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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has an
impact on all areas of the control discipline. New theory, new controllers, actuators,
sensors, new industrial processes, computer methods, new applications, new
philosophies,..., new challenges. Much of this development work resides in
industrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended
exposition of such new work in all aspects of industrial control for wider and rapid
dissemination.

In an interesting recent journal paper [1], some survey evidence was presented
that supported the premise that PID control continues to play a significant role as an
industrial controller in a wide range of industries. For low-level loops the PID
controller is simple to apply and sufficiently effective to justify its continued
widespread popularity. The Advances in Industrial Control monograph series has
always aimed to feature the most recent developments in this field. In 2012, the
series published a wide ranging survey text PID Control in the Third Millennium
edited by Ramon Vilanova and Antonio Visioli (ISBN 978-1-4471-2424-5, 2012).
This volume demonstrated the breadth of ideas and applications appearing in the
PID control field.

However, for the purposes of this Foreword it is sufficient to map the practical
tools of the evolving science of PID control onto the two categories of “PID
controller tuning” and “PID controller performance monitoring”.

PID Controller Tuning

Controller design begins with the desired performance specification. The metrics to
be achieved by the control have grown in number over recent years to take in
concepts such as robustness and fragility. A subset of the design specifications are
usually used by the design algorithm that can be an offline or online procedure. The
particular field of automated online PID controller design is one of considerable
interest to the industrial control engineer. Ultimately the PID controller design will
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meet only some of the possible controller specifications and then the remaining
metrics can be used as controller evaluation metrics. There are a number of
monographs in the Advances in Industrial Control series on these topics; the most
recent being:

• Control of Integral Processes with Dead Time by Antonio Visioli and
Qing-Chang Zhong (ISBN 978-0-85729-069-4, 2011);

• Non-Parametric Tuning of PID Controllers by Igor Boiko (ISBN
978-1-4471-4464-9, 2012); and

• Industrial Process Identification and Control Design by Tao Liu and Furong
Gao (ISBN 978-0-85729-976-5, 2012).

PID Controller Performance Monitoring

Once a controller has been implemented, the question arises as to how to verify that
it is retaining its desired performance over operational time. The idea of monitoring
controller performance is a generic one and not just restricted to PID controllers.
However, the possible situation of a large number of PID loops in a process plant
has led to significant monitoring algorithm developments for the PID control field.
An online automated performance monitoring routine is a very attractive economic
proposition for industrial PID applications. The survey paper [1], cited above
provides an excellent overview of the current state of the art of such methods. On
this topic, the Advances in Industrial Control monograph series has titles that
include:

• Process Control Performance Assessment edited by Andrzej W. Ordys, Damien
Uduehi and Michael A. Johnson (ISBN 978-1-84628-623-0, 2007); and

• Control Performance Management in Industrial Automation by Mohieddine
Jelali (ISBN 978-1-4471-4545-5, 2012).

This monograph, Model-Reference Robust Tuning of PID Controllers, by
Victor M. Alfaro and Ramon Vilanova is clearly a contribution to the
PID-controller-tuning literature. When dealing with controller design specifications
and controller evaluation metrics, the authors discuss both time-domain and
frequency-domain metrics and specifications. Subsumed into this assessment
framework are both controller robustness and controller fragility. Whereas con-
troller robustness measures the effect on performance and stability of changing
process parameters, controller fragility inverts this to measure the effect of the
variability of the controller parameters for a fixed given design process on per-
formance and stability. Measures of controller fragility find application in controller
commissioning where online tuning may move controller parameters away from
design values with a concomitant change in closed-loop performance and stability.
This aspect is discussed by the authors in Chap. 3, and is just one of the interesting
topics found in this monograph.

The monograph reports the joint research of the authors. Professor Victor Alfaro
is with the Department of Automation at the Universidad de Costa Rica. He has had
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a long and distinguished career in various industries as a practicing engineer before
joining the academic community. Professor Ramon Vilanova is with the
Department of Telecommunications and Systems Engineering at the Universitat
Autònoma de Barcelona. He has made many contributions to the PID control
literature. His industrial work has included important control research for
wastewater treatment plants.

The Editors of the Advances in Industrial Control monograph series are very
pleased to add this title to the important set of monographs in the series on all
aspects of PID control.

Industrial Control Centre, Glasgow, Scotland, UK M.J. Grimble
M.A. Johnson

Reference

1. Bauer, M., Horch, A., Xieb, L., Jelali, M., Thornhill, N.: The current state of control loop
performance monitoring—A survey of application in industry, J. Process Control 38, 1–10
(2016)
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Preface

Controllers and controller design are at the heart of industrial progress. Controllers
allow to keep process variables of interest at prescribed values in order to guarantee
product quality as well as better production times. The controller receives infor-
mation of the actual value of the process variable of interest, the controlled variable,
and of the desired value for this, the controller set-point. It compares these two
values to obtain the actuating error signal. Commercial controllers with a propor-
tional integral derivative control algorithm, PID for short, were introduced back in
1940. As has been widely reported elsewhere, 75 years later it still is a more
common control algorithm used in the processes industry.

The influence on the controller output signal of each one of the control modes
can be adjusted setting its corresponding adjustable parameter. Although the PID
control algorithm provides to the user the opportunity of combining the information
of the error signal (P), its integral over time (I), and its rate of change (D), most
of the controllers in operation use only the error signal and of its integral, in a
proportional integral control, or simply PI control. Among this underuse of the PID
capabilities, it is a well-known fact that poor controller tuning is a common situ-
ation, bearing in mind that there are many tuning rules to allow the specification
of the controller parameters. One may think that, in fact, there exists an over-
whelming quantity that makes it difficult to decide and apply. In addition to this
great variety of tuning approaches, even though the PID controllers are of fixed
structure over the years some additional capabilities have been incorporated into
them: measurement and set-point signal filters, set-point weighting factors, reset
windup prevention, and other features. At the controlled process side, there is a
wide range of dynamic characteristics: over- and underdamped, integrating,
unstable, slow, fast, nonlinear, and their possible combinations.

The control system designer faces the task of selecting the controller control
algorithm parameters to restrict the controlled process variable to perform according
to certain design criteria. These criteria would include, among others, evaluation
of the control system performance and relative stability. The possible combinations
of control algorithms, controlled process dynamics and information, design criteria,
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and design approaches result in the diversity of tuning relations that have been
growing over the years and reveal plenty of technical publications available in this
subject.

From the existing literature on PID controller design, it is easy to see that
different design approaches exist depending on the controlled process dynamics and
even on the way the desired performance is stated. This clearly contributes to the
confusion that prevents practitioners from the application of tuning rules. As said
above, the purpose of the book is to provide a comprehensive and didactical pre-
sentation of a unifying approach for controller design (in fact when applied to PID
controllers it may fit into any fixed structure controller) that deals in an explicit way
with the performance/robustness trade-off as one of the key points in modern PID
tuning.

The proposed controller design procedure is based on the use of closed-loop
transfer functions targets (the reference models) to obtain robust control systems,
therefore is named Model-Reference Robust Tuning (MoReRT). As design main
considerations are, in addition to the closed-loop responses shapes, the control
system relative stability, its robustness to process variations, and to obtain a smooth
control effort.

This book is based on the research work the authors carried out during the past
few years. It is not intended to be a research report but a unified presentation of the
previously referred MoReRT methodology for PI/PID controller design. As found
in references, a somewhat complete set of journals can be accessed where a deeper
discussion on some control topics can be found. Also the comparison of the pro-
posed design approach with some approaches previously existing in the literature
has been excluded from the book content. These comparisons can be found on the
referred journal papers as the main goal of the book is to serve as a comprehensive
presentation of a design approach that, in the authors opinion, deserves some
extensions and particular applications, which would be difficult to forecast just by
looking at the set of disconnected results that journal papers usually constitute.

The book comprises a total of 11 chapters and one appendix. The contents can
be structured along four parts.

The first part comprises Chaps. 1–3. These chapters provide a generic descrip-
tion of the control system under study as well as some particular insights into PID
controllers formulations and metrics to evaluate its performance. These topics could
be general to any other approach to PID controller design. Specifically, the feed-
back control design problem and the evolution over time of the considerations taken
for PID tuning are briefly presented in Chap. 1. The two-degree-of-freedom pro-
portional integral derivative (2DoF PID) control algorithm structures and their
conversion relations are presented in Chap. 2. Parameter conversion formulas take
into consideration the derivative filter constant. This chapter is innovative enough to
be of interest in its own because in the PID controller literature the equivalence and
conditions that make such equivalence possible are not found. Particular results for
PID control are usually presented by adopting one of the multiple PID formulations.
In Chap. 3 the indices used for performance, robustness, and control system
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fragility evaluation are presented. Control system robustness is evaluated using the
maximum of the sensitivity function (maximum sensitivity).

The second part of the book contains Chaps. 4 and 5, where the methodological
formulations of the MoReRT are presented. Chapter 4 describes the basis of the
proposed model-reference robust tuning (MoReRT) design methodology and how
the model-reference closed-loop transfer functions are selected, the cost functional
stated for optimization, and the available free design parameters. This proposal is to
be applied to a variety of process dynamics in order to derive the corresponding
tuning rules. However, application will consider normalized models for controlled
process and controller. This will ensure to satisfy the so-called time-scaling prop-
erty. Therefore, before proceeding to the derivation of the robust tuning rules,
normalized controlled process models and controllers equations used in the design
are presented in Chap. 5. The use of normalized controlled process models and
normalized control algorithms allows to obtain dimensionless controller tuning
rules.

The third part of the book contains the development of tuning rules for all the
considered process dynamics. It can therefore be considered the core part of the
book. The MoReRT control of overdamped controlled processes is presented in
Chap. 6, where controllers with 2DoF PI and PID control algorithms are used for
robust control of first- and second-order controlled process models. A comparison
of the achievable performance, under the same robustness, is done by using a PI or
a PID controller and also by the fact that designing a controller is by using a first- or
a second-order process model. The robust control of inverse response processes is
described in Chap. 7. Here it is stated that the right-half plane zero position impose
constrains to the achievable control system robustness. In Chap. 8 MoReRT control
of first- and second-order integrating processes is presented. For first-order inte-
grating models, the MoReRT design results in a very simple tuning for the nor-
malized controller parameters. In Chap. 9 the MoReRT design is used to tune 2DoF
PI and PID controllers for unstable processes. The unstable pole position imposes
severe constraints on the achievable control system robustness. One of the
detectable points in all the developments shows how MoReRT allows to face the
PI/PID design problem from the same point of view.

The fourth part of the book describes potential extensions of the method as well
as considerations for its practical applications. Three possible extensions of the
MoReRT methodology are presented in Chap. 10. First of all, it is used in the case
where the purpose is to design the profile of the manipulated variable instead of, as
usual, the controlled variable. Second, a more general MoReRT design is applied in
the case where the dynamics of the disturbance to the controlled variable is different
from the dynamics of the manipulated variable to the controlled variable. This
makes the design problem a little bit more complex, and the fact of facing multiple
dynamics makes it not possible to derive general tuning rules. Instead, it is shown
how MoReRT can be formulated and applied. Third, the use of the MoReRT design
in robust tuning of a Smith predictor type dead-time compensating PI controller,
including the predictor model parameters, is presented. As a source of practical
considerations, the book ends with the description of the 2DoF PID control
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algorithms available in some commercial controllers, programmable logic con-
trollers, and digital control systems. A condensed reference of the MoReRT tuning
relations is also presented with its applicability ranges and constraints. A general
outline for the implementation of a MoReRT design procedure and the application
of the proposed tuning method to control a typical industrial process are provided in
Chap. 11.

The book ends with an appendix describing a software package developed for
MATLAB® in order to facilitate the implementation of the MoReRT approach. The
provided routines just require the user to input the process information data and the
desired controller structure. The software will perform the required optimizations
and show the closed-loop responses for the obtained controller.
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Chapter 1
Introduction

Generally in control systems and particularly in process control applications the
feedback control scheme or closed-loop control system depicted in Fig. 1.1 is the
control structure that solves most of the control problems faced.

For a given process P ′ there is a characteristic or variable that needs to be “con-
trolled.” The information about this controlled variable is obtained with a measure-
ment instrument, the sensor/transmitter T . The transmitter output signal Y is sent
to the controller C that also receives the desired value or set-point R for the con-
trolled variable. The controller control algorithm processes these two inputs and the
computed control effort or controller output U is sent to the actuator or final control
element A in order to modify a process internal quantity, a manipulated variable, or
to affect the variable of interest. The disturbances D are all other process variables
that affect the controlled variable in an undesired fashion.

From the controller point of view the actuator/process/transmitter group rep-
resents the controlled process P . The controller and the controlled process share
information through the control effort (U ) and the controlled variable (Y ) signals.
Then, for an external viewer the feedback control system has two inputs: the set-point
(R) and the disturbances (D), and one output, the controlled variable (Y ) as depicted
in Fig. 1.2.

The controller is designed to restrict the controlled variable response to a change
in the input signals according to the design specifications. As there are two input
signals of very different kind and entering at different points of the control system,
the problem of dealing with each one of them (either the disturbance D that should be
attenuated or the reference R that must be tracked) is not trivial. The control design
problem is then to adjust (“tune”) the parameters of the selected controller control
algorithm in order to achieve the desired controlled variable performance.

A natural way to adjust or correct the behavior over time of a controlled process
output, the controlled variable, is by using an actuating input computed on the basis
of the comparison of the process actual output and the measured controlled variable
with its desired or set-point value; this is based in the closed-loop system feedback
error. To compute the control action information about the feedback error evolution is
required. Normally its current value, its past evolution, and a prediction of its future

© Springer International Publishing Switzerland 2016
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2 1 Introduction

Fig. 1.1 General feedback control system structure

Fig. 1.2 Simple feedback
control system

behavior are used. The way we use this information to deliver the control action
constitutes the controller control algorithm.

The feedback control structure has been used for a long time, but if we restrict our-
selves to the industrial process control area, the proportional (present error informa-
tion), the integral (past error accumulated) and the derivative (future error prediction)
or the PID control algorithm age starts in 1940 with the introduction of the Taylor
Fullscope 100 pneumatic PID controller [1]. It was the first controller with knobs
and calibrated dials for all three responses [2]. The original simple three-term PID
control algorithm has evolved to the actual four- or five-term two-degree-of-freedom
(2DoF) PID implementations [3].

To guarantee a stable and successful operation of the control system the controller
must be matched with the controlled process, using information of the dynamic
characteristics of the process usually represented by a low-order linear model. This
matching essentially captures the process information and translates into a suitable
selection for the controller parameters either by application of a direct tuning pro-
cedure (usually based on optimization or analytical derivations) or by means of a
tuning rule. Tuning rules have the advantage of ease of calculation of the controller
parameters (when compared to more analytical controller design methods), on the
one hand; on the other hand, the use of tuning rules is a good alternative to trial and
error tuning.

At the beginning, controller tuning took into consideration only the control system
performance [4, 5], the output signal dynamic characteristics, to step changes in its
inputs. Most of the developed research works that have emerged over the years,
take the form of design proposals based on simple models and generally give rise to
tuning rules that link the parameters of the process model, with the controller ones
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in a direct and simple way. The need for such simple and model-based tuning rules
is also encouraged from several control engineering books; some of them specific
on PID control. A common point that can be found in all of them is the need to
incorporate a good understanding of the control problem and its relationship with
modeling and knowledge of the process to be controlled. It was noticed that if only
the performance is considered in the design it leads to control systems with very low
robustness [6], this is to say low capability to deal with changes in the controlled
process dynamic characteristics. Then, robustness was introduced into the controller
design [7]. The performance/robustness trade-off in PID control system design is
a well-known issue [8]. Even in case that this trade-off be resolved at the design
stage [9–12], it is important to evaluate the controller fragility: the effect of a change
in the controller parameters, at its final fine-tuning [13].

In most of the industrial process control applications, the desired value of the con-
trolled variable, or set-point, normally remains constant and a good load disturbance
rejection is required [14], which is usually known as regulatory control. However,
due to variations in the process operating conditions, the controlled variable set-point
may eventually need to be changed and then a good transient response to such change
is required, which is known as servo-control operation. Satisfying these two oper-
ating conditions simultaneously is not possible by using a one-degree-of-freedom
(1DoF) PI/PID controller, but using a two-degree-of-freedom (2DoF) PI/PID allows
tuning of the controller in order to do so. The extra parameter it provides is used to
improve its servo-control behavior while considering the regulatory control perfor-
mance and the closed-loop control system robustness. This seconddegree of freedom;
introduced by Araki [15–17]; is aimed at providing additional flexibility to control
system design with PI/PID controllers [18, 19].

On the other hand, we have a variety of controlled processes dynamics, from the
most common self-regulating overdamped to integrating and unstable processes.

Nowadays, the proportional integral and proportional integral derivative are the
most used control algorithms in industry. Although, it is reported elsewhere that
there are many loops with very poor performance, badly tuned or not tuned at all.
Considering the huge number of PI and PID controllers in service at present in the
process industry any improvement in their performance will produce a big overall
revenue. Since the introduction of the seminal tuning rules of Ziegler and Nichols
[20] a great number of tuning rules have been developed as revealed in [21]. Most
of them take into account only one design criteria (performance, robustness) and are
oriented to a specific controlled process model structure (overdamped, integrated, or
other).

A different path is followed here. A general design procedure for 2DoF PI and
PID controllers is proposed based on the specification of the corresponding control
system closed-loop transfer functions that include parameters that affect the perfor-
mance/robustness trade-off. The control system robustness requirement is controlled
process dependent, and more importantly it cannot be avoided the robustness level,
measured with the maximum sensitivity, is used as the design target. Besides this,
the design methodology is the same for all considered processes and controllers. The
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specification of the closed-loop transfer functions also takes into account obtaining
smooth control effort, controller output, signals.

One of the objectives of the work has been to develop a design methodology for
robust control systems independent of the controller, PI or PID, and on the controlled
process avoiding appealing to ad hoc design procedures for each particular case (con-
troller/process combination). The controlled process model specific characteristics
are incorporated only into the closed-loop target response specifications. The pro-
posed controller design methodology denoted as Model-Reference Robust Tuning
(MoReRT) is applied to tune 2DoF PI and PID controllers for first- and second-
order overdamped, integrating, inverse response, and unstable controlled processes,
being the accomplishment of the robustness target level for all the controlled process
models considered (overdamped, integrated, and unstable) one of the distinctive
characteristics of the proposed design method.
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Chapter 2
Two-Degree-of-Freedom PID Controllers
Structures

As in most of the existing industrial process control applications, the desired value of
the controlled variable, or set-point, normally remains constant (regulatory control
or disturbance rejection operation) but needs to be changed (servo-control or set-
point tracking operation) we are mainly interested in the two-degree-of-freedom
(2DoF) implementation of the PID control algorithms. The extra parameter that the
2DoF control algorithm provides is used to improve their servo-control behavior
while considering the regulatory control performance and the closed-loop control
system robustness [1–5]. This 2DoF feature can be incorporated both into a PI or a
PID control algorithm. Although all the controllers with a proportional integral (PI)
control algorithm are implemented in the same way, have the same transfer function,
this is not the case with commercial controllers with proportional integral derivative
(PID) control algorithms.

In fact, usually, the control algorithm implementation is manufacturer dependent
and not all of its variations are available in the same controller. Even more, the
controllers manufacturers use different names for the same PID algorithm [6]. The
diversity of the PID control algorithms is evident in [7]. In addition, it would be
the case that a tuning rule of interest had been obtained using a control algorithm
different from the one implemented in the controller to tune. In this case, controller
parameters conversion is required that will also indicate if the pursued equivalent
controller exists.

On that basis, the most widely used PID control algorithms are presented in this
chapter by also providing conversion formulae that allows to convert the parameters
of one algorithm from those obtained for another formulation. As it will be seen this
conversion will not always be possible, showing some formulations are more general
than others.

© Springer International Publishing Switzerland 2016
V.M. Alfaro and R. Vilanova, Model-Reference Robust Tuning of PID Controllers,
Advances in Industrial Control, DOI 10.1007/978-3-319-28213-8_2
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2.1 Proportional Integral Derivative Control Algorithm

Consider the general controller block diagram depicted in Fig. 2.1. The output or
control effort of a proportional (P) integral (I) and derivative (D) control algorithm
is given, in general, by

U (t) = Action {UP(t) + UI (t) + UD(t) + Ub}, (2.1)

if 0% ≤ U (t) ≤ 100%, and 0 or 100%, depending on the controller action if the
controller output reaches one of its limits.

In (2.1) UP is the proportional term or proportional control action, given by

UP(t) = K p E(t) = K p[R(t) − Y (t)], (2.2)

with a proportional gain K p; UI is the integral term or integral control action, given
by

UI (t) = Ki

∫ t

0
E(ξ)dξ = Ki

∫ t

0
[R(ξ) − Y (ξ)]dξ, (2.3)

with an integral gain Ki ; and UD the derivative term or derivative control action,
given by

UD(t) = Kd
dE(t)

dt
= Kd

d[R(t) − Y (t)]
dt

, (2.4)

with a derivative gain Kd .The controller output bias Ub is usually set to 50%. In
(2.1)–(2.4) controller inputs R(t) and Y (t), and output U (t) change in the range
from 0 to 100%.

The controller Action sign, +1 (Reverse) or −1 (Direct), must be selected equal
to the controlled process gain sign to preserve the negative feedback characteristic
of the control loop.

In the following, we will assume that the controller Action has been selected
correctly, that all the closed-loop control variables are within their corresponding 0–
100% range, and that the control system is initially at a steady-state stable operating

Fig. 2.1 Controller block diagram
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Fig. 2.2 Closed-loop control block diagram

point given by {Ro, Yo, Uo}. Then, we only consider deviation variables {r , y, u}
around this operating point and then the controller output bias will not be included
in following controllers equations.

A linear control system is based on a linearized process model description that
relates deviation variables from its operating point values. On that basis, the lin-
earized closed-loop control system for variable deviations r(s), y(s), u(s), and d(s)
is reduced as depicted in Fig. 2.2, where P(s) is the transfer function of the controlled
process model and Cr (s) and Cy(s) the controller aspects applied to the set-point
and the feedback signal, respectively. The possible measurement noise n(s) has been
also included.

2.2 Two-Degree-of-Freedom (2DoF) PID Control
Algorithms

The most widely used proportional integral derivative or PID control algorithms
are briefly described below. Each formulation is provided by a specific notation
for its parameters in order to distinguish the corresponding implementations when
proceeding later on to provide the conversion equations from one algorithm to the
other.

2DoF Standard PID

The “textbook” 2DoF proportional integral derivative control algorithm is the Stan-
dard PID whose output is given by the following [8–10]:

u(t) = K p

{
ep(t) + 1

Ti

∫ t

0
ei (ξ)dξ + Td

ded(t)

dt

}
, (2.5)

or

u(s) = K p

{
ep(s) + 1

Ti s
ei (s) + Tds

αTds + 1
ed(s)

}
, (2.6)
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Fig. 2.3 Two-degree-of-freedom Standard PID controller

with

ep(s) = βr(s) − y′(s), (2.7)

ei (s) = r(s) − y′(s), (2.8)

ed(s) = γ r(s) − y′(s), (2.9)

y′(s) = y(s) + n(s), (2.10)

where K p is the controller gain, Ti the integral time constant, Td the derivative time
constant, β and γ the set-point weights, and α the derivative filter constant. The
2DoF PID block diagram is depicted in Fig. 2.3.

To avoid an extreme instantaneous change at the controller output signal when
a set-point step change occurs normally γ is set to zero [11, 12]. In this case (2.6)
reduces to

u(s) = K p

{
βr(s) − y′(s) + 1

Ti s

[
r(s) − y′(s)

] −
(

Tds

αTds + 1

)
y′(s)

}
, (2.11)

that will be denoted as P I D2. In addition, in the following it is assumed that the
measurement noise is filtered, then y′(s) ≈ y(s).

The controller output (2.11) may be rearranged, for analysis purposes, as follows:

u(s) = K p

(
β + 1

Ti s

)
r(s) − K p

(
1 + 1

Ti s
+ Tds

αTds + 1

)
y(s), (2.12)

where the Cr (s) and Cy(s) controller aspects read as

Cr (s) = K p

(
β + 1

Ti s

)
, (2.13)
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Cy(s) = K p

(
1 + 1

Ti s
+ Tds

αTds + 1

)
, (2.14)

being the controller parameters θc = {
K p, Ti , Td , α, β, γ = 0

}
. Although the Stan-

dard form is the classical implementation of the PID control algorithm, the following
forms are also found in the control literature [10, 12, 13].

2DoF Parallel PID

The parallel or “independent gains” PID control algorithm is

u(s) =
(

βp K p + Ki

s

)
r(s) −

(
K p + Ki

s
+ Kds

αp Kds + 1

)
y(s), (2.15)

where the Cr (s) and Cy(s) controller aspects read as

Cr (s) =
(

βp K p + Ki

s

)
, (2.16)

Cy(s) =
(

K p + Ki

s
+ Kds

αp Kds + 1

)
, (2.17)

with parameters θcp = {
K p, Ki , Kd , αp, βp, γp = 0

}
. K p is the proportional gain,

Ki the integral gain, and Kd the derivative gain.

2DoF Series or “Industrial” PID

The 2DoF version of the series “interacting” implementation of the PID algorithm is

u(s) = K ′
p

(
β ′ + 1

T ′
i s

)
r(s) − K ′

p

(
1 + 1

T ′
i s

)(
T ′

ds + 1

α′T ′
ds + 1

)
y(s), (2.18)

where the Cr (s) and Cy(s) controller aspects read as

Cr (s) = K ′
p

(
β ′ + 1

T ′
i s

)
, (2.19)

Cy(s) = K ′
p

(
1 + 1

T ′
i s

) (
T ′

ds + 1

α′T ′
ds + 1

)
, (2.20)

with parameters θ ′
c = {

K ′
p, T ′

i , T ′
d , α

′, β ′, γ ′ = 0
}
.

2DoF Ideal PID with Filter

A commonly used PID implementation in Internal Model Control (IMC)-based con-
troller design is given by the following:

u(s) = K ∗
p

(
β∗ + 1

T ∗
i s

)
r(s) − K ∗

p

(
1 + 1

T ∗
i s

+ T ∗
d s

) (
1

T f s + 1

)
y(s), (2.21)
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where the Cr (s) and Cy(s) controller aspects read as

Cr (s) = K ∗
p

(
β∗ + 1

T ∗
i s

)
, (2.22)

Cy(s) = K ∗
p

(
1 + 1

T ∗
i s

+ T ∗
d s

)(
1

T f s + 1

)
, (2.23)

with parameters θ∗
c = {

K ∗
p, T ∗

i , T ∗
d , T f , β

∗, γ ∗ = 0
}
. T f is the controller intput filter

time constant.

2.3 PID Control Algorithms Conversion Relations

As it can be observed from the presented PID forms, whereas the reference con-
troller aspect takes the same form in all formulations, it is the feedback part the
one that prevents a direct translation of the controller parameters from one formu-
lation to another. This is important because some of the existing tuning rules have
been conceived for a specific PID formulation. As an example, the derivations of the
celebrated SIMC tuning [14] are with the Series or Industrial formulation in mind,
whereas much of the other proposals are based on the Standard one. Due to the pos-
sibility that the control PID algorithm of the controller to tune be different to the one
considered by the tuning rule to use it is necessary to have conversion relations to
obtain “equivalent” parameters between two or more of them [15]. In what follows,
we present conversion formulae to get the controller parameters for one specific PID
formulation starting from the parameters got for another different one.

Conversion from a 2DoF Parallel PID to a Standard PID

A P I D2 controller (2.11) equivalent to the 2DoF Parallel PID (2.15) is found using
the following relations:

K p = K p, (2.24)

Ti = K p

Ki
, (2.25)

Td = Kd

K p
, (2.26)

α = αp K p, (2.27)

β = βp, (2.28)

γ = γp = 0. (2.29)

There is a direct relation between the Standard and Parallel PID algorithms then this
last one will not be further considered.
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Conversion from a 2DoF Series PID to a Standard PID

It is possible to obtain a Standard 2DoF PID controller (2.11) equivalent to the 2DoF
Series PID (2.18) using the following relations:

K p = F ′
c K ′

p, (2.30)

Ti = F ′
cT ′

i , (2.31)

Td = (1 − α′F ′
c)T

′
d

F ′
c

, (2.32)

α = F ′
cα

′

1 − α′F ′
c

, α′ < 1 + T ′
i

T ′
d

, (2.33)

β = β ′

F ′
c

, (2.34)

γ = γ ′ = 0, (2.35)

F ′
c = 1 + (1 − α′)T ′

d

T ′
i

. (2.36)

where F ′
c (2.36) is the P I D2s to P I D2 conversion factor. It takes into account the

derivative filter constant α′.
The conversion constraint in (2.33) usually holds then we may say that there is a

Standard PID equivalent to a Series one.

Conversion from a 2DoF Ideal PID with Filter to a Standard PID

A Standard 2DoF PID controller (2.11) equivalent to the Ideal PID with filter (2.21),
denoted by P I D2F , can be obtained using the following relations:

K p = F∗
c K ∗

p, (2.37)

Ti = F∗
c T ∗

i , (2.38)

Td = T ∗
d

F∗
c

− T f , T ∗
d > F∗

c T f , (2.39)

α = F∗
c T f

T ∗
d − F∗

c T f
, (2.40)

β = β∗

F∗
c

, (2.41)

γ = γ ∗ = 0, (2.42)

F∗
c = 1 − T f

T ∗
i

, (2.43)

T f < T ∗
i , for PI T f = 0. (2.44)

where F∗
c (2.44) is the P I D2F to P I D2 conversion factor.
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In this case, an equivalent P I D2 controller cannot always be obtained as shown
in (2.39) and (2.44).

Using the conversion factors presented above, exact equivalent feedback (Cy(s))
and set-point (Cr (s)) controllers transfer functions for a P I D2 (2.12) may be
obtained for 2DoF PID controllers given by (2.15), (2.18), and (2.21).

Exact equivalent controllers guarantee to obtain the same control system perfor-
mance and robustness in case a 2DoF PID controller is replaced with a PID controller
with a different 2DoF algorithm.

Conversion from a 2DoF Standard PID to a Series PID

In the other direction a 2DoF Series PID controller equivalent to a 2DoF Standard
one can be found using the following relations:

K ′
p = Fc K p, (2.45)

T ′
i = FcTi , (2.46)

T ′
d = (1 + α)Td

Fc
, (2.47)

α′ = αFc

1 + α
, (2.48)

β ′ = β

Fc
, (2.49)

γ ′ = γ = 0, (2.50)

Fc = 0.5

[
1 + αTd

Ti
+

√
1 − (4 + 2α)Td

Ti
+ α2T 2

d

T 2
i

]
. (2.51)

Due to the constraint imposed by (2.51) there will not always exist a Series PID
equivalent to a Standard PID. It will only exist if

α2

(
Td

Ti

)2

− (4 + 2α)

(
Td

Ti

)
+ 1 > 0. (2.52)

If the P I D2 derivative filter constant is taken as α = 0.1 there is a Series equivalent
PID controller only if Ti > 4.20 Td . Figure2.4 shows that this constrain increases
as α increases.

As can be seen in same figure quadratic inequality (2.52) can be approximated by
the following straight line for 0 ≤ α ≤ 1.0:

Ti

Td
> 4.05 + 1.80 α. (2.53)
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Fig. 2.4 Ti /Td condition to
obtain a Series PID
equivalent to a Standard PID
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There is a Series PID controller
equivalent to a Standard PID.

Conversion from a 2DoF Standard PID to an Ideal PID with Filter

The P I D2F is a more general control algorithm and, as indicated above, not always
an equivalent P I D2 controller may be obtained from the P I D2F but it is always
possible to obtain a P I D2F control algorithm equivalent to the P I D2 using the
following relations:

K ∗
p = Fcf K p, (2.54)

T ∗
i = Fcf Ti , (2.55)

T ∗
d =

(
1 + α

Fcf

)
Td , (2.56)

T f = αTd , (2.57)

β∗ = β

Fcf
, (2.58)

γ ∗ = 0, (2.59)

Fcf = 1 + αTd

Ti
. (2.60)

where Fcf (2.60) is the P I D2 to P I D2F conversion factor.
Considering the above we may say that in the 2DoF PID controllers parametric

space θ ′
c ⊂ θc ⊂ θ∗

c . Controller parameters conversion equations show that the
derivative filter constant (α, αp, α′) must be take into account to obtain an equivalent
controller with a different control algorithm from a given one.
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Fig. 2.5 2DoF PID
controllers conversion

To summarize the above relations a 2DoF PID controllers conversion chart is
shown in Fig. 2.5. The solid arrows indicate directions on where there are always
equivalent controllers and the dashed arrows the directions on where there are con-
straints to obtain equivalent controllers. As can be seen in this chart the 2DoF Ideal
PID with filter is the most general proportional integral derivative control algorithm.

2.4 PID Controller with Two Input Filters

The different signals that enter the PID controller are normally filtered in different
ways before they enter the controller. However, as pointed out in [16], a proper choice
of these filters can improve the performance of the feedback loop considerably.
Therefore, it is important to keep these filters in mind during the design procedures.
In order to include into the controller design the measurement noise filter and also
to have more freedom for the servo-control design, the control algorithm may be
aggregated with two input filters as depicted in Fig. 2.6 [16, 17]. These filters should
be considered as an integral part of the design procedure.

The control algorithm is of independent gains (ideal parallel PID implementation)
whose output signal is given by [8]:

u(s) = K p
[
r ′(s) − y′(s)

] + Ki

s

[
r ′(s) − y′(s)

] − Kdsy′(s), (2.61)

where K p is the controller proportional gain, Ki the integral gain, and Kd the
derivative gain (γ = 0).
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Fig. 2.6 Closed-loop control system of a controller with two input filters

The set-point r and feedback y signals are filtered before they enter the controller.
Then r ′ and y′ in (2.61) are given by

r ′(s) = Fr (s)r(s), y′(s) = Fy(s) [y(s) + n(s)] . (2.62)

Using (2.62) into (2.61), it is obtained that

u(s) =
(

K p + Ki

s

)
Fr (s)r(s) −

(
K p + Ki

s
+ Kds

)
Fy(s) [y(s) + n(s)] .

(2.63)

In a compact form (2.63) is expressed as

u(s) = Cr (s)Fr (s)r(s) − Cy(s)Fy(s) [y(s) + n(s)] . (2.64)

The set-point filter Fr (s) is selected strictly proper and given by the transfer function

Fr (s) = σ Tr s + 1

(Tr s + 1)2
, (2.65)

where Tr is its time constant and σ an adjustable parameter. Filter (2.65) avoids to
have a step change in the controller output when a set-point step change is made.

The feedback filter (“noise filter”) Fy(s) is selected of first order for PI controllers,
given by

Fy(s) = 1

D f y(s)
= 1

T f s + 1
, (2.66)

with time constant T f , and of second order for PID controllers, given by

Fy(s) = 1

D f y(s)
= 1

T 2
f /2s2 + T f s + 1

, (2.67)

to provide high-frequency roll-off (measurement noise attenuation) with either con-
trollers.
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Input filters transfer function gains are constrained to be equal, lims→0 Fr (s) =
lims→0 Fy(s), to ensure that in steady state the controller integral action operates on
the error signal.

Considering Fr and Fy as part of the “controller” be designed the selectable
parameters of the set-point controller are θcr = {

K p, Ki , Tr , σ, γ = 0
}
, and corre-

sponding to the feedback controller θcy = {
K p, Ki , Kd , T f

}
. Then, parameters of

the controller as a whole are θc
.= θcr

⋃
θcy = {

K p, Ki , Kd , T f , Tr , σ, γ = 0
}
.

The set-point and feedback signal filters combination with the PID control algo-
rithm is denoted as P I D2I F controller. For tuning rules comparison, in addition to
the quantitative performance and robustness indices and the responses shapes, the
process control-oriented characteristics of the P I D2I F controllers must bring to the
front.

With the P I D2I F controllers there is not any abrupt change at the controller
output when a step change is made on the set-point. To mimic this characteristic with
a 2DoF PID controller its proportional set-point weight β must be made zero. With
this, the second degree of freedom is lost and the servo-control response delayed.

The other important characteristic of the P I D2I F controllers is their frequency
response roll-off. It is normal that in process control applications the feedback signal
be corrupted with high-frequency measurement noise. If this noise is not properly
filtered it will generate high control signal variations resulting in a deterioration of
the final control element. If a measurement noise filter is added to a Standard PID
controller after its tuning the filter dynamics will affect the control system robustness
and performance. Then, it is essential that both these characteristics be part of the
controller design from the beginning.

Chapter Remarks

The (2DoF) PID algorithm implementations are presented as well as the conversion
relations between their parameters.

From the presented PID algorithms the Ideal PID with filter is the more general
one.

The aggregation of the deal PID control algorithm with two input filters allows
to include two important industrial features: high-frequency roll-off and lack of a
control effort abrupt change on a step set-point modification.
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Chapter 3
Control System Evaluation Metrics

It is clear that when we are faced with a design problem, some measures for the
evaluation of such design should be clearly stated. For what matters on a closed-
loop control system, there are different aspects that need to be considered. It is
necessary to take into account the resulting control system performance to set-point
and disturbance step changes, the control effort use, and its robustness to changes
in the controlled process dynamics. A review of research history on PID controller
design reveals that different performance and robustness metrics have been used.
However, in the past years there seems to be a de facto agreement with the use of
the integrated absolute error (IAE) because of its direct relationship with economic
implications.

Regarding robustness, the ideas emerged from the development of robust control
have been particularized to the case of PID control. This permeabilization has led
to different approaches of what we can call robust PID. Even the different measures
for the closed-loop system robustness, the idea spread today to a common use of
the maximum of the sensitivity function (commonly called MS) as a reasonable
robustness measure.

There is, however, another consideration that must be taken into account in the
control system design process: the effect of the variation of the controller parameters
over the control system stability and performance, known as the controller fragility.
If the control system robustness is an indication of the margin of variation of the
process characteristics with a fixed controller, then the controller fragility has a sim-
ilar meaning but in terms of the variation of the controller parameters considering a
fixed controlled process. Even this is not considered as an evaluation to be introduced
at the design stage, it is introduced here because the relevance it is gaining among
PID researchers.
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3.1 Closed-Loop Control System

Consider the general closed-loop control system block diagram depicted in Fig. 2.2.
In this system we have the following relations:

• Controlled variable feedback signal

y(s) = P(s) [u(s) + d(s)] . (3.1)

• Controller output signal

u(s) = Cr (s)r(s) − Cy(s) [y(s) + n(s)] . (3.2)

• The error signal
e(s) = r(s) − y(s). (3.3)

Combining (3.1) and (3.2) it is obtained that the controlled variable is given by
the following relation:

y(s) = Cr (s)P(s)

1 + Cy(s)P(s)
r(s) + P(s)

1 + Cy(s)P(s)
d(s) − Cy(s)P(s)

1 + Cy(s)P(s)
n(s), (3.4)

that can be expressed as

y(s) = Myr (s)r(s) + Myd(s)d(s) + Myn(s)n(s). (3.5)

3.2 Control System Performance Evaluation

The performance of the closed-loop control system may be evaluated with diverse
indices, such as those related to the integrated error (difference between the controlled
variable set-point and its measured value) as the integrated absolute error (IAE), the
integrated time-weighted absolute error (ITAE), or the integrated squared error (ISE),
given in general by the following:

Jeg
.=

∫ ∞

0
t p |e(t)|q dt, (3.6)

orwith other characteristics of the time response to a set-point or to a load-disturbance
step change, such as the overshoot, rise or settling time, peak error, or decay ratio [1].

For the controller performance evaluation, it is desirable to use a performance
indicator that takes into account economic considerations (an economic performance
measure) as the integrated error (IE) does [2]. Taking this into account, to avoid the
cancelation of positive and negative errors, we select, as the main control system

http://dx.doi.org/10.1007/978-3-319-28213-8_2
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performance measure, the integrated absolute error (IAE), p = 0, q = 1 in (3.6),
given by the following:

Je
.=

∫ ∞

0
|e(t)| dt =

∫ ∞

0
|r(t) − y(t)| dt. (3.7)

The performance measure (3.7) will be evaluated for set-point and load-
disturbance changes, Jer and Jed depending on the source of the error.

As the controllers will have a proportional integral (PI) or a proportional integral
derivative (PID) control algorithm, the steady-state error to both step inputs (set-point
and disturbances) will be zero.

3.3 Control Effort Use Evaluation

Controller design problems are stated in terms of the controlled variable (usually
the process output). Depending on how this problem is stated and solved, this may
generate controller settings that produce command signals that are either undesirable
or not realistic. It is therefore always needed to evaluate the control signal and take
care of the controller bandwidth. This is usually related to the variation of the control
signal moves as a measure of its smoothness. For the evaluation of the control effort
required using a tuning rule the control signal total variation T Vu given by

T Vu
.=

∞∑
k=1

|uk+1 − uk | , (3.8)

is used as main indication of the smoothness of the control action for both input
changes, T Vur and T Vud .

As complementary measurements of the control effort use we consider the con-
troller output instant change to a set-point step change (the “proportional kick”)
given by

Δu0
.= βK pΔr, (3.9)

and the maximum control effort required, Umax .

3.4 Control System Robustness Evaluation

The sole optimization of the control system performance normally results in systems
with very poor robustness, and then it is essential to consider the controlled process
robustness constrains [3].
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There are several quantitative measures of the control system relative stability
that may be used for the robustness evaluation, such as the classical Gain Margin
and Phase Margin (Am , φm) [4], which provide an indication of the distance from
the open-loop transfer function, L(jω), frequency response, or Nyquist curve, to the
critical point (−1, 0) on the open-loop polar graph. There is also the parametric Gain
Ratio and the Delay Ratio of the robustness plot [5], which defines a parametric
robustness region.

Another way to express the system robustness is by using the Stability Margin
(Sm) [6], which is the shortest distance from the Nyquist curve to the critical point

Sm = min
ω

∣∣1 + Cy(jω)P(jω)
∣∣ . (3.10)

This distance is the reciprocal of the maximum peak of the sensitivity function, or
Maximum Sensitivity (MS) [7], defined as follows:

MS
.= max

ω
|S(jω)| = max

ω

∣∣∣∣ 1

1 + Cy(jω)P(jω)

∣∣∣∣ . (3.11)

Lower values of MS do imply closed-loop systems with a loop transfer function
that is far from the critical point, and therefore more robust. The use of the maximum
sensitivity as a robustness measure has the advantage that imposes lower bonds to
the gain and phase margins can be assured according to the following [7]:

Am >
MS

MS − 1
, φm > 2 sin−1

(
1

2MS

)
. (3.12)

For the controller robustness evaluation, wewill use themaximum sensitivity, MS ,
as the indication of the closed-loop control system robustness. The normal range for
the maximum sensitivity is from 1.2 to 2.0 then; MS = 2.0 will be considered as the
minimum allowed robustness. It is important here to highlight the fact of verifying
the robustness level achieved by a particular design. In most cases, the robustness
is just specified as design specification, without a posterior checking. Here, all the
proposed tunings will be developed bearing in mind the accomplishment of the
specified robustness.

3.5 Controller Fragility Evaluation

There is, however, another consideration that must be taken into account in the
control system design process: the effect of the variation of the controller parameters
over the control system stability and performance, known as the controller fragility.
If the control system robustness is an indication of the margin of variation of the
process characteristics with a fixed controller, then the controller fragility has a
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similar meaning but in terms of the variation of the controller parameters considering
a fixed controlled process.

The controller must allow variations of its parameters around their design values,
making it easy to fine-tune the controller when the control loop is placed in service.
This is the most probable cause of major variations in the controller parameters
from their design, or nominal, values. Effectively, most of the tuning approaches,
either based on tuning rules or on optimization methods, provide precise values for
the controller parameters, but due to the inaccuracies associated with the controlled
processmodel used as part of the tuning procedure, normally these parameters should
be taken only as a first approximation, and such final fine tuning of the controller is
normally required.

For the tuning rule fragility evaluation (the losses of robustness and/or perfor-
mance when the controller parameters are changed), the Delta 20 robustness- and
performance-fragility indices can be used [8, 9].

Robustness Fragility

The controller Delta-20 Robustness-Fragility Index relates the control system loss
of robustness to its nominal robustness and is given by the following:

RFIΔ20
.= Mm

SΔ20

Mo
S

− 1, (3.13)

where Mm
SΔ20 represents the highest loss of robustness of the control system when

all the parameters θcy of the feedback controller have been perturbed 20% from their
nominal values, θo

cy , considering all the possible combinations of the perturbed para-
meters, and Mo

S is the control system nominal maximum sensitivity. The robustness
fragility definition above considers a 10% reduction in the control system robustness
as marginal and a 50% reduction as the maximum allowed limit because it turns a
highly robust system, with MS lower than 1.4, into one with a minimally acceptable
robustness, MS of approximately 2.0.

A controller is considered robustness-fragile if the control system loses more
than 50% of its robustness when all its parameters change up to 20%; otherwise,
it is robustness-non-fragile. In addition, a controller is robustness-resilient if the
control system does not lose more than 10% of its robustness when its parameters
change up to 20%. A controller with a low robustness-fragility will allow final fine
tuning without a significant reduction in the control system robustness.

The relative influence of a δ20 change in the controller parameter pi over its robust-
ness fragility can be obtained with the Parametric Delta-20 Robustness-Fragility
Index given by the following:

RFI pi
δ20

.= M pi

Sδ20

Mo
S

− 1 = max{MS((1 ± δ20)pi , θ
o
cy)}

MS(θo
cy)

− 1. (3.14)
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Performance Fragility

The controller Delta-20 Performance-Fragility Index relates the maximum loss of
the control system performance when a change of up to 20% occurs in one or more
of the nominal controller parameters to its nominal performance and is given by the
following:

PFIΔ20
.= J m

eΔ20

J o
e

− 1, (3.15)

were J m
eΔ20 and J o

e are the extreme and the nominal performance, respectively, mea-
sured by the integrated absolute error (3.7). A controller is considered performance-
fragile if the control system loses more than 50% of its performance when all its
parameters change up to 20%; otherwise, it is performance-non-fragile. In addition,
a controller is performance-resilient if the control system does not lose more than
10% of its performance when its parameters change up to 20%. The controller per-
formance fragility must be evaluated for the servo-control response, PFIrΔ20, and
for the regulatory control response, PFIdΔ20.

The relative influence of a δ20 change in the controller parameter pi over its
performance fragility can be obtained with the Parametric Delta-20 Performance-
Fragility Index, given by the following:

PFI pi
δ20

.= J pi
eδ20

J o
e

− 1 = max{Je((1 ± δ20)pi , θ
o
c )}

Je(θo
c )

− 1. (3.16)

Fragility Balance

To define when a controller is or is not a robustness- or performance-fragility-
balanced controller, we must obtain first its average parametric delta-epsilon-
robustness-fragility index:

RFIa
δ20

.= 1

w

w∑
i=1

RFI pi
δ20, (3.17)

and its average parametric delta-epsilon-performance-fragility index:

PFIa
δ20

.= 1

w

w∑
i=1

PFI pi
δ20, (3.18)

where the number of parameters is two for a PI (w = 2), and three for a PID (w = 3).
Based on the parametric delta-epsilon-fragility indices a robustness

(performance)-fragility-balanced PID controller is one in which all its paramet-
ric robustness (performance) delta-epsilon-fragility indices are within a selected
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Table 3.1 Control systems evaluation metrics.

Metric Equation

Performance (integrated absolute error) Je
.= ∫ ∞

0 |e(t)| dt = ∫ ∞
0 |r(t) − y(t)| dt (3.7)

Control effort (total variation) T Vu
.= ∑∞

k=1 |uk+1 − uk | (3.8)
(instant change) Δu0

.= βK pΔr (3.9)

Robustness (maximum sensitivity) MS
.= maxω

∣∣∣ 1
1+Cy (jω)P(jω)

∣∣∣ (3.11)
Fragility (robustness fragility) RF IΔ20

.= Mm
SΔ20
Mo

S
− 1 (3.14)

(performance fragility) P F IΔ20
.= J m

eΔ20
J o

e
− 1 (3.15)

±σ% band (usually ±25%) centered on its average parametric delta-epsilon-
robustness (performance)-fragility index, RFIa

δ20 (PFIa
δ20); otherwise, it is a robust-

ness (performance)-fragility-unbalanced controller.
The robustness- or performance-fragility unbalance of a controller is caused by the

controller parameterwith the highest parametric robustness- or performance-fragility
index.

Chapter Remarks

The metrics used to evaluate the control system performance, control effort use,
control system robustness, and controller fragility are presented. These will allow to
highlight the main characteristics of a tuning procedure.

In order to have a fair comparison between tuning rules their evaluation must be
made using the same “base-line.” At this respect a control system robustness level
can be used as the “equalizer” parameter.

3.6 Evaluation Metrics Summary

The metrics used for control systems evaluation are summarized in Table .
In this table:

• β—controller proportional set-point weight,
• Δr—set-point step change,
• Δu0—controller output instant change,
• Cy(s)—feedback controller transfer function,
• e—error signal,
• P F IΔ20—delta-20 performance fragility,
• Je—integrated absolute error (IAE),
• J o

e —nominal IAE performance,
• J m

eΔ20—delta-20 IAE performance (worst case),
• K p—controller gain,
• MS—maximum sensitivity,
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• Mo
S—nominal maximum sensitivity,

• Mm
SΔ20—delta-20 maximum sensitivity (worst case),

• P(s)—controlled process model transfer function,
• RF IΔ20—delta-20 robustness fragility,
• r—set-point,
• T Vu—control effort total variation,
• u—control effort (controller output signal),
• y—controlled variable feedback signal.

References

1. Swanda, A.P., Seborg, D.E.: Controller performance assessment based on setpoint response data.
Proceedings of the American Control Conference pp. 3863–3867: San Diego. California, USA
(1999)

2. Shinskey, F.G.: Process control: as taught vs as practiced. Ind. Eng. Chem. Res. 41, 3745–3750
(2002)

3. Ingimundarson, A., Hägglund, T., Åström, K.J.: Criteria for design of PID controllers. In: 2nd
IFAC Conference Control Systems Design (CSD’03). Bratislava, Slovak Republic (2003)

4. Goodwin, G.C., Graebe, S.F., Salgado, M.E.: Control System Design. Prentice Hall Inc, NJ
(2001)

5. Gerry, J.P., Hansen, P.D.: Choosing the right controller. Chem. Eng. 65–68 (1987)
6. Åström, K.J., Murray, R.: Feedback Systems: An Introduction for Scientists and Engineers.

Princenton University Press, Oxfordshire (2008)
7. Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design and Tuning. Instrument Society

of America, Research Triangle Park, NC 27709, USA (1995)
8. Alfaro, V.M.: PID controllers’ fragility. ISA Trans. 46, 555–559 (2007)
9. Alfaro, V.M., Vilanova, R.: PID Control in the Third Millenium: Lessons Learned and New

Approaches, chap. Fragility Evaluation of PI and PID Controllers Tuning Rules, pp. 349–380.
Springer (2012)



Chapter 4
Model-Reference Robust Tuning Design
Methodology

Over the years, the design of controllers with PID control algorithms has been faced
with different approaches. As shown in [1] controller tuning rules may be classified
usingdifferent criteria: basedon the controlledprocess informationused (model order
and structure, critical information), on the control algorithm to tune (P, PD, PI, PID,
one or two degrees of freedom), and on the controller design criteria (performance,
robustness, or a combination of both) using analytical or optimization procedures.
All the history of research work on PID controller design leads us with a really wide
choice-menu. However, one of the aspects that is shared by all modern approaches
is that of including robustness considerations as a must. Therefore, it is the way
in through which the design approach is able to combine the time response, or
performance aspects, with the stability (robustness) ones that determines the utility,
versatility, etc.

A possible control system design approach is by specifying the desired targets
for the closed loop. Regarding the time responses or the performance of the closed-
loop control system, a possible design approach is by specifying the closed-loop
poles and zeros location. However, instead of doing this by the usual pole-placement
approach, say the algebraic way, where the closed-loop transfer functions are to have
those desired pole locations, the desired control systemclosed-loop transfer functions
are stated (as a target or model reference). From these target transfer functions,
an optimization procedure is used in order to obtain the controller parameters that
provide the best match to the desired responses. When the optimization is pursued a
target closed-loop control system robustness is also ensured.

Based on the previous statement, this chapter presents the proposed controller
design procedure that is based on the use of closed-loop transfer functions targets
(the reference models) to obtain robust control systems, therefore named Model-
Reference Robust Tuning (MoReRT), as outlined in [2].

© Springer International Publishing Switzerland 2016
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4.1 Introduction

Consider the general two-degree-of-freedom closed-loop control system depicted
in Fig. 4.1 where P(s) and {Cr (s), Cy(s)} are the controlled process model and the
controller transfer functions, respectively. In this system, r(s) is the set-point, u(s) the
controller output signal, d(s) the disturbance, y(s) the process controlled variable,
and n(s) the measurement noise. It is assumed that the disturbance enters at the
process input (load-disturbance). Controlled process model parameters are θp.

As derived in Sect. 3.1 the closed-loop control system output y(s) as a function
of its inputs r(s), d(s), and n(s) is

y(s) = Myr (s)r(s) + Myd(s)d(s) + Myn(s)n(s), (4.1)

where

Myr (s)
.= Cr (s)P(s)

1 + Cy(s)P(s)
, (4.2)

is the servo-control closed-loop transfer function,

Myd(s)
.= P(s)

1 + Cy(s)P(s)
, (4.3)

the regulatory control closed-loop transfer function, and

Myn(s)
.= −Cy(s)P(s)

1 + Cy(s)P(s)
, (4.4)

the measurement noise sensitivity function.
The regulatory control main objective is load-disturbance rejection; this is, to

return the controlled variable to its set-point in the event a disturbance enters to the
control system. For the servo-control, it is intended to follow a changing set-point;
this is, to bring the controlled variable to its new desired value. Controller tuning
for above operations must take also into account to not amplified the measurement
noise, if any.

Fig. 4.1 Two-degree-of-
freedom closed-loop control
system

http://dx.doi.org/10.1007/978-3-319-28213-8_3
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Bearing inmind the regulatory and servo operations, assume the regulatory control
target response is stated using a target model transfer function Mt

yd(s) as

yt
d(s) = Mt

yd(s)d(s), (4.5)

and along the same lines, the servo-control target transfer function, Mt
yr (s), that does

generate the desired reference following response as

yt
r (s) = Mt

yr (s)d(s). (4.6)

Then, using (4.5) and (4.6) the global control system noise free output target,
yt (s), is computed as follows:

yt (s) = Mt
yr (s)r(s) + Mt

yd(s)d(s), (4.7)

and in the time domain as follows:

yt (t) = yt
r (t) + yt

d(t). (4.8)

The design goal will be to find a controller that generates a global system response
thatmatches the target one (4.8) asmuch as possible. Next section states the optimiza-
tion problem that will formally specify this closeness to the desired target responses.

4.2 Optimization Cost Functionals

To obtain the controller parameters, that best match the target response (4.8) in
the least-squares sense, a minimization procedure is used based on the differences
between the target responses and the actual ones. One of the advantages of the
proposed design framework is that similar approaches can be worked out, but using
a different metric for measuring the distance between the target and closed-loop
responses.

For the regulatory control model-reference response optimization the cost func-
tional to be optimized is defined as follows:

Jd(θp, θcy, θd)
.=

∫ ∞

0

[
yt

d(θp, θcy, θd , t) − yd(θp, θcy, t)
]2
dt, (4.9)

where yt
d(θp, θcy, θd , t) is the regulatory control closed-loop step response target and

yd(θp, θcy, t) is that of the regulatory control system with controlled process model
P(s) and the feedback controller Cy(s).

In a similar way, the servo-control cost functional to be optimized is defined as
follows:
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Jr (θp, θc, θd)
.=

∫ ∞

0

[
yt

r (θp, θc, θd , t) − yr (θp, θc, t)
]2
dt, (4.10)

where yt
r (θp, θc, θd , t) is the step response of the servo-control closed-loop transfer

function target and yr (θp, θc, t) is that of the servo-control systemwith the controlled
process P(s) and the controller C(s).

For the 2DoFcontrollers design, the following overall cost functional is optimized:

JT (θp, θc, θd)
.= Jr (θp, θc, θd) + Jd(θp, θcy, θd). (4.11)

Using (4.11) the controller parameters θo
c are obtained such that

J o
T

.= JT (θp, θ
o
c , θd) = min

θc

JT (θp, θc, θd), (4.12)

for design parameters θd selected in such a way that the control system robustness
matches a target value (robust design) measured using the maximum sensitivity, MS .

The performance/robustness trade-off in PID controller design is a well-known
issue and the MS has become the de facto robustnessmeasure [3]. Robustness require-
ments are related with the expected changes in the controlled process dynamics from
the nominal model used for controller tuning. An a priori evaluation of this require-
ment is needed to state theminimum robustness level desired for the designed control
system. Then, if robustness is a must the design is focused on the attainable perfor-
mance and/or control effort characteristics, under the selected metrics, for the stated
robustness.

The optimization of (4.11) is a closed-loop model matching problem, instead of
a control system performance optimization problem as in the traditional PI and PID
controllers optimization procedures. In the usual optimization approach to PI and
PID controller design, the goal is to minimize some integral cost function related to
the feedback error. In this case, instead, the control system behavior is stated by the
closed-loop regulatory and servo-control transfer functions targets and the design
parameters θd . The optimization procedure searches for the controller parameters θc

that achieve the best match between the actual overall control system response and
the target one.

The complete set of controller parameters θc are obtained when considering the
regulatory control response and the servo-control response at once.

A target robustness Mt
S is used as a soft constraint. For a given controlled process

model the resulting control system robustness depends on the design parameters
then, it is evaluated after each closed-loop model-reference response optimization
and the design parameters adjusted to meet this target. Therefore, there is a need
to accommodate the inclusion of this constraint into the optimization stage. For
what matters to the optimizations carried out in this book, a direct search Nelder-
Mead [4] simplex-based algorithm [5, 6] is used.On the other hand, the target transfer
functions (as will be seen in the subsequent chapters) are parameterized in such a
way that depend on a single parameter that is iteratively adjusted in order to match
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the desired robustness target. More details about this iterative procedure and the
practical implementation of the MoReRT design approach are provided on the last
chapter.

4.3 Closed-Loop Reference Models

In (4.2)–(4.4) Cr (s) is the 2DoF controller aspect that operates on the set-point r(s),
the set-point controller with parameters θcr , and Cy(s) the controller aspect that
operates on the controlled variable y(s), the feedback controller with parameters
θcy , then C(s) = {Ccr (s), Ccy(s)}.

The controlled process model and the feedback controller transfer functions are
expressed as a quotient of polynomials in s as

P(s) = N−
p (s)N+

p (s)

Dp(s)
, (4.13)

and

Cy(s) = Ncy(s)

Dcy(s)
, (4.14)

where N+
p (s) is the controlled process model non-invertible part (dead-time and/or

right-half plane zeros).
Replacing P(s) and Cy(s) in (4.3) by (4.13) and (4.14) the regulatory control

closed-loop transfer function can be expressed by

Myd(s) = Dcy(s)N−
p (s)N+

p (s)

Dcy(s)Dp(s) + Ncy(s)N−
p (s)N+

p (s)
= Dcy(s)N−

p (s)N+
p (s)

DM(s)
. (4.15)

where DM(s) stands for the closed-loop denominador common to both the servo
and regulatory closed-loop transfer functions. The feedback controller Cy(s) design
methodology will use a regulatory control closed-loop transfer function target for
(4.15), Mt

yd(s), that depends on the controlled process model non-minimum phase
components, the rest of model parameters, the feedback controller parameters, and
the control system design parameters, θd , with the following general form:

Mt
yd(s) = Md(N+

p (s), θp, θcy, θd , s). (4.16)

Then, the regulatory control response target is

yt
d(s) = Mt

yd(s)d(s). (4.17)
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Using (4.16) in (4.2) the servo-control closed-loop transfer function target is given
by the following general function:

Mt
yr (s) = Mr (N+

p (s), θp, θc, θd , s) = Cr (s)Mt
yd(s), (4.18)

where the controller parameters θc = θcr ∪ θcy .
In the next chapters, when facing the controller design for the considered process

dynamics, once the expressions for the process model transfer function and the
selected controller are got, the target dynamics for the servo and regulatory control
performance are specified. As it can be expected, quite different possibilities do
exists regarding these target dynamics. For what matter to the extent of this book,
all desired dynamics have been chosen on the basis of specifying a desired non-
oscilatory dynamics for the closed loop. This may not be the case on some specific
cases. In such situation, the proposed design framework can be easily accommodated
by introducing the specific target transfer functions.

Chapter Remarks

In this chapter, the groundings of the proposed model-reference robust tuning (MoR-
eRT)method have been presented. It startswith the selection of regulatory control and
servo-control closed-loop transfer functions targets Mt

yd(s) and Mt
yr (s), respectively.

These transfer functions state the desired shapes for the disturbance and set-point
step responses yt

d(t) and yt
r (t).

The time responses target specification must take into account the controlled
process model characteristics, particularly its non-minimum phase components and
order. They depend also on the design parameters θd that affect the control system
performance, control effort use, and robustness.

Controller parameters θc are obtained by optimizing a cost functional that eval-
uates the difference between the target total response (regulatory control response
plus servo-control response) and the corresponding obtained with the controller to
tune. Design parameters are adjusted to obtain a robustness level target, Mt

S .
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Chapter 5
Normalized Controlled Process Models
and Controllers

The design methodology outlined in Chap.4 is applied to controlled processes repre-
sented by stable overdamped and inverse response models, and as well by integrating
and unstable models. For control system performance analysis and controller tuning
it is convenient to work with dimensionless parameters to make it nondependent on
the controlled process timescale and gain. Therefore, in the next sections the differ-
ent processes and controllers transfer functions to be considered will be presented
as well as their normalization in terms of dimensionless parameters.

5.1 Timescaling and Consistent Controller Design

The timescale property is of special use in control systems because it facilitates the
analysis task and allows the use of normalized forms for processes and controllers,
making the design statement independent of the time properties of the system at hand.
It is customary to plot Bode diagrams as well as set-point responses for normalized
first- and scond-order transfer functions. Even this may sound quite clear, it is not
since the original work of Atherton and Boz [1] that attention is put on this issue
regarding PID controller tuning. The fact is that there do exist several PI/PID tuning
rules that are not consistent with the time scale property. Therefore, these tuning
rules will not ensure the same response properties for different timescaled transfer
functions. As an example, the Ziegler–Nichols first tuning rule [2] does satisfy this
timescale property. On the other hand the Chien et al. [3] tuning rule for set-point
response does not satisfy the timescaling property.

The referred timescaling property is stated in [1] for first-order plus dead-time
transfer functions

P(s) = Ke−Ls

Ts + 1
,
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that can be timescaled by replacing Ts by ŝ in order to give the normalized process
transfer function

Pn(s) = Ke−τL ŝ

ŝ + 1
,

where τL = L/T . Now, if the process is controlled by an ideal PID controller Kp[1+
sTd + 1/(sTi)], the same kind of time responses will be obtained for the original,
non-timescaled, transfer function, provided the design is consistent. This is specified
in [1] as the controller parameters to obey to the form Kp = f1(τL)/K ,Ti = Tf2(τL)

and Td = Tf3(τL). As an example of a suitable choice for those fi(τL) is f1(τL) =
k1/τL,f2(τL) = k2τL and f3(τL) = k3τL. That corresponds to the case of the Ziegler
and Nichols [2] rules with k1 = 1.2, k2 = 2 and k3 = 0.5.

As this book is devoted to the development of PI/PID tuning rules for a wide range
of processes dynamics, generality is gained by working with normalized transfer
functions (both of process model and controller) from the very beginning. Therefore,
in this book, all the results are based on normalized transfer function models as well
as the corresponding normalized controller parameters. In this way, we ensure that
controller design is consistent from the point of view of being applicable to all
transfer function models equivalent to the normalized one but to a timescaling. An
additional advantage is that the number of process model transfer function does have
one parameter less.

In the original [1] paper, just first-order and second-order plus dead-time were
considered. Also, the ideal PID controller was used for the derivation of the corre-
sponding relations and designs. In the rest of this chapter, we apply this normalization
to all controller formulations considered as well as process transfer function models.
Therefore, the results provided here can be seen of utility in its own.

5.2 Controlled Process Normalized Parameters Models

Regarding the considered process models, four different dynamics are considered
but are represented by six model transfer functions:

1. Overdamped dynamics, both first and second order. Therefore will have the over-
damped first-order plus dead-time (FOPDT) and second-order plus dead-time
(SOPDT) process models.

2. Inverse response dynamics, represented by a second-order plus a right-half plane
zero (SOPRHPZ) process models.

3. Integrating dynamics represented by integrating plus dead-time (IPDT) and
second-order plus dead-time (ISOPDT) process models.

4. Unstable dynamics represented by the unstable first-order plus dead-time
(UFOPDT) process model.
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In what follows, each one of the previous dynamics is presented and the corre-
sponding process model transfer function is specified and normalized.

1. The overdamped controlled process (first- and second-order) are represented by
a linear model given by the transfer function

P(s) = Ke−Ls

(Ts + 1)(aTs + 1)
, θp = {K, T , a, L} , (5.1)

where K is the model gain, T the main time constant, a the ratio of the two time
constants (0 ≤ a ≤ 1.0), and L the dead-time.
Using the controlled process model gain K , and time constant T , as well as the
transformation ŝ

.= Ts, the controlled process (5.1) canbe expressed in normalized
form as follows:

P̂(ŝ) = e−τL ŝ

(ŝ + 1)(aŝ + 1)
, τL

.= L

T
, (5.2)

where τL is the normalized (dimensionless) dead-time.
The overdamped second-order plus dead-time (SOPDT) (5.2) model has two
normalized parameters, θ̂p = {a, τL}. For the particular case of the first-order
plus dead-time (FOPDT) model (a = 0) it has only one, θ̂p = τL. Using the same
procedure normalized models are obtained for the other processes.

2. The controlled process with inverse response characteristics, i.e., the controlled
process initial response to a step change is in the opposite direction to that the
steady-state direction, are represented by a second-order plus a right-half plane
zero (SOPRHPZ) model given by the transfer function

P(s) = K(−bTs + 1)

(Ts + 1)(aTs + 1)
, θp = {K, T , a, b} , (5.3)

where K is the model gain, T the main time constant, a the ratio of the two main
poles time constants (0.1 ≤ a ≤ 1.0), and b the relative position of the right-half
plane zero with respect to the main time constant.
The controlled process (5.3) can be expressed in normalized form as follows:

P̂(ŝ) = −bŝ + 1

(ŝ + 1)(aŝ + 1)
, θ̂p = {a, b}. (5.4)

3. Even though most of the controlled processes found in the process industry are
self-regulating, i.e., the process output seeks a stable point under a constant input,
there are others that under a constant input their output is unbounded, rise, or
decrease without limit. These nonself regulated processes are named integrating
or unstable if their model transfer function has poles at the complex plane origin
or at the right-half plane, respectively.
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Integrating second-order plus dead-time (ISOPDT) models given by the transfer
function

P(s) = Ke−Ls

s(Ts + 1)
, θp = {K, T , L}, (5.5)

can be expressed in normalized form as:

P̂(ŝ) = e−τL ŝ

ŝ(ŝ + 1)
, θ̂p = τL. (5.6)

Integrating as well as stable processes with very long time constants can be rep-
resented by an integrating plus dead-time (IPDT) model given by the following:

P(s) = Ke−Ls

s
, θp = {K, L}, (5.7)

where K is the gain and L the dead-time. In this case using the transformation
s̃

.= Ls, the controlled process (5.7) can be expressed in normalized form as
follows:

P̃(s̃) = e−s̃

s̃
. (5.8)

The normalized controlled process IPDTmodel (5.8) has no parameters (θ̃p = ∅).
4. We consider the unstable first-order plus dead-time (UFOPDT) model given by

the transfer function

P(s) = Ke−Ls

Ts − 1
, θp = {K, T , L} , (5.9)

that can be expressed in normalized form as follows:

P̂(ŝ) = e−τL ŝ

ŝ − 1
, θ̂p = τL. (5.10)

From (5.2), (5.4), (5.6), (5.8), and (5.10) it can be seen that the normalized models
can have from zero to two dimensionless parameters.

5.3 Normalized Controllers Parameters

Regarding the controller, to consider the control transfer function alone does not
make sense. It has to be considered in conjunction with the process model trans-
fer function to be controlled. To work with controlled process normalized models,
(F)SOPDT (5.2), SOPRHPZ (5.4), UFOPDT (5.10), ISOPDT (5.6), and IPDT (5.8),
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a normalized controller is required. Therefore, according to the normalization of the
process model, the controlled transfer function has also to be scaled. This will define
the normalized controller parameters.

Next, we consider the normalization of the Standard 2DoF PID controller PID2

from where the normalized parameters of other 2DoF PID control algorithms can
be found using the conversion relations stated in Sect. 2.3. Also, the normalized
expressions for the filtered PID Parallel controller is considered.

1. For example, the output equation of the normalized version of the Standard 2DoF
PID controller PID2 (2.11), with the ŝ

.= Ts transformation, is given by

u(ŝ) = κp

{
βr(ŝ) − y(ŝ) + 1

τi ŝ

[
r(ŝ) − y(ŝ)

] −
(

τd ŝ

ατd ŝ + 1

)
y(ŝ)

}
, (5.11)

with parameters θ̂c = {
κp, τi, τd, α, β

}
.

• For overdamped first- and second-order plus dead-time, second-order plus
right-half plane zero, and unstable first-order plus dead-time models, using
the corresponding model parameters the associated PID2 (PID2F) controllers
parameters can be expressed in normalized form as follows:

κp
.= KKp, τi

.= Ti

T
, τd

.= Td

T
, τf

.= Tf

T
, (5.12)

• For the integrating second-order plus dead-time model the normalized con-
troller parameters are

κp
.= KKpT , τi

.= Ti

T
, τd

.= Td

T
, τf

.= Tf

T
. (5.13)

For these models the new control system timescale is τ̂
.= t/T .

• Now, for the particular case of the integrating plus dead-time model the s̃
.=

Ls transformation is used and the controller parameters can be expressed in
normalized form as follows:

κp
.= KKpL, τi

.= Ti

L
, τd

.= Td

L
, τf

.= Tf

L
, (5.14)

and the new control system timescale in this case is τ̃
.= t/L.

2. The normalized parameters of the PID Parallel controller (2.63) aggregated with
a set-point input filter (2.65) and a feedback input filter (2.66) or (2.67) (PID2IF)
are:

http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_2
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• For overdamped first- and second-order plus dead-time, second-order plus
right-half plane zero, and unstable first-order plus dead-time models are

κp
.= KKp, κi

.= KKiT , κd
.= KKd

T
, τf

.= Tf

T
, τr

.= Tr

T
. (5.15)

• For integrated second-order plus dead time models the corresponding PID2IF

controller normalized parameters are

κp
.= KKpT , κi

.= KKiT
2, κd

.= KKd, τf
.= Tf

T
, τr

.= Tr

T
. (5.16)

• Finally, for the integrated plus dead-timemodelsPID2IF controller normalized
parameters are

κp
.= KKpL, κi

.= KKiL
2, κd

.= KKd, τf
.= Tf

L
, τr

.= Tr

L
. (5.17)

Chapter Remarks

This chapter has introduced the idea of timescaling into the formulation of the con-
troller by considering the corresponding previous normalization of the processmodel
to be controlled. This will allow to obtain later normalized (dimensionless) controller
tuning rules, in terms of the defined normalized controlled process models and con-
troller parameters.

It is important to note that there are normalized controlled process models with
no parameters (IPDT), with only one parameter (FOPDT, UFOPDT, and ISOPDT),
and with up to two parameters (SOPDT and SOPRHPZ). This will have an impact
on the tuning rule simplicity.
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Chapter 6
MoReRT Control of Overdamped Processes

In Chap.4, the proposed model-reference robust tuning design methodology was
described. In the following, this procedure is applied to obtain robust PI and PID
controllers to control stable overdamped processes. First of all the generic SOPDT
process model transfer function will be presented followed by the design of PI and
PID controllers on a separate way. The application of the MoReRT design is done
by showing first the particularization of the design framework and specification of
target models. Following the obtention of the optimization results, the verification
of the results regarding the robustness and evaluation of the servo and regulatory
performance.

6.1 Introduction

Most of the industrial controlled processes are self-regulated (stable) and also over-
damped (their open-loop response has no oscillation). Then it is not a surprise
that more attention has been place to obtain controller tuning rules for this type
of processes.

To represent the dynamic behavior of these processes the general SOPDT model
(5.1) is used, rewrite here

P(s) = Ke−Ls

(Ts + 1)(aTs + 1)
, θp = {K, T , a, L} . (6.1)

This model covers first-order plus dead-time models with a = 0, dual-pole plus
dead-timemodels with a = 1, and any overdamped plus dead-timemodel in between
(0 < a < 1). Model (6.1) may be obtained from a open or closed-loop test data.

The control relevant controlled process model used for controller tuning is
process-dependent but, as shown elsewhere, if the process dynamic is of high order

© Springer International Publishing Switzerland 2016
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usually the use of a second-order model (a �= 0) for tuning allows the resulting
control system to provide more performance than the resulting one using a simpler
first-order model (a = 0).

6.2 Proportional Integral Control

First consider the design of a two-degree-of-freedom proportional integral (PI) con-
trol algorithm to control (6.1).

6.2.1 Control System Framework

Using Td = 0 in (2.11), the control algorithm output reduces to a 2DoF PI:

u(s) = Kp

{
βr(s) − y(s) + 1

Tis

[
r(s) − y(s)

]}
. (6.2)

The controller parameters to tune are θc = {
Kp, Ti, β

}
.

For the PI controller (6.2), the regulatory control closed-loop transfer function
target (4.16) is

Mt
yd(s) = (Ti/Kp)sN+

p (s)

DM(θp, θcy, θd, s)
, (6.3)

where DM(θp, θcy, θd, s) is the denominator of all the control system closed-loop
transfer functions with DM(s = 0) = 1. The number of closed-loop poles depends
on the controlled process model order.

Using the controller (6.2) aspect applied to the set-point and (6.3) into (4.18), the
servo-control transfer function target is

Mt
yr(s) = (βTis + 1)N+

p (s)

DM(θp, θcy, θd, s)
. (6.4)

The application of the 2DoF PI MoReRT methodology to overdamped models is
introduced in [1] and fully explained in [2].

For a second-order controlled process and a PI controller, the closed-loop con-
trol system is of third-order. Then a target third-order closed-loop denominator
DM(θp, θcy, θd, s) must be specified.

http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_4
http://dx.doi.org/10.1007/978-3-319-28213-8_4
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6.2.2 PI Tuning for Overdamped Closed-Loop Response
Target

In order to obtain a non-oscillatory controlled variable and, as a side effect, a smooth
controller output the closed-loop transfer functions targets (6.3) and (6.4) are stated
such that the global control system output target yt(s) (4.7) is as follows:

yt(s) = e−Ls

(τcTs + 1)(aτcTs + 1)
r(s) + (Ti/Kp)se−Ls

(τcTs + 1)2(aτcTs + 1)
d(s), (6.5)

where τc is a dimensionless design parameter, which is an indication of the closed-
loop system response speed in relation to the controlled process speed. This parameter
is the one that will be used as a soft-constraint as mentioned. The parameter will be
literately adjusted in order to get the desired robustness target. As the formulation
of the target transfer function guarantees a non-oscillatory response, the purpose of
adjusting τc will be that of getting the fastest target model that allows the desired
level of robustness.

Particular cases of (6.5) are, for a first-order model (a = 0)

yt(s) = e−Ls

τcTs + 1
r(s) + (Ti/Kp)se−Ls

(τcTs + 1)2
d(s), (6.6)

and for a second-order dual-pole model (a = 1)

yt(s) = e−Ls

(τcTs + 1)2
r(s) + (Ti/Kp)se−Ls

(τcTs + 1)3
d(s). (6.7)

Target overdamped response (6.5) combines the closed-loop characteristics con-
sidered in [3] for servo-control and the ones in [4] for regulatory control.

Usually, the design of two-degree-of-freedom controllers is performed in two
steps. First, the feedback controller parameters are selected to obtain the desired
regulatory control response with a target control system robustness level, and then
the free parameter in the set-point controller is used to improve the servo-control
response.

Here an overall cost functional that takes into account, at the same time, the
regulatory control and the servo-control target responses are used for the controller
design.

Using (6.5) with (4.9) and (4.10) for optimizing (4.11) the closed-loop response
relative speed τc is adjusted to obtain a target robustness level Mt

S . The resulting con-
troller normalized parameters1 can be expressed as functions of the (6.1) controlled

1See Sect. 5.3 for the controller normalized parameters expressions.

http://dx.doi.org/10.1007/978-3-319-28213-8_4
http://dx.doi.org/10.1007/978-3-319-28213-8_4
http://dx.doi.org/10.1007/978-3-319-28213-8_4
http://dx.doi.org/10.1007/978-3-319-28213-8_4
http://dx.doi.org/10.1007/978-3-319-28213-8_5
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process normalized model (5.2) parameters and the design robustness target Mt
S as

follows:

κp = a0 + a1τL

a2 + a3τL + a4τL
2 + a5τL

3
, (6.8)

τi = b0 + b1τL

b2 + b3τL + b4τL
2 + b5τL

3 + b6τL
4
, (6.9)

β = c0 + c1τL + c2τL
2 + c3τL

3. (6.10)

The ai, bi, and ci constants in expressions (6.8)–(6.10), are listed in Tables6.1, 6.2,
6.3, 6.4, 6.5, and 6.6 [2] for four robustness target levels, Mt

S ∈ {1.4, 1.6, 1.8, 2.0};
and models with six time constants ratios, a ∈ {0.0, 0.1, 0.25, 0.50, 0.75, 1.0} and
normalized dead-time τL in the range from 0.1 to 2.0.

For first-order (a = 0) and dual-pole (a = 1) models (6.8)–(6.10) provide directly
the controller parameters. For second-order models with a /∈ {0.1, 0.25, 0.50,
0.75}, controller parameters must be obtained by a interpolation between the two
sets of parameters obtained with the two adjacent a values provided.

Constants in (6.8)–(6.10) were obtained from the optimization process data using
a curve fitting tool.

Table 6.1 MoReRT constants, FOPDT models (a = 0.0)

Mt
S 1.4 1.6 1.8 2.0

a0 0.7253 0.4441 0.5249 0.5930

a1 0.6505 0.1745 0.2281 0.2658

a2 0.002337 0 0 0

a3 2.143 1 1 1

a4 1 0 0 0

a5 0 0 0 0

b0 −0.1606 −0.09742 0.1530 0.6088

b1 47.67 83.72 115.5 154.9

b2 4.166 10.71 18.67 29.32

b3 30.23 51.35 68.28 88.39

b4 7.973 3.948 −0.4553 −4.346

b5 −4.738 −5.369 −4.952 −4.659

b6 1 1 1 1

c0 0.5049 0.4759 0.4706 0.4758

c1 0.8330 0.5924 0.4360 0.3267

c2 −0.1034 −0.1278 −0.09808 −0.07063

c3 0 0 0 0

http://dx.doi.org/10.1007/978-3-319-28213-8_5
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Table 6.2 MoReRT constants, SOPDT models with a = 0.10

Mt
S 1.4 1.6 1.8 2.0

a0 4.264 5.026 10.54 12.28

a1 3.008 2.912 6.250 7.795

a2 0.7672 0.6431 1.058 1.017

a3 13.52 11.99 21.47 22.57

a4 2.816 1 1 1

a5 1 0 0 0

b0 2.268 75.12 17.21 11.33

b1 39.41 1426 265.2 151.1

b2 3.965 165.9 41.16 28.29

b3 27.77 1028 178.6 96.67

b4 5.123 −110.40 −25.83 −16.01

b5 −3.507 1 1 1

b6 1 0 0 0

c0 0.5565 0.5243 0.5123 0.5139

c1 0.9507 0.6265 0.4547 0.3259

c2 −0.3226 −0.2313 −0.1689 −0.1036

c3 0.0872 0.03721 0.02538 0.01162

Table 6.3 MoReRT constants, SOPDT models with a = 0.25

Mt
S 1.4 1.6 1.8 2.0

a0 2.533 6.240 16.12 14.67

a1 −0.1547 3.418 9.223 9.476

a2 0.8599 1.441 2.857 2.084

a3 7.432 15.02 33.12 27.52

a4 −2.820 1 1 1

a5 1 0 0 0

b0 2.166 154.5 17.72 10.72

b1 11.19 2042 203.4 109.2

b2 2.230 196.9 24.89 15.86

b3 6.897 1480 139.4 72.02

b4 4.012 −152.1 −20.97 −12.87

b5 −3.089 1 1 1

b6 1 0 0 0

c0 0.5796 0.5406 0.5151 0.5057

c1 1.024 0.6162 0.4748 0.3758

c2 −0.4927 −0.2497 −0.2081 −0.1633

c3 0.1773 0.04321 0.03662 0.02808
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Table 6.4 MoReRT constants, SOPDT models with a = 0.50

Mt
S 1.4 1.6 1.8 2.0

a0 3.998 5.072 31.07 13.96

a1 −1.784 2.772 15.29 8.546

a2 1.974 1.588 7.564 2.664

a3 9.781 11.72 58.82 24.52

a4 −6.350 1 1 1

a5 1 0 0 0

b0 16.33 188.6 174.4 33.74

b1 −7.025 2668 1767 314.9

b2 12.46 174.9 173.0 35.50

b3 −7.889 1779 1096 187.3

b4 5.904 −144.1 −128.5 −26.56

b5 −4.141 1 1 1

b6 1 0 0 0

c0 0.4262 0.5252 0.4937 0.4777

c1 1.994 0.5520 0.4335 0.3619

c2 −2.060 −0.2216 −0.1896 −0.1616

c3 0.8367 0.03796 0.0330 0.02835

Table 6.5 MoReRT constants, SOPDT models with a = 0.75

Mt
S 1.4 1.6 1.8 2.0

a0 5.774 13.09 780.7 1586

a1 −2.612 4.900 304.2 671.0

a2 3.256 4.764 214.0 350.6

a3 12.27 25.71 1290 2340

a4 −7.671 1 1 1

a5 1 0 0 0

b0 20.03 435.4 136.7 225.6

b1 −8.585 4154 1262 1593

b2 13.27 323.1 111.8 190.7

b3 −7.615 2425 693.7 820.4

b4 5.483 −144.7 −70.57 −92.06

b5 −4.049 1 1 1

b6 1 0 0 0

c0 0.4223 0.4967 0.4631 0.4472

c1 1.705 0.4609 0.3698 0.3115

c2 −1.759 −0.1704 −0.1510 −0.1286

c3 0.7198 0.02748 0.02498 0.0231
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Table 6.6 MoReRT constants, SOPDT models with a = 1.0

Mt
S 1.4 1.6 1.8 2.0

a0 7.163 26.71 18.65 521.4

a1 −2.794 8.032 7.737 199.0

a2 4.118 10.02 5.215 117.7

a3 13.68 45.76 27.97 684.5

a4 −7.551 1 1 1

a5 1 0 0 0

b0 24.23 778.0 422.3 531.5

b1 −7.143 41.60 261.7 3139

b2 14.18 490.5 292.4 390.7

b3 −6.404 2093 1242 1414

b4 5.820 −88.86 −102.4 −135.1

b5 −4.059 1 1 1

b6 1 0 0 0

c0 0.4986 0.4617 0.4307 0.4155

c1 0.7797 0.3840 0.3130 0.2716

c2 −0.4881 −0.1314 −0.1198 −0.1078

c3 0.1978 0.02011 0.01928 0.01791

Control System Robustness Verification

One of the characteristics of the MoReRT tuning is to achieve the design control
system robustness target level. The robustness obtained with (6.8) and (6.9) for
first-order plus dead-time models are shown in Fig. 6.1. This figure shows for every
process model normalized time constant, the controller designed tomatch as much as
possible the specified overdamped closed-loop targets, also do achieve the specified
robustness level. Here just the case for a = 0 is shown as an example, whereas
robustness accomplishment for other models is presented in [2].

Evaluation of the MoReRT Tuning

Consider the fourth-order controlled processes proposed as benchmarks in [5] and
given by the transfer function:

Pα(s) = 1∏3
n=0(α

ns + 1)
, (6.11)

with α ∈ {0.1, 0.25, 0.5, 1.0}.
Using the three-point identification procedure 123c [6] FOPDT and SOPDTmod-

els were obtained whose parameters are listed in Table6.7. The fact of obtaining
models of different order is done because this will allow to compare the performance
that can be achieved if a higher order model is used for design. This is an interesting
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Fig. 6.1 MoReRT PI
controllers robustness
accomplishment for
first-order plus dead-time
models
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Table 6.7 Example—Pα(s) FOPDT and SOPDT models

α K T a L τL

0.10 1 1.003 0 0.112 0.112

0.25 1 1.049 0 0.298 0.284

0.50 1 1.247 0 0.691 0.554

1.0 1 2.343 0 1.860 0.794

0.25 1 0.987 0.254 0.086 0.087

0.50 1 0.876 0.821 0.277 0.316

1.0 1 1.487 1.0 1.110 0.747

point because the PI control literature almost concentrates on the use of FOPDT
models, whereas the existence of tuning rules based on more elaborated models will
allow the control system to show higher performance (while satisfying the same
robustness level).

Tables6.8 and 6.9 list the MoReRT controllers parameters for these models that
result from application of tuning equations (6.8)–(6.10).

Please note that the proportional set-point weight factor β may take values
higher than 1.0, the arbitrary upper limit imposed by some manufacturers of 2DoF
controllers, see Sect. 11.1. The advantages of using proportional set-point weights
β > 1.0 to improve the servo-control performance when a high robust tuned control
system required are shown in [7].

http://dx.doi.org/10.1007/978-3-319-28213-8_11
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Table 6.8 Example—PI2 from FOPDT models

Mt
S 1.4 1.6 1.8 2.0

α = 0.10

Kp 3.140 4.152 4.929 5.576

Ti 0.678 0.563 0.498 0.459

β 0.597 0.541 0.518 0.514

α = 0.50

Kp 0.725 0.976 1.175 1.336

Ti 1.445 1.458 1.438 1.413

β 0.935 0.765 0.682 0.635

α = 1.0

Kp 0.532 0.734 0.889 1.013

Ti 2.828 3.009 3.052 3.054

β 1.101 0.866 0.755 0.691

Table 6.9 Example—PI2 from SOPDT models

Mt
S 1.4 1.6 1.8 2.0

α = 0.25

Kp 1.690 2.366 2.937 3.445

Ti 1.088 1.015 0.953 0.911

β 0.664 0.592 0.555 0.537

α = 0.50

Kp 0.785 1.145 1.423 1.677

Ti 1.395 1.475 1.497 1.497

β 0.778 0.589 0.552 0.522

α = 1.0

Kp 0.482 0.731 0.917 1.065

Ti 2.494 2.882 3.038 3.117

β 0.891 0.684 0.606 0.566

Regulatory Control

Table6.10 lists the control system robustness and the regulatory control performance
obtained with the controllers tuned using the FOPDT models. The robustness levels
(MS) were obtained using the models, while the performance indices were evaluated
with the original controlled processes (6.11).

Table6.11 lists the control system robustness and the regulatory control perfor-
mance obtained with the controllers tuned using the SOPDT models.

It can be seen from Table6.10 that the robustness targets were perfectly achieved
with the MoReRT controllers for all the FOPDT models.

From the standpoint of performance, the existence of a trade-off with robust-
ness is clear. For a given model, if the control system robustness level is increased,
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Table 6.10 Example—Robustness and performance, PI2 tuned from FOPDT models

Mt
S 1.4 1.6 1.8 2.0

α = 0.10

MS 1.40 1.60 1.80 2.00

Jed 0.216 0.136 0.101 0.082

T Vud 1.171 1.312 1.419 1.514

α = 0.50

MS 1.40 1.60 1.80 2.00

Jed 2.007 1.495 1.224 1.058

T Vud 1.000 1.115 1.297 1.475

α = 1.0

MS 1.40 1.60 1.80 2.00

Jed 5.313 4.099 3.433 3.112

T Vud 1.000 1.123 1.343 1.556

Table 6.11 Example—Robustness and performance, PI2 tuned from SOPDT models

Mt
S 1.4 1.6 1.8 2.0

α = 0.25

MS 1.40 1.60 1.80 2.00

Jed 0.644 0.429 0.325 0.264

T Vud 1.091 1.330 1.568 1.797

α = 0.50

MS 1.40 1.60 1.80 2.00

Jed 1.777 1.288 1.052 0.907

T Vud 1.015 1.248 1.506 1.795

α = 1.0

MS 1.40 1.60 1.80 2.00

Jed 5.173 3.942 3.315 3.051

T Vud 1.000 1.151 1.395 1.642

the performance decreases, in that Jed increases. On the controller output side, a
robustness increment results in more smoothness, in that T Vud decreases.

For the SOPDT models, Table6.11 reveals the perfect achievement of the design
robustness level with the MoReRT controllers for all models.

For controlled processes than can be approximated with both, first- and second-
order models (α ∈ {0.50, 1.0}), it can be seen from Tables6.10 and 6.11 that more
regulatory control performance is obtained, for all robustness levels, if the PI con-
troller is tuned using the second-order model.
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Table 6.12 Example—Servo-control performance, PI2 tuned from FOPDT models

Mt
S 1.4 1.6 1.8 2.0

α = 0.10

Jer 0.489 0.394 0.341 0.305

T Vur 1.435 2.131 2.839 3.562

α = 0.50

Jer 2.102 1.838 1.681 1.586

T Vur 0.482 0.733 1.008 1.286

α = 1.0

Jer 5.029 4.502 4.191 4.111

T Vur 0.502 0.719 0.974 1.241

Table 6.13 Example—Servo-control performance, PI2 tuned from SOPDT models

Mt
S 1.4 1.6 1.8 2.0

α = 0.25

Jer 1.009 0.843 0.713 0.686

T Vur 0.829 1.493 2.229 3.045

α = 0.50

Jer 2.087 1.894 1.723 1.612

T Vur 0.557 0.879 1.263 1.728

α = 1.0

Jer 5.446 4.853 4.510 4.319

T Vur 0.573 0.734 0.981 1.252

Servo-Control

The servo-control performance obtained with the controllers tuned using the FOPDT
models are listed in Table6.12. From these data the trade-off between performance
and robustness, Jer versus MS , is evident for all α’s considered. Also note that as in
the regulatory control case, the higher robustness systems have smoother controller
outputs.

The servo-control performance obtained with the controllers tuned using the
SOPDT models are listed in Table6.13. From these data the trade-off between per-
formance and robustness is also evident, in that Jer increases as the design robustness
decreases (or Mt

S increases).
Considering the above, for processes (6.11) with α ∈ {0.25, 0.50, 1.0} it is better

to use the SOPDT models for the design of the 2DoF PI control system.
Figure6.2 shows the MoReRT PI2 (tuned with FOPDT model data) closed-loop

responses to a 20% set-point step change followed by a 10% disturbance change for
the controlled process with α = 0.50.
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Fig. 6.2 MoReRT PI closed-loop responses for the α = 0.50 process

6.2.3 PI Tuning for Under-Damped Closed-Loop Response
Target

In order to analyze if it is possible to modify the control system performance to a
load-disturbance and set-point step changes without affecting its robustness, a new
global control system output target yt(s) with two under-damped dominant poles is
selected and computed as [8]

yt(s) = (τcTs + 1)e−Ls

(τ 2
c T 2s2 + 2ζ τcTs + 1)(aτcTs + 1)

r(s)

+ (Ti/Kp)se−Ls

(τ 2
c T 2s2 + 2ζ τcTs + 1)(aτcTs + 1)

d(s). (6.12)

Now the control system has two design parameters, the closed-loop poles relative
speed τc and their damping ratio ζ . The effect of the damping ratio ζ over the closed-
loop control systems performance and control effort characteristics is analyzed in [8].
Again, τc will be adjusted with the purpose of matching the desired robustness.

The regulatory control response indices evaluated are the integrated absolute error
(Jed), the controller output total variation (T Vud), the maximum error (Emax), the time
to reach the maximum error (tmax), and the settling time (t5%Emax). For the servo-
control response the indices evaluated are the integrated absolute error (Jer), the
controller output total variation (T Vur), the rise time (tr), the control effort maximum
value (Umaxr), the controller output instant change (ΔU0r), and the settling time
(t5%Δy). These indices are defined in [8].
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Fig. 6.3 Damping ratio ζ effect over total performance, control effort variation, and settling time
for model with a = 0.75 and τL = 0.50

The analysis made use of damping ratios ζ in the range from 1.0 to 0.456 and
robustness levels MS from 2.0 to 1.40. Figure6.3 shows the indices obtained for the
model with (a = 0.75, τL = 0.5). Case analysis is presented in [8].

The analysis shows that, for same robustness, all the controllers obtained with
the original non-oscillatory response target (ζ = 1.0) provide the smoothest control
efforts with an integrated absolute error performance similar to the lower obtainable
value for the corresponding robustness level target.

An improvement in the control system performance (integrated absolute error
and settling time), specially for the servo-control, may be obtained if the closed-loop
transfer function poles design damping ratio is selected in the range from 0.7 to 0.8
but adversely affecting the control effort characteristics.

On the basis of the analysis for overdamped controlled processes, it is recom-
mended to use ζ = 0.8 for MoReRT 2DoF PI design when under-damped target
responses are specified.

Evaluation of MoReRT Controllers

As an example of the effect of the damping ratio ζ over the control systems perfor-
mance and control effort characteristics, consider the second-order plus dead-time
normalized model given by

P(s) = e−0.5s

(s + 1)(0.75s + 1)
. (6.13)
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Table 6.14 Overdamped model example, Mt
S = 2.0, effect of ζ over the control system perfor-

mance and control effort

ζ 1.0 0.78 0.591 0.456

Jed 1.406 1.410 1.495 1.697

T Vud 1.627 1.648 1.683 1.737

Jer 2.158 2.038 2.139 2.411

T Vur 2.111 2.345 2.590 2.774

Umaxr 1.327 1.442 1.560 1.642

ΔU0r 0.726 0.811 0.885 0.907

JeT 3.564 3.448 3.634 4.108

T VuT 3.738 3.993 4.273 4.511

The regulatory and servo-control performance Je (measured with the integrated
absolute error) and control effort total variation T Vu, maximum value Umax, and
instant change ΔU0 for a robustness level target Mt

S = 2.0 and four damping ratios
are listed in Table6.14.

The table data confirms that, keeping the control system robustness constant, the
servo-control performance can be improved, obtaining lower Jer , if the closed-loop
poles damping ratio is decreased a bit, but affecting the control effort characteristics,
T Vur , Umaxr , and ΔU0r . It also shows that very low closed-loop poles damping ratios
deteriorate all control system characteristics.

Control system responses for Mt
s = 2.0 and four damping ratios are shown in

Fig. 6.4.
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Fig. 6.4 Overdamped model example, control system responses (Mt
S = 2.0)
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Further evaluations of MoreRT tuning (6.8)–(6.10) and comparison with other
robust tuning methods for overdamped models are presented in [2].

6.3 Proportional Integral Derivative Control

TheMoReRT designmethodology is used here for tuning proportional integral deriv-
ative (PID) controllers to control overdamped processes. When moving to PID con-
trollers, we face the problem of choosing the PID configuration. In this case, the
filtered PID implementations will be used in order to derive the tuning relations. The
Standard 2DoF PID will not be considered because when doing the optimizations, it
turns out that the PID tends to a filtered ideal PID.

In fact, first a Standard 2DoF PID (2.12) was considered. The PID2 controller
parameters are θc = {Kp, Ti, Td, α, β, γ = 0}. To take the derivative filter constant
α as a tunable parameter, a case study is made for process with 0.1 ≤ τL ≤ 2.0 and
robustness levels Mt

S ∈ {2.0, 1.6, 1.4}. What it was found during this study is that in
all cases, ideally, α → 0, this is, the Standard PID (with filter) tends to be an Ideal
PID (with a non-proper transfer function). The controller high frequency gain is 1/α
then, if α is very low the measurement noise, if any, will be amplified. It is also found
that the control system performance is not very sensitive to α if it is restricted to the
values usually found in commercial controllers (0.05 ≤ α ≤ 0.20). Considered the
above the use of the default α = 0.1 is recommended in this case.

6.3.1 2DoF Ideal PID with Filter

It is shown in Sect. 2.3 that the two-degree-of-freedom proportional integral deriva-
tive controller with filter PID2F given by (2.21) is a more general control algorithm
than the Standard PID. Then to control an overdamped controlled process represented
by a first-order plus dead-time model a PID2F controller is used [9].

To take into account the PID2F filter, the global control system target response
(4.7) is under-damped and stated as follows:

yt(s) = (β∗T∗
i s + 1)(Tf s + 1)e−Ls

τ 2
c T 2s2 + 2ζ τcTs + 1

r(s) + (T∗
i /K∗

p )s(Tf s + 1)e−Ls

τ 2
c T 2s2 + 2ζ τcTs + 1

d(s), (6.14)

where ζ and τc are the design parameters, being τc adjusted for robustness purposes.
To select the target closed-loop poles damping ratio ζ , a performance (integrated

absolute error) to control effort total variation trade-off analysis is made. It is found
that ζ = 0.70 provides a good balance between these two indices [9]. Therefore,
this parameter becomes fixed and the only parameter that is adjusted and directly
related to robustness is τc.

http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_4
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For the design FOPDTmodels with normalized dead-time τL between 0.1 and 2.0
and closed-loop target robustness Mt

S ∈ {1.4, 1.6, 1.8, 2.0} are used.
The PID2F controller parameters θ∗

c = {K∗
p , T∗

i , T∗
d , Tf , β

∗, γ ∗ = 0} are obtained
optimizing the overall cost functional defined in Sect. 4.2

Jo
T

.= JT (θp, θ
o
c , θd) = min

θc

JT (θp, θ
∗
c , θd). (6.15)

The design parameter τc (θd = {τc, ζ = 0.70}) is selected in such a way that the
control system robustness matches a maximum sensitivity target value Mt

S .
The optimized controllers parameters are used to fit the tuning equations for the

four robustness levels considered given by

κ∗
p = a0 + a1τ

a2
L , (6.16)

τ ∗
i = b0 + b1τ

b2
L , (6.17)

τ ∗
d = c1τ

c2
L , (6.18)

τ ∗
f = d0 + d1τ

d2
L , (6.19)

β∗ = 0, (6.20)

γ ∗ = 0. (6.21)

In this section just the case a = 0 has been considered. To deal with SOPTD
process models can be done exactly along the same lines as here. All the cases are
not reproduced here just because not being excessively repetitive. When dealing in
the next section with a more generic formulation of PID controller, say the one that
includes two input filters, application to specific SOPTD process models will be
provided, showing the advantage that can be achieved if higher order models are
allowed for controller design.

Constants ai, bi, ci, and di for (6.16)–(6.19) are listed in Table6.15 [9].

Evaluation of MoReRT Controllers

Consider the fourth-order controlled process proposed as benchmark in [5] and given
by the transfer function:

Pe(s) = 1

(s + 1)(0.5s + 1)(0.25s + 1)(0.125s + 1)
. (6.22)

Using a two-point identification procedure, the parameters of a FOPDT model
approximation of (6.22) are: K = 1, T = 1.247, and L = 0.691 (τL = 0.554).

Controllers parameters, robustness (Mm
S , with themodel), performance (measured

with the integrated absolute error, Jed and Jer), and control effort total variation (T Vud

and T Vur) to unitary step changes of the control systems obtained with proposed
tuning are listed in Table6.16.

http://dx.doi.org/10.1007/978-3-319-28213-8_4
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Table 6.15 Constants for tuning relations (6.16)–(6.19)

Mt
S 2.0 1.8 1.6 1.4

a0 0.3745 0.3067 0.2458 0.1047

a1 0.6237 0.6719 0.5753 0.4553

a2 −0.8575 −0.9161 −0.8997 −0.7672

b0 0.0825 −0.336 −0.4981 0.4383

b1 1.199 1.639 1.874 0.9669

b2 0.5727 0.3507 0.2744 0.5062

c1 0.2948 0.3091 0.3114 0.2997

c2 0.9495 0.9471 0.9327 0.9075

d0 0.06395 0 0.01938 0.1074

d1 0.2104 0.08934 0.0864 0.1868

d2 1.137 0.4708 0.6525 1.641

Table 6.16 MoReRT controller parameters and performance

Mt
S 2.0 1.6 1.4

K∗
p 1.409 1.225 0.821

T∗
i 1.169 1.366 1.440

T∗
d 0.210 0.224 0.219

Tf 0.214 0.098 0.222

β∗ 0 0 0

γ ∗ 0 0 0

Mm
S 2.001 1.599 1.397

Jed 1.113 1.116 1.754

T Vud 1.742 1.173 1.021

Jer 2.171 2.383 2.972

T Vur 2.117 1.209 1.008

K∞ 1.383 2.813 0.8075

In Table6.16 K∞ is the PID2F controller high frequency gain given by

K∞ = KpKT∗
d

Tf
. (6.23)

Control system outputs to a 20% step set-point change followed by a 10% step
load-disturbance change are shown in Fig. 6.5.
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Fig. 6.5 MoReRT example—Four-order overdamped process, PID2F responses

6.3.2 2DoF Ideal Parallel PID with Two Input Filters

Now a two-degree-of-freedom ideal parallel PID controller is aggregated with two
input filters as described in Sect. 2.4.

From (2.63) the controller output signal is

u(s) =
(

Kp + Ki

s

)
Fr(s)r(s) −

(
Kp + Ki

s
+ Kds

)
Fy(s)y(s), (6.24)

where the filters transfer functions are

Fr(s) = σTrs + 1

(Trs + 1)2
, (6.25)

and

FyPI(s) = 1

Dfy(s)
= 1

Tf s + 1
, (6.26)

FyPID(s) = 1

Dfy(s)
= 1

T 2
f /2s2 + Tf s + 1

. (6.27)

In this case the controller design is made in two steps.
First to obtain the feedback controller and filter parameters, the regulatory control

target closed-loop transfer function (4.15) is expressed as

http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_4
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Mt
yd(s) = (1/Ki)sDfy(s)N+

p (s)

Dcy(s)Dp(s) + Ncy(s)N−
p (s)N+

p (s)
, (6.28)

and the regulatory control model-reference response cost functional

Jd(θp, θcy, θd)
.=

∫ ∞

0

[
yt

d(θp, θcy, θd, t) − yd(θp, θcy, t)
]2
dt, (6.29)

is optimized.
Second once the feedback controller and filter are obtained, the set-point filter

parameters are designed using the servo-control closed-loop transfer function

Myr(s) = (σTrs + 1)[(Ko
p /Ko

i )s + 1]Do
fy(s)N

+
p (s)

(Trs + 1)2[Do
cy(s)Dp(s) + No

cy(s)N
−
p (s)N+

p (s)] . (6.30)

The optimality of the servo-control step response may be obtained by selecting the
set-point filter parameters (σ , Tr) to optimize the integrated absolute error (IAE)
given by the cost functional

Jer
.=

∫ ∞

0
|r(t) − yr(t)| dt, (6.31)

the integrated absolute control effort (IAU) given by

Jur
.=

∫ ∞

0
|ur(t) − ur(∞)| dt, (6.32)

or other suitable cost functional.
It is also possible to design the set-point filter selecting its time constant Tr =

Ko
p /To

i in order to made a zero pole cancelation reducing (6.30) to

Myr(s) = (σKo
p /To

i s + 1)Do
fy(s)N

+
p (s)

(Ko
p /To

i s + 1)[Do
cy(s)Dp(s) + No

cy(s)N
−
p (s)N+

p (s)] , (6.33)

and obtaining the remaining filter parameter optimizing (6.31) or (6.32).
Note that in this case the shift of paradigm regarding the design statement, instead

of considering a joint functional that takes everything into account in a single shot,
here a two-step design is formulated. The reason is that having the two input filters
there are more degrees of freedom that affect the control system. On this respect,
primary interest is of determining the feedback properties, regulation, and robust-
ness. Therefore the regulatory functional including the process output filter are first
considered. Once the closed-loop properties are ensured, we can proceed with the
adjustment of the reference filter in order to design de command signal that enters
the feedback loop in such a way that a secondary goal is targeted. Although usually
of secondary interest for process control, in the event of a sporadic set-point step
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change, it is important to have a fast response with low overshoot and without an
abrupt change or high variations of the controller output signal. On this respect, we
can manipulate the command signal in order to take care of the control signal or
the tracking error. As an example, in the next section, this two-step procedure is
conducted by showing the final tuning relations that arise in case of optimizing the
set-point filter parameters for (6.31) or (6.32).

Performance Robustness Analysis

In order to reduce the number of design parameters, the influence of the closed-
loop poles damping ratio over the regulatory control performance is analyzed [10].
Remember that one of the goals when defining the target transfer functions for the
closed-loop dynamics, was that of getting non-oscilatory responses for a smooth con-
trol action. More complex target transfer function models allow more rich dynamics
with small and smooth oscillations. the effect of allowing such oscillations was ana-
lyzed in [10]. From the analysis, it is found that allowing some small oscillation at
the control system output is possible to improve the regulatory control performance
but with a deterioration of the control effort smoothness. A good balance between the
regulatory control performance and the controller output total variation is obtained
for damping ratios in the range from 0.70 to 0.80. Then for PI controllers, tuning
ζ = 0.8 is selected and ζ = 0.70 for the PID.

It is also found that for a given controlled processmodel and same target robustness
level, the PID controllers outperforms the PI in all aspects but the control effort
variation.

PID2IF Controller Robust Tuning

Due to normalized overdamped controlled process models with a = 0 (FOPDT) has
only one parameter (τL), controller normalized parameters can be found as function
of τL.

For first-order plus dead-time models with 0.1 ≤ τL ≤ 2.0 the PID controller
and feedback filter parameters for an intermediate robustness (Mt

S = 1.6) can be
obtained with following relations:

κp = 0.2954 + 0.5065 τ−0.9805
L , (6.34)

κi = −0.04612 + 0.6407 τL

0.005159 − 0.13885 τL + τ 2
L

, (6.35)

κd = 0.2874 + 0.04719 τ 0.9134
L , (6.36)

τf = −0.01613 + 0.1233 τ 0.4922
L , (6.37)

γ = 0. (6.38)
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The set-point filter parameters are given by the relations:

τr = −0.3141 + 18.66 τL

2.347 + 18.77 τL − 6.415 τ 2
L + τ 3

L

, (6.39)

σ = 1.042 + 0.3809 τ 0.4615
L ,

if the integrated absolute error (6.31) is optimized, or by following relations:

τr = −0.3141 + 18.66 τL

2.347 + 18.77 τL − 6.415 τ 2
L + τ 3

L

, (6.40)

σ = −0.7676 + 1.828 τ 0.2382
L ,

if is of interest to optimize the integrated absolute control effort (6.32).
For second-order plus dead-time models (a �= 0) the controller normalized para-

meters depend on the two normalized model parameters and on the robustness level
(θ̂c = {hi(a, τL; Mt

S)}); therefore several sets of tuning equations are needed to con-
sider different model time constants ratio a and target Mt

S robustness levels.
For these models the direct application of the proposed MoReRT procedure is

recommended. At this point a word must be given to the fact of tuning a controller by
a direct application of themethodology for each specific and concrete case or, instead,
to have a tuning rule. When dealing with higher order processes and controllers with
four or five parameters (as the case of the PID2IF) constructing the tuning rules on the
basis of fitting the controller parameters behavior can be a problem because of the
numerical sensitivity of the controller parameters value. Instead, the possibility of
doing efficient and low time consuming optimizations, allow for getting the controller
parameters on-demand.

6.3.3 Evaluation of MoReRT Controllers

For comparison purposes consider the fourth-order controlled process given by the
benchmark [5] transfer function:

P(s) = 1

(s + 1)(0.5s + 1)(0.25s + 1)(0.125s + 1)
. (6.41)

For controller tuning from P(s) reaction curve following FOPDT and SOPDT
models are obtained

P1(s) = e−0.691s

1.247s + 1
, τL = 0.554, (6.42)
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Table 6.17 PI(D)2IF controllers parameters

Mt
S PI2IF

(FOPDT)
PI2IF
(SOPDT)

PID2IF
(FOPDT)

PID2IF
(SOPDT)

PID2IF
(SOPDT)

1.6 1.6 1.6 1.6 2.0

Kp 0.802 0.916 1.197 2.345 3.374

Ki 0.629 0.672 1.034 1.841 2.873

Kd 0.0 0.0 0.392 0.958 1.387

Tf 0.117 0.093 0.096 0.067 0.054

Tr
a 1.275 1.363 1.158 1.274 1.174

σ eb 1.581 1.542 1.343 1.212 1.155

σ uc 1.146 1.201 0.836 0.647 0.446

γ 0 0 0 0 0
aTr = Kp/Ki, busing Jer (6.31), cusing Jur (6.32)

P2(s) = e−0.277s

(0.876s + 1)(0.719s + 1)
, a = 0.821, τL = 0.316. (6.43)

The PI2IF and PID2IF controllers parameters using the FOPDT and the SOPDT
models for a robustness level Mt

S = 1.6 are listed in Table6.17. The obtained reg-
ulatory and servo-control performance indices are listed in Table6.18. These tables
also include PID2IF controller parameters and performance for Mt

S = 2.0.
From Table6.18 it is seen that the PID2IF tuned with the SOPDT model outper-

forms all other controllers.
It also can be seen that, as designed, the PI2IF and PID2IF controllers have no

abrupt controller output changes (Δu0 = 0) and high frequency gain K∞ = 0.
Figure6.6 shows the control system responses to a 20% set-point step change

followed by a 10% load-disturbance step change.

Chapter Remarks

Themodel-reference robust tuning (MoReRT) design is applied to obtain tuning rela-
tions for 2DoF PI controllers (PI2) and models representing overdamped dynamics
found in industrial processes.

For stable processes represented by first- and second-order plus dead-time
(FOPDT, SOPDT) models tuning relations are obtained using closed-loop over-
damped responses targets. These tuning relations guarantee the accomplishment of
four robustness levels for models with normalized dead-times τL in the range from
0.1 to 2.0.

The four robustness design levels range from the normal minimum corresponding
to Mt

S = 2.0 to a high robustness design with Mt
S = 1.4. Performance comparison

analysis shows that for a high-order controlled process more performance is obtained
with PI2 controllers if they are tuned using a process SOPDT model approximation
in lieu of a simpler FOPDT model.
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Table 6.18 PI(D)2IF controllers performance

PI2IF
(FOPDT)

PI2IF
(SOPDT)

PID2IF
(FOPDT)

PID2IF
(SOPDT)

PID2IF
(SOPDT)

MS 1.60 1.60 1.60 1.60 2.00

K∞ 0 0 0 0 0

Jed 1.590 1.488 1.095 0.574 0.371

T Vud 1.172 1.207 1.223 1.260 1.577

Emax 0.561 0.538 0.437 0.302 0.240

tEmax 2.290 2.220 2.000 1.610 1.415

ts5%Emax 5.485 5.340 6.700 3.825 3.160

Jer
a 2.352 2.266 2.215 1.813 1.569

T Vur
a 1.499 1.519 1.728 1.923 2.596

Umax
a 1.229 1.229 1.338 1.455 1.769

tra 2.080 2.050 1.750 1.520 1.265

ts5%Δy
a 5.740 5.115 5.890 4.750 4.080

Δu0 0.0 0.0 0.0 0.0 0.0

Jer
b 2.562 2.484 2.366 2.200 2.119

T Vur
b 1.211 1.263 1.320 1.174 1.272

Umax
b 1.084 1.099 1.148 1.083 1.126

trb 2.650 2.530 2.295 2.455 2.440

ts5%Δy 4.315 4.160 3.745 4.045 4.025
aUsing σ e, busing σ u
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Fig. 6.6 MoReRT PI(D)2IF control systems responses
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It is also shown that an improvement of the control system performance, measured
with the integrated absolute error, can be obtained if the design is made using closed-
loop transfer functions targets with two dominant under-damped poles with damping
rations in the range from 0.7 to 0.8. However, the reduction of the dominant poles
damping ratio increases the control effort total variation.

The use of ideal parallel PID controllers aggregated with two input filters allows
to obtain control systems with two additional desirable characteristics: no controller
output abrupt changes and high frequency roll-off (noise attenuation).
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Chapter 7
MoReRT Control of Inverse Response
Processes

The inverse response characteristic, that is, the controlled process initial response to a
step change is in the opposite direction to that of the steady-state direction, originated
from two parallel competing dynamics can be found in industrial processes such as
distillation columns and chemical reactors. This non-minimum phase characteristics
impose severe limits to the achievable closed-loop control system robustness.

The application of the proposed MoReRT tuning procedure to inverse response
processes is presented in [1–3].

7.1 Introduction

The transfer function of these kinds of processes has one zero or an odd number of
zeros in the open right-half plane (RHP). It is common in the literature of process
control to assume a second-order transfer function with one RHP-zero. This is the
so-called second-order plus right-half plane zero (SOPRHPZ) model (5.3) rewritten
here as

P(s) = K(−bTs + 1)

(Ts + 1)(aTs + 1)
, θp = {K, T , a, b} . (7.1)

The reasons of using this model are that it contains the essential characteristics of
inverse response processes and it can be adopted to model higher order processes.
A process that can be described by a SOPRHPZ model constitutes one example of
a non-minimum-phase system (a process with dead-time is another example). The
essential characteristic of such processes is that they do not have the smallest phase
lag that is possible for processes with the same gain. This non-minimum-phase char-
acteristic introduces essential limitations in terms of achievable output performance.
The difficulties associated with the control of this kind of processes become bigger
when the corresponding RHP-zero approaches the origin. An important limitation
due to the presence of RHP-zeros is the high-gain instability.

© Springer International Publishing Switzerland 2016
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Note that in this case the process model already has four parameters. In order to
keep complexity under reasonable limits, no dead-time is assumed here as it will
introduce an extra parameter therefore making the corresponding analysis really
difficult and messy.

7.2 Proportional Integral Control

For the SOPRHPZ model, the PI control system is of third-order and the global
control system output target yt(s) (4.7) is computed as

yt(s) = −bTs + 1

(τcTs + 1)(aτcTs + 1)
r(s) + (Ti/Kp)s(−bTs + 1)

(τcTs + 1)2(aτcTs + 1)
d(s), (7.2)

where τc is the dimensionless design parameter.
The controller-normalized parameters (κp, τi, β) depend on the twomodel dimen-

sionless parameters a and b and are obtained for right-half plane zero relative posi-
tions b in the range from 0.25 to 4.0 and time constants ratios a from 0.1 to 1.0.

It is to be noted that the position of the right-half plane zero affects the robustness
level that may be achieved. Roughly MS = 2.0 may be obtained up to b ≈ 4.0,
MS = 1.8 up to b ≈ 3.5, MS = 1.6 up to b ≈ 2.25 and MS = 1.4 only up to
b ≈ 1.25. However to top it all, for higher values in above b ranges the controller
gains turn to be very low, with up to a 20 : 1 ratio between the highest and lowest
values. Then, to obtain the controller-tuning relations, the zero relative position b
was selected from 0.25 to 1.0, 1.5, 2.0, and 2.5 for Mt

S = 1.4, 1.6, 1.8, and 2.0,
respectively.

The PI2 controller parameters obtained are used to fit the MoReRT equations for
the normalized controller parameters and the proportional set-point weight for each
one of the five model time constants ratios a considered, given by

κp = a0 + a1ba2 , (7.3)

τi = b0 + b1b

b2 + b3b + b4b2 + b5b3 + b6b4
, (7.4)

β = c0 + c1b + c2b2 + c3b3. (7.5)

Constants ai, bi and ci for expressions (7.3)–(7.5) are listed in Tables7.1, 7.2, 7.3,
7.4 and 7.5 [1] for four robustness target levels (Mt

S ∈ {1.4, 1.6, 1.8, 2.0}) and five
model time constants ratios (a ∈ {0.1, 0.25, 0.5, 0, 75, 1.0}).

Tuning equations (7.3)–(7.5) are valid only for models with the right-half plane
zero relative position b in the ranges listed in Table7.6.

http://dx.doi.org/10.1007/978-3-319-28213-8_4
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Table 7.1 MoReRT constants, SOPRHPZ models with a = 0.1

Mt
S 1.4 1.6 1.8 2.0

a0 −0.2695 −0.1025 −0.06981 −0.06552

a1 0.5152 0.4652 0.5104 0.5677

a2 −0.6464 −0.8149 −0.8569 −0.8571

b0 0.7881 −1.265 −2.702 −0.1015

b1 −0.3003 12.93 92.63 8.507

b2 0.8813 −0.7519 3.644 −0.1015

b3 −1.358 10.5 66.85 6.066

b4 2.784 0.8086 12.57 1

b5 −2.728 1 1 0

b6 1 0 0 0

c0 0.3596 0.1708 0.464 0.4845

c1 2.403 1.082 0.7584 0.5218

c2 −2.442 −0.4081 −0.1539 −0.1766

c3 1.537 0.1708 0.04236 0

Table 7.2 MoReRT constants, SOPRHPZ models with a = 0.25

Mt
S 1.4 1.6 1.8 2.0

a0 −1.196 −0.2394 −0.1668 −0.1283

a1 1.404 0.6029 0.6198 0.648

a2 −0.2819 −0.6394 −0.7079 −0.7502

b0 1.872 −1.061 −0.1773 0.7155

b1 −1.511 7.798 33.98 7.639

b2 1.705 −0.8034 1.196 1.10

b3 −2.222 6.258 23.34 5.665

b4 2.966 −0.2579 3.007 1

b5 −3.002 1 1 0

b6 1 0 0 0

c0 0.4325 0.4974 0.4896 0.5023

c1 2.144 0.9227 0.6414 0.4363

c2 −2.434 −0.3466 −0.1187 0

c3 1.827 0.1798 0.04156 0

The robustness obtained with (7.3) and (7.4) for SOPRHPZ models are shown
in Fig. 7.1 for the particular case of models with a time constant ratio a = 0.25 and
right-half plane zero positions b in the ranges where tuning relations are valid for.
Robustness accomplishment for other a values are shown in [1].
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Table 7.3 MoReRT constants, SOPRHPZ models with a = 0.50

Mt
S 1.4 1.6 1.8 2.0

a0 −1.46 −0.4883 −0.356 −0.2266

a1 1.667 0.876 0.8524 0.799

a2 −0.2298 −0.4642 −0.5458 −0.6399

b0 9.525 7.481 1.364 1.293

b1 −8.302 −2.218 5.781 9.085

b2 7.048 5.899 1.247 1.349

b3 −6.696 −4.889 2.889 4.738

b4 4.844 6.401 1 1

b5 −4.762 −4.198 0 0

b6 1 1 0 0

c0 0.3617 0.5068 0.4807 0.4812

c1 2.419 0.6795 0.4604 0.3559

c2 −3.262 −0.1772 0 0

c3 2.401 0.1139 0 0

Table 7.4 MoReRT constants, SOPRHPZ models with a = 0.75

Mt
S 1.4 1.6 1.8 2.0

a0 −2.225 −0.4887 −0.3895 −0.3224

a1 2.456 0.9172 0.9365 0.9593

a2 −0.1607 −0.4531 −0.5159 −0.5687

b0 0.6535 6.43 2.705 1.684

b1 0.1825 8.407 7.026 12.12

b2 0.4613 4.614 1.98 1.518

b3 −0.2916 1.685 3.024 5.597

b4 1.57 6.293 1 1

b5 −1.934 −3.449 0 0

b6 1 1 0 0

c0 0.345 0.5041 0.4598 0.4558

c1 2.137 0.4243 0.3662 0.2848

c2 −2.837 0.05332 0 0

c3 1.96 0 0 0

Evaluation of MoReRT Controllers

As an example of the MoReRT control of an inverse response process, consider the
SOPRHPZ model given by the transfer function:

P(s) = −0.80s + 1

(s + 1)(0.4s + 1)
. (7.6)
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Table 7.5 MoReRT constants, SOPRHPZ models with a = 1.0

Mt
S 1.4 1.6 1.8 2.0

a0 −2.486 −0.5199 −0.447 −0.406

a1 2.765 0.9989 1.056 1.117

a2 −0.141 −0.4339 −0.4864 −0.5237

b0 11.54 −2.739 2.733 2.647

b1 −2.237 18.01 10.61 16.11

b2 6.451 −1.431 1.869 2.053

b3 −0.446 9.672 4.295 6.579

b4 0.1767 −0.3029 1 1

b5 1 1 0 0

b6 0 0 0 0

c0 0.4901 0.423 0.4358 0.4281

c1 0.8543 0.5706 0.2882 0.2282

c2 −0.6064 −0.2504 0 0

c3 0.5362 0.1038 0 0

Table 7.6 Admissible SOPRHZ models b ranges

Mt
S 1.4 1.6 1.8 2.0

bmin 0.25 0.25 0.25 0.25

bmax 1.0 1.5 2.0 2.5

Fig. 7.1 MoReRT PI
controllers robustness
accomplishment for
second-order plus right-half
plane zero models (a = 0.25)
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Table 7.7 Inverse response model example, PI2 controller parameters

Mt
S Kp Ti β

1.4 0.297 1.006 1.471

1.6 0.472 1.243 1.188

1.8 0.588 1.340 1.183

2.0 0.672 1.388 1.173

Table 7.8 Inverse response model example, robustness, performance, and control effort indices

Mt
S MS Jer/Δr Jed/Δd T Vur/Δr T Vud/Δd

1.4 1.40 2.923 3.756 1.000 1.236

1.6 1.61 2.401 3.013 1.117 1.377

1.8 1.82 2.044 2.676 1.541 1.486

2.0 1.99 1.988 2.471 1.957 1.682

The PI2 controller parameters for (7.6) are listed in Table7.7. Please not that in
this case all set-point proportional weights β > 1.

Table7.8 lists the robustness (MS), performance (Je), and control effort total vari-
ation (T Vu) obtained for the four target robustness levels (Mt

S) to a set-point step
change (Δr) and a disturbance step change (Δd). These data show the trade-offs
between the control system robustness, its performance, and the control effort. An
increment in the control system target robustness (reducing Mt

S) reduces its perfor-
mance (increases Jer and Jed) but made the control effort smoother (reduces T Vur

and T Vud).
The corresponding closed-loop responses to a 20% set-point followed by a 10%

disturbance step change are shown in Fig. 7.2.

7.3 Proportional Integral Derivative Control

7.3.1 2DoF Ideal PID with Filter

The application of MoReRT design to 2DoF Ideal PID with filter controllers for
inverse response processes is presented in [3].

Now, the control system of a SOPRHPZ (5.3) with the PID2F (2.1) controller is
of fourth order. Taking into consideration the results from Sect. 6.2.3, the regulatory
control closed-loop transfer function target (4.15) is selected with two underdamped
dominant poles given by

Mt
yd(s) = (T∗

i /K∗
p )(Tf s + 1)s(−bTs + 1)

(τ 2
c T 2s2 + 2ζ τcTs + 1)(τcTs + 1)(aτcTs + 1)

, (7.7)

http://dx.doi.org/10.1007/978-3-319-28213-8_5
http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_4
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Fig. 7.2 Inverse response model example, control system responses

where the closed-loop poles target damping ratio ζ and relative speed τc are the
design parameters.

Selecting Tf = τcT in order to cancel the slowest closed-loop pole reduces (7.7)
to the following third-order regulatory control closed-loop transfer function target

Mt
yd(s) = (T∗

i /K∗
p )s(−bTs + 1)

(τ 2
c T 2s2 + 2ζ τcTs + 1)(aτcTs + 1)

= (−bTs + 1)

(τ 2
c T 2s2 + 2ζ τcTs + 1)

(T∗
i /K∗

p )s

(aτcTs + 1)
. (7.8)

Using (7.8) the obtained servo-control closed-loop transfer function target (4.18)
is

Mt
yr(s) = (β∗T∗

i s + 1)(−bTs + 1)

(τ 2
c T 2s2 + 2ζ τcTs + 1)(aτcTs + 1)

. (7.9)

To locate the controller zero to the left of the underdamped closed-loop poles the
proportional set-point weight is selected as β∗ → τcT/T∗

i . Then, the servo-control
closed-loop transfer function target is given by

Mt
yr(s) = (τcTs + 1)(−bTs + 1)

(τ 2
c T 2s2 + 2ζ τcTs + 1)(aτcTs + 1)

= (−bTs + 1)

(τ 2
c T 2s2 + 2ζ τcTs + 1)

(τcTs + 1)

(aτcTs + 1)
. (7.10)

http://dx.doi.org/10.1007/978-3-319-28213-8_4
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Using (7.8) and (7.10) the closed-loop control system total response target is
stated as

yt(s) = (τcTs + 1)(−bTs + 1)

(τ 2
c T 2s2 + 2ζ τcTs + 1)(aτcTs + 1)

r(s)

+ (T∗
i /K∗

p )s(−bTs + 1)

(τ 2
c T 2s2 + 2ζ τcTs + 1)(aτcTs + 1)

d(s). (7.11)

The performance analysis of the control system responses obtained using target
damping ratios ζ from 1.0 to 0.6 shows that the highest performance improvement,
measured with the integrated absolute error JeT , is obtained, as previously with PI
controllers, using ζ ≈ 0.8 but with an increase of the control effort total variation
T VuT .

For ζ = 0.8 and each robustness target level the controller dimensionless para-
meters (5.12) are found for right-half plane zero positions b in the range from 0.1 to
3.0 and model time constants ratio a in the range from 0.1 to 1.0.

From the optimization data, it is to be noted that the position of the right-half
plane zero constrains the robustness level that may be achieved. Additionally, high b
values made the controller derivative time to drop fast towards zero. Taking this into
account, for the analysis, the position of the model right-half plane zero is taken in
the range from 0.1 to 2.6 for robustness target level Mt

S = 2.0 and from 0.1 to 1.15
for Mt

S = 1.6.
The SOPRHPZ is dependent on two parameters, the right-half plane zero position

b and the model time constants ratio a. This implies that the tuning rule becomes
now a surface instead of a curve. Therefore, for each robustness level we will have
to fit a surface. Using a surface fitting techniques the obtained controller parameter
are used to fit the PID2F MoReRT equations for SOPRHPZ models. For the target
robustness level Mt

S = 2.0 the surface is given by

{κ∗
p , τ ∗

i , τ ∗
d , τf , β

∗} = c0 + c1 a + c2 b + c3 a b + c4 b2 + c5 a b2 + c6 b3,

(7.12)

http://dx.doi.org/10.1007/978-3-319-28213-8_5
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Table 7.9 MoReRT tuning constants, SOPRHPZ models, Mt
S = 2.0

κ∗
p τ ∗

i τ ∗
d τf β∗

c0 3.808 0.8608 0.2728 0.316 0.4172

c1 0.4111 0.988 0.4044 0.1914 −0.08662

c2 −6.217 1.599 0.4831 1.082 0.2333

c3 −0.3489 0.03134 0.09845 −0.01138 −0.05651

c4 4.25 −0.9303 −0.3138 −0.4785 −0.07367

c5 0.09239 −0.06749 −0.0327 −0.03542 0.01223

c6 −0.9784 0.2252 0.06335 0.1128 0.01114

Table 7.10 MoReRT tuning constants, SOPRHPZ models, Mt
S = 1.6

κ∗
p τ ∗

i τ ∗
d τf β∗

c0 3.042 1.079 0.3174 0.4545 0.4418

c1 −0.07878 1.121 0.4253 0.2903 −0.08582

c2 −4.409 1.355 0.4505 1.042 0.2538

c3 0.1679 −0.26 −0.03513 −0.189 −0.07043

c4 2.153 −0.4896 −0.3367 −0.1696 −0.0276

and for Mt
S = 1.6 given by

{κ∗
p , τ ∗

i , τ ∗
d , τf , β

∗} = c0 + c1 a + c2 b + c3 a b + c4 b2. (7.13)

where the ci constants in (7.12) and (7.13) are presented in Tables7.9 and 7.10 [3],
respectively. Tuning relations (7.12) (Mt

S = 2.0) are valid for zero relative position b
in the range from 0.25 to 2.0 and tuning relations (7.13) (Mt

S = 1.6) for b from 0.25
to 1.0.

Controller High-Frequency Gain and Measurement Noise Filtering

From (2.21) the controller high-frequency gain is

KPID2F∞
.= ∣∣Cy(jω)

∣∣
ω→∞ = K∗

p T∗
d

T∗
f

, (7.14)

and in normalized form

κPID2F∞ = κ∗
p τ ∗

d

τ ∗
f

. (7.15)

http://dx.doi.org/10.1007/978-3-319-28213-8_2
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Fig. 7.3 PID2F /PI2 performance and control effort total variation relation for Mt
S = 2.0. Jen =

JePID/JePI , T Vun = T VuPID/T VuPI

The MoReRT PID2F controllers normalized high frequency is very low [3],
κPID2F∞ ≤ 2 in all cases except for b ≤ 0.15 + 0.30a (Mt

S = 2.0).
This characteristic will improve the measurement high-frequency noise filtering.

Controllers Performance Comparison

The characteristics of the two-degree-of-freedom PID controller with filter (PID2F)
tuning presented above for second-order inverse response controlled processes is
compared with the corresponding to the two-degree-of-freedom PI controller (PI2)
tuning described in Sect. 7.2 for the same processes.

Figure7.3 shows the PID2F to PI2 performance, measured with the integrated
absolute error, and control effort total variation relations for three SOPRHPZ model
time constants ratios a ∈ {0.1, 0.5, 1.0} and robustness target level Mt

S = 2.0.
Comparison forMt

S = 2.0with othermodel time constants ratios a and for robustness
target level Mt

S = 1.6 are presented in [3].
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Although indices depend on the model parameters a and b, the control system
operation (servo- or regulatory control), and the robustness level it can be said that,
in general, the PID2F controllers produce control systems with higher performance,
under the integrated absolute error metric, but at the same time with more variability
in their control signal.

For the Mt
S = 2.0 level the PID2F controllers provide an average of 7.8% (regu-

latory control) and 10.5% (servo-control) performance increase with 2.3 and 11.8%
higher total variation of control effort, respectively. For the Mt

S = 1.6 level the corre-
sponding average figures are 8.8 and 13.7%more performance with 1.04 and 19.4%
more control effort variability.

If a general comment needs to be given, and based on the performance indices
only, the use of the PID2F controllers is recommended in all cases for the inverse
response models considered.

7.3.2 2DoF Ideal PID with Two Input Filters

The application of the MoReRT tuning methodology to tune PI and PID controllers
aggregatedwith to input filters introduced in Sect. 2.4 to control a SOPRHPprocesses
is presented in [2].

In this case, the regulatory control closed-loop target transfer function is selected
as

Mt
yd(s) = (1/Ki)s(−bTs + 1)

(τ 2
c T 2s2 + 2ζ τcTs + 1)(aτcTs + 1)

. (7.16)

From a case analysis (models (7.1) with 0.1 ≤ a ≤ 1.0 and 0.1 ≤ b ≤ 2.0) it
is found that the minimum target robustness Mt

S = 2.0 can be obtained in all cases
even if the closed-loop poles damping ratio ζ is decreased to 0.7, but the intermediate
robustness Mt

S = 1.6 for ζ < 1 can be obtained only if b is very low.
For closed-loop transfer functions (7.16) with ζ = 1.0 the target robustness can

be guaranteed for right-half plane zero relative positions from 0.1 to the bmax listed
in Table7.11.

As can be seen the PI2IF controller allows one to obtain robust control system for
a wider range of inverse response models.

Table 7.11 Model non-minimum phase zero position

PI2IF PID2IF

Mt
S 2.0 1.6 2.0 1.6

bmax 6.5 2.8 4.8 2.1

http://dx.doi.org/10.1007/978-3-319-28213-8_2
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Table 7.12 PI(D)2IF parameters and performance

PI2IF PID2IF

Mt
S 2.0 1.6 2.0 1.6

Kp 0.1844 0.1229 0.2166 0.1710

Ki 0.05953 0.04685 0.07158 0.05900

Kd 0.0 0.0 0.1710 0.1241

Tf 0.2302 0.2852 0.2186 0.2518

Tr 3.0976 2.6233 3.0260 2.8983

σ 1.7739 2.1592 1.6366 1.8506

γ 0 0 0 0

Jed 20.235 24.558 17.689 20.412

T Vud 1.653 1.345 2.200 1.775

Emax 2.931 2.783 2.397 2.463

Jer 6.377 6.989 6.512 6.890

T Vur 0.438 0.382 0.395 0.391

Umax 0.378 0.358 0.364 0.362

Evaluation of MoReRT Controllers

Consider the second-order plus right-half plane zero model frequently used for con-
trollers test given by the transfer function:

P(s) = 3(−2s + 1)

(2s + 1)(s + 1)
, a = 2, b = 1. (7.17)

The PI2IF and PID2IF controllers parameters are listed in Table7.12. This table
also lists the performance and control effort usage with these controllers.

Control system responses to a 10%set-point change followedby a 5%disturbance
step change are shown in Fig. 7.4.

As the table and figure show all the responses are very similar, but for same
robustness level better regulatory control performance (Jed , Emax) is obtained with
the PID2IF controller than with the PI2IF .

Increasing the closed-loop system target robustness from Mt
S = 2.0 to Mt

S = 1.6
reduces the regulatory control performance (increase Jed) 21% (PI) and 15% (PID).

Chapter Remarks

Tuning relationswith two robustness levels,Mt
S ∈ {2.0, 1.4} for proportional integral

(PI) controllers to control inverse response processes represented by SOPRHPZ
models are obtained. The non-minimum phase zero position imposes constraints
to the achievable robustness. These limitations become higher as the zero moves
towards the origin (the model zero relative position b increases).
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Fig. 7.4 Inverse response model example, control system responses

It is shown that using a two-degree-of-freedom ideal PID controller with filter
(PID2F), more performance, measured with the integrated absolute error, is obtained
in comparison with the performance obtained with a two-degree-of-freedom PI con-
troller.

Aggregating the PID controller with two input filters (set-point and feedback
signal filters) provides two additional useful features: high-frequency roll-off and
lack of control effort abrupt changes. The addition of these two filters also expands
the range of the non-minimum phase models (a wide b range) that can be robustly
controlled.

As with the PID2F to PI2F performance relation the PID2IF provides more regu-
latory control performance than the PI2IF .
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Chapter 8
MoReRT Control of Integrating Processes

Even though most of the controlled processes found in the process industry are self-
regulating, that is, the process output seeks a stable operating point under a constant
input, there are others that under a constant input their output is unbounded, rise or
decrease without limit. These non self-regulated processes are called integrating or
unstable if their model transfer functions have poles at the s-plane origin or at its
right-half plane, respectively. Stable processes with very long time constants may
also be approximated by integrating models.

Integrating andunstable processesmaybeoperated only under closed-loop control
and their controller tuning needs a special treatment.

The extension of the MoReRTmethodology to integrating plus dead-time (IPDT)
and integrating second-order plus dead-time (ISOPDT) models is presented in [1, 2]
for PI controllers and in [3] for the PID2IF .

8.1 Introduction

For the integrating processes two models are considered: the integrating second-
order plus dead-time (ISOPDT) model, and the integrating plus dead-time (IPDT)
model. In both cases the process model transfer function includes an integrator and a
dead-time but, in the first case, the extra pole allows a better description of the initial
transient dynamics of the open-loop response. In fact, after a short time, because of
the integrating nature of the process, the responsewill evolve in an identical divergent
way. Therefore what is interesting for control is to catch the dynamics during the
transient. As an example, Fig. 8.1 shows an integrating process step response and
those of an IPDT and ISOPDT model. It is seen that ISOPDT models are able to
better capture the initial transient dynamics.

© Springer International Publishing Switzerland 2016
V.M. Alfaro and R. Vilanova, Model-Reference Robust Tuning of PID Controllers,
Advances in Industrial Control, DOI 10.1007/978-3-319-28213-8_8
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Fig. 8.1 Integrating process
and their IPDT and ISOPDT
models
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8.2 Integrating Second-Order Plus Dead-Time Models

The integrating second-order plus dead-time (ISOPDT) model (5.5) is rewritten here
as

P(s) = Ke−Ls

s(Ts + 1)
. (8.1)

Its normalized model (5.6) has only one parameter, τL. Controller normalized
parameters can be obtained as function of τL and the target control system robustness
level Mt

S .

8.2.1 2DoF Proportional Integral Control

For the derivation of the 2DoFPI control tuning relations, two caseswill distinguished
in terms of the specified target responses: overdamped target responses and under-
damped responses.

Overdamped Target Responses

The proportional integral (PI2) control of (8.1) is of third order. Then, the non-
oscillatory global control system output target yt(s) (4.7) is computed as

http://dx.doi.org/10.1007/978-3-319-28213-8_5
http://dx.doi.org/10.1007/978-3-319-28213-8_5
http://dx.doi.org/10.1007/978-3-319-28213-8_4
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yt(s) = e−Ls

(τcTs + 1)2
r(s) + (Ti/Kp)se−Ls

(τcTs + 1)3
d(s). (8.2)

The PI2 controller parameters obtained following the optimization procedure
stated in Chap.4 are used to fit the 2DoF PI controller normalized parameters equa-
tions as functions of the controlled process model (8.1) parameter and of the design
robustness Mt

S specified and given by

κp = a0 + a1τL

a2 + a3τL + τL
2
, (8.3)

τi = b0e
b1τL + b2e

b3τL , (8.4)

β = c0 + c1τL + c2τL
2. (8.5)

The ai, bi and ci constants for relations (8.3)–(8.5) for four robustness target levels
(Mt

S ∈ {1.4, 1.6, 1.8, 2.0}) are listed in Table8.1 [1].
The robustness obtained with (8.3) and (8.4) for ISOPDT models is shown in

Fig. 8.2. As can be seen all the robustness profiles are nearly flat. This means that for
an ISOPDT model of a controlled process the MoReRT tuning guarantees that the
robustness target is attained for all normalized dead-times in the range considered.
It is important to note that other available robust tuning rules for ISOPDT models do
not produce control systems with a constant robustness level on their applicability
range. Robustness evaluations are presented in [1].

Table 8.1 MoReRT constants, ISOPDT models, overdamped target responses

Mt
S 1.4 1.6 1.8 2.0

a0 0.4141 0.3781 0.3335 0.4156

a1 0.3126 0.4085 0.4826 0.5484

a2 0.9140 0.5324 0.3363 0.3317

a3 2.402 1.864 1.519 1.567

b0 18.38 12.77 10.27 9.123

b1 0.2110 0.2408 0.2637 0.2735

b2 –11.08 –7.192 –5.589 –4.978

b3 –0.4811 –0.6446 –0.8042 –0.8900

c0 0.3331 0.3336 0.3305 0.3257

c1 –0.03254 –0.03273 –0.02941 –0.002441

c2 0.007548 0.00713 0.005826 0.004094

http://dx.doi.org/10.1007/978-3-319-28213-8_4
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Fig. 8.2 MoReRT PI
controllers robustness
accomplishment for
integrating second-order plus
dead-time models
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Under-Damped Target Responses

It is shown in [2] that if the target closed loop responses for the PI2 control of an
ISOPDT process are take as

yt(s) = e−Ls

τ 2
c T 2s2 + 2ζ τcTs + 1

r(s)+ (Ti/Kp)se−Ls

(τ 2
c T 2s2 + 2ζ τcTs + 1)(τcTs + 1)

d(s), (8.6)

with a closed-loop poles damping ratio ζ = 0.80, it is possible to improve the control
system performancemeasuredwith the integrated absolute error without a significant
increment in the control effort total variation.

In this case the normalized controller parameters can be obtained with the follow-
ing equations:

κp = a0 + a1τL

a2 + a3τL + τL
2
, (8.7)

τi = b0e
b1τL + b2e

b3τL , (8.8)

β = c0 + c1τL

c2 + τL
. (8.9)
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Table 8.2 MoReRT constants, ISOPDT models, under-damped target responses

Mt
S 1.4 1.6 1.8 2.0

a0 0.1040 0.1365 0.3886 1.0730

a1 0.2800 0.3740 0.4670 0.5955

a2 0.2539 0.2092 0.4455 0.9721

a3 1.1970 1.1410 1.7280 3.3320

b0 16.6700 10.9800 9.7360 8.3220

b1 0.2070 0.2533 0.2477 0.2708

b2 –10.0600 –5.9460 –5.4550 –4.5330

b3 –0.4497 –0.6769 –0.6914 –0.8444

c0 0.4673 0.5192 0.5853 0.6714

c1 0.3093 0.3001 0.2927 0.2860

c2 1.2150 1.3490 1.5360 1.7870

Table8.2 [2] lists the ai, bi and ci constants for (8.7)–(8.9) for four robustness
levels.

8.2.2 2DoF PI Controller with Two Input Filters

From the performance analysis made in [3] using a PI2IF controller (see Sect. 2.4) it
is found that a reduction of the closed-loop poles damping ratio worsens the control
system performance. Then, a damping ratio ζ = 1 is used for the controller design.

Normalized parameters (5.13) for robust tuning of PI2IF controllers for ISOPDT
models with 0.1 ≤ τL ≤ 2.0 can be obtained with following relations for Mt

S = 2.0

κp = 0.5163 + 0.5095τL

0.5788 + 2.099τL + τ 2
L

, (8.10)

κi = 0.09323

0.5438 + 2.302τL + τ 2
L

, (8.11)

τf = 0.1407 + 0.1687τ 0.8976
L , (8.12)

τr = 5.603 + 5.829τL, (8.13)

σ = 1.393 + 2.379τL + 1.215τ 2
L

0.9866 + 1.991τL + τ 2
L

, (8.14)

and for Mt
S = 1.6 with

http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_5
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κp = 0.2461 + 0.3372τL

0.5108 + 1.672τL + τ 2
L

, (8.15)

κi = 0.04682

0.7068 + 2.192τL + τ 2
L

, (8.16)

τf = 0.2163 + 0.2416τ 0.9322
L , (8.17)

τr = 7.528 + 7.663τL, (8.18)

σ = 8.773 + 15.53τL + 1.197τ 2
L

6.847 + 13.13τL + τ 2
L

. (8.19)

Set-point filter parameters in (8.13) and (8.14) and in (8.18) and (8.19) are obtained
selecting τr = κp/κi and σ such that the integrated absolute error (3.7) is optimized.

8.3 Integrating Plus Dead-Time Models

Integrating and overdamped processes with very large time constants can also be
approximated by an integrating plus dead-time (IPDT)model given by the following:

P(s) = Ke−Ls

s
, (8.20)

were K is the gain and L the dead-time. The controlled process parameters are
θp = {K, L}.

8.3.1 Proportional Integral Control

In this case, the PI control system is of second-order and the overdamped closed-loop
control controlled variable target (4.7) is selected as

yt(s) = e−Ls

τcLs + 1
r(s) + (Ti/Kp)se−Ls

(τcLs + 1)2
d(s), (8.21)

where τc is the design parameter.
As the integrated plus dead-time controlled process (8.20) normalizedmodel (5.8)

does not have any variable parameter just one optimization run is required for each
robustness target level.

http://dx.doi.org/10.1007/978-3-319-28213-8_3
http://dx.doi.org/10.1007/978-3-319-28213-8_4
http://dx.doi.org/10.1007/978-3-319-28213-8_5
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In the same way as with the ISOPDT model, during the optimization process, the
closed-loop relative speed parameter τc is selected in such a way that the robustness
level of the resulting closed-loop system met a specific target (Mt

S) in the range from
1.4 to 2.0. The controller parameters are obtained directly as functions of only the
closed-loop control system robustness.

The MoReRT PI2 tuning equations for the IPDT models are as follows:

κp = a, (8.22)

τi = b, (8.23)

β = c. (8.24)

Constants a, b and c for (8.22)–(8.24) for robustness targetMt
S ∈ {1.4, 1.6, 1.8, 2.0}

are listed in Table8.3 [1]. Relations (8.22)–(8.24) are valid for IPDT models with
any nonzero dead-time.

For the case of under-damped target responses they are selected as

yt(s) = (τcLs + 1)e−Ls

τ 2
c L2s2 + 2ζ τcLs + 1

r(s) + (Ti/Kp)e−Ls

τ 2
c L2s2 + 2ζ τcLs + 1

Ld(s). (8.25)

The closed-loop poles damping ratio is selected as ζ = 0.8.
For the under-damped target response constants a, b and c for (8.22)–(8.24) for

robustness target Mt
S ∈ {1.4, 1.6, 1.8, 2.0} are listed in Table8.4 [2].

Table 8.3 MoReRT constants, IPDT models, overdamped target responses

Mt
S 1.4 1.6 1.8 2.0

a 0.322 0.442 0.528 0.599

b 10.636 7.885 6.579 5.823

c 0.452 0.434 0.419 0.406

Table 8.4 MoReRT constants, IPDT models, under-damped target responses

Mt
S 1.4 1.6 1.8 2.0

a 0.312 0.415 0.498 0.566

b 8.086 6.217 5.320 4.802

c 0.544 0.516 0.495 0.477
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Table 8.5 PI(D)2IF tuning constants for IPDT models

Mt
S PI2IF PID2IF

2.0 1.6 2.0 1.6

a 0.4579 0.2991 0.6955 0.4738

b 0.0751 0.0340 0.1825 0.0895

c 0 0 0.3909 0.2902

d 0.2662 0.4320 0.1876 0.2863

e 6.0972 8.7972 3.8110 5.2939

f 1.1847 1.1945 1.0786 1.1140

8.3.2 2DoF PID Controllers with Two Input Filters

In this case, controller optimization is made in two steps. First, using the regulatory
closed-loop transfer function target PI and PID controllers with a feedback filter are
obtained for two robustness target levels.

The regulatory control target transfer function is

Mt
yd(s) = (1/Ki)se−Ls

τ 2
c L2s2 + 2ζ τcLs + 1

, (8.26)

with ζ = 0.80 for the PI controller and ζ = 0.70 for the PID.
In the second step, and with above parameters at hand, the set-point filter para-

meters are obtained. The filter time constant is computed as Tr = Kp/Ki and σ is
selected to improve the servo-control integrating absolute error Jer .

For robust tuning of PI2IF and PID2IF controllers for IPDTmodels the normalized
parameters (5.17) are determined by the following simple relations:

κp = a, (8.27)

κi = b, (8.28)

κd = c, (8.29)

τf = d, (8.30)

τr = e, (8.31)

σ = f , (8.32)

γ = 0. (8.33)

Table8.5 [3] list the a, b, c, d, e, and f constants for (8.27)–(8.32) for the two
robustness levels.

http://dx.doi.org/10.1007/978-3-319-28213-8_5
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8.4 Analysis of MoReRT Controllers

In order to exemplify the concrete application of the MoReRT methodology, some
examples are presented in what follows. The examples will also serve the purpose of
comparing the application of a PI or a PID controller, therefore allowing to evaluate
the different performance levels that can be achieved under the same robustness.

8.4.1 PID2IF Comparison for Integrating First-Order Process

For evaluating purposes, the distillation column bottom level control manipulating
the steam flow rate is used where the process model is given by the transfer function:

P3(s) = 0.2e−7.4s

s
. (8.34)

Table8.6 lists the robustness, performance, and control effort variation obtained
using PI2IF and PID2IF .

From this table it can be seen that for both robustness levels the PID2IF has the
highest regulatory control performance, lowest Jed , smoothest control effort, lowest
T Vud , and lowest maximum error, Emax. By design, the PI2IF and PID2IF controllers
do not have an output step to a set-point change and their control effort is very smooth.

Table 8.6 PI(D)2IF tuning constants for IPDT models

Mt
S PID2IF PI2

2.0 1.6 2.0 1.6

MS 2.001 1.600 1.998 1.599

K∞ 0 0 0.382 0.280

Jed 66.557 134.588 93.019 164.959

T Vud 1.689 1.589 1.919 1.639

Emax 2.126 2.663 2.676 3.168

Jer 30.178 41.433 19.639 25.568

T Vur 0.398 0.251 0.550 0.386

	u0 0.0 0.0 0.182 0.145

Umax 0.188 0.118 0.262 0.190
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8.4.2 Control of an Integrating Third-Order Process

As an example of the MoReRT tuning for integrating processes, consider the inte-
grating third-order transfer function:

P(s) = 0.833e−0.2s

s(0.833s + 1)(0.1s + 1)
. (8.35)

For tuning purposes the controlled process model (8.35) is approximated by fol-
lowing ISOPDT and IPDT models:

P(s) ≈ 0.833e−0.353s

s(0.780s + 1)
≈ 0.833e−1.133s

s
. (8.36)

Now, from the tunings obtained in this chapter, we will be able to compare the
control of process (8.35) on the basis of the simple (IPDT) and more complex model
(ISOPDT). One of the lessons to be learned is the benefit of using more complex
models as more information about the process dynamics is available.

PI2 Controllers

The MoReRT PI2 controller parameters (ζ = 0.8 tuning) for Mt
S ∈ {1.4, 1.6}

obtained with models (8.36) are listed in Table8.7 and the control system responses
to a 20% set-point step change followed by a –5%disturbance step change are shown
in Fig. 8.3.

Table8.7, includes the robustness (MS) resulting with the third-order controlled
process, that in practice can not be obtained. From the table it can be seen that the
robustness of the control systems with the controllers tuned by using the ISOPDT

Table 8.7 Integratingmodels example, controller parameters, robustness, performance, and control
effort indices

Model IPDT IPDT ISOPDT ISOPDT

Mt
S 2.0 1.6 2.0 1.6

Kp 0.600 0.440 0.769 0.506

Ti 5.441 7.044 4.925 6.191

β 0.477 0.516 0.358 0.364

MS 1.724 1.487 1.945 1.582

Jed 9.068 16.067 6.404 12.235

T Vud 1.847 1.649 2.065 1.726

Jer 3.195 4.007 3.165 4.011

T Vur 0.781 0.555 0.874 0.513

JeT 12.263 20.074 9.569 16.246

T VuT 2.629 2.205 2.939 2.239
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Fig. 8.3 Integrating model example, control system responses

model are closer to the design robustness level than the ones obtained with the
controllers tuned by using the IPDT model. This is interpreted as an indication
that the ISOPDT model provides a better representation of the controlled process
dynamics than the IPDT model.

The performance (Je) and control effort (T Vu) indices shown on Table8.7 were
obtained with unitary set-point and disturbance step changes.

At both robustness levels, the regulatory performance of the controllers tuned
with the ISOPDT model are higher that the ones obtained with the IPDT models and
with similar servo-control performance. On the other hand, the control effort total
variation is slightly higher for the controllers tuned with the ISOPDT model.

Comparison of MoReRT controllers for ISOPDT and IPDT models with other
tuning rules is presented in [1] for relations (8.3)–(8.5) obtained with overdamped
response targets and in [2] for relations obtainedwith under-damped response targets.

PID2IF Controller

For the ISOPDT model in (8.36) Table8.8 list the PID2IF controller parameters
for Mt

S ∈ {2.0, 1.6} and the regulatory and servo-control performance. If control
system robustness needs to be increased some performance is lost (Jed , Emax, and Jer

increase), but the control effort is smoother (T Vud , T Vur , and Umax decrease).
Figure8.4 shows the control system responses to a 20% set-point change followed

by a –10% disturbance step-change.
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Table 8.8 PID2IF controller parameters and performance

Mt
S 2.0 1.60

Kp 2.0201 1.3172

Ki 0.6099 0.3042

Kd 1.3896 0.9138

Tf 0.0977 0.1308

Tr 3.3122 4.3300

σ 1.1973 1.2097

γ 0 0

Jed 1.643 3.287

T Vud 1.610 1.488

Emax 0.472 0.701

Jer 3.050 3.913

T Vur 1.072 0.705

Umax 0.525 0.346
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Fig. 8.4 Example PID2IF control systems responses

Comparing PI2 (Table8.7) and PID2IF (Table8.8) regulatory control performance
for same robustness level, it is seen that the PID2IF can provide up to 390% more
performance than the PI2.
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Chapter Remarks

For processes with integrating characteristics represented by integrated plus dead-
time (IPDT) or integrated second-order plus dead-time (ISOPDT) models tuning
relations are obtained using overdamped target responses and four robustness levels.

Using closed-loop under-damped response targets an analysis of the closed-loop
poles damping ratio influence over the performance/control effort trade-off is made.
Improvements in performance obtained reducing the damping ratio depend on the
control system robustness and they turn smaller as the robustness level target is
increased.

Tuning relations for IPDTand ISOPDTare obtainedwith the recommendeddamp-
ing ratio, ζ = 0.8. These are valid for ISOPDT models with normalized dead-times
τL from 0.1 to 2.0. Relations for IPDTmodels are valid for any nonzero dead-time L.

Performance comparison using an integrating third-order process shows thatmore
performance is obtained withPI2 controllers tuned using the ISOPDTmodel approx-
imation than using the IPDTmodel. The use of the PIDwith two input filters (PID2IF)
provides even more regulatory performance, been this a better choice to control inte-
grating processes.
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Chapter 9
MoReRT Control of Unstable Processes

Previous chapter has considered the case of integrating processes. Integrating
processes are a special case of unstable processes where the unstable pole is located
at the origin. In process control, they are usually treated specifically as are repre-
sentative of particular dynamics. In this chapter, we will proceed with the generic
case of unstable processes. Open-loop unstable processes are presented in chemical
industrial systems and are known to be difficult to control particularly if they include
dead-time. The MoReRT methodology is applied to unstable controlled processes
in [1–3].

9.1 Introduction

The unstable processes are represented by a first-order model with a pole at the
right-half plane plus dead-time (UFOPDT) given by the following transfer function:

P(s) = K e−Ls

T s − 1
, (9.1)

where K is the gain, T the time constant, and L the process apparent dead-time. The
controlled process parameters are θp = {K , T, L}.

9.2 2DoF Proportional Integral Control

Proportional integral control system of first-order unstable processes is of second-
order.

In this case due to the constraints imposed by the unstable process characteristics,
it is not possible to obtain a first-order dynamics for the servo-control response

© Springer International Publishing Switzerland 2016
V.M. Alfaro and R. Vilanova, Model-Reference Robust Tuning of PID Controllers,
Advances in Industrial Control, DOI 10.1007/978-3-319-28213-8_9
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by selecting β → τcT/Ti as was made for first-order stable models. Then in the
UFOPDT model case, the global control system output target is computed as

yt (s) = (βTi s + 1)e−Ls

(τcT s + 1)2
r(s) + (Ti/K p)se−Ls

(τcT s + 1)2
d(s). (9.2)

The unstable controlled process normalizedmodel (5.10) has only one dimension-
less parameter, τL . For a given τL during the optimization procedure, the closed-loop
relative speed parameter τc is selected in such a way that the robustness level of the
resulting closed-loop system meets a specific target (Mt

S).
On the basis of the optimization results it is found that the dead-time of the unstable

processes imposes a severe constraint on the control system achievable robustness
level. A closed-loop control systems with high robustness of Mt

S = 1.4 can only
be obtainable for UFOPDT models with τL ≤ 0.10, the robustness Mt

S = 1.6 for
τL ≤ 0.15, the Mt

S = 1.8 for τL ≤ 0.20, and the robustness Mt
S = 2.0 for models

with τL ≤ 0.26. Robust control systems may be obtained for a very limited range of
unstable models.

Although the usual control systemminimum robustness level for stable processes
corresponds to MS = 2.0 in the unstable processes case the main control system
purpose is to stabilize the process. Then for the UFOPDT models, the robustness
level target is relaxed and the controller parameters are obtained for Mt

S in the range
from 2.0 to 6.0. The optimization also shows that for all cases the set-point weight
β = 0.

Then the P I2 controller parameters are obtained as functions of the model (9.1)
parameter and of the closed-loop control system robustness target Mt

S with following
relations:

κp = a0 + a1τL
a2 , (9.3)

τi = b0 + b1τL

b2 + b3τL + τL
2
, (9.4)

β = 0. (9.5)

The ai and bi constants for expressions (9.3) and (9.4) for five robustness levels,
Mt

S ∈ {2.0, 3.0, 4.0, 5.0, 6.0}, are listed in Table9.1 [1].
Relations (9.3)–(9.5) may only be used for models with normalized dead-times

in the ranges listed in Table9.2.
The robustness obtained with the MoReRT tuning Eqs. (9.3) and (9.4) are shown

in Fig. 9.1.

http://dx.doi.org/10.1007/978-3-319-28213-8_5
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Table 9.1 MoReRT constants

Mt
S 2.0 3.0 4.0 5.0 6.0

a0 –1.149 –0.5287 –0.5091 –0.4010 –0.3995

a1 0.9560 0.8898 0.9986 1.010 1.070

a2 –0.8468 –0.9564 –0.9525 –0.9684 –0.9559

b0 0.03242 0.004109 –0.03222 –0.01103 –0.0226

b1 0.0 2.90 4.722 3.008 3.237

b2 0.08534 0.8081 1.40 1.023 1.101

b3 –0.5698 –2.166 –3.10 –2.285 –2.347

Table 9.2 UFOPDT models τL ranges for PI control

Mt
S 2.0 3.0 4.0 5.0 6.0

τLmin 0.10 0.10 0.10 0.10 0.10

τLmax 0.25 0.35 0.45 0.50 0.55

Fig. 9.1 MoReRT PI
controllers robustness for
unstable first-order plus
dead-time models
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9.3 2DoF PID Controller with Filter

For unstable processes, the extension of the MoReRT tuning for 2DoF Ideal PID
with filter (PID2F ) (2.21) controllers is presented in [3].

The closed-loop transfer function of the PID2F control of unstable controlled
process (9.1) is of third-order. Then the target response is selected as

http://dx.doi.org/10.1007/978-3-319-28213-8_2
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Fig. 9.2 P I (D)2 controllers
maximum attainable
robustness for unstable
first-order plus dead-time
models
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yt (s) = (β∗T ∗
i s + 1)(T f s + 1)e−Ls

(τcT s + 1)3
r(s) + (T ∗

i /K ∗
p)(T f s + 1)se−Ls

(τcT + 1)3
d(s). (9.6)

As indicated above for the P I2 case, the dead-time of the unstable process models
impose severe constraints on the control system achievable robustness level and that
a robust control system, MS ≤ 2.0, may only be obtained for a very limited range of
unstable processes [1].

A comparison of the maximum robustness level attainable for unstable controlled
processes using P I2 controllers with target control system output (9.2) and PID2F

controllers with target control system output (9.6) is shown in Fig. 9.2. As can be
seen for models with low normalized dead-time, τL < 0.33, the PI controller is
capable to produce more robust control systems than the PID. On the other hand, for
normalized dead-times τL ≥ 0.33 the PID controller expands the range of models
that can be tuned with the same robustness level.

For the selection of the tuning parameters, the performance of thePID2F controller
tuned to obtain the maximum possible robustness (MS minimum) and three constant
robustness target levels (Mt

S ∈ {3.0, 4.0, 6.0}) is analyzed.
The results show that, if the control system over-damped output profile in (9.6) is

maintained, the unstable model normalized dead-time does not adversely affects the
performance and, more relevant, that in this case there is no performance/robustness
tradeoff. Increasing the closed-loop control system robustness the performance, mea-
sured with the integrated absolute error, increases (Je decreases), but the control
effort total variation increases. Then the highest performance is obtained with the
more robust design.
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The optimization also shows that for all the analyzed cases the proportional set-
point weight β∗ → 0. Then, for the unstable processes the PID2F output (2.21)
reduces to

u(s) = K ∗
p

{
1

T ∗
i s

[
r(s) −

(
1

T f s + 1

)
y(s)

]
−

(
T ∗

d s + 1

T f s + 1

)
y(s)

}
. (9.7)

Therefore, the resulting controller has only four adjustable parameters. For the
development of the proposed tuning rule for UFOPDT models, the PID2F controller
parameters that provide the maximum obtainable robustness are found.

The controller parameters obtained from the optimization procedure are used to
fit the controller parameter equations of the proposed MoReRT approach for PID2F

controllers applied to unstable first-order plus dead-time controlled processes.
The normalized PID2F controller parameters can be obtained with the following

equations:

κ∗
p = 3.611 − 2.603τ 0.5343

L , (9.8)

τ ∗
i = 2.886 + 50.09τ 4.663

L , (9.9)

τ ∗
d = 0.345τ 0.9933

L , (9.10)

τ f = 0.4337 − 0.2068τL

6.061 − 27.39τL + 100τ 2
L

, (9.11)

β∗ = 0, (9.12)

γ ∗ = 0. (9.13)

Relations (9.8)–(9.13) are valid for UFOPDT models with 0.1 ≤ τL ≤ 0.85.
The obtainable robustness with tuning parameters (9.8)–(9.11) can be estimated

using the following relation:

MS = 101.2 + 107.5τL − 219.3τ 2
L

72.07 − 79.71τL + τ 2
L

. (9.14)

Using thePID2F parameters and the conversion relations inChap. 2, the equivalent
2DoF Standard PID (PID2) controller normalized parameters can be obtained with
the following equations:

http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_2
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κp = 3.185 − 2.188τ 0.6658
L , (9.15)

τi = 2.857 + 50.01τ 4.645
L , (9.16)

τd = −0.3816 + 0.7151τ 0.4151
L , (9.17)

α = 3.013 − 2.794τL

0.894 − 26.03τL + 100τ 2
L

, (9.18)

β = 0, (9.19)

γ = 0. (9.20)

It is found that for models with normalized dead-time τL < 0.22, the equivalent
controller derivative filter constant α turns negative and that for 0.22 ≤ τL < 0.25
it is very high. This reduces the range of unstable models that can be robustly con-
trolled with the equivalent PID2 controller. Then, relations (9.15)–(9.20) are valid
for UFOPDT models with 0.25 ≤ τL ≤ 0.85.

9.4 2DoF PID Controllers with Two Input Filters

The first step to follow now is a verification of the maximum control system robust-
ness attainable with the P I2I F and PID2I F controllers [2]. This is shown in Fig. 9.3.

The attainable robustness levels are low in comparisonwith the best known picture
for stable processes. We have to constrain ourselves to higher values of MS . As an

Fig. 9.3 P I2 and PID2
controllers maximum
attainable robustness for
unstable first-order plus
dead-time models
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example for τL = 0.3 maximum robustness are MSmin = 3.88 (P I2I F , ζ = 1.0) and
MSmin = 2.06 (PID2I F , ζ = 0.6); for τL = 0.7 it is only MSmin = 4.78 (PID2I F ,
ζ = 0.5).

For a given process themaximum robustness with a P I2I F controller is obtainable
for the critical damped closed-loop poles (ζ = 1.0) but in all cases it is low than the
robustness obtained with the PID2I F .

For the PID2I F controller, it is possible to increase the control system robustness
for a given process and to extend the range of processes that can be controlled with
the same robustness reducing the closed-loop poles damping.

It is also found that if the closed-loop damping is reduced to a certain limit, the
control system robustness increases as well almost all other indices. Then in this
case, the maximum robustness (lower damping ratio) design procedure is recom-
mended [2].

Tuning of the normalized parameters for maximum robustness for unstable first-
order plus dead-time models with normalized dead-time 0.1 ≤ τL ≤ 1.0 obeys the
fallowing relations:

κp = 1

0.3866 + 0.5494τL − 0.0634τ 2
L + 0.0002184τ 3

L

, (9.21)

κi = 1

1.5422 − 4.9568τL + 22.1484τ 2
L

, (9.22)

κd = 0.07318 + 0.6722τ 0.646
L , (9.23)

τ f = 0.08649 + 0.1452τ 1.132
L , (9.24)

τr = 3.957 − 15.65τL + 55.41τ 2
L − 26.58τ 3

L , (9.25)

σ = 1.156 − 1.684τL + 3.562τ 2
L − 2.411τ 3

L , (9.26)

γ = 0. (9.27)

The obtainable robustness with tuning parameters (9.21)–(9.27) can be estimated
using the following relation:

MS = 1 + 1.4561τL

0.7656 − 0.2024τL − 0.3848τ 2
L + 0.0003126τ 3

L

. (9.28)
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9.5 Analysis of MoReRT Controllers

As an example of MoReRT control of unstable processes, consider the UFOPDT
model

P5(s) = e−0.2s

s − 1
. (9.29)

Next we will apply this to P I2 and PID2I F controller and see the attainable
performance and robustness with each option. This comparison provides some light
on the quite often stated question of when to use a PI or a PID controller.

9.5.1 P I2 Controller

Table9.3 lists the robustness (MS), performance (Je), and control effort total variation
(T Vu) obtained for five target robustness levels (Mt

S) to a set-point step change (Δr )
and a disturbance step change (Δd) of the MoReRT P I2 control of the unstable
model (9.29). Figure9.4 shows the corresponding responses to a 20% set-point step
change followed by a 10% load-disturbance step change for four robustness levels.

Comparison of MoReRT (9.3)–(9.5) for UFOPDTmodels with other tuning rules
is presented in [1].

9.5.2 PID2I F Controller

The PID2I F parameters in this example are listed in Table9.4, and the resulting
robustness and regulatory and servo-control performance in Table9.5.

The maximum obtainable robustness with the PID2I F controller for this process
(τL = 0.2) estimated with (9.28) is MS = 1.819 and MS = 1.83 is obtained. If
robustness is reduced to the usual minimum for stable process, MS = 2.0, all the
regulatory performance indices improve. They can be improved even more, with the
exception of T Vud , if the control system robustness is decreased more.

Table 9.3 Unstable model example, robustness, performance, and control effort indices

Mt
S MS Jed/Δd T Vud/Δd Jer /Δr T Vur /Δr

2.0 1.99 1.101 2.633 1.749 1.670

3.0 3.00 0.389 3.187 1.020 2.653

4.0 4.00 0.300 4.365 0.845 4.109

5.0 5.00 0.311 5.620 0.782 5.893

6.0 5.99 0.337 6.864 0.783 7.704
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Fig. 9.4 Unstable model example, P I2 control system responses

Table 9.4 PID2I F parameters

Mt
S Min 2.0 3.0

K p 2.025 2.974 4.625

Ki 0.696 1.807 5.609

Kd 0.311 0.380 0.520

T f 0.110 0.060 0.030

Tr 2.907 1.621 0.819

σ 0.963 1 1

γ 0 0 0

For the same unstable process (9.29), the PID2I F controller outperforms the P I2
controller in all indices except the control effort total variation to a set-point change.

Nyquist diagrams of PID2I F controllers for MSmin and Mt
S = 2.0 are shown in

Fig. 9.5.
The control system responses to a 20% set-point change followed by a 10%

disturbance step change are shown in Fig. 9.6.
Comparative analysis with other tuning rules for the control of unstable models

are presented in [3] (PID2F controllers) and [2] (PID2I F controllers).
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Table 9.5 PID2I F performance

Mt
S Min 2.0 3.0

MS 1.83 2.00 3.00

K ∞ 0 0 0

Jed 1.790 0.612 0.223

T Vud 3.055 2.317 2.805

Emax 0.725 0.434 0.311

Jer 1.849 1.172 0.715

T Vur 1.823 2.317 4.113

Umax 0.272 0.573 1.417
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Fig. 9.5 UFOPDT model example, PID2I F Nyquist diagram

Chapter Remarks

For UFOPDT models with normalized dead-time τL ≥ 0.33, the PID2F controller
allows to obtain control systems with higher robustness level than with the P I2
counterpart. It also expands the normalized dead-time range of unstable models that
can be controlled with certain robustness level.

For UFOPDT models, the PID2F design was based in obtain a control system
with the highest possible robustness using over-damped target responses.

The PID2I F control of UFOPDT models suffer of the same robustness issue but
provides twoaddition and important characteristics, no abrupt change at the controller
output to a set-point step change and high frequency roll-off.
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Chapter 10
MoReRT Design Methodology Extensions

In previous chapters, the proposed Model-Reference Robust Tuning methodology
was used to design standard feedback closed-loop control systems with 2DoF PI and
PID controllers to control over-damped, inverse response, integrating, and unstable
controlled processes. The control system block diagram considered in all these cases
is depicted in Fig. 10.1.

The reference models used include a regulatory control closed-loop transfer func-
tion target Mt

yd(s) and a servo-control closed-loop transfer function target Mt
yr(s).

Then the performance objective were the controlled variable response shapes to a
disturbance and a set-point step changes with a robustness constraint measured with
the maximum sensitivity MS .

There may be however situations were either the main variable of interest is
not the controlled variable or when the control system considered has a different
topology with other transfer functions involved. In such case, the MoReRT approach
can also be applied. The main idea is to keep the core aspects of MoReRT such as the
specification of the desired target responses of interest and to solve the corresponding
optimization problem that provides the controller that best matches the closed-loop
responses with the target ones while respecting the desired robustness level for the
feedback loop. Tobe able to extend this basic ideamakesMoReRTaflexible approach
able to face a great variety of control design problems.

In this chapter, three extensions of the MoReRT methodology are proposed, even
there may be a wide range of other situations where it could also be applied. The
proposed extensions are:

1. The use of controller output (control effort) target responses to a disturbance and
set-point step changes.

2. Consider that the path from the disturbance to the controlled variable is different
to the path from the controller output to the controlled variable.

3. The robust tuning of dead-time compensating controllers.

Here it is only shown how to proceed in order to solve these approaches. Not an
extensive analysis and coverage is developed nor presented here.

© Springer International Publishing Switzerland 2016
V.M. Alfaro and R. Vilanova, Model-Reference Robust Tuning of PID Controllers,
Advances in Industrial Control, DOI 10.1007/978-3-319-28213-8_10

105



106 10 MoReRT Design Methodology Extensions

Fig. 10.1 2DoF closed-loop control block diagram

10.1 MoReRT Design with Control Effort Specifications

When facing the problem of designing a closed-loop control system, one of the
first aspects to distinguish is that of the control and manipulated variables. Being
of primary interest to keep the controlled variable at some desired value is what
promotes to state the controller design problems in terms of the behavior of such
signal. There is however the obvious point that the only way the controller has to
affect and therefore determine the variations of the controlled variable is by acting
on the process manipulated variable, the control effort. Therefore, the real degree of
freedom is that of the possibility of changing the control variable.

Not all control signals are realistic being one of the primary aspects to bear inmind
that of the control signal smoothness. This can be dealt with a posterior analysis using
an appropriate evaluation metric. However, another way of looking at this problem
is that of facing directly the design of the control signal profile instead that of the
controlled variable. This section shows how this can be dealt with the use of the
MoReRT approach.

From Fig. 10.1 the noise free control effort is given by

u(s) = Mur(s)r(s) + Mud(s)d(s), (10.1)

where

Mud(s) = −Cy(s)P(s)

1 + Cy(s)P(s)
, (10.2)

is the disturbance to control effort (d → u) closed-loop transfer function, and

Mur(s) = Cr(s)

1 + Cy(s)P(s)
, (10.3)

the corresponding set-point to control effort (r → u) closed-loop transfer function.
Following the same procedure outlined in Chap. 4, the controlled process model

and the controller transfer functions are expressed as a quotient of polynomials in s
as follows:

http://dx.doi.org/10.1007/978-3-319-28213-8_4
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P(s) = N−
p (s)N+

p (s)

Dp(s)
, (10.4)

Cy(s) = Ncy(s)

Dcy(s)
, (10.5)

Cr(s) = Ncr(s)

Dcr(s)
, (10.6)

where N+
p (s) is the controlled process model non-minimum phase part (dead-time

and/or right-half plane zeros).
Replacing P(s), Cy(s), and Cr(s) in (10.2) and (10.3) by (10.4)–(10.6) the d → u

closed-loop transfer function can be expressed by

Mud(s) = −Ncy(s)N−
p (s)N+

p (s)

Dcy(s)Dp(s) + Ncy(s)N−
p (s)N+

p (s)
, (10.7)

and the r → u closed-loop transfer function by

Mur(s) =
(

Dcy(s)

Dcr(s)

)
Ncr(s)Dp(s)

Dcy(s)Dp(s) + Ncy(s)N−
p (s)N+

p (s)
. (10.8)

For the particular case of a PI2 controller Dcr(s) = Dcy(s), then (10.8) reduces to

Mur(s) = Ncr(s)Dp(s)

Dcy(s)Dp(s) + Ncy(s)N−
p (s)N+

p (s)
. (10.9)

PI2 Control of Over-Damped Processes

The general second-order over-damped controlled process model transfer function
is given by

P(s) = Ke−Ls

(Ts + 1)(aTs + 1)
, θp = {K, T , a, L} , (10.10)

and the two-degree-of-freedom proportional integral controller output by

u(s) = Kp

(
βTis + 1

Tis

)
r(s) − Kp

(
Tis + 1

Tis

)
y(s), θc = {

Kp, Ti, β
}
. (10.11)

In this case the closed-loop transfer functions are of third-order.

Target Models

The closed-loop transfer functions targets for the controller effort (10.7) and (10.9)
are selected as

Mt
ud(s) = −(Tis + 1) e−Ls

(τ 2
c T 2s2 + 2ζ τcTs + 1)(aτcTs + 1)

, (10.12)
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Mt
ur(s) = (1/K)(βTis + 1)(Ts + 1)

(τ 2
c T 2s2 + 2ζ τcTs + 1)(aτcTs + 1)

. (10.13)

with control system design parameters θd = {ζ, τc}.
For the particular case of a first-order plus dead-time (FOPDT) model (a = 0)

and closed-loop transfer functions targets with real poles only (ζ = 1) the control
effort target is given by

ut(s) = (1/K)(βTis + 1)(Ts + 1)

(τcTs + 1)2
r(s) − (Tis + 1) e−Ls

(τcTs + 1)2
d(s). (10.14)

Cost Functionals

To obtain the controller parameters, that best match the target response (10.14) in
the least-squares sense, a minimization procedure is used based on the differences
between the controller target responses and the actual ones.

The overall cost functional to be optimized is defined as follows:

JuT (θp, θc, θd)
.=

∫ ∞

0

[
ut

r(θp, θc, θd, t) − ur(θp, θc, t)
]2
dt

+
∫ ∞

0

[
ut

d(θp, θcy, θd, t) − ud(θp, θcy, t)
]2
dt. (10.15)

Using (10.15) the controller parameters θo
c are obtained such that

Jo
uT

.= JuT (θp, θ
o
c , θd) = min

θc

JuT (θp, θc, θd), (10.16)

for design parameters θd selected in such a way that the control system robustness
matches a target value measured using the maximum sensitivity, MS .

Example—PI2 Control of a FOPDT Process

Consider the first-order plus dead-time process given by the transfer function

P(s) = e−0.5s

s + 1
(10.17)

and (10.14) control effort target responses.
The design parameter τc is selected in a suitable range to obtain control systems

with robustness 2.0 ≥ Ms ≥ 1.4.
All three controller parameters {Kp, Ti, β} are obtained at once optimizing the

cost function (10.15). Controller gain and integral time are shown in Fig. 10.2. From
the optimization data, the set-point proportional weight β = 0 in all cases. This
figure also shows the resulting control system robustness.
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Fig. 10.2 Example (FOPDT model)—proportional integral controller parameters and robustness

Variation of the design parameters τc allows to deal with the trade-off between
performance and robustness. The control system can turned more robust reducing
the controller gain and increasing its integral time. As a result of having β = 0, there
is no controller output abrupt changes to a set-point step variation.

The controlled variable and control effort responses to unitary set-point and dis-
turbance changes are shown in Fig. 10.3. It is worth to note here that we can look at
the behavior of the controlled signal. However, what we are really determining with
this design is the profile of the control signal. As expected as the desired robustness
is increased, the control signal gets smoother.

PID2F Control of Second-Order Over-Damped Controlled Processes

Now the controlled process (10.10) is controlled with a 2DoF Ideal PID with filter
whose output is

u(s) = K∗
p

(
β∗ + 1

T∗
i s

)
r(s) − K∗

p

(
1 + 1

T∗
i s

+ T∗
d s

)(
1

Tf s + 1

)
y(s), (10.18)

with parameters θ∗
c = {

K∗
p , T∗

i , T∗
d , Tf , β

∗, γ ∗ = 0
}
.

The control system is now of fourth-order and the target controlled output models
(10.7) and (10.8) are selected as
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Fig. 10.3 Example (FOPDT model)—control system and PI2 controller output responses

Mt
ud(s) = −(T∗

i T∗
d s2 + T∗

i s + 1) e−Ls

(τcTs + 1)3(aτcTs + 1)
, (10.19)

Mt
ur(s) = (1/K)(T∗

f s + 1)(βT∗
i s + 1)(Ts + 1)(aTs + 1)

(τcTs + 1)3(aτcTs + 1)
. (10.20)

Then the controller output target used for tuning the PID2F controller is

ut(s) = ut
r(s) + ut

d(s) = Mt
ur(s)r(s) + Mt

ud(s)d(s). (10.21)

Example—PID2F Control of a SOPDT Process

The controlled process has the following transfer function

P(s) = e−0.5s

(s + 1)(0.75s + 1)
. (10.22)
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Table 10.1 Example (SOPDT model)—PID2F controller parameters

Mt
S K∗

p T∗
i T∗

d Tf β∗

2.0 2.351 1.481 0.451 0.0226 0

1.8 2.056 1.574 0.435 0.0218 0

1.6 1.686 1.651 0.415 0.0208 0

1.4 1.181 1.666 0.374 0.0187 0

If the controller parameters, θ∗
c = {

K∗
p , T∗

i , T∗
d , Tf , β

∗, γ ∗ = 0
}
, are free during

the cost functional optimization, it is found that β ≈ 0 and that Tf → 0 (the PID2F

controller tends to a non-proper Ideal PID controller). Then the proportional set-point
weight is set β = 0 and a lower limit Tf ≥ 0.05Td is used for the controller filter
time constant.

The PID2F controller parameters for four robustness target levels are listed in
Table10.1.

The control system responses to a 20% set-point step change followed by a 10%
disturbance step change are shown in Fig. 10.4. All controlled variable responses are
very smooth and without oscillation. The controller effort has no abrupt changes.

Table10.2 lists control system evaluation for the four robustness target levels.
This shows the performance/robustness trade-off.
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Fig. 10.4 PID2F control system responses
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Table 10.2 Example (SOPDT model)—PID2F controller evaluation

Mt
S Jed Jer T Vud T Vur Emaxd% ta5%d

2.0 0.065 0.431 0.153 0.365 3.50 4.147

1.8 0.077 0.467 0.132 0.298 3.71 4.709

1.6 0.098 0.522 0.115 0.242 4.04 5.437

1.4 0.141 0.612 0.103 0.207 4.68 6.591

10.2 Use of a Different Load Disturbance Path

In control system design, usually it is supposed that the controlled variable dynamics
to a load disturbance and the one to the controller output are the same. This is a
common situation in process control as pointed in [1] but there are also practical
situations where the main load disturbance path is not the same as the manipulated
variable path. For these cases, the closed-loop block diagram of Fig. 10.1 must be
redraw as shown in Fig. 10.5 where Pd(s) �= Pu(s).

Now the controlled variable is given by

y(s) = Cr(s)Pu(s)

1 + Cy(s)Pu(s)
r(s) + Pd(s)

1 + Cy(s)Pu(s)
d(s). (10.23)

Expressing the controlled process models and the controllers transfer functions
as a quotient of polynomials in s the regulatory control closed-loop transfer function
is

Myd(s) = Dpu(s)

Dpd(s)

(
Dcy(s)N

−
pd(s)N

+
pd(s)

Dcy(s)Dpu(s) + Ncy(s)N−
pu(s)N

+
pu(s)

)
. (10.24)

If Pd(s) = Pu(s) = P(s) (10.24) is the same (4.15).
The servo-control closed-loop transfer function is given by

Myr(s) = Cr(s)

(
Pu(s)

Pd(s)

)
Myd(s), (10.25)

Fig. 10.5 General 2DoF closed-loop control system block diagram

http://dx.doi.org/10.1007/978-3-319-28213-8_4


10.2 Use of a Different Load Disturbance Path 113

Fig. 10.6 Continuous
steering tank reactor control
system

that can also be expressed as

Myr(s) = Cr(s)

(
Dcy(s)N−

pu(s)N
+
pu(s)

Dcy(s)Dpu(s) + Ncy(s)N−
pu(s)N

+
pu(s)

)
. (10.26)

Due to Pu(s) and Pd(s) can represent any process dynamics, it is not possible to
obtain general rules for controller tuning. In this case, the control design procedure
is illustrated using a particular process. This way, the following example will also
serve as a practical example of application of the MoReRT methodology.

Control of a Nonlinear CSTR

Figure10.6 shows the control system of a nonlinear continuous stirred-tank reactor
(CSTR) where takes place a series-parallel Van de Vusse reaction given by [2]:

A
k1−→ B

k2−→ C, (10.27)

2A
k3−→ D. (10.28)

From a mass balance and assuming a constant volume reactor, the concentrations
of components A andB in the reactor are given by the following nonlinear differential
equations:

dCA(t)

dt
= −k1CA(t) − k3C2

A(t) + 1

V

[
CAi − CA(t)

]
Q(t), (10.29)

dCB(t)

dt
= k1CA(t) − k2CB(t) − 1

V
CB(t)Q(t). (10.30)
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where CA and CB are the concentrations of components A and B, respectively, k1,
k2, and k3 the reaction rates of the three reactions, V the reactor volume, CAi the
concentration of product A in the input flow, and Q the volumetric flow rate through
the reactor.

The controlled variable is the product B concentration CB(t) and the manipulated
variable is the flow rate Q(t). Disturbances in the component A concentration CAi

and inlet flow rate Q(t) are also taken into account.
Using the particular reaction considered in [3] with constants k1 = 5/6 min−1,

k2 = 5/3 min−1, k3 = 1/6 L/(gmol)/min, CAi = 10 gmolL−1 for a reactor tank
of V = 70 L, the steady-state concentrations for a Qo = 40 Lmin−1 flow rate are
CAo = 3 gmolL−1 and CBo = 1.117 gmolL−1. Considering the time scale of the
process, the transmitter and final control element are represented by simple gains
Kt = 50%/(gmol/L) and Kv = 0.80 (L/min)/%, respectively.

Models Identification

Figure10.7 shows the controlled variable responses to±5%changes in the controller
output (u → y) from where the Pu(s) can be obtained. The process shows to have an
inverse response dynamics.

Using the identification method in [4] and considering both the increment and the
decrement in controller output the Pu(s) model is

Pu(s) = 0.34(−0.38s + 1)

(0.56s + 1)(0.31s + 1)
, (10.31)
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Fig. 10.7 CSTR U → Y dynamics for Pu(s) identification
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Fig. 10.8 CSTR CAi → Y dynamics for Pd(s) identification

with gain in %/% and time constants in minutes, θPu = {KPu = 0.34, TPu =
0.56, aPu = 0.554, bPu = 0.679}.

The controlled variable responses to ±1 gmolL−1 changes in the input flow con-
centration (d → y) are shown in Fig. 10.8 and is used for Pd(s) identification. The
process dynamics to a change in the main disturbance is over-damped.

Now using the identification methods in [5] and considering again the increment
and the decrement in the disturbance, the obtained Pd(s) model is a dual pole given
by the transfer function

Pd(s) = 4.43

(0.43s + 1)2
. (10.32)

with gain in%/(gmolL−1) and timeconstants inminutes, θPd = {KPd = 0.443, TPd =
0.43, aPd = 1}.

For the CSTR process Pd(s) is very different from Pu(s).
The block diagram of the CSTR linear model is shown in Fig. 10.9.
A change in the inlet flow concentration δCAi is considered the main disturbance

but it is also possible to have changes in the inlet flow δQ due to external influences.
The control system controlled variable is given then by the following relation

y(s) = Cr(s)Pu(s)

1 + Cy(s)Pu(s)
r(s) + Pd(s)

1 + Cy(s)Pu(s)
δCAi(s) + 1/KvPu(s)

1 + Cy(s)Pu(s)
δQ(s).

(10.33)



116 10 MoReRT Design Methodology Extensions

Fig. 10.9 CSTR linear model

Control Algorithm

The controller chosen is a two-degree-of-freedom standard proportional integral
derivative control algorithm (PID2) given by the output equation

u(s) = Kp

{
βr(s) − y(s) + 1

Tis

[
r(s) − y(s)

] −
(

Tds

αTds + 1

)
y(s)

}
, (10.34)

with parameters θc = {
Kp, Ti, Td, α = 0.1, β, γ = 0

}
.

Target Closed-Loop Transfer Functions

The CSTR PID2 control system is of third-order.
For the design, and using (10.24) and (10.26), the closed-loop target transfer

functions are selected with two under-damped poles as:

Mt
yr(s) = (βTis + 1)(−0.38s + 1)

(0.3136τ 2
c s2 + 1.23ζ τcs + 1)(0.31τcs + 1)

, (10.35)

Mt
yδCAi

(s) = 13.03(Ti/Kp)s(0.56s + 1)(0.31s + 1)

(0.43s + 1)2(0.3136τ 2
c s2 + 1.23ζ τcs + 1)(0.31τcs + 1)

, (10.36)

Mt
yδQ(s) = 1.25(Ti/Kp)s(−0.38s + 1)

(0.3136τ 2
c s2 + 1.23ζ τcs + 1)(0.31τcs + 1)

, (10.37)

with ζ = 0.70.
Considering that the main disturbance is the inlet flow concentration CAi , the

overall control system response target used to obtain the controller parameters is

yt(s) = Mt
yr(s)r(s) + Mt

yδCAi
(s)δCAi(s). (10.38)
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Fig. 10.10 Target and resulting control system responses, Mt
S = 2.0

Robust Controller Parameters

All thePID2 controller parameters are obtained at once selecting the design parameter
τc to obtain a closed-loop control system with a desired robustness Mt

S .
For Mt

S = 2.0 the controller parameters are: Kp = 3.335, Ti = 0.685 min,
Td = 0.181 min, β = 0 (α = 0.1, γ = 0).

The target and resulting control system responses to a δCAi = 1 gmolL−1 step
change (left column) and a δR = 5% step change (right column) are shown in
Fig. 10.10. As noticed there are only little differences between the actual control
system responses and the target ones.

To increase the control system robustness up to Mt
S = 1.6, the target responses

are made slower increasing the design parameter τc. Now the controller parameters
are: Kp = 2.372, Ti = 0.663 min, Td = 0.162 min, β = 0 (α = 0.1, γ = 0).

The new target and resulting control system responses to a δCAi = 1 gmolL−1

step change (left column) and a δR = 5% step change (right column) are shown in
Fig. 10.11. The obtained responsesmatch exactly the ones from the target closed-loop
transfer functions.

From the design process, it is found that due to the inverse response dynamic char-
acteristics of the CSTR the control system robustness can not be increased beyond
MS = 1.53.
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Fig. 10.11 Target and resulting control system responses, Mt
S = 1.6

The PID2 (MS = 1.6) CSTR control system response to a 10% set-point step
change (δR(CB) = 10% ) followed by a 10% change in the inlet flow concentration
(δCAi = 1gmolL−1) and by a –10% change in the inlet flow (δQ = −4 gmolL−1) is
shown in Fig. 10.12.
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Fig. 10.12 Control system responses to set-point and disturbances (MS = 1.6)
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10.3 Robust Tuning of Two-Degree-of-Freedom Dead-Time
Compensating Controllers

It is well known that controlled processes with long dead-time are difficult to control
and that the performance obtained controlling this type of processes with a standard
PI or PID controllers usually is not satisfactory. A dead-time compensating controller
is required.

For processes with long dead-times prediction using the derivative of the feedback
signal does not provide enough information of its future variations then a PI controller
is used and the prediction is based on the controller output and a controlled process
model.

PI Controller with a Smith Predictor

The most well known dead-time compensating control scheme is the seminal model-
based Smith Predictor [6]. It is showed in Fig. 10.13 together with a two-degree-of-
freedom proportional integral controller and denoted as PISP2. It has been followed
by a variety of modified dead-time compensating control arrangements [7].

The measured controlled variable, the response of the controlled process model,
and a prediction of the future controlled process response (Lm times earlier) are feed
back to the PI controller.

In the ideal case, with nomodeling errors, the PI controller operates over a process
without dead-time.

Tuning a PISP2 controller requires to select the proportional integral control algo-
rithm parameters θc = {Kp, Ti, β} and the parameters θcm = {Km, Tm, Lm} of the
first-order-plus dead time model used in the predictor. Then, six parameters need to
be adjusted, that usually is not a simple task.

Fig. 10.13 Proportional integral controller with a Smith predictor
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The PISP2 controller output is

u(s) = Kp

{
βr(s) − y′(s) + 1

Tis
[r(s) − y′(s)]

}
, (10.39)

where the feedback input to the PI controller is

y′(s) = y(s) +
(

Km

Tms + 1
− Kme−Lms

Tms + 1

)
u(s). (10.40)

Combining (10.39) and (10.40) the PISP2 controller output can be expressed for
the analysis as

u(s) = Csp(s)
{
Cr(s)r(s) − Cy(s)y(s)

}
, (10.41)

with

Cr(s) = Kp

(
βTis + 1

Tis

)
, (10.42)

Cy(s) = Kp

(
Tis + 1

Tis

)
, (10.43)

Csp(s) = Tms + 1

Tms + 1 + Km(Tis + 1)(1 − e−Lcs)
, (10.44)

where Csp(s) is the Smith predictor transfer function.
The closed-loop control system with a PISP2 dead-time compensating controller

is shown in Fig. 10.14.
From this block diagram and using (10.41), the controlled variable as a function

of the set-point and of the disturbance is given by

y(s) = Csp(s)Cr(s)P(s)

1 + Csp(s)Cy(s)P(s)
r(s) + P(s)

1 + Csp(s)Cy(s)P(s)
d(s). (10.45)

Fig. 10.14 PISP2 feedback control system
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Expressing the controlled processmodel, the controllers, and the predictor transfer
functions as quotients in s

P(s) = N−
p (s)N+

p (s)

Dp(s)
, Cr(s) = Ncr(s)

Dcr(s)
, Cy(s) = Ncy(s)

Dcy(s)
, Csp(s) = Nsp(s)

Dsp(s)
,

(10.46)

the regulatory closed-loop transfer function can be expressed by

Myd(s) = Dsp(s)Dcy(s)N−
p (s)N+

p (s)

Dsp(s)Dcy(s)Dp(s) + Nsp(s)Ncy(s)N−
p (s)N+

p (s)
, (10.47)

and the servo-control closed-loop transfer function by

Myr(s) = Csp(s)Cr(s)Myd(s). (10.48)

The main use of the dead-time compensating controllers is to improve the servo-
control response for processes with a long dead-time. Then, a target must be stated
for (10.48) to apply the MoReRT methodology to tune a PISP2 controller.

PISP2 Servo-Control of a SOPDT Process

Consider the controlled process model given by the SOPDT transfer function

P(s) = Ke−Ls

(Ts + 1)(aTs + 1)
, θp = {K, T , a, L}. (10.49)

Using (10.48) the set-point closed-loop transfer function target for the PISP2 con-
trol of the SOPDT model is selected as

Mt
yr(s) = (βTis + 1)e−Ls

(τcTs + 1)2(aτcTs + 1)
, (10.50)

where τc is the design parameter and θPISP2 = {Kp, Ti, β, Km, Tm, Lm} the dead-time
compensating controller parameters to tune.

To avoid abrupt changes in the controller output when a step change in the set-
point ismade the proportional set-point weight β → 0. Then, the servo-control target
(10.50) used for controller tuning is reduced to

Mt
yr(s) = e−Ls

(τcTs + 1)2(aτcTs + 1)
. (10.51)

The design parameter τc (closed-loop poles relative speed respect to the controlled
process main time constant) is adjusted to obtain a control system with a target
robustness Mt

S .
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Table 10.3 Example—PISP2 controller parameters (SOPDT model, τL = 5)

τc Kp Ti β Km Tm Lm MS

0.7 7.531 2.397 0 0.495 2.635 10.592 2.037

0.8 5.361 2.619 0 0.492 2.591 11.025 1.992

0.9 3.894 2.742 0 0.492 2.553 11.064 1.950

1.0 2.836 2.749 0 0.489 2.521 11.097 1.915

1.1 2.037 2.623 0 0.488 2.497 11.124 1.872

1.2 1.411 2.348 0 0.491 2.477 11.142 1.822

1.3 0.909 1.913 0 0.495 2.461 11.147 1.782

1.4 0.508 1.325 0 0.502 2.450 11.128 1.750

1.5 0.195 0.618 0 0.510 2.451 11.075 1.735

Example—Robust Tuning of a PISP2 Controller

The controlled process model is

P(s) = Ke−Ls

(Ts + 1)(aTs + 1)
, (10.52)

with parameters K = 0.5, T = 2, a = 0.75, L = {10, 20} (τL = {5, 10}).
Optimization results confirm that to obtain a servo-control target response without

a zero as (10.51) the set-point weight β ≈ 0.
The PISP2 controller parameters are listed in Table10.3.
The controller and predictor parameters for both controlled processes (τL = 5

and τL = 10) are shown in Fig. 10.15.
From this figure, it is noticed that the parameters obtained for the FOPDT model

used in the predictor are nearly constant. Their average {Km, Tm, Lm} values are
{0.495, 2.515, 11.087} for the controlled process with L = 10, and {0.500, 2.570,
20.966} for the L = 20 case.

Using a two-point identification method [5], the parameters of a FOPDT approx-
imation for the controlled process model (10.52) are {0.50, 2.764, 10.90 (20.90)},
very similar to the ones obtained for the predictor model from the servo-control
responses matching procedure.

The responses of the controlPISP2 system to a 10% set-point step change followed
by a 5% change in the disturbance are shown in Figs. 10.16 and 10.17 for three
different robustness levels.

From the optimization results, it is also noticed that although the Smith predictor
compensates for the dead-time still are constraints in the highest robustness that can
be achieved: MS = 1.73 (τL = 5) and MS = 1.86 (τL = 10).

The Nyquist plots of the PISP2 control system of the SOPDT controlled processes
are shown in Fig. 10.18 that also show the robustness circles corresponding toMS = 2
(red) and MS = 1.2 (green). These confirm the control system robustness measured
with the maximum sensitivity.
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For control systems with dead-time compensating controllers like the Smith pre-
dictor, the maximum sensitivity does not tell us all the history about the control
system robustness to changes in the controlled process characteristics. They can turn
unstables if the controlled process dead-time increases but also if it decreases.

For the controlled process of the example the worst case corresponds to the τL =
10 process and MS = 1.99 PISP2 tuning. The control system turns unstable if the
controlled process dead-time change +12.75% and also if it change –13.75% respect
to the dead-time used in the predictor model as shown in Bode plots of Fig. 10.19.

The servo-control responses with a±10% change in the controlled process dead-
time (still stables but oscillatory) and with a ±20% change (unstables) are show in
Fig. 10.20.
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Fig. 10.20 PISP2 control system responses with ±10% and ±20% process dead-time, SOPDT
controlled process (τL = 10), control system robustness MS = 1.99

Control systems with a Smith predictor are sensible to both model dead-time
underestimation and overestimation.

Chapter Remarks

Three possible extensions of the MoReRT design methodology for PID controllers
are proposed.

The use of control effort response targets and consider that the controlled process
disturbance dynamics is not the same of the manipulated variable for tuning PID
controllers. Also the use of the MoReRT procedure for robust tuning of dead-time
compensating controllers (Smith predictor) is presented. It is shown that the same
design procedure can be used with diverse controllers and controlled processes to
design robust control systems. In some cases, the restricted structure of the controller
used or the dynamic characteristics of the controlled process impose constrains to
the maximum robustness level that can be achieved.
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Chapter 11
MoReRT Practical Application

We have used the MoReRT design procedure for tuning different two-degree-of-
freedom (2DoF) proportional integral derivative (PID) control algorithms in order to
control diverse controlled process dynamics. The designmethodology considerations
were explained and explicit controller tuning relations were obtained that can be used
directly knowing the controlled process model and the controller control algorithm.

The appendix presents a MATLAB® software package that helps the application
of the proposed methodology. This is provided in order to help the practical applica-
tion of theMoReRT design procedure. However, in order to go on that direction there
is the need for other practical considerations. This is the purpose of this chapter that
addresses different aspects that will help for the consideration of the practical imple-
mentation of the MoReRT design procedure. The following practical considerations
are addressed in this chapter:

• On one side, to be able to go from the theoretical results to a practical applica-
tion of the proposed design methodology, it is necessary to know the availability
of 2DoF PID control algorithms in actual commercial controllers, their equation,
tuning parameters, and limitations. This chapter presents a review of the avail-
able commercial PID controller functions that allow for a 2DoF implementation.
Therefore, providing an overview of the possibilities of direct application of the
suggested tunings.

• Considering that the application of the MoReRT design procedure to different
controllers and controlled processes has been described along several previous
chapters it is also convenient to gather the developed tuning rules into a single
section for easy access and use. The overall set of process dynamics and applica-
bility ranges are summarized.

• Even the set of process dynamics and controller structures has been as wide as
possible, it is also possibly that tuning rules have not been obtained for a particular
controlled process/control algorithm combination. For instance for some normal-
ized controlled process models with two or more parameters. In these cases, a
detailed flowchart of the method bearing in mind the applicability of the digital
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simulation/optimization procedure is presented. This is presented in order to help
end users to develop their own versions of the MoReRT design procedure even
with alternative different cost functions.

The practical application is also exemplified by considering a practical case study,
a continuous stirred-tank heater (CSTH) where different disturbance profiles are
considered, selection of desired target dynamics, etc.

11.1 Commercial Two-Degree-of-Freedom PID Controllers

In the following, the two-degree-of-freedomcontrol algorithms implemented in some
commercial stand-alone controllers, programmable logic controllers (PLC), distrib-
uted control systems (DCS), data acquisition, and/or control software are presented.
The main purpose is to provide a listing of available 2DoF PID controllers as well
as a practical reference of the parameters each manufacturer defines in their imple-
mentation that have their corresponding equivalent on the developments presented
here.

11.1.1 ABB Control Technologies

The PID01 Function

The PID01 is a functional unit for closed-loop process control available in the ABB
ExtendedAutomationSystem800xA [1]. This last one integrates a distributed control
system (DCS) with an electrical control system, and a safety system for process
automation (continuous and batch control).

In the PID01 function [2, 3] the (scaled) control system deviation is obtained with
the following equation

Dev = (MV − WSP) ·
(

OUT max − OUT min

MV max − MV min

)
, (11.1)

and the PID controller “transfer function” as described in [2] is:

G(s) = Gain

(
β · WSP − MV + 1

s · TI
+ s · TD

1 + s · TF

)
. (11.2)

Unfortunately this expression, taken from the functional unit manual, is not really a
transfer function. It mixes the transfer functions of the I and D control modes with
the signal of the P mode.
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The PID01 controller output signal should be given by the following expression

Out P(s) = Gain

(
β · WSP − MV + 1

s · TI
Dev + s · TD

1 + s · TF
Dev

)
, (11.3)

if the derivative mode is performed on the error signal (Deriv = 1), and by

Out P(s) = Gain

(
β · WSP − MV + 1

s · TI
Dev − s · TD

1 + s · TF
MV

)
, (11.4)

if the derivative mode is performed on the measured signal (Deriv = 0, the default
value).

Equivalences of the manufacturer notation with the one use in this work, and the
PID01 default parameters values, are:

• β—Beta Factor (set-point factor), default value 1.0,
• Deriv (γ )—Selection of derivation, 0 or 1, default value 0 (derivative mode over

MV only),
• Dev—Deviation (error),
• Gain (K p)—Gain, default value 0.5,
• MV (y)—Measured Value,
• Out P (u)—Output,
• TD (Td)—Derivative Time, default value 0.0 s,
• TI (Ti )—Integration Time, default value 15 s,
• TF (= αTd)—Filter Time, default value 0.0 s,
• T s—Sampling Time,
• WSP (r)—Working Setpoint.

In addition, the PID01 controller algorithm performs the following tests:

• If TI < T s, then TI = T s,
• If TD and TF ≤ T s, then TD = TF = 2T s.

According to the manufacturer information there is no constraint on the values
that the proportional set-point weight factor β can take, it can be set lower or higher
than one.

Other PID01 functionalities include: bumpless transfer between operation modes,
controllable change rate of set-point and output signal, external feedback, and gain
scheduling. The PID01 controller ExtCtrl (external control) input parameter can be
connected to the GainSched [3] function block ExtCtrl output parameter to set gain
scheduling of the PID tuning parameters.

The GainSched function block can include up to five zones (five sets of controller
parameter {Gain, TI, TD, TF}) with four interzone limits (controller parameters
set switching points). Zone switching is controlled by the SchedIn variable. The
controller set-point weight β remains the same for all zones.
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GainSched function block default values are:

• SchedIn: Scheduling input, default value 0.0,
• ZLim12: Zone 1 to 2 limit, default value 20.0,
• ZLim23: Zone 2 to 3 limit, default value 40.0,
• ZLim34: Zone 3 to 4 limit, default value 60.0,
• ZLim45: Zone 4 to 5 limit, default value 80.0.

If the controlled process gain is highly nonlinear or if its dynamic characteristics
change significantly over the entire control system operation range, the possibility of
use gain scheduling on this controller allows the user to obtain more control system
performance reducing the robustness requirements for each operation zone in lieu of
use a high robust design and a single controller setting.

The ABB PID01 function controller (with Deriv = 0) corresponds to the (2.11)
two-degree-of-freedom Standard PID.

The PID01A Function

A PID control algorithm with an auto-tuning function (the PID01A [4]) is also
available.

Processmodel identification is relay based andPI or PIDcontroller tuning parame-
ters are given for a “slow,” “normal,” or “fast” response (“ExtraDamped”, “Damped,”
“Normal,” “Fast,” or “Extra Fast” response according to [5]). The auto-tuning func-
tion calculates and suggests new values for the controller Gain, T I , TD, and TF
parameters. There is no indication of the controlled process model and the tuning
relations or design criteria used in the auto-tuning function.

Manufacturer manual [4] shows a one-degree-of-freedom Standard PID control
algorithm for the PID01A function with all three control modes applied to the error
signal but it also indicates that γ (Deriv) can be 0 or 1 and that the controller has an
adjustable proportional set-pointweight (β). The PID control algorithm implemented
in the PID01A functional unit should be the same two-degree-of-freedom Standard
PID control algorithm used in the PID01 function.

11.1.2 Emerson Process Management

The DeltaV PID Function Block

The PID function block of Emerson DeltaV control system [6–8] supports standard
and series form one-degree-of-freedom PID control algorithms as well as a two-
degree-of-freedom PID control algorithm. The PID STRUCTURE parameter is used
to select the controller control algorithm.

http://dx.doi.org/10.1007/978-3-319-28213-8_2
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If the STRUCTURE parameter is set to “Two Degrees of Freedom Controller”
the controller output is given by the following relation:

OUT(s) = ±G AI Na ·
{

B ET A · S P − PV + 1

Tr s
(S P − PV )

+ Td s

α Td s + 1
(G AM M A · S P − PV )

}
. (11.5)

Controller can also include a process variable first-order filter (PV _FT I M E , s) and
a set-point first-order filter (S P_FT I M E , s).

Equivalences of the manufacturer notation with the one use in this work, and the
default parameters values, are:

• ±—Reverse/Direct acting,
• ALPHA (α)—Derivative filter constant, 0.05 ≤ α ≤ 1.0, default value 0.125,
• BETA (β)—Proportional mode set-point weight, 0 ≤ β ≤ 1,
• ERROR—Error (S P − PV ),
• GAIN (K p)—Gain, default value 0.5,
• GAINa—Scaled gain,
• GAMMA (γ )—Derivative mode set-point weight, 0 ≤ γ ≤ 1,
• OUT (u)—Controller output,
• PV , I N (y)—Process variable,
• RATE (Td)—Derivative action time constant, default value 0.0 s,
• RESET , Tr (Ti )—Integral action time constant, default value 10 s,
• SP (r)—Set-point value.

Other capabilities of the PID block include: set-point rate limits, nonlinear gain,
gain scheduling, output tracking, and dynamic reset limiting.

The PID function block can be combined with the P I D_G AI N SC H E D (gain
scheduling) module [6, 8] to define three operation ranges (three sets of controller
parameters {Gain, Reset, Rate} with two region boundary values). Gain schedul-
ing can be based on PV, OUT, or on an auxiliary variable (AuxVar) signal.

The Emerson DeltaV PID function block (with STRUCTURE = Two Degrees of
Freedom Controller) corresponds to the (2.11) 2DoF Standard PID with or without
set-point and process controlled variable filters (both of first order).

It restricts the set-point weight β values that can be used to the range 0 ≤ β ≤ 1.

11.1.3 Mitsubishi Electric

The S.2PID Instruction

The process control S.2PID instruction [9] of the MELSEC-Q Series PLC com-
pute a velocity type two-degree-of-freedom PID control algorithm using incomplete
differentiation.

http://dx.doi.org/10.1007/978-3-319-28213-8_2
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Manipulated variable increment (at time step n) is given by following equation:

ΔMV n = K p ·
{
(1 − αm) · (DVn − DV n−1) + CT

TI
· DVn

+(1 − βm) · Bn + αm · Cn + βm · Dn

}
, (11.6)

where

Bn = Bn−1 + MD · TD

MD · CT + TD
·
{

DVn − 2DVn−1 + DVn−2 − CT · Bn−1

TD

}
, (11.7)

Cn =
{

PVn − PVn−1 if PN = 1,

−(PVn − PVn−1) if PN = 0,
(11.8)

Dn =
⎧⎨
⎩

Dn−1 + MD ·TD
MD ·CT +TD

·
{

PVn − 2PVn−1 + PVn−2 − CT ·Dn−1
TD

}
if PN = 1,

Dn−1 + MD ·TD
MD ·CT +TD

·
{
−(PVn − 2PVn−1 + PVn−2) − CT ·Dn−1

TD

}
if PN = 0.

(11.9)

Also, the controller performs the following tests:

• If TD = 0, then Bn = 0 and Dn = 0,
• If TI = 0, then CT

TI
· DVn = 0.

Equivalences of the manufacturer notation with the one use in this work, and the
default parameters values, are:

• αm (= 1−β)1—Proportional two-degree-of-freedom parameter, 0.0 ≤ αm ≤ 1.0,
default value 0.0,

• βm (= 1 − γ )1—Derivative two-degree-of-freedom parameter, 0.0 ≤ βm ≤ 1.0,
default value 1.0,

• ΔMV (Δu)—Controller output change,
• CT—Control cycle, it is an integral multiple of the execution cycle (ΔT ), default
value 1.0 s,

• DV—Deviation value (error), DV = PV − SV for forward operation and DV =
SV − PV for reverse operation,

• K p—Gain, default value 1.0,
• MD (= 1/α)—Derivative gain, default value 8.0,
• PN—Operation mode, 0: reverse operation, 1: forward operation, default value 0,
• PV (u)—Process value,
• SV (r)—Setting value (set-point),
• TD (Td)—Derivative constant, default value 0.0 s,
• TI (Ti )—Integral constant, default value 10.0 s,

1A m (Mitsubishi) subindex has been added to the manufacturer α and β parameters to avoid a
confusion with same Greek letters used in this work but with a different meaning.
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In this controller, to decrease the proportional set-point weight factor β from its
default value (αm = 0 ⇒ β = 1), the αm parameter must be increased. The opposite
situation occurs with the derivative set-point weight. To change the derivative set-
point weight γ from its default value (βm = 1 ⇒ γ = 0) the βm parameter must be
decreased.

11.1.4 National Instruments

LabVIEW PID Advanced VI

The linear-gain advanced proportional integral derivative control virtual instrument
(VI) of the LabVIEW2014 Full Development System [10], implements the following
equation:

C O = Kc

{
beta · S P − PV + 1

Ti · s
(S P − PV )

+
(

Td · s

1 + alpha · Td · s

)
(gamma · S P − PV )

}
. (11.10)

Equivalences of the manufacturer notation with the one use in this work, and the
default parameters values, are:

• alpha (α)—Derivative action filter parameter, 0.0 ≤ alpha ≤ 1.0,
• beta (β)—Setpoint weighting (P), 0.0 ≤ beta ≤ 1.0, default value 1.0,
• gamma (γ )—Setpoint weighting (D), 0.0 ≤ gamma ≤ 1.0, default value 0.0,
• C O (u)—Controller Output,
• Kc (K p)—Proportional Gain, default value 1.0,
• PV (y)—Process Variable,
• Td—Derivative Time, default value 0.0 min,
• Ti—Integral Time, default value 0.01 min,
• S P (r)—Set-point,

Other characteristics of the PID Advanced VI include: nonlinear integral action
and error-squared control.

The PID Advanced VI can be combined with the PID Control Input Filter (first-
order), PID Gain Schedule, PID Output Rate Limiter, and PID Setpoint Profile VIs.
Control algorithm in the LabVIEW PID Advanced VI controller (with gamma = 0)
corresponds to the (2.11) two-degree-of-freedom Standard PID.

It restricts the set-point weight β values that can be used (0.0 ≤ β ≤ 1.0).

LabVIEW PID Advanced Auto-tuning VI

The PID Advanced Auto-tuning VI control algorithm is the same two-degree-of-
freedom Standard PID of the PID Advanced VI with an auto-tuning function for the
controller parameters.

http://dx.doi.org/10.1007/978-3-319-28213-8_2


136 11 MoReRT Practical Application

The auto-tuning process includes following parameters:

• Technique:

– 0 (Step Open Loop): use an open-loop step test to base tuning on a process
first-order plus dead-time model,

– 1 (Step Closed Loop): use ultimate gain (steady-state oscillation response) for
tuning,

– 2 (Relay): use relay feedback test (with hysteresis) to obtain process ultimate
information,

– 3 (PID Relay): keeps the PID controller in the loop with the relay.

• Type of controller:

– 0 (P)—for retuning only Kc;
– 1 (PI)—for retuning Kc and Ti ,
– 2 (PID)—for retuning Kc, Ti , and Td .

• Control specification—0 (“normal”), 1 (“fast”), or 2 (“slow”, default) response.

11.1.5 OMRON

Basic PID Block Model <011>

The two-degree-of-freedom PID control algorithm used in the Basic PID block 011
ofOMROMPLCs is not explicitly shown inmanufacturermanual [11]. From general
description and parameters tables it can be supposed that it corresponds to a Standard
2DoF PID with a nonadjustable derivative filter.

Equivalences of the manufacturer notation with the one use in this work, and the
default parameters values, are:

• alphao (β)2—PID 2 degrees of freedom parameter (proportional control mode),
0.0 ≤ alphao ≤ 1.0, default value 0.65,

• betao (γ )—PID 2 degrees of freedom parameter (derivative control mode), 0.0 ≤
betao ≤ 1.0, default value 1.0,

• D (Td )—Differential time (0–9999 s), default value 0.0 s,
• I (Ti )—Integral time (0, 1–9999 s), default value 0 (No integral action),
• MV (u)—Manipulated variable,
• P (= 100/K p)—Proportional band (0.1–999.0%), default value 100.0%,
• PV (y)—Process variable,

2An o (OMRON) sub index has been added to the manufacturer alpha and beta parameters to
avoid a confusion with equivalent Greek letters used in this work but with a different meaning.
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11.1.6 REX Controls

The PIDU Function Block

The PIDU is one of the two-degree-of-freedom control function blocks available in
the REX Control System [12].

The control algorithm implemented on the PIDU function block is [13]:

U (s) = ±K

{
bW (s) − Y (s) + 1

Ti s
[W (s) − Y (s)]

+ Tds
Td
N s + 1

[cW (s) − Y (s)]
}

+ Z(s). (11.11)

• b (β)—Setpoint weight, proportional part, default value 1.0,
• c (γ )—Setpoint weight, derivative part, default value 0.0,
• K (K p)—Controller gain, default value 1.0,
• N (= 1/α)—Derivative filter parameter, default values 10.0,
• Td—Derivative time, default value 1.0 s,
• Ti—Integral time, default value 4.0 s,
• U (u)—Manipulated variable mv,
• Y (y)—Process variable pv,
• W (r)—Setpoint variable sp,
• Z—Feedforward control variable dv.

Other 2DoF PID control blocks are: PIDAT (PID controller with relay autotuner),
PIDGS (PID controller with gain scheduling, up to six parameters sets), PIDMA
(PID controller with moment autotuner), and PIDUI (PID controller with variable
parameters).

Control algorithm in the REX PIDU control function block (with c = 0) corre-
sponds to the (2.11) two-degree-of-freedom Standard PID.

11.1.7 Siemens AG

The PID_Compact Function

The PID_Compact function of the SIMATIC S7 products and particularly of the
S7-1200 programmable logic controller [14, 15] use following equation to calculate
the controller output value:

y = K p

[
(b · w − x) + 1

TI · s
(w − x) + TD · s

a · TD · s + 1
(c · w − x)

]
. (11.12)

Equivalences of the manufacturer notation with the one use in this work, and the
default parameters values, are:

http://dx.doi.org/10.1007/978-3-319-28213-8_2
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• a (α)—Derivative delay coefficient, default value 0.0,
• b (β)—Proportional action weighting, default value 0.0,
• c (γ )—Derivative action weighting, default value 0.0,
• K p—Proportional gain, default value 1.0,
• TD (Td)—Derivative action time, default value 0.0 s,
• TI (Ti )—Integral action time, default value 20.0 s,
• w (r)—Set-point value,
• x (y)—Process value,
• y (u)—Output value.

There is no restriction on the a, b, and c parameters (0 ≤Real 32-bit values). Other
characteristics of the PID_Compact include pre-tuning on start-up, gain scheduling,
and PID-Tuner.

The GainSched block of the PCS 7 Advanced Process Library (APC) [16, 17]
allows to store PID parameters (K p, TI , TD) for up to three operating points. Current
operating point is represented by a continuous variable input (controlled variable
or other). Controller parameters between two control system operation points are
obtained by a linear interpolation of the corresponding parameters stored for the two
nearest operation points allowing a continuous adaptation of controller parameters
when system goes from one operation point to another. If the current operating point
is below the lowest operating point or above the highest operation point in the table
the controller parameters for the corresponding boundary point are used. The change
of the controller parameters is controlled by the dead band and the control zone
parameters.

This gain scheduling scheme is different of the schemes (by operating ranges)
usually found in other controllers.

The Siemens PID_ Compact function (with c = 0) corresponds to the (2.11) two-
degree-of-freedom Standard PID. Other 2DoF PID control algorithm (incremental
form) is available in the PID_3Step instruction designed for use with motor actuated
devices (MOVs).

11.1.8 Toshiba Corporation

The PID_P Function

The PID_P (current output) function control algorithm of the Unified Controller nv
series and the Integrated Controller V series is [18]:

MV = K p

(
1 + 1

Ti · s

) {
αt · SV − PV +

(
T d · s

1 + η · T d · s

)
(αt · γt · SV − PV )

+
(

1

1 + βt · Ti · s

) [
(1 − αt ) · SV −

(
T d · s

1 + η · Td · s

)
(αt · γt · SV − PV )

]}
.

(11.13)

http://dx.doi.org/10.1007/978-3-319-28213-8_2
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It can be rewritten as

MV = βt · K p

(
1 + Ti · s

1 + βt · Ti · s

) {
αt · SV − PV + 1

βt · Ti · s
(SV − PV )

+
(

Td · s

1 + η · Td · s

)
(αt · γt · SV − PV )

}
. (11.14)

Equivalences of the manufacturer notation with the one use in this work are:

• αt (β)3—P term two-degrees-of freedom coefficient,
• β2

t —I term two degrees of freedom coefficient,
• η (α)—Rate gain,
• γt (= γ /β)—D term two-degrees-of-freedom coefficient,
• K p—Proportional gain,
• PV (y)—Process value,
• MV (u)—Output,
• SV (r)—Setting value,
• Td—Rate time, minutes,
• Ti—Reset time, minutes.

Coefficients αt , βt , η, and γt are all positive Real numbers (32-bits).
It is noted in (11.14) that the two-degrees-of-freedom coefficient of the integral

control term (βt ) does not multiply the set-point in the integrand. It can be used to
reduce the integral control term relative gain. Integration is performed over the error
signal (SV-PV) in order to assure zero steady-state error.

If αt = βt = γt = 1 (11.14) reduces to the one-degree-of-freedom Standard PID
algorithm with all models applied over the error signal

MV = K p

{
1 + 1

Ti · s
+ Td · s

1 + η · Td · s

}
(SV − PV ) . (11.15)

It is also available an incremental version of the (11.14) two-degree-of-freedom
PID algorithm in the PIDP_P (pulse output) function.

The LC531/532 Single-Loop Controllers

The PID function implemented in the LC531 (current output) and LC532 (pulse
output) single-loop controllers [19] is the same two-degree-of-freedom Unified con-
troller nv series PID function described in previous paragraph.

LC531/532 parameters values ranges and default values are [19]:

• 2DoF proportional factor, 0 ≤ αt ≤ 1, default value 0.4,
• 2DoF integral factor, 1 ≤ βt < 2, default value 1.35,
• 2DoF derivative factor, 0 ≤ γt < 2, default value 1.25,
• Rate coefficient, 0 < η ≤ 1, default value 0.1,

3A t (Toshiba) subindex has been added to themanufacturerα and β parameters to avoid a confusion
with same notation used in this work that have a different meaning.
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• Proportional gain K p, default value 0.8,
• Reset time Ti , default value 0.1 min,
• Rate time Td , default value 0.0 min.

If βt = 1 and γt = 0 (11.14) reduces to the (2.11) 2DoF Standard PID

MV = K p

{
αt · SV − PV + 1

Ti · s
(SV − PV ) −

(
Td · s

1 + η · Td · s

)
PV

}
.

(11.16)
The control algorithm implemented in Toshiba nv series controllers is a two-

degree-of-freedom PID with three weighting factors (proportional, integral, and
derivative) that made it more flexible than the other commercially available 2DoF
PID control algorithms.

11.1.9 Main Characteristics and Limitations

As seen, one common factor of the commercial 2DoF PID controllers is that they
implement directly or with some variations, particularly Toshiba, the 2DoF Standard
PID control algorithm. Normally, the control algorithm can be aggregated with set-
point and controlled variable signal input filters.

It is also noted that although several manufactures do not impose any restriction
on the set-point weighting factors values, there are others that limited their settings
to be in the range from zero to one.

Restrict the derivative set-point weighting γ to be one or lower normally does not
implies any constraint for the control. As has been suggested, to avoid a controller
output abrupt change on a set-point step change it is necessary to set γ = 0.

On the other hand, as has been show in [20] and on the examples in previous
chapters, if the controlled process characteristics impose a high robust design (low
Mt

S values) the resulting proportional set-point weight β values would be higher
than one. In these cases, the use of β = 1 will reduce the achievable servo-control
performance.

Controllers with β ≤ 1 would constraint the performance to a set-point change
of a control system tuned using a high robustness design criteria.

11.2 MoReRT Controllers Design Implementation

In the following, first the MoReRT tuning rules are summarized. Their scope and
applicability are also indicated in terms of the parameters of the considered process
dynamics transfer function models. It is worth to notice that this aspect is sometimes
neglected in most of the existing tuning rules. After that, and for the application of
the MoReRT design methodology in those cases were an explicit tuning rule has not

http://dx.doi.org/10.1007/978-3-319-28213-8_2
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been obtained, its steps are detailed in order to help user own implementation of
the required optimization steps. This will allow end users to develop tuning rules
along the MoReRT approach for some specific an concrete cases not covered in the
previous chapters.

11.2.1 MoReRT Tuning Rules

MoReRT tuning rules for direct tuning of 2DoF PI and PID controllers are already
derived for overdamped, inverse response, integrating and unstable processes. Cor-
responding controller dimensionless parameters are presented in Sect. 5.3.

In the following for each controlled process model, control algorithms and robust-
ness levels considered are indicated. Tuning relations and their parameters are
referred to the corresponding equations and tables presented in previous chapters.

Over-Damped Processes

Controlled process model:

P(s) = K e−Ls

(T s + 1)(aT s + 1)
, θp = {K , T, a, L} ,

0.1 ≤ τL = L/T ≤ 2.0.

1. a ∈ {0.0, 0.10, 0.25, 0.50, 0.75, 1.0} (FOPDT, SOPDT, DPPDT).
• Controller control algorithm and parameters:
2DoF PI (P I2) (2.12), θc = {

K p, Ti , Td = 0, β
}
.

• Robustness Levels:
Mt

S ∈ {1.4, 1.6, 1.8, 2.0}.
• Tuning rule:
Equations (6.8)–(6.10) and Tables6.1–6.6.

• Parameters interpolation:
If controlled process model parameter a /∈ {0.0, 0.10, 0.25, 0.50, 0.75,
1.0} and a1 ≤ a ≤ a2, the required θc controller parameters must be obtained
using a linear interpolation:

θc =
(

a − a1

a2 − a1

)
(θc2 − θc1) + θc1,

where θc1 and θc2 are the controller parameters obtained using a1 and a2,
respectively.

http://dx.doi.org/10.1007/978-3-319-28213-8_5
http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_6
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2. Models with a = 0 (FOPDT).

• Controller control algorithm and parameters:
2DoF Ideal PID with Filter (P I D2F ) (2.21),
θ∗

c = {
K ∗

p, T ∗
i , T ∗

d , T f , β∗, γ ∗ = 0
}
.

• Robustness levels:
Mt

S ∈ {1.4, 1.6, 1.8, 2.0}.
• Tuning rule:
Equations (6.16)–(6.21) and Table6.15.

3. Models with a = 0 (FOPDT).

• Controller control algorithm and parameters:
2DoF Ideal Parallel PID with Two Input Filters (P I D2I F ) (6.24), (6.25), and
(6.27), θc = {

K p, Ki , Kd , T f , Tr , σ, γ = 0
}
.

• Robustness level:
Mt

S = 1.6.
• Tuning rule:
Equations (6.34), and (6.39) or (6.40).

Inverse Response Processes

Controlled process model:

P(s) = K (−bT s + 1)

(T s + 1)(aT s + 1)
, θp = {K , T, a, b} .

1. Modelswitha ∈ {0.10, 0.25, 0.50, 0.75, 1.0} andb in ranges listed inTable7.6
(SOPRHPZ).

• Controller control algorithm and parameters:
2DoF PI (P I2) (2.12), θc = {

K p, Ti , Td = 0, β
}
.

• Robustness Levels:
Mt

S ∈ {1.4, 1.6, 1.8, 2.0}.
• Tuning rule:
Equations (7.3)–(7.5) and Tables7.1–7.5.

• Parameters interpolation:
If controlled process model parameter a /∈ {0.10, 0.25, 0.50, 0.75, 1.0} the
required controller parameters must be obtained using a linear interpolation
as explained above.

2. Models with 0.1 ≤ a ≤ 1.0, and 0.1 ≤ b ≤ 2.6 for Mt
S = 2.0 or 0.1 ≤ b ≤ 1.15

for Mt
S = 1.6.

• Controller control algorithm and parameters:
2DoF Ideal PID with Filter (P I D2F ) (2.21),
θ∗

c = {
K ∗

p, T ∗
i , T ∗

d , T f , β∗, γ ∗ = 0
}
.

http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_7
http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_7
http://dx.doi.org/10.1007/978-3-319-28213-8_7
http://dx.doi.org/10.1007/978-3-319-28213-8_7
http://dx.doi.org/10.1007/978-3-319-28213-8_7
http://dx.doi.org/10.1007/978-3-319-28213-8_2
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• Robustness Levels:
Mt

S ∈ {1.6, 2.0}.
• Tuning rule:
Equation (7.12) and Table7.9 for Mt

S = 2.0,
Equation (7.13) and Table7.10 for Mt

S = 1.6.

Integrating Processes

Controlled process model:

P(s) = K e−Ls

s(T s + 1)
.

1. Models with T �= 0 (ISOPDT)

• Controller control algorithm and parameters:
2DoF PI (P I2) (2.12), θc = {

K p, Ti , Td = 0, β
}
.

• Robustness Levels:
Mt

S ∈ {1.4, 1.6, 1.8, 2.0}.
• Tuning rule:
Equations (8.3)–(8.5) and Table8.1 for an over-damped target response.
Equations (8.7)–(8.9) and Table8.2 for an under-damped (ζ = 0.80) target
response.

2. Models with T �= 0 (ISOPDT)

• Controller control algorithm and parameters:
2DoF Parallel PI with Two Input Filters (P I2I F ) (6.24)–(6.26),
θc = {

K p, Ki , Kd = 0, T f , Tr , σ
}
.

• Robustness Levels:
Mt

S ∈ {1.6, 2.0}.
• Tuning rule:
Equations (8.10)–(8.14) for Mt

S = 2.0,
Equations (8.15)–(8.19) for Mt

S = 1.6.

3. Models with T = 0 (IPDT)

• Controller control algorithm and parameters:
2DoF PI (P I2) (2.12), θc = {

K p, Ti , Td = 0, β
}
.

• Robustness Levels:
Mt

S ∈ {1.4, 1.6, 1.8, 2.0}.
• Tuning rule:
Equations (8.22)–(8.24), and Table8.3 for an overdamped target response or
Table8.4 for an underdamped (ζ = 0.8) target response.

http://dx.doi.org/10.1007/978-3-319-28213-8_7
http://dx.doi.org/10.1007/978-3-319-28213-8_7
http://dx.doi.org/10.1007/978-3-319-28213-8_7
http://dx.doi.org/10.1007/978-3-319-28213-8_7
http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_8
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4. Models with T = 0 (IPDT)

• Controller control algorithm and parameters:
2DoF Ideal Parallel PI and PID with Two Input Filters (P I2I F , P I D2I F )
(6.24)–(6.27), θc = {

K p, Ki , Kd , T f , Tr , σ, γ = 0
}
.

• Robustness Levels:
Mt

S ∈ {1.6, 2.0}.
• Tuning rule:
Equations (8.27)–(8.32) and Table8.5.

Unstable Process

Controlled process model:

P(s) = K e−Ls

T s − 1
, τL = L

T
.

1. Models with 0.1 ≤ τL ≤ 0.55 (UFOPDT).

• Controller control algorithm and parameters:
2DoF PI (P I2) (2.12), θc = {

K p, Ti , Td = 0, β
}
.

• Robustness Levels:
Mt

S ∈ {2.0, 3.0, 4.0, 5.0, 6.0}.
• Tuning rule:
Equations (9.3)–(9.5) and Tables9.1 and 9.2.

2. Models with 0.1 ≤ τL ≤ 0.85 (UFOPDT).

• Controller control algorithm and parameters:
2DoF Ideal PID with Filter (P I D2F ) (2.21),
θ∗

c = {
K ∗

p, T ∗
i , T ∗

d , T f , β∗, γ ∗ = 0
}
.

• Robustness Levels:
Maximum robustness allowed estimated with (9.14).

• Tuning rule:
Equations (9.8)–(9.13).

3. Models with 0.25 ≤ τL ≤ 0.85 (UFOPDT).

• Controller control algorithm and parameters:
2DoF Standard PID (P I D2) (2.12), θc = {

K p, Ti , Td , β
}
.

• Robustness Levels:
Maximum robustness allowed.

• Tuning rule:
Equations (9.15)–(9.20).

http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_8
http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_9
http://dx.doi.org/10.1007/978-3-319-28213-8_9
http://dx.doi.org/10.1007/978-3-319-28213-8_9
http://dx.doi.org/10.1007/978-3-319-28213-8_9
http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_9
http://dx.doi.org/10.1007/978-3-319-28213-8_9
http://dx.doi.org/10.1007/978-3-319-28213-8_9
http://dx.doi.org/10.1007/978-3-319-28213-8_2
http://dx.doi.org/10.1007/978-3-319-28213-8_9
http://dx.doi.org/10.1007/978-3-319-28213-8_9
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4. Models with 0.1 ≤ τL ≤ 1.0 (UFOPDT).

• Controller control algorithm and parameters:
2DoF Ideal Parallel PID with Two Input Filters (P I D2I F ) (6.24), (6.25), and
(6.27), θc = {

K p, Ki , Kd , T f , Tr , σ, γ = 0
}
.

• Robustness Levels:
Maximum robustness allowed estimated with (9.28).

• Tuning rule:
Equations (9.21)–(9.27).

11.2.2 MoReRT Controllers Design Procedure Outline

Controller design has considered overdamped, inverse response, integral, and unsta-
ble controlled processes. All these dynamics are particular cases of the following
general controlled process model:

Pg(s) = K (−bT s + 1)e−Ls

sm(T s ± 1)(aT s + 1)
, θpg = {K , T, a, b, L , m} . (11.17)

Without a loss of generality, and taking into account that industrial controlled process
dynamics usually are overdamped, a stable second-order overdamped controlled
model given by the transfer function:

P(s) = K e−Ls

(T s + 1)(aT s + 1)
, θp = {K , T, a, L} . (11.18)

will be used to outline the design procedure.
Regarding the controller structure, several implementations of the 2DoF propor-

tional integral derivative control algorithms were considered: Standard, Ideal with
filter, and Parallel with two input filters. As shown in Sect. 11.1, the more common
2DoF PID control algorithm implemented in commercial controllers is the Standard
form, whose output equation is

u(s) = K p

{
βr(s) − y(s) + 1

Ti s
[r(s) − y(s)] +

(
Td s

αTd s + 1

)
[γ r(s) − y(s)]

}
.

(11.19)

θc = {K p, Ti , Td , α, β, γ },

Then, (11.18) together with (11.19) will became the particular controlled process
model/controller control algorithm combination used to exemplify the design proce-
dure.

http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_6
http://dx.doi.org/10.1007/978-3-319-28213-8_9
http://dx.doi.org/10.1007/978-3-319-28213-8_9
http://dx.doi.org/10.1007/978-3-319-28213-8_9
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On that basis, the detailed steps to follow in order to apply the MoReRT design
methodology are exposed in what follows as well as an optimization flowchart:

1. Controlled process information

a. Model transfer function
Parameters θp = {K , T, a, L} of model (11.18) can be identified using an
open or closed-loop test performed at the control system normal operating
point.
The model must be a trustworthy representation of the controlled process
dynamics over the entire control system operating range.

b. Robustness requirements
Variability of the model parameters due to changes on the control system
operating point (due to changes on the set-point and/or the disturbances) must
be analyzed to set the control system minimum robustness allowed for the
control system design.

c. Normalized controlled process model
Model (11.18) is normalized using ŝ = T s as follows:

P̂(ŝ) = e−τL ŝ

(ŝ + 1)(aŝ + 1)
, θ̂p = {a, τL}. (11.20)

2. Control algorithm

a. Normalized controller output equation
Using the same transformation as above the control algorithm output (11.19)
is normalized as follows:

u(ŝ) =κp

{
βr(ŝ) − y(ŝ) + 1

τi ŝ

[
r(ŝ) − y(ŝ)

] −
(

τd ŝ

ατd ŝ + 1

)
y(ŝ)

}
,

(11.21)

θ̂c = {κp, τi , τd , α, β, γ = 0},

that can be rewriten as

u(ŝ) = Ĉr (θ̂cr , ŝ)r(ŝ) + Ĉy(θ̂cy, ŝ)y(ŝ). (11.22)

Controller normalized parameters θ̂c = θ̂cr
⋃

θ̂cy , where θ̂cr = {κp, τi , β} and
θ̂cy = {κp, τi , τd , α}.

b. Unknown controller parameters
For the design of a P I2 controller the unknown normalized parameters are
θ̂cP I = {κp, τi , β}.
In the P I D2 case, the derivative filter constant α value can be obtained from
the controller Users’ Manual. If this information is not available, α = 0.10
can be used without any significant effect over the resulting controller setting.
Derivative filter parameter α usual values are in the range from 0.05 to 0.20.
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Then for design of a P I D2 controller the unknown normalized parameters are
θ̂cP I D = {κp, τi , τd , β}.

3. Desired closed-loop control target responses

a. Normalized control system output
Controller design will consider, at the same time, the disturbance, and the set-
point control systems responses in order to obtain all the controller parameters
at once, given by the expression

y(θ̂c, ŝ) = yr (θ̂c, ŝ)r(ŝ) + yd(θ̂cy, ŝ)d(ŝ), (11.23)

y(θ̂c, ŝ) = Ĉr (θ̂cr , ŝ)P̂(ŝ)

1 + Ĉy(θ̂cy, ŝ)P̂(ŝ)
r(ŝ) + P̂(s)

1 + Ĉy(θ̂cy, ŝ)P̂(ŝ)
d(ŝ). (11.24)

b. Closed-loop reference models
The target responses are selected considering the controlled process model
order and the controller characteristics.
In this case, the closed-loop target transfer functions are stated as:

M̂t
yr (θd , ŝ) = (τcŝ + 1)e−τL ŝ

(τ 2
c ŝ2 + 2ζ τcŝ + 1)(aτcŝ + 1)

, (11.25)

M̂t
yd(θd , ŝ) = (τi/κp)ŝe−τL ŝ

(τ 2
c ŝ2 + 2ζ τcŝ + 1)(aτcŝ + 1)

. (11.26)

c. Design parameters
The design parameters included into the target responses are:

θd = {ζ, τc}. (11.27)

If non-oscillatory responses are desired ζ = 1 is used in the target models. As
reported, it is possible to obtain more performance from the control system,
under the integrated absolute error criteria, without a significant deterioration
on the controller effort total variation if small oscillations are allowed in the
control systems responses. In this case, it is recommended to use ζ = 0.80
for the P I2 design and ζ = 0.70 for the corresponding for the P I D2.
With the selection of ζ , there is only one design parameter, the closed-loop
relative speed τc. The closed-loop control systemmain time constantTc = τcT .

d. Control system output target
The total target response, the set-point change response plus the disturbance
response, is a function of τc:

yt (τc, ŝ) = M̂t
yr (τc, ŝ)r(ŝ) + M̂t

yd(τc, ŝ)d(ŝ). (11.28)
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4. Optimization procedure

a. Cost functionals
To obtain the controller parameters that provide the better match, in the least-
squares sense, of the control system response with the target one the total cost
functional for the optimization is expressed as:

JT (·) .= Jr (θ̂p, θ̂c, τc) + Jd(θ̂p, θ̂cy, τc) (11.29)

where

Jr (·) .=
∫ ∞

0

[
yt

r (θ̂p, θ̂c, τc, τ ) − yr (θ̂p, θ̂c, τ )
]2

dτ, (11.30)

is the servo-control response matching cost functional, and

Jd(·) .=
∫ ∞

0

[
yt

d(θ̂p, θ̂cy, τc, τ ) − yd(θ̂p, θ̂cy, τ )
]2

dτ, (11.31)

the corresponding for the regulatory control response matching.
b. Initial controller parameters estimation

The initial controller parameters θ̂0
c (starting point) can be estimated using

an appropriate PI/PID robust tuning rule or simply selected as κ0
p = 1.0,

τ 0
i = 1.0, τ 0

d = 0.25, and β0 = 1.0.
c. Initial design parameter

The design parameter τc is directly related with the resulting control system
robustness. The start τc value (τ 0

c ) can be obtained using and analytically
deducted tuning rule that includes a criteria for its selection based in the target
robustness.
Such type of rules can be found in [21] for FOPDT model/P I2 controller
and in [22] for SOPDT model/P I D2 controller combinations. For inverse
response processes the rule in [23] provides an estimation of the design
parameter.
In absence of a initial τc estimation τ 0

c = 1 can be used for a first test run.
Based on the robustness of the resulting control system, the τc can be increased
or decreased to obtain a control system with the desired target robustness
level.

5. Control system time response (simulation)
The required total time span for the control system simulation (for the servo and
regulatory control responses) must be checked.

6. Controller tuning
If the normalized controller parameters obtained from the design procedure are
θd

c = {κd
c , τ d

i , τ d
d , βd} the required parameters for the controller are
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K p = κd
p

K
, Ti = τ d

i T, Td = τ d
d T, β = βd , γ = 0. (11.32)

In case that the controller algorithm of the PID controller to tune be other than
the Standard used for the design, conversion relations in Sect. 2.3 can be used to
obtain the required parameters.
A more direct approach is using on the reference models and control system
simulation the PID control algorithm corresponding to the controller to tune.

The work flow of a computer program for the aboveMoReRT design procedure is
summarized in Fig. 11.1. In this it is supposed that the selected start design parameter
τ 0

c will result in a control control system with a robustness lower that the target one
(M0

S > Mt
S). This outlined procedure can be refined including some design parameter

τc range and increment/decrement (±Δτc) control.

11.3 Case Study

Apractical case study is presented in this section in order to exemplify the application
of the MoReRT design. A simple process frequently found in industrial applications
is used to describe the steps required for tuning the required controllers.

11.3.1 Control of a Continuous Stirred-Tank Heater

Consider a perfectly mixed continuous stirred-tank heater (CSTH) whose control
system is depicted in Fig. 11.2. The fluid in the tank is an aqueous solution that
needs to be heated. It is of interest to control the level and temperature of the fluid
in the tank. To do this the tank outlet flow rate and the heating fluid flow rate are
manipulated.

System Modeling [24–27]

• Main assumptions:

– The fluid in the tank is perfectly mixed, the temperature of the outflow is equal
to the tank fluid temperature.

– Fluids densities and heat capacities are assumed to be constant (their temperature
dependance is negligible).

– The tank inlet fluid flow rate and temperature can change.
– The tank is perfectly insulated (there are no heat losses to the environment).
– For system modeling the instrumentation signals (pneumatic and electric) are
considered changing in the range for 0–100%.

http://dx.doi.org/10.1007/978-3-319-28213-8_2
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Fig. 11.1 MoReRT design general work flow
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Fig. 11.2 CSTH control system process and instrument diagram (P&ID)

• Tank mass balance:
The rate of change of the fluid mass in the tank is given by

ρ A
dH(t)

dt
= ρi Qi (t) − ρQ(t). (11.33)

If the density of the fluid in the tank does not change with temperature (ρ = ρi =
constant), then

A
dH(t)

dt
= Qi (t) − Q(t). (11.34)

• Tank energy balance:
The energy of the fluid in the tank changes at a rate given by the following equation:

d[ρC p AH(t)T (t)]
dt

= ρC pTi (t)Qi (t) − ρC pT (t)Q(t) + W (t), (11.35)

that can be expanded as

ρC p AH(t)
dT (t)

dt
+ ρC p AT (t)

dH(t)

dt
=

ρC pTi (t)Qi (t) − ρC pT (t)Q(t) + W (t). (11.36)
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Replacing (11.33) into (11.36) the tank energy balance equation reduces to:

ρC p AH(t)
dT (t)

dt
= ρC p Qi (t) [Ti (t) − T (t)] + W (t). (11.37)

• Heating jacket mass balance:
As the jacket is completely full of the (incompressible) heating fluid

ρc
dVc

dt
= ρc Qc(t) − ρc Qco(t) = 0, (11.38)

then
Qco(t) = Qc(t). (11.39)

• Heating jacket energy balance:
The change of the energy of the heating fluid in the tank heating jacket is given by
following relation:

ρcC pcVc
dTca(t)

dt
= ρcC pc Qc(t) [Tci (t) − Tco(t)] − W (t). (11.40)

• Heat transfer from the jacket to the tank

W (t) = U Ac [Tca(t) − T (t)] . (11.41)

• Heating fluid average temperature

Tca(t) = Tci (t) + Tco(t)

2
. (11.42)

• Transmitters:
∗ Level transmitter—For tank fluid level measurement a capacitive type electronic
level transmitter installed through the tank head is used and modeling with fol-
lowing relation

TL
dYL(t)

dt
+ YL(t) = KL H(t). (11.43)

The level transmitter measurement range is from 0 to 0.80m.
∗ Temperature transmitter—For tank fluid temperature measurement an electronic
temperature transmitter with a Pt100 RTD sensor and a thermowell installed at the
tank outlet pipe is used. Its dynamic is of second order given by:

T 2
T

d2YT (t)

dt2
+ 2TT

dYT (t)

dt
+ YT (t) = KT T (t). (11.44)

The temperature transmitter measurement range is from 0 to 50◦C.
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• Control valves:
∗ Level control valve—A normally close ball valve with a pneumatic actuator and
a current-to-pressure transducer is used to manipulate the tank outlet flow. Valve
inherent flow characteristics is nearly quadratic and it is represented by following
relations:

TvL
dX L(t)

dt
+ X L(t) = Kx LUL(t), (11.45)

Q(t) = KvL X2
L(t)

√
ρgH(t). (11.46)

∗ Temperature control valve—A normally close globe valve with a pneumatic
actuator and a current-to-pressure positioner is used tomanipulate the heatingfluid.
Valve has an equal-percentage inherent flow characteristics and it is represented
by following relations:

TvT
dXT (t)

dt
+ XT (t) = KxT UT (t), (11.47)

Qc(t) = KvT R[XT (t)−1]
vT

√
Pcp − [Rc Q2

c(t) + Pcr ]. (11.48)

:• Variables of interest:

– Controlled variables: tank fluid level H(t) and temperature T (t),
– Manipulated variables: tank fluid outlet flow rate Q(t) and jacket heating fluid
flow rate Qc(t),

– Disturbances: tank inlet fluid flow rate Qi (t) (system load) and temperature
Ti (t), and heating fluid inlet temperature Tci (t).

• Parameters and variables:

– ρ: tank fluid density, ρ = 1200 kgm−3,
– ρc: heating fluid density, ρc = 800 kgm−3,
– A: tank inside section area, A = π D2/4 m2,
– Ac: jacket heat transfer area, Ac = π DHc + π D2/4 m2,
– C p: tank fluid heat capacity, C p = 4190 Jkg−1◦C−1,
– C pc: heating fluid heat capacity, C pc = 2400 Jkg−1◦C−1,
– D: tank diameter, D = 0.30 m,
– g: gravity constant, g = 9.8 ms−2,
– H : level of fluid in the tank, m,
– Hc: heating jacket height, Hc = 0.60 m,
– Ht : tank wall height, Ht = 0.90 m,
– Hsp: level controller set-point, Hsp = 0.70 m,
– KL : level transmitter gain, KL = 125%m,
– KT : temperature transmitter gain, KT = 2.0 %/◦C,
– KvL : level control valve constant, KvL = 1.5 × 10−5,
– KvT : temperature control valve constant, KvT = 3 × 10−6,
– Kx L : level control valve stem constant, Kx L = 0.01/%,
– KxT : temperature control valve stem constant, KxT = 0.01/%,
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– Pcp: heating fluid pump discharge pressure, Pcp = 414 kpa,
– Pcr : heating fluid system return pressure, Pcr = 138 kpa;
– Q: tank outlet fluid flow rate, m3s−1,
– Qc: jacket heating fluid flow rate, m3s−1,
– Qi : tank inlet fluid flow rate, 6 × 10−4 m3s−1 ≤ Qi ≤ 7.5 × 10−4 m3s−1,
normal tank inlet fluid flow rate Qn

i = 7 × 10−4 m3s−1,
– Rc: heating system pipe nominal flow resistance, Rc = 5.5× 107 kPa/(m3/s)2

– RvT : temperature control valve rangeability, RvT = 50;
– t : time, s,
– T : temperature of fluid in the tank, ◦C,
– Tsp: temperature controller set-point, Tsp = 38 ◦C
– Ti : fluid inlet temperature, 22 ◦C ≤ Ti ≤ 26 ◦C, temperature T n

i = 24 ◦C,
– Tc: heating fluid temperature, ◦C,
– Tca : heating fluid average temperature, ◦C,
– Tci : heating fluid inlet temperature, Tci = 320 ◦C,
– Tco: heating fluid outlet temperature, ◦C,
– TL : level transmitter time constant, TL = 2 s,
– TT : temperature transmitter time constant, TT = 15 s,
– TvL : level control valve time constant, TvL = 3 s,
– TvT : temperature control valve time constant, TvT = 5 s
– U : overall heat-transfer coefficient, U = 440 Js−1m−2◦C−1,
– UL : level controller output signal, %,
– UT : temperature controller output signal, %,
– Vc: heat jacket volume, Vc = Hcπ [(D + 2Wc)

2 − D2]/4 + Wcπ(D +
2W c)2/4 m3,

– W : rate of heat transfer from jacket to tank, Js−1,
– Wc: heating jacket wide, Wc = 0.02 m,
– X L : level control valve stem normalized travel, 0 ≤ X L ≤ 1,
– XT : temperature control valve stem normalized travel, 0 ≤ XT ≤ 1,
– YL : level transmitter output signal, %,
– YT : temperature transmitter output signal, %,

The CSTH model includes seventeen variables, five of them are input variables,
related by eight nonlinear differential equations and four nonlinear algebraic equa-
tions.

Steady-State Operation Conditions

The steady-state operation points of the tank level system for the minimum (Qm
i ),

normal (Qn
i ), and maximum (QM

i ) inlet flow rates are listed in Table11.1.
To maintain the tank level at the set-point Hsp = 0.70 m over the entire inlet fluid

flow rate range (6.0 × 104 m3s−1 ≤ Qi ≤ 7.5 × 104 m3s−1) the level control valve
opening range is 66.40% ≤ X L ≤ 74.23%.

For the heating system the steady-state operation points for the inlet flow rate and
temperature extrememinimum (Qm

i , T M
i ), normal (Qn

i , T n
i ), and extrememaximum

(QM
i , T m

i ) combinations are listed in Table11.2.
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Table 11.1 Tank fluid level operation points

Qm
i Qn

i QM
i

Qo (m3s−1) 6.0 × 10−4 7.0 × 10−4 7.5 × 10−4

Xo
L 0.6640 0.7172 0.7423

U o
L (%) 66.40 71.72 74.23

Hsp = 0.70 m
Y o

L = 87.50 %

Table 11.2 Heating system operation points

(Qm
i , T M

i ) (Qn
i , T n

i ) (QM
i , T m

i )

Qo
c (m3s−1) 6.97 × 10−5 1.56 × 10−4 4.19 × 10−4

T o
ca (◦C) 167.33 214.03 253.55

T o
co (◦C) 14.66 108.07 187.10

W o Js−1 36202 49274 60336

Xo
T 0.1719 0.3440 0.5151

U o
T (%) 17.19 34.40 51.51

Tsp = 38 ◦C
Y o

T = 76 %

As the fluid flow rate range is 6.0 × 104 m3s−1 ≤ Qi ≤ 7.5 × 104 m3s−1 and
the inlet temperature range 22.0 ◦C ≤ Ti ≤ 26.0 ◦C then, to maintain the fluid
temperature at its set-point Tsp = 38 ◦C the required temperature control valve
travel is 17.19% ≤ XT ≤ 51.51%.

Dynamic Characteristics

Although the CSTH has two controlled variables and two associated manipulated
variables, (H, Q), (T, Qc), the system is not interacting. The level control system
of the fluid in the tank perturbs its temperature control system but this last one does
not affect the fluid level. This is schematically shown in Fig. 11.3.

Fig. 11.3 CSTH control system schematic
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Fig. 11.4 Controlled process seen by the temperature controller

Changes in the inlet flow temperature Ti , the heating fluid temperature Tci , and
the heating fluid flow rate Qc do not affect the fluid level in the tank. On the other
hand, the inlet fluid flow rate Qi affects the fluid level H , the heat transfer from the
jacket to the tank fluid, and then the fluid temperature T .

From Fig. 11.3 it seems that the CSTH model must include transfer functions
representing the UL → YL , UL → YT , Qi → YL , Qi → YT , UT → YT , Ti → YT ,
and Tci → YT dynamics but changes in the inlet flow rate Qi and level control
set-point Hsp are filtered by the tank level control system.

The controlled process “seen” by the temperature controller (TIC) includes the
whole level control system as depicted in Fig. 11.4. Then, we must consider first the
tank fluid level control system.

CSTH Level Control System

To obtain the controlled processmodels for the level control systemwemust consider
the three operating points {Qm

i , Qn
i , QM

i } and changes in the level control output
signal UL (δUL = ±2%) and in the inlet fluid flow rate Qi (δQi = ±5%). All these
responses are first-order as shown in Fig. 11.5 for the (Qn

i , δUL ) case.
From the process reaction curves and using a two-point identification method

[28] first-order models are obtained whose parameters are listed in Table11.3. All
identified models are first-order without dead-time. Process gain and time constant
depend on the operation point and on the type and sign of the input signal changes.

At the normal operating point the δUL → δYL and δQi → δYL average models
are:

P̃YL UL (s) = −4.90

146.24s + 1
, (11.49)

P̃YL Qi (s) = 2.50 105

142.35s + 1
. (11.50)
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Fig. 11.5 Controlled process reaction curve (δYL/δUL )

Table 11.3 CSTH models for level control

+ΔUL −ΔUL +ΔQi −ΔQi

Qi = Qm
i

K –4.90 –5.69 2.99 ×105 2.84 ×105

T 153.07 186.88 171.63 159.99

Qi = Qn
i

K –4.56 –5.24 2.57 ×105 2.43 ×105

T 132.77 159.70 147.75 136.94

Qi = QM
i

K –4.42 –5.05 2.39 ×105 2.28 ×105

T 124.63 148.94 138.70 128.29

From these average models the changes in the process characteristics over the
entire system operation range are [K (–9.9%, +16.1%), T (–14.8%, +27.8%)] for
δUL and [K (–9.0%, +19.5%), T (–9.9%, +20.8%)] for δQi that are not very severe.
Robustness requirements are set to the minimum level.

Then, for the design of the tank fluid level control system depicted in Fig. 11.6
following models are used

PYL UL (s) = KYL UL

T s + 1
= −4.90

144.30s + 1
, (11.51)

PYL Qi (s) = KYL Qi

T s + 1
= 2.50 105

144.30s + 1
= −0.51 × 105 PYL UL (s), (11.52)

with time constant T in s and gains KYL UL in %/% and KYL Qi in %(m3/s).
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Fig. 11.6 CSTH level control system

To control a first-order process a proportional-integral controller is adequate. For
its tuning an analytical deducted rule for 2DoF PI controller is used with equations
[21]:

κp
.= K p KYL UL = 2 − τc

τc
, (11.53)

τi
.= Ti

T
= τc(2 − τc), (11.54)

β = 1

2 − τc
, (11.55)

where τc < 2 is the design parameter. Using the (11.53)–(11.55) tuning the closed-
loop transfer functions are:

MYL Qi (s) = KYL Qi τ
2
c T s

(τcT s + 1)2
, (11.56)

MYL UL (s) = 1

τcT s + 1
. (11.57)

Robustness of a first-order process PI control system is not a concern, it is extremely
high. Then, the level control design is made taking into account following perfor-
mance indices:

• Control system speed (closed-loop time constant)

Tc = τcT . (11.58)

• Regulatory control maximum error (for a critical damped response)

ELmax = 0.368KYL Qi τcΔQi . (11.59)
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Fig. 11.7 Level control response to set-point changes

• Controller output abrupt change on a step set-point modification

ΔU 0+
L = K pβΔHsp = 1

KYL UL τc
ΔHsp. (11.60)

From (11.58) to (11.60) it is seen that if the design parameter τc ↓ then Tc ↓
(faster system) and ELmax ↓ (lower maximum error) but ΔU 0+

L ↑ (higher controller
proportional “kick”). If wewant to limit the controller output abrupt change said to be
ΔU 0+

L ≤ ΔHsp then, the design parameter must be in the range 1/KYL UL ≤ τc < 2.
Selecting τc = 0.25 the P I2 controller parameters are: K p = 1.43, Ti = 63.20 s,
and β = 0.57. The Action of the controller must be Direct. Figure11.7 shows the
tank level control operation to a set of set-point Hsp changes.

The corresponding operation of the tank level control system to the disturbance
δQi is shown in Fig. 11.8.

With the level control systemworking in automaticmode it is necessary to conduct
the tests to obtain the dynamic relations between the temperature transmitter output
YT and the possible inputs UT , Ti , Tci , Qi , and Hsp (see Fig. 11.4).

CSTH Temperature Control System

To obtain the controlled process models for design the fluid temperature control
system a total of ten reaction curves are obtained at the normal operating point. The



160 11 MoReRT Practical Application

Fig. 11.8 Level control response to disturbance changes

input changes are δUt = ±5%, δTi = ±2 ◦C, δTci = ±5% = 16 ◦C, δQi = ±5%,
and δHsp = ±5%.

The process dynamics are of second-order as shown in Fig. 11.9 for the (δYT , δUT )
case and in Fig. 11.10 for the (δYT , δTi ) case. The identified parameters for themodels
are listed in Table11.4.

As expected, changes in the temperature controller output UT and fluid inlet
temperature Ti affect significantly the fluid temperature T while the influence of a
change in the heating fluid temperature Tci is approximately 20 times lower than
the influence of a change in Ti . A change in the inlet flow Qi also has a important
influence over T but changes in the level control system set-point Hsp show that they
do not have any influence on the tank fluid temperature.
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Fig. 11.9 Process reaction curve (δYT /δUT )

Table11.4 also includes the sum of all the model time related parameters TT =
(1 + a + τL)T in s as an indication of the speed of the particular dynamics. At the
normal operating point the δUT → δYT , δTi → δYT , δTci → δYT , and δQi → δYT ,
average models of the tank fluid temperature control system depicted in Fig. 11.11
are:

P̃YT UT (s) = 0.39e−27.59s

(48.89s + 1)(48.89s + 1)
, (11.61)

P̃YT Ti (s) = 1.91e−4.64s

(46.38s + 1)(31.54s + 1)
, (11.62)

P̃YT Tci (s) = 0.095e−24.87s

(48.65s + 1)(48.65s + 1)
, (11.63)

P̃YT Qi (s) = −3.82 104e−4.63s

(46.48 + 1)(31.35s + 1)
. (11.64)

To analyze changes in the process dynamics two extreme cases are considered as
was made for the steady-state conditions. The lowest heating demanding condition
(Qm

i , T M
i ) and the highest heating demanding condition (QM

i , T m
i ). Then, 16 addi-

tional reaction curves are obtained. Parameters of the obtained models are listed in
Table11.5.
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Fig. 11.10 Process reaction curve (δYT /δTi )

Table 11.4 CSTH models for temperature control (normal operation point)

K T a τL TT

+ΔUT 0.38 46.78 1.0 0.58 120.69

−ΔUT 0.40 51.00 1.0 0.55 130.05

+ΔTi 1.91 46.38 0.68 0.10 82.56

−ΔTi 1.91 46.38 0.68 0.10 82.56

+ΔTci 0.095 48.65 1.0 0.47 120.17

−ΔTci 0.095 48.65 1.0 0.47 120.17

+ΔQi –3.64 ×104 44.68 0.69 0.11 80.42

−ΔQi –4.00 ×104 48.28 0.66 0.09 84.49

The control system stability depends only on the Cy(s) controller parameters
and on the PYT UT (s) model parameters. From the relative stability point of view the
worst case corresponds to PYT UT (s) highest gain KYT Ut , lowest sum of time constants
(1 + a)TYT Ut , and highest dead-time LYT Ut .

From Table11.5 the PYT UT (s) model highest deviations are: ΔKYT UT = +23%,
Δ(1 + a)TYT Ut = −33.2%, and ΔLYT Ut = +6.6% but not all of them occur at the
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Fig. 11.11 CSTH temperature control system

Table 11.5 CSTH models for temperature control (extreme cases)

K T a τL TT

(Qm
i , T M

i )

+ΔUT 0.48 58.79 1.0 0.49 146.39

−ΔUT 0.48 67.80 0.93 0.38 156.62

+ΔTi 1.92 63.27 0.35 0.14 94.27

−ΔTi 1.92 63.27 0.35 0.14 94.27

+ΔTci 0.082 61.20 1.0 0.40 146.88

−ΔTci 0.082 61.20 1.0 0.40 146.88

+ΔQi –3.66 ×104 60.11 0.38 0.14 91.37

−ΔQi –4.03 ×104 66.81 0.31 0.14 96.87

(QM
i , T m

i )

+ΔUT 0.26 41.22 0.98 0.52 103.05

−ΔUT 0.29 42.59 1.0 0.60 110.73

+ΔTi 1.89 42.39 0.72 0.13 78.42

−ΔTi 1.89 42.39 0.72 0.13 78.42

+ΔTci 0.11 43.52 0.88 0.46 101.84

−ΔTci 0.11 43.52 0.88 0.46 101.84

+ΔQi –3.56 ×104 40.94 0.73 0.14 76.56

−ΔQi –4.23 ×104 44.01 0.70 0.12 80.10

same operating point. Considering this for the temperature control system design a
robustness target level Mt

S = 2.0 is used.
From Tables11.4 and 11.5 it is seen that the main disturbances of the fluid tem-

perature T are Ti and Qi and that the δTi → δYT and δQi → δYT dynamics are the
same except for the gains due only to the disturbances different physical nature. The
controlled process models for the temperature controller tuning are:
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PYT UT (s) = 0.39e−27.59s

(48.89s + 1)(48.89s + 1)
, (11.65)

PYT Ti (s) = 1.91e−4.64s

(46.38s + 1)(31.54s + 1)
, (11.66)

PYT Qi (s) = −3.82 × 104e−4.63s

(46.48 + 1)(31.35s + 1)
, (11.67)

with time constants and dead-time in s, KYT UT in %/◦C, and KYT Qi in %/(m3/s).
To produce a temperature change ΔT = 1 ◦C (ΔYT = 2%) it is required a

ΔUT = 5.138%, a ΔTi = 1.047 ◦C, or a ΔQi = 5.236 × 10−5 m3s−1. The
temperature control system controlled variable is given by following relation:

δYT (s) = CT r (s)PYT UT (s)

1 + CT y(s)PYT UT (s)
δTsp(s) + PYT Ti (s)

1 + CT y(s)PYT UT (s)
δTi (s)

+ PYT Qi (s)

1 + CT y(s)PYT UT (s)
δQi (s). (11.68)

Considering that the two disturbances {δTi , δQi } have the same dynamics, the tem-
perature controller can be designed considering only one of them. Using the process
gain K = 0.39 andmain time constant T = 48.89s the processes normalizedmodels
used for the controller design are:

P̂YT UT (ŝ) = e−0.56ŝ

(ŝ + 1)2
, (11.69)

P̂YT Ti (ŝ) = 4.90e−0.095ŝ

(0.95ŝ + 1)(0.65ŝ + 1)
. (11.70)

In this case, Pd(s) �= Pu(s) and the closed-loop target transfer functions must be
selected using (10.24) and (10.26) presented in Sect. 10.2.

Based on normalized models (11.69) and (11.70) the target closed-loop transfer
functions are selected as:

Mt
YT Tsp

(ŝ) = e−0.56ŝ

(τcŝ + 1)2
, (11.71)

Mt
YT Ti

(ŝ) = 4.90(ŝ + 1)2(τi/κp)ŝe−0.095ŝ

(0.95ŝ + 1)(0.65ŝ + 1)(τcŝ + 1)3
, (11.72)

to obtain non-oscillating responses.
Starting with controller parameters κ0

p = 1.0, τ 0
i = 1.0, τ 0

d = 0.25, and β0 = 1.0,
and a design parameter τ 0

c = 1.0 it is found the the resulting controller normalized
parameters are κp = 1.440, τi = 2.099, τd = 0.617, and β = 0.485, and the
control system robustness MS = 1.553 that is much higher than the selected target
robustness. Then, we can speed-up the control system, and consequently reduce its
robustness, by using a lower design parameter.

http://dx.doi.org/10.1007/978-3-319-28213-8_10
http://dx.doi.org/10.1007/978-3-319-28213-8_10
http://dx.doi.org/10.1007/978-3-319-28213-8_10
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Table 11.6 CSTH MoReRT temperature controller parameters and robustness

τc κp τi τd β MS

0.700 2.477 1.893 0.625 0.393 2.457

0.725 2.379 1.924 0.626 0.398 2.336

0.750 2.282 1.952 0.626 0.404 2.226

0.775 2.186 1.978 0.626 0.410 2.126

0.800 2.093 2.001 0.627 0.416 2.036

0.825 2.002 2.022 0.627 0.423 1.954

0.875 1.827 2.056 0.626 0.438 1.813

0.975 1.512 2.096 0.620 0.475 1.596

1.000 1.440 2.099 0.617 0.485 1.553

1.100 1.179 2.087 0.602 0.533 1.411

1.200 0.956 2.032 0.575 0.595 1.306

The MoReRT controller parameters and control system robustness obtained with
different τc design parameters are listed in Table11.6.

Selecting (τc = 0.80) κp = 2.093, τi = 2.001, τd = 0.627, and β = 0.416, the
parameters for the temperature controller (TIC) tuning are K p = 5.37, Ti = 97.83 s,
Td = 30.65 s, β = 0.42, and Reverse Action.

The temperature (YT ) and level (YL ) control system responses and controller out-
puts (UT ,UL ) to changes in the temperature set-point (Tsp), and inlet fluid temperature
(Ti ) and flow rate (Qi ) disturbances are shown in Fig. 11.12.

11.4 Chapter Remarks

The two-degree-of-freedomproportional integral derivative control algorithms imple-
mented in commercial controllers of eight manufactures are presented. Most of they
made use of the PID Standard algorithm that can be aggregated with set-point and
controlled variable input signal filters. Approximately half of these manufactures
allow to use a proportional set-point factor β > 1, but the others constraint it to be
in the range 0 ≤ β ≤ 1. This constraint would reduce the achievable servo-control
performance in cases that a highly robust control system is required.

TheMoReRT tuning equations for 2DoF PI and PID control algorithms to control
a diversity of controlled process are summarized for easy using.

The steps to follow to applied the MoReRT design methodology to and specific
controlled process/controller combination not covered by the available tuning rules
are presented. Based on these the user may implement its own design routine.

The controlled process dynamics analysis and identification, and the robust con-
troller design stages are exemplify using a continuous stirred-tank heater (CSTH).
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Fig. 11.12 CSTH control system responses

The control system design made use of a analytically deducted robust tuning method
for the tank level P I2 controller and of the MoReRT design for the fluid temperature
P I D2 controller.
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Appendix A
MoReRT Controllers Design Demo Software

The use of the proposed Model-Reference Robust Tuning (MoReRT) design
methodology, described in Chap.4, to tune a two-degree-of-freedom (2DoF) pro-
portional integral derivative (PID) controller requires of an optimization program,
as outlined in Sect. 11.2.2. In order to facilitate the implementation of the MoReRT
approach, a MATLAB® based software package has been developed. The provided
routines just require the user to input the process information data and desired con-
troller structure. The software will perform the required optimizations and show the
closed-loop responses for the obtained controller.

In the following, a simple MoReRT software package implemented in MAT-
LAB® is described. The user interface and software usage are explained by means
of developing some design examples. This software can be obtained directly from
the authors.

A.1 Introduction

Considered the general closed-loop control system depicted in Fig.A.1 where the
controlled process is given by

y(s) = Pu(s)u(s) + Pd(s)d(s), (A.1)

and the controller output signal by the expression

u(s) = Cr (s)r(s) + Cy(s)y(s). (A.2)

From (A.1) and (A.2) the closed-loop control system output is then

y(s) = Cr (s)Pu(s)

1 + Cy(s)Pu(s)
r(s) + Pd(s)

1 + Cy(s)Pu(s)
d(s), (A.3)

© Springer International Publishing Switzerland 2016
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Advances in Industrial Control, DOI 10.1007/978-3-319-28213-8

169

http://dx.doi.org/10.1007/978-3-319-28213-8_4
http://dx.doi.org/10.1007/978-3-319-28213-8_11


170 Appendix A: MoReRT Controllers Design Demo Software

Fig. A.1 General 2DoF
closed-loop control system
block diagram

that can be rewrite in compact form as

y(s) = Myr (s)r(s) + Myd(s)d(s). (A.4)

If Pd(s) = Pu(s) the disturbance d(s) acts as an input disturbance di (s), or load
disturbance. In case that the disturbance input dynamics Pd(s) = 1 the disturbance
d(s) is an output disturbance do(s). In general, if Pd(s) �= Pu(s) the path from
the disturbance to the controlled variable d → y is different to the path from the
controller output signal to the controlled variable u → y.

The controlled process model Pu(s) captures the controlled variable dynamics
to a change in the controller output signal and the model Pd(s) the corresponding
dynamics to a change in the process disturbance signal. These two dynamics can
be very different. Therefore, (A.3) allows to analyze different alternatives or control
problems.

A.2 Controlled Process Models and Control Algorithm

We consider here the general case of over-damped first- and second-order plus dead-
time controlled process models, (F)SOPDT, and a controller with a 2DoF Standard
PID control algorithm, P I (D)2.

Controlled Process Models

The controlled process dynamics are given by following models:

Pu(s) = K pue−L pu s

(Tpus + 1)(apu Tpus + 1)
, (A.5)

Pd(s) = K pde−L pd s

(Tpds + 1)(apd Tpds + 1)
, (A.6)

where their parameters are θpu = {
K pu �= 0, Tpu > 0, 0 ≤ apu ≤ 1, L pu ≥ 0

}
and

θpd = {
K pd �= 0, Tpd ≥ 0, 0 ≤ apd ≤ 1, L pd ≥ 0

}
. Here the usual default para-

meter values for the derivative part have been taken.
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Gains of the controlled process models Pu(s) and Pd(s) can be any number dif-
ferent from zero. If K pu > 0 the controller Action must be set to Reverse (+). In
case that K pu < 0 a Direct (−) Action is required for the controller.

Control Algorithm

The 2DoF Standard PID control algorithm given by the equation

u(t) = K p

{
βr(t) − y(t) + 1

Ti

∫ t

0
[r(ξ) − y(ξ)]dξ + d[γ r(t) − y(t)]

dt

}
, (A.7)

or

u(s) = K p

{
βr(s) − y(s) + 1

Ti s
[r(s) − y(s)] + Tds

αTds + 1
[γ r(s) − y(s)]

}

(A.8)
is selected for the controller. Then, the controller parameters to tune are θc ={

K p > 0, Ti > 0, Td ≥ 0, β ≥ 0, α = 0.1, γ = 0
}
.

The set-point and feedback controllers are given by the transfer functions:

Cr (s) = K p

(
β + 1

Ti s

)
, (A.9)

Cy(s) = K p

(
1 + 1

Ti s
+ Tds

0.1Tds + 1

)
. (A.10)

Normalized Controller Process Models and Controllers

As described in Chap.5 it is convenient to normalize the controlled process models
and the controller. Then, using Pu(s) parameters K pu and Tpu and the transformation
ŝ = Tpus, the normalized versions of A.5, A.6, A.9, and A.10 are:

P̂u(ŝ) = e−τLpu ŝ

(ŝ + 1)(apu ŝ + 1)
, (A.11)

P̂d(ŝ) = κpde−τLpd ŝ

(τpd ŝ + 1)(apdτpd ŝ + 1)
, (A.12)

Ĉr (ŝ) = κp

(
β + 1

τi ŝ

)
, (A.13)

Ĉy(ŝ) = κp

(
1 + 1

τi ŝ
+ τd ŝ

0.1τd ŝ + 1

)
, (A.14)

http://dx.doi.org/10.1007/978-3-319-28213-8_5
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where

τLpu
.= L pu

Tpu
,

κpd
.= K pd

K pu
, τpd

.= Tpd

Tpu
, τLpd

.= L pd

Tpu
, (A.15)

κp
.= K pu K p, τi

.= Ti

Tpu
, τd

.= Td

Tpu
,

are the new normalized (dimensionless) parameters.

A.3 Closed-Loop Transfer Functions Targets and Cost
Functionals

Following the general procedure described in Chap.4 and in Sect. 10.2 for the partic-
ular case when Pd(s) �= Pu(s), the target closed-loop servo-control and regulatory
control transfer functions for (A.4) are selected as:

Mt
yr (ŝ)

.= (τcŝ + 1) e−τLpu ŝ

(τ 2
c ŝ2 + 2ζ τcŝ + 1)(apuτcŝ + 1)

, (A.16)

Mt
yd(ŝ)

.= (ŝ + 1)(apu ŝ + 1)

(τpd ŝ + 1)(apdτpd ŝ + 1)

(κpd/κpu)(τi/κp) ŝ e−τpd ŝ

(τ 2
c ŝ2 + 2ζ τcŝ + 1)(apuτcŝ + 1)

, (A.17)

where θd = {ζ, τc} are the design parameters. According to the pursued studies
and analysis, presented in the corresponding chapters, there are recommended fixed
values for ζ in order to guarantee a good compromise between the performance and
control signal usage. On the other hand, τc should be adjusted in order to provide the
fastest response for the desired robustness.

A.4 MoreRT Controllers Design Software Implementation

As shown in Fig. 11.1 to implement the proposed MoReRT design procedure a min-
imum of five routines are required: a main program for data entry, a design function
to call the optimization function and for iteration control, a cost function, and a
simulation and plotting function.

The MoReRT cost function optimization is done using MATLAB fminsearch
function which uses the Nelder-Mead simplex method.

The control system simulation can be made directly in MATLAB or using a
Simulink block diagram.

http://dx.doi.org/10.1007/978-3-319-28213-8_4
http://dx.doi.org/10.1007/978-3-319-28213-8_10
http://dx.doi.org/10.1007/978-3-319-28213-8_11
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Data Entry

The user must provide the following information:

• The controlled process models Pu(s) and Pd(s) parameters: θpu and θpd , respec-
tively.

• The controller initial normalized parameters: θ0
c (i.e. κ0

p = 1, τ o
i = 1, τ 0

d =
0.25, β = 1).

• The design parameters θd = {ζ, τc}. For nearly non-oscillating responses ζ = 1
must be used. For under damped responses it is recommended to use ζ = 0.80 for
the PI and ζ = 0.7 for the PID. The closed-loop relative speed τc can be a single
value (i.e. τc = 1), a set of discrete values (i.e. τc = 0.8, 1.0, 1.05), or a sequence
of values (i.e. τc = 0.8 : 0.1 : 1.5).

• The simulation time control (total simulation time and the discretization (sampling)
time). The simulation span must cover the time required for the target servo-
control and the regulatory control response to reach to a new steady-state operation.
The discretization time selection impacts the total CPU time required for the
cost function optimization process but also the numerical solution accuracy and
stability.

Cost Function

The cost function evaluation include following steps:

• Regulatory control Myd(s) step response, ym
yd(t).• Regulatory control target Mt

yd(s) step response, yt
yd(t).

• Regulatory control cost functional, Jd = ∫ [ym
yd(t) − yt

yd(t)]2dt .
• Servo-control Myr (s) step response, ym

yr (t).
• Servo-control target Mt

yr (s) step response, yt
yr (t).

• Servo-control cost functional, Jr = ∫ [ym
yr (t) − yt

yr (t)]2dt .
• Total cost functional evaluation, JT = Jd + Jr .

Controller Parameters

For each τc given, the optimization routine prints the obtained controller normal-
ized parameters θ̂c. With these, the corresponding control system robustness MS is
evaluated.

For the last design parameter τc analyzed, the controller MoReRT tuning parame-
ters (not the normalized ones) K P = κp/K pu , Ti = τi Tpu , Td = τd Tpu , β, α = 0.1,
and γ = 0 are returned. Finally, the control system responses to a Δr set-point
change followed by a Δd disturbance change are shown with its robustness plot.

The MoReRT designed controller parameters {K p, Ti , Td , β} are available at
the MATLAB Workspace as the variables Kpo, Tio, Tdo, and bo, respectively.

Demo Software Files

• MoReRTcPID2pSOPuPd.p: main program, data entry and program execution
control.
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Fig. A.2 Program main
menu user interface

• mrtfpcPID2pSOPuPd.p: design parameter τc iteration control, optimization
function call.

• mrtfccPID2pSOPuPd.p: cost function evaluation.
• mrtfscPID2pSOPuPd.p: control systems simulation, step responses and
robustness plot.

• mrtfgNyquist.p: Nyquist with MS circles plot.
• MATLAB functions: bode, disp, fminsearch, lsim, nyquist, plot,
step.

Program Main Menu

The MoReRT demo software user interface ([MAIN MENU]) is shown in Fig.A.2.
Using the MAIN MENU push buttons the user can input the problem data (design

parameters, controlled process (F)SOPDTmodels parameters, PI(D) controller initial
parameters, and simulation control), run the controller tuning routine, and/or exit the
control system design process.

Input Data Error Detection

The MoReRT demo software implements a simple verification of the input data
provided by the user to prevent an eventual program malfunction or hanging. Some
of the error messages are shown in Fig.A.3.

A.5 MoReRT Controllers Design Demo Software Usage

For use of the MoReRT controllers design demo software consider the following
example
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Fig. A.3 Input data error messages

• Controlled process models:

Pu(s) = 2e−2.0s

(5.0s + 1)(2.5s + 1)
,

Pd(s) = Pu(s).

• Controller: 2DoF PI.
• Design criteria: Mt

S ≈ 1.80, ζ = 0.80, τc = 1.0 (only one initial test).
• Controller initial normalized parameters: κ0

p = 1.0, τ 0
i = 1.0, τ 0

d = 0, β = 1.0.
• Simulation control: tu = 100.0 δt = 0.02 (for simulations during optimization),

tus = 200.0 δts = 0.2, Δr = 10%, Δd = 5% (for final control system simula-
tion).

Design for Input Disturbance

For the first example, the disturbance transfer function is selected as Pd(s) = Pu(s).
Then, we are considering an input disturbance di (s).

The Execution of the MoReRT Design Demo Software maim program is started
writing the main file name at MATLAB Command Window:
»MoReRTcPID2pSOPuPd [Enter]
After that, the program Main Menu shown in Fig.A.2 is displayed.

Data Input

User must provide the control problem data.
The problem data input windows are selected from the MAIN MENU:

• [DESIGN Parameters], opens the window shown in Fig.A.4.
• [CONTROLLED PROCESSES Parameters], opens the window shown in
Fig.A.5.
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Fig. A.4 Design parameters
input window

Fig. A.5 Controlled process
Pu(s) parameters input
window

• [CONTROLLER Parameters], opens the window shown in Fig.A.6.
• [SIMULATION Control], opens the window shown in Fig.A.7.

Program Output

The program output is:
== MoReRT Controllers Design (cPID2/pSOPDT) ==
==============================================
– Controlled process models parameters –
Pu(s):
Kpu = 2
Tpu = 5
apu = 0.5
Lpu = 2
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Fig. A.6 PI Controller
initial normalized parameters
input window

Fig. A.7 Control system
simulation control input
window

Pd(s) = Pu(s)

– Design parameters –
controller: PI2
z = 0.8
tco = 1

– MoReRT controller normalized parameters –
tc = 1
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kp = 0.81863
ti = 1.2085
td = 0
ba = 0.90726
Ms = 1.573

== MoReRT PID2 controller parameters ==
Action = reverse (+)
Kp = 0.40931
Ti = 6.0425
Td = 0
alpha = 0.1
beta = 0.90726
gamma = 0
Ms = 1.573
»

The robustness of the control system MS = 1.57 is higher that the design
requirement. Then, we can increase the control system speed and use tcv =
0.95:-0.05:0.85, to obtain three controllers. Therefore looking for a better
performance on the basis of the desired robustness.

Selecting from the MAIN MENU the [DESIGN Parameters] input window
the new closed-loop relative speed design parameters are typed as shown in Fig.A.8

Design Progress Bar

During the design process its progress is indicated by a length changing red bar as
shown in Fig.A.9. The design process can be interrupted with the [Cancel] push
button. It will be stopped after that the optimization with the next τc design parameter
is finished.

Fig. A.8 Change of the
closed-loop relative speeds
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Fig. A.9 Controller design progress bar

New Results

The program output is now:
== MoReRT Controllers Design (cPID2/pSOPDT) ==

==============================================

...

– MoReRT controller normalized parameters –

tc = 0.95

kp = 0.90509

ti = 1.2411

td = 0

ba = 0.85694

Ms = 1.6367

tc = 0.9

kp = 0.99883

ti = 1.2708

td = 0

ba = 0.81243

Ms = 1.712

tc = 0.85

kp = 1.1

ti = 1.2976

td = 0

ba = 0.77317

Ms = 1.8013

== MoReRT PID2 controller parameters ==

Action = reverse (+)

Kp = 0.55

Ti = 6.4878

Td = 0

alpha = 0.1
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Fig. A.10 Demo example (di )—System responses and robustness (τc = 0.85)

beta = 0.77317

gamma = 0

Ms = 1.8013

»

For τc = 0.85 the control system robustness is MS = 1.80. Then, we select a
P I2 controller with parameters K p = 0.55, Ti = 6.49, and β = 0.77. The resulting
control systems responses and robustness are shown in Fig.A.10.

Design for Output Disturbance

To design the MoReRT controller considering an output disturbance do the transfer
function Pd(s) = 1. Then, Kpd = 1, Tpd = 0, apd = 0, and Lpd = 0 are
automatically set.

Selecting at the [DESIGN Parameters] input window the control problem 2
(Pd = 1) and using z = 0.8 and tcv = 0.85 as shown in Fig.A.11, we have
== MoReRT Controllers Design (cPID2/pSOPDT) ==
==============================================
...
– MoReRT controller normalized parameters –
tc = 0.85
kp = 1.1936
ti = 1.2878
td = 0
ba = 0.67589
Ms = 1.9124

== MoReRT PID2 controller parameters ==
Action = reverse (+)
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Fig. A.11 Output
disturbance selection

Kp = 0.59682
Ti = 6.439
Td = 0
alpha = 0.1
beta = 0.67589
gamma = 0
Ms = 1.9124
»

Using the same closed-loop system relative speed design parameter, the resulting
control system for an output disturbance is more oscillating, with higher peak error,
and less robust than the one designed by considering an input disturbance. The new
control systems responses and robustness are shown in Fig.A.12.

To compare, at the same design robustness level, the control system obtained
considering an output disturbance with the one obtained earlier considering an input
disturbance the control system relative speed must be decreased.

Adjusting tc we finally obtain:

== MoReRT Controllers Design (cPID2/pSOPDT) ==
==============================================
– Controlled process models parameters –
Pu(s):
Kpu = 2
Tpu = 5
apu = 0.5
Lpu = 2

Pd(s) = 1
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Fig. A.12 Demo example (do)—System responses and robustness (τc = 0.85)

– Design parameters –
controller: PI2
z = 0.8
tco = 0.895

– MoReRT controller normalized parameters –
tc = 0.895
kp = 1.0841
ti = 1.2707
td = 0
ba = 0.72126
Ms = 1.8004

== MoReRT PID2 controller parameters ==
Action = reverse (+)
Kp = 0.54206
Ti = 6.3537
Td = 0
alpha = 0.1
beta = 0.72126
gamma = 0
Ms = 1.8004
»

The responses of the new controller are shown in Fig.A.13.
The parameters of the two P I2 controllers are listed in TableA.1. These two

controller parameters sets are different but produce control systems with the same
robustness level.



Appendix A: MoReRT Controllers Design Demo Software 183

0 50 100 150 200
−2

0

2

4

6

8

10

12

14

16
MoReRT Control System Performance

y(
t)

, r
(t

),
 u

(t
),

 d
(t

) 
[%

]

time, t [controlled process model time units]

y(t)
r(t)
u(t)
d(t)

−2 −1.5 −1 −0.5 0 0.5

−1.5

−1

−0.5

0

0.5

1

−1

L (jω)

L 
(jω

)

M
S
=1.2

M
S
=2.0

 L(jω)

 L(jω)

M
S
 = 1.8004

Robustness

Fig. A.13 Demo example (do)—New system responses and robustness (τc = 0.895)

Table A.1 MoReRT P I2 parameters

Disturbance τc K p Ti β MS

di 0.850 0.550 6.488 0.773 1.801

do 0.895 0.542 6.354 0.721 1.800

Design for a Slow Disturbance

Consider now that the main disturbance dynamics has been identified and that it is
slower than early assumed and with a negative and lower gain. It is given by the
model

Pd(s) = −0.5e−4.0s

(7.5s + 1)(5.625s + 1)
.

The robustness requirement is increased to Mt
S = 1.60. The only data that

needs to be changed is shown if Figs.A.14 ([DESIGN Parameters]) and A.15
([CONTROLLED PROCESSES Parameters]).

The program output data is:
» MoReRT_cPID2pSOPuPd

== MoReRT Controllers Design (cPID2/pSOPDT) ==
==============================================
– Controlled process models parameters –
Pu(s):
Kpu = 2
Tpu = 5
apu = 0.5
Lpu = 2
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Fig. A.14 New desing
parameters

Fig. A.15 Controlled
process data
(Pd (s) �= Pu(s))
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Pd(s):
Kpd = -0.5
Tpd = 7.5
apd = 0.75
Lpd = 4

– Design parameters –
controller: PI2
z = 0.8
tco = 1

– MoReRT controller normalized parameters –
tc = 1
kp = 0.67112
ti = 1.2083
td = 0
ba = 1.2127
Ms = 1.447

tc = 0.9
kp = 0.78159
ti = 1.3145
td = 0
ba = 1.175
Ms = 1.4985

tc = 0.8
kp = 0.90764
ti = 1.4377
td = 0
ba = 1.1521
Ms = 1.5616

tc = 0.75
kp = 0.97763
ti = 1.5089
td = 0
ba = 1.1449
Ms = 1.5988

== MoReRT PID2 controller parameters ==
Action = reverse (+)
Kp = 0.48882
Ti = 7.5444
Td = 0
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Fig. A.16 Demo example Pd (s) �= Pu(s) (slow disturbance)—System responses and robustness

alpha = 0.1
beta = 1.1449
gamma = 0
Ms = 1.5988
»

The P I2 control system response obtained with τc = 0.75 has the required robust-
ness MS = 1.60. Its response is shown in Fig.A.16.

It is noted that in this case the controller proportional set-point weight needs a
value β > 1 (beta =1.145).

MoReRT PID2 Controller

For comparison with the P I2 controller PID2 controllers are obtained using z =
0.70 and tcv = 0.65:0.05:0.75.

The changes in the input data are shown in Figs.A.17 ([DESIGN Paramet-
ers]) and A.18 ([CONTROLLER Parameters]).

The PID design gives:
== MoReRT controllers design (cPID2/pSOPDT) ==

==============================================

...

– Design parameters –

controller: PID2

z = 0.7

tco = 0.65

...

– MoReRT controller normalized parameters –

tc = 0.65
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Fig. A.17 New design
parameters for PID2

Fig. A.18 PID controller
normalized initial parameters

kp = 2.0063

ti = 1.3091

td = 0.35564

ba = 0.74978

Ms = 1.7647

tc = 0.7

kp = 1.8588

ti = 1.2729

td = 0.35816

ba = 0.73195

Ms = 1.6799
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tc = 0.75

kp = 1.7116

ti = 1.2472

td = 0.36019

ba = 0.72474

Ms = 1.6019

== MoReRT PID2 controller parameters ==

Action = reverse (+)

Kp = 0.85578

Ti = 6.2359

Td = 1.8011

alpha = 0.1

beta = 0.72474

gamma = 0

Ms = 1.6019

»

Parameters of the P I2 and PID2 controllers are listed in TableA.2. For the same
robustness, the PID2 control system provides a faster disturbance recovery and with

Table A.2 MoReRT P I2 and PID2 parameters

Controller K p Ti Td β MS

PI2 0.499 7.544 0 1.145 1.599

PID2 0.856 6.236 1.801 0.725 1.602
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Fig. A.19 Demo example PID2 (Pd (s) �= Pu(s))—System responses and robustness
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lower maximum error than the P I2. Its set-point response is also faster but with a
higher overshoot, as seen in Fig.A.19.

Select [EXIT] from the MAIN MENU to close the program and return to MAT-
LAB.
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