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Abstract Let & (o) = ) am=I (mod k) |gm& — Pm| be error sum functions formed by
convergents p,,/q, (m > 0) of a real number « satisfying the arithmetical condition
gm =1 (mod k) with 0 </ < k. The functions & ; are Riemann-integrable on [0, 1],
so that the integrals fol Eri(@) do exist as the arithmetical means of the functions
Ery on [0, 1]. We express these integrals by multiple sums on rational terms and
prove upper and lower bounds. In the case when [ vanishes (i.e. k divides g,,) and
when the smallest prime divisor p; of k = p{'p5’---p;" satisfies p; > k* for some
positive real number ¢, we have found an asymptotic expansion in terms of k, namely
fol Exola)da = £(2)(2¢ (3)k2)_1 + O(3'k~27¢). This result includes all integers k
which are of the form k = p“ for primes p and integers a > 1.
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1 Introduction

There are many results in the literature concerned with rational approximations
p/q to irrational numbers, where p and ¢ are restricted by additional arithmetical
conditions. An important result in this direction is due to Uchiyama [11].

Theorem A For every real irrational number o and integers s > 1,a > 0, b > 0
such that a and b are not simultaneously divisible by s, there are infinitely many
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integers p and q # 0 satisfying
§2

42 p=a (mods), g=b (mods).
q

q
In [3] the author proved that the constant 1/4 in Uchiyama’s paper cannot be

improved. Let ||n|| denote the distance of a real number 7 from the nearest integer.
Then we deduce the following corollary from Theorem A:

Corollary A1 Let f : N — R be a function satisfying f(q) = o(q) for positive
integers q tending to infinity. Then, for every integers s > 0, a > 0 and every real
irrational number o we have

liminf  f(g)llqe| = 0.
q>0
g = a (mod s)

In particular cases stronger results are possible, e.g., for the number e = exp(1)
by Theorem 1.3 in [4].

Theorem B Let a and s be arbitrary positive integers. Then

liminf gl|ge|| = 0.
q>0

g = a (mod s)

About 5 years later Komatsu [9, Theorem 4] showed that the result of Theorem B
remains true for e replaced by every number e!/* (k € N).
Recently, the author [5] studied the so-called error sum functions. Let

o0 o0
E@) =Y lgne —pul.  EX@ =D (qnet —pm).
m=0 m=0

where for m > 0 the fraction p,, /gy is the m-th convergent of the real number «.
The numbers p,, and g,, can be computed recursively from the continued fraction
expansion of «. Various aspects of these functions have been investigated in [5-7],
among them it is shown that 0 < E(a) < (1 + +/5)/2and 0 < £*(a) < 1 for
all real numbers «. Both, £(«) and £*(«), measure the average of error terms for
diophantine approximations of « by rationals. Moreover, £(«) € Q(«) holds for
real numbers of algebraic degree 1 and 2. For e = exp(1) we have the formula

1
Ele) = Ze/ exp(—?) dt —e = 1.3418751 ...,
0

which proves that £(¢) ¢ Q(e). The function £(«) is continuous for every real
irrational point ¢, and discontinuous for all rational numbers « (see [6, Theorem 2]).
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Therefore, the function £ is Riemann-integrable on [0, 1]. It turns out [6, Theorem 5]
that

_ 3{'(2) log?2
/ E(a)da = _8 2 (3) = 0.79778798...,

where ¢ denotes the Riemann Zeta function. This integral represents the arithmetical
mean of the function £ on [0, 1]. This result can be generalized. Letn = 1,2, 3, ...
and

1 o0
:/ Z|qm0{—pmndoé.
0 m=0
It can be shown [6, Sec. 4] that

P 20(n+1,-1)
n_n+l(_2”+1_ t(n+2) )

where

my o0 my—1 my
fn+1,-1) = Z = 13:+1 = Z nl-H . 1)

m2>m1>0 m1m2 le— Wll—l

is known as multiple Zeta function. Borwein et al. [2] expressed {(n + 1,—1) in
terms of log 2, £(2), {(3),...,{(n + 2). Thus we obtain the following results:

Theorem C Let n > 1 be an integer. Then we have

1 1 4log(2)¢(n+ 1) 1
/0 > ana =" e = ntl (1_2"“)_1+ (n+ D +2) (1_2"“)

m=0

1 n—1 1 |
’ (n+ Dg(”"‘z)];(l_ 2") (1_ 2n—k)§(k+1)§(l’l—|—1—k).

In particular, for n = 2, 3, 4 we have the identities

I & 2, Tlog2t(3) 2@ 17
/ Z’qma_Pm’ da= 0wt ey e = O3B

' 30 15log28(4) | 3t2)5(3) 49 _
fZIqma—pm| do= " ot 16y "es = O2019

o = + + - = 0,20731....

/liy o« —pul* 3110g2¢(5) | 76()E(4) | 9*(3) 129
B 40£(6) 402(6) ' 80¢(6) 160
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Taking {(2s) € Q(or) into account, it follows that

I € Q(r,10g(2),¢(3))

L € Q(m,10g(2),2(3)),

I € Q(rr,10g(2),£(3),£(5)) ,

Iy € Q(7r,10g(2),£(3),4(5)) ,

Is € Q(7,102(2),£(3),£(5),£(7),

Is € Q(7,102(2),£(3),£(5),£(7));

in particular we know Iy, ....ls € Q(m,1og(2),¢(3).£(5).£(7)). This proves that

I, ..., I are algebraically dependent over Q. But indeed a stronger result holds,
which can be verified using a suitable computer algebra system.

Corollary C1 The numbers 1,1, I3, 1, are algebraically dependent over Q. For
xi =1; (i = 1,2,3,4) the algebraic equation
0 = 10240x1x3x4 — 2976)%)(2 — 1488)& — 5952x1x7 + 5120x1x3 + 7840x1x4
—2592x5x3 + 6400x3x4 + 944x) — 4542x; + 1904x3 + 4900x4 + 179

holds.

The proof works by substituting the above expressions for Iy, I, I3, 14 into the
equation given in the corollary, where additionally

7{2 7{4 7{6
(@ =" W=7 o=

must be taken into account.
Note that

Li,....Dh, € Q(n,log(2),§'(3),§'(5),...,§(2n+ 1)).
n+2

This proves

Corollary C2 Forevery integer n > 3 any n+3 numbers from the set {I,, I, . . . I}
are algebraically dependent over Q.

In this paper we focus our interest on a generalized error sum function. Let o be
areal number, and let k > 1 and 0 </ < k be integers. We define

[e.]

Eri(a) = Z |gm® — pml ,
m=0
gm =1 (mod k)
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in particular we set & () = Eo(). Itis clear that &£ (o) = £(w), and

k—1

Yo E@) = E@ (k=1

=0

For k > 1 the error sum function &(«) can be transformed into a more striking
form. Since k does not divide gg = 1, the term for m = 0 in & () does not occur.
Moreover, for the convergents p,,/q,, (m > 1) of « satisfying ¢g,, = 0 (mod k) we
obtain the inequalities

| | < < ! < !
m& — Pm| = = = .
q p . k 5
This proves
o0
G@) = > lgmell  (>1). (1.1)
m=1
Kl

We continue to point out more basic properties of & («) for k > 1. Since g, and
gm+1 are coprime, at most every second term in & («) does not vanish. So we obtain
the following upper bound for & («):

- - E@) — €% (@)
E@) = > lgna—pul < Y |@amtr1e0—pant1| = 5 (k>1).
m=1 m=0
klgm

The identities

@) - €@ _

Er(a) = )

with k > 1 hold for all numbers « given by their continued fraction expansion

1 1 1
a = [0k 1,k 1,k 1,...] = [0;k,1] = 4+k_2’

since for m > 0 we have the congruence relations ¢z,,+1 = 0 (mod k) and ¢, = 1
(mod k). Moreover,

[e.]

m—+1
oo 2
(o) = Zlqzm+1a—pzm+1l = Z szrz - \/(kgz) -1 -

m=0 m=0

S
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There exist real irrational numbers o for which the series & (o) consists of at most
finitely many terms, contrary to the series £(c). To prove the existence of such
an irrational number, we define o recursively by its continued fraction expansion
a=[0;a,a,...]=10;2,1,1,2,2,4,6,...] as follows. We have

q1=2, q2=3, q?,=5, Q4=13, q5=31, q(,=137, q7=853.

Now let us assume that for m > 8 the denominators ¢,,—; and g,,—» are primes. Then,
by the Dirichlet prime number theorem, there are infinitely many positive integers
a such that ¢,, = agu—1 + gm—> € P. The number q,, is uniquely defined by the
smallest positive integer a satisfying this condition. Then, for every integer k > 1,
the series & (o) consists of at most one term. Furthermore, there are many situations
in which & () vanishes.

Proposition 1.1 For every integer k > 1 there are uncountably many irrational
numbers a such that E (o) = 0.

To prove this proposition, let k > 1 be any integer. We define an irrational number
« depending on k and on a sequence (b,),-, of positive integers by

o = [O; 1,kb2,kb3,kb4, . ] = [O;al,az,a3, .. ] .
The denominators g,, of the convergents p,,/q,, of « satisfy the recurrence formula
go=1, q=ar=1, Gui2=aui2gmt1+gm (M=0,1,2,...).

Since ¢u+2 = g (mod k) form = 0, 1,2, ... it follows recursively that 1 = g9 =
QG = q4 = -+ = gy (mod k) and, similarly, | = g = g3 = g5 = -+ = Gom+1
(mod k) for m = 0,1,2,.... This proves that no denominator g,, is divisible by
k. Hence, & (o) = 0. By Cantor’s counting principle we have found uncountably
many real numbers « satisfying & (o) = 0.

The main goal of this paper is to study the behaviour of the numbers fol Eri(a) da
depending on k and [. For [ = 0 and & restricted to those numbers having no small
prime divisors we prove the asymptotic behaviour of these integrals for £ tending
to infinity (Theorem 2.1 and Corollaries 2.2-2.5). For integers k having many small
prime divisors the numbers fol & (o) da tend more quickly to zero than in the case
k = p® for fixed @ > 1 and primes p (Theorem 2.6 and Corollary 2.4). The integrals
on the error sum functions & ; with [ > 0 are treated in Theorem 2.7.
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2 Statement of the Results

Let 4 : N — {—1,0, 1} be the Mobius function, and let {(s) = Y o2 1/n* fors > 2
be the Riemann Zeta function. By J3 : N — N we denote Jordan’s arithmetical
function defined by J3(1) = 1 and

Jy(n) = n3]_[(1 —1713) n> 1), .1)
pln

where p runs through all prime divisors of n. Moreover, for any integer n let D,
denote the set of all positive divisors of n. For every positive integer r we define the
number 7, by

T, =% (_’212 . (2.2)

The identity from the following theorem can be considered as the main result
of this paper, which contrasts with the property of the function & () given by
Proposition 1.1.

Theorem 2.1 For every integer k > 1 we have

! 1 p(s)pks/r)T,
/0 Ede = 0 D 2 sy

r€Dy s€D,

Corollary 2.2 Let k > 1 be any integer having t prime divisors , where P denotes
the smallest prime divisor of k. Then we have

1 ) 1 3
/0 Sy de = 01 +<9(k3 + kZP).

Corollary 2.3 For all primes p we have

! 1 pPT, 3t(2)log2 1\ L(2) 1
/0 S@da = o (bal = e *a) = s T O0)

and

2 ! 97
£ (@) d > 3).
77p2 </0 plde <0, (P23
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Corollary 2.4 Let p be a prime and a be a positive integer. Set k := p°. Then we
have

! $(2) 1
/0 Eue)da = )/ +o(k2+l/a).

Corollary 2.5 Letk > 1 be an integer having at most t prime divisors. The smallest
prime divisor P of k satisfies P > k® for any 0 < ¢ < 1. Then we have

/Olc‘fk(oz)doz = 25((32))/(2 +o(k23;£).

To state the results in the subsequent theorems we need Euler’s totient ¢.

Theorem 2.6 For every integer k > 3 we have

1 < (k)

()
k2loglogk 4%3 '

/E(a)doz< 2

For the numbers k = p\p,---p, given by the product on the first r > 2 primes
p1=2,py=3,...we have

1
1

& doa = .
/0 W) da k*loglogk

Theorem 2.6 shows that fol Er(a)da =< k=2 does not hold for k € N tending to
infinity. In the following theorem we estimate the integral on the error sum function
Eri(a) for I > 0, where the case [ = 1 is treated separately. By (a, b) we denote the
greatest common divisor of two integers a and b.

Theorem 2.7 (i) For every integer k > 2 and | = 1 we have

5 @k+1) ! _ 1 3_5.¢0@
8—1—4(}{_{_1)3 </0 E1(@)da = Z ;0 a(a+b)2_8_8+ 2

a=1
a=1 (mod k) (a,b)=1

(i) Forintegersk > 3 and2 <1 < k we have

1 a—1
gfl(l? < /0 Eri(a) da = Z Z + glg) )

a(a+b)
a=1 b=0
a=1 (mod k) (a,b)=1
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For two consecutive primes p,—; and p, (r > 2) it follows from (ii) in
Theorem 2.7 by Bertrand’s Postulate and Theorem 9 in [8] that

1 1 1
/O g[’r‘a[’rfl ((X) do =< =

p? r2log®r’

3 Auxiliary Results

Lemma 3.1 Let k > 1 be an integer; and let r be any positive divisor of k. Then we
have the identity

o~ w1 11 (s)p(ks/r)
; d* L03) Z Js(ks/r)
d=1 SED,
(d. k) =k/r

Proof We obtain

& @) & pmk/) S o pls)plmk/n)
S = Z 3 Z (mk/r)3 B (k) Z Z m3

d=1 m=1 m=1 g >1
(d,k) =k/r (m,r) =1 s|(m,r)
r\3 O p(mk/r) r M(S) M(mks/ .
= () Tue Y M= ()2 Z
s>1 m=1 s€D,
slr m=0 (mod s)

For any positive integer t we have

M n _ MW) p()r
Z > ERIACK

m=1
(m)=1

where the identity on the right-hand side can be obtained by using the method
explained in [10]. Substituting the last expression into S by setting t = ks/r, we
complete the proof of the desired identity from the lemma. O
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Lemma 3.2 For every positive integer r we have

oo nr—1

=22 T= @log2— 10,

== 0n(nr+m)

o 1 =2,
7 =@, (rz) and <7, < 1771

2r 2r
1 if r>1.

In particular, we have T, < 2/r forall r > 1.

Proof Let r > 1 be an integer. To prove the alternative expression of 7,, we first
observe that

oo nr—1 2nr— L&/r] 1
; (3.1)
;r;) n(nr +m)’® ; an:r k2 2; n= L;er+l "

where the last identity follows by interchanging the order of summation, and where
|n] denotes the floor function, i.e. the greatest integer not exceeding 7. Next, let
B > 1 be a real number, and

5 {l,if 18] =1 (mod 2),
= 1o,if |8] =0 (mod 2).

Then we have

L8] 1 LB/2]+6 1 LB/2] 1
Zn: Z 2m—1+22m’
n=1 m=1 m=1
which yields, equivalently,
% 1 Lﬂ/ZZJ:H 1 . 1 LB/2] 1 ~ LB/2] 1
n 2m—1 2 m n
n=|8/2]+1 m=1 m=1 n=1
B Lﬂ/ZZJ:H 1 ~ 1 18/2] 1
2m—1 2 m
m=1 m=1
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With 8 = k/r for k > r we conclude from (3.1) and (2.2) that

oo nr—1 ( l)m+l
=T,.
nZ:l mz% n(nr + m)? kz; k2 l<§<:k/r

For the asymptotic expansion of 7, we apply Euler’s summation formula to the
function f(x) = 1/(x + nr — 1)*: Let B(y) = n — [] — 1/2. Then,

-l 1 nr nr )
Z (x +nr—1)? ) fodx+ /1 B)f (x) dx = B(1)f (1) — B(nr)f (nr)

m=1

1 1 1
= O((py2)
nr 2nr—1 + n2r?

which yields

o0 nr

1 1
T, =

oD etnr—1)

o o o
1 1 1

= - (@)
; n2r = nQ2nr—1) + (; n3r2)

L) 1 1 1
o _nz:: 2n2r+2n2r(2nr—l))+0(r2)

zg(rZ) Eg) O(;nzr(anr 1))+O(r12)

© o).

r

/N

T, is a special case of the multivariate zeta function ¢ (m, n), see [1, Sect. 2.6]:

( 1)m+1 oo n—l ( l)m+1 00 (_1)n+1
- EE SRS

= L@+ J00) = Ji@log2— 1().
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The bounds for 7, stated in the lemma follow from (2.2) by using the inequalities

1 (_1)m+l
< 2, =1 (=zn,
1<m=<n/r
— 1 o dt 1 2
>, < = <" (r=2), T =1409757---<2,
m=r m? r—1 2 r—1 r
and

4 Proof of Theorem 2.1

Let yx; : N — {0, 1} be defined by

lifn=1 (mod k),

Xt (1) = 0 otherwise .

Note that y;,;(1) = 1 holds if and only if / = 1. At the beginning of the proof of
Theorem 2.1 we follow the lines in Sect. 4 in [6] and modify the arguments. Let m
and ay, ..., a, be positive integers. We define the rational numbers &, &, by their
continued fraction expansion:

& = [0;ay,...,an—1,an) and & = [0;ay,...,am—1,an + 1] .

We have & < &, for even m and & < & for odd m. We define the interval 1,
by I, = (&1,&) for even m and I,, = (&,&;) otherwise. It is well known that
the intervals [, are disjoint for different positive integers ay, ..., a,, and that for
any fixed m the union of all closed intervals /,, gives the interval [0, 1]. For this
decomposition of [0, 1] we express the integral as follows:

1 oo
/0 Z (_l)m)(ksl(qm)(‘Zma _pm) dC{

m=0

1
/ 8/(,1(0{) da
0
0o 1
- X“Z(l) + mz::l (—1)"’/0 X1 (@m) (e — i) det

_ Xk,lz(l) 4 Z (—1)" Z Z /1 Xk (@m)(@mo — pm) do

m=1 aj=1 ap=1%""

[e.]

00 0 3]
= Xk’lz(l) + Z Z Z Xk,l(qm)/é (gmo — pm) dor.

m=1a;=1 am=1
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Note that p,, and g,, depend on ay,...,a,. The continued fraction expansion
of every point ¢ € I, has the form ¢« = [0;ay,...,du—1,an,...]. Hence the
convergents p,/q, for v < m depend on I,, but not on o € I,. Therefore we
compute the above integral on [£], &] by

b (&2 + EDgm — 2pm
(CIma _pm) do = (%‘2 - Sl) 2 .
&
Using
m m 1 m— m—.
6 =" and 52:(“+)p 1+ P2
qm (@m + Dgm—1 + gm—

we compute the expressions

-6 = 0"
(gm + gm—1)Gm
and
Pm—19m + Gm—1Pm + 2PmGm

8= (Gm + Gm—1)qm ’

which give
52 1
6 e =P = s i+ Gt

and consequently

/15 () d X (1) + i i i Xk(gqm) @
() do = . .
0 2 m=1a;=1 ap=1 qu(qm + qm—l)2

For the denominators of two subsequent convergents of the continued fraction of
a = (0;ay,...,ay,...)itis well known that (¢,,, gn—1) = 1. For fixed ¢g,, = a we
count the solutions of ¢,,—; = b with (a¢,b) = 1 and 0 < b < a — 1 in the multiple
sum on the left-hand side of (4.1). It is necessary to distinguish the cases m > 2 and
m=1.

Case 1: m > 2. Firstlet a; = 1. Then,

dm—1
dm

=(0;am,...,a2,1) = (0;ap,...,a0 + 1).
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For a; > 2 we have

qdm—1
dm

=(0;am,...,a2,a1) = (0;ay,...,az,a; — 1,1} .

Case 2: m = 1.Fora; = 1 we have a unique representation of the fraction

m— 1 1
q 1 = qO = = = (O’ 1) s
Gm g a1

since the integer part ap = 0 must not be changed. For a; > 2 there are again
two representations:

m— 1
dm=1 _ 40 _ =(0;a;) = (0;a; —1,1).
dm q1 ap

Therefore it becomes clear that for any fixed ¢,, = a every coprime integer b with
0 < b < a— 1 occurs exactly two times in the multiple sum on the right-hand side
of (4.1), except for m = 1 and a; = 1. For this exceptional case we separate the
term

xei(q)  xea(1)

2q1(q1 + qo)* 8

from the multiple sum. Therefore we obtain

1
/ 8/(,1(0[) do
sz(l) s Xie1(gm) = 1kiqr) Xiea(1)
= + + +
n;ali_:l ai_:l 2Gm(qm + Qm—l)2 ‘112:=2 2q1(q1 + 1)2 8
_ 5)(k1(1) N i 21: @)

i ala +b)

(a.b) =1

a—1
_ _3Xk§(1) T Z Z 4.2)

a(a+b)
a=1 b=0
a=1 (mod k) (a,b)=1
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Note that for » = 0 the condition (a,0) = 1 holds for a = 1 only. For the proof
of Theorem 2.1 we now assume that / = 0, so that y;;(1) vanishes. Then (4.2)
simplifies to

a—1

/ fde =3 Y a(Hb) (4.3)
b=0

a=1
kla (a,b) =1

Next, we express the arithmetic condition (a, b) = 1 on a and b from the inner sum
by the Mobius function. Then we proceed by interchanging the order of the resulting
triple sum. Here, [d, k] denotes the least common multiple of d and k.

[Gwm- 55y MO 55

a=1b=0 450 a(a+b) =1 4=1 b= a(a+b)
kla d|(a,b) [d.k]|a d|b

_ ii ()

= 5 [ Kn(ld Kn + dm)’

[d,

([d.,kln—1)/d

QU
—_

_ i i ju(d)
D i D ase dKn(id K+ dm)®
(d, k) =k/r

=

n/d—1

The condition (d, k) = k/r implies that

dk
[d.k] = @B = dr.

Hence the above multiple sum takes the form

! _ = n(d)
/0 bl@)do = Z Z Z Z nrd(nrd + md)*

r€Dy d=1 n=1 m=0

(d.k) =k/r
B 1 9] (d) oo nr—l1
_rez’;kr< dz=:1 )<nzjlmz%n(nr+m) )
(d.k) =k/r

Finally, we express the two terms in brackets by the identities given in Lemma 3.1
and Lemma 3.2, respectively. This completes the proof of the theorem. O
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5 Proofs of Corollaries 2.2-2.5

Proof of Corollary 2.2 From the multiple sum in Theorem 2.1 we separate the term
forr =kands = 1:

! Ty 1 p(s)p(ks/r)T,
Ela)da =
et = o+ g 22
r;ékk\;saél
Ty |l (s) (ks /r)| T,
N §(3)k (;D Z rJ3(ks/r) )
r;ék\/vaél

T,
- §(3k)k + O( Yo D u@ulks/n)l k3rs3). (5.1)

reDys€D,
r#&Ekvs#1

Here we have applied the inequalities 7, < 1/r (Lemma 3.2) and

3

s = w [ (1- ) . n31_[(1—pl3) - 5?3) =1 (52

pln pEP

(see [8, Theorem 280]). In order to estimate k3s>/r we discuss the following two
cases. Recall that r|k and s|r, and that the number P is the smallest prime divisor of k.

Casel: 1<r<kands=1.
33 3 3
ks :k - k ey
r r — k/P
Case2: 1<r<kands>P.

3.3 3.3
ks > kks > P32 > Pk
-

Using these bounds we estimate the error term in (5.1). This gives

! Ty
| a@ae = 0 +0( X3 s/l )

r€DyseD,
r#EkVs#E1

Ty
= (O 0( L 2 2 e/ )

r€Dy s€D,

(2 1 1
= e T O(ks) + O(sz >3 )t/ nl).

r€Dy s€D,
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where we have applied the asymptotic formula for 7; from Lemma 3.2. To complete
the proof of the corollary we finally prove the identity

a= Y Y uGlks/nl = 3 (k= pitep)

r€Dy s€D,

by induction with respect to . For t = 1 let k = p®. We count three pairs
[r.s] € Dy x D, such that |u(s)u(ks/r)| = 1 given by [p%, 1], [p% p], and [p*~', 1].

Now we assume that g = 3’ holds for all integers k" having 7 prime divisors. Let
ay  Ar+1

k = p{'---pip, ' and &' = p{'---p{*. While [r,s'] € Dy x D, runs through
all 3" pairs which are counted for gy, we obtain g; by counting the 3 - 3’ pairs
[r.s] € Di x D, given by [Fp'.s'], [Fp/ i}, s'pit1], and [r’pf_’:ll_l,s/]. This
completes the proof of Corollary 2.2. |

Proof of Corollary 2.3 For k = p € P the multiple sum in Theorem 2.1 consists
of three terms corresponding to [r = 1,s = 1], [r = p,s = 1], and [r = p,s = p].
Therefore, we obtain

1 1 Tl T:u T:IJ
£ doa = — .
/o () de z<3>< w Tt i)

With J3(p) = p> — 1 and

1 = Jt@)log2~ ,¢0)

given in Lemma 3.2 we prove the identity stated in the corollary. Now, for p > 3 we
have with Lemma 3.2:

1 1 p? 3¢(2)log2 1 97
/0 Epla)da < p3—1<(p— DEGB)  2¢0) + 4) < 109p2°

and

! 1 p 3¢(2)log2 1 2
/0 Eple)do > p3—1(2§(3) T o) T 4) 7 7

This proves the inequalities stated in Corollary 2.3. |

Proofs of Corollaries 2.4 and 2.5 We apply Corollary 2.2 with k = p*, t = 1,
and P = p. Then the error term in Corollary 2.2 takes the form

O(kls + kz;) - O(kls + k;p) - O(kl,z + k2]:l/a) - O(kZil/a)'

Thus Corollary 2.4 is proven. Also Corollary 2.5 follows immediately from
Corollary 2.2. |
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6 Proofs of Theorems 2.6 and 2.7

Proof of Theorem 2.6 For the upper bound we estimate the right-hand side of the
identity in (4.3). Let k > 2. Then

0o km—1 1 oo km—1 1 00 1 §(2)
Er(@)da = <
/ W) Z 2 fm(km + b)? 2_:1 ; K3m X_: 2m?
b=1 m=1 b= =
(km,b) = 1

On the other hand, the lower bound for the integral in Theorem 2.6 follows from
the identity (4.3), too. Here we assume that k > 3.

k—1

! 1 k k 1
/ El@)yda = N o> O ¢(3) > :
0 kD) T kQ2k—1) 4k k2 log log k

(kb) =1
(6.1)

The inequality on the right-hand side involving a lower bound of Euler’s totient
follows from Theorem 328 in [8].
Next, let k = p1p» - - - p, for some positive integer r > 2. Then we have

logk = Y logp = 3(p,) < pr

P=pr
peEP

by Theorem 414 in [8]. Applying additionally Theorem 429 in [8], we obtain

1 1 1 1
l—[ <l_p) - l—[ (1_p) < log p, < loglogk ©.2)
plk pP=pr
peEP peEP
Moreover,
! = (krm)
/0 E(@)da =< mzzl ;,Z_jl B i3 lz(p .
(km,b) = 1
6(2)
= . Zmz [Me-,)="T10-))
plkm plk
pEP peP

by (6.2)).
<k210glogk (by (6.2))

Together with the lower bound (6.1) we complete the proof of the theorem. |
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Proof of Theorem 2.7 By (4.2) we have already shown the identities in the
theorem. So it remains to prove the inequalities. First, we prove the upper bounds.

~ 3xwka(l)
Z Z a(a+ b)? 8

a=1 b=0
a=1 (mod k) (a,b)=1

0o km—+1—1

_ Z Z 1 ~ 3xea(1)
= 2
w0 Sy Um+Dkm+14b) 8
(km+1,b) =1
oo km+I—1 (o)
- Z Z 1 3Xkl(1) 1 Z 1 3)(/(,1(1)
e S (RN = (km + 1) 8
o0
3Xk1(1) £2)  3xa(l)
= mzkzmz 12+ e 8
560
8 k?
g‘( ) ifl>1.
12 k?

For the lower bounds we treat the cases / = 1 and [ > 1 separately. First, let / = 1.
Then

o

Z Z 3Xk,81(1)

a(a+b)
a=1 b=0
a=1 (modk) (a.b)=1

00 km

1 3
=2 2 (km + 1)(km + 1+ b)* 8

m=0 p=0
(km+1,b) =1

5 [e’e] km 1
=+
8 n; hz_:o (km + 1)(km + 1 + b)
(km=+1,b) = 1

k

5 1
Zgt 2 (k+ Dk + 1+ b)?

b=1
(k+1.b)=1
k+1
5 1 5 k+1
LD ST
8 T Ak+1D)T 8 Akt 1y

k+1.b)=1
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Next, let/ > 1. Then

a

i — L 3xa)
2 8
a=1 b=0 a(a+Db)
a=1 (mod k) (a,b)=1
= = U D(km b)?
(km+1,b) =1
-1 1
1 1 [
= a+by? 2 4= (/:1(13) :
b= b=1
b =1 b =1
This completes the proof of the theorem. O
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