
A Size-Proportionate Bijective Encoding
of Lambda Terms as Catalan Objects
Endowed with Arithmetic Operations

Paul Tarau(B)

Department of Computer Science and Engineering,
University of North Texas, Denton, USA

paul.tarau@unt.edu

Abstract. We describe a size-proportionate bijection between lambda
terms in a compressed de Bruijn notation and the Catalan family of
combinatorial objects implemented as a Haskell type class, that has as
instances binary trees and multiway-trees with empty leaves, as well as
standard bitstring-represented natural numbers.

By building on previous work that defines arithmetic operations on
instances of this family, we extend lambda calculus with efficient arith-
metic operations.

At the same time, operations like normalization of lambda terms
are made available to members of the Catalan family of combinatorial
objects.

As a practical application to software testing we derive a mechanism
for generating large random lambda terms from Rémy’s algorithm for
efficient generation of random binary trees.

Keywords: Lambda calculus · compressed de Bruijn terms · Tree-based
numbering systems · Ranking and unranking of lambda terms · Normal-
ization with higher order abstract syntax · Random generation of large
lambda terms

1 Introduction

Bijective encodings of tree-like structures go back to Ackermann’s bijection
between natural numbers and hereditarily finite sets [1]. They are relatively
easy to design if one does not care about one side of the bijection exponentially
exploding in size, as it is the case, for instance, with Ackermann’s bijection.

With significant effort, such size-proportionate bijections between term alge-
bras and the set of natural numbers represented with the usual binary notation
are defined in [21], using ranking of balanced parentheses languages and a gen-
eralization of Cantor’s pairing function [5,16] to tuples. However, the binary
search and complex computations involved in the ranking algorithms limit the
encoding described in [21] to relatively small terms and numbers not larger than
about 2000 bits.
c© Springer International Publishing Switzerland 2016
M. Gavanelli and J. Reppy (Eds.): PADL 2016, LNCS 9585, pp. 99–116, 2016.
DOI: 10.1007/978-3-319-28228-2 7

100 P. Tarau

A more revolutionary approach has been sketched out in [23]. Instead of try-
ing to adjust the bijective Gödel numbering scheme to be size-proportionate as a
bijection to bitstring-represented numbers, [23] replaces its target: natural num-
bers are represented as binary trees. This paper generalizes that approach to an
arbitrary member of the Catalan family of combinatorial objects [20], on which
the usual arithmetic operations are defined. At the same time, it lifts a limita-
tion on the size-proportionate encoding of [23] where that property is lost unless
de Bruijn indices fit in a fixed size word. The generalization of binary-tree arith-
metic to Catalan objects, on which we rely in this paper, is described extensively
in the unpublished arxiv draft [22], a subset of which is covered in [25].

Following [22], a Haskell type class will be used to abstract away the number
representation. This has the benefit of having arithmetic operations implemented
by any instance of the Catalan family of combinatorial objects. It will also enable
trying out our algorithms on the usual “human friendly” natural numbers, which
can be seen, via a bijective transformation, as such an instance.

The arithmetic operations performed with the Catalan family based number-
ing system can work with numbers comparable in size with Knuth’s “arrow-up”
notation. These computations have a worst case and average case complexity that
is comparable with the traditional binary numbers, while their best case complex-
ity outperforms binary numbers by an arbitrary tower of exponents factor.

More importantly, encodings of lambda terms, that can be seen as a tree-to-
tree transformation, are naturally size-proportionate.

Our bijective encoding to tree-based number systems will provide the means
to derive an algorithm for the generation of random lambda terms from well-
known random generation algorithms for binary trees (Rémy’s algorithm). Ran-
dom lambda terms (and in particular, the very large ones our encoding enables)
can be useful for testing tools where they play the role of an intermediate lan-
guage, like compilers for functional languages and proof assistants.

By adding a normal order reducer of our lambda terms we provide a uni-
form representation for computations with lambda terms, and efficient arith-
metic operations - two essential building blocks of modern functional languages.

Together, these have applications to implementation of domain specific lan-
guages, compiler stages and proof assistants relying on lambda terms as their
intermediate language.

The paper is organized as follows. Section 2 introduces the compressed de
Bruijn terms and bijective transformations from them to standard lambda terms.
Section 3 describes mappings from lambda terms to Catalan families of combina-
torial objects. These mappings lead to size-proportionate ranking and unrank-
ing algorithms for lambda terms. Section 4 gives an algorithm for normal order
reduction of lambda terms that also extends to their Catalan encodings. Section 5
relates combinatorial generation of Catalan objects and that of lambda terms.
Section 6 introduces algorithms for generation of random lambda terms. Section 7
discusses related work. Section 8 concludes the paper.

The paper is organized as literate Haskell program. The code in the paper
is available at http://www.cse.unt.edu/∼tarau/research/2015/XDB.hs, tested

http://www.cse.unt.edu/~tarau/research/2015/XDB.hs

A Size-Proportionate Bijective Encoding of Lambda Terms 101

with GHC 7.10.2. It defines a module that includes code from [25] (file GCcat.hs,
a superset of which is available from the arXiv draft [22]), which defines a type
class for arithmetic operations with Catalan objects, generically. It also includes
Haskell library packages needed for the generation of random binary trees.

module XDB where

import GCat

import System.Random

import Math.Combinat.Trees

To achieve a size-proportionate bijective Gödel numbering scheme, all our arith-
metic computations will be performed with members of the type class Cat which
provides a generic implementation in terms of members of the Catalan family
of combinatorial objects [22], in particular binary or multiway trees with empty
leaves.

2 A Compressed Representation of de Bruijn Terms

We will summarize here a compressed representation for lambda terms in de
Bruijn notation introduced as Prolog program in [24], that will facilitate defining
a bijection to tree-represented natural numbers.

2.1 De Bruijn Indices

De Bruijn indices [4,13] provide a name-free representation of lambda terms.
All terms that can be transformed by a renaming of variables (α-conversion)
will share a unique representation. Variables following lambda abstractions are
omitted and their occurrences are marked with positive integers counting the
number of lambdas until the one binding them is found on the way up to the root
of the term.

We represent them using the constructor Ab for application, Lb for lambda
abstractions (that we will call shortly binders) and Vb for marking the integers
corresponding to the de Bruijn indices. This gives the Haskell data type B a as
the definition of the de Bruijn terms parameterized by the type a of the indices
used by Vb.

data B a = Vb a | Lb (B a) | Ab (B a) (B a) deriving (Eq,Show,Read)

For instance, when the parameter a is specialized to ordinary integers, the S
combinator λx.λy.λz.(x z) (y z) is represented as Lb (Lb (Lb (Ab (Ab (Vb
2) (Vb 0)) (Ab (Vb 1) (Vb 0))))), corresponding to the fact that Vb 2 is
bound by the outermost lambda (three steps away, counting from 0) and the
occurrences of Vb 0 are bound each by the closest lambda on the way to the
root, represented by the third constructor Lb.

102 P. Tarau

2.2 Compressed de Bruijn Terms

Iterated lambdas (represented as a block of constructors Lb in the de Bruijn
notation) can be seen as a successor arithmetic representation of a number that
counts them. So it makes sense to represent that number in a more efficient
numbering system. Note that in de Bruijn notation blocks of lambdas can wrap
either applications or variable occurrences represented as indices. This suggests
using just two constructors: Vx indicating in a term Vx k n that we have k
lambdas wrapped around the de Bruijn index Vb n and Ax, indicating in a term
Ax k x y that k lambdas are wrapped around the application Ab x y.

We call the terms built this way with the constructors Vx and Ax compressed
de Bruijn terms. They are specified by The Haskell data type X.

data X a = Vx a a | Ax a (X a) (X a) deriving (Eq,Show,Read)

For instance, the S combinator Lb (Lb (Lb (Ab (Ab (Vb 2) (Vb 0)) (Ab
(Vb 1) (Vb 0))))) in de Bruijn notation, will be represented as Ax 3 (Ax
0 (Vx 0 2) (Vx 0 0)) (Ax 0 (Vx 0 1) (Vx 0 0)), with the outermost con-
structor Ax encoding the three Lb binders and k=0 elsewhere indicating the
presence of no lambda binder in (front of) applications Ax k or indices Vx k.
Note also that lambda binders counted by k in a leaf term Vx k n can bind at
most one variable as no application splits the tree below them.

Open and Closed Terms. Lambda terms might contain free variables not
associated to any binders. Such terms a called open. Any syntactically well
formed term of types B and X is an open term. A closed term is such that each
variable occurrence is associated to a binder. Closed terms can be easily identi-
fied by ensuring that the lambda binders on a given path from root outnumber
the de Bruijn index of a variable occurrence ending the path.

To facilitate size-proportionate encodings of lambda terms, arithmetic opera-
tions in this paper will be performed in terms of tree instances of the type class
Cat, described in the companion paper [25], a superset of which is available as
[22]. The function isClosedX checks that a compressed de Bruijn term is closed
by trying to find a lambda binding every index on the way up to the root of
the lambda tree. The addition operation add and successor function s, defined
for instances of the type class Cat (see [22,25]), will be used to count binders
and the comparison operation cmp (see [22]) will ensure that binders on the way
down from the root outnumber index values at the leaves of the lambda tree.

isClosedX :: Cat a ⇒ X a → Bool

isClosedX t = f t e where

f (Vx k n) d = LT==cmp n (add d k)

f (Ax k x y) d = f x d’ && f y d’ where d’ = add d k

Example 1. isClosedX on the K combinator λx0.(λx1. x0), written (Vx 2 1)
as a compressed de Bruijn term, and a similar small open term. Note the use of
both Cat instances N and T parameterizing our (compressed) de Bruijn terms.

A Size-Proportionate Bijective Encoding of Lambda Terms 103

*XDB> isClosedX (Vx 2 1)

True

*XDB> isClosedX (Vx 2 2)

False

*XDB> isClosedX (Vx (C E (C E E)) (C E E))

True

*XDB> isClosedX (Vx (C E (C E E)) (C E (C E E)))

False

2.3 Converting from de Bruijn to Compressed de Bruijn Terms

The function b2x converts from the usual de Bruijn representation to the com-
pressed one. It proceeds by case analysis on Vb, Ab, Lb and counts the binders
Lb as it descends toward the leaves of the tree. Its steps are controlled by the
successor function s that increments the counts when crossing a binder.

b2x :: (Cat a) ⇒ B a → X a

b2x (Vb x) = Vx e x

b2x (Ab x y) = Ax e (b2x x) (b2x y)

b2x (Lb x) = f e x where

f k (Ab x y) = Ax (s k) (b2x x) (b2x y)

f k (Vb x) = Vx (s k) x

f k (Lb x) = f (s k) x

2.4 Converting from Compressed de Bruijn to de Bruijn Terms

The function x2b converts from the compressed to the usual de Bruijn represen-
tation. It reverses the effect of b2x by expanding the k in V k n and A k x y into
k Lb binders (no binders when k=0). The function iterLam performs this opera-
tion in both cases, and the predecessor function s’ computes the decrements at
each step.

x2b :: (Cat a) ⇒ X a → B a

x2b (Vx k x) = iterLam k (Vb x)

x2b (Ax k x y) = iterLam k (Ab (x2b x) (x2b y))

iterLam :: Cat a ⇒ a → B a → B a

iterLam k x | e_ k = x

iterLam k x = iterLam (s’ k) (Lb x)

Proposition 1. The functions b2x and x2b, having as domains and range open
terms, are inverses.

Example 2. The conversion between types B and X of the combinator Y = λx0.
(λx1.(x0 (x1 x1)) λx2.(x0 (x2 x2))).

*XDB> b2x (Lb (Ab (Lb (Ab (Vb 1) (Ab (Vb 0) (Vb 0))))

(Lb (Ab (Vb 1) (Ab (Vb 0) (Vb 0))))))

Ax 1 (Ax 1 (Vx 0 1) (Ax 0 (Vx 0 0) (Vx 0 0)))

104 P. Tarau

(Ax 1 (Vx 0 1) (Ax 0 (Vx 0 0) (Vx 0 0)))

*XDB> x2b it

Lb (Ab (Lb (Ab (Vb 1) (Ab (Vb 0) (Vb 0))))

(Lb (Ab (Vb 1) (Ab (Vb 0) (Vb 0)))))

This bijection allows borrowing algorithms between the two representations.
The function isClosedB tests if a term in de Bruijn notation is closed.

isClosedB :: Cat a ⇒ B a → Bool

isClosedB = isClosedX . b2x

3 Ranking and Unranking as a Catalan Embedding
of Compressed de Bruijn Terms

We will derive an encoding of the compressed de Bruijn terms into objects of
type Cat, such that the binary tree instance of type Cat is size-proportionate
with the encoded term.

The intuition behind the algorithm is that we want leaf nodes of the lambda
term to encode into leaves or small trees close to the leaves and application nodes
to encode into internal nodes of the binary tree, as much as possible.

3.1 Ranking Compressed de Bruijn Terms

The function x2t implements such an encoding.

x2t :: Cat a ⇒ X a → a

x2t (Vx k n) | e_ k && e_ n = n

x2t (Vx k n) = c (s’ (s’ (c (n,k))),e)

x2t (Ax k a b) = c (k,q) where q = c (x2t a,x2t b)

Note that leaves Vx k x are encoded either as empty leaves of the binary tree
or as subtrees with the right branch an empty leaf. To ensure the encoding is
bijective, we will need to decrement the result of the constructor c twice in the
second rule, with the predecessor function s’ to ensure that this case leaves no
gaps in the range of the function x2t. For application nodes Ax k a b we recurse
on nodes a and b and then we put the branches together with the constructor c.
When c=C or c=M, this results in a tree of a size proportionate to the compressed
de Bruijn term.

3.2 Unranking Compressed de Bruijn Terms

The decoding function t2x reverses the steps of the encoder x2t.
Case analysis on the right branch of the binary tree will tell if it is a leaf

node or an internal node of the lambda tree, in which case the increment in x2t,
needed for bijectivity, is reversed by applying the successor function s twice
before applying the deconstructor c’.

A Size-Proportionate Bijective Encoding of Lambda Terms 105

t2x :: Cat a ⇒ a → X a

t2x x | e_ x = Vx x x

t2x z = f y where

(x,y) = c’ z

f y | e_ y = Vx k n where (n,k) = c’ (s (s x))

f y | c_ y = Ax x (t2x a) (t2x b) where (a,b) = c’ y

Proposition 2. The functions t2x and x2t, converting between open compre-
ssed de Bruijn terms and corresponding instances of Cat, are inverses.

Example 3. The work of t2x and x2t on Cat instance N.

*XDB> t2x 1234

Ax 0 (Vx 0 0) (Ax 1 (Vx 0 0) (Ax 0 (Vx 1 0) (Ax 1 (Vx 0 0) (Vx 0 0))))

*XDB> x2t it

1234

*XDB> t it

C E (C E (C (C E E) (C E (C E (C (C E E) (C (C E E) (C E E)))))))

*XDB> map (x2t.t2x) [0..15]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

Note however that when using the instance N of Cat which implies the usual
binary number representation, the encoding is, as expected, not size
proportionate.

This precludes the use of the usual random number generators returning
integers in binary notation to generate very large random lambda terms. We
will circumvent this problem by using instead an algorithm that (uniformly)
generates random binary trees (see Sect. 6).

We define the unranking function t2b and the ranking function b2t for de
Bruijn terms, as follows.

t2b :: Cat a ⇒ a → B a

t2b = x2b . t2x

b2t :: Cat a ⇒ B a → a

b2t = x2t . b2x

Proposition 3. The functions t2b and b2t converting between open de Bruijn
terms and corresponding instances of Cat, are inverses.

Example 4. The encoding and decoding of the de Bruijn form of the pairing
combinator λx0. λx1. λx2.((x2 x0) x1) to ordinary binary numbers and binary
trees.

*XDB> b2t (Lb (Lb (Lb (Ab (Ab (Vb 0) (Vb 2)) (Vb 1)))))

1389505070847794345082851820104254894239239815

987686768473491008094957555679247

*XDB> t it

C (C (C E E) E) (C (C E (C E (C (C E (C E (C E E))) E))) (C (C E E) E))

*XDB> t2b it

106 P. Tarau

Lb (Lb (Lb (Ab (Ab (Vb E) (Vb (C E (C E E)))) (Vb (C E E)))))

*XDB> b2t it

C (C (C E E) E) (C (C E (C E (C (C E (C E (C E E))) E))) (C (C E E) E))

*XDB> n it

1389505070847794345082851820104254894239239815

987686768473491008094957555679247

*XDB> t2b it

Lb (Lb (Lb (Ab (Ab (Vb 0) (Vb 2)) (Vb 1))))

To facilitate comparison, it is useful to define the functions sizeT that returns
the number of internal nodes of the binary tree view of a Catalan object and
sizeX returning the size of a lambda term in compressed de Bruijn form, in
which numeric components k and n are also measured with sizeT.

sizeT :: Cat t ⇒ t → t

sizeT x | e_ x = x

sizeT x = s (add (sizeT a) (sizeT b)) where (a,b) = c’ x

sizeX :: Cat a ⇒ X a → a

sizeX (Vx k n) = add (sizeT k) (sizeT n)

sizeX (Ax k a b) = s (add (sizeT k) (add (sizeX a) (sizeX b)))

Example 5. The sum of the two sizes on an initial segment of N illustrates the
fact that the bijection t2x is indeed size-proportionate.

*Main> sum (map (sizeT) [0..10000])

114973

*Main> sum (map (sizeX.t2x) [0..10000])

75288

Proposition 4. The average time complexity of t2x and x2t is O(n) for input
size n and their worst case time complexity is O(n log∗(n)) when working on
instance T (binary trees).

Proof. It follows from the fact that the average complexity of c, c’ s and s’
is constant time, the worst case complexity of s and s’ is O(log∗(n)) and that
O(n) of these are performed by t2x and x2t.

3.3 Conversion to/from a Canonical Representation of Lambda
Terms with Integer Variable Names

We represent standard lambda terms [2] by using the constructors Ls for lambda
abstractions, As for applications and Vs for variable occurrences.

data S a = Vs a | Ls a (S a) | As (S a) (S a) deriving (Eq,Show,Read)

The function b2s converts from the de Bruijn representation to lambda terms
whose canonical names are provided by natural numbers. We will call them terms
in standard notation.

A Size-Proportionate Bijective Encoding of Lambda Terms 107

b2s :: Cat a ⇒ B a → S a

b2s a = f a e [] where

f :: (Cat a) ⇒ B a → a → [a] → S a

f (Vb i) _ vs = Vs (at i vs)

f (Lb a) v vs = Ls v (f a (s v) (v:vs))

f (Ab a b) v vs = As (f a v vs) (f b v vs)

at i (x:_) | e_ i = x

at i (_:xs) = at (s’ i) xs

Note the use of the helper function at that associates to an index i a variable
in position i on the list vs. As we initialize in b2s when calling helper function
f the list of index variables to [], we enforce that only closed terms (having no
free variables) are accepted.

The inverse transformation is defined by the function s2b.

s2b :: Cat a ⇒ S a → B a

s2b x = f x [] where

f :: Cat a ⇒ S a → [a] → B a

f (Vs x) vs = Vb (at x vs)

f (As x y) vs = Ab (f x vs) (f y vs)

f (Ls v y) vs = Lb a where a = f y (v:vs)

Note again the use of at, this time to locate the index i on the list of variables
vs. By initializing vs with [] in the call to helper function f, we enforce that
only closed terms are accepted.

Proposition 5. The functions s2b and b2s, converting between closed de Bruijn
terms and closed standard terms, are inverses.

Example 6. The bijection defined by the functions s2b and b2s on the term
λx0.(λx1.(x0 (x1 x1)) λx2.(x0 (x2 x2))).

*XDB> b2s (Lb (Ab (Lb (Ab (Vb 1) (Ab (Vb 0) (Vb 0))))

(Lb (Ab (Vb 1) (Ab (Vb 0) (Vb 0))))))

Ls 0 (As (Ls 1 (As (Vs 0) (As (Vs 1) (Vs 1))))

(Ls 1 (As (Vs 0) (As (Vs 1) (Vs 1)))))

*XDB> s2b it

Lb (Ab (Lb (Ab (Vb 1) (Ab (Vb 0) (Vb 0))))

(Lb (Ab (Vb 1) (Ab (Vb 0) (Vb 0))))

4 Normalization with Tree-Based Arithmetic Operations

We will now describe an evaluation mechanism for the (Turing-complete) lan-
guage of closed lambda terms, called normal order reduction [19]. A mapping
between de Bruijn terms and a new data type that mimics standard lambda
terms, except for representing binders as functions in the underlying implemen-
tation language, will be used both ways to evaluate and then return the result
as a de Bruijn term.

108 P. Tarau

4.1 Representing Lambdas as Functions in the Implementation
Language

The data type H represents leaves Vh of the lambda tree and applications Ah the
same way as the standard lambda terms of type S. However, Lambda binders,
meant to be substituted with terms during β-reduction steps are represented as
functions from the domain H to itself.

data H a = Vh a | Lh (H a → H a) | Ah (H a) (H a)

4.2 A HOAS-style Normal Order Reducer

Normal order evaluation [19] ensures that if a normal form exists, it is found after
a finite number of steps. In lambda-calculus based functional languages comput-
ing a normal form, normalization can be achieved through a HOAS (Higher-
Order Abstract Syntax) mechanism, that borrows the substitution operation
from the underlying “meta-language”. To this end, lambdas are implemented as
functions which get executed (usually lazily) when substitutions occur. We refer
to [18] for the original description of this mechanism, widely used these days
for implementing embedded domain specific languages and proof assistants in
languages like Haskell or ML.

The function nf implements normalization of a term of type H, derived from
a closed de Bruijn term. At each normalization step, when encountering a binder
of the form Lh f, the normalizer nf traverses it and it is composed with f. At
each application step Ah f a, if the left branch is a lambda, it is applied to
the reduced form of the right branch, as implemented by the helper function h.
Otherwise, the application node is left unchanged.

nf :: H a → H a

nf (Vh a) = Vh a

nf (Lh f) = Lh (nf . f)

nf (Ah f a) = h (nf f) (nf a) where

h :: H a → H a → H a

h (Lh g) x = g x

h g x = Ah g x

The result of implementing lambdas as functions is that we not only borrow sub-
stitutions from the underlying Haskell system but also the underlying (normal)
order of evaluation.

4.3 Closed Terms to/from HOAS

To implement conversion from the type H to the type B the function h2b traverses
the application nodes. As in the case of our other transformers, the (simple)
numerical computations involved in the transformations will be performed using
the arithmetic on Catalan objects of type Cat.

A Size-Proportionate Bijective Encoding of Lambda Terms 109

h2b :: Cat a ⇒ H a → B a

h2b t = h e t where

h d (Lh f) = Lb (h d’ (f (Vh d’))) where d’ = s d

h d (Ah a b) = Ab (h d a) (h d b)

h d (Vh d’) = Vb (sub d d’)

b2h :: Cat a ⇒ B a → H a

b2h t = h t [] where

h :: Cat a ⇒ B a → [H a] → H a

h (Lb a) xs = Lh (λx → h a (x:xs))

h (Ab a b) xs = Ah (h a xs) (h b xs)

h (Vb i) xs = at i xs

Example 7. Testing that h2b is a left inverse of h2b.

*XDB> (h2b . b2h) (Lb (Lb (Lb (Ab (Ab (Vb 0)

(Vb 2)) (Vb 1)))))

Lb (Lb (Lb (Ab (Ab (Vb 0) (Vb 2)) (Vb 1))))

While so called “exotic terms” are possible in the data type H to which no terms
of type B correspond, the terms brought to the H side by b2h and back by h2b
are identical.

4.4 Evaluating Closed Lambda Terms

As our normal order reduction is borrowed via a HOAS mechanism from the
underlying Haskell system, evaluation is restricted to closed terms. Instead of
getting help form a Maybe type, it is simpler to define its result as the trivial
open term Vb e for all open terms.

We obtain a normal order reducer for de Bruijn terms by wrapping up nf
with the transformers b2h and h2b.

evalB :: (Cat a) ⇒ B a → B a

evalB x | isClosedB x = (h2b .nf . b2h) x

evalB _ = Vb e

We can then lend the evaluator also to compressed de Bruijn terms.

evalX :: (Cat a) ⇒ X a → X a

evalX x = (b2x . evalB . x2b) x

Example 8. Reduction to the identity I = λx0.x0 of SKK = ((λx0. λx1. λx2.
((x0 x2) (x1 x2)) λx3. λx4.x3) λx5. λx6.x5) in compressed de Bruijn notation.

*XDB> evalX (Ax 0 (Ax 0 (Ax 3 (Ax 0 (Vx 0 2) (Vx 0 0))

(Ax 0 (Vx 0 1) (Vx 0 0))) (Vx 2 1)) (Vx 2 1))

Vx 1 0

110 P. Tarau

4.5 Catalan Objects as Lambda Terms

Given the bijection between instances of the Catalan family, we can go one step
further and extend the evaluator to binary trees.

evalT :: T→T

evalT = x2t . evalX . t2x

As we have also made the usual natural numbers members of the Catalan family,
we can define normal order reduction of such “arithmetized” lambda terms as
the arithmetic function evalN.

evalN :: N→N

evalN = x2t . evalX . t2x

Example 9. Evaluation of binary trees and natural numbers seen as lambda
terms.

*XDB> evalT (C (C E (C E E)) (C (C E E) E))

C (C (C E E) E) E

*XDB> filter (>0) (map evalN [0..31])

[1,4,8,1,11,1,15,16,15,20,23,15,28,31]

As evaluation happens in a Turing-complete language, these functions are
not total. For instance, evalN 318, corresponding to the lambda term ω =
(λx.(x x))(λx.(x x)), is non-terminating.

5 Generation of Catalan Objects and Lambda Terms

Given the size-proportionate bijection between open lambda terms and Catalan
objects, we can use generators for the later to generate the former.

5.1 A Generator for Catalan Objects

The function genCat implements a simple generator for Catalan objects with a
fixed number of internal nodes. Note that computations are expressed in terms
of the arithmetic operations on type Cat. It uses the function nums (see [22]) that
generates an initial segment of the set of natural numbers as a Haskell list.

genCat :: Cat t ⇒ t → [t]

genCat n | e_ n = [n]

genCat n | c_ n =
[c (x,y) | k←nums (s’ n), x←genCat k, y←genCat (s’ (sub n k))]

Example 10. Generation of Catalan object with 3 internal nodes and their nat-
ural number encodings.

A Size-Proportionate Bijective Encoding of Lambda Terms 111

*XDB> mapM_ print (genCat (t 3))

C E (C E (C E E))

C E (C (C E E) E)

C (C E E) (C E E)

C (C E (C E E)) E

C (C (C E E) E) E

*XDB> genCat 3

[5,6,4,7,15]

Given that closed terms have interesting uses in random testing [8], we derive
generators for them in compressed de Bruijn and de Bruijn form.

genCatX :: Cat a ⇒ a → [X a]

genCatX = filter isClosedX . map t2x . genCat

genCatB :: Cat a ⇒ a → [B a]

genCatB = filter isClosedB . map t2b . genCat

Example 11. Generation of closed compressed de Bruijn terms decoded from
binary trees with 3 internal nodes.

*XDB> mapM_ print (genCatX 4)

Ax 0 (Vx 1 0) (Vx 1 0)

Ax 1 (Vx 0 0) (Vx 1 0)

Ax 1 (Vx 1 0) (Vx 0 0)

Ax 2 (Vx 0 0) (Vx 0 0)

Ax 3 (Vx 0 0) (Vx 0 0)

Vx 3 0

Vx 4 0

Vx 8 0

5.2 Generation of Lambda Terms via Unranking

While direct enumeration of terms constrained by number of nodes or depth is
straightforward in Haskell an unranking algorithm is also usable for generation
of large terms, including generation of very large random terms.

Generating Open Terms in Compressed de Bruijn Form. Open terms are
generated simply by iterating over an initial segment of N with the function t2x.

genOpenX :: Cat a ⇒ a → [X a]

genOpenX l = map t2x (nums l)

Reusing unranking-based open term generators for more constrained families of
lambda terms works when their asymptotic density is relatively high. Fortunately
we know from the extensive quantitative analysis available in the literature
[6,7,11] when this is the case.

112 P. Tarau

The function genClosedX generates closed terms by filtering the results of
genOpenX with the predicate isClosedX.

genClosedX l = filter isClosedX (genOpenX l)

Example 12. Generation of closed compressed de Bruijn terms. Note the more
than 50 % closed terms among the first 10000 open terms.

*XDB> genClosedX 8

[Vx 1 0,Ax 1 (Vx 0 0) (Vx 0 0),Ax 2 (Vx 0 0) (Vx 0 0)]

*XDB> map x2t (genClosedX 30)

[1,4,8,9,11,12,15,16,19,20,23,24,28]

*XDB> length (genClosedX (t 10000))

5375

6 Random Generation of Lambda Terms

As the ranking bijection of the compressed de Bruijn lambda terms maps them
to Catalan objects, we can use unranking of uniformly generated random binary
trees to generate random terms.

6.1 Generating Random Binary Trees

We will rely on the Haskell library Math.Combinat.Trees to generate binary
trees uniformly, using a variant of Rémy’s algorithm described in [14], as well
as Haskell’s built-in random generator from package System.Random. This will
allow generation of random lambda terms corresponding to super-exponentially
sized numbers of type N, but size-proportionate when natural numbers are rep-
resented by the binary trees of type T.

The function ranCat is parametrized by the function tf that picks a type for
a leaf among the instances of Cat, to be propagated as the type of tree, as well
as the size of the tree and the random generator g.

ranCat :: (Cat t, RandomGen g) ⇒ (N →t) → Int → g → (t, g)

ranCat tf size g = (bt2c bt,g’) where

(bt,g’) = randomBinaryTree size g

bt2c (Leaf ()) = tf 0

bt2c (Branch l r) = c (bt2c l,bt2c r)

The function ranCat1 allows getting a random tree of a given size and type,
by giving a seed that initializes the random generator g.

ranCat1 tf size seed = fst (ranCat tf size (mkStdGen seed))

A Size-Proportionate Bijective Encoding of Lambda Terms 113

6.2 Generating Random Compressed de Bruijn Terms

We will use the bijection t2x from Catalan objects to open compressed de Bruijn
trees, parameterized by the function tf that picks the type of the instance of
Cat to be used.

The function ranOpenX generates random terms in a way similar to the func-
tion ranCat.

ranOpenX tf size g = (t2x r,g’) where(r,g’) = ranCat tf size g

The function ranOpen1X generates random terms given a seed for the random
generator.

ranOpen1X tf size seed = t2x (ranCat1 tf size seed)

The function ranClosedX filters the generated terms until a closed one is found.

ranClosedX tf size g =
if isClosedX x then x else ranClosedX tf size g’ where

(a,g’) = ranCat tf size g

x = t2x a

The function ranClosed1X works in a similar way, except for providing a seed
instead of a random generator.

ranClosed1X tf size seed = ranClosedX tf size g where g = mkStdGen seed

Example 13. Generation of some random lambda terms (including very large
ones) in compressed de Bruijn form.

*XDB> ranClosed1X n 3 9

Ax 1 (Vx 0 0) (Vx 0 0)

*XDB> ranClosed1X t 3 9

Ax (C E E) (Vx E E) (Vx E E)

*XDB> n (sizeX (ranClosed1X t 100 9))

96

*XDB> n (sizeX (ranOpen1X t 50000 42))

50001

7 Related Work

Originally introduced in [4], the de Bruijn notation makes terms equivalent up to
α-conversion and facilitates their normalization [13]. As indices replace variable
names by their stack-order relative positioning to their binders, they are already
more compact than standard lambda terms. However as iteration of their lambda
binders can be seen as a form of unary Peano arithmetic, it made sense to further
compress them by counting the binders more efficiently. This mechanism, is first
described in [24] where in combination with the generalized Cantor bijection
between N

k → N it is used to provide a bijective Gödel numbering scheme.
However, as the N → N

k side of this bijection is only computable using a binary
search algorithm, it is limited to relatively small terms, by contrast to the one

114 P. Tarau

described in this paper that works in time proportional to the size of both the
terms and their tree-based number encodings.

In [23] a binary tree-arithmetic encoding is introduced, that can be seen as an
instance of the generic Catalan-object arithmetic used in this paper. However, as
it describes computations in terms of ordinary arithmetic, it is size-proportionate
only under the assumption that variables fit in word-represented integers.

Combinatorics of lambda terms, including enumeration, random generation
and asymptotic behavior has seen an increased interest recently (see for instance
[3,6,7,10,11]), partly motivated by applications to software testing [8,17] given
the widespread use of lambda terms as an intermediate language in compilers
for functional languages and proof assistants.

Ranking and unranking of lambda terms can be seen as a building block for
bijective serialization of practical data types [15,26] as well as for Gödel num-
bering schemes of theoretical relevance. In fact, ranking functions for sequences
can be traced back to Gödel numberings [9,12] associated to formulas.

8 Conclusions and Future Work

We have provided a fresh look at several aspects of the representation and encod-
ing of lambda terms with focus on their de Bruijn form and a compressed variant
of it. Our computations have used a type class defining generic arithmetic oper-
ations on members of the Catalan family of combinatorial objects, described
in detail in [25]. They have served to implement bijections between representa-
tions of terms and conversion to/from HOAS-like form used for normalization
of lambda terms. Some interesting synergies have been triggered by this combi-
nation of apparently heterogeneous techniques:

– we have provided a simple size-proportionate bijective encoding of compressed
De Bruijn terms to our tree-based “natural numbers”

– the same “natural numbers” (actually operated on through a binary tree per-
spective on Catalan objects), have served to do routine arithmetic operations,
with average complexity comparable to the usual binary numbers

– the use of tree-based numbers, a target for ranking/unranking of lambda terms
and a uniform random generation algorithm for binary trees, have enabled
generation of (possibly very large) random open lambda terms

Note also that our size-proportional encodings as arithmetic-endowed Cata-
lan objects can be easily adapted to other tree representations widely used in
computer science and computational sciences, like expression trees, recursive
data types, directory structures, parse trees for programming and natural lan-
guages, phylogenetic trees, etc.

We have not approached yet some of the remaining hard problems related to
uniform random generation of more “realistic” lambda terms appearing in com-
pilers and proof assistants e.g. well-typed and closed terms, for which no linear-
time algorithms are known. The techniques, involving binary search, based on
ordinary binary numbers for either term algebras in [21] or closed lambda terms

A Size-Proportionate Bijective Encoding of Lambda Terms 115

in [11] will require more work to adapt to possibly linear algorithms based on
our size-proportionate encodings in a tree-based numbering system. Also, an
empirical study of the shapes and distribution of frequent lambda term patterns
appearing in written and generated code is likely to be useful to fine-tune rank-
ing/unranking algorithms better suited for random generation of such terms.

Acknowledgement. This research has been supported by NSF grant 1423324. We
thanks the reviewers of PADL’16 for their constructive suggestions and comments.

References

1. Ackermann, W.F.: Die Widerspruchsfreiheit der allgemeinen Mengenlhere. Math-
ematische Annalen 114, 305–315 (1937)

2. Barendregt, H.P.: The Lambda Calculus Its Syntax and Semantics, vol. 103, 2,
revised edn. Elsevier, North Holland (1984)

3. Bodini, O., Gardy, D., Gittenberger, B.: Lambda-terms of bounded unary height.
In: ANALCO, pp. 23–32. SIAM (2011)

4. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae 34, 381–392 (1972)

5. Cegielski, P., Richard, D.: On arithmetical first-order theories allowing encoding
and decoding of lists. Theor. Comput. Sci. 222(1–2), 55–75 (1999)

6. David, R., Grygiel, K., Kozik, J., Raffalli, C., Theyssier, G., Zaionc, M.:
Asymptotically almost all λ-terms are strongly normalizing (2010). Preprint:
arXiv:math.LO/0903.5505v3

7. David, R., Raffalli, C., Theyssier, G., Grygiel, K., Kozik, J., Zaionc, M.: Some
properties of random lambda terms. Logical Methods Comput. Sci., 9(1) (2009)

8. Fetscher, B., Claessen, K., Pa�lka, M., Hughes, J., Findler, R.B.: Making random
judgments: automatically generating well-typed terms from the definition of a type-
system. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 383–405. Springer,
Heidelberg (2015)

9. Gödel, K.: Über formal unentscheidbare Sätze der principia mathematica und ver-
wandter systeme I. Monatshefte für Mathematik und Physik 38, 173–198 (1931)

10. Grygiel, K., Idziak, P.M., Zaionc, M.: How big is BCI fragment of BCK logic. J.
Log. Comput. 23(3), 673–691 (2013)

11. Grygiel, K., Lescanne, P.: Counting and generating lambda terms. J. Funct. Pro-
gram. 23(5), 594–628 (2013)

12. Hartmanis, J., Baker, T.P.: On simple Goedel numberings and translations. In:
Loeckx, J. (ed.) ICALP. Lecture Notes in Computer Science, vol. 14, pp. 301–316.
Springer, Berlin Heidelberg (1974)

13. Kamareddine, F.: Reviewing the classical and the de Bruijn notation for calculus
and pure type systems. J. Logic Comput. 11(3), 363–394 (2001)

14. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 4: Generating
All Trees-History of Combinatorial Generation (Art of Computer Programming).
Addison-Wesley Professional, Boston (2006)

15. Kobayashi, N., Matsuda, K., Shinohara, A.: Functional programs as compressed
data. In: ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program
Manipulation, ACM Press, January 2012

http://arxiv.org/abs/math.LO/0903.5505v3

116 P. Tarau

16. Lisi, M.: Some remarks on the Cantor pairing function. Le Matematiche 62(1),
55–65 (2007). http://www.dmi.unict.it/ojs/index.php/lematematiche/article/
view/14

17. Palka, M.H., Claessen, K., Russo, A., Hughes, J.: Testing an optimising compiler by
generating random lambda terms. In: Proceedings of the 6th International Work-
shop on Automation of Software Test, AST 2011, pp. 91–97. ACM, New York, NY,
USA (2011)

18. Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementa-
tion, PLDI 1988, pp. 199–208. ACM, New York, NY, USA (1988)

19. Sestoft, P.: Demonstrating lambda calculus reduction. In: Mogensen, T.Æ.,
Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol.
2566, pp. 420–435. Springer, Heidelberg (2002)

20. Stanley, R.P.: Enumerative Combinatorics. Wadsworth Publishing Co., Belmont
(1986)

21. Tarau, P.: Compact serialization of prolog terms (with catalan skeletons, cantor
tupling and gödel numberings). Theor. Pract. Logic Program. 13(4–5), 847–861
(2013)

22. Tarau, P.: A generic numbering system based on catalan families of combinatorial
objects. CoRR abs/1406.1796 (2014)

23. Tarau, P.: On a uniform representation of combinators, arithmetic, Lambda terms
and types. In: Albert, E. (ed.) PPDP 2015: Proceedings of the 17th international
ACM SIGPLAN Symposium on Principles and Practice of Declarative Program-
ming, pp. 244–255. ACM, New York, NY, USA, July 2015

24. Tarau, P.: Ranking/unranking of Lambda terms with compressed de Bruijn Indices.
In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015.
LNCS, vol. 9150, pp. 118–133. Springer, Heidelberg (2015)

25. Tarau, P.: Computing with catalan families, generically. In: Gavanelli, M., Reppy,
J. (eds.) PADL’16. LNCS. Springer, St. Petersburg, Florida, USA (2016)

26. Vytiniotis, D., Kennedy, A.: Functional pearl: every bit counts. ICFP 2010 : The
15th ACM SIGPLAN International Conference on Functional Programming, ACM
Press, September 2010

http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/14
http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/14

	A Size-Proportionate Bijective Encoding of Lambda Terms as Catalan Objects Endowed with Arithmetic Operations
	1 Introduction
	2 A Compressed Representation of de Bruijn Terms
	2.1 De Bruijn Indices
	2.2 Compressed de Bruijn Terms
	2.3 Converting from de Bruijn to Compressed de Bruijn Terms
	2.4 Converting from Compressed de Bruijn to de Bruijn Terms

	3 Ranking and Unranking as a Catalan Embedding of Compressed de Bruijn Terms
	3.1 Ranking Compressed de Bruijn Terms
	3.2 Unranking Compressed de Bruijn Terms
	3.3 Conversion to/from a Canonical Representation of Lambda Terms with Integer Variable Names

	4 Normalization with Tree-Based Arithmetic Operations
	4.1 Representing Lambdas as Functions in the Implementation Language
	4.2 A HOAS-style Normal Order Reducer
	4.3 Closed Terms to/from HOAS
	4.4 Evaluating Closed Lambda Terms
	4.5 Catalan Objects as Lambda Terms

	5 Generation of Catalan Objects and Lambda Terms
	5.1 A Generator for Catalan Objects
	5.2 Generation of Lambda Terms via Unranking

	6 Random Generation of Lambda Terms
	6.1 Generating Random Binary Trees
	6.2 Generating Random Compressed de Bruijn Terms

	7 Related Work
	8 Conclusions and Future Work
	References

