
A Ternary Problem in Additive Prime Number
Theory

Jörg Brüdern

Abstract Estimates are obtained for the number of natural numbers below a
parameter that do not have a representation as the sum of two squares of primes and
a kth power of a prime. These improve earlier bounds in the order of magnitude.
The method is then also applied to some related questions.
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1 Introduction

This collection of research articles is dedicated to the memory of Wolfgang
Schwarz. Early in his career he was a practitioner of the Hardy–Littlewood circle
method [14–16], and he followed later developments of the method itself and its
range of applicability with great interest. His survey article [17] gives ample proof
of this, and the collection of open problems contained therein helped this writer
into the subject [1]. It therefore seems fitting for the occasion to examine here the
current status of a problem that Schwarz discussed in his thesis. Published in two
parts [14, 15] and devoted in general to the additive theory of prime numbers, it
is in the second of his papers where the intent is to obtain proof that almost all
numbers expected to be representable in a certain proposed form indeed have such
representations.

Perhaps the most interesting of his results relates to representations of the natural
number n in the form

n D p2
2 C p2

2 C pk3 (1.1)
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in which k � 2 is a given natural number, and the variables pj range over primes.
One may expect such a representation to exist whenever the congruences

x2
1 C x2

2 C xk3 � n mod q (1.2)

are soluble with .xj; q/ D 1 .1 � j � 3/, for all q 2 N, and we write Hk for the set of
all n 2 N where this is so. It is well known and easy to prove1 that Hk is the union
of finitely many residue classes. In particular, Hk has positive density among the
natural numbers. Schwarz [15, Satz 3] proved that for any fixed A > 0 the number
Ek.N/ of integers n 2 Hk with 1 � n � N for which (1.1) has no solution in primes
p1; p2; p3 satisfies Ek.N/ � N.logN/�A. Earlier Hua [7] had obtained this same
conclusion for some positive A. After the fundamental innovations of Montgomery
and Vaughan [13] in their treatment of the binary Goldbach problem, an estimate of
the shape

Ek.N/ � N1�ı.k/ (1.3)

should have been within reach for some positive ı.k/, but a proof was only published
in 1993 by Leung and Liu [9]. Their argument relied on the Deuring–Heilbronn
phenomenon, as did the work of Montgomery and Vaughan, and hence little could
be said about the dependence of ı on k at the time. Five years later Liu and
Zhan [11] noticed that for representation problems with more than two variables,
potential Siegel zeros impact the major arc analysis to a lesser extent than is the case
in a binary situation. This interesting observation has been instrumental in many
applications since. In particular, dramatic progress was possible with the quadratic
case of the Waring–Goldbach problem. We only mention the latest bound

E2.N/ � N17=20C"

due to Harman and Kumchev [5]. For larger values of k, we have (1.3) with

ı.3/ D 1

21
� "; ı.k/ D 1

3k � 2k�2
� " .k � 4/ (1.4)

where " is any positive number, as established by Lü [12] and Li [10, Theorem 1],
respectively. These two papers are based on very similar ideas. An elementary bound
for the number of solutions of the equation

p2
1 C p2

2 D p2
3 C p2

4

in primes pj not exceeding N1=2 is combined with an estimate of Weyl’s type for
the degree k Weyl sum in a circle method analysis of the problem at hand. When

1For details see, for example, the footnote on p. 41 of [3], or inter alia in [15].
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k � 3, the best known Weyl bounds for trigonometric sums over prime powers are
due to Kumchev [8], and their direct use produces the estimates (1.4). For larger
values of k, Li’s results can be improved by using Weyl bounds stemming from
Vinogradov’s mean value theorem. Wooley’s groundbreaking work [19] on the latter
can be combined with the strategy of Li to show that in (1.3) one may take ı.k/ D
c=k3, for some constant c > 0.

In this paper we follow a different route and treat the kth power in mean. This
increases the admissible values for ı.k/ by a factor k when k is large, and when
k D 3 we also obtain a sizeable improvement over the work of Lü [12].

Theorem 1.1 One has

E3.N/ � N15=16C" and Ek.N/ � N1�1=.2k/2C" .k � 4/:

To access the strength of this result, it is perhaps worth pointing out that the
circle method approach to problems of this type is currently limited by the square
root cancellation barrier. For the problem under consideration, this corresponds to
ı.k/ D 1=k in (1.3). If one is prepared to give up the primality of p3 in (1.1), then
one can get reasonably close to this barrier. More precisely, let Gk be the set of all
natural numbers n for which the congruences (1.2) are soluble with .x1x2; q/ D 1,
for all q 2 N. Let E�

k .N/ denote the number of all n 2 Gk with 1 � n � N for which
the equation

p2
1 C p2

2 C xk D n (1.5)

has no solution in primes p1, p2 and natural numbers x.

Theorem 1.2 Let k � 4. Then E�
k .N/ � N1�1=.97k/.

No effort has been made to optimize the constant 97 that occurs in the exponent
of the bound for E�

k .N/. Emphasis is on larger k, and consequently, we have not
attempted to tune our approach so as to yield good bounds when k is of moderate
size.

It is interesting to compare the conclusion of Theorem 1.2 with related estimates
for the prominent Hardy–Littlewood problem concerning sums of a prime and a
kth power. When n 2 Gk we expect Eq. (1.5) to have about n1=k.log n/�2 solutions,
while whenever n� xk is irreducible as a polynomial over the rationals, the equation
n D pC xk should have about n1=k.log n/�1 solutions with p prime. Thus, one might
be led to believe that the two problems are roughly of the same degree of difficulty.
However, this does not seem to be the case, given our current understanding of
exponential sums over primes. Indeed, if Dk.N/ denotes the number of all n � N
for which n�xk is irreducible over ZŒx� but n D pCxk has no solution with p prime,
then the bound

Dk.N/ � N1�1=.25k/ (1.6)
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was obtained in collaboration with Perelli [4] almost 20 years ago, yet assuming that
no Dirichlet L-function has a zero in the half-plane Re s > 1

2
. Unconditional bounds

for Dk.N/ come nowhere close to (1.6). The significant difference between the
Hardy–Littlewood problem and the representation problem (1.1) is that the major
arc estimates of Kumchev [8] have an amplifying effect whenever three summands
are present, but only then. Kumchev’s bounds control Weyl sums related to p2

1 C p2
2

to a precision that is available for a single prime only if one is prepared to accept
the use of unproven hypotheses.

In his thesis work, Schwarz also considered additive problems with more than
three prime powers. For example, when k � 2, representations of the form

p2
1 C p4

2 C p4
3 C pk4 D n (1.7)

or

p2
1 C p3

2 C p6
3 C pk4 D n (1.8)

are considered. We focus our attention temporarily on Eq. (1.8), and on those
integers n for which the congruences x2

1 C x3
2 C x6

3 C xk4 � n mod q have a solution
with .x1x2x3x4; q/ D 1, for all q 2 N. Let Fk denote the set of all such n.
Then Schwarz shows [15, Satz 6] that when n � N and n 2 Fk but n has no
representation in the form (1.8), with all pj prime, then n is in a set with no more than
O.N.logN/�A/ members, again for any fixed A > 0. There is also a corresponding
result for Eq. (1.7) [15, Satz 5]. Our methods apply to such problems as well, leading
to analogues of Theorems 1.1 and 1.2 with little difficulty, the overall details being
somewhat simpler thanks to the presence of a fourth summand. In fact, it is possible
in the two problems (1.7) and (1.8) to establish an asymptotic formula for the
number of solutions, with the exceptional set estimate still of strength comparable
to the conclusion in Theorem 1.1. We content ourselves with a brief discussion of
such a result for Eq. (1.8). In this context, define the counting function

%.n/ D
X

p2
1Cp3

2Cp6
3Cpk4Dn

.log p1/.log p2/.log p3/ log p4 (1.9)

and the singular series

s.n/ D
1X

qD1

qX

aD1
.a;q/D1

X

1�xj�q
1� j�4

.xj;q/D1

'.q/�4e.a.x2
1 C x3

2 C x6
3 C xk4 � n/=q/: (1.10)

Theorem 1.3 Let k � 2 be a natural number, and let A > 1. Then the inequality

ˇ̌
%.n/ � � . 1

2
/� . 4

3
/� . 7

6
/s.n/n1=k

ˇ̌
> n.log n/�A
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holds for no more than O.N1�1=.8k2/C"/ of the natural numbers n not exceeding N.
Further, there is a number C � 1 such that for n 2 Fk one has

s.n/ � .log log n/�C: (1.11)

In particular, all but O.N1�1=.8k2/C"/ of the numbers n 2 Fk with 1 � n � N have
a representation in the form (1.8). It should be noted that Fk is a union of finitely
many arithmetic progressions (see [15, Satz 6]), and is therefore a set of positive
density.

Throughout this paper, we apply the convention that whenever the letter " occurs
in a statement, it is asserted that this statement holds for all positive real numbers ".
Constants implicit in Landau’s and Vinogradov’s well-known symbols may depend
on ". Eulers totient is '.n/, and !.n/ is the number of distinct prime factors of n.

2 A Mean Value Estimate

We begin our deliberations by discussing a moment estimate for a certain Weyl sum
that we now introduce. Let k � 3, and put

h0.˛;X/ D
X

1�x�X

e.˛xk/: (2.1)

Let M D X1=k, and let P denote the set of primes p with p � �1 mod k and
M < p � 2M. Then, for t 2 N, we define the sum ht.˛;X/ by means of the recursion

ht.˛;X/ D
X

p2P
ht�1.˛pk;X=p/: (2.2)

By (2.1) and (2.2), it follows that one may also write

ht.˛;X/ D
X

x�X

wt.x;X/e.˛xk/ (2.3)

where w0.x;X/ is the indicator function on f1; 2; : : : ; ŒX�g, and where for t � 1, the
coefficients wt.x;X/ satisfy the relation

wt.x;X/ D
X

pjx
p2P

wt�1.x=p;X=p/: (2.4)
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The sum on the right-hand side of (2.4) has at most k � 1 summands. By induction
on t, it follows that wt.x;X/ D 0 for x > X, and that for x � X one has

wt.x;X/ � kt: (2.5)

For t � 0 and s � 1, we shall bound the mean value

I.X; s; t/ D
Z 1

0

jh0.˛;X/j2jht.˛;X/j2s d˛: (2.6)

It will be convenient to write � D 1 � 1=k.

Lemma 2.1 For t � 0 and s � 1, one has

I.X; s; t/ � X2sC2�kCk.� tC3� s/: (2.7)

This estimate should be compared with Lemma 2.1 of Brüdern and Perelli [4]
where a slightly superior estimate was obtained, yet with a Weyl sum that is not as
flexible as our ht. Indeed, the Weyl sum used in [4] arises through the same recursion
process as our ht, but one would start with the extra constraint in (2.1) that the x are
restricted to primes. With the Riemann Hypothesis for Dirichlet L-functions in hand,
this makes little difference, but in unconditional work our new Weyl sum is much
easier to use. This will become transparent in Sect. 4 below.

We now commence the proof of the lemma. By (2.3) and (2.5), we have ht.˛/ �
X, and consequently, by (2.6), one has the trivial bound I.X; s; t/ � X2sC2. When
t D 0, this already established (2.7), for all s. Further, when 1 � s � k, one has
� s � � k � 1=e > 1=3, and (2.7) is again evident.

We may now suppose that s > k and t � 1, and then proceed by induction on
s C t. By orthogonality, (2.6), (2.2) and (2.3), one finds that I.X; s; t/ equals the
number of solutions of the diophantine equation

xk1 � xk2 D
2sX

jD1

.�1/jpkj y
k
j ; (2.8)

each solution counted with multiplicity

2sY

jD1

wt�1.yj;X=pj/; (2.9)

and the natural numbers xl and the primes pj subject to 1 � xl � X and pj 2 P .
It may be worth remarking that we have pjyj � X for all 1 � j � 2s whenever the
multiplicity (2.9) is non-zero.

Let I0 denote the number of solutions of (2.8), counted with weight (2.9), where
for all 1 � j � 2s one has pj j x1 and pj j x2. For l D 1 or 2, let Il denote the
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number of solutions of (2.8) where p1 − xl, counted with weight (2.9). Then, since
for any solution counted by I.X; s; t/ but not by I0, there is some j such that pj does
not divide one of x1, x2, we deduce by symmetry that

I.X; s; t/ � I0 C 2s.I1 C I2/: (2.10)

We require an upper bound for I0. For p D . p1; : : : ; p2s/ 2 P2s, let

G.˛; p/ D
X

1�x�X
pjjx .1�j�2s/

e.˛xk/: (2.11)

Then, by orthogonality and the triangle inequality, and then applying the elementary
bound jz1z2 : : : z2sj � jz1j2s C : : : C jz2sj2s, we infer that

I0 �
X

p2P2s

Z 1

0

jG.˛; p/j2jht�1.˛p
k
1;X=p1/ : : : ht�1.˛pk2s;X=p2s/j d˛

�
X

p2P2s

Z 1

0

jG.˛; p/j2jht�1.˛p
k
1;X=p1/j2s d˛: (2.12)

Note that at most k�1 different primes pj 2 P can divide a number x with x � X.
Hence, for the sum in (2.11) to be non-empty, at most k � 1 of the entries of p can
be distinct, and we may restrict the sum in (2.12) to such p, of which there are no
more than O.Mk�1/ choices. For a fixed such choice, we deduce from orthogonality
that the integral in (2.12) does not exceed the number of solutions of the diophantine
equation

xk1 � xk2 D pk1.y
k
1 � yk2 C : : : C yk2s�1 � yk2s/; (2.13)

with the variables x1, x2 constrained to 1 � xl � X and p1 j xl .l D 1; 2/, each
solution counted with weight

2sY

jD1

wt�1.yj;X=p1/: (2.14)

We put xl D p1zl in (2.13) and use orthogonality again to conclude from (2.6) that

Z 1

0

jG.˛; p/j2jht�1.˛p
k
1;X=p1/j2s d˛ � I.X=p1; s; t � 1/: (2.15)

But p1 2 P so that p1 > M, and then the induction hypothesis supplies the bound

I.X=p1; s; t � 1/ � .X=M/2sC2�kCk.� t�1C3� s/:
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By (2.12) and (2.15), we then deduce that

I0 � Mk�1.X=M/2sC2�kCk.� t�1C3� s/ � X�

where

� D � C �
�
2s C 2 � k C k.� t�1 C 3� s/

�

� 2s C 2 � k C k.� t C 3� s/ C � � 1

k
.2s C 2 � k/:

Hence, since s > k, we see that

I0 � X2sC2�kCk.� tC3� s/; (2.16)

as required.
We now proceed by considering cases. First suppose that I1 C I2 � I0. Then,

by (2.10), we conclude that I.X; s; t/ � I0, and (2.7) follows from (2.16).
This leaves the case where I0 < I1 C I2. Write

Hp.˛/ D
X

1�x�X
p−x

e.˛xk/:

Then, for l D 1 and 2, we infer by orthogonality that

Il D
X

p2P

Z 1

0

Hp.˛/ht�1..�1/lC1pk˛;X=p/h0.�˛/ht..�1/l˛/jht.˛/j2s�2 d˛;

where now we write ht.˛/ D ht.˛;X/ in the interest of brevity. By Hölder’s
inequality and (2.6), one finds that

Il �
X

p2P
J

1
2s
p K

1
2 � 1

2s
p I.X; s; t/

1
2 ; (2.17)

where

Jp D
Z 1

0

jHp.˛/j2jht�1. p
k˛;X=p/j2s d˛

and

Kp D
Z 1

0

jHp.˛/j2jht.˛/j2s d˛:
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Note that the right-hand side of (2.17) is independent of l. Furthermore, by
orthogonality and a consideration of the underlying diophantine equations, one has
Kp � I.X; s; t/. In the case under consideration, (2.10) yields I.X; s; t/ � I1 C I2,
and (2.17) delivers

I.X; s; t/1=.2s/ �
X

p2P
J1=.2s/
p : (2.18)

Fix a prime p1 2 P . Then, by orthogonality one finds that Jp1 is equal to the
number of solutions of Eq. (2.13) with 1 � x1 � X, 1 � x2 � X, p1 − x1x2, each
solution counted with multiplicity (2.14). By (2.13), we have xk1 � xk2 mod pk1, and
since p1 2 P , it follows that pk1 j x1 � x2. However, jx1 � x2j < X D Mk < pk1
so that we must have x1 D x2. Hence, by (2.5), (2.6) and orthogonality again, we
conclude that Jp1 � XI.X=p1; s � 1; t � 1/. Since X=p1 � X� , we first deduce from
the induction hypothesis and (2.7) that

Jp1 � X1C�.2s�k/Ck.� tC3� s/;

and then infer from (2.18) the final bound

I.X; s; t/ � M2sX1C�.2s�k/Ck.� tC3� s/ D X2sC2�kCk.� tC3� s/;

completing the induction.

3 The Basic Argument

In this section, we shall present the basic argument that underpins all proofs. Along
the way, we shall establish Theorem 1.1. Let k � 3, and consider the Weyl sums

f .˛/ D
X

1
4N<p2�N

e.˛p2/ log p; g.˛/ D
X

1
4N<pk�N

e.˛pk/ log p: (3.1)

Whenever B 	 Œ0; 1� is measurable, we put

rB.n;N/ D
Z

B

f .˛/2g.˛/e.�˛n/ d˛: (3.2)

By orthogonality,

rŒ0;1�.n;N/ D
X

p2
1Cp2

2Cpk3Dn
1
4N<p2

1;p2
2;pk3�N

.log p1/.log p2/ log p3:
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For N < n � 2N, n 2 Hk, one expects rŒ0;1�.n;N/ to be of size N1=k, and we proceed
to establish this for almost all n. Let

Q D N1=.4k/; (3.3)

and write M for the union of the intervals

f˛ 2 Œ0; 1� W jq˛ � aj � QN�1.logN/�30kg

with 0 � a � q, .a; q/ D 1 and 1 � q � Q. We also put m D Œ0; 1� n M.
The evaluation of rM.n;N/ we are fortunate to be able to borrow from the work

of Li [10]. Let

S.n;Q/ D
X

q�Q

qX

aD1
.a;q/D1

qX

x1;x2;x3D1
.x1x2x3;q/D1

'.q/�3e.a.x2
1 C x2

2 C xk3 � n/=q/;

J.n;N/ D
X

m1Cm2Cm3Dn
1
4N<m1;m2;m3�N

.m1m2/�1=2m.1=k/�1
3 : (3.4)

Then2 Proposition 2.1 of Li [10] asserts that whenever N < n � 2N, one has

rM.n;N/ D 1

4k
S.n;Q/J.n;N/ C O.N1=k.logN/�30k/;

and for these n, the lower bound J.n;N/ � N1=k is immediate. Further, Lemma 3.1
of Li [10] yields S.n;Q/ � .logN/�15k for all but O.N1�1=.8k/C"/ of the integers
n 2 Hk with N < n � 2N. This establishes the following result:

Lemma 3.1 For all but O.N1�1=.9k// of the integers n 2 Hk with N < n � 2N, one
has rM.n;N/ � N1=k.logN/�15k.

Our treatment of the minor arcs depends on an important estimate of Kumchev
[8] that we now describe in a language suitable for application within this paper. Let
1 � Y � N1=8, and let N.Y/ denote the union of the pairwise disjoint intervals

Nq;a.Y/ D f˛ 2 Œ0; 1� W jq˛ � aj � Y=Ng

with 0 � a � q, .a; q/ D 1 and 1 � q � Y. We write N D N.N1=8/ and n D
Œ0; 1�nN. We define the function � W Œ0; 1� ! Œ0; 1� by putting � .˛/ D 0 for ˛ 2 n,

2An oversight in [10] is corrected here. The variables p2
1; p2

2; p
k
3 run over . 1

2
N;N� in [10], but then

J.n;N/ D 0 for n < 3
2
N which is not acceptable. If these variables run over . 1

4
N;N� instead, as

we have arranged matters here, then the proof of Proposition 2.1 in Li [10] becomes valid.
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and when ˛ 2 N \ Nq;a.N1=8/ by writing

� .˛/ D .q C Njq˛ � aj/�1:

Lemma 3.2 Uniformly for ˛ 2 Œ0; 1�, one has

jf .˛/j2 � N7=8C" C N1C"� .˛/:

Proof Theorem 3 of Kumchev [8] provides an estimate slightly stronger than that
claimed in Lemma 3.2, but for the sum

X

1
4N<p2�N

e.˛p2/:

Thus, Lemma 3.2 follows by partial summation.

Before embarking on the estimation of the minor arc integral, we collect a
number of mean value estimates. The first of these is the inequality

Z 1

0

jf .˛/j4 d˛ � N1C" (3.5)

that follows from a consideration of the underlying diophantine equation and Hua’s
lemma [18, Lemma 2.5]. Further, when k D 3, we put u D 4, and when k � 4, we
put u D k2. Then, the upper bound

Z 1

0

jg.˛/j2u d˛ � N.2u=k/�1C" (3.6)

is again a consequence of Hua’s lemma in the special case k D 3, and for larger k this
bound follows from Wooley’s estimates for Vinogradov’s mean value (for example,
[20, Corollary 1.2], where an even stronger bound is obtained) and a consideration
of the underlying diophantine equation.

We initiate the minor arc analysis by applying Bessel’s inequality to (3.2). Thus

X

N<n�2N

rm.n;N/2 �
Z

m

jf .˛/j4jg.˛/j2 d˛: (3.7)

By Hölder’s inequality,

Z

n

jf .˛/j4jg.˛/j2 d˛ � sup
˛2n

jf .˛/j4=u
� Z 1

0

jf .˛/j4 d˛
�1�1=u� Z 1

0

jg.˛/j2u d˛
�1=u

:
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Hence, by (3.5), (3.6) and Lemma 3.2,

Z

n

jf .˛/j4jg.˛/j2 d˛ � N7=.4u/C"N1�1=uN.2=k/�1=u � N1C.2=k/�ıC"; (3.8)

where ı D 1=.4u/.
This leaves the set N\m for treatment, and this set is covered by the union of sets

K.Y/ D N.2Y/ n N.Y/ as Y runs over 2�jN1=8, with Q.logN/�30k � Y � 1
2
N1=8.

Note that � .˛/ � Y�1 for ˛ 62 N.Y/. Further, Lemma 2 of Brüdern [2] supplies the
bound

Z

N.2Y/

� .˛/jg.˛/j2 d˛ � YN1=kC"�1 C N2=kC"�1:

This implies that

Z

K.Y/

� .˛/2jg.˛/j2 d˛ � N1=kC"�1 C Y�1N2=kC"�1:

For ˛ 2 N, we deduce from Lemma 3.2 that jf .˛/j2 � N1C"� .˛/. Hence, on
summing over Y, we infer that

Z

N\m

jf .˛/j4jg.˛/j2 d˛ � N1C7=.4k/C": (3.9)

Note that this bound is superior to the one in (3.8), so that we now deduce from (3.7)
that

X

N<n�2N

rm.n;N/2 � N1C2=k�ıC":

Consequently, the inequality jrm.n;N/j > N1=k.logN/�30k can hold for no more
than O.N1�ıC"/ of the integers n 2 .N; 2N�. The conclusion of Theorem 1.1 now
follows by combining this last observation with Lemma 3.1 and a dyadic splitting
up argument.

4 A Variant of the Main Theme

We now tune the basic argument to deliver Theorem 1.2. Fix k � 4, and recall that
� D 1 � 1=k. Then choose t 2 N such that � t�1 > 1

36
� � t. With this choice of t,

we put h.˛/ D ht.˛;N1=k/. With f .˛/ as in (3.1), we define

r�
B.n;N/ D

Z

B
f .˛/2h.˛/e.�˛n/ d˛;
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where B 	 Œ0; 1� denotes a measurable set. By orthogonality, (3.1) and (2.3), one
has

r�
Œ0;1�.n;N/ D

X

p2
1Cp2

2CxkDn
1
4N<p2

1;p2
2�N

wt.xIN1=k/.log p1/ log p2: (4.1)

Much as in the previous section, we expect that for most n 2 .N; 2N� \Gk the count
r�
Œ0;1�.n;N/ comes close to n1=k, and this can be established by invoking Lemma 2.1 in

place of (3.6) within the minor arc work performed in the previous section. However,
the use of the sums h.˛/ causes extra complication in the major arc analysis.

We overwrite previous usage by now putting

Q D N� t=k:

Let M and m be defined as in Sect. 3, but with this new value ofQ. The arcs N, N.X/

and n retain their meaning from Sect. 3. We now mimic the argument departing
from (3.7). Put s D 4k and then apply Hölder’s inequality to see that

Z

n

jf .˛/j4jg.˛/j2 d˛ � sup
˛2n

jf .˛/j4=s
� Z 1

0

jf .˛/j4 d˛
�1�1=s� Z 1

0

jh.˛/j2s d˛
�1=s

:

By Lemma 2.1, (3.5) and Lemma 3.2, we discern that

Z

n

jf .˛/4h.˛/2j d˛ � N7=.4s/C"N1�1=s.N.2s=k/�1C� tC3� s
/1=s � N1C.2=k/C�C";

(4.2)
where

� D 1

s

�
� t C 3� s � 1

4

�
:

Recall the definition of t, and observe that � k � e�1 and e4 > 54. It is now readily
confirmed that

� � 1

s

�
3� s � 2

9

�
� � 1

24k
: (4.3)

Next, we consider the range N \ m. Mimicry of the deduction of (3.9) yields

Z

N\m

jf .˛/j4jh.˛/j2 d˛ � N1C2=kC"Q�1:
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Now, since k � 4 and � t � 1
36

� > 1
48

, we infer from (4.2) and (4.3) that

Z

m

jf .˛/j4jh.˛/j2 d˛ � N1C 2
k � 1

48k :

By using Bessel’s inequality as in (3.7), this estimate allows us to conclude as
follows:

Lemma 4.1 For all but O.N1�1=.49k// of the integers n 2 .N; 2N� one has
jr�
m.n;N/j < N1=k.logN/�100k.

For the major arcs, we have to prepare for an application of the methods of Liu
and Zhan [11] with quite some effort. We begin with an explicit formula for the
sums h.˛/. Put P D N1=k. With t still as above, let U .N/ denote the set of all tuples
p D . p1; : : : ; pt/ built from primes pj � �1 mod k .1 � j � t/ that satisfy the
inequalities

P1=k < p1 � 2P1=k; .P=. p1 : : : pj//
1=k < pjC1 � 2.P=. p1 : : : pj//

1=k .1 � j < t/:
(4.4)

For p 2 U .N/ we write u D u.p/ D p1p2 : : : pt. Then, repeated use of (2.2) yields

h.˛/ D
X

p2U .N/

X

x�P=u

e.˛.ux/k/: (4.5)

We summarize some estimates concerning U .N/ in the next lemma.

Lemma 4.2 For all p 2 U .N/ one has u.p/ 
 P1�� t
. Further,

#U .N/ 
 P1�� t
.logN/�t:

Proof An inspection of (4.4) shows that there exist constants 0 < c0
1;j < c1;j <

c2;j < c0
2;j with the property that whenever c1;jP� j�1

< pj < c2;jP� j�1
holds for all

1 � j � t, then p 2 U .N/, and whenever p 2 U .N/, then c0
1;jP

� j�1
< pj < c0

2;jP
� j�1

for all j. The conclusions of Lemma 4.2 now follow from Chebychev’s estimates.

We are ready to develop a major arc approximation for the sum h.˛/. When
a 2 Z, q 2 N and ˇ 2 R, we put

S.q; a/ D
qX

xD1

e.axk=q/; V.ˇ;Y/ D
Z Y

0

e.ˇ� k/ d�:

Then, according to Theorem 4.1 of Vaughan [18], one has

X

x�P=u

e
��a

q
C ˇ

�
.ux/k

�
D q�1S.q; auk/V.ˇuk;P=u/ C O.q".q C Nqjˇj/1=2/:



A Ternary Problem 71

A change of variable shows that V.ˇuk;P=u/ D u�1V.ˇ;P/. Hence, on taking ˛ D
.a=q/ C ˇ in (4.5), we deduce from Lemma 4.2 that

h.˛/ D V.ˇ;P/
X

p2U .N/

S.q; auk/

qu
C O

�
P1�� t

q".q C Nqjˇj/1=2/
�

where again we wrote u D u.p/ in the interest of brevity. Next, consider the sum

v.ˇ/ D 1

k

X

m�N

m��e.ˇm/:

Maclaurin’s summation formula yields V.ˇ;P/ D v.ˇ/ C O.1 C Pjˇj/. Hence, if
we define the function h�.˛/ for ˛ D .a=q/ C ˇ 2 M with q � Q, .a; q/ D 1 and
jˇj � Q=N by

h�.˛/ D v.ˇ/
X

p2U .N/

S.q; auk/

qu
; (4.6)

we find that uniformly for ˛ 2 M one has

h.˛/ D h�.˛/ C O.P1� 1
2 � tC"/:

Let

r0.n;N/ D
Z

M

h�.˛/f .˛/2e.�˛n/ d˛:

Then, via Bessel’s inequality, we deduce from the previous estimate that

X

N<n�2N

�
r�
M.n;N/ � r0.n;N/

�2 �
Z

M

j.h.˛/ � h�.˛//f .˛/2j2 d˛ � P2�� tC"N;

and we may conclude as follows:

Lemma 4.3 For all but O.N1�1=.49k// of the integers n 2 .N; 2N� one has

jr�
M.n;N/ � r0.n;N/j < N1=k.logN/�100k:

We now evaluate r0.n;N/ further, replacing the exponential sum f .˛/ by its
natural approximation. This is straightforward by the method proposed in [11]. In
this process we receive help from the function h�.˛/, as this decays in q. To see
this, note that whenever .a; q/ D 1, one finds from Theorem 4.2 of Vaughan [18]
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that q�1S.q; auk/ � q�1=k.q; uk/1=k. Consequently, by (4.6), Lemma 4.2 and
[18, Lemma 2.8],

h�.˛/ � P.q C Pkjq˛ � aj/�1=k
X

p2U .N/

.q; u/

u
� P.logN/�t.q C Pkjq˛ � aj/�1=k:

In such a situation, the method of Liu and Zhan [11] is particularly easy to apply,
and on following the recent exposition of Hoffman and Yu [6], for example, one
identifies a leading term, featuring the singular integral (3.4) and a kind of singular
series that we now introduce. Let

S�.q; a/ D
qX

xD1
.x;q/D1

e.ax2=q/;

and then put

Au.q; n/ D '.q/�2q�1

qX

aD1
.a;q/D1

S�.q; a/2S.q; auk/e.�an=q/ (4.7)

to form the sum

	.n;N/ D
X

p2U .N/

u.p/�1
X

q�Q

Au.p/.q; n/: (4.8)

Equipped with this notation, we summarize the outcome of the Liu–Zhan method in
the next lemma, but as we pointed out already, there is no need to present a detailed
proof because the reader will have no difficulty in providing one along the lines of
Hoffmann and Yu [6, Sect. 6].

Lemma 4.4 Let A > 1. Then, for all N < n � 2N, one has

r0.n;N/ D 	.n;N/J.n;N/ C O.N1=k.logN/�A/:

Our next task is to disentangle the sum over p in (4.8), and realize the partial
singular series

S�.n; q/ D
X

q�Q

A1.q; n/ (4.9)

as a factor. With this end in view, we examine Au.q; n/ more closely. The number of
incongruent solutions x1; x2; x3 of the congruence x2

1 C x2
2 C .ux3/

k � n mod q with
.x1x2; q/ D 1 is a multiplicative function of q, and by orthogonality, this function is
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given by

q�1

qX

aD1

S�.q; a/2S.q; auk/e.�an=q/:

Hence, by Möbius’s inversion formula, we read off from (4.7) that Au.q; n/ is also
multiplicative as a function of q. Thus, we may restrict attention to the case where
q D pl is a power of a prime. In this instance, we apply a result of Hua [7], showing
that S�. pl; a/ D 0 holds whenever p − a and l � 2 when p is odd, and also for
p D 2, l � 4. Hence, by (4.7), for all u 2 N one has

Au. p
l; n/ D 0 .l � 2; p � 3; or l � 4; p D 2/: (4.10)

Now suppose that p is an odd prime. When p j u, we find from (4.7) that

Au. p; n/ D Ap. p; n/ D . p � 1/�2

p�1X

aD1

S�. p; a/2e.�an=p/:

We write


p D
pX

xD1

e.x2=p/; cp.n/ D
p�1X

aD1

e.�an=p/:

Then, by familiar properties of the quadratic Gauß sum, whenever p − a we have

S�. p; a/ D
pX

xD1

e.ax2=p/ � 1 D
�a
p

�

p � 1:

Hence

S�. p; a/2 D 
2
p C 1 � 2

�a
p

�

p: (4.11)

and

Ap. p; n/ D . p � 1/�2.
2
p C 1/cp.n/ � 2. p � 1/�2
p

p�1X

aD1

�a
p

�
e
�

� an

p

�
:

The remaining sum on the right transforms into .n j p/L N
p, so that

Ap. p; n/ D . p � 1/�2.
2
p C 1/cp.n/ � 2. p � 1/�2j
pj2

�n
p

�
:
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From the classical identity j
pj2 D p we now conclude that

jAp. p; n/j � 8p�1. p; n/: (4.12)

Next consider odd primes p with p − u. Then, a simple transformation shows that
S. p; auk/ D S. p; a/, and hence that Au. p; n/ D A1. p; n/. When p − a one also has
(Vaughan [18, Lemma 4.3])

S. p; a/ D
X

�

N�.a/
.�/

where � runs over the .k; p � 1/ � 1 non-principal characters �, mod p, for which
�k is principal, and where


.�/ D
pX

aD1

�.a/e.a=p/:

By (4.11),

A1. p; n/ D . p � 1/�2p�1

p�1X

aD1

X

�

N�.a/
.�/
�

2
p C 1 � 2

�a
p

�

p

�
e
�

� an

p

�

D . p � 1/�2p�1
X

�


.�/.
2
p C 1/

p�1X

aD1

N�.a/e
�

� an

p

�

� 2. p � 1/�2p�1
X

�


.�/
p

p�1X

aD1

N�.a/
�a
p

�
e
�

� an

p

�
:

When p j n, the first summand on the right vanishes, and so does the second
unless � D N� is the Legendre symbol. From the standard upper bound for Gauß
sums, it now follows that jA1. p; n/j � 2=. p � 1/ whenever p j n. If p − n, then the
sum over a in the first summand on the right-hand side of the preceding display again
transforms into a Gauß sum, and so does the sum over a in the second summand
unless again � is the Legendre symbol, in which case the relevant sum becomes the
Ramanujan sum cp.n/. A short calculation now shows that whenever p − n one has

jA1. p; n/j � 4k

p � 1
� 6k

p
; (4.13)

and we then see that this bound holds for all odd primes p.
Based on (4.12) and (4.13), we may now evaluate 	.n;N/ in terms of the singular

series.
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Lemma 4.5 We have

	.n;N/ D S�.n;Q/
X

p2U .N/

u.p/�1 C O.N�� t=k/:

Proof By (4.8) and (4.9),

	.n;N/ � S�.n;Q/
X

p2U .N/

1

u
D

X

p2U .N/

1

u

X

q�Q

�
Au.q; n/ � A1.q; n/

�
: (4.14)

By (4.10), we may restrict the sum over q to the set

Q D fq � Q W 16 − q; p2 − q for all odd pg:

Further, for each pair p; q with p 2 U .N/, q 2 Q and .u.p/; q/ D 1, one has
Au.q; n/ D A1.q; n/, so that these pairs do not contribute to (4.14). Hence the sum
in (4.14) may be restricted further, to those pairs p; q where . p1p2 : : : pt; q/ > 1.

Let I denote a non-empty subset of f1; 2; : : : ; yg, and let

K .I/ D f.p; q/ 2 U .N/ � Q W pi j q for i 2 I; pj − q for j 62 Ig:

The argument from the preceding paragraph shows that any pair p; q that makes a
non-zero contribution to the sum on the right-hand side of (4.14) is in some K .I/.
Now suppose that .p; q/ 2 K .I/. Then, at least when N is large, the p1; : : : ; pt are
all distinct, and hence, the number

u0 D
Y

i2I
pi

is a divisor of q with .q=u0; u.p// D 1. It follows that

Au.q; n/ D Au.u
0; n/Au.q=u0; n/ D Au0.u0; n/A1.q=u0; n/;

and we infer that

Au.q; n/ � A1.q; n/ D �
Au0.u0; n/ � A1.u

0; n/
�
A1.q=u0; n/:

Consequently, the contribution from .p; q/ 2 K .I/ to the sum in (4.14) is no larger
than

X

p2U .N/

1

u

X

q2Q
q�0 mod u0

ˇ̌
A1.q=u0; n/

�
Au0.u0; n/ � A1.u

0; n/
�ˇ̌

:
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We now write v D q=u0 and deduce from (4.12) and (4.13) that the expression in
the preceding display is bounded by

�
X

p2U .N/

1

u

� X

v�Q

.6k/!.v/

v

�8!.u0/

u0 .u0; n/ � .logQ/6k
X

p2U .N/

.u0; n/

uu0 :

Here the sum over p factorizes. For i 2 I the corresponding factor does not exceed

X

pi�N� i�1=k

. pi; n/

p2
i

� N�� i�1=k; (4.15)

while for j 62 I the sum over pj is certainly bounded. Since I is non-empty, we have
at least one factor (4.15), producing the estimate O.N�� t=k/ for the portion of (4.14)
where .p; q/ 2 K .I/. Summation over I completes the proof of Lemma 4.5.

We now need a lower bound for the singular series. Although there is no explicit
reference at hand for the sum S�.n;Q/, there is no difficulty in adjusting the
arguments of [9, Sect. 6] to the present needs, and we obtain the following result,
analogous to Lemma 3.1 of Li [10].

Lemma 4.6 For all but O.NQ"�1=2/ of the integers n 2 .N; 2N� \ Gk, one has
S�.n;Q/ � .log n/�15k.

We are ready to establish Theorem 1.2. Indeed, from Lemmas 4.2, 4.5 and 4.6,
we find that 	.n;N/ � .logN/�15k�t holds for all but O.N�1=.97k// of the integers
n 2 .N; 2N� \Gk. By Lemma 4.4 and (3.4), we deduce that for these n we also have
r0.n;N/ � N1=k.logN/�15k�t. The definition of t implies that t � 5k, and hence, by
Lemmas 4.1 and 4.3, we finally see that the lower bound

r�
Œ0;1�.n;N/ � N1=k.logN/�20k

holds for all but O.N�1=.97k// of the integers n 2 .N; 2N�\Gk. By (4.1) and a dyadic
dissection argument, this confirms the conclusions recorded in Theorem 1.2.

5 The Quaternary Problem

We end with a short sketch of a proof of Theorem 1.3. Since we attempt to establish
an asymptotic formula, we can no longer work with localized Weyl sums but have
to use their brethren

Fl.˛/ D
X

pl�N

e.˛pl/ log p:
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Then, by (1.9) and orthogonality, whenever n � N one has

%.n/ D
Z 1

0

F2.˛/F3.˛/F6.˛/Fk.˛/e.�˛n/ d˛:

We define major and minor arcs M and m as in Sect. 3, with Q defined by (3.3).
When B is a measurable subset of Œ0; 1�, we put

%B.n;N/ D
Z

B

F2.˛/F3.˛/F6.˛/Fk.˛/e.�˛n/ d˛:

The major arc work will not detain us for long, as this is standard for the
experienced worker in the area. First, one begins by applying the now standard
methods of Liu and Zhan [11], and this leads to the preliminary asymptotic relation

%M.n;N/ D � . 1
2
/� . 4

3
/� . 7

6
/s.n;Q/n1=k C O.N1=k.logN/�A/

that is valid for any fixed A > 1 and all n � N, and in which the partial singular
series is given via

s.n;Q/ D
X

q�Q

B.q; n/

and

B.q; n/ D
qX

aD1
.a;q/D1

X

1�xj�q
1�j�4

.xj;q/D1

'.q/�4e.a.x2
1 C x3

2 C x6
3 C xk4 � n/=q/:

The theory of the arithmetic function B.q; n/ is similar to that of A.q; n/ in
the previous section. In particular, B.q; n/ is again multiplicative in q, and by
an argument paralleling that leading to (4.10), (4.12) and (4.13), one finds that
B. p; n/ � p�3=2. p; n/1=2 while B. pl; n/ D 0 holds for all p, all l � 2. It follows
easily that the sum (1.10) converges absolutely, and that s.n/�s.n;Q/ � n"Q"�1=2.
In particular, we see that

%M.n;N/ D � . 1
2
/� . 4

3
/� . 7

6
/s.n/n1=k C O.N1=k.logN/�A/: (5.1)

To obtain a lower bound for s.n/, we use multiplicativity to write the series as an
Euler product which takes the shape

s.n/ D
Y

p

.1 C B. p; n//:
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By orthogonality, one deduces that 1CB. p; n/ D p. p�1/�4M. p; n/ where M. p; n/

is the number of incongruent solutions of the congruence y2
1Cy3

2Cy6
3Cyk4 � n mod p

with p − y1y2y3y4. The congruence condition in Theorem 1.3 assures that M. p; n/ �
1, and so the Euler factors of s.n/ are positive, and bounded below uniformly in n
by p. p� 1/�4. Further, for p − n, we noted earlier that B. p; n/ � p�3=2. Hence, we
conclude that

s.n/ �
Y

pjn
.1 C B. p; n//:

For p j n, we mentioned already that there is a number c > 0 with jB. p; n/j � cp�1.
We apply this bound for p j n with p > 2c, and use the uniform lower bound for
1 C B. p; n/ for the smaller primes to confirm (1.11).

This leaves the minor arcs m. The main difficulty here is that Kumchev’s
exponential sum estimates refer to localized sums. We have to turn these into bounds
for Fl.˛/, and this requires some care.

Lemma 5.1 Uniformly for ˛ 2 Œ0; 1�, one has

F2.˛/2 � N7=8C" C N1C"� .˛/; F3.˛/2 � N13=21C" C N2=3C"� .˛/:

Proof Let P D N1=2 and ˛ 2 Œ0; 1�. For 1 � R � P, put

f .˛;R/ D
X

R<p�2R

e.˛p2/ log p:

A dyadic dissection argument provides some R D R.˛/ with P7=8 � R � 1
2
P and

the property that

F2.˛/ D
X

P7=8<p�P

e.˛p2/ log p C O.P7=8/ � P7=8 C jf .˛;R/j logN: (5.2)

Fix a (small) ı > 0. If jf .˛;R/j � P7=8Cı, then F2.˛/ � P7=8Cı. In the opposite
case, we apply Dirichlet’s theorem on diophantine approximation to find a 2 Z,
q 2 N with 1 � q � R3=2 and jq˛ � aj � R�3=2 before using Theorem 3 of
Kumchev [8] in conjunction with partial summation. This yields

P7=8Cı < jf .˛;R/j � R7=8C" C R1C".q C R2jq˛ � aj/�1=2: (5.3)

It follows that q C R2jq˛ � aj � R2C"P�7=4�2ı . For large N, this implies that
q � P1=4 and jq˛ � aj � P�7=4, and hence that ˛ 2 N. The trivial bound

R2.q C P2jq˛ � aj/ � P2.q C R2jq˛ � aj/
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now suffices to conclude from (5.3) that jf .˛;R/j2 � N1C"� .˛/, and (5.2) then
delivers jF2.˛/j2 � N1C"� .˛/. We have now shown that whenever ı > 0, one has

jF2.˛/j2 � N7=8Cı C N1C"� .˛/:

This establishes Lemma 5.1 for F2, and the bound for F3 follows by the same
argument.

We are ready to run the basic argument from Sect. 3 for the minor arcs. One
observes that

Z 1

0

jF2.˛/F3.˛/F6.˛/j2 d˛ � N1C" (5.4)

(see Schwarz [15], Lemma 1.2 and Korollar), and as in (3.6) we also have

Z 1

0

jFk.˛/j2k2

d˛ � N2k�1C": (5.5)

By Hölder’s inequality, we find that the integral

Z

n

jF2.˛/F3.˛/F6.˛/Fk.˛/j2 d˛

does not exceed

sup
˛2n

jF2.˛/F3.˛/F6.˛/j2=k2
� Z 1

0

jF2F3F6j2 d˛
�1�1=k2 � Z 1

0

jFkj2k2

d˛
�1=k2

:

We now use (5.4), (5.5) and Lemma 5.1 for F2 together with trivial bounds for F3F6

to conclude that
Z

n

jF2.˛/F3.˛/F6.˛/Fk.˛/j2 d˛ � N1C 2
k C 1

8k2
C"

: (5.6)

For the set N \ m the argument from Sect. 3 requires an upgrade. First we apply
Lemma 2 of Brüdern [2] to confirm that

Z

N

� .˛/jF6.˛/j2 d˛ � N"�2=3;

and we then see via Lemma 5.1 that
Z

N

jF2.˛/F6.˛/j2 d˛ � N1=3C":
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For ˛ 2 N n N.N1=21/, we find from Lemma 5.1 that jF3.˛/j2 � N13=21C". The
trivial bound for Fk is now enough to confirm the estimate

Z

NnN.N1=21

jF2.˛/F3.˛/F6.˛/Fk.˛/j2 d˛ � N
20
21 C 2

k C" (5.7)

For ˛ 2 N.N1=21/ Lemma 5.1 produces jF2.˛/F3.˛/j � N5=3C"� .˛/2, and then
the argument leading to (3.9) delivers the bound

Z

N.N1=21/\m

jF2.˛/F3.˛/F6.˛/Fk.˛/j2 d˛ � N1C 7
4k C":

This estimate combines with (5.6), (5.7) and Bessel’s inequality to

X

n�N

%m.n;N/2 �
Z

m

jF2.˛/F3.˛/F6.˛/Fk.˛/j2 d˛ � N1C 2
k � 1

8k2
C"

:

It follows that for all but O.N1�1=.8k2/C2"/ of the integers n � N one has %m.n;N/ �
N1=k�". This combines with (5.1) to confirm the conclusions in Theorem 1.3.
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