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Abstract In this paper, transcendence results and, more generally, results on the
algebraic independence of functions and their values are proved via Mahler’s
analytic method. Here the key point is that the functions involved satisfy certain
types of functional equations as Gd.zd/ D Gd.z/ � z=.1 � z/ in the case of
Gd.z/ WD P

h�0 zd
h
=.1 � zd

h
/ for d 2 f2; 3; 4; : : :g. In 1967, these particular

functions Gd.z/ were arithmetically studied by W. Schwarz using Thue–Siegel–
Roth’s approximation method.
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1 Introduction

In 1967, Schwarz [14] studied the arithmetic nature of the particular Lambert series

Gd.z/ WD
1X

hD0

zd
h

1 � zdh

at certain rational points of the unit interval, where d is an integer parameter.
Using Thue–Siegel–Roth’s approximation theorem he proved: If d � 3; t � 2, and
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0 < b < t1�5=.2d/, then Gd.b=t/ is transcendental. Under weaker conditions on d and
b, he obtained irrationality, non-quadracity, etc. Note that, e.g., the transcendence of

1X

hD0

1

22
h C 1

D 2 � G2
�1

2

�
;

the reciprocal sum of the Fermat numbers, was not covered by the results just
quoted.

Shortly later, in the first volume of the Journal of Number Theory, Mahler [9]
roughly reported on earlier work of his on the transcendence of values of functions
satisfying functional equations like

Gd.z
d/ D Gd.z/ � z

1 � z
(1.1)

(see [6–8]). In this note, Mahler suggested several directions, in which his work
might possibly be extended.

It is the main aim of this article to give an impression of the development, which
was initiated by Schwarz’ note and Mahler’s reaction. To this purpose, we consider
coprime1 A;B 2 QŒz� nf0g satisfying A.0/ D 0 and put H WD A

B . This rational
function has coefficients in an algebraic number field (called K), and convergence
radius� being C1 for constant B, and the smallest absolute value of all zeros of B
otherwise. Clearly, the series

Hd.z/ WD
1X

hD0
H.zd

h
/

with integer d � 2 (to be always assumed from now on) is in KŒŒz��, converges in
jzj < min.1;�/, and satisfies the functional equation

Hd.z
d/ D Hd.z/ � H.z/ (1.2)

“of Mahler-type.” Taking H.z/ D z=.1� z/ we get Hd D Gd, the Schwarz functions,
and on taking H.z/ D z we get Hd D Fd, where the so-called Fredholm series
Fd.z/ D P

h�0 zd
h

is the prototype of a Mahler function.

1Here and in the sequel, Q denotes the field of all complex algebraic numbers.
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2 Transcendence

From Mahler’s transcendence criterion in [6] (see also [12, Theorem 1.2]) we
deduce

Theorem 2.1 Hd.˛/ is transcendental for any ˛ 2 Q with 0 < j˛j < min.1;�/
and B.˛d

j
/ ¤ 0 . j D 0; 1; : : :/ provided thatHd.z/ is transcendental over K.z/.

Note here that something analytical in this direction is necessary: Namely, on
taking H.z/ D z=.1� z2/ we find H2.z/ D z=.1� z/; thus, a transcendence result of
the above type cannot hold for this H2.

In some good-natured cases, the transcendence of Hd.z/ follows from classical
results in function theory, e.g., if H.z/ D z. But it is important to have rather
general criteria for the transcendence of Mahler-type functions. One of those reads
as follows:

Theorem 2.2 ([11]) If f 2 CŒŒz�� satisfies f .zd/ D '.z; f .z// or f .z/ D  .z; f .zd//
for some '; 2 C.z;w/, then f is either rational or transcendental.

Thus, under favorable conditions, one has only to exclude rationality. Precisely
in this direction, Coons [2, Theorem 2.2] deduced quite recently the following
functional transcendence criterion from Theorem 2.2:

Theorem 2.3 If f 2 CŒŒz�� satisfies f .zd/ D f .z/ � A.z/
B.z/ with A;B 2 CŒz� nf0g and

max.degA; degB/ � d � 1, then f is transcendental over C.z/.

Note that this implies the transcendence of all Schwarz functions Gd.z/. Note
also that, in general, the bound d � 1 for the degrees of A;B is best possible for any
d as one can see by taking

A.z/ D ˛z
zd�1 � ˛d�1

z � ˛
; B.z/ D ˛ � zd

with ˛ some .d � 1/th root of unity, where we are led to the rational function

1X

hD0

A

B
.zd

h
/ D z

˛ � z

(see [3, Theorem 9] and [1, Lemma 2.10]) generalizing our example H2.z/ after
Theorem 2.1.

In the rest of this section, we include a rather shortened

Proof of Theorem 2.3 W.l.o.g. we may assume A;B coprime and, moreover,A.0/ D
0;B.0/ ¤ 0. By Theorem 2.2, it is enough to show f … C.z/. Thus, let us assume,
on the contrary, that f is rational, say f D u=v with coprime u; v 2 CŒz� nf0g. Then
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the functional equation can be equivalently written as

u.zd/v.z/B.z/ D v.zd/
�
u.z/B.z/ � v.z/A.z/�;

hence, by the coprimality of u.zd/; v.zd/,

v.zd/ j v.z/B.z/ and u.zd/ � v.z/B.z/
v.zd/

D u.z/B.z/� v.z/A.z/ (2.1)

implying .d � 1/ degv � degB.
Now, v D const would imply B jA, by the equation in (2.1), hence B D const

since A;B are supposed to be coprime. Thus, u.zd/ D u.z/ � .v.0/=B.0//A.z/
implying d deg u � max.deg u; d � 1/ hence u D const, and then A D 0, a
contradiction.

So the case degB � d�2 is excluded [see after (2.1)] implying degB D d�1, and
this, in turn, leads to deg v � 1, where we may immediately assume deg v D 1 or
v.z/ D ˛z C ˇ with ˛ ¤ 0. The degree of the left-hand side of the equation in (2.1)
equals d deg u, whereas the degree of the right-hand side is � max.d�1Cdeg u; d/,
and this consideration yields deg u � 1 or u.z/ D az C b. Therefore the functional
equation from Theorem 2.3 reduces to

A.z/

B.z/
D az C b

˛z C ˇ
� azd C b

˛zd C ˇ
D .b˛ � aˇ/z.zd�1 � 1/

.˛zd C ˇ/.˛z C ˇ/

with aˇ ¤ b˛ since A ¤ 0, whence

A.z/
�
˛z.zd�1 � 1/C .˛z C ˇ/

�
.˛z C ˇ/ D .b˛ � aˇ/z.zd�1 � 1/B.z/

implying degA C 1 D degB , degA D d � 2 and, moreover,

A.z/.˛z C ˇ/2 D C.z/ � z.zd�1 � 1/ (2.2)

with some C 2 CŒz�nf0g of degree 0, hence C.z/ D const ¤ 0. Thus, the right-hand
side of (2.2) has only simple zeros but the left-hand side has multiple ones, and this
contradiction concludes our proof. ut

3 Hypertranscendence

An analytic function is called hypertranscendental if no finite collection of deriva-
tives of the function is algebraically dependent over C.z/. A hypertranscendence
criterion for Mahler-type functions is the following:
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Theorem 3.1 ([10, Theorem 3]) Suppose that f 2 CŒŒz�� has the following two
properties:

(i) For some integer n � 1, let f ; f 0; : : : ; f .n�1/ be algebraically dependent over
C.z/.

(ii) For some integer d � 2, f satisfies f .zd/ D u.z/f .z/ C v.z/, where u; v 2
C.z/; u ¤ 0. If u.z/ D sMzM C : : : with an integer M and sM ¤ 0, put Q D
ŒM=.d � 1/�.

Then there exists some w 2 C.z/ satisfying

w.zd/ D u.z/w.z/C v.z/ or w.zd/ D u.z/w.z/C v.z/ � �
u1.z/zQd

u2.z/
;

where u1.z/ D u.z/=.sMzM/; u2 2 C.z/ n f0g fulfills the condition u2.zd/ D
u2.z/=u1.z/, and � 2 C is the constant term in the z-expansion of the quotient
v.z/u2.z/=.u1.z/zQd/ in case sM D 1;M D Q.d � 1/, but � D 0 otherwise.

From this criterion we deduce the following consequence:

Corollary 3.2 If f 2 CŒŒz�� n C.z/ satisfies f .zd/ � f .z/ 2 C.z/, then f is
hypertranscendental.

Proof Let f , as in the corollary, satisfy f .zd/ � f .z/ 2 C.z/; D v.z/ 2 CŒŒz��, say,
hence v.0/ D 0. Assume that (i) from Theorem 3.1 holds. Since (ii) holds also, with
u.z/ D 1 (hence M D 0; sM D 1;Q D 0) and v.z/ as above, there exists some
w 2 C.z/ satisfying

w.zd/ D w.z/C v.z/ (3.1)

(as soon as we have checked � D 0: u1.z/ D 1I u2 2 C.z/ nf0g fulfills u2.zd/ D
u2.z/, or U.zd/V.z/ D U.z/V.zd/with u2 D U=V;U;V2 CŒz�nf0g coprime, whence
u2 D const 2 C�, and thus � D 0).

By (3.1), w.z/ has no pole at 0, hence it is in CŒŒz��. Since f satisfies also (3.1),
' WD f � w 2 CŒŒz�� satisfies '.zd/ D '.z/, whence ' D const, and we arrive at the
contradiction f D w C const 2 C.z/. ut

In particular, all Gd.z/ and Fd.z/ are hypertranscendental.
To see what this implies arithmetically, we quote the following algebraic

independence criterion:

Theorem 3.3 ([12, Theorem 4.2.1]) Let K be an algebraic number field. Suppose
that f1; : : : ; fn 2 KŒŒz�� converge in jzj < � with some 0 < � � 1, where they satisfy

� . f1.z
d/; : : : ; fn.z

d// D A.z/ � � . f1.z/; : : : ; fn.z//C � .b1.z/; : : : ; bn.z// (3.2)

with A 2 Matn�n.K.z//; b1; : : : ; bn 2 K.z/, and � indicating the matrix transpose.
If ˛ 2 Q

�
with j˛j < � is such that no ˛dj . j D 0; 1; : : :/ is a pole of b1; : : : ; bn and
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the entries of A, then the following inequality holds for transcendence degrees

trdegQQ. f1.˛/; : : : ; fn.˛// � trdegK.z/K.z/. f1.z/; : : : ; fn.z//: (3.3)

We apply this with fi.z/ WD f .i�1/.z/, f being an irrational solution of

f .zd/ D f .z/ � H.z/; H D A

B
; (3.4)

with A;B as in our introduction [compare (1.2)]. According to Corollary 3.2, f is
hypertranscendental, whence the right-hand side of (3.3) equals n for any n � 1. By
successive differentiations of (3.4), we recognize

QA.z/ � � . f .zd/; : : : ; f .n�1/.zd// D � . f .z/; : : : ; f .n�1/.z// � � .H.z/; : : : ;H.n�1/.z//

with lower triangular QA.z/ 2 Matn�n.ZŒz�/ having 1; dzd�1; : : : ; .dzd�1/n�1
on the main diagonal. From this, (3.2) can be easily checked with A.z/ WD
QA.z/�1; � .b1.z/; : : : ; bn.z// D �A.z/ � � .H.z/; : : : ;H.n�1/.z//. Clearly, A has no

poles ¤ 0, whereas non-zero poles of bi can only come from zeros of B, and we
have established the following result:

Corollary 3.4 Suppose that f is an irrational solution of (3.4), where A;B 2 QŒz�n
f0g. Then, for any ˛ 2 Q

�
with j˛j < min.1;�/ and B.˛d

j
/ ¤ 0 for j D 0; 1; : : : ;

the numbers f .˛/; f 0.˛/; f 00.˛/; : : : are algebraically independent.

In particular, for any d and ˛ 2 Q
�
; j˛j < 1, the numbers Gd.˛/;G0

d.˛/;

G00
d.˛/; : : : are algebraically independent.

4 Algebraic Independence of the Values of Schwarz’
Functions

The most typical question here is as follows. For a Mahler-type function f , analytic
on D WD fz 2 C W jzj < 1g, say, one is interested in necessary and sufficient
conditions on ˛1; : : : ; ˛n 2 Q

� \ D such that f .˛1/; : : : ; f .˛n/ are algebraically
independent. This problem was essentially solved for the Fredholm series Fd; d �
2, by Loxton and van der Poorten [5]. But in the case of Schwarz’ functions Gd, no
significant results seem to exist in the literature, at least to our knowledge. We want
to make here a modest contribution to this problem.

To begin with, we conclude analogously to [12, pp. 106–107] as follows.
Suppose ˛1; : : : ; ˛n 2 Q

� \ D to be multiplicatively independent, and consider
the multivariable functions fj.z1; : : : ; zn/ WD Gd.zj/; j D 1; : : : ; n. Since Gd.z/
is transcendental over C.z/, the functions f1.z/; : : : ; fn.z/ of the multivariable
z WD .z1; : : : ; zn/ are algebraically independent over C.z/. Moreover, ˝ WD
diag.d; : : : ; d/ 2 Matn�n.Z�0/ and ˛ WD .˛1; : : : ; ˛n/ satisfy the properties (I)
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through (IV) from [12, pp. 33–34, 62], whence we obtain the algebraic indepen-
dence of Gd.˛1/; : : : ;Gd.˛n/ if, as assumed above, the numbers ˛1; : : : ; ˛n are
multiplicatively independent. Note that the main feature here consists in the trick
to deduce algebraic independence results for one single-valued function at different
points from corresponding results on several multivariable functions at one point.

In a very particular subcase of multiplicatively dependent ˛1; : : : ; ˛n 2 Q
�\ D,

we are in a position to give a characterization of the algebraic independence of
Gd.˛1/; : : : ; Gd.˛n/, namely if all ˛j’s are powers of some ˛ 2 Q

�\ D.

Theorem 4.1 Let m1; : : : ;mn be n � 2 positive integers, and let ˛ 2 Q
�\ D. Then

Gd.˛
m1 /; : : : ;Gd.˛

mn/ are algebraically independent if and only if

mj

mi
… dZ (4.1)

holds for any pair .i; j/ with i ¤ j.

To prepare our proof below, we next quote the one-variable version of a main
tool for algebraic independence of Mahler-type functions.

Theorem 4.2 Let f1; : : : ; fn 2 CŒŒz�� satisfy the functional equation

� . f1.z/; : : : ; fn.z// D A � � . f1.zd/; : : : ; fn.zd//C � .b1.z/; : : : ; bn.z// (4.2)

withA 2 Matn�n.C/ and b1; : : : ; bn 2 C.z/. If f1; : : : ; fn are algebraically dependent
overC.z/, then there exist c1; : : : ; cn 2C, not all 0, such that c1f1C : : :Ccn fn 2C.z/.

Proof This is a particular case of [12, Theorem 3.2.2], a forerunner of which was
[4, Theorem 2].

Proof of Theorem 4.1 We consider the functions

fj.z/ WD Gd.z
mj/ . j D 1; : : : ; n/ (4.3)

satisfying, by (1.1),

fj.z
d/ D fj.z/C zmj

zmj � 1 . j D 1; : : : ; n/ (4.4)

which is a system of functional equations of type (4.2). Iterating (4.4) we find

fj.z
d` / D fj.z/C

`�1X

�D0

zd
�mj

zd�mj � 1
for any integer ` � 0, empty sums being 0, by convention. Assuming w.l.o.g.
m2=m1 D d`, this equation yields Gd.˛

m2 / � Gd.˛
m1 / 2 Q, by (4.3), where the

explicit value of this difference can be written down. Thus, the validity of (4.1) is
necessary for the algebraic independence of Gd.˛

m1 /; : : : ;Gd.˛
mn/.
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That conditions (4.1) are sufficient for the algebraic independence of the
numbers just mentioned can be deduced from Theorem 3.3 as follows: Apply-
ing this theorem with K D Q; � D 1 and (4.4) as system (3.2), we obtain
trdegQQ. f1.˛/; : : : ; fn.˛// � n, by (3.3), hence our assertion, if we can show that
our f1.z/; : : : ; fn.z/ are algebraically independent over Q.z/.

To prove even their algebraic independence overC.z/, we use Theorem 4.2 which
tells us the following. If f1; : : : ; fn were algebraically dependent overC.z/, then there
exists a c WD .c1; : : : ; cn/ 2 Cn n f0g such that r.z/ WD c1f1.z/ C : : : C cnfn.z/ is a
rational function satisfying the functional equation

r.zd/ D r.z/C
nX

jD1
cj

zmj

zmj � 1 ; (4.5)

by (4.4).
To get our desired contradiction more conveniently, we next transform, for our

above c ¤ 0, Eq. (4.5) in r;m1; : : : ;mn into an equivalent one in s; k1; : : : ; kn. To this
purpose we write, for j D 1; : : : ; n, mj D dt. j/kj with integers t. j/ � 0 and kj > 0

such that d − kj. Then condition (4.1) is equivalent to the distinctness of k1; : : : ; kn.
Moreover, with c and r as in (4.5), we define the rational function s by

s.z/ WD r.z/ �
nX

jD1
cj

t. j/�1X

�D0

zd
� kj

zd� kj � 1

which satisfies

s.zd/ D s.z/C
nX

jD1
cj

zkj

zkj � 1
: (4.6)

Therefore, to reach our contradiction, it suffices to establish the following auxiliary
result the proof of which we defer to the last section. ut
Lemma 4.3 If c WD .c1; : : : ; cn/ 2 Cn n f0g, and k1; : : : ; kn are distinct positive
integers not divisible by d, then the functional equation (4.6) has no rational solution
s.

This may be the right place to ask an

Open Question Let ˛1; : : : ; ˛n 2 Q
� \ D. Are the following two statements

equivalent?

(i) Gd.˛1/; : : : ; Gd.˛n/ are algebraically independent.
(ii) ˛j ¤ ˛d

`

i holds for any triple .i; j; `/ with i ¤ j and ` � 0.

Of course, the implication (i) ) (ii) is easily seen. In the particular case ˛j D ˛mj

treated in Theorem 4.1, the reversed implication is also valid.
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5 Proof of Lemma 4.3

Step 1: Partial fraction decomposition. Assume on the contrary, that, for a
.c1; : : : ; cn/ ¤ 0, Eq. (4.6) with distinct kj not divisible by d has a rational
solution s. Since all polynomials zkj � 1 divide zL � 1; L WD lcm.k1; : : : ; kn/,
it follows from [13, Lemma 1] that s must be of the shape

s.z/ D a.z/

zL � 1

with some a 2 CŒz�; a ¤ 0, by (4.6) and the distinctness of the kj. Note also
deg a � L:

For integers k > 0, we write �k WD e2	 i=k and have

zk

zk � 1 D 1C 1

k

k�1X

jD0

�
j
k

z � �
j
k

D 1C 1

k

X

ıjk
fı.z/;

the second sum being over all positive divisors ı of k, where we put

fı.z/ WD
ı�1X

jD0
. j;ı/D1

�
j
ı

z � � jı
:

Here the poles of fı are exactly the primitive ıth roots of unity, i.e., the roots of the
ıth cyclotomic polynomial.

In the same way, we may write down the partial fraction decomposition of s as

s.z/ D S C
X

ıjL
sı.z/ with sı.z/ WD

ı�1X

jD0
. j;ı/D1

sı;j

z � � jı
;

where S and the sı;j’s are complex constants.
By the preceding notations, our functional equation (4.6) assumes the form

X

ıjL

�
sı.z

d/� sı.z/
� D

nX

jD1

cj
kj

X

ıjkj
fı.z/; (5.1)

where we already used c1 C : : : C cn D 0, a result coming from the fact that both
sides of (5.1) tend to 0 as z ! 1. W.l.o.g., let us assume c1 � : : : �cm ¤ 0 but cmC1 D
: : : D cn D 0 for 2 � m � n, and furthermore k1 > : : : > km. Next, consider the set
of all positive integers ı dividing at least one of k1; : : : ; km, where none of these ı’s
is divisible by d since we assumed d − kj for j D 1; : : : ; n. Clearly k1 is the maximal



100 P. Bundschuh and K. Väänänen

element of this set and cannot occur among the divisors of k2; : : : ; km. Thus, all
poles of fk1 remain poles of the right-hand side of (5.1), and we may summarize the
result of Step 1 as follows: Denoting by N the greatest positive integer such that the
left-hand side

X

ıjL

�
sı.z

d/ � sı.z/
�

(5.2)

of (5.1) and fN have at least one pole in common, then N D k1 holds, whence d − N.

Step 2: Study of sı.zd/ and final contradiction. From the above definition of sı for
positive divisors ı of L we obtain

sı.z
d/ D

ı�1X

jD0
. j;ı/D1

sı;j

zd � �
j
ı

D
ı�1X

jD0
. j;ı/D1

sı;j

d�1X


D0

1

d�. jC
ı/.d�1/
dı .z � �

jC
ı
dı /

: (5.3)

Suppose, from now on, p�.1/1 �: : :�p�.!/! to be the canonical factorization of d. Assume
that p1; : : : ; p� are not divisors of ı but p�C1; : : : ; p! are, where we have to consider
the cases � D 0; : : : ; !. Then we have the following equivalence:

. j; ı/ D 1 ” . j C 
ı; ı/ D . j C 
ı; dı=
Y�

iD1p
�.i/
i / D 1

with the usual convention here and later that empty products equal 1. Now, any
positive divisor D of p1 � : : : � p� is relatively prime to ı, whence there are precisely
d
D numbers 
 2 f0; : : : ; d � 1g satisfying Dj. j C 
ı/. Thus, by the well-known
inclusion–exclusion principle, we can say that, for fixed coprime j; ı, the number of

 2 f0; : : : ; d�1g such that jC
ı is prime to p1 �: : :�p� (or equivalently to

Q�
iD1 p

�.i/
i )

equals d
Q�

iD1.1 � 1=pi/. Therefore we can note that, for fixed coprime j; ı, there
are exactly d

Q�
iD1.1 � 1=pi/ values 
 2 f0; : : : ; d � 1g such that . j C 
ı; dı/ D 1

holds. Hence we conclude

sı.z
d/ D

dı�1X

jD0
. j;dı/D1

sı;j

d� j.d�1/
dı .z � �

j
dı/

C˙ı.z/ (5.4)

from the double sum in (5.3), where, strictly speaking, we should write sı;j�Œj=ı�ı
in the numerator instead of simply sı;j. The rational function ˙ı in (5.4) vanishes
identically in case � D 0, whereas, in the cases 1 � � � !, it may have poles at
certain primitive �th roots of unity but with � < dı only. Since sı ¤ 0 is equivalent
to the fact that not all sı;j, j 2 f0; : : : ; dı � 1g and prime to dı, vanish, we conclude
from (5.4) that, in this case of ı, the difference sı.zd/ � sı.z/ has poles at .dı/th
roots of unity. Thus, the N defined before (5.2) must be of the form dı, whence djN
holds, and we have obtained a contradiction proving Lemma 4.3.
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