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Chapter 6
Polymer Nanocomposites for Power Energy 
Storage

Qi Li and Qing Wang

6.1  �Introduction

Dielectric capacitors that store electric energy through static charge separation 
between two opposite electrodes induced by the external electric field are ubiqui-
tous in electronics and electric power systems. When a dielectric capacitor is con-
nected to a charging circuit, the amount of electric energy per volume that can be 
stored in dielectric capacitors is called stored energy density, and when the charged 
capacitor is then connected to a discharging circuit, the amount of energy per vol-
ume that can be released is called dischargeable energy density. These energy densi-
ties are usually measured volumetrically in joule per cubic centimeter (J/cm3).

Energy density is one of the most important criteria for energy storage devices. 
While dielectric capacitors bear the intrinsic advantage of fast charge and discharge, 
the energy densities of commercially available dielectric capacitors are much lower 
relative to their electrochemical counterparts, such as batteries and electrochemical 
capacitors [1–4]. As the energy density of capacitors is governed by the dielectric 
materials that separate the opposite static charges between two electrodes, the 
development of dielectric materials with greatly improved energy density has thus 
been a major enabling technology for high-energy-density dielectric capacitors.

In general, to compute the energy density of a dielectric material, electric dis-
placement (D) of the material is measured as a function of electric field (E) during 
the charge–discharge process to plot the D-E loop (Fig.  6.1). The stored energy 
density is equal to the integral

	
U E Ds = ò d

	
(6.1)
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where E is the electric field and D is the electric displacement. As shown in Fig. 6.1, 
the area of the region that is bounded by the graph of charging, the D-axis, and the 
horizontal line y = Dmax defines the stored energy density. Similarly, the area of the 
region that is bounded by the graph of discharging, the D-axis, and the horizontal 
line y = Dmax defines the dischargeable energy density (Ud). The dissipated energy 
(Ul) caused by electric conduction and/or ferroelectric hysteresis is indicated by the 
region surrounded by the loop. Apparently, the total charged energy density (Us) is 
equal to Ud plus Ul. The charge–discharge efficiency (η) is defined as Ud/Us × 100 %. 
In particular, for linear dielectrics, the stored energy density can be simply calcu-
lated following the equation:

	 U DE Es r= =½ /1 2 0
2e e 	 (6.2)

where εr is the relative static permittivity, ε0 is the permittivity of free space, and E 
is the applied electric field.

Equations 6.1 and 6.2 together suggest that the energy density of a dielectric 
could be improved by increasing at least one of the two parameters, i.e., the dielec-
tric constant (K) and the electric breakdown strength (Eb). This is because K deter-
mines the electric displacement, and Eb defines the highest field that can be applied 
on the dielectric. Recently, to integrate the complementary advantages of inorganic 
and organic dielectric materials for high energy storage, attempts to incorporate 
inorganic nanoparticles with high K into polymer matrices have been made via 
mechanical blending, solution mixing, or in situ radical polymerization [5–12]. This 
chapter summarizes the recent progress in polymer nanocomposites for dielectric 
power energy storage.
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Fig. 6.1  Schematic D-E loop for a dielectric material
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6.2  �Increasing Dielectric Constant of Polymer 
Nanocomposites

Inorganic materials, such as the barium titanate, enjoy very high-K values (typically 
ranging from thousands to hundreds of thousands) but are limited by the low Eb (i.e., 
lower than 100 MV/m) [13]. On the other hand, polymer dielectrics possess good 
processability, low cost, light weight, high Eb, and graceful failure, although their K 
values are much lower than those of their inorganic counterparts [14–16]. For exam-
ple, one of the best commercially available polymer dielectrics, represented by the 
biaxially oriented polypropylenes (BOPP), has a K of ~ 2.2, and an Eb of > 700 
MV/m [17]. As a result, at comparable electric fields, inorganic dielectrics show 
much higher energy densities in comparison to organic dielectrics. It is thus a prom-
ising strategy to incorporate inorganic nanoparticles into polymer dielectrics to 
increase the effective dielectric constant of the composite material and, at the mean 
time, preserve the high breakdown strength of the polymer.

6.2.1  �Using Ceramics as Fillers

The effective dielectric constant of a two-phase composite system can be predicted 
by the Maxwell Garnett equation on the basis of the effective medium theory that 
can be expressed as [18]
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where ε is the effective permittivity of the composite and φ1 and φ2 are the volume 
fractions of filler phase and polymer phase, which have relative permittivities of ε1 
and ε2, respectively. Equation 6.3 indicates that the incorporation of high-K fillers 
would directly give rise to an increased K value of the composite material. Besides, 
the coupling effect occurring at the interface areas in the nanocomposite would cre-
ate considerable level of interfacial polarization between the filler and matrix phases 
that advances the energy density of the material [19–21]. Indeed, experimental 
results have shown that much increased K values of the polymer nanocomposites 
are attained with high-K inclusions such as BaTiO3, BaxSr1-xTiO3, CaCu3Ti4O12, and 
Pb(Zr, Ti)O3, leading to improved energy densities [22–46].

6.2.1.1  �Surface Functionalization of Filler Particles

Since nanoscale fillers possessing large surface areas could provide high levels of 
interfacial polarization, they are the inclusions of the choice for dielectric polymer 
composites with high energy densities. Because nanoparticles have strong tendency 
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to aggregate in a polymer matrix due to the high surface energy, they are usually 
surface functionalized in order to improve the compatibility and achieve homoge-
neous distributions. This is beneficial in two aspects: (1) uniform dispersion of 
high-K fillers would minimize the degree of distortion of the local field induced by 
the large difference in dielectric constant between the filler and matrix phases [47] 
and (2) elimination of filler aggregation could get rid of the microstructural defects 
at the filler–matrix interface such as voids and flaws. This is important as either the 
distortion of the local field or the microstructural defects would result in a signifi-
cant decrease in breakdown strength of the nanocomposite and thereby offset any 
potential gain in the energy density from increased K values.

Perry et al. reported phosphonic acid-modified BaTiO3–polymer nanocompos-
ites and concluded that the use of particles modified with suitable phosphonic acid 
ligands leads to well-dispersed BaTiO2 nanocomposite films with high dielectric 
constant [25]. The authors examined a series of ligands as the modifier, each bearing 
an aliphatic octyl chain with a different terminal binding group. It was found that 
the ligand bearing the phosphonic acid functional group could be firmly bound on 
BaTiO3 nanoparticles in a tridentate form. To demonstrate the effectiveness of the 
proposed strategy, the authors provided two examples using these ligands (Fig. 6.2a) 
to modify BaTiO3 nanoparticles, and two polymer dielectrics were chosen as matri-
ces, i.e., the bisphenol-A-type polycarbonate (PC) and the poly(vinylidenefluoride-
co-hexafluoropropylene) (P(VDF-HFP)). The obtained nanocomposites showed 
much higher K values relative to the blank polymers and fairly low dielectric loss 
(Fig.  6.2b), even though the breakdown strength was also relatively low (~210 
MV/m) compared with those of the polymer matrices (e.g., Eb of the P(VDF-HFP) 
is around 500 MV/m). As a result, the stored energy densities were improved, i.e., 
3.9 J/cm3 for the BaTiO3–PC nanocomposite and 6.1 J/cm3 for the 
BaTiO3–P(VDF-HFP) nanocomposite. Following this strategy, a variety of ligands 
were developed to modify the high-K ceramics for dielectric polymer nanocompos-
ites, such as ethylene diamine [23], dopamine [33], organic titanate coupling agent 
[44], and silane coupling agent [45, 46].

Another approach to improving the dispersion of filler particles is to directly link 
the nanoparticles to the molecular chain of the host matrices via covalent bonding. 
This can be achieved through two different methods which are coined as “grafting 
from” [48–51] and “grafting to” [26, 30, 52–54] methods, respectively.

The so-called “grafting from” method is referred to describe the initialization 
of the growth of polymer chains from the surface of nanoparticles. Marks et al. 
proposed an in situ synthesis of high-energy-density metal oxide nanocomposites 
[48]. The dielectric nanocomposites were prepared via in situ metallocene polym-
erization of isotactic propylene from the surface of methylaluminoxane (MAO)-
coated inorganic nanofillers (Fig. 6.3). The authors first anchored the MAO onto 
the nanoparticles via surface hydroxyl group reaction to form covalent Al–O 
bonds. Then anchored MAO functioned as a co-catalyst to activate the metallo-
cene, and in addition, the hydrophobic MAO functionalization helped disrupt, in 
combination with ultrasonication, hydrophilic nanoparticle agglomeration in the 
hydrophobic reaction medium. In virtue of the covalent linkage between the filler 
and matrix phases, uniform filler distribution was attained in the as-prepared nano-
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composites that exhibited moderately increased dielectric constant with high 
breakdown strength of the polymer matrix being maintained. Consequently, the 
energy density of the nanocomposite was calculated to be as high as 9.4 J/cm3. 
This approach was then extended to other types of polymer matrices by employing 
different chemistry and polymerizing techniques. For example, Jiang et al. devel-

Fig. 6.2  (a) Molecular structures of phosphonic acid ligands used to modify BaTiO3 nanoparti-
cles. (b) Frequency-dependent dielectric response of capacitor devices fabricated from PEGPA-BT/
PC (squares) and PFBPA-BT/P(VDF-HFP) (circles) (Reprinted from Ref. [25] with permission 
from John Wiley and Sons)
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Fig. 6.3  Schematic illustration of synthetic route of isotactic polypropylene–metal oxide nano-
composites (Reprinted with permission from Ref. [48]. Copyright 2007 American Chemical 
Society)
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oped a BaTiO3–poly(methyl methacrylate) (PMMA) nanocomposite that was pre-
pared by in situ atom transfer radical polymerization (ATRP) of methyl 
methacrylate (MMA) from the surface of BaTiO3 nanoparticles (Fig. 6.4) [49]. By 
doing so, the dielectric constant of the nanocomposite was improved to ~14.6 from 
3.5 of the pure polymer, and in the meantime, the dielectric loss was almost inde-
pendent of the filler content.

The “grafting to” method involves establishing covalent binding between the 
filler and polymer phases through functional groups on the polymer chains and the 
surface of filler particles. A typical example was reported by Wang and coworkers 
[27]. They prepared the ferroelectric polymers with phosphonic acid end groups 
(Fig. 6.5a) and subsequently used the reactive terminal groups of the polymer for 
direct coupling with oxide fillers. The formation of covalent coupling between the 
polymer matrix and filler particles renders the nanocomposites with good stability 
and uniform filler dispersion (Fig. 6.5b). Due to the rise of the electric displacement 
induced by the incorporated nanofillers, the energy storage capability of the nano-
composites was improved (Fig. 6.5c). Another example of the “grafting to” method 
introduced glycidyl methacrylate (GMA) functionalized P(VDF-HFP) as the matrix 
to accommodate BaTiO3 nanoparticles, and the covalent linking of the matrix and 
filler phases was achieved via ring-opening reaction between the epoxy groups of 
GMA grafted onto P(VDF-HFP) and the amino groups on the surface of BaTiO3 
nanoparticles (Fig. 6.6a) [52]. Again, homogeneous filler dispersion and improved 
dielectric constant were observed in the nanocomposites (Fig. 6.6b, c).
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6.2.1.2  �High Aspect Ratio Fillers

Three-dimensional continuous polymer matrices filled with zero-dimensional 
nanoparticles is usually referred to as 0-3 polymer nanocomposites. Similarly, those 
containing one-dimensional inclusions are 1-3 polymer nanocomposites. Recent stud-
ies on dielectric nanocomposites have shown that high-K nanofillers with high aspect 
ratios, i.e., one-dimensional nanowires or nanorods, could lead to more significant 
increase in dielectric constant of dielectric polymers, as compared with zero-dimen-
sional nanoparticles [40, 55–58]. Therefore, composing 1-3 polymer nanocomposites 
has become a promising strategy toward high-energy-density capacitors.

HO

HO OH

O
O

O
O

O

O

OHHO
P

F

F H H n
Cl

F F F
P

O

HO

O

O

O O

O

DCC

H2O2

O
P OEt

(EtO)2(O)P

(EtO)2(O)P

OEt
Br POEt3

O P(O)(OEt)2

P(O)(OEt)2

C

O

C

O

C

O

C

1

1

1)

2) (CH3)3SiL, CH3OH

m F2C=CCIF + n F2C=CH2

m
x

50
0

2

4

6

8

10

12

100 150 200 250 300

Electric Field (MV/m)

E
ne

rg
y 

D
en

si
ty

 (
J/

cm
3 )

12 wt% ZrO2

9.1 wt% ZrO2

4.8 wt% ZrO2

2.4 wt% ZrO2

1 wt% ZrO2

P(VDF-CTFE)

a)

a

b c

Fig. 6.5  (a) Synthesis of the functional initiator and the phosphonic acid-terminated P(VDF-
CTFE). (b) TEM image of the covalent-bonded P(VDF-CTFE). (c) Stored energy density of the 
polymer and the nanocomposites as a function of the applied field (Reprinted with permission from 
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Sodano et  al. reported lead zirconate titanate (PZT)–polyvinylidene fluoride 
(PVDF) dielectric nanocomposites, in which the nanosized inclusions were of dif-
ferent aspect ratios and are termed as nanowires (higher aspect ratio) and nanorods 
(lower aspect ratio), respectively [40]. The nanocomposite filled with PZT nanow-
ires showed higher dielectric constant and lower loss than that loaded with PZT 
nanorods, which gave rise to a higher energy density, demonstrating the effective-
ness of using high aspect ratio nanofillers for the fabrication of polymer nanocom-
posites for capacitive energy storage.

By using BaTiO3 nanowires as the filler, the energy density of a ferroelectric ter-
polymer poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-
TrFE-CFE)) was increased by 45 %, achieving 10.48 J/cc at the electric field of 300 
MV/m [55]. Later, Ba0.2Sr0.8TiO3 nanowires were also employed to prepare a com-
posite dielectric using PVDF as the matrix (Fig. 6.7) [56]. The discharged energy 
density of the nanocomposite, namely, 14.86 J/cc, was 43 % larger relative to the 
pure PVDF, which was attained at the electric field of 450 MV/m (Fig. 6.8). Because 
polymer dielectrics filled with high-K nanowires can achieve higher dielectric 

Fig. 6.6  (a) Schematic illustration of the preparation process for the PVDF-HFP-GMA–BT nano-
composites. (b) SEM images of the fractured surface of the PVDF-HFP-GMA nanocomposite 
with 20 vol% BaTiO3 nanoparticles. (c) Comparison of the dielectric properties for the PVDF-
HFP-GMA–BT and PVDF-HFP–BT nanocomposites at 1 MHz (Reprinted from Ref. [52] with 
permission from Royal Society of Chemistry)
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constants than those filled with high-K nanoparticles, lower filler content is required 
for 1-3 systems to induce a similar level of electric displacement as compared with 
the 0-3 system. This would naturally result in a higher breakdown strength for the 
1-3 nanocomposite since breakdown strength decreases with increasing feeding 
ratio of the high-K fillers.

6.2.1.3  �Nanofillers with Moderate Dielectric Constant

According to the Maxwell Garnett equation (Eq. 6.3), high-K nanofillers would 
be the dopants of choice for improving the dielectric constant of polymer dielec-
trics. However, the presence of high-K nanofillers in dielectric polymers causes 
highly inhomogeneous electric field across the nanocomposite due to the large 

Fig. 6.7  SEM images of (a) sodium titanate NWs and (b) Ba0.2Sr0.8TiO3 NWs. (c) TEM image of 
a single Ba0.2Sr0.8TiO3 nanowire. (d) Representative HRTEM image showing clear crystal lattice 
fringes of the Ba0.2Sr0.8TiO3 nanowire (Reprinted with permission from Ref. [56]. Copyright 2013 
American Chemical Society)
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contrast in dielectric constant between the dopant and matrix phases, which dras-
tically decreases the breakdown strength of the composite system [47]. But what 
if nanofillers with moderate dielectric constant are used as dopants to fabricate 
dielectric nanocomposites?

To answer this question, Wang et al. proposed a new type of nanocomposites 
with comparable dielectric constants between the filler and matrix phases, i.e., 
K = 42 for the host ferroelectric terpolymer poly(vinylidene fluoride-ter-
trifluoroethylene-ter-chlorotrifluoroethylene) (P(VDF-TrFE-CTFE) and K = 47 for 
the fillers (TiO2 nanocrystals) [22]. Interestingly, the polarization of the nanocom-
posite was found to be significantly enhanced despite of the moderate dielectric 
constant of the nanofillers involved. The unexpected improvement in polarization 
was attributed to the large interfacial polarization, which was supported by the 
results of temperature dependent dielectric spectroscopy showing an emerging 
dielectric anomaly (Fig. 6.9). As a result of the enhanced polarization, the energy 
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density of the nanocomposite was found to be 40 % higher than that of the pristine 
terpolymer under an electric field of 200 MV/m. By employing nanofillers with 
moderate dielectric constant, the polarization could be increased without compro-
mising breakdown strengths of host polymers and thus leading to much improved 
capacitive energy storage capabilities. Along this line, polymer nanocomposites 

Fig. 6.9  Temperature dependence of the (a) dielectric constant and (b) dielectric loss of the poly-
mer and nanocomposite measured at 1 kHz (Reprinted from Ref. [22] with permission from John 
Wiley and Sons)
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incorporating other nanofillers with moderate dielectric constant were also studied 
[12, 27, 59–66]. The success of this approach suggests that the usage of high-K 
nanofillers may not be necessary for producing high-energy-density dielectric poly-
mer nanocomposites.

6.2.2  �Percolative Polymer Nanocomposites

Percolation theory predicts that in the conductive particle–polymer composite sys-
tem, dielectric constant increases sharply as the filler content increases to the vicin-
ity of the percolation threshold, which can be expressed by
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(6.4)

where K is the dielectric constant of the composite, Km is the dielectric constant of 
the polymer matrix, fc is the percolation threshold, and ffil is the filler content [67]. 
Such abrupt increase in dielectric constant is ascribed to the formation of the so-
called microcapacitor networks consisting of a large number of local capacitors 
[19]. Each of these microcapacitors is formed by the neighboring conductive parti-
cles as the two electrodes and a thin layer of dielectric polymer in between. All 
these microcapacitors contribute to the intensified local electric fields and conse-
quently result in accumulation of charge carriers at the filler–matrix interface 
responsible for the increased interfacial polarization.

6.2.2.1  �Giant Dielectric Constants of Percolative Nanocomposites

By capitalizing on the percolation strategy, numerous percolative polymer compos-
ites have been prepared incorporating various conductive fillers including zero-
dimensional nanoparticles [68–76], one-dimensional nanotubes [77–88] and 
nanofibers [89–92], as well as two-dimensional nanoplates [93–98], and all show 
giant dielectric constants in the neighborhood of the percolation thresholds. For 
example, Nan et al. reported nickel particles filled polymer composites, in which 
drastic increase in dielectric constant was observed near the percolation threshold, 
i.e., from 10 of the host polymer to 400 of the composite with 17 vol.% of conduc-
tive fillers [70]. Dang et al. developed carbon nanotube–PVDF percolative polymer 
nanocomposites that displayed high dielectric constant of 300 at low filler content 
(2 vol.%) due to the low percolation threshold (1.61 vol.%) [78]. Fan et al. described 
a sort of percolative composites incorporating exfoliated graphite nanoplates 
(xGnPs) [93]. At 2.34 vol.% feeding of the xGnPs, the dielectric constant reached 
as high as 4.5 × 107 (Fig. 6.10).
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6.2.2.2  Conductive Fillers Covered with Insulation Layer

Although much increased dielectric constants have been observed in percolative 
polymer nanocomposites, the high conduction losses of these materials associated 
with the involved conductive fillers hindered their applications in power energy 
storage due to the low breakdown strength. To circumvent this problem, a plenty of 
efforts have focused on the creation of an insulation layer on the surface of conduc-
tive fillers to avoid the formation of conducting pathways. For instance, Nan et al. 
put forward a strategy using core-shell structured nanofillers with metal particle 
cores and organo carbon shells (Fig. 6.11) [75]. The presence of the shell structure 
prevented the conductive metal particles from directly connecting with each other 
and thus lead to a low dielectric loss (~3 %) even at percolation threshold.

Wang et  al. prepared a poly(vinylidene fluoride-co-chlorotrifluoroethylene) 
(P(VDF-CTFE))-based percolative nanocomposite using SiO2-coated graphene 
nanosheets as fillers and studied the dielectric properties at both weak and high fields 
[95]. While they found a fairly low dielectric loss even beyond the percolation 

Fig. 6.10  Effective dielectric constant of the PVDF–xGnP nanocomposites as a function of the 
xGnP volume fraction, measured at 1000 Hz and room temperature. Inset (a) shows the best fits of 
the conductivity to Eq. 6.2. Inset (b) shows the loss tangent of PVDF–xGnP nanocomposites as a 
function of xGnP volume fraction (Reprinted from Ref. [93] with permission from John Wiley and 
Sons)
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threshold, a relatively high dielectric strength was also observed, both of which were 
attributed to the uniform coating of insulation layer on the surface of graphene 
nanosheets (Fig. 6.12). Marks et al. used metallic aluminum nanoparticles with a 
native insulation layer of aluminum oxide as fillers to compose the percolative nano-
composite [76]. Due to the very high dielectric constant achieved and preserved 
breakdown strength, the energy density was calculated to be as high as 14.4 J/cm3.

6.3  �Increasing Breakdown Strength of Polymer 
Nanocomposites

In linear dielectrics, Us scales quadratically with E and linearly with K. A high E is more 
profitable than a high K for achieving high energy density of dielectric materials. As Eb 
signifies the maximum E that can be applied on a dielectric material, Eb becomes the 
very critical parameter that determines the Us of dielectric materials. One example is 
that although the K value (~2.2) of BOPP is 100–1000 times lower than those (usually 
at the level of 103–104) of typical dielectric ceramics, such as barium titanate, they share 
a very similar Us of ~5 J/cm3, owing to the superior Eb of BOPP (700 MV/m) compared 
to that of the ceramic films, i.e., ~90 MV/m. For these reasons, efforts have been made 
in developing high-Eb polymer dielectrics using the composite approach [99–103].

6.3.1  �Polymer Nanocomposites with Insulating Nanoparticles

Roy et al. are among the first to observe the improved dielectric strength from 
insulating nanoparticle-filled polymer composites. They found that XLPE filled 
with vinylsilane-treated silica nanoparticles had a much higher Weibull 

Fig. 6.11  TEM of the Ag–C core-shell particles with (a) thicker shells and (b) thinner shells (not 
as clearly visible as the thicker shells), where the inset in (a) shows the selected area electron dif-
fraction pattern of the particles, indicating that the Ag cores are single Ag crystals (Reprinted from 
Ref. [75] with permission from John Wiley and Sons)
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Fig. 6.12  TEM images of (a, b) GO and (c, d) r-GO–SiO2, and EDX analysis of (e) GO and (f) 
r-GO–SiO2. Scale bar: (a) 200 nm, (b) 100 nm, (c) 200 nm, and (d) 50 nm (Reprinted from Ref. 
[95] with permission from Royal Society of Chemistry)
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breakdown strength than the bare polymer, i.e., ~500 MV/m vs. ~300 MV/m [99]. 
The authors claimed that physical bonding between nanoparticles and the poly-
mer chain could account for the increase in breakdown strength. Takala et al. then 
studied silica nanoparticle-filled dielectric composites by use of PP as the matrix 
[100]. The as-prepared nanocomposites exerted significantly improved break-
down strength relative to the blank polymer. It was believed that the breakdown 
strength results related to scattering and reduced space charge accumulation, 
which had an effect on both ac and dc behaviors of the nanocomposite. Nano-
dispersion of silica also ensured low loss factor of the nanocomposite, which was 
owing to the large fraction of interface volume and polymer chain entanglement 
keeping the motion of charge carriers limited.

6.3.2  �Incorporation of Insulating Nanolamilates

More recently, it was demonstrated that incorporation of two-dimensional insulat-
ing nanostructures in dielectric polymers could lead to essentially increased break-
down strength [101–103].

In a P(VDF-HFP)-based polymer nanocomposite, high aspect ratio two-
dimensional kaolinite clays were employed as fillers [101]. The composite films 
were first cast from solution and then hot-pressed at 200 °C and 55 MPa pressure. 
After cooling in air, the films were uniaxially stretched mechanically by means of a 
zone drawing process to five times their original length, which ensured the orienta-
tion of the two-dimensional nanofillers. Finally the films were annealed at 120 
°C.  Unlike the nanocomposites filled with high-K materials, the P(VDF-HFP)–
kaolinite clay nanocomposites exhibited decreased loss with increasing filler con-
tent, as proved in both the weak field (dielectric spectroscopy) and high field 
measurements (D-E loop) (Fig. 6.13).

In the meantime, the electric displacement decreased significantly in the nano-
composites compared with that of the blank polymer. Two mechanisms were pro-
posed to rationalize the origin of this trend. First, two-dimensional nanofillers serve 
as nucleating agents to promote growth of nonpolar crystals in their vicinity. Due to 
the restricted mobility of the dipoles in these crystals, their reorientation requires 
higher electric fields. Second, oriented dipole density is reduced because of the 
incorporation of inorganic fillers, which in turn leads to a lower amount of space 
charge required for polarization stabilization. The high aspect ratio two-dimensional 
nanofillers also build up efficient conduction barriers that can limit the charge migra-
tion toward the electrodes and hinder the electrical tree growth during breakdown. 
These aspects contribute to the significantly improved breakdown strength of the 
nanocomposites, and as such, the discharged energy density increased by 100 % rela-
tive to the blank polymer despite of the reduced electric displacement. Similar results 
were observed using other nanolaminate fillers such as montmorillonites, and filler 
orientation was found to be able to provide more ordered trapping centers to obstruct 
the ability of charges to traverse the sample to the opposite electrode [102, 103].
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6.4  �Simultaneous Improvements of Dielectric Constant 
and Breakdown Strength

It is envisaged that the integration of complementary elements such as large dielec-
tric constant from ceramics and high breakdown strength from polymers in the 
polymer nanocomposites could lead to an enhanced energy storage capacity. 
However, it remains elusive how the contradictory criteria of enhancing one param-
eter while maintaining the other could be balanced in the nanocomposites. For 
example, a marked decrease in Eb due to a large contrast in K between ceramics and 
polymers, as shown in current high-K filler involved dielectric nanocomposites, 
negates any potential substantial increase in energy density under high electric 
fields. In this regard, the ideal case would be simultaneous improvements of dielec-
tric constant and breakdown strength in the nanocomposites.

This was achieved recently by employing multicomponent filler systems and 
utilizing either topological-structure or interface engineering [104, 105]. Shen 
and colleagues expanded the traditional 0-3 nanocomposite system to a multilay-
ered structure fabricated through a simple layer-by-layer tape casting method 
(Fig. 6.14) [104]. For instance, they demonstrated a 3-layer structure, in which a 
center layer was designed to be a nanocomposite with higher breakdown strength 
and the top and bottom layers were both nanocomposites with high dielectric 
constants. Therefore, the center layer was able to improve the overall breakdown 
strength of the multilayer-structured nanocomposite, while the outer layers 
enhanced the electric displacement. As a result, the topological-structured nano-

Fig. 6.13  (a) Dielectric permittivity and dielectric loss tangent vs. temperature, at low electric 
field and 1 kHz, for the stretched films of unfilled P(VDF-HFP) and two nanocomposites with 1 
and 5 wt. % kaolinite. (b) Displacement vs. electric field loops of P(VDF-HFP) and of its nano-
composites; all films were uniaxially stretched. Upon kaolinite filler addition, there is a systematic 
reduction in remnant polarization and an associated improvement in losses (Reprinted from Ref. 
[101] with permission from AIP Publishing LLC)
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composites were found to show much improved capacitive energy storage per-
formance than the matrix polymer, i.e., a 162 % increase in discharged energy 
density, which was resulted from the simultaneous improvements of dielectric 
constant (from 7 to 10) and breakdown strength (from 260 to 450 kV/mm) in the 
nanocomposite. This approach combines the complementary properties of the 
constituent layers and thus leads to superior material performance than using 
traditional nanocomposite systems.

More recently, Shen and colleagues developed another approach to simultane-
ously improving dielectric constant and breakdown strength in polymer nanocom-
posites (Fig. 6.15) [105]. They employed a new type of material, i.e., BaTiO3–TiO2 
nanofibers, where BaTiO3 nanoparticles are embedded in TiO2 nanofibers as inclu-
sions in PVDF-based polymer nanocomposites. The discharged energy density of 
the nanocomposite was reported to be as high as 20 J/cm3, which was from the 
increased electric displacement (72  % increment) and characteristic breakdown 
strength (8 % increment). While the origin of the increase in breakdown strength 
was claimed to be the large aspect ratio and partial orientation of nanofibers, the 
improvement in electric displacement was ascribed to the interfacial effect inside 
the integrated nanofillers. This was supported by the evidence from simulated 
atomic-resolution angular bright-field images, from which a clear interfacial layer 
could be observed at the intermediate region between the embedded BaTiO3 
nanoparticles and the host TiO2 nanofiber. Such interfacial layer possessed a differ-
ent lattice structure to those of the BaTiO3 and TiO2 phases. The interpretation made 

Fig. 6.14  Schematic drawing of the approach of layer-by-layer casting for the fabrication of the 
sandwich multilayer films. (a) Nanofillers were dispersed in the PVDF suspension, (b) one layer 
with BTO-np was cast, (c) the central layer with BTO-nf was cast, (d) the other layer with BTO-np 
was cast (Reprinted from Ref. [104] with permission from John Wiley and Sons)
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on the basis of this observation was the Ba–Ti mutual occupation at the intermediate 
regions between BaTiO3 and TiO2 and thus a large strain should exist in these 
regions to benefit polarization. This work revealed that, in addition to the interfacial 
polarization between the inorganic fillers and the polymer matrices, the interfacial 
effect inside hierarchical multiphase inorganic inclusions could also significantly 
affect dielectric properties of polymer nanocomposites and therefore be employed 
to achieve high energy density in dielectric capacitors.

6.5  �Conclusions

Recent advances in nanomaterials and nanotechnology have propelled the develop-
ment of dielectric polymer nanocomposites. The state-of-the-art energy density 
attained in polymer nanocomposites has already exceeded 20 J/cm3, which is com-
parable to those of commercially available electrochemical capacitors. However, 

Fig. 6.15  (a) Schematic illustration of BTO@TO_nfs and PVDF–BTO@TO_nfs nanocompos-
ites. (b) Discharged energy density of PVDF nanocomposites embedded with BTO@TO_nfs, 
TO_nfs, BTO_nps, and pure PVDF films as a function of electric field, the volume fraction of the 
three nano-inclusions were fixed at 3 % in all composites. (c) Structural models of BaTiO3 and 
TiO2 and corresponding simulated atomic-resolution angular bright-field images (Reprinted from 
Ref. [105] with permission from John Wiley and Sons)
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this is far from the end of story as the performance still fall well short of the needs 
in applications such as electric drive vehicles, pulsed power, and power capacitors, 
which require not only high energy and power densities but also low loss. It is worth 
pointing out that while tremendous efforts have been placed on the search for new 
nano-inclusions with tailored morphologies and electrical properties, minor prog-
ress has been gained on the exploitation of high-K polymers. Note that a majority of 
achievements made on high-energy-density polymer nanocomposites are still 
employing PVDF-based polymers as the host matrix that has been studied over 
decades. Unfortunately, PVDF-based polymers have high loss values, i.e., >3 % 
under weak electric fields and could be over 50 % under high electric fields, which 
is unaccepted for many of the proposed applications. This is somewhat related to the 
low glass transition temperatures, low Curie temperatures, and low melting points 
of PVDF-based polymers. On the other hand, the current high-energy-density poly-
mer nanocomposites are exclusively designed for room temperature applications 
due to the limitation in thermal stabilities of existing high-K polymers and are not 
suitable for harsh condition operations commonly presented in the emerging appli-
cations such as electric drive vehicles and deep oil and gas explorations. These 
concerns raise new challenges in designing the next generation organic capacitor 
dielectrics. Besides, in-depth knowledge about the matrix–filler coupling effect in 
dielectric polymer nanocomposites is highly demanded to assist the material selec-
tion and engineering as it contributes a major part to the dielectric polarization that 
defines the energy density. Fundamental understanding of electrical conduction 
mechanisms in dielectric polymer nanocomposites could help with the optimization 
of material design, fabrication, and processing in a way high efficiency charge–dis-
charge could be attained. Last but not least, breakthrough could also be made 
through new designs of composition and structure of polymer nanocomposites. The 
multilayer-structured polymer nanocomposites proposed by Shen et al. (ref. [104]) 
stands for a good example along this direction. Multifunctional filler systems may 
also deserve attentions to realize promoted collective performance. All these efforts 
together would push this interdisciplinary field onto a new stage to match the needs 
for electricity in future transportations, portable electronic devices, and storage and 
conversion of renewable energy sources.
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