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Dedicated to the memory of Wolfgang Schwarz, with admiration
for his broad interests, inside and outside mathematics.

Abstract We extend results of Jagy and Kaplansky and the present authors and
show that for all k � 3 there are infinitely many positive integers n, which cannot
be written as x2 C y2 C zk D n for positive integers x; y; z, where for k 6� 0 mod 4 a
congruence condition is imposed on z. These examples are of interest as there is no
congruence obstruction itself for the representation of these n. This way we provide
a new family of counterexamples to the Hasse principle or strong approximation.

Keywords Hasse principle • Strong approximation • Ternary additive problems •
Waring type problems
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1 Introduction

This paper is dedicated to the memory of Wolfgang Schwarz, who was the PhD
advisor of the second named author. In particular Wolfgang Schwarz’s books
“Einführung in Siebmethoden der analytischen Zahlentheorie” and “Arithmetical
functions” were very useful for the second author’s own studies.
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Looking at Schwarz’s own PhD thesis, see [11, 12], which is on sums of prime
powers, i.e. on the Goldbach–Waring problem, one finds a great number of results,
one of those being the following (Theorem 3 of [12]):

For fixed k � 1 let Sk.N/ be the set of positive integers n, with

3 � n � N;

n 6� 0 mod 2; n 6� 2 mod 3; for odd k
n � 3 mod 24; for even k;
n 6� 0 mod 5; for k � 2 mod 4

n 6� 0; 2 mod 5; for k � 0 mod 4

n 6� 1 mod p; for each p � 3 mod 4 with .p � 1/ j k.

Then the number of integers n 2 Sk.N/ not of the form

n D p2
1 C p2

2 C pk3;

is, for all B > 0, at most

OB

�
N

.logN/B

�
:

This improved on a result of Hua [8, Theorem 1], who proved this with B D k
kC2

. As
we had worked earlier on solutions of x2 C y2 C zk D n, it is due to this connection
that we have chosen to contribute the present note to the volume in Memory of
Wolfgang Schwarz.

As it turns out, also one of the first named author’s PhD advisors worked on this
kind of problem in his PhD thesis: without restricting the variables to primes, one
should be able to obtain stronger results, and indeed, improving on earlier work
pioneered by Davenport and Heilbronn [3] and further developed by many other
authors, Brüdern [1] has shown that there are at most O.N1� 1

k C�/ integers n � N
with no solutions of

n D x2 C y2 C zk; (1.1)

where n is not in a residue class excluded by congruence obstructions. For a survey
of results on sums of mixed powers, see also [2] and [14].

It was generally expected that for all sufficiently large n the Hasse principle for
Eq. (1.1) holds true, i.e. for all such n satisfying the necessary congruence conditions
there would exist a solution of (1.1) in positive integers, see, for example, Chap. 8
in [13]. However, in 1995 Jagy and Kaplansky [9] shattered this belief by proving
that for k D 9 and some positive constant c there are at least c N1=3

logN positive integers
n � N that are not sums of two squares and one kth power. In fact, their method
works for any odd composite number k, but not for the other cases of k. In [4] we
proved that a similar restriction holds for k D 4. That approach actually generalizes
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to all k divisible by four (see Theorem 3.1), and by slightly modifying it we can not
only get a bigger set of exceptional n but we can also handle k not divisible by four;
to be more specific, we prove that (1.1) does not satisfy ’strong approximation’: For
k � 2 .mod 4/, k � 6 and sufficiently largeN we show that there are asymptotically
� N1=2=.logN/1=2 positive integers n � N for which Eq. (1.1) has no solution with
z fixed into a certain residue class, though there are no congruence obstructions (see
Theorem 3.2). For odd k � 3 we show that there are asymptotically at least kN1=k

2'.k/ logN
such exceptional positive integers n � N (see Theorem 2.1).

Let us further mention that Hooley [7] investigated sums of three squares and a
kth power, Friedlander and Wooley [5] sums of two squares and three biquadrates,
and Wooley [15] sums of squares and a ‘micro square’, in connection with a
conjecture of Linnik. In this connection we would like to add a seemingly forgotten
old reference: Theorem 7 of Rieger [10] states that the number of integers n � N
which can be written as n D x2 C y2 C zk, where z � F.N/, and F is a function
tending monotonically to infinity, with F.n/ � p

logN, is �k;F
N F.N/p
logN

, in other
words, as good as it can be.

The authors are grateful to Tim Browning, Jörg Brüdern, Roger Heath-Brown,
Jan-Christoph Schlage-Puchta, Dasheng Wei and Trevor Wooley for interesting
discussions or observations.

2 Two Squares and an Odd kth Power

Theorem 2.1 Let k � 3 be odd. Let p be a prime with p � 1 mod 4k. Then there are
no integers x; y; z, positive or negative, with x2 C y2 C zk D pk and z � 2k mod 4k.

Proof Assume there are solutions, then x2 C y2 D .p � z/.pk�1 C pk�2z C � � � C
pzk�2 C zk�1/. If z � 2k mod 4k, then p � z � 2k C 1 mod 4k. Since k is odd,
2kC 1 � 3 mod 4. Hence p� zmust contain a prime divisor q � 3 mod 4 with odd
multiplicity. Note that gcd.q; k/ D 1, as otherwise qjk and 0 � p � z � 2k C 1 �
1 mod q gives a contradiction.

Recall that by the general classification of integers which are sums of two squares
the integer x2 C y2 contains prime factors q � 3 mod 4 with even multiplicity only.
Therefore both p� z and pk�1 C pk�2zC � � � C pzk�2 C zk�1 are divisible by q. With
p � z mod q it follows that

pk�1 C pk�2z C � � � C pzk�2 C zk�1 � kzk�1 � 0 mod q:

This implies that q j z and hence q j p, which is impossible, as q D p would
contradict p � 1 mod 4.

Also note that there are no congruence obstructions that would imply that in
x2 C y2 C zk D pk there are no solutions with z � 2k mod 4k.

To see this first observe that for a fixed odd prime q one can choose an integer
z � 2k mod 4k such that q is coprime to pk � zk; similarly, for q D 8 just choose
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z D 2k. For this fixed z the congruence x2 C y2 C zk � pk mod q has a nonsingular
solution in x and y which by Hensel’s lemma can be lifted to a q-adic or 2-adic
solution, respectively.

By the prime number theorem in arithmetic progressions, the number of such
examples, pk � N with p � 1 mod 4k, is asymptotically

1

'.4k/

Z N1=k

2

dt

log t
� k

2'.k/

N1=k

logN
:

3 Two Squares and an Even kth Power

3.1 Two Squares and a kth Power, k � 0 mod 4

Theorem 3.1 Suppose that 4 j k and let p be a prime with p � 7 mod 8. Let
n � 1 mod 8 be either 1 or consist of prime factors congruent to 1 mod 4 only, and
assume that n < p. Then there are no positive integers x; y; z with x2 C y2 C zk D
.np/2.

Proof Let k D 2t, where t is even. Assume there are solutions, then x2 Cy2 D .np�
zt/.npCzt/. If z is even, then np� zt � 3 mod 4. If z is odd, then np� zt � 6 mod 8.
In both cases np�zt must contain a prime divisor q � 3 mod 4 with oddmultiplicity.
Therefore, as in the proof of Theorem 2.1, we conclude that both np� zt and npC zt

are divisible by q. Hence their sum 2np and their difference �2zt are also divisible
by q. Since 2n 6� 0 mod q, and since p is prime: p D q, and since z ¤ 0: q divides
z. But this gives a contradiction:

x2 C y2 C zk > qk � q4 > .nq/2 D .np/2:

Let us give an estimate of the number of integers np � N, with n � 1 mod 8

consisting of prime factors 1 mod 4 only, and n < p.
Recall that by a theorem of Landau the number of integers n � N consisting of

prime factors 1 mod 4 only is of order of magnitude N
.logN/1=2 , and about one half of

these numbers satisfy the congruence restriction n � 1 mod 8.
Let f W N ! f0; 1g be the characteristic function of these integers n, i.e. we put

f .n/ D 1, if n � 1 mod 8, and all prime factors of n are 1 mod 4; otherwise, we put
f .n/ D 0. Now

X
np�N;n<p

f .n/ D
X

n�N=p;n<p

f .n/ �
X

N1=2�p�N3=4

N=p

.log.N=p//1=2
� N

.logN/1=2
;
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where we used that

X
N1=2�p�N3=4

1

p
D log logN3=4 � log logN1=2 C o.1/ D log.3=2/ C o.1/ � 1:

(In view of Landau’s theorem this order is the right order of magnitude.) Hence the
number of exceptional .np/2 � N provided by Theorem 3.1 is � N1=2

.logN/1=2 .

Note that as for Theorem 2.1 one can check that there are no congruence obstruc-
tions for the representation of .np/2.

3.2 Two Squares and a kth Power, k � 2 mod 4

Theorem 3.2 Suppose that k � 2 mod 4, k � 6 and let p be a prime with p �
7 mod 8. Let n < p be an integer either 1 or consisting of prime factors congruent
to 1 mod 4 only, and n � 1 mod 8. Then there are no positive integers x; y; z, where
2 j z, with x2 C y2 C zk D .np/2.

Proof The proof is almost verbatim as above.

Let us remark that as above one shows that the number of exceptional .np/2 �
N provided by Theorem 3.2 is � N1=2

.logN/1=2 . Further note that in a similar way as
for Theorem 2.1 one observes that there are no congruence obstructions for the
requested representation of .np/2.

4 Afterthought

A major part of the paper was actually written around 2007/2008. We had shown
earlier versions of this paper to several colleagues, hoping that someone would write
a more detailed explanation based on tools from arithmetic geometry such as the
Brauer–Manin obstruction. Indeed, in this way the question has come to Fabian
Gundlach [6] who was very recently able to give a detailed and general account.

As Gundlach refers to our work as an unpublished manuscript, and as our proofs
use a much less sophisticated language, it seems desirable to have this paper in final
form. The main part of this paper is a slightly improved version, compared to the
manuscript Gundlach referred to. In particular, the version cited by Gundlach [6]
had in Theorem 2.1 the same statement and proof with p2k rather than pk. Also in
Theorems 3.1 and 3.2 we now have an additional factor n, thanks to an observation
of J.C. Schlage-Puchta. In other words, the current version gives slightly stronger
results.



108 R. Dietmann and Ch. Elsholtz

References

1. J. Brüdern, Iterationsmethoden in der additiven Zahlentheorie. Dissertation, Universität
Göttingen, 1988

2. J. Brüdern, K. Kawada, Ternary problems in additive prime number theory, in Analytic Number
Theory (Beijing/Kyoto, 1999). Developments in Mathematics, vol. 6 (Kluwer, Dordrecht,
2002), pp. 39–91

3. H. Davenport, H. Heilbronn, Note on a result in the additive theory of numbers. Proc. Lond.
Math. Soc. 43, 142–151 (1937)

4. R. Dietmann, C. Elsholtz, Sums of two squares and one biquadrate. Funct. Approx. Comment.
Math. 38(2), 233–234 (2008)

5. J.B. Friedlander, T.D. Wooley, On Waring’s problem: two squares and three biquadrates.
Mathematika 60(1), 153–165 (2014)

6. F. Gundlach, Integral Brauer-Manin obstructions for sums of two squares and a power. J. Lond.
Math. Soc. (2) 88(2), 599–618 (2013)

7. C. Hooley, On Waring’s problem for three squares and an `th power. Asian J. Math. 4(4),
885–904 (2000)

8. L.-K. Hua, Some results in the additive prime number theory. Q. J. Math. 9(1), 68–80 (1938)
9. W.C. Jagy, I. Kaplansky, Sums of squares, cubes, and higher powers. Exp. Math. 4(3), 169–173

(1995)
10. G.J. Rieger, Anwendung der Siebmethode auf einige Fragen der additiven Zahlentheorie. I. J.

Reine Angew. Math. 214/215, 373–385 (1964)
11. W. Schwarz, Zur Darstellung von Zahlen durch Summen von Primzahlpotenzen. I. Darstellung

hinreichend grosser Zahlen. J. Reine Angew. Math. 205, 21–47 (1960/1961)
12. W. Schwarz, Zur Darstellung von Zahlen durch Summen von Primzahlpotenzen. II. J. Reine

Angew. Math. 206, 78–112 (1961)
13. R.C. Vaughan, The Hardy-Littlewood Method, 2nd edn. (Cambridge University Press, Cam-

bridge, 1997)
14. R.C. Vaughan, T.D.Wooley, Waring’s problem: a survey, inNumber Theory for the Millennium,

III (Urbana, IL, 2000) (A K Peters, Natick, 2002), pp. 301–340
15. T.D. Wooley, On Linnik’s conjecture: sums of squares and microsquares. Int. Math. Res. Not.

2014(20), 5713–5736 (2014)


	Sums of Two Squares and a Power
	1 Introduction
	2 Two Squares and an Odd kth Power
	3 Two Squares and an Even kth Power
	3.1 Two Squares and a kth Power, k 0 -5mumod5mu-4
	3.2 Two Squares and a kth Power, k 2 -5mumod5mu-4

	4 Afterthought
	References


