∗
P(ω) =

√
G∗

B(ω) + 4
3G∗

S(ω)

ρ
, V ∗

S (ω) =
√

G∗
S(ω)

ρ
(3)

where ρ is the mass density of the medium. Equation (3) shows that distortional
and volume deformations in isotropic viscoelastic materials are uncoupled modes of
deformation just as occurring in linear elasticity. Furthermore, the speed of propaga-
tion of P and S waves is complex-valued and frequency-dependent. Both character-
istics are inherited by the constitutive parameters G∗

S(ω) and G∗
B(ω). The physical

interpretation of this fact is that Eq. (3) simultaneously define phase velocity and
damping of monochromatic, viscoelastic body waves as shown, for S waves, by the
following relations [17]:

VS(ω) = Re2(V ∗
S ) + I m2(V ∗

S )

Re(V ∗
S )

, DS(ω) = Re(V ∗
S ) · I m(V ∗

S )

Re2(V ∗
S ) − I m2(V ∗

S )
(4)
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Fig. 4 Pulse spreading in a viscoelastic medium caused by material dispersion for different values
of damping ratio here denoted as the inverse of quality factor Q = 1/2D [10]

where VS(ω) and DS(ω) are respectively phase velocity and damping ratio of S
waves. The terms Re(V ∗

S ) and I m(V ∗
S ) denote respectively the real and imaginary

part of the complex-valued shear wave velocity defined by Eq. (3). A relation anal-
ogous to Eq. (4) holds also for longitudinal P waves. These equations shows that
viscoelastic media are inherently dispersive since the speed of propagation of mono-
chromatic waves varies with frequency [9]. Also damping ratio DS(ω), a dimen-
sionless measure of energy dissipation per unit volume of a material undergoing a
cycle of harmonic oscillation, is in general frequency-dependent [8]. As a result, in
viscoelastic media a localized, narrow-band pulse disperses, and changes its shape
as it propagates through the medium (Fig. 4).

Typically, in viscoelasticmedia high frequencies travel faster than low frequencies
(material response gets “stiffer” for high loading rates) and this has consequences on
themethods used tomeasure the speed of propagation of mechanical disturbances. In
fact, in exploration geophysics travel time measurements are carried out by picking
the first arrivals of P and S phases. These correspond to the speed of propagation of
the wave front whose energy is carried mostly by high frequencies.

2.3 Kramers-Kronig Relations

As discussed in the previous section, in linear viscoelastic materials the mechanics of
wave propagation is completely defined, in the frequency domain, by either the com-
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plex shear G∗
S(ω) and bulk G∗

B(ω)moduli or by the complex-valued phase velocities
V ∗

P(ω) and V ∗
S (ω). Specifying the viscoelastic constitutive equations in the time or

frequency domain would seem to be equivalent however, a preliminary inspection of
the corresponding constitutive functions would seem to overturn this statement, at
least apparently.Whereas for eachmode of deformation, say shear, only onematerial
function is required in the time domain, say the shear relaxation function GS(t), to
completely specify the mechanical response in the frequency domain two materials
functions are needed which are the real and the imaginary parts of either the complex
shear modulus G∗

S(ω) or the complex-valued shear wave velocity V ∗
S (ω). Obviously,

the real and imaginary parts of the complex shear modulus (or the complex-valued
shear wave velocity) cannot be independent since in the time domain, the shear relax-
ation function is real-valued and it would not be acceptable that more information
would be required in the frequency domain, to fully describe themechanical response
of a viscoelastic material, than in the time domain. Indeed, such a relationship exists
[6] and can be easily derived from the application of the Fourier integral theorem
to Boltzmann’s equation (1). The obtained result is the Kramers-Kronig relation, a
mathematical statement connecting the real and imaginary parts of any complex-
valued function, G∗

S or V ∗
S , which is analytic (or holomorphic) in the upper half of

the complex plane for complex-valued frequencies. Equivalently, it can be shown
that the real and the imaginary part of the complex shear modulus G∗

S are Hilbert
transforms pairs [22].

The Kramers-Kronig relation is named in honor of Kronig and Kramers [12,
13] and it is well-known also in other disciplines including physics and electrical
engineering. It has an important physical meaning because it represents the necessary
and sufficient condition for a response function of a dispersive physical system to
satisfy the principle of causality. In our case, this means that a disturbance originated
at a point of a viscoelastic medium (source) is not allowed to arrive at a different
point of the same medium (observer) before the time d/c has elapsed where d is the
distance between the source and the observer and c is the speed of propagation of
the disturbance in the medium (VP or VS). Inverting Eq. (4) yields [17]:

V ∗
S (ω) = VS(ω)√[

1 + 4D2
S(ω)

] ·
⎡
⎣1 +

√[
1 + 4D2

S(ω)
]

2
+ i · DS

⎤
⎦ (5)

Therefore, based on the aforementioned discussion on the Kramers-Kronig relation,
from Eq. (5) some kind of relationship is also expected to exist between the two
real-valued functions VS(ω) and DS(ω) for exactly the same reason that the real and
imaginary parts of the complex modulus are related. Indeed, this relation does exist
and it represents another form of the Kramers-Kronig equation, perhaps the most
important for applications in Soil Dynamics [18]:
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V 2
S (ω) + ω2 ·

∞∫
0

4

π
·
[

DS(τ )

τ · (τ 2 − ω2)

]
· V 2

S (τ )dτ = GS(e) · 2 · (1 + 4D2
S)

1 +
√
1 + 4D2

S

(6)

where GS(e) = GS(t → ∞) is known as the equilibrium response of the shear
relaxation function GS(t). Equation (6) is a Fredholm singular integral equation
of 2nd kind with Cauchy kernel. It is linear in V 2

S and it establishes a link between
material functions VS(ω) and DS(ω)which cannot be assigned independently despite
in the usual practice they are determined separately, using different experimental pro-
cedures and often ignoring rate-dependence effects [16].

Meza-Fajardo and Lai [18] using the theory of singular integral equations,
obtained an explicit, closed-form solution of Equation (6) for the case when VS(ω)

is prescribed and also when the specified material function is the damping ratio
spectrum DS(ω). For the latter case the result is:

VS(ω) = VS(0) ·

√√√√√√
2 ·

√
1 + 4D2

S(ω)

1 +
√
1 + 4D2

S(ω)

· exp
⎡
⎣ 1

π

∞∫
0

ω2 atan (2DS(τ ))

τ (ω2 − τ 2)
dτ

⎤
⎦ (7)

where VS(0) = lim
ω→0

VS(ω). Equation (7) represents an explicit dispersion relation

for low- strain, mechanical disturbances propagating in arbitrary dissipative, linear
viscoelastic materials like soils and rocks. By specifying the frequency-dependence
of shear damping ratio DS(ω), this equation allows to calculate the velocity dispersion
function VS(ω). The reverse process is also possible and actually, it is even more
appealing from a practical point of view since it allows determining the damping
ratio spectrum DS(ω) entirely from measurements of VS(ω) as proposed by Lai and
Özcebe [15] in connection with in-situ geophysical prospecting.

A well-known, particular solution of Equation (6), is that obtained under the
assumption that DS(ω) is frequency-independent (i.e. hysteretic) over the seismic
band [0.001–10] Hz. This solution is widely used in Seismology and is given by the
following expression [2, 3]:

VS(ω) = VS(ωre f )[
1 + 2DS

π
ln

(ωre f

ω

)] (8)

where ωre f denotes a reference angular frequency usually assumed equal to 2π .
This dispersion relation predicts values of VS(ω) that increase monotonically with
material damping ratio for a given frequency. Conversely, for a particular value of
damping ratio, Eq. (8) predicts an asymptotic increase of the shear wave velocity
with frequency. Equation (8) is also adopted to simulate the dispersion of P waves
after replacing DS with DP . This type of dispersion relation is often invoked not
only in Seismology but also in Soil Dynamics in light of the fact that experimental
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tests in soils and rocks at low strain seem to support the assumption of frequency-
independence of damping ratio over the seismic band, as it will be further discussed
in the next section.

3 Examples of Causal Dispersion Functions and Damping
Ratio Spectra Pairs

In the frequency domain, the Kramers-Kronig relation shows that to completely
characterize the mechanical response of viscoelastic materials in a given mode of
deformation (say shear), only onematerial function, is required for instance the shear
damping ratio DS(ω) or, alternatively, the shear wave velocity dispersion function
VS(ω). If choosing the former, Eq. (7) could be used to set up a parametric study
aimed to investigate the dependence of the dispersion function VS(ω) on the assumed
damping ratio spectrum DS(ω). Indeed, this is the objective of this section. Overall,
six cases were examined. Of these, four refer to variants of a hysteretic damping
ratio spectrum. This corresponds to a relevant situation since, as mentioned above,
frequency independent damping is often postulated a-priori both in Seismology and
Soil Dynamics owing to the rate-independence of energy dissipation exhibited by
many soils and rocks in the seismic band [2, 20, 21]. However it can be demonstrated
that a constant damping ratio over the entire frequency domain ω ∈ ] − ∞,+∞[
would imply a frequency independent shear (or compression) wave velocity and this
violates the principle of causality since no Hilbert transform pair may satisfy the
Kramers-Kronig Equation (6) with a constant damping ratio [2]. Thus, some type
of frequency-dependence should be admitted outside the seismic band even for an
otherwise hysteretic damping ratio spectrum. Another important constraint imposed
by viscoelasticity theory over the damping ratio spectrum is the vanishing of damping
as the frequency approaches very low and very large values. This is a consequence
of the fact that for ω → 0 and ω → ∞ it can be shown that a viscoelastic material
behaves as an elastic solid [6]. Thus, the spectrum of damping ratio is nonzero
and positive definite over a closed set of frequencies (compact support) and as a
consequence the integral of damping ratio spectrum, over the real axis, is necessarily
bounded.

With these premises, the six cases of the parametric study designed to investigate
the influence of the assigned damping ratio spectrum DS(ω) onto the calculated dis-
persion function VS(ω), are now presented and the results discussed. The numerical
integration of Eq. (7) was performed using a robust quadrature scheme given the sin-
gularity of the integrand. To increase the accuracy and stability of the algorithm, the
domain of integrationwas split into small sub- domains using an adaptive logarithmic
frequency scale.

Figure5 shows the results of Case 1 where the goal is to investigate the influence
on the shape of the dispersion curve of assuming a hysteretic damping ratio spectrum
over a fixed frequency bandwidth of [10−2–102] Hz with different magnitude. The
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Fig. 5 Dispersion functions and damping ratio spectra pairs satisfying the Kramers-Kronig rela-
tions. (Top) Calculated dispersion curves. (Bottom) Assumed damping ratio spectra. Influence of
magnitude of hysteretic damping ratio (over fixed bandwidth) on calculated dispersion curves

resulting dispersion curves are linear in the portion of the spectrumwhere damping is
rate-independent and slightly beyond, which is a direct consequence of the functional
form assumed for the decaying branches.

The major outcome from Fig. 5 is that the larger the damping, the steeper is the
slope of the dispersion curve and also the bigger is the difference between the speed
of propagation at very low and very large frequencies. For a damping ratio of 2%
(a typical value for many soils at low strain), this difference is on the order of 10%.
The dispersion curves of Fig. 5 have been normalized to the value of VS specified at
a frequency of 1Hz.

Figure6 refers to Case 2 where the objective is to assess the influence on the
shape of dispersion curves of assuming hysteretic damping ratio spectrawith constant
magnitude but defined over variable cut-off frequencies. The effect is rather apparent:
the broader is the frequency band where damping is hysteretic, the larger is the
difference in phase velocity at very low and very large frequencies.

In the same way as for Case 1, also in Case 2 the frequency band in which the
phase velocity dispersion exhibit a linear behavior is broader than the frequency band
wherein damping is assumed rate-independent. In the current example, the linearity of
the dispersion function extends to frequencies that are about one order of magnitude
(at each side) greater and smaller than the corresponding cut-off frequencies where
the damping spectrum ceases to be hysteretic.

Overlapped in Fig. 6 is also the dispersion curve (dashed line) calculated using
Eq. (8). This is the standard dispersionmodel adopted inSeismology, which is approx-
imate and it corresponds to assuming a rate- independent damping ratio spectrum
over the frequency range [0.001–10] Hz (seismic bandwidth). The figure shows that
in the seismic band the approximate model is actually able to reproduce the exact
dispersion function very accurately. Outside this range, the approximatemodel is still
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satisfactory if compared with the exact dispersion curve calculated for frequencies
cut-off equal to 10−3, 103 Hz.

Figure7 illustrates the results ofCase 3which corresponds to assuming a Shibuya-
like damping ratio spectrum [21]. This is assumed to represent the frequency-
dependence law of fine-grained soils and it is characterized by a spectrum having
a symmetrical shape (in semi-logarithmic scale) with damping being hysteretic in
the frequency range [0.1–10] Hz. Outside this range damping increases monoton-
ically up till unspecified cut-off frequencies. Scope of Case 3 is to investigate the
influence on the shape of dispersion curves, of assuming different rates of the rising
branches of damping spectra. As shown in Fig. 7, the larger the frequency range
outside the hysteretic regime where damping grows, the bigger is the difference of
phase velocity at very low and very large frequencies. Also, the smaller is the por-
tion of the dispersion curve, at the two ends of the spectrum, where phase velocity
is frequency-independent.

Case 4 explores the effects on the dispersion curve of considering a damping ratio
spectrum that is hysteretic in the seismic band, yet, it has a non-symmetrical shape.
From the plot, it appears that a “bulge” on the damping spectrum yields an extension
of the variability of phase velocity on the side of the dispersion curve where the bulge
is located. As expected, the dispersion curve is linear in the frequency range where
damping ratio is hysteretic (Fig. 8).

It is further observed that the effect of the “bulge” vanishes nearly an order ofmag-
nitude beyond the frequency at which the damping ratio spectrum reaches its peak.
Figure9 shows the dispersion curves corresponding to assuming a linear damping
ratio spectrum over a fixed frequency band with a non-symmetrical shape (Case 5).

Fig. 6 Dispersion functions and damping ratio spectra pairs satisfying the Kramers-Kronig rela-
tions. (Top) Calculated dispersion curves. (Bottom) Assumed damping ratio spectra. Influence of
cut-off frequencies of hysteretic damping (variable bandwidth) on computed dispersion curves
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The calculated dispersion curves are characterized by a smooth variation with
frequency and have either an upward or a downward concavity, depending on the
sign of the slope of the linear portion of the damping ratio spectrum.

The last examined case (Case 6) is that of a damping ratio spectrum having a
parabolic-like shape (Fig. 10). The spectrum with an upward concavity corresponds
to the so-called Rayleigh damping ratio. This is a popular model in earth-quake
engineering and it is characterized by the following frequency-dependence law:

DS(ω) = a · 1
ω

+ b · ω (9)

where a and b are properly defined constant coefficients [7].WhenEq. (9) is plotted in
semi-logarithmic scale, the graph exhibits the parabolic-like shape shown in Fig. 10.
Externally to a predefined bandwidth of [0.1–10]Hz, theRayleigh damping spectrum
is first smoothly extrapolated using rising branches with a continuously decreasing
slope, then, extended with the usual decaying trend as the frequency approach very
low and very large values. The corresponding dispersion curve is anti-symmetric
and characterized by an almost rate-independent phase velocity in the frequency
interval [0.1–10] Hz. This is occurring since in this band the damping ratio spectrum
exhibits rather small values, particularly in the neighborhood of the minimum at
1Hz. Damping models with larger minima would naturally yield an increase of the
slope of the dispersion curve in the frequency range under consideration.

Figure10 also shows the dispersion curve corresponding to a Gaussian damping
ratio spectrum. It has also an anti-symmetrical shape however, it is smoother if
compared to the dispersion curve of the Rayleigh damping case. Furthermore, the
difference in phase velocity, at very low and very large frequency, is limited to

Fig. 7 Dispersion functions and damping ratio spectra pairs satisfying the Kramers-Kronig rela-
tions. (Top) Calculated dispersion curves. (Bottom) Assumed damping ratio spectra (Shibuya-like
model). Influence of the rate of rising branches’ extensions on the computed dispersion curves
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Fig. 8 Dispersion functions and damping ratio spectra pairs satisfying the Kramers-Kronig
relations. (Top) Calculated dispersion curves. (Bottom) Assumed damping ratio spectra (non-
symmetrical hysteretic model). Influence of damping ratio shape on the computed dispersion curves

Fig. 9 Dispersion functions and damping ratio spectra pairs satisfying the Kramers-Kronig
relations. (Top) Calculated dispersion curves. (Bottom) Assumed damping ratio spectra (non-
symmetrical linear model). Influence of damping ratio shape on the computed dispersion curves

approximately 5% whereas for the Rayleigh damping case it reaches about 10%.
This despite the peak value of damping ratio is the same (about 4%) for both the
Gaussian and the Rayleigh spectrum. Indeed, such result does not appear odd, if one
considers that the Rayleigh dampingmodel can be viewed as the superposition of two
independent Gaussian-damping models centered at the frequencies corresponding to
the peaks of the Rayleigh spectrum.
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Fig. 10 Dispersion functions and damping ratio spectra pairs satisfying the Kramers-Kronig rela-
tions. (Top) Calculated dispersion curves. (Bottom) Assumed damping ratio spectra (Rayleigh and
Gaussian). Influence of concavity of damping spectrum on the computed dispersion curves

4 Conclusions

Linear viscoelasticity is the simplest constitutive model able to satisfactorily de-
scribe the mechanical response of geomaterials subjected to low-amplitude vibra-
tions. An important result predicted by this theory of material behavior is that phase
velocities of body waves and material damping ratio are not independent quanti-
ties. They are linked by the Kramers-Kronig relations, which can be interpreted as
a mathematical statement of the principle of physical causality. The functional cou-
pling between the speed of propagation and damping ratio of viscoelastic waves
also involves frequency-dependence of these response functions. This is at the origin
of material dispersion, a phenomenon by which a spatially localized disturbance
changes its shape as it propagates through a dissipative medium.

A distinctive feature of the Kramers-Kronig relations is that they establish a link
between two fundamental parameters of a viscoelastic material allowing the com-
putation of one, say the shear wave velocity, as a function of the other, say the
shear-damping ratio. This can be very useful since both these material functions are
of fundamental importance in the solution of boundary value problems in Earth-
quake Geotechnical Engineering and Soil Dynamics. Yet, in the current practice,
they are determined separately using different procedures and often ignoring their
frequency-dependence.

From a mathematical point of view, the Kramers-Kronig relations are linear, sin-
gular, Fredholm integral equations of 2nd kind. An approximate solution of these
equations has long been proposed by seismologists by assuming rate- independent
(i.e. hysteretic) damping ratio over the seismic band [0.001–10] Hz. Exact, closed-
form solutions of these equations have recently been obtained for the material func-



Causal Damping Ratio Spectra and Dispersion Functions in Geomaterials … 381

tions of interest in Soil Dynamics, namely phase velocity of body waves and material
damping ratio.

This paper illustrated the results of a parametric study aimed to explore the func-
tional dependence of the dispersion function of shear waves on the assumed shear-
damping ratio spectrum. For the shear mode of deformation, this is the only material
function that needs to be specified to fully describe the mechanical response of the
medium (in the frequency domain). Several cases were analyzed which were either
suggested by well-known signatures of soil response (e.g. hysteretic or Rayleigh
damping) or inspired by realistic speculations of soil mechanical behavior. Efforts
are underway to apply this procedure to real data. The ultimate goal is to develop a
procedure for determining damping ratio spectra of geomaterials from measurement
of the dispersion functions of P and S waves through geophysical seismic methods.
In fact, the latter are ideal to determine VP and VS in soil deposits since the level of
strain induced by the artificially generated mechanical waves is very low, certainly
below the linear cyclic threshold shear strain. Thus, linear response can be assumed
without approximation. With ambient noise (if using passive seismic methods), this
condition is fulfilled even better. However, in conventional geophysical prospect-
ing, the frequency-dependence of VP and VS is usually disregarded. Furthermore,
damping ratio is rarely determined from the measurement of body waves owing to
the difficulties of separating geometric and intrinsic attenuation. Thus, calculation
of damping ratio spectra from phase velocity measurements of P and S waves using
geophysical seismic methods seems to be a particularly attractive prospective in
experimental Soil Dynamics.
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A Study of Deformation and Failure
of Unidirectional Fiber-Reinforced Polymers
Under Transverse Loading by Means
of Computational Micromechanics

Marek Romanowicz

Abstract Amethod for determining the in-situ strength of fiber-reinforced laminas
for three types of transverse loading including compression, tension and shear is
presented. In the framework of this method, an analysis of local stresses that are
responsible for the coalescence of matrix cracks is carried out by using a multi-
fiber unit cell model and finite element method. The random distribution of fibers,
fiber-matrix decohesion and matrix plastic deformations are taken into account in
the micromechanical simulations. The present study also shows that the nonlin-
ear hardening behavior of matrix reflects more realistically the influence of plastic
deformations on the in-situ transverse strength of lamina than the perfectly plastic
behavior ofmatrix. The prediction of the in-situ transverse strength is verified against
the experimental data for a cross ply laminate subjected to uniaxial tension.

1 Introduction

When a fiber-reinforced polymer-matrix composite lamina is subjected to transverse
loading, it fails due to matrix cracking. For an isolated lamina, the initiation of the
first matrix crack indicates fracture of the lamina. This process happens differently
when the lamina is embedded in a laminate. Since other laminas in a laminate retard
the propagation of the matrix cracks, the stiffness of cracked lamina does not drop
suddenly but declines gradually with increasing load. In this case, the strains to
failure are larger than those of an isolated lamina. The transverse failure mechanism
depends on many factors, among which the most important are properties of the
fiber-matrix interface, the local fiber distribution and the non-linearity of matrix. In
order to predict the life of the lamina in a laminate, it is necessary to use accurate
micromechanical models which involve these factors.

The reduction of lamina stiffness due to transverse matrix cracking can be deter-
mined by using computationalmicromechanics.Most of the literature on this subject,
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such as papers byLlorca and co-workers [1, 2], Vaughan andMcCarthy [3, 4] focuses
on the study of the influence of matrix and interface properties on the macroscopic
response of lamina. In these papers, the authors have proved the utility of unit cell
models with random fiber arrangement in determining the transverse strength of
isolated laminas. However, they have provided no prediction of the critical damage
threshold in polymer matrices. Further development of this approach is to be found
in papers by Melro et al. [5], Yang et al. [6], who have applied more complex con-
stitutive laws of the matrices to trace the damage evolution in isolated laminas up to
final failure. Although these studies have substantially contributed to our understand-
ing of the failure behavior of unidirectional laminas under transverse loading, the
constraining effects of other laminas have been less recognized. Modeling matrix
cracking in cross ply composite laminates subjected to in-plane shear through multi-
fiber unit cells has recently been presented by Totry et al. [7], Wei et al. [8], Soni
et al. [9]. In these papers, the authors found the in-plane shear stress-strain response of
laminates by averaging the shear responses of plies. Although they have successfully
established methodology for modeling cross ply composite laminates, they have not
considered the coalescence of matrix cracks that corresponds to the first ply failure.

The main objective of this paper is to present a simple procedure based on the
use of the unit cell with random fiber arrangement and the finite element method
to predict the load at which the first lamina embedded in a laminate fails. For this
purpose, an analysis of the hoop stresses that are responsible for the coalescence of
the matrix cracks is carried out in the present paper. To find the in-situ strength of
lamina, the criterion of maximum hoop stress in matrix is used locally for the most
loaded fiber. The first ply failure load predicted from proposed method is verified
against the experimental data for a cross ply laminate subjected to uniaxial tension.

Another objective of this paper is to assess whether, and to what extent, the
transverse failure behavior of lamina is sensitive to the hardening of matrix due
to plastic deformation. Most of numerical simulations on the mechanical behavior
of composites under transverse loading are based on an assumption that polymer
matrices can be represented by an elastic- perfectly plastic solid following the one
of the pressure-sensitive yield criterions. Although this simple model of plasticity
is able to reproduce the localization of damage along a narrow fracture path, it
leads to the overestimation of the plastic deformation because, in reality, a polymer
matrix hardens and its ductility decreases. An alternative approach is to consider in-
situ properties of the matrix that are back-calculated from experimental data of the
lamina. The role of the in-situ properties of matrix in modeling the matrix cracking
failure mode remains unexplored and therefore is also undertaken in this paper.

2 Micromechanical Models

Numerical simulations using a concept of the unit cell with random fiber arrange-
ment are a current trend of work in computational micromechanics. The benefit of
the use of such unit cells is that the effect of fiber array irregularities on transverse
responses of composite can be accurately taken into account. In this paper, the unit
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Table 1 Mechanical properties of the unidirectional lamina and its constituents

E-glass fiber MY750 epoxy matrix

E f (GPa) ν f Em (GPa) νm k (MPa) μ

74 0.2 4 0.35 43.35 0

Fiber-matrix interface

kn (GPa/m) kt (GPa/m) Gc
n

(
J/m2

)
Gc

t

(
J/m2

)
σ c

n (MPa) τ c
t (MPa)

0.1 · 109 0.1 · 109 15 30 30 60

Lamina

ε2T (%) ε2C (%) σ2T (%) σ2T C (%) V f (%)

0.246 1.2 40 145 60

cell models of randomly distributed fiber composite are generated using Wongsto
and Li’s algorithm [10]. Analyses were made on models that contained 39 fibers.
The data required for the simulation study were taken from the world wide failure
exercise WWFE [11] for an example case of E-glass/MY750/HY917/DY063 lamina
with the fiber volume content of 60%. The properties of this material and its con-
stituents are listed in Table1. Two-dimensional finite element meshes that mainly
consisted of plane strain elements with four nodes (PLANE182) were constructed
by usingANSYSfinite element code [12]. To ensure accurate displacement and stress
field representation within each unit cell, sufficiently dense meshes comprising of
approximately 45,000 elements were used. A cohesive layer consisted of contact ele-
ments with four nodes (CONTA172, TARGE169) was introduced between the fibers
and the matrix to reproduce the fiber-matrix debonding. Each fiber/matrix interface
contained 100 contact elements equally spaced around the circumference.

2.1 Numerical Homogenization Technique

In this paper, the effect of thematrix ductility has been studied for the selected lamina
subjected to three types of transverse loading including compression, tension and
shear. For each loading type, periodic boundary conditions were imposed on the unit
cell to reflect the repeatability of the microstructure and to ensure the compatibility
of the displacement fields. By the assumption of periodicity, each displacement field
ui may be decomposed in a part associated with the applied strain εi j and a periodic
one u p

i [13]
ui (x1, x2) = εi j x j + u p

i (x1, x2). (1)

These relations are implemented at each periodic pair of nodes to link the displace-
ments of the top and the bottom boundaries and the displacements of the right and
left boundaries of the unit cell. Because of a huge number of nodes at the opposite
boundary edges, a Ansys APDL macro has been used to generate automatically all



386 M. Romanowicz

required constraint conditions (1). The normal σ2 and shear τ23 stresses correspond-
ing to the applied strains ε2 and 2ε23 were computed from the resultant normal and
tangential forces acting on the edges divided by the actual cross-section.

2.2 Constitutive Equations of Matrix and Interface

Although the extension of plastic strain zones in polymer matrices is inhibited by the
nearest fibers, they can exhibit considerable plastic deformation at the microscopic
level [14, 15]. This is because the probability of occurrence of defects in a small
volume of material is much lower than in large one and the failure behavior of
polymers changes from brittle to ductile when the size scale is decreased. The epoxy
matrix is therefore modeled within the framework of the finite deformations as a
elasto-plastic solid which hardens isotropically. It is widely accepted, nowadays,
that the deformation of polymeric materials is highly sensitive to the hydrostatic
pressure and plastic flow of these materials can exhibit plastic dilatancy. To address
this requirement, the Drucker-Prager plasticity model [16], which incorporates the
linear dependence on the hydrostatic stress, is used. In terms of the first invariant of
stress I1 and the second invariant of the deviatoric part of stress J2, the yield function
is given as

f =
(

μI3
3

)
+ √

J2 − k, (2)

whereμ is the pressure sensitivity factor, k is the flow stress of thematerial under pure
shear. Experiments showed that the pressure-sensitivity factor μ ranges from 0.10
to 0.25 for polymers [17, 18]. Note, that if μ = 0, Eq. (2) reduces to the von Mises
yield function. The Drucker-Prager plasticity model with μ = 0.1 and k = 43.30
MPa was used to study the role of the matrix ductility in the matrix cracking failure
mode. An associative flow rule is used to compute the direction of plastic flow. The
dilatancy factor μ∗ describing the volume change during plastic deformation was
equal to μ.
For the fiber/matrix interface failure, the cohesive zone model is employed, in which
the constitutive equations of the interface relate the normal σn and tangential τt

cohesive tractions to the normal un and tangential ut opening displacement jumps
and a scalar damage variable d, through [19]

σn = knun(1 − d), tt = kt ut (1 − d), (3)

where n , kt are initial contact stiffnesses in the normal and tangential direction,
respectively. The variable d represents the loss of stiffness and it is a function of both
opening displacement jumps. The variable d takes values from 0 to 1. Relationships
(3) demonstrate linear elastic loading region followed by linear softening region.
When d = 0, the cohesive elements are closed and the tractions increase linearly up to
their maximum values σ c

n , τ c
t in the normal and tangential direction, respectively.
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When 0 < d < 1, these elements begin to open and the tractions decrease linearly.
When d = 1, the tractions are zero and the cohesive elements are completely broken.
To define the completion of fracture in the cohesive zone model, a power law based
energy criterion is used [19]

(
Gn

Gc
n

)
+

(
Gt

Gc
t

)
= 1, (4)

where Gn , Gt denote energy release rates for mode I fracture and mode II fracture,
respectively and Gc

n and Gc
t correspond to the interfacial fracture energies.

2.3 Calibration of the Drucker-Prager Plasticity Model

It is well known that polymer matrices cannot behave the same as unreinforced poly-
mers, see, for example [20]. Thus, micromechanical models require in-situ properties
of matrices that are different from bulk properties. In this paper, the hardening curve
of epoxy matrix is extracted from a micromechanical model subjected to in-plane
shear loading. The non-linearity of epoxy matrix is identified such that the unit cell
prediction matches the measured in-plane shear response reported by Soden et al.
[11]. Figure1a shows a comparison of the measured shear response and that from the
unit cell model. Agreement with experimental data is quite good. It can be seen from
this figure that the unit cell model with perfectly-plastic matrix is unable to repro-
duce the in-plane shear response of composite. To illustrate the difference between
the in-situ and bulk properties, the non-linear strain-stress curve established for epoxy
matrix from the micromechanical model is compared with results of tensile tests of
unreinforced epoxy performed by Fiedler et al. [14] on specimens with very small

(a) (b)

Fig. 1 Identification of the plasticity model. a Comparison of experimental in-plane shear response
of the E-glass/MY750 epoxy composite [11] with two numerical simulations, b comparison of in-
situ tensile response of epoxy matrix with experimental data [14]
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thickness (t = 0.4mm). It can be seen in Fig. 1b that the epoxy matrix in the compos-
ite is considerably stiffer and stronger than the unreinforced epoxy. The difference
between the in-situ and bulk properties would be more evident in the case of standard
specimens. Unfortunately, for thematrix system under consideration, only the tensile
strength, σ c

m = 80 MPa, and the tensile failure strain, εc
m = 0.05, are available in the

literature [11].

2.4 Calibration of the Interface Model

Computational simulations of interfacial debonding in fiber-reinforced composites
require input data such as the interfacial cohesive strength and the interfacial fracture
energy. Unfortunately, these data are not precisely known because they are difficult
to obtain from simple laboratory experiments, see, for example [21, 22]. In order
to ascertain the cohesive properties for the interface of a composite lamina made
of E-glass fibers and MY750 epoxy matrix, an analysis of matrix cracking under
transverse compression was carried out for various interfacial cohesive strengths and
fracture energies. It was assumed that the ratio of the tensile interfacial strength to
the shear interfacial strength, σ c

n /τ c
t and the ratio of the opening component to the

Fig. 2 Influence of the interfacial cohesive strength and the interfacial fracture energy on the
mechanical response of the unit cell model under transverse compression
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(a) (b)

Fig. 3 Comparison of experimental responses of the E-glass/MY750 epoxy composite [11] with
numerical simulations for σ c

n = 30 MPa and τ c
n = 60 MPa. Results for a transverse compression,

b transverse tension

sliding component of the interfacial fracture energy,Gc
n/Gc

t are 0.5. Themacroscopic
compressive stress-strain curves calculated for four different levels of interfacial
strength and three different levels of interfacial fracture energy are shown in Fig. 2. It
can be observed from this figure that an increase of the interfacial strength produces
an increase in the transverse compressive strength of composite and, in turn, a drop
of the interfacial fracture energy leads to a larger drop-off in macroscopic stress
at the post critical stage. The strength of the interface was calibrated such that the
unit cell predictions match transverse compression data, reported by Soden et al.
[11]. It was found that the micromechanical models with σ c

n = 30 MPa and τ c
t = 60

MPa produce reasonable results. Figure3a shows a comparison of the measured
compressive response and those obtained from the unit cell models for the above-
mentioned cohesive parameters. Figure3b shows a similar comparison in the case of
transverse tension.

3 Results

Two models of matrix plasticity were applied in order to evaluate their utility for
predicting the in-situ transverse strengths of lamina and to analyze the impact of
the matrix ductility on the overall macroscopic responses of lamina under transverse
loading. Figure4a–c compare themacroscopic stress-strain curves obtained fromunit
cell models with hardening and perfectly plastic matrix for three types of transverse
loading including compression, tension and shear, respectively. It can be seen from
thesefigures that the applicationof the perfect plasticity theory inmodeling transverse
shear (Fig. 4c) and transverse compression (Fig. 4a) reduces the strength of lamina.
Only for transverse tension (Fig. 4b), the strength of lamina is insensitive to the
choice of the plasticity model. This finding suggests that the localization of plastic
deformation occurs in this case after themaximumof themacroscopic stress has been
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(b) (c)

(a)

Fig. 4 Influence of the ductility of matrix on the mechanical response of the unit cell model under
a transverse compression, b transverse tension, c transverse shear

attained. When a unidirectional lamina is subjected to transverse shear or transverse
compression, the development of shear bands in matrix interact with fiber-matrix
debonding. In contrast to these cases, the non-linear behavior of lamina for transverse
tension is mainly caused by interfacial debonding. Thus, when the mode of failure
is shear, matrix hardening plays an equally important role as interfacial properties in
predicting the mechanical behavior of composite lamina.

To see whether the micromechanical models with hardening matrix predict cor-
rectly the formation of critical planes, three contour plots of effective plastic strain in
matrix obtained at the post-critical stage of deformation are presented in Fig. 5a–c.
It is interesting to note that extensive plastic deformation of matrix takes place only
in the vicinity of interfacial cracks. Furthermore, there is one clearly defined critical
plane in these models. Theoretically, the inclination of critical planes depends on
the internal friction angle Φ. For the pressure sensitivity factor μ = 0.1, the internal
friction angle tanΦ = μ

√
3 is approximately to be 10◦. Coulomb type yield criteri-

ons predict that plastic yielding occurs in the case of transverse compression along a
plane which is inclined at an angle αc = 45◦ + Φ/2 with respect to the plane perpen-
dicular to the loading axis, and in the case of transverse shear, at an angle αc = Φ/2.
In the case of transverse tension, the critical plane angle αc is equal to 0◦. It can be
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(b) (c)

(a)

Fig. 5 Contour plots of the effective plastic strain in hardening matrix in the unit cell model
subjected to a transverse compression at ε2 = 4%, b transverse tension ε2 = 2%, c transverse
shear at 2ε23 = 5%

seen from these figures that the proposed models produce the critical plane angles
which are consistent with those obtained from theoretical predictions.

Figure6 shows the plastic shear bands obtained from the unit cell model with
perfectly plastic matrix in the case of transverse compression at the same stage of
deformation. From the graph above we can see that there are several possibilities for
developing a critical plane across the model. Furthermore, the shear bands occur in
the unit cell model with perfectly plastic matrix also in regions without significant
interfacial debonding. Comparing Fig. 6 with Fig. 5a, it can be seen that the devel-
opment of damage by plastic deformation of matrix is now more severe than it was
in the corresponding model with hardening matrix. It is interesting to note that both
models have the same properties of the fiber-matrix interface. This finding clearly
demonstrates that there is an interaction between the two failuremechanisms and that
the extension of the plastic deformation in matrix depends on the hardening curve. A
similar effect was observed in the existing studies, see, for example [1, 2] in which
the development of the plastic deformation in matrix was controlled by changing the
interfacial properties.

It is well known that fracture of matrix occurs within regions of tensile stress
concentrations. Thus, a unidirectional lamina cannot fail unless the matrix tensile
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Fig. 6 Contour plot of the effective plastic strain in perfectly-plastic matrix in the unit cell model
subjected to transverse compression at ε2 = 4%

stress exceeds the tensile strength of matrix. Figure7a–c show how the matrix hoop
stress σθθ varies with increasing macroscopic strain in dependence on the polar angle
θ for three types of transverse loading including, compression, tension and shear,
respectively. For purpose of this analysis, only the most loaded fiber was considered
(different for each type of transverse loading). In all cases, such a fiber lies on the
critical plane. The evolution of the matrix hoop stress reveals, that the formation of
the interfacial crack magnify locally the tensile stress in matrix, as well as that the
maximum of this stress locates at the interfacial crack tips. It is interesting to note that
even for compressive loading, the tensile stress in matrix appears (Fig. 7a). Experi-
mental tests carried out on microscopic specimens indicate that the tensile strength
of epoxy polymers can exceed 100 MPa [14, 15]. Therefore, this value was taken as
the reasonable reference level for computing the ultimate failure. When the tensile
stress in matrix goes beyond this limit, the existing microcracks have the potential to
kink out the interfaces and join into a large macroscopic crack. The values of critical
macroscopic strain for all cases considered here were identified on the basis of the
evolution of the matrix hoop stress. It was found that the E-glass/MY750 unidirec-
tional lamina fails when its strain exceeds a limit εc = 0.0220, 0.0092 and 0.0520
for transverse compression, tension and shear, respectively. The points correspond-
ing to the coalescence of matrix cracks were marked with the letter F in Fig. 3a, b.
The results of computing the ultimate failure show that the strains to failure of uni-
directional lamina obtained from strain-controlled predictions are much larger than
those measured in load-controlled tests. The ratio of the strain to failure from strain-
controlled predictions to that from load-controlled tests is εc/ε

∗
c = 4 for transverse



A Study of Deformation and Failure of Unidirectional Fiber-Reinforced … 393

(b) (c)

(a)

Fig. 7 Angular distribution of the matrix hoop stress σθθ at the interface between matrix and the
most loaded fiber for a transverse compression, b transverse tension, c transverse shear

tension, and εc/ε
∗
c = 2 for transverse compression. It is hard to determine this ratio

for transverse shear because there are no experimental data.
In order to demonstrate the potential of micromechanical simulations in prac-

tice, the predicted strain to failure of unidirectional lamina under transverse tension
(Fig. 3b) was used to compute the load at which the first lamina failure occurs in
a symmetric cross ply (90◦/0)s laminate subjected to uniaxial tension along the 0◦
direction. In this type of laminate, it is easy to investigate the constraining effects of
other laminas because computation of the first ply failure load requires tracking the
degradation only in the 90◦ plies. It is reasonable to assume, that the tensile behavior
of a cross ply (90◦/0)s laminate is given by the averaged contribution of the laminas
parallel and perpendicular to the loading direction. Since the axial tensile response
of the 0◦ plies remain linear, the stress-strain curve of unidirectional lamina for axial
tension is calculated from the knownmodulus of the constituents by using the rule of
mixtures. Figure8 compares the tensile stress-strain curves of the laminate obtained
from experiments and predicted through micromechanical simulations. The exper-
imental stress-strain curve for cross ply laminate made of E-glass/MY750 epoxy
material was taken from the world wide failure exercise WWFE [22]. It can be seen
from this figure that, although, the experimental response of laminate is linear at
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Fig. 8 Comparison of the tensile stress-strain curve of the symmetric cross ply (90◦/0◦)s laminate
obtained from micromechanical simulations with experimental data [23]

low strain levels, it shows significant softening that begins at a strain level of about
0.0075 and a stress level of about 190 MPa. One possible explanation of this is that
the initiation of transverse cracks in the 90◦ plies results in a change in the slope
of the stress-strain curve. The simple averaging procedure outlined here reproduces
the initial linear response of the laminate very well. The limit of the applicability of
this procedure is defined at the critical point when the matrix tensile stress exceeds
the tensile strength of matrix. For the strain to failure of the 90◦ plies, εc = 0.00916,
obtained from the strain- controlled predictions (Fig. 3b), the tensile stress in the
laminate is 232 MPa. For the strain to failure, εc = 0.00246, obtained from the load-
controlled tests (Fig. 3b), the tensile stress in the laminate is only 76 MPa. Taking
above into account, computational micromechanics provides a better estimate for the
first ply failure load than that obtained from the load controlled tests.

4 Conclusions

The present study was designed to determine the in-situ strength of lamina in a
symmetric cross ply laminate subjected to uniaxial tension as well as to investigate
the effect of matrix ductility on the transverse failure behavior. The results of this
investigation showed that regardless of type of transverse loading, a large tensile
stress develops in matrix in the vicinity of interfacial crack tips. An analysis of the
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matrix hoop stress around the most loaded fiber can be used to predict the in-situ
transverse strength of lamina. It was shown that the first ply failure load obtained from
micromechanical simulations agrees better with the experimental results than that
computed by using data of isolated laminas measured in load-controlled tests. The
present study also showed that the application of the unit cell models in which matrix
hardens with increasing load predicts realistically the location of plastic zone only in
regions with significant debonding. On the contrary, the use of the unit cell models
with perfectly plastic matrix leads to the overestimation of the plastic deformation
and the reduction in the strength of lamina.
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The Dynamic Modelling of Thin Skeletonal
Annular Plates

Artur Wirowski, Bohdan Michalak and Martyna Rabenda

Abstract The subject of this paper is to derive and apply amacroscopicmodel for an
annular plate with a dense system of ribs in radial and angular directions. The main
feature of the proposed mathematical model is that the size of the microstructure
(the distance between the ribs) is comparable to the thickness of the plate. The
formulation of an approximate mathematical model of those plates is based on the
tolerance averaging approach by Wozniak et al. [12, 13]. The general results of the
contribution will be illustrated by the analysis of natural vibrations of the plate. It
will be carried out by validation of averaged equations of motion and comparison to
the results from finite element method (Abaqus program).

1 Introduction

The considered skeletonal plate is made of two families of thin beams with axes
intersecting under the right angle. The regions situated between the beams are fills
a homogeneous matrix material (Fig. 1a). It is assumed that midplane of the plate
represents a certain plane microheterogeneous structure which is a periodic along
angular ξ 2—coordinate but have slowly varying apparent properties in the radial
direction. The generalized period λ = √

λ1λ2 of inhomogeneity is assumed to be
sufficiently small when compared to the measure of the domain of coordinates ξα .
At the same time it is assumed that the microstructure length parameter λ is similar
compared to thickness h of the plate. It is assumed that the beams have a constant
width. Thus we deal with composite plate having what can be called space-varying
periodic microstructure. From a formal point of view, the structure under consider-
ation can be described in the framework of the well-known theories for thin elastic
plates. However, due to the inhomogeneous microstructure of the plate, this direct
description of the structure leads to plate equations with discontinuous and highly
oscillating coefficients.
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Fig. 1 Considered composite plate a at microscopic level b at macroscopic level

The aim of the contribution is to derive and apply amacroscopic model describing
the dynamic behaviour of the thin plate with the deterministic microstructure that
has functional but smooth and slowly varying effective properties (Fig. 1b).

The formulation of averaged mathematical model of the skeletonal plate will be
based on the tolerance averaging approach. This modelling technique describes the
effect of the microstructure size on the overall response of a composite structure.
The general modelling procedures of this technique are given by Wozniak et al. in
books [12, 13]. The application of this technique for the modelling and the analy-
sis of dynamic problems of periodic composites and structures are presented in a
series of papers. Some of the following papers can be mentioned here as examples:
Baron [1] analyzed dynamic behaviour of medium thickness plates with uniperi-
odic structure. The higher order vibrations caused by microheterogeneous structure
of thin periodic plates were analyzed by Jędrysiak [2]. The wave propagation in
periodically laminated composites was analyzed by Matysiak and Nagórko [5]. The
dynamic modelling of elastic wavy plates was presented in the paper of Michalak
et al. [7]. In the paper of Wągrowska and Woźniak [9] the dynamic modelling of
visco-elastic composites was discussed. Wierzbicki and Woźniak [10] studied the
dynamic behaviour of honeycomb based composite solids.

The approach, based on the tolerance averaging technique, to formulate averaged
models for functionally graded stratified solids can be found in the in the following
papers. Każmierczak and Jędrysiak [3] presented the asymptotic-tolerance model of
vibrations of thin transversally graded plates which is based on the tolerance averag-
ing approach. In the paper of Michalak and Wirowski [6] the dynamic modelling of
thin plate made of certain functionally graded materials was discussed. The obtained
averaged equations of motion were verified by the comparison of the results obtained
from the tolerancemodel and asymptotic model equations with the results from finite
element method (Abaqus code). Rychlewska and Woźniak [8] analyzed a bound-
ary layer phenomena in elastodynamics of functionally graded laminates. Wirowski
[11] studied natural vibrations of thin plate band with non-linear functionally graded
material.
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Fig. 2 Skeletonal annular plate

In the above mentioned papers dimension of cells should be much bigger than
a thickness of plate. In opposite to these papers, in the presented contribution we
deal with plates where the microstructure length parameter λ is similar compared
to thickness h of the plate (λ ∼= h) (Fig. 2). The majority of the mentioned papers
deal with natural vibrations of a rectangular plate only. In the presented paper, like
Michalak and Wirowski, will be analyzed natural vibrations of annular composite
plates. These plates have skeletonal microstructure with constant width of the ribs.
Hence, the effective properties are graded in space and we deal here with a special
case of the functionally graded materials.

2 Direct Description

The object of our considerations are annular plates with microstructure given on
Fig. 2. It is introduced the orthogonal curvilinear coordinate system Oξ 1ξ 2ξ 3 in the
physical space occupied by a composite plate under consideration. The time coordi-
nate will be denoted by t . Sub- and super-scripts i, k, l run over 1, 2, 3 and α, β, δ

run over 1, 2. Setting x ≡ (ξ 1, ξ 2) and z = ξ 3 it is assumed that the undeformed
plate occupies the region Ω ≡ (x, z) : −h/2 ≤ z ≤ h/2, x ∈ Π , where Π is the
plate midplane and h is the plate thickness. The starting point of this contribution
is the direct description of the structure in the framework of the well known theory
of thin plates. The displacement field of the arbitrary point of the plate we write in
form:

w3(x, z) = w3(x) wα(x, z) = w0
α(x) − ∂αw3(x)z (1)
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Denoting by p(x, t) the external forces, by ρ the mass density, by gαβ the metric
tensor, by∈αβ a Ricci tensor, setting ∂k = ∂/∂xk we also introduce gradient operators
∇ ≡ (∂1, ∂2), in the framework of the linear approximated theory for thin plates we
obtain the following system of equations

i strain-displacement relations

εαβ(x, z) = καβ(x)z, καβ = −∇αβw3 (2)

ii strain energy

Ez(x, z) = 1

2
Cαβγ δεαβεγ δ (3)

iii kinetic energy

Kz(x, z) = 1

2
ρ(ẇ3ẇ3 + ẇαẇβδαβ) (4)

for z ∈ (−h/2, h/2).

The strain energy average over the shell thickness is given by

E(x) = 1

2
Bαβγ δ∇αβw3∇γ δw3 (5)

where Bαβγ δ = 0.5 Eh3

12(1−ν2)

[
gαμgβγ + gαγ gβμ + ν(∈αγ ∈βμ + ∈αμ∈βγ )

]
. It can be

seen that the coefficients in the above equations are discontinuous and highly oscillat-
ing. The above equations will be used as a starting point of the modelling procedure.

3 Modelling Technique

Let us introduce in the undeformedmidplane of the plate the polar coordinates system
Oξ 1ξ 2. The midplane of annular plate occupies the region Π ≡ [0, ϕ] × [R1, R2]
(Fig. 2). DenoteΠΔ as a subset ofΠ for pointswith coordinates determined by condi-
tions (ξ 1, ξ 2) ∈ (λ2/2, ϕ − λ2/2) × (R1 + λ1/2, R2 − λ1/2). An arbitrary cell with
a center situated on the radial coordinate at point (ξ 1) j = λ1/2 + ( j − 1)λ1, j =
1, . . . , n will be determined by Δ(ξα) ≡ (−λ2/2,−λ2/2) × ((ξ 1) j − λ1/2, (ξ 1) j

+ λ1/2).
In order to derive averaged model equations for skeletonal plate under considera-

tion we applied tolerance averaging approach [12]. We mention some basic concepts
of this technique, as an averaging operator, a tolerance parameter, a tolerance periodic
function, a slowly varying function, a highly oscillating function.
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The fundamental concept of the modelling technique is the averaging operation

〈 f 〉(ξα) = 1

|Δ|
∫

Δ(ξα)

f (y, ξα) dy, ξα ∈ Π̄ (6)

We shall refer (6) to as averaging of arbitrary integrable function f (·) for an arbitrary
ξα ∈ Π̄ . The main concept of the tolerance averaging technique is that values of
functions belonging to region Π can be determined only within to certain accuracy
δ. Let δ stand for an arbitrary positive number and X be a linear normed space.
Tolerance relation ≈ for a certain δ is defined by

(∀(x1, x2) ∈ X2) [x1 ≈ x2 ⇔ ||x1 − x2||X ≤ δ] (7)

where δ is said to be the tolerance parameter.
Let ∂k f be the kth gradient of function f = f (ξα), ξα ∈ Π, k = 0, 1, . . . , α,

(α ≥ 0), where we denote ∂0 f ≡ f . Function f ∈ Hα(Π) is called the toler-
ance periodic function (with respect to cell Δ(ξα) and tolerance parameter δ),
f ∈ T Pα

δ (Π,Δ), if for k = 0, 1, . . . , α, the following conditions hold

(∀ξα ∈ Π)(∃ f̃ (k))(ξα, ·) ∈ H 0(Δ))[
||∂k f |Πξα (·) f̃ (k)(ξα, ·)||H 0(Πξα ) ≤ δ

]
(8)∫

Δ(·)
f̃ (k)(·, y) dy ∈ C0(Π̄)

Function f̃ (k)(ξα, ·) is referred to as the periodic approximation of ∂k f inΔ(ξα), ξα

∈ Π, k = 0, 1, . . . , α.
Function F ∈ Hα(Π) is called the slowly varying function (with respect to the

cell Δ(ξα) and tolerance parameter δ), F ∈ SV α
δ (Π,Δ), if

F ∈ T Pα
δ (Π,Δ),

(∀ξα ∈ Π)
[

F̃ (k)(xiα, ·)|Δ(ξα) = ∂k F(xiα), k = 0, . . . , α
]

(9)

It can be observed that periodic approximation F̃ of ∂k F(·) in Δ(ξα) is a constant
function for every ξα ∈ Π . If F ∈ SV α

δ (Π,Δ) then

(∀ξα ∈ Π)
(||∂k F(·) − ∂k F(ξα)||H 0(Δ(ξα)) ≤ δ, k = 0, 1, . . . , α

)
.

Function φ ∈ Hα(Π) is called the highly oscillating function (with respect to the
cell Δ(ξα) and tolerance parameter δ), φ ∈ H Oα

δ (Π,Δ), if

φ ∈ T Pα
δ (Π,Δ)

∀F ∈ SV α
δ (Π,Δ)( f ≡ φF ∈ T Pα

δ (Π,Δ))
(10)
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and for k = 1, . . . , α these functions satisfy conditions

(∀ξα ∈ Π)
[
φ̃(k)(ξα, ·) |Δ(ξα) = ∂k φ̃(ξα)

]
,

f̃ (k)(ξα, ·) |Δ(ξα) = F(ξα)∂k φ̃(ξα) |Δ(ξα)

(11)

For α = 0 we denote f̃ ≡ f̃ (0).
Let by ϕ(·) denote a highly oscillating function, ϕ ∈ H O2

δ (Π,Δ), defined on Π̄ ,
continuous together with gradient ∂1ϕ. Its gradient ∂2ϕ is a piecewise continuous
and bounded. Function ϕ(·) is called the fluctuation shape function of the 2-nd kind,
if it depends on λ as a parameter and satisfies conditions:

1◦ ∂kϕ ∈ O(λα−k) for k = 1, . . . , α, α = 2,
2◦ 〈ϕ〉(ξα) ≈ 0 for every ξα ∈ ΠΔ.

Set of all fluctuation shape functions of the 2-nd kind is denoted by F S2
δ (Π,Δ).

Condition (2◦) can be replaced by 〈ρϕ〉(ξα) ≈ 0 for every ξα ∈ ΠΔ, where ρ > 0 is
a certain tolerance periodic function.

The starting point of the modeling procedure is a decomposition of displacement
fields. The modeling procedure will be based on the tolerance averaging approach
and on the restriction of the displacement field under consideration given by

w3(ξ
α, z, t) = V3(ξ

α, t)
wα(ξα, z, t) = (−∂αV3(ξ

α, t) + h A(ξα)u A
α (ξα, t))z

(12)

or ξα = Π , z ∈ (−h/2, h/2), A = I, I I and every time t .
The basic modeling assumption, related to the above decomposition, states that

V3(·, t) , u A
α (·, t) are slowly varying functions together with all partial derivatives.

Functions V3(·, t) ∈ SV 2
δ (Ω,Δ), u A

α (·, t) ∈ SV 1
δ (Ω,Δ) are the basic unknowns of

the modelling problem. Functions h A(·) are known, dependent on the microstructure
length parameter λ, fluctuation shape functions.

Let h̃ A(·), ∂α h̃(·) stand for periodic approximation of h A(·), ∂αh A(·) inΔ, respec-
tively. Due to the fact that w3(·, t), wα(·, t) are tolerance periodic functions, it can be
observed that the periodic approximation of w3h(·, t), wαh(·, t) and their derivatives
in Δ(ξα), ξα ∈ Π have the form

w3h(y, ξβ, z, t) = V3(ξ
β, t),

∂αw3h(y, ξβ, z, t) = ∂αVA(ξβ, t),
ẇ3h(y, ξβ, z, t) = V̇3(ξ

β, t),
wαh(y, ξ beta, z, t) = (−∂αV3(ξ

β, t) + h A(y, ξβ)u A
α (ξβ, t))z

∂ywαh(y, ξβ, z, t) = (−∂αγ V3(ξ
β, t) + ∂yh A(y, ξβ)u A

α (ξβ, t))z
ẇαh(y, ξβ, z, t) = (−∂α V̇3(ξ

β, t) + h A(y, ξβ)u̇ A
α (ξβ, t))z

(13)

for every ξα ∈ Π , almost every y ∈ Δ(ξα) and every t ∈ (t0, t1).
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4 Averaging Description

The starting point of the tolerance averaging technique are Eqs. (2)–(5) and decom-
position of displacement fields w3(ξ

α, z, t), wα(ξα, z, t). Substituting the right-hand
sides of Eqs. (12) into (5), on the basis of tolerance averaging approximation, we
finally arrive the strain energy averaged over the cell Δ(ξα)

〈E〉 = 1

2
B̃αβγ δ∇αβ V ∇γ δV3 − B̃αAγ δu A

α ∇γ δV3 + 1

2
B̃αAγ Bu A

α uB
γ (14)

where we have denoted

B̃αβγ δ = 〈Bαβγ δ〉, B̃αAγ δ = 〈Bαβγ δ∂βh A〉,
B̃αAγ B = 〈Bαβγ δ∂βh A∂δhB〉 (15)

Substituting displacement field given by decomposition (12) into formula for kinetic
energy (4) we obtain for an arbitrary point of the plate

Kz(ξ
β, z, t) = 1

2ρ
[
V̇3(ξ

β, t)V̇3(ξ
β, t)

+ (
(−∂α V̇3(ξ

β, t) + h A(ξβ)u̇ A
α (ξβ, t))z

)
(
(−∂β V̇3(ξ

β, t) + hB(ξβ u̇ B
β (x)(ξβ, t))z)

)
δαβ

] (16)

After averaging over the plate thickness and neglecting for thin plates the terms
describing rotation inertia (subscripted terms in Eq. (16)) we obtain formula for
kinetic energy averaged over cell Δ(ξα)

〈K 〉(ξα, t) = 1

2
〈ρh〉V̇3(ξ

α, t)V̇3(ξ
α, t) (17)

Energy external load averaged over the cell Δ(ξα)

〈F〉(xiα, t) = 〈 f 3〉V3 (18)

In order to derive the equations of motion we shall introduce tolerance averaged
Lagrangian 〈L〉

〈L〉 = 〈K 〉 − 〈E〉 + 〈F〉
〈L〉 = 〈L〉(xiα,∇αβ V3, V3, u A

α , V̇3) (19)

The governing equations derived from stationary action principle of the averaged
Lagragian 〈L〉 = 〈K 〉 − 〈E〉 + 〈F〉 have the form
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∇αβ(B̃αβγ δ∇γ δV3 − B̃γ Aαβu A
γ ) + 〈 p̃〉V̈3 − 〈 f 3〉 = 0

B̃αAγ δ∇γ δV3 − B̃αAγ BuB
γ = 0 (20)

We can observe that uB
γ can be eliminated from above equations

uB
μ = K μBαA B̃αAγ δ∇γ δV3 (21)

where K μBαA determine the linear transformation, inverse to that given by B̃μBαA

(K μBαA B̃αAγ C = δBC
μγ ).

Denoting

Fαβγ δ = B̃αβγ δ − B̃μBαβ K μBτ A B̃τ Aγ δ (22)

and ρ̃ (mass density related to plate midplane), after simple manipulations we obtain
finally the following equation for the averaged displacements V3(ξ

α, t),

∇αβ(Fαβγ δ∇γ δV3) + 〈ρ̃〉V̈3 = 〈 f 3〉 (23)

Coefficients in the above equation are smooth and functional in contrast to equa-
tions in direct description with the discontinuous and highly oscillating coefficients.
The above equation has an identical form as equation of motion for thin plate with
functional coefficients.

5 Applications

5.1 Tolerance Model

In order to illustrate an exemplary application of the above equation, the analysis of
free vibrations of the composite annular plateswill be shown. Equation (23) represent
partial differential equation for the averaged deflection V3(ξ

α, t). Let us introduce
the polar coordinate system Oξ 1ξ 2, where ξ 2 represents the angular coordinate and
ξ ≡ ξ 1 the radial coordinate. We look for a solution to the equations (23) in the form
of a function with separable variables

V3(ξ
α, t) = Ṽ (ξα)eiωt (24)

Substituting the Eqs. (24) into (23) after rather complicated calculations we obtain
the equation for Ṽ (·) describing free vibrations of the composite annular plate.
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Ṽ,1111〈F1111〉 + Ṽ,1111

(
2

ξ
〈F1111〉 + 2〈F1111〉,1

)

+ Ṽ,11

(
〈F1111〉,11 + 2

ξ
〈F1111〉,1 + 1

ξ
〈F1122〉,1 − 1

ξ 2
〈F2222〉

)

+ Ṽ,1

(
1

ξ
〈F1122〉,11 + 1

ξ 3
〈F2222〉 − 1

ξ 2
〈F2222〉,1

)

+ Ṽ,122

(
− 4

ξ 3
〈F1212〉 + 4

ξ 2
〈F1212〉,1 − 2

ξ 3
〈F1122〉 + 2

ξ 2
〈F1122〉,1

)

+ Ṽ,1122

(
4

ξ 2
〈F1212〉 + 2

ξ 2
〈F1122〉

)
(25)

+ Ṽ,22

(
4

ξ 4
〈F1212〉 + 2

ξ 4
〈F1122〉 − 2

ξ 3
〈F1122〉,1

2

ξ 4
〈F2222〉 − 1

ξ 4
〈F2222〉,1 + 1

+ξ 3〈F1122〉,11
)

+ Ṽ,222

(
2

ξ 4
〈F2222〉,2

)
+ V,2222

(
1

ξ 4
〈F2222〉

)
+ 〈 p̃〉ω2 = 0

The Eq. (25) contain smooth and slowly varying coefficients and can be solved
using well known numerical methods. The averaged coefficients Fαβγ δ together
with its derivatives were calculated automatically by symbolic computation pro-
grams. Whereby:

F1111 = B1111 − BμB11K μBτ A Bτ A11,

F1122 = B1122 − BμB11K μBτ A Bτ A22,

F1212 = B1212 − BμB12K μBτ A Bτ A12,

F2222 = B2222 − BμB22K μBτ A Bτ A22

(26)

where K μBτ A determine the linear transform inverse to that given by BμBτ A.
Formulas for averaged modulus are given below.

B1111 = 〈B1111〉 (27)

= 1

l1Δϕ

⎡
⎢⎣

1
2 b1∫

− 1
2 b1

⎛
⎜⎝

− 1
2 b1∫

− 1
2 b1

Br dy2 +
1
2 b1∫

− 1
2 b1

αBr dy2 +
1
2 Δ∫

− 1
2 b1

Brdy2

⎞
⎟⎠ dy1

+
1
2 Δϕ∫

− 1
2 Δϕ

− 1
2 l1∫

1
2 b1

Br dy1 dy2 +
1
2 Δϕ∫

− 1
2 Δϕ

− 1
2 b1∫

1
2 l1

Br dy1 y2

⎤
⎥⎦ (28)

B1111 = Br (Δϕdξ + dl1 − d2 + αΔϕξ l1 − αΔϕdξ − αdl1 + αd2)

Δϕξ l1
(29)
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B1I11 = −2(−1 + α)d(Δϕ − d)Br

3ξ l1Δϕ
(30)

B1I22 = −2(−1 + αβ)d(Δφ − d)Brν

3ξ l1Δϕ
(31)

B1I11 = −8(l1 − d + dα)d(Δϕ − d)Br

15ξ(d − l1)Δϕl1
(32)

B1I2I I = 4d2αBrνrβ

9ξΔϕl1
(33)

B1I I12 = − (d + dαβνr − dvr − dα − l1 − αβνr l1 + νr l1 + αl1)Br d

3ξΔϕl1
(34)

B1I I2I = B2I1I I = 2(βνr − 1)d2αBr

9ξΔϕl1
(35)

B1I I1I I = − 1

15ξ(d − Δϕξ)Δϕl1

[
4

(
d2 + d2αβνr − d2α − d2νr

+ dνrΔϕξ + dαl1 − dΔϕξ − l1d (36)

+ dνr l1 − dαβνr l1 + l1Δϕξ

− νr l1Δϕξ ) Br d]

B2I12 = (1 − νr − α + ανrβ)d(Δϕ − d)Br

3ξ l1Δϕ
(37)

B2I2I = −4(−l1 + d + νr l1 − νr d − dα + dαβνr )d(Δϕ − d)Br

15ξ(d − l1)Δϕl1
(38)

B2I I11 = −2(−d + βαd + l1 − αβl1)d Brνr

3ξΔϕl1
(39)

B2I I22 = −2(−d + αd + l1 − αl1)d Br

3ξΔφl1
(40)

B2I I2I I = −8(−l1dα − l1d + l1Δϕξ − d2α + d2 − dΔϕξ)d Br

15ξ(d − l1)Δϕl1
(41)

where:

b1 = l1 − d, b2 = Δφ − d

ξ
, Bm = αBr , νm = βνr

B1I12 = B1I21 = B1I1I I = B1I I11 = B1I I22 = B1I I1I = B1I I2I I = B2I11

B2I22 = B2I1I = B2I2I I = B2I I12 = B2I I2I = B2I I1I I = 0 (42)
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5.2 Shape Functions

The important point of the tolerance modelling approach is to determine the fluctu-
ation shape functions (FSF). In dynamic problems, the system of FSF can be taken
to represent the principal modes of free vibrations of the cell Δ(ξα) or a physically
reasonable approximation of these modes. In our work, we proposed shape functions
that reflect material properties of the plate.

h1(yα, ξ 1) = S1(y1)T2(y2, b2),

h2(yα, ξ 2) = S2(y2)T1(y1, b1),
(43)

where:

S1(y1) =

⎧⎪⎨
⎪⎩

− (
y1 + l1

2

)
for y1 ∈ 〈− l1

2 , b1
2 〉,

d
l1−d for y1 ∈ 〈− b1

2 , b1
2 〉,

− (
y1 − l1

2

)
for y1 ∈ 〈− b1

2 , l1
2 , 〉,

S2(y2, ξ
1) =

⎧⎪⎨
⎪⎩

− (
y2 + Δϕ

2

)
for y2 ∈ 〈−Δϕ

2 ,− b2
2 〉,

d
(+y1)b2

y2 for y2 ∈ 〈− b2
2 , b2

2 〉,
− (

y2 − Δϕ

2

)
for y2 ∈ 〈 b2

2 ,
Δϕ

2 〉,

T1(y1, b1) =
[
1 −

(
2y1

b1

)2
]

, T2(y2, b2) =
[
1 −

(
2y2

b2(xi1y1)

)2
]

Shape functions (43) are presented on the graphs drawn on a cell (Fig. 3).

5.3 Shape Functions

5.3.1 Boundary Conditions

In order to find a particular solution of the equation Eq. (25) we shall investigate the
natural vibrations of annular plates for the following boundary conditions:

• for the mutually clamped plate:

∂ Ṽ (ξ 1ξ 2)

∂ξ 1 | ξ 1=Re

= 0, Ṽ (ξ 1ξ 2)| ξ 1=Re = 0,

∂ Ṽ (ξ 1ξ 2)

∂ξ 1 | ξ 1=Ri

= 0, Ṽ (ξ 1ξ 2)| ξ 1=Ri = 0, (44)
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Fig. 3 The cell with shape functions

• for the mutually simply supported plate:

∂2Ṽ (ξ 1ξ 2)

∂ξ 1∂ξ 1 | ξ 1=Re

+ 1

Re

∂ Ṽ (xi1, ξ 2)

∂ξ 1 | ξ 1=Re

= 0, Ṽ (ξ 1ξ 2)| ξ 1=Re = 0,

∂2Ṽ (ξ 1ξ 2)

∂ξ 1∂ξ 1 | ξ 1=Ri

+ 1

Ri

∂ Ṽ (xi1, ξ 2)

∂ξ 1 | ξ 1=Ri

= 0, Ṽ (ξ 1ξ 2)| ξ 1=Ri = 0 (45)

5.3.2 Finite Difference Method

The Eq. (25) has smooth and slowly varying coefficients. Hence, to solve it well
known numerical methods are needed. The solution of the equation (25) and
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obtainment of natural frequencies were made by finite differential method. This
method through discretization of theEq. (25) and consideration of appropriate bound-
ary conditions (44) or (45) lets obtain frequencies from the solution of eigenvalue
problem. The solution of eigenvalue problem, obtainment of the natural frequencies
and modes were done by using finite difference method.

Numerical problem indicated above was implemented by usingMSVisual Studio
C++ environment. It let to create fully object- oriented structure of the program
simultaneously providing elasticity and expansibility of the solution. The program
made in this environment can be applied on any hardware platformbased onWindows
(XP, Vista, Win7, Win8) both in 32-bit and 63-bit systems. What is more, chosen
environment enable to create interface convenient for a user in which the user has
possibilities to change many geometric and physical parameters.

The Eq. (25) represents partial differential equation of fourth order with varying
coefficients relative to the two variables described in polar coordinate system. For
that reason, the discretization based on FDM differs significantly from the classical
approach grounded on cartesian coordinate system.

The area of the plate was divided into n equal parts (the rings of equal width) in a
radial direction and into m equal parts (sections based on the same angle) in angular
direction (Fig. 4a).

According to that, FDM mesh was formed with varying dimensions of mesh
opening, whereby

dyi = ξiΨ, ξ 2
j+1 − ξ i

j = Δξ 2 = Ψ = const,

ξ 1
i+1 − ξ 1

i = Δξ = const. (46)

where dy, dx = Δξ are dimensions of the mesh opening, ξ is a distance from the
origin of the coordinate system (a radius).

Fig. 4 a Partition of a plate area by FDM mesh, b The numbering of nodes of the mesh. Red line
signifies additional virtual nodes
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The partial derivatives appearing in the Eq. (25) are drawn closer by central
difference method as following [4]:

• the first derivative:
∂ Ṽ (ξ 1, ξ 2)

∂ξ 1
= Ṽi+1. j − Ṽi−1. j

2Δξ
(47)

1

ξ 1

∂ Ṽ (ξ 1, ξ 2)

∂ξ 2
= Ṽi. j+1 − Ṽi. j−1

2ξiΨ
(48)

• the second derivative:

∂2Ṽ (ξ 1ξ 2)

∂ξ 1∂ξ 2
= Ṽi+1. j − 2Ṽi, j + Ṽi−1, j

Δξ 2
(49)

∂2Ṽ (ξ 1ξ 2)

∂ξ 2∂ξ 2
= Ṽi+1. j+1 − Ṽi+1, j−1 − Ṽi−1, j+1 + Ṽi−1, j−1

4ξiΨ Δξ
(50)

∂2Ṽ (ξ 1ξ 2)

∂ξ 2∂ξ 2
= Ṽi. j+1 − 2Ṽi, j + Ṽi. j−1

(ξiΨ )2
(51)

• the third derivative:

∂3Ṽ (ξ 1ξ 2)

(∂ξ 1)3
= Ṽi+2. j − 2Ṽi+1, j + 2Ṽi−1, j − Ṽi−2. j

2Δξ 3
(52)

∂3Ṽ (ξ 1ξ 2)

(∂ξ 1)2∂ξ 2
= Ṽi+1. j+1 − 2Ṽi, j+1 + Ṽi−1, j+1 − Ṽi+1. j−1 + 2Ṽi, j−1 − Ṽi

2Δξ 2(ξiΨ )
(53)

∂3Ṽ (ξ 1ξ 2)

∂ξ 1(∂ξ 2)2
= Ṽi+1. j+1 − 2Ṽi+1, j + Ṽi+1, j−1 − Ṽi−1. j+1 + 2Ṽi−1, j − Ṽi−1, j

2Δξ(ξiΨ )2

(54)

∂3Ṽ (ξ 1ξ 2)

(∂ξ 2)3
= Ṽi. j+2 − 2Ṽi, j+1 + 2Ṽi, j−1 − Ṽi. j−2

2(ξiΨ )3
(55)

• the fourth derivative:

∂4Ṽ (ξ 1ξ 2)

(∂ξ 1)4
= Ṽi+2. j − 4Ṽi+1, j + 6Ṽi, j − 4Ṽi−1, j − Ṽi−2. j

Δξ 4
(56)
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∂4Ṽ (ξ 1ξ 2)

(∂ξ 1)3∂ξ 2
=

Ṽi+2. j+1 − 2Ṽi+1, j+1 + 2Ṽi−1, j+1 − Ṽi−2. j+1

−Ṽi+2. j−1 + 2Ṽi+1, j−1 − 2Ṽi−1, j−1 + Ṽi−2. j−1

4Δξ 3ξiΨ
(57)

∂4Ṽ (ξ 1ξ 2)

(∂ξ 1)2(∂ξ 2)2
=

Ṽi+1. j+1 − 2Ṽi, j+1 + Ṽi−1, j+1 − 2Ṽi+1. j + 4Ṽi, j

−2Ṽi−1, j + Ṽi+1. j−1 − 2Ṽi, j−1 + Ṽi−1, j−1

Δξ 2(ξiΨ )2
(58)

∂4Ṽ (ξ 1ξ 2)

∂ξ 1(∂ξ 2)3
=

Ṽi+1. j+2 − 2Ṽi+1, j+1 + 2Ṽi+1, j−1 − Ṽi+1. j−2

−Ṽi−1, j+2 + 2Ṽi−1, j+1 − 2Ṽi−1, j−1

4Δξ(ξiΨ )3
(59)

∂4Ṽ (ξ 1ξ 2)

(∂ξ 2)4
= Ṽi. j+2 − 4Ṽi, j+1 + 6Ṽi, j − 4Ṽi, j−1 + Ṽi, j−2

(ξiΨ )4
(60)

The discretization of varying coefficients of simultaneous equations was made
by taking the values of coefficients in each node of FDM mesh. For this to work,
the derivatives of varying coefficients of the system had been previously calculated
symbolically (see Sect. 5.1).

Subsequently, the discretization of the boundary conditions needs to be done (see
Sect. 5.3.1). Correspondingly to FDMclassical approach, we add virtual non-existent
nodes and we make the value of the function in those nodes conditional on values of
function in appropriate “physical” nodes. The calculations have been made for two
types of annular plates according to its boundary conditions—clamped and simply
supported. In the case of clamped edges of the plate:

• for the inner edge:

Ṽ0, j = 0, Ṽ−1, j = Ṽ1, j (61)

• for the outer edge:
ṼN , j = 0, ṼN−1, j = ṼN+1, j (62)

In the case of simply supported plate:

• for the inner edge:

Ṽ0, j = 0,
Ṽ−1, j + Ṽ1, j

Δξ 2
+ 1

Ri

Ṽ−1, j − Ṽ1, j

2Δξ
= 0 (63)

• for the outer edge:

ṼN , j = 0,
ṼN−1, j + ṼN+1, j

Δξ 2
+ 1

Re

ṼN−1, j − ṼN+1, j

2Δξ
= 0 (64)
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where Ri and Re are respectively inner and outer radius of skeletonal annular plate.
Using formulas (47)–(64), from theEq. (25)weobtain systemof (n − 1) · (m − 1)

algebraic equations. The solution of the eigenvalue problem of mentioned system
gives requested modes and frequencies of natural mode.

5.3.3 The Comparison with Abaqus Program Results

In order to verify the correctness of the derived tolerance model equations, the com-
parison of the results obtained from theEq. (25)with the results fromAbaqus program
(finite element method) for a test task has been made. The following material and
geometric parameters have been assumed for the test tasks:

• matrix (aluminum):modulus of elasticity Em = 69GPa, Poisson’s ratio νm = 0, 33,
mass density ρm = 2720kg/m3,

• beams (steel): modulus of elasticity Er = 210 GPa, Poisson’s ratio νr = 0, 3, mass
density ρr = 7800 kg/m3,

• thickness of plate h = 10cm,
• ring width L = 2m,
• internal radius R1 = 3m,
• external radius R2 = 5m,
• thickness of beams d = 0.05m,
• boundary conditions for the side clamped plate (43),

Mode shape functions for the calculated natural frequencies have the same form
for the tolerant model and for Abaqus program. The forms corresponding to the first
four frequencies of the free vibrations have been calculated and shown in Fig. 5.
The calculations have been performed with the use of two methods:

• finite element method in Abaqus program,
• by solving the tolerance model Eq. (25) by using the finite difference method.

Calculations made by Abaqus program were provided for the linear perturbation
(frequency). It is crucial to find the adequate element for the mesh. It was assumed
S4R element as a 4-node doubly curved thin (or thick) shell which provides reduced
integration, hourglass control and finite membrane strains. Hourglass control was
adopted as “Stiffness”. The rest of the parameters were assumed as default. The
mesh was added to the matrix and ribs separately. The size of one element of the
mesh is equal to 0.025m with curvature control. It was generated 45.800 elements
on the matrix and 35.595 elements on the ribs (Table1).

Build a computational model for the annular plate that hasmany ribs with constant
width (1/n � 1, n-number of the ribs) is very labor-intensive in Abaqus program.
Any change of the width of the ribs requires the construction of a new model of
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Fig. 5 First four modes of natural frequencies of the annular skeletonal plate

Table 1 First four free frequencies for a microheterogeneous plate

Abaqus TTA Abaqus/TTA

Number of free
frequency

Aluminium matrix
with steel ribs (Hz)

Aluminium matrix
with steel ribs (Hz)

Differences between
Abaqus/TTA (%)

1st 121.15 125.65 3.58

2nd 123.25 125.82 2.04

3rd 123.37 125.82 1.95

4th 129.69 126.10 −2.85

this plate. That approach is pretty elaborate to be used in the analysis of engineer-
ing problems. In direct description of the plate with microstructure we have dealt
with highly oscillating function describing material properties. Averaged model is
described by equations with smooth and slowly varying coefficients. Application of
FEM for the direct model requires a very dense distribution of the elements which
is not necessary in the case of averaged models.
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5.3.4 Numerical Examples

The subject of the analysis in this subsection are the composite plates with matrix
made of concrete or aluminum and reinforced by steel ribs. The aim of the numerical
calculations is to investigate the influence of the material properties of the plate on
the natural frequencies of the plate under consideration.

We assume the following geometrical data in the next examples:

• thickness of plate h = 10cm,
• ring width L = 2m,
• internal radius R1 = 3m,
• external radius R2 = 5m,

and material parameters:

• aluminum: modulus of elasticity E = 69 GPa, Poisson’s ratio ν = 0, 33, mass
density ρ = 2720kg/m3,

• steel: modulus of elasticity E = 210 GPa, Poisson’s ratio ν = 0, 3, mass density
ρ = 7800kg/m3,

• concrete: modulus of elasticity E = 30 GPa, Poisson’s ratio ν = 0, 2, mass density
ρ = 2800kg/m3,

Other material and geometrical parameters were variable at the time of the numer-
ical experiment and they are individually described on the charts.

In the Fig. 6 it is presented the natural frequencies versus parametr d/λ (d—width
of ribs, λ—size of the cell in its radial direction). If d/λ = 1we receive homogeneous
plate. We can see that, when the width of ribs is equal to zero, natural frequencies
of composite plate aims to natural frequencies of homogeneous plate made of the
material of matrix. Further, in the case of increasing the width of the ribs natural
frequencies of composite plate seeks to natural frequencies of homogeneous plate
made of the material of the rib. In the following example matrix and rib are made
properly of concrete and steel.

Consequently, for the graph below, matrix made of aluminum and ribs made of
steel were assumed. The dependence of natural frequency from the number of peri-
odic cellwas calculated. By changing thewidth of the ribs, the constant proportions of
material between the quantity of the material of the matrix and ribs were maintained.
Figure7 presents almost linear dependence of natural frequencies on the number of
the cells (ribs) in the angular direction (on the horizontal axis) for different series
of the number of the cells in the radial direction. In all cases, the same proportions
of the quantity of the material for the matrix and for the ribs were maintained by
controlling the width of the ribs.

In the next figures there is presented the dependence of natural frequencies of the
composite on different material proportions. In the first case (Fig. 8), we consider
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Fig. 6 The dependence of the first natural frequency on the width of the ribs

Fig. 7 The dependence of natural frequencies on the number of the ribs in the angular direction
(on the horizontal axis) for different numbers of the ribs in the radial direction



416 A. Wirowski et al.

Fig. 8 The dependence of natural frequency on material parameters

variability of Young modulus of the ribs ratio to the density of the ribs for different
series of analogical ratio for the matrix, which is defined as:

αi = Ei

ρi

In the second case (Fig. 9), it is shown the dependence of natural frequencies on
Young modulus of the ribs ratio to Young modulus of the matrix for different series
of density ratio. A homogenous plate made of the material of the rib was considered
as a reference level. Modification of Young modulus ratios for both materials was
done by adjustment of material parameters of the matrix. In either case was assumed
the width of the ribs equal to 5cm. The results obtained for different width of the
ribs had analogous character and let us draw the same conclusions.

In both cases we see that by controlling the material properties we can obtain
desired natural frequencies of the plate. What is more, the relationships between
them are nonlinear.
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Fig. 9 The dependence of natural frequency on Young modulus of the ribs ratio to Young modulus
of the matrix for different series of ribs density to matrix density ratio

5.4 Conclusions

The composite skeletonal plate is described by the tolerance model equations that
involves only smooth coefficients. Since the proposed model equations have smooth
coefficients, the solution of specific boundary problem can be obtained using well
known numerical methods. The obtainment of this average solution is much easier
than using FEM for direct description of the plate with microstructure.

The validation of gained averaged model by comparing the results from the TAA
model with results from ABAQUS program was performed. For the analyzed plate
we have obtained a good consistency of the results (less than 4% of the difference).

We can see in the Figs. 6, 7, 8 and 9 that by controlling the geometrical andmaterial
properties of the ribs and the matrix we can obtain desired natural frequencies of the
plate.

In the Fig. 9 we observe that for the composite plate with specific geometric
structure we can obtain depending on the value ε = ER/EM both lower and higher
vibration frequency than those for homogenous platemade ofmaterial of the rib. That
occurrence exists in the case where density of the ribs ratio to matrix γ = ρR/ρM

increases faster than elastic modulus of the ribs ratio to elastic modulus of the matrix
ε = ER/EM .
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